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Chapter 1

Introduction

In many problems in partial differential equations, one is confronted with problems hav-
ing multiple length scales and strong spatial localizations. Examples include nonlinear
systems of hyperbolic partial differential equations containing complex combinations of
discontinuities and smooth flow. Also included are combustion problems in which, at any
given instant, burning is taking place in a small subset of the problem domain and prob-
lems with complex geometries in which localized geometric features can generate strong,
localized solution gradients. Finite difference calculation using block-structured adaptive
mesh refinement (AMR) is a powerful tool for computing solutions to partial differential
equations involving such multiple scales. In this approach, the underlying problem domain
is discretized using a rectangular grid and a solution is computed on that grid. Regions
requiring additional resolution are identified by computing some local measure of the orig-
inal error and covered by a disjoint union of rectangles in the domain, which are then
refined by some integer factor. The solution is then computed on the composite grid.
This process may be applied recursively, and for time-dependent problems, the error esti-
mation and regridding can be integrated with the time evolution and refinement applied
in time as well as in space. Such an approach was first introduced by Berger and Oliger
[6] for computing time-dependent solutions to hyperbolic partial differential equations in
multiple space dimensions. Since that time, the approach has been extended to a variety
of problems in applied partial differential equations [7] [26] [4] [2] [23] [14] [1] [16] [24]
[15] [10] .

One of the principal disadvantages of block-structured AMR is its relative difficulty to
implement compared to single-grid algorithms. The algorithms are more complex and the
data structures are unfamiliar to traditional FORTRAN programmers.

To ameliorate these difficulties, we have developed Chombo, a set of C++ classes
designed to support block-structured AMR applications. Chombo is based in part on the
BoxLib toolkit and related work done by our colleagues at the Center for Computational
Sciences and Engineering (CCSE) at LBNL [12] [25]. The Chombo package at the present
time consists of the following components:

e The BaseTools Library contains helper classes and functionality which is indepen-



dent of spatial dimension, such as Vector and List container classes, etc. The
BaseTools library need not be specified in the Chombo makefiles, and is always
included and linked to when compiling using the Chombo make system. In earlier
versions of Chombo, the contents of the BaseTools library resided in the BoxTools
library.

e The BoxTools Library includes the BoxLib rectangular array library. BoxTools also
contains a full set calculus on Z", and classes for defining data on unions of rect-
angles as well as mapping such data onto distributed memory systems.

e The AMRTools Library consists of classes which implement a number of opera-
tions that often appear in AMR algorithms: conservative interpolation, averaging
between AMR levels, interpolation of boundary conditions at coarse-fine interfaces,
and refluxing operations to maintain conservation at coarse-fine interfaces.

e The AMRTimeDependent library consists of classes which support the Berger-Oliger
time stepping algorithm and examples of its use in solving systems of hyperbolic
conservation laws..

e The AMRElliptic library consists of classes which support an AMR-multigrid algo-
rithm for elliptic partial differential equations, and examples of its use in solving
Poisson and Helmholtz equations.

e The MultiDim library includes functions which support Chombo in a multidimen-
sional environment, as described in section 10.

e Support for embedded boundary (EB) discretizations and algorithms is found in the
EBAMRElliptic, EBAMRTimeDependent, EBAMRTools, EBTools, and Workshop
libraries, which are described in a separate set of EB design documents. These are
only built if EB=TRUE is specified during the build process.

In addition to these basic tools we have provided extensive documentation. There
are some general comments regarding the use of the package, however, that are worth
emphasizing here.

e As is the case with BoxLib, C4++ rectangular array operations applied one point
at a time in a for loop will not produce high performance on bulk rectangular
operations. For this reason, BoxLib provides an interface between the array classes
that allows them to be passed to FORTRAN routines. We have augmented this
interface with a macro package, described in appendix A. The Chombo FORTRAN
package additionally allows one to write dimension-independent FORTRAN. On the
other hand, sparse irregular calculations have generally been implemented in C++
directly using pointwise operations.



e \We have attempted to leverage other related research activities. For example, HDF5
is an emerging standard for portable, self-describing, binary 1/0. For this reason, we
have based our I/O on HDF5. Similarly, we are working with the KeLP effort [13]
at UCSD/SDSC, and we expect ultimately that our parallel support will be built on
top of KelLP.

e We are trying to enable use of parts of Chombo which others might find useful by
pursuing a component-based design approach. For example, it is possible to use our
implementation of the Berger-Rigoutsos [8] grid generation algorithm or the parallel
data distribution support without using the rectangular array library.

Finally, we want to emphasize that the developers of this package are themselves using
Chombo to develop new algorithms and packages. This means that we will be actively
adding capability that we expect to make available to other users of this package.

1.1 Requirements

Before discussing the installation procedure, we must discuss what other software needs
to be installed on a system in order to build Chombo.

e To build Chombo, the GNU version of make (GNUmake) must be installed. The
Chombo makefile system requires GNU make version 3.77 or later. GNU software
can be downloaded from many places, including:

ftp://ftp.gnu.org/gnu/make

e HDF5 must be installed. This provides Chombo a mechanism for portable and
parallel self-describing binary output. HDF5 can be downloaded from:

http://www.hdfgroup.org/downloads/

We recommend using HDF5 version 1.6.x. We suggest that it be configured with
the option "--enable-production". Chombo does work with HDF5 1.8.x but
needs to be compiled with the 1.6 compatibility flags from HDF5. One can either
configure and build HDF5 with --with-default-api-version=v16 or include
-DH5 USE_16_API in the compilation flags during the Chombo build process as
detailed in section 1.2.2.

e A functioning MPI-1.2 (or higher) compliant C-binding is needed to build Chombo
for parallel processing. This is only necessary if Chombo is compiled with the
MPI=TRUE option. See section 1.2 for the various compilation options for Chombo.
A parallel version of the HDF5 libraries must also be built. Configure HDF5 with
"--enable-parallel" for a parallel version. Make sure to install it into a different
directory from the serial version, since the libraries have the same names in both
cases.



e A C++ compiler is required. Chombo makes heavy use of the ISO/IEC 14882 C++
Standard. Some compilers are not fully compliant with this specification, although
most are. If hybrid parallelism is desired the compiler should also support OpenMP
API. Chombo has been compiled and tested with

— GNU g++ 3.32 or higher.

— Intel icc v9 or higher on Linux. There seems to be some issues with v10 and
floating point errors.

— IBM xIC version 7 or later.

e At least a Fortran 77 compiler is required. Chombo has been compiled and tested
with:

g95, gfortran, g77

— Intel ifc on Linux

IBM xIf, xIf90 on AIX
Portland Group pgf77, pgf90
— HP/Compaq/DEC 77,f90,f95
— Sun f77,f90

e Perl version 5.0 or higher is required. The Chombo Fortran system uses perl to
produce dimension-independent Fortran code. Perl 5 can be downloaded from:

http://www.perl.org/get.html

1.2 Installation

1.2.1 Downloading Chombo

Previous versions of Chombo were distributed as compressed tar files. The Chombo team
is now using a more continuous distribution process using branches and the Subversion
revision control system.

To check out Chombo you will use the svn Subversion client. Subversion is already
installed on most unix-like operating systems. In order to access the Chombo svn reposi-
tory, first go to https://anag-repo.1bl.gov and register to establish a username and
password. You will then be redirected to a page with specific download instructions. There
is also a link on https://anag-repo.1lbl.gov which has the same information without
registering. Future changes to the Chombo release may be obtained through svn updates.
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1.2.2 Configuring Chombo for a Particular System

Before Chombo can be built, the makefile system must be configured for the computer it
is to be built on. The major configuration parameters relate to the locations of the other
software on which Chombo depends and the compilers.

All Chombo configuration is done by setting variables that the makefiles use. The
makefile system sets as many of these variables as possible, but some are hard to determine
and others are purely a matter of user preference. All customizations of the makefile
variables are done in a single file:

Chombo/1ib/mk/Make.defs.local

This file does not exist in the Chombo distribution tar file. There are several ways to
create it:

e copy the file Chombo/1ib/mk/Make.defs.local.template

e copy (or create a symbolic link to) the system-specific customization file from
Chombo/1ib/mk/local if you are using a computer we already use (Franklin, Hop-
per, Jaguar, etc.)

The first two option produces a customization file with no variables defined, but with
the important variables documented in comments. The resulting Make.defs.local
file must be edited to set the HDFINCFLAGS and HDFLIBFLAGS variables
(see below) if either of these options is used. The system-specific files in the second
option set the variables for particular supercomputers that many people use and should
work on those systems without modification.

The makefile variables that are most commonly customized include:

DIM the number of spatial dimensions in the calculations (=1, 2, 3, 4, 5, or 6). The
default is 2. There is limited functionality for high dimensions (DIM > 3).

PRECISION determines the size of floating point variables; the acceptable values are FLOAT
and DOUBLE. The default is DOUBLE.

DEBUG determines whether to compile with a symbol table (=TRUE) or not (=FALSE).
The default is TRUE.

OPT determines whether to compile with optimization (=TRUE) or not (=FALSE). The
default is FALSE. OPT can also be set to HIGH in which case asserts are removed
from the code and FArrayBox memory is initialized to zero (instead of a large positive
value) during memory allocation. It is recommended that OPT=HIGH not be used
unless absolutely necessary.

PROFILE determines whether to compile for performance profiling (=TRUE) or not (=FALSE).
The default is FALSE.

11



CXX

FC

MPI

OMP

MPICXX

OBJMODEL

XTRACONFIG

LD

HDFINCFLAGS

HDFLIBFLAGS

HDFMPIINCFLAGS

HDFMPILIBFLAGS

the command to run the C4++ compiler (include path and options, if necessary).
The default is g+, except on systems with a usable vendor-provided compiler.

the command to run the Fortran compiler (ditto). The default is gfortran, except
on systems with a usable vendor-provided compiler.

determines whether to compile for parallel (=TRUE) or serial (=FALSE) execution.
The default is FALSE.

determines if hybrid parallelism is in use (=TRUE). The default is FALSE.

when $MPI is TRUE, this specifies the command name of the parallel C++ compiler.
The default is mpiCC, except on systems with a usable vendor-provided compiler.

an optional flag value that specifies a special way to compile the Chombo code (e.g.
for 64bits or dynamic libraries). The actual values are defined in the makefiles for
the individual compilers. Most users will not need to set this. The default is blank.

an additional identification string to be added to filenames generated by the make-
files. This allows the user to build separate libraries based on parameters other than
those specified by the makefile system. This string is empty by default.

the command to run the linker, if different from CXX

the C++ compiler options to compile with HDF (usually -I<hdf_dir> /include, where
<hdf_dir> is the root directory of the HDF installation). The default is blank, but
that usually will not work, so this variable must be set. For serial builds against a
standard installation of HDF5. It is no longer necessary to use the -DH5 USE_16_API
flag.

the linker options to access the HDF libraries (usually -L<hdf_dir>/lib -Ihdf5 -Iz)

same as HDFINCFLAGS, except for the parallel version of HDF. The default is
blank. (this should be blank if parallel HDF is not installed)

same as HDFLIBFLAGS, except for the parallel version of HDF (this should also be
blank if parallel HDF is not installed)

The first 10 variables in this list (from DIM to XTRACONFIG) are called the *“con-
figuration” variables. The Chombo makefiles allow for different configurations to exist
simultaneously by using the configuration in the names of the library and executable files.
The normal procedure is to define a default configuration in the Make.defs.local file
(or use the standard configuration defined in the Chombo/1ib/mk/Make.defs.defaults
file) and build alternate configurations by specifying the configuration variables explicitly
on the make command line. For example:

make DIM=3 DEBUG=FALSE OPT=TRUE all

12



will build Chombo in 3 dimensions with compiler optimization enabled.

If the compilers on the system are not already known to the makefiles, it also may be
necessary to set variables that determine what options to use in the compile commands.
Variables for known compilers are set in files in the directory Chombo/1ib/mk/compiler.
The files in this directory have names of the form Make.defs.compiler_-name. The com-
piler_name is taken from the CXX and FC configuration variables.

The recommended approach to setting compiler variables for unknown compilers is to
first try to build the Chombo libraries and programs with the default compiler options
variables, and if that doesn't work, to customize the variables in the Make.defs.local
file.

The compiler variables are:

cppdbgflags options for the preprocessor step of C++- and Fortran compiles when DEBUG=TRUE
(default is blank)

cppoptflags options for the preprocessor step of C++ and Fortran compiles when OPT=TRUE
(default is blank)

cxxdbgflags options for C++ compiler and linker when DEBUG=TRUE (default is -g)
cxxoptflags options for C++ compiler and linker when OPT=TRUE (default is -O)
fdbgflags options for Fortran compiler when DEBUG=TRUE (default is -g)
foptflags options for Fortran compiler when OPT=TRUE (default is -O)
lddbgflags options for linker only when DEBUG=TRUE (default is blank)
ldoptflags options for linker only when OPT=TRUE (default is blank)
cxxprofflags options for C++ compiler and linker when PROFILE=TRUE (default is -pg)
fprofflags options for Fortran compiler when PROFILE=TRUE (default is -pg)
These variables can be overridden on the make command line by setting the variables:

CPPFLAGS CXXFLAGS FFLAGS LDFLAGS

1.2.3 Compiling Chombo’s Libraries

Once the makefile variables are properly customized in the Make.defs.local file, the
libraries can be built. The commands to do this are:

cd Chombo/lib
make lib

13



Add to the “make” command any non-default definitions of configuration variables
you wish to use.

This will produce a lot of output, most of which is compile commands and mes-
sages from make. Depending on which compilers are used, there may be some compiler
warnings about unused variables and invalid offsets, but these can be safely ignored.
None of the compiles should produce error messages. If this occurs, you have a prob-
lem. Usually the solution is to fix the compiler options. Problems with the files in
Chombo/1ib/mk/compiler should be reported to <chombo®@hpcrdm.lbl.gov>.

1.2.4 Compiling and running Chombo’s test programs

Once the libraries are successfully compiled, the test programs should be built and run.
The commands to do this are:

cd Chombo/lib
make test
make run

Of course, any variables you defined on the command line when build the libraries also
should be defined for these “make” commands.

The first “make” command compiles and links the test programs. Errors are usually
in the link step, since the test code will usually compile if the library code compiles. Link
errors are commonly due to bad or missing libraries, bad template instantiation by the
compiler or problems with Fortran libraries. Make sure that the HDFLIBFLAGS variable
has the correct value and that the HDF libraries were compiled with the same compiler that
the Chombo build is using. Undefined references to routines named H5* is a symptom of
problems with the HDF library. Other problems should be referred a local guru or, failing
that, to <chombo®anag.Ibl.gov>.

The “make run” command executes all the Chombo test programs, in a mode that
produces minimal output. Successful execution of a test program is indicated by the
message “... testFoo finished with status 0". If all you care about is whether the tests
succeed or not, the command to use is:

make run | grep 'finished with’

If the status is anything other than 0, the test failed and you should rerun it by hand
in verbose mode.

To do this, find the message that starts “make —no-print-directory —directory”’ and
occurs before the output of the test that failed. The word after “—directory” is the
directory containing the failed test. Change directory into “test” then change into that
directory. Run the command “make run VERBOSE=-v" and save the output. Then do
“cd ../.." and run the command “make vars’. Email the output from both commands to
<chombo®@anag.Ibl.gov> and we'll try to suggest a solution.
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1.2.5 Compiling and running Chombo’s example applications

The test programs are all simple codes that exercise small pieces of the Chombo libraries,
usually just single classes. They are not intended to show how the Chombo software
should be used in a real application. For that, there are example applications.

Building and running the examples is the same as the test programs. The commands
are:

cd Chombo/releasedExamples
make all
make run

As before, any variables defined on the command line when you built the libraries
should be added to this “make” command too.

This “make all” step usually succeeds if the libraries and tests built successfully. Errors
should be reported.?

The “make run” step produces a lot of output, and can take a long time to run,
depending on the computer and configuration. As with the tests, the command:

make run | grep 'finished with’'

will print out a minimum of output and still indicate whether all the example programs
ran successfully. It is recommended to run the examples once and look at the output to
ensure that the programs actually ran correctly.

Some of the example programs use a lot of memory and take a long time to run in
3d: (e.g. AMRNodeElliptic/execPolytropic). The command:

cd Chombo/releasedExamples
make usage

will list all the example targets. An individual example can be run by running “make”
with that target.

1.2.6 Building an application using Chombo

There are two ways to build an application with the Chombo library: by using the Chombo
makefiles and building the application as if it was a Chombo application, or by treating
Chombo as just another library in an existing makefile.

1Exception: the IBM xIC compiler complains about multiple definitions. Our experience has been that
it is safe to ignore these complaints as long as the executable files (*.ex) are created and run successfully.
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## path to the ’Chombo/1lib’ directory
CHOMBO_HOME := ../../../Chombo/1lib

## defines the Chombo variables
include $(CHOMBO_HOME)/mk/Make.defs

## this is the name of the file with ’main()’
ebase := main # change this !!

## Chombo libraries needed by this program
LibNames := AMRElliptic AMRTools BoxTools

## Other libraries needed by this program (using -L and -1 options)
XTRALIBFLAGS :=

## ’all’ is the default target and ’all-test’ is defined in Make.rules
all: all-test

## defines the rules to build everything
include $(CHOMBO_HOME)/mk/Make.rules

Figure 1.1: Sample Chombo example makefile

1.2.6.1 Using the Chombo application makefiles

The Chombo makefiles support two different ways of building an application. One assumes
all the source code for the application (aside from whatever libraries it uses) are stored in
a single subdirectory. The other allows for source code in multiple directories. The former
is simpler.

Figure 1.1 shows an example of a “GNUmakefile” that builds an application with
all of its code contained in a single directory. It is based on the GNUmakefile in
Chombo/releasedExamples/AMRPoisson/execCell, with unnecessary lines removed
for simplicity.

The first line defines the CHOMBO_HOME variable, which tells the rest of the make-
files where the Chombo/1ib home directory is. The directory containing the application
code can be anywhere relative to the Chombo directory, but the CHOMBO_HOME vari-
able must be defined appropriately. The next line uses that variable to define the variables
the rest of the makefiles need. The next line is application-specific, defining the primary
build target. For the example shown here, there should be a file named “main.cpp” in
the directory containing this makefile. The Chombo makefile system will compile this file
and all the other source files in the directory. Source files are identified for compilation by
using a set of suffix rules; any files in the directory with common suffixes like “cpp”, “F”,
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etc. will be compiled.? The next line specifies which Chombo libraries are needed, which
will vary depending on the application. Note that most linkers require that the libraries
be listed in the order they will be searched. For Chombo, that generally means that the
more basic libraries (like BoxTools) must come after libraries (like AMRTools) which ref-
erence them. The XTRALIBFLAGS variable should be defined to specify additional libraries
if needed. The value should contain the options to be given to the linker to access the
libraries (e.g “-Lsomedir -Isomelib”). The next line defines the “all” target, which will be
the default target. The Chombo makefile system handles everything when the target is
invoked. Actually, the “all-test” target does the work. The final line includes the makefile
that defines this target, and all the rules that it needs.

For more complex applications, a slightly more involved approach allows the Chombo
makefile system to build an application with source code in multiple directories. The file

Chombo/releasedExamples/ AMRGodunov /execPolytropic/ GNUmakefile

demonstrates how this is done. In general, the GNUmakefile looks similar to the description
above. The major difference is the addition of a src_dirs variable which lists the other
directories containing source code, along with a base_dir variable (usually “.") which
defines the directory where the source file containing main is located. The final line
includes another Chombo makefile (Chombo/1ib/mk/Make . example) that defines all the
targets and rules. The “make all’ command would be used to build the application, just
as with the Chombo tests and examples.

1.2.6.2 Using an existing application makefile

To use an existing makefile, it is necessary to modify the rules for compiling C++ code
that uses Chombo classes and to modify the link rule to use the Chombo libraries.3

The compile rules must be modified to add the “Chombo/lib/include” subdirectory to
the search path for C++ header files (-I option for most compilers) and to define some
C-preprocessor macro variables that the Chombo header files use. The compiler options
for this will usually look something like:

-IChombo/lib/include -I<HDF _DIR> /include -DCH_SPACEDIM=<dim>
-DCH_USE _<precision> -DCH_<system> -DCH_LANG_CC -DHDF5 -DMPI

where <HDF_DIR> is the directory <dim> is the number of dimensions in the problem
(2 or 3), <precision> is the type for floating point variables (FLOAT or DOUBLE) and
<system> is the name of the operating system (see “Chombo/lib/mk/Make.defs” for
the values of the “$system” makefile variable). Note that “-DMPI" should only be used
when compiling for parallel execution.

The link rule must be modified to add the Chombo “lib” directory to the search path
for libraries and to specify the Chombo libraries to be searched. The linker options for
this will usually look something like:

2The complete list of suffixes may be found in Chombo/1ib/mk/Make.rules
3This assumes that the Chombo libraries are compiled before trying to compile the application.
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-LChombo/lib -lamrelliptic<config> -lamrtimedependent<config>
-lamrtools<config> -lboxtools<config> -L<HDF_DIR>/lib -lhdf5 -Iz

where <HDF_DIR> is as above, “-Ihdf5 -Iz" are the HDF5 libraries and <config> is
the Chombo configuration string. See “Chombo/lib/mk/Make.defs.config”" to see how to
compute the configuration string.

1.2.7 Building Chombo’s Doxygen documentation

C++ header files in Chombo libraries are annotated with comments which are compati-
ble with the Doxygen (http://www.doxygen.org) software documentation system. To
create html documentation of the Chombo libraries,

cd Chombo/1ib
make doxygen

which will install doxygen-generated html documentation in Chombo/1ib/doc/doxygen.
To access it once built, point a web browser at Chombo/1ib/doc/doxygen/html/index.html.
To include EB documentation, add EB=TRUE to make doxygen.
Doxygen documentation of the current release is also available online at http://chombo.1bl. gov.

1.2.8 Namespace

Chombo can be embedded in its own C++ namespace. While this was part of previous
versions of the code, it is more relevant now that Chombo is part of larger development
projects. This is controlled by the NamespaceHeader.H and NamespaceFooter.H files
that are included in every header and source file in Chombo.

By default, Chombo builds with NAMESPACE=FALSE which turns these include files
into empty files, and they have no effect. If you build Chombo with

>make NAMESPACE=TRUE

Then every class and function defined between NamespaceHeader .H and NamespaceFooter.H
will be placed in the Chombo namespace. In practice, this means that one should place

#include "NamespaceHeader.H"
after all other include files, but before any C++ code in a file, and then
#include "NamespaceFooter.H"

after all C4++ code in a file (but within any multiple-inclusion guards, if in a C++ header
file). Alternatively,

#include "UsingNamespace.H"
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will ensure that the C++ code in a given file is not embedded in a Chombo namespace,
but will be able to use Chombo code which is in the Chombo namespace. This is most
useful in an application code.

If instead a user uses

>make NAMESPACE=MULTIDIM
Then Chombo creates a dimension-dependent namespace Chombo: : XD where X is the

dimensionality in which Chombo is being built. This can be used to build Chombo in
multiple dimensions and use them together in the same application. (see Chapter 10.)
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Chapter 2

BaseTools and BoxTools

2.1 AMR Spatial Discretization

The underlying discretization of space is given as points (i, ...,ip_1) = © € ZP. The
problem domain is discretized using a grid I' C ZP that is a bounded subset of the lattice.
I is used to represent a cell-centered discretization of the continuous spatial domain into
a collection of control volumes: ¢ € I represents a region of space [z, + (¢ — %u)h, T+
(% + 3u)h], where @, € RP is some fixed origin of coordinates, h is the mesh spacing,
and u € ZP is the vector whose components are all equal to one. We can also define
various face-centered and node-centered discretizations of space based on those control
volumes. For example, we denote by I'" the set of points in physical space of the form
@y + (i & Jv)h,i € I'. Here v can be any vector whose entries are equal to either zero
or one.

We will find it useful to define a number of operators on points and subsets of ZP.

We denote by |i| = mazx 1(|id|), ' + 4 as the translation of a set by a point in ZP, and

G(T',r) to the set of all points within a | - |-distance 7 of I"

G(T,r)= UT +i

lé|<r

We define a coarsening operator by C, : ZP — ZP,

. lo ld—1
€)= (12, [ME2))
where r is a positive integer. The coarsening operator acting on subsets of ZP can be
extended in a natural way to the other grid centerings: C,.(I') = (C.(I"))".
We extend this discretization of space to represent a nested hierarchy of grids that
discretize the same continuous spatial domain. We assume that our problem domain

can be discretized by a nested hierarchy of grids I'C... "™ with [*+1 = C;ll (I'Y), and
ref

@), — suh' independent of I. The integer nlref is the refinement ratio between level [ and
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[ + 1. We also assume that the mesh spacings h' associated with I'* satisfy 1o = nl,,.

These conditions imply that the underlying continuous spatial domains defined by the
control volumes are all identical.

Adaptive mesh refinement calculations are performed on a hierarchy of meshes ¢ C
I, with Qf > Cnﬁef(QHl)- Typically, 2 is decomposed into a disjoint union of rectangles

in order to perform calculations efficiently. We denote such a decomposition by R(!) =
l

{QL kNirde, where the 21’s are rectangles and Q! NQL, = 0 if k # k’. We say that R(Q')
is p-blocked, p > 1, if O = C,'(C,(,)) for all k. We will assume throughout that €'
admits a decomposition R(Q) that is nf;}—blocked for all { > 0. In particular, the control
volume corresponding to a cell in 2!~ is either completely contained in the control volumes
defined by €' or its intersection has zero volume. We will also assume that there is at least
one level [ cell separating level [41 cells from level [—1 cells: Q(Cnimf(Ql“), Nt c Q.
We will refer to grid hierarchies that meet these two conditions as being properly nested.
We emphasize that this form of proper nesting is a minimum requirement for the AMR
algorithms discussed in this document. For some applications, it may be necessary to
impose more stringent conditions on the grid hierarchy.
A discretized dependent variable in AMR is a level array

ol 5 R™
We denote by ¢; € R™ the value of ¢ at cell i € Q2'. We can also define level arrays on

other grid centerings, i.e., 1 : QY — R™. In that case, we denote the indexing operation
by @/JH%,, € R™. In particular, we can define vector fields at a level

Fl=(F, .. Fy ), Fl: Qb & R™

We will be interested in operations on pairs of refined grids that are not necessarily
contained in an AMR mesh hierarchy (e.g., during regridding). In those cases, we will
denote by '/, T'° the fine and coarse problem domains, nrer the refinement ratio between
the two levels, Qf, Q¢ the refined regions in the two domains, and gpf, ¢, etc., level
arrays defined on Q/, Q°. We will always assume that the two levels are properly nested.

In the remainder of this section, we will describe BoxTools, a set of abstractions
for defining points and regions in a multidimensional integer lattice index space, and
representing aggregate data in such regions. The classes defined in the remainder of this
chapter correspond to the mathematical objects described above in the following fashion.

e Points in the rectangular lattice 2 € ZP < the class IntVect.
e Rectangular subsets I' C ZP < the class Box.

e Arbitrary subsets Z C ZP < the class IntVectSet.

e Rectangular arrays ¢ : I' =+ R™ & the class FArrayBox.

e Unions of rectangles at a fixed level of refinement 2, R(2), and their distribution onto
processors < the class DisjointBoxLayout.

e Level arrays o : ) = R™ & the class LevelData<FArrayBox>.
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2.2 Points, Regions and Rectangular Arrays

BoxTools is a set of abstractions for defining points and regions in a multidimensional
integer lattice index space, and representing aggregate data in such regions. The dimen-
sionality D of the index space is a compilation-time constant. It is accessed as a macro
CH_SPACEDIM, which is set in the Make process, and is propagated into Fortran .F or
.ChF files in applying the C preprocessor. A second compile-time constant in BoxTools is
that of the precision of floating-point variables. BoxTools provides a type Real, which is
set using a typedef declaration to either float or double at compile time. The macro
REAL_T serves the same function in Fortran. This macro is defined in the file REAL.H,
which can be included as a header for both C++ and Fortran files.

2.2.1 Class IntVect

IntVects represent points in the rectangular lattice ZP.
Operations on IntVects. In the following definitions 2, j are IntVects and s, d are
integers, 0 < d < D.

e Constructors. IntVect has the usual default and copy constructors, as well as construc-
tors that take tuples of integers as arguments, e.g., IntVect (ig,7;) (two dimensions),
IntVect (ig, i1,2) (three dimensions).

e Arithmetic operators. ¢ @ 5,4 ® s, € {+, -, *, /} produce IntVects by operat-
ing componentwise on the inputs. +=, -=, *=, /= perform the same operations in
place. e.g., t+=j is the same as ¢« = 7 + 5. IntVect also provides component-wise
min(z, j),max(z,J) operators.

e Logical operators. i;==15, (i, !=15) Test for mathematically equal (unequal) IntVects.
Comparison operators are defined element-wise: >,>=,<,<=, ¢ < j iff iy < j4. Lexico-
graphic ordering operators 7.1exLT(j),¢.1exGT(j) are also provided.

e Static members. Unit is the IntVect consisting of all ones. Zero is the vector consisting
of all zeros. BASISV(d),d = 0,...,D — 1 returns the unit IntVect in the d direction.

e Indexing operations. ¢[d] returns the component of %, and can be used to assign values
to components: i[d] = gq.

2.2.2 Class Box

A Box represents a rectangular region in ZP, defined by specifying the IntVects defining
its low and high corners. For each coordinate direction, a Box can be cell-centered or
node-centered. This allows one to represent the various face-, edge-, and node-centered
rectangular grids (figure 2.2).

Operations on Boxes. In what follows, B, B;, B, are Boxes, %, %1, %2, v are IntVects,
v having components equal to zero or one, and s, d are integers, 0 < d < D.

23



LU Ud S UD
LU Ud S UD
LU Ud S UD

=
=
=
=

Figure 2.2: Vertex (e), cell (OJ) and face (& and ®) sites on a grid.

e Constructors. B(iy, 12, v = Zero) Constructs a Box with low and high corners 4, 25, and
centering defined by v. If v; = 0, then the Box is cell-centered in the d direction; if vy = 1,
then the Box is node-centered in the d direction. In particular, the default centering is
cell-centered in all three directions. Box has a copy constructor and assignment operator.
One can reset the low and high corners of the Box (setSmall(z), setBig(i)).

e Logical functions. By==B,, B;!'=B; test whether B; and By are equal or un-
equal, including having the same centering. B.isEmpty() tests whether B is empty.
B.contains(B;), B.contains(), tests whether B contains By, . B;.intersects(Bs)
checks whether By () By # (). B;.sameType(DBs), B;.sameSize(B;) check whether By
and By have the same centering, or whether By = B, + ¢ for some ©. B; < By if
B .smallEnd().LexLT(Bs.smallEnd()).

e Shifting and Centering. B.convert(v) changes the centering of B to that speci-
fied by v, as in the constructor. One can also change the centering in one direc-
tion. B.surroundingNodes() converts all the cell-centered directions to node-centered,
and increments the high corner in those directions by 1. B.surroundingNodes(d)
performs the same operation in the d coordinate direction. B.enclosedCells(),
B.enclosedCells(d) perform the opposite operation, converting the centerings to be
cell-centered, and decrementing by 1 the high corner of the box for those directions
for which the centering changed. There are also corresponding friend functions, e.g.,
surroundingNodes(DB) that return a new box with the appropriately modified centerings.
The various grids depicted in figure 2.2 can be obtained from on another by application of
the member functions surroundingNodes and enclosedCells. B.shift(i), B+=t per-
form the identical operation of replacing B with Box(B.smallEnd()+ 4, B.bigEnd()+1).
B.shift(d, s) is the same as B+=s x BASISV(d). B-=i is the same as B+=(—1%).

e Size functions. B.smallEnd(), B.bigEnd(), B.size(), return IntVects containing the
low corner, high corner, and size in each direction. The same functions called with an inte-
ger argument (B.size(s)) returns the s-th component of those IntVects. B.numPts()
returns the discrete volume of B. B.loVect(), B.highVect(), return pointers to the
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D-tuples of integers defining the low and high corners of B in order to pass them to
Fortran.

e Set operations. Although it is not possible to define a complete set calculus on Boxes
(the union of two rectangles is not always a rectangle), Box provides many of the set
functions most commonly required. B1&=B; sets By = By (| Bs. B.minBox(By) sets By
to be the minimum sized Box containing By, By. B.grow(s) grows B in all directions by
a size s (s can be negative corresponding to shrinking). B.grow(¢) grows B by i4 in the
dth direction, and B.grow(d,s) = B.grow(s * BASISV(d)). B.coarsen(s) = Cs(B),
B.refine(s) = C,"'(B). B can also be coarsened and refined by different amounts in
the various coordinate directions using B.coarsen(i), B.refine(¢). Grow, minBox,
coarsen, refine all have corresponding friend functions that return a new Box on
which the operation has been performed, e.g., minBox (B, Bs). adjCellLo(B,d,s = 1)
returns the cell-centered box of width s direction adjacent to B on the low side in the dth
coordinate direction. adjCellHi performs the same operation on the high side of B in
the dth direction and adjBdryLo, adjBdryHi return the corresponding node-centered
Boxes.

2.2.3 Class IntVectSet

IntVectSet represents an irregular region in an integer lattice D-dimensional index space
as an arbitrary collection of IntVects. A full set calculus is defined.

Operations on IntVectSets. In the following, Z,7Z;,Z, are IntVectSets, B is a Box,
and s is an integer.

e Constructors. The default constructor constructs an empty IntVectSet. They can
also be initialized at construction with an IntVect, a Box or another IntVectSet. An
existing IntVectSet can also be re-initialized with any of those three objects using the
member functions define. IntVectSet has an assignment operator.

e Set Operations. IntVectSets can be updated in place by taking unions (Z;|=Z;,
Z|=B, Z|=t) intersections (Z,1&=Z,, Z&=B, T&=t) and set-theoretic differences (Z,-=1,
Z-=B, T-=t) with another IntVectSet, a Box or an IntVect. Z.coarsen(s) sets Z
to Cs(Z), Z.refine(s) changes Z to C;'(Z). Z.grow(s) changes T to Uy ;<.(Z + %),
Union, intersection, difference, coarsen, and refine all have associated friend functions
that return a new IntVectSet suitably modified. For example, Z;|Z, returns Z; | Zs,
leaving Z; and Z, unchanged. shift(Z, <) returns Z + .

e Other functions. Z.isEmpty() returns true if Z = (). Z.minBox() returns the minimum
cell-centered Box containing Z. Z.contains(B), Z.contains(z) returns true if B C
T,icT.

Performance Issues. IntVectSet uses two representations internally: a fast bitmap for
small sets, and a slower tree representation for large sets. The heuristic employed between
switching between the two representations is to use bitmaps for sets that are initialized
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to be rectangles, or that are obtained by applying intersection, set-theoretic difference,
coarsen, refine or grow to IntVectSet(s) that are represented by bitmaps. However,
the use of the union function causes the representation to be converted irreversibly to a
tree representation, with a significant performance penalty. For that reason, the union
operations should be used sparingly.

2.2.4 Box and IntVectSet lterators

A BoxIterator or IVSIterator traverses a sequence of IntVects that comprise a given
Box or IntVectSet. Each IntVect appears exactly once in the sequence. There is no
guarantee that the IntVects will appear in any particular order.

Operations on BoxIterator, IVSIterator. In what follows, B is a Box, Z is an
IntVectSet, and iter is either a BoxIterator or an IVSIterator.

e Construction The iterators can be constructed with object to be iterated over (iter(B),
iter(Z)), or null-constructed and defined later (iter.define(B), iter.define(Z)).

e |teration. iter.begin() sets iter to the beginning of the iteration sequence, ++iter
advances iter to the next iterate, and iter.ok() checks to see if the current iterate
is valid. A null-constructed iterator, or an iterator constructed with an empty Box or
IntVectSet will always return false. iter () returns an IntVect containing the current
value of the iterate.

2.2.5 Class Interval

An Interval consists of two ordered integers. An Interval can be created only by
specifying its endpoints. The only operations that can be performed are to extract its
endpoints or determine its size, which is the number of integers it contains. If the endpoints
are equal, the size is one. It is permitted to define an Interval with zero or negative size.
It is entirely the responsibility of the user to determine whether this is valid. Interval
interacts only weakly with the other abstractions and is exclusively used to specify data
component ranges in Chombo (see sections 2.2.6 and 2.4.3).

2.2.6 Rectangular arrays

A BaseFab<T> is a templated container class for multidimensional array data. It consists
of three major elements: a Box to define the range of spatial indices over which the
array is defined; an integer specifying the number of components; and a T* pointing to
a contiguous block of array elements. The data is stored in Fortran order so that the
pointer can be passed to a Fortran routine where it can be accessed as a multidimensional
array.

A BaseFab is defined by specifying a domain in the form of a Box, which can have
any centering, and the number of components, ncomps. This is intended to represent
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a D + 1 dimensional array in Fortran. A component index is an integer in the range
0 to ncomps — 1 which is used to specify or select a component of a BaseFab. A
range of component indices is often represented by an Interval. An already defined
BaseFab can be redefined with a new domain and number of components. The behavior
of existing data is undefined during redefinition. BaseFabs are large aggregate objects
containing pointer data, so that shallow copy can lead to subtle bugs, and deep copying
is expensive. For that reason, the assignment operator and copy constructor have been
rendered inaccessible to the user by making them private. In particular, it is necessary to
pass BaseFabs as reference parameters in procedure calls.

Operations on BaseFabs. In the following A, A’ are BaseFabs, B is a Box, % is an
IntVect, and ncomp, d, s are integers, with 0 < d < D, ngomyp > 0.

e Constructors. BaseFab has a default constructor, as well as a constructor BaseFab(B)
that completely defines the BaseFab. A.resize(B, ng.m;) resets A to be defined over a
Box B and with n components. Any data contained in A previously is discarded, and the
data A is assumed to be uninitialized.

e Accessors. A(4, s) is an indexing operator, returning a reference of type T& to the storage
location for the value at point 2 and component s. For a BaseFab that is node-centered
in one or more of the coordinate directions, the convention for indexing with an IntVect
(which does not have centering) is that A(%,s) returns the reference corresponding to
T — %'v, where v is the IntVect of zeros and ones defining the centering, i.e., the cell
center and the node-centered points on the low side have the same index. .A.box()
returns the Box over which A is defined, and A.ncomp() the number of components.
BaseFab provides an interface to the Box member functions smallEnd(), bigEnd(),
loVect(), hiVect(): A.smallEnd() == A.box().smallEnd(), etc. .A.dataPtr(s)
returns a pointer of type T to the data in A beginning at the nth component; n defaults to
zero. A.nCompPtr() returns a pointer to an integer containing the number of components.
loVect, hiVect, dataPtr, nCompPtr are to be used in calling Fortran.

e Data Modification Functions. .A.setVal(t) sets all of the data values in A to the
single value t. A.copy(.Ay) copies all of the values in Ay into the part of A; defined
on A.box()&As.box(). A; and Ay must have the same number of components. Both
setVal and copy have overloaded versions that permit the operations to be performed
on a specified sub-rectangle and over subsets of the component ranges.

e Domain Modification Functions .A.shift(¢) changes the Box over which A is defined
to A.box() + ¢, leaving the data unmodified. Mathematically, A becomes A’, with
A'(j,s)==A(j — 1,s),Vj € A .box(). The shift function is overloaded to shift A by
some distance in a single coordinate direction (A.shift(d,s)). A.shiftHalf(z) shifts
the domain of A by ¢ "halves” in each direction, where a half-shift changes the centering
to the adjacent nodes/ cells centered Box in that direction.

FArrayBox
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An FArrayBox is-a BaseFab<Real> which contains floating-point data. A number of
aggregate floating-point arithmetic operations are provided. FArrayBox is implemented
as a derived class from BaseFab<Real>. In addition to BaseFab operations, FArrayBox
has a collection of operations that are specialized to real-valued arrays.

Note: All FArrayBox objects are initialized upon creation, using setVal with an
argument of 1.23456789e10, whether the Chombo libraries are compiled with debugging
on or off.

e Pointwise Arithmetic Operators A;® = A, & € {+, -, *, /}, updates in place the
values of A;(z,s) with A,(2,s) @ Ay(i,s), for 0 < s < A;.nComps() = As.nComps(),
and ¢ € A;.box()[).Az2.box(). There are also a collection of member functions plus,
minus, mult, divide, that perform these operations over subboxes and subranges of
the components. A.abs() updates in place the values of A with their absolute values.
abs is overloaded with versions specifying subbox and a single component. The unary
operators negate and invert behave in a similar fashion to abs.

e Reduction Operators A.sum(s), A.min(s), A.max(s), return real values containing the
sum, minimum, and maximum of the values of the s-th component of A. A.minIndex(s),
A.maxIndex(s) return IntVects corresponding to one of the locations ¢ such that the
minimum or maximum is attained. A.norm(p,s),p > 1 returns the discrete p norm of
the s-th component of A. Amnorm(p,s) = (3 ;c pox() |A(4, s)[P)'/P. There are also
overloaded versions of these functions that perform their operations over a subbox, or for
a range of components.

e Mask Functions A.maskLT(M, a, s) sets the values of the input BaseFab<int> M to
one or zero, depending on whether A(%,s) < a or not. M is resized by the function so
that M.box() = A.box(). maskLT also returns the integer number of non-zero entries in
M. maskLE, maskEQ, maskGT, maskGE are defined similarly.

The Fortran Interface. The collection of values taken on by a BaseFab A is stored in
a contiguous block of storage beginning at A.dataPtr(). The data is stored in Fortran
ordering corresponding with the spatial indices first, followed by the component index.
Specifically, if a Fortran routine is called from C++

extern "C" {foo_(real*, int*, int* , intx );}

FArrayBox A(B,nc);
foo_(A.dataPtr(),A.loVect(),A.hiVect () ,A.nCompPtr())

The indexing of A in the Fortran routine is given by

subroutine foo(a,lo,hi,nc)
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integer 1o(0:CHF_SPACEDIM-1)
integer hi(0:CHF_SPACEDIM-1)
real_t a(lo(0):hi(0),1lo0(1):hi(1),0:nc-1)

do ic =0,nc-1
do j = lo(1),hi(1)
do i = 10(0),hi(0)

a(i,j,ic) = ...

For further details on the Fortran interface, see Chapter 8.

2.2.6.1 Aliasing

BaseFab<T>, and by inheritance FArrayBox, can also be built as an alias of another
BaseFab<T> (where T is the same for the two objects). For example:

BaseFab<int> original(b, 4);

Interval subcomps (2, 3);

BaseFab<int> alias(subcomps, original);

// component O of alias is equivalent to component 2 of original

This BaseFab does not allocate any memory, but sets its data pointer into the memory
pointed to by the argument BaseFab. It is the users responsibility to ensure this aliased
BaseFab is not used after the original BaseFab has deleted its data member (resize,
define(..) called, or destruction, etc.).

This is similar to using an offset pointer into an array. The offset pointer is only valid
as long as the original array is valid.

This aliased BaseFab will also generate side effects (modifying the values of data in
one will modify the other’s data). Deleting the alias will not affect the original.

This aliased BaseFab will have subcomps.size() components, starting at zero. The
aliased BaseFab can only have the same Box domain as the original.

2.3 Class ProblemDomain

ProblemDomain is a class to handle interaction with boundary conditions at the edge
of the computational domain, either physical boundary conditions or periodic ones. This
class contains much of the functionality of the Box class, since logically the computational
domain is generally a Box.
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Intersection with a ProblemDomain object will result in only removing regions which
are outside the physical domain in non-periodic directions. Regions outside the logical
computational domain in periodic directions will be treated as ghost cells which can be
filled with an exchange() function or through suitable interpolation from a coarser domain.

Since ProblemDomain will contain a Box, it is a dimension-dependent class, so
SpaceDim must be defined appropriately when compiling.

Note that this implementation of ProblemDomain is inherently cell-centered.

The user interface for ProblemDomain is as follows:

e ProblemDomain()

Default constructor — the object is defined in an unusable state until the user calls
the define function.

e ProblemDomain(const Box& domBox, const bool* isPeriodic)
Full constructor. Places the ProblemDomain object in a usable state.
Arguments:

— domBox Computational domain.

— isPeriodic SpaceDim array of bools which defines whether BC's are physical
or periodic in each coordinate direction.

e ProblemDomain(const Box& domBox)

Partial constructor, creates non-periodic (in any coordinate direction) ProblemDo-
main.

Arguments:
— domBox Computational domain.

e ProblemDomain(const IntVect& small, const IntVect& big, const
bool* isPeriodic)

Full constructor, creates ProblemDomain.

Arguments:

— small Location of lower-left corner of domain box
— big Location of upper-right corner of domain box

— isPeriodic SpaceDim array of bools which defines whether BC's are physical
or periodic in each coordinate direction.
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e ProblemDomain(const IntVect& small, const IntVect& big)

Partial constructor, creates non-periodic (in any coordinate direction) ProblemDo-
main.

Arguments:

— small Location of lower-left corner of domain box
— big Location of upper-right corner of domain box
e ProblemDomain(const IntVect& small, const int* vec_len,
const bool* isPeriodic)

Full constructor, creates ProblemDomain.

Arguments:

— small Location of lower-left corner of domain box
— vec_len Size of domain in each direction.
— isPeriodic SpaceDim array of bools which defines whether BC's are physical
or periodic in each coordinate direction.
e ProblemDomain(const IntVect& small, const int* vec_len)

Partial constructor, creates ProblemDomain with non-periodic boundary conditions
by default.

Arguments:

— small Location of lower-left corner of domain box

— vec_len Size of domain in each direction.

e ProblemDomain(const ProblemDomain& src)

Copy constructor

e const Box& domainBox() const

Returns logical computational domain.

e bool isPeriodic(int dir) const

Returns true if boundary condition is periodic in direction dir.

® bool isPeriodic() const

Returns true if boundary condition is periodic in any direction.
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ShiftIterator shiftIterator() const

Returns Shiftlterator for this problem domain. Shiftlterator is a utility class to
aid with periodic boundary conditions whose use is mostly internal to BoxLayout,
Copier, etc which allows looping over IntVects which used to shift the domain for
enforcing periodic boundary conditions.

bool isEmpty() const

Returns true if this ProblemDomain has an empty domainBox.

bool contains(const IntVect& p) const

Returns true if argument is contained within this ProblemDomain. An empty Prob-
lemDomain does not contain and is not contained by any ProblemDomain. In a
periodic direction, all locations are contained, since a periodic domain is an infinite
domain. If periodic in all directions, this will always return true.

bool contains(const Box& b) const

Returns true if argument is contained within this ProblemDomain. An empty Prob-
lemDomain does not contain and is not contained by any ProblemDomain. In a
periodic direction, all locations are contained, since a periodic domain is an infinite
domain. If periodic in all directions, this will always return true.

bool intersects( const Box& a_box) const

Returns true if this ProblemDomain and the argument have non-null intersections.
It is an error if a_box is not cell-centered. An empty ProblemDomain does not
intersect any Box. Boxes always intersect in periodic dimensions, since a periodic
domain is an infinite domain. If periodic in all directions, this will always return
true.

bool intersectsNotEmpty (const Box& a_box) const

Returns true if this ProblemDomain and the argument have non-null intersections.
It is an error if a_box is not cell-centered. This routine does not perform the check
to see if *this or b are empty boxes. It is the callers responsibility to ensure that
this never happens. If you are unsure, the use the .intersects(..) routine. In periodic
directions, will always return true.

bool intersects(const Box& boxl, const Box& box2) const

Returns true of box1 and box2 and any of their periodic images intersect. (This is
useful for checking disjointness).

ProblemDomain& operator= (const ProblemDomain& b)

Assignment operator.
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e void setPeriodic(int a_dir, bool a_isPeriodic)

Sets whether boundary condition is periodic in direction a_dir (true is periodic).
e friend

Box bdryLo(const ProblemDomain& a_pd, int a_dir, int a_len=1)

Returns the edge-centered box (in direction a_dir) defining the low side of the
domainBox in the argument ProblemDomain. The neighbor of an empty Problem-
Domain is an empty Box of the appropriate type. If dir is a periodic direction, will
return an empty box.

Arguments:

— a_pd input ProblemDomain

— a_dir normal direction of edge to return. Directions are zero-based and must
be 0 <a_ dir <SpaceDim.

— a_len Width of returned box in normal direction a_dir.
e friend
Box bdryHi(const ProblemDomain& a_pd, int a_dir, int a_len=1)

Returns the edge-centered box (in direction a_dir) defining the high side of the
domainBox in the argument ProblemDomain. The neighbor of an empty Problem-
Domain is an empty Box of the appropriate type. If dir is a periodic direction, will
return an empty box.

Arguments:

— a_pd input ProblemDomain

— a_dir normal direction of edge to return. Directions are zero-based and must
be 0 <a_dir <SpaceDim.

— a_len Width of returned box in normal direction a_dir.
o friend
Box adjCellLo(const ProblemDomain& a_pd, int a_dir, int a_len=1)

Returns the cell-centered box (in direction a_dir) adjacent to the low side of the
domainBox in the argument ProblemDomain. The neighbor of an empty Problem-
Domain is an empty Box of cell-centered type. If dir is a periodic direction, will
return an empty box.

Arguments:

— a_pd input ProblemDomain
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— a_dir normal direction of side to return. Directions are zero-based and must
be 0 <a_dir <SpaceDim.

— a_len Width of returned box in normal direction a_dir.
o friend
Box adjCellLo(const ProblemDomain& a_pd, int a_dir, int a_len=1)

Returns the cell-centered box (in direction a_dir) adjacent to the low side of the
domainBox in the argument ProblemDomain. The neighbor of an empty Problem-
Domain is an empty Box of cell-centered type. If dir is a periodic direction, will
return an empty box.

Arguments:

— a_pd input ProblemDomain

— a_dir normal direction of side to return. Directions are zero-based and must
be 0 <a_dir <SpaceDim.

— a_len Width of returned box in normal direction a_dir.

e Box operator& (const Box& b) const

Returns the Box that is the intersection of the input box b and the ProblemDomain.
The Box b must be cell-centered. The intersection of an empty ProblemDomain
and any box is the Empty Box. This operator does nothing in periodic directions
(since a periodic domain is an infinite domain).

e ProblemDomain& refine(int a_refinement_ratio)
Modifies this ProblemDomain by refining it by (the positive) a_refinement _ratio.

The empty ProblemDomain is not modified by this function.

e friend
ProblemDomain refine(const ProblemDomain& a_probdomain,
int a_refinement_ratio)

Returns a ProblemDomain that is the argument ProblemDomain refined by (the
positive) a_refinement ratio. If a_probdomain is an Empty ProblemDomain,
then an empty problem domain is produced.

ProblemDomain& refine(const IntVect& a_refinement_ratio)

Modifies this ProblemDomain by refining it by the given refinement ratio in each
direction. The empty ProblemDomain is not modified by this function.
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friend
ProblemDomain refine (const ProblemDomain& a_probdomain,
const IntVect& a_refinement_ratio)

Returns a ProblemDomain that is the argument ProblemDomain refined by (the
positive) a_refinement ratio. If a_probdomain is an Empty ProblemDomain,
then an empty problem domain is produced.

ProblemDomain& coarsen(int a_refinement_ratio)
Modifies this ProblemDomain by coarsening it by (the positive) a_refinement ratio.

The empty ProblemDomain is not modified by this function.

friend
ProblemDomain coarsen(const ProblemDomain& a_probdomain,
int a_refinement_ratio)

Returns a ProblemDomain that is the argument ProblemDomain coarsened by (the
positive) a_refinement ratio. If a_probdomain is an Empty ProblemDomain,
then an empty problem domain is produced.

ProblemDomain& coarsen(const IntVect& a_refinement_ratio)

Modifies this ProblemDomain by coarsening it by the given refinement ratio in each
direction. The empty ProblemDomain is not modified by this function.

friend
ProblemDomain refine (const ProblemDomain& a_probdomain,
const IntVect& a_refinement_ratio)

Returns a ProblemDomain that is the argument ProblemDomain coarsened by (the
positive) a_refinement ratio. If a_probdomain is an Empty ProblemDomain,
then an empty problem domain is produced.

friend
std::ostream& operator<< (std::ostream& os, const ProblemDomain& b)

Writes and ASCII representation to the ostream.

friend
std: :istream& operator<< (std::istream& is, ProblemDomain& b)

read from istream.
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2.4 Data on Unions of Rectangles

This section describes our tools for doing calculations over unions of rectangles. These
tools may be used either in serial or in parallel though the design reflects our parallel
programming model. In this section, we explain the tools we use to describe unions of
rectangles and the data which lives over these regions.

2.4.1 Introduction

We wish to represent data defined on unions of rectangles. Such data can be mapped
naturally onto distributed memory by assigning boxes to processors, with data defined on
those boxes stored on the processor to which the box is assigned. This approach has been
used quite successfully. Berger and Bokhari [5], Kohn and Baden [18], Rendleman, et. al.
[25], and others have used this technique. Our APl is derived from joint work with Baden
to develop an abstract version of KeLP [13]. It is implemented using the following three
sets of classes:

e BoxLayout, DisjointBoxLayout—classes that represent unions of rectangles and the
mapping of those rectangles to processors.

e LayoutData, BoxLayoutData, LevelData— templated classes for distributing data
over processors.

e LayoutIterator/LayoutIndex, Datalterator/Datalndex— classes for iterating
over and indexing into the classes above.

2.4.2 Layouts

The classes BoxLayout and DisjointBoxLayout represent unions of rectangles and the
mapping of the rectangles onto processors. BoxLayout represents an arbitrary union of
valid boxes. DisjointBoxLayout is a BoxLayout and has the additional property that
none of the boxes intersect. Both types of layout have two states: open and closed.
During construction, a layout is open. In its open state, a user can add boxes and modify
the mapping of boxes to processors. When a user is finished changing a BoxLayout to
her satisfaction, she invokes the close() function. After closing, the BoxLayout cannot
be accessed in a non-const manner. There is no way to reopen a closed BoxLayout.
The closed property propagates through assignment and copy construction. Only closed
layouts may be used to build the distributed data classes.

2.4.2.1 Class BoxLayout

A BoxLayout is a collection of boxes. On parallel platforms, BoxLayout includes a
mapping to processors. In both cases, the data holders LayoutData, BoxLayoutData,
and LevelData define mappings from the Boxes in the BoxLayout to objects of the
template type T. The important functions of BoxLayout are as follows:
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Figure 2.3: Left: Example of a BoxLayout. The first integer in the pair identifies the Box,
and the second integer the processor ID. In this case we have the following assignments.
Processor 0: B, Bs. Processor 1: By, B>. Processor 2: Bs, By. Note that By and B,
have a non-empty intersection. Right: Example of a disjoint BoxLayout. The first
integer in the pair identifies the Box, and the second integer the processor ID. In this
case we have the following assignments. Processor 0: By, By, By, Bs. Processor 1. B;.
Processor 2: Bj. Note that a disjoint BoxLayout has empty intersections.

e Construction

BoxLayout (const Vector<Box>& boxes, const Vector<int>& procIDs)
void define(const Vector<Box>& boxes, const Vector<int>& procIDs)
virtual void deepCopy(const BoxLayout& source)

DataIndex addBox(const Box& box, int iProc)

virtual void close()

The constructor and define functions construct a BoxLayout from a vector of Boxes
and a vector of processor assignments. The input procIDs must all be in the range
[0...numProcs()-1] where the function numProcs(), located in SPMD.H, returns the
number of processors being used in the calculation. procIDs[i] is the processor number
of the processor on which the data that maps to the box boxes[i] is stored. The
processor assignment Vector must be the same length as the Vector<Box> argument.
On exit, the BoxLayout will be closed. One can either null construct the BoxLayout and
call the define function or construct and define at once. If the user is not using MPI,
the procIDs argument is ignored. The new object created with deepCopy disassociates
itself with original implementation safely. This object now is considered 'open’ and can
be non-const modified. There is no assurance that the order in which this BoxLayout is
indexed corresponds to the indexing of source. addBox incrementally adds a box and its
processor assignment to an open layout (if the layout has been closed, calling this function
generates a run-time error) and returns a DataIndex object. The DataIndex object is
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valid both before and after close is called. It can be used later to access this box again,
or access the data object (T) in a BoxLayoutData that is built from this BoxLayout
object. close marks this BoxLayout as complete and unchangeable. It is here that the
layout gets sorted. This must be called before any data containers are constructed using
the layout.

e Boolean functions.

bool operator==(const BoxLayout& rhs) const
bool check(const Datalndex& index) const
bool isClosed()

Equality for BoxLayout is a reference-counted pointer check. This returns true if these two
objects share the same implementation. Important Warning: Two layouts can have the
same boxes and same processor mapping and still return false if they were built separately.
To force equality of two layouts, use the copy constructor. check returns true if the input
DataIndex matches the layout. isClosed returns true if close() has been called.

e Accessors.

Box& operator[] (const Datalndex& it)
Datalterator datalterator() const
LayoutIterator layoutIterator() const

This allows access to an individual box through the iterator. One must be iterating through
the correct layout (check must return true) in order for the accessor operator to work
correctly. The member functions datalterator, layoutIterator return the iterators
associated with this layout.

e Coarsening and Refinement Operations.

friend void coarsen(BoxLayout& output, const BoxLayout& input,
int refinement)

friend void refine(BoxLayout& output, const BoxLayout& input,
int refinement)

The functions coarsen, refine coarsens or refines each box in the layout by the input
refinement ratio. Iterator objects that worked for the input will work for the output.

2.4.2.2 Class DisjointBoxLayout

DisjointBoxLayout is-a BoxLayout. The difference between them is that, for
DisjointBoxLayout, closed also implies that the boxes in a DisjointBoxLayout have
no non-trivial intersection with one another in index space. Any attempt to close a
DisjointBoxLayout object with boxes which have non-trivial intersection will result in
a run-time error. Coarsening may not preserve disjointedness, and applying the coarsen
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operator to a DisjointBoxLayout will generate also a run-time error if the new coars-
ened boxes aren't disjoint. Otherwise, all of the functions of BoxLayout carry over to
DisjointBoxLayout.

If the problem domain is periodic, disjointness is tied to the periodicity of the domain
— a box in the BoxLayout may intersect the periodic image of another box. To account
for this, DisjointBoxLayout can also be defined with a ProblemDomain. In the default
case, the domain is defined to be non-periodic in all directions. If the domain is periodic,
then the periodicity of the domain is taken into account when checking for disjointness of
the boxes in the BoxLayout.

The important extra functions of DisjointBoxLayout are as follows:

e Constructors

DisjointBoxLayout (const Vector<Box>& boxes,

const Vector<int>& procIDs,

const ProblemDomain& probDomain)
void define(const Vector<Box>& boxes, const Vector<int>& procIDs,

const ProblemDomain& probDomain)
void define(BoxLayout& a_layout, const ProblemDomain& a_physDomain) ;
virtual void deepCopy(const BoxLayout& a_source,
const ProblemDomain& a_physDomain)

These functions are the same as the corresponding functions in BoxLayout, but with the
addition of a ProblemDomain argument.

e Checking functions

bool checkPeriodic(const ProblemDomain& probDomain)

The checkPeriodic function returns true if the argument ProblemDomain is consistent
with the ProblemDomain used to define the DisjointBoxLayout. Two ProblemDomains
are consistent if they are periodic in the same directions, and they have same domain size
in any periodic directions. In non-periodic directions, no consistency is required.

2.4.3 Templated Data Holders

LayoutData<T>, BoxLayoutData<T>, and LevelData<T> are templated data holders
over a BoxLayout that hold one T at each box in the layout. Each class represents a
different level of functionality. LayoutData<T> is a holder for creating local data corre-
sponding to the part of the BoxLayout assigned to that processor. In particular, there is no
support in Chombo for communicating LayoutData<T> information between processors.
LevelData<T> implements an abstract form of a cell-centered level array, represented as
a collection of rectangular “arrays” (i.e., objects of type T), each of which is defined on
an element of R(2). These arrays are distributed over processors using the rule encoded
in the DisjointBoxLayout used to construct them. Finally, a BoxLayoutData<T> is a
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generalization of a LevelData<T>, in that the underlying BoxLayout is allowed to have
overlapping Boxes. Thus one can copy from a LevelData<T> to a LevelData<T> or
BoxLayoutData<T>, but not from a BoxLayoutData<T>, since the latter is not guaran-
teed to be single-valued on each cell.

2.4.3.1 Class LayoutData

LayoutData is a templated data holder for a collection of Box-oriented objects. A
LayoutData can be built upon either a BoxLayout or a DisjointBoxLayout. The
arrangement of the T objects is given by the underlying BoxLayout object. Each box in
the BoxLayout will have a corresponding T object in the LayoutData object. The T ob-
jects contained within a LayoutData object should be accessed through a DataIterator.
Non-local access to a LayoutData (access to a T that lives on another processor) is an
error. Data in a LayoutData cannot be communicated to other processors. The class T
must provide null construction.

The important parts of the LayoutData<T> API are as follows:

e Construction.

LayoutData(const BoxLayout& dp);
void define(const BoxLayout& dp);

The constructor allocates a T object for every box in the BoxLayout dp using the T()
(null) constructor. The function define performs the same task for a null-constructed
LayoutData. The dp must be closed or a runtime error will occur.

e Accessors.

Datalterator datalterator() const;
T& operator[] (const Datalndex& index);

The input DataIndex for the indexing operator [] must match the BoxLayout which
was used in construction of the LayoutData. It must also correspond to an element
in the BoxLayout on myProc(). datalterator returns an iterator which provides the
DataIndex(es) which can be used to access the objects T which live at each box.

2.4.3.2 Class BoxLayoutData

Requirements on the template class T: BoxLayoutData<T> requires that T provides
the following member functions, in addition to a null constructor for T:

e Constructors.

T(const Box& box, int comps)
define(const Box& box, int comps)
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Allocate all the memory for data given a region and the number of components. The data
does not necessarily need to be initialized.

e Copiers.

copy(const Box& regionFrom, const Interval& destInterval,
const Box& regionTo, const T& source,
const Interval& sourcelnterval)
void linearQOut(void* const buf, const Box& R, const Interval& comps)
const void linearIn(const void* const buf, const Box& R, const Interval& comps)
int size(const Box& R, const Interval& comps)
const static int preAllocatable()

copy copies the data from source over the regionFrom to the regionTo in the des-
tination. The two regions must be the same size, and must be valid in the source and
destination, respectively. The component range specified by sourceInterval is copied
to the component range specified by destInterval and the size of these two Intervals
must be the same. linearIn/linearOut copy the object from/to the stream of bytes
buf. This stream is assumed to be allocated by the calling program. size returns the
size of the linearized object in bytes. preAllocateable returns:

1. if the size function is strictly a function of Box and Interval, and does not depend
on the current state of the T object.

2. if size is symmetric, in that sender and receiver T object can size their message
buffers, but a static object cannot.

3. if the object is truly dynamic. the message size is subject to unique object data.

A BoxLayoutData can be built upon either a BoxLayout or a DisjointBoxLayout.
BoxLayoutData<T> is-a LayoutData<T> which means that it has all of the member
functions of LayoutData<T>. The important extra functions of BoxLayoutData<T> are:

e Constructors.

BoxLayoutData(const BoxLayout& boxes, int comps) ;
virtual void define(const BoxLayout& boxes, int comps);
virtual void define(const BoxLayoutData<T>& da);
virtual void define(const BoxLayoutData<T>& da,

const Interval& comps);

Defines the object from a layout and a number of components. Because of the semantics
of inheritance, any DisjointBoxLayout can be used as an argument here instead of
BoxLayout. The second define explicitly defines this BoxLayoutData from input. This
includes copying the data values. The third define defines this BoxLayoutData to be
on the same BoxLayout as the input da but only for the components defined by the
Interval comps.

41



e Accessors.

int nComp() const;
Interval interval() const;

nComp returns the number of components in the data holder. interval returns the
component range of the data holder (0:nComp()-1).

2.4.3.3 Class LevelData

A LevelData can be built only upon DisjointBoxLayouts. LevelData<T> has the
same requirements on its T that BoxLayoutData<T> has. It also contains the important
extra concepts of ghost values and data communication. Each box in the input layout is
grown in each direction by the number of ghost cells in that direction. The data that lives
on the input region (the part inside of the ghost cells) is considered “valid” data and the
data on the ghost cells is considered “ghost” data. There are two data communication
paradigms. One is the exchange function which copies data from the valid regions to
the ghost regions where they intersect. The other function is copyTo which allows data
communication between data holders. The source of a copyTo must be a LevelData<T>.
The destination of copyTo may be either a LevelData<T> or a BoxLayoutData<T>.
LevelData<T> is-a BoxLayoutData<T> (which is-a LayoutData<T>) which means that
it has all of the member functions of BoxLayoutData<T> (and, by transitivity, all the
member functions of LayoutData<T>). The important extra functions of LevelData<T>
are as follows:

e Constructors.

LevelData(const DisjointBoxLayout& dp, int comps,
const IntVect& ghost = IntVect::TheZeroVector());
virtual void define(const DisjointBoxLayout& dp, int comps,
const IntVect& ghost = IntVect::TheZeroVector());
virtual void define(const LevelData<T>& da);
virtual void define(const LevelData<T>& da, const Interval& comps);

The construction functions work in the same way as the construction functions for
BoxLayoutData. The main difference is that for each Box B in the BoxLayout, the object
of type T is associated to the Box grown from B by ghost, i.e., T(grow(B,ghost) , comps).

e Copiers.

virtual void copyTo(const Interval& srcComps,
BoxLayoutData<T>& dest,
const Interval& destComps) const;
virtual void copyTo(const Interval& srcComps,
LevelData<T>& dest,
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const Interval& destComps) const;
virtual void exchange(const Interval& comps);
const IntVect& ghostVect();
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Figure 2.4: Left: CopyTo example. This figure illustrates copying from a LevelData
built on the DisjointBoxLayout in figure 2.3 to a BoxLayoutData built on top of
the BoxLayout in figure 2.3. A single call to Copy would perform the following data
movements: Data from By copied to B|. Data from B; copied to B{,Bj,Bj. Data from
Bs copied to B, B. Data from B, copied to Bjj. Data from Bj; copied to Bj. No data is
copied from B or to Bi. Right: exchange example. This figure illustrates copying data
from the valid regions of a LevelData built on top of the DisjointBoxLayout in figure
2.3 to ghost cell regions of the same LevelData. The dashed Boxes indicate which ghost
cell regions will be filled by a single call to exchange.

The first copyTo copies all of the data in the valid regions of this object to dest
where the two BoxLayouts intersect. The length of the input and output intervals must
be the same. The second version of copyTo copies to the LevelData dest filling the
ghost cells of 'dest’ with data from 'this’ also (figure 2.4). The exchange function copies
data from the valid regions to the ghost regions where they intersect (figure 2.4). If the
DisjointBoxLayout used to define this LevelData is periodic in any direction, both
copyTo and exchange will also fill cells from valid regions of the appropriate periodic
images as necessary. ghostvect returns the IntVect defining the size of the ghost
region.

2.4.3.4 Aliasing

For template classes that support an aliasing constructor, eg:

BaseFab<int> original(b, 4);
Interval subcomps (2, 3);
BaseFab<int> alias;
alias.define(subcomps, original);
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then a user can alias an entire LevelData at once using the function

template <class T>

void aliasLevelData(LevelData<T>& a_alias,
LevelData<T>* a_original,
const Interval& a_interval);

See section 2.2.6.1 for semantics of aliasing.

2.4.4 lterators

There are two iterators over multiple-box objects in Chombo, LayoutIterator and
Datalterator. They each return objects (LayoutIndex, Datalndex) that can be
used to index into layouts and data holders. A layout may be indexed into by ei-
ther LayoutIndex or a DataIndex, while a data holder may only be indexed into us-
ing a DataIndex. In serial the iteration patterns of the two types of iterator are ex-
actly the same. The iterators iterate through every box in the layout. In parallel, the
LayoutIterator still iterates through every box in the layout but the Datalterator
iterates through only boxes whose data resides upon the current processor.

Principal Operations on Datalterator, LayoutIterator. In the following, BL is
a BoxLayout, DBL is a DisjointBoxLayout, and iter is either a Datalterator or a
LayoutIterator.

e Construction. The iterators can be constructed with the object to be iterated over
(iter(BL), iter(DBL)), or null-constructed and defined later (iter.define(BL),
iter.define(DBL)).

e Iteration. iter.begin() sets iter to the beginning of the iteration sequence, ++iter
advances iter to the next iterate, and iter.ok() checks to see if the current iterate is
valid. iter () returns the current value of the iterate which is a DataIndex if iter() is
a Datalterator or a LayoutIndex if iter() is a LayoutIterator.

We give examples of the use of LayoutIterator and Datalterator. In the first
example, we iterate over all the Boxes in the layout to determine whether they cover the
Box B.

Box B;

IntVectSet ivs(B);
BoxLayout bl;
LayoutIterator liter(bl);

for (liter.begin();liter.ok();++liter)
{
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ivs -= bl[liter];

if (ivs.isEmpty())
{

b

In the second example, we set the values of all the components in all the FArrayBoxes
in a BoxLayoutData<FArrayBox> to zero.

BoxLayout bl;

BoxLayoutData<FArrayBox> bld(bl,1);
Datalterator diter(bl);
for (diter.begin();diter.ok();++diter)
{

bld[diter] .setVal(0.0);
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Chapter 3
AMRTools

3.1 Multilevel Operators.

In this section, we describe algorithmic and library support suitable for implementing
extensions of second-order accurate discretizations of quasi-linear elliptic, parabolic, and
hyperbolic PDE’s in conservation form to AMR. Our approach will be to express the AMR
discretizations in terms of the corresponding uniform grid discretizations at each level,
using appropriate interpolation operators to provide ghost cell values for points in the
stencil extending outside of the grids at that level. We will also define a conservative
discretization of the divergence operator on multilevel data.

From a formal numerical analysis standpoint, a solution on an adaptive mesh hierarchy
{Q!}mar approximates the exact solution to the PDE only on those cells that are not
covered by a grid at a finer level. We define the valid region of Q!

Qi}alid - Ql - Cnl f(QH_l)

A composite array p“™ is a collection of discrete values defined on the valid regions at
each of the levels of refinement.

vali

comp __ Lvalid\lmaz Lalid . Ol m
P =R e Qe — R

. . . . . lLed
We can also define valid regions and composite arrays for other centerings. €., =

d -
Qbe’ — f(Ql“’ed). Thus Q0. consists of d-faces that are not covered by the d-faces
at the next finer level. A composite vector field Feomp — {[Flvalid}lmas js defined as
follows.
Rlwalid _ ¢ polyalid lvalid
Flvalid — (plvatid | plvalidy

; d
Fcll,valzd . Ql,e S R™

valid

Thus a composite vector field has values at level [ on all of the faces that are not covered
by faces at the next finer level.
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We want to compute finite difference approximations to differential operators. For
example, let L be a finite difference approximation to a linear differential operator £. On
a uniform grid, L typically takes the form

(Lg&)i = Z Ci,s¥Pi+s (31)

[s|<S

Starting from this operator, we can extend L to be defined on an AMR grid hierarchy in
the following fashion. For each Q! € R(Q)

i’m <Pli on Qi}alid
= (™ x\ +ih') on G(QL, S)NT - QL .
(Ly)i = Ci spi 2 on QU
|s|<S

Here I = I(°™P, x) is an interpolation operator that takes some combination of the
valid composite data and constructs an interpolant at the point £ € RP.
Let ¢ be a smooth function on RP, and define the level array

! = (xh + ih') on T
and composite array

¢comp _ {wl,valid}lzgz
wl,valld — wl on Ql

valid

Then the truncation error of the operator L can be computed as follows. For i € Q! ..

o= L) — L) (ah + k)
= ) Ciathips — L()(ah + ih')

Is|<S

— Y cis(tips — (M @l + (i + s)B'))
ls|<S
it+sgQl

valid

The first sum is the truncation error on a uniform grid, while the second sum gives the
effect of replacing the uniform grid values of the smooth function 1) by those obtained by
interpolation.

Unfortunately, this process, when used by itself, becomes unwieldy for any but the
simplest finite difference approximations. Typically, in order to obtain 7 = O(h?) it is
necessary to compute (o™, x! + ih) to an accuracy of O(hPT4), where p is order of
the highest derivative of the operator, due to the contributions of the second summand
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(mag(|ci7s|) = O(h7?)). To obtain interpolants of such accuracy, we must either use
s|<

general polynomial interpolants using data located on multiple levels of refinement, or
impose minimum distance requirements between grids at different levels of refinement.
The alternative is to accept a larger truncation error near the boundary between levels of
refinement. In the AMR algorithms that motivate the design of Chombo, we use a combi-
nation of all three techniques. This approach is motivated by the following mathematical
and algorithmic considerations.

e Our target applications involve solving first - and second - order quasi-linear systems of
PDE's of classical type, i.e., elliptic, parabolic, and hyperbolic.

e Our underlying uniform-grid discretizations are based on second-order accurate methods,
mainly in discrete conservation form.

The latter property is one that we would like to preserve in the AMR versions of these
algorithms. However, the requirement for discrete conservation form leads to a loss of
accuracy at coarse-fine boundaries. Finite difference methods rely on the cancellation of
truncation error terms in the differenced quantities in order to obtain a given accuracy on a
uniform grid. This is the mechanism, for example, by which the second divided difference
approximates the second derivative to O(h?), even though it is a divided difference of
quantities that are themselves accurate only to O(h?). This mechanism fails at the
interface between different levels of refinement. If one is to approximate the divergence
operator with a divided difference of single-valued fluxes, it is not possible to compute the
flux so that the truncation error cancels that of the fluxes on both the adjacent coarse
and fine faces.

Fortunately, our choice of target applications makes this local loss of accuracy ac-
ceptable. For elliptic and parabolic problems, a truncation error of O(hP~!) on a set
of codimension one induces a solution error of O(h?), due to a discrete form of elliptic
regularity. In hyperbolic problems, a truncation error of O(h?~!) on a set of codimen-
sion one induces a total error of O(h?) in L' (and in L™ as well if the boundary is
non-characteristic).

In the following, we give the details of the algorithms for interpolating between lev-
els that arise in this approach. They include averaging and interpolation methods for
transferring information between levels; specialized operators for interpolating boundary
conditions at boundaries between levels; and a conservative multilevel discretization of
the divergence operator. For all of these cases, we will describe the algorithms for the
case of data defined on two successive levels )/, Q¢ ... The resulting operators can all be
extended to the full AMR hierarchy by applying them to a pair of levels at a time, provided
that appropriate nesting conditions are met. For the most part, only proper nesting is
required. When that is not the case, we will explicitly state the nesting conditions required
on grids at successive levels.

48



3.1.1

3.1.1.1 Conservative Averaging.

Interlevel Transfer Operators

This operator is used to average from finer levels on to coarser levels, or for constructing
averaged residuals in multigrid iterations.

Average(p, Nyef)ic =

This process produces values on the coarse grid that are an O(h?) estimate of the solution
on the fine grid.
3.1.1.2 Piecewise Constant Interpolation.

This operator is primarily used in multigrid iteration to interpolate the correction from the
coarser level to the next finer level.

Ipwc(@)if = i

where i = C,,, (i'). This method has an interpolation error of O(h).

3.1.1.3 Piecewise Linear Interpolation.

This method is primarily used to initialize fine grid data after regridding. Given a level
array ¢ on €2, we want to compute I,,,;(¢) defined on an 2/ properly nested in Q°.

W+,

1 d
s a+ 5))(5 ©)i

D-1
[pwl((p)if = Pi + Z(
d=0

n:(0dp);  if both i et € I*
(6%0); = < iyet — i ifi—ed g Te
i — Pi_ea ifit+el gI°
D-1
i = X(min (07" — i, 05 — ©7"™"), 16%¢];)
d=0
%(()Oi+ed — ©;_ed) if bothi+ed el
(629)i = | Piret — i ifi—elgl*
Pi — Pi_ed ifi+e? gTe
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2 fa<bd
) =140
x(a;b) {1 otherwise

max min

P =mar(pire) W0 = min(pics)

At cells adjacent to the boundary of the computational domain I'¢, the maximum and
minimum are taken over the points ¢z + s that are contained in the computational domain.
Also note, the arguments to y are always non-negative.

We use the limiter 7 to keep the interpolated values from exceeding local estimates of
the maximum and minimum values of the solution on the coarser grid. As long as n =1,
i.e., the limiter does not reduce the values of the slopes, the error in the interpolated
values is O(h?).

3.1.2 Coarse-Fine Boundary Interpolation
3.1.2.1 Piecewise Linear Interpolation

Assume there are two levels of grid Q¢, )/, and data defined on the fine grid and on the
valid region of the coarse grid:

gof:Qf%]R

calid Qc
* 2 %ali

%) s— R

We want to compute an extension @/ of ¢/ on Qf = G(Q/, p)NT7,p > 0, which is
accurate to O(h?), assuming only that CT(Qf) NI C Q°. There must be enough points
on the coarse level to interpolate out to a distance of p fine cells from Q/. One way to
achieve this goal is by choosing an appropriate blocking factor, i.e., we assume that Q/ is
mef(LTL%fj +min(1,p mod n,.r)) - blocked. Combined with proper nesting, this ensures
that there are sufficient cells in ¢ to perform the interpolation.

We perform this calculation in these steps

(i) Extend @ to ¢, defined on all of Q° : p° = Average(o’, nyes) on Cy,, ()
(ii) For each i/ € Qf — Qf, compute a piecewise linear interpolant. For i = Cnmf(if),
D-1 (.f | 1
- (Zd + _) . 1 vali
Bl =i+ Z(n—f? — (i + 5))(5%)1' =I5, (o7, ) s
d=0 re

Unlike in the interlevel transfer operator I,,;, we use a minimal stencil for (0%¢); (Figure
3.1).

6ur(Pi—eds i, Pired) if both 44 e? € Q°
(5%0)1' = \ Pited — Pi ifi —el g Qe
Pi = Pi—ed ifi+ed¢gQ°
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cdarsé grid 1

cdarsé grid 0

Figure 3.1: Interpolation on the coarse grid. One-sided differences are used at cells marked
with circles.

min(3|a — a.|, |a — acl, |a, — ac|)sign(a, — a;) if (a1 — a.)(ac — a,) > 0

51} y ey Uy ) = .
rlan ac, ar) {0 otherwise
(i) ¢/ = ¢/ on Qf

The truncation error of this interpolation operator is O(h?), i.e., if ¥ = 1)(x) is a smooth
function, and

! = y(x) +ih') on QF
¢:,valid _ w(m(c) + ’Lhc) on Qc,valid
then

Wy = (@f +ih!) + O(h?) for i € @/ — O

where 1/~1f is the extension of (¢//,1¢) computed using the process outlined above. The
key point is that, as long as the extension of ¢ to C,,,(Q/) is accurate to O(h?), the

undivided difference formula approximates hc% to O(h?), and differs from the Taylor
expansion of ¢ around (x¢ + 2h¢) by O(h?).

3.1.2.2 Quadratic Coarse-Fine Boundary Interpolation

This interpolation scheme is motivated by the requirements of constructing consistent
discretizations of second-order operators. Given gof, @C’”“lid, we want to compute a level
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vector field G/ = (G{, . .. GL_,) that approximates the gradient to sufficient accuracy
so that, when we take its divergence, we obtain at least an O(h) approximation to the
Laplacian. For each Qi € R(92), we construct an extension @ of ¢/,

@:Qi—ﬂRm
~F D-1 f d ¥
Qk_(:l::L—Ji-,— U O, +e’)ND

Then, for each i—l—%ed such that both 4,1 +e? € (NZ’,; we can compute a centered difference
approximation to the gradient on a staggered grid

L. 5
Zzi%ed = ﬁ(‘pi—i—ed — i)

For this estimate of the gradient to be accurate to O(h?), it is necessary to compute an
O(h3) extension of /. On §~2£ N Q/, the values for ¢ will be given by @; = cp{. The
values for the remaining points in §~2£ — Q7 will be obtained by interpolating data from
o/ and ¢°.

To perform this interpolation, we first observe that, given 2 € Q£ — Q. there is a
unique choice of + and d, such that i T e¢ € Q£ Having specified that choice, the
interpolant is constructed in two steps (figure 3.2).

(i) Interpolation in the direction orthogonal to e?. We compute

i+%u . 1

x = (2 +§u)

Nyef

where i° = C,,, . (i). The real-valued vector x is the displacement of the cell center 4 on
the fine grid from the cell center at 2 on the coarse grid, scaled by A°.

R c e 1 e q’ e
b= 05+ (@ (DY) + 5@ (D)) + N wama( DM
d'#d d'"£d,d"£d
The second sum has only one term if D = 3, and no terms if D = 2.
(i) Interpolation in the normal direction.
- - - 1
P; = [f(gof,gpc’”““d) =da+2b+c, Tg=124— §(nref + 3)
where a, b, c are computed to interpolate between the collinear data

.1 R
(£ §(nlref —1)e?)h, ¢i),
(2 F e, Pire,),

((’L + 26d)ha (pilq:Qed)
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O

Figure 3.2: Interpolation at a coarse-fine interface. Left stencil is the usual stencil. Right
stencil is the modified interpolation stencil; since the upper coarse cell is covered by a fine
grid, use shifted coarse grid stencil (open circles) to get intermediate values (solid circles),
then perform final interpolation as before to get “ghost cell” values (circled X's). Note
that to perform interpolation for the horizontal coarse-fine interface, we need to shift the
coarse stencil left.

In (i), the quantities D%¥ ¢ D>¥ ¢ and D¥? ¢ are difference approximations to

%, %, and ﬁ, respectively. D% must be accurate to O(h?), while the other
o ’ 1

two quantities need only be O(h). The strategy for computing these quantities is to
use only values in ¢ ;.. to compute these difference approximations. For the case of
DY p D> » we use 3-point stencils, centered if possible, or shifted as required to

. ! .
consist of points on X ;...

5(P5 o — P ) if both i + e? € Q°

valid
<D1’d )i = i%@gied’ — %) F %(@zc'iQed/ - goqc:ied') ifite’ € Qlatiar T e’ Z Vatia
0 otherwise

c
. !
i—ed

if both 7 = e € Q¢

D e — 205 T valid
2,d’ — c c c T ! c ; ! c
(D 90)7' =\y¥% — 2¢iied/ + SOi:I:Qed/ if ¢ £ ed € Qvalid' v+ ed g Qvalid

0 otherwise

In the case of D¥?" ¢, we use an average of all of the four-point difference approxi-

mations ﬁ;xd” centered at d’, d” corners adjacent to % such that all four points in the

stencil are in ¢, (Figure 3.3)

1 . .. d '
p(90i+ed/+ed" + i — Pited — QO,H_edN) if [’L, 1+e” e ] C anlid

! 1!
Ddd ¢ 11 g =
( cornerf )z+§ed +5ed 0 otherwise
1 dad’ c ;
(D gy, = | Tz Dot R (DT et F Nuia > 0
;= .
0 otherwise
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Figure 3.3: Mixed-derivative approximation illustration. The upper-left corner is covered
by a finer level so the mixed derivative in the upper left (the uncircled x) has a stencil
which extends into the finer level. We therefore average the mixed derivatives centered on
the other corners (the filled circles) to approximate the mixed derivatives for coarse-fine
interpolation in three dimensions.

where N4 is the number of nonzero summands. To compute (ii), we need to compute
the interpolation coefficients a b, and c.

@ - (nTEf : ’$d| + 2)90i$ed + (nref : ‘xd| + 1)§0i¥2ed
(Nres = [7al +2)(Mpey - |Ta +1)
b= Pized — Pig2ed — @

C = Yix2ed

a =

3.1.2.3 Level Divergence, Composite Divergence, and Refluxing

Let F be a level vector field on 2. We define a discretized divergence operator as follows.

]

(DF); = (Firten = Fui1ea) 3 €9 (32)

0

SRS

a
I

Let Feomp — {ﬁf, ﬁc’”“lid} be a two-level composite vector field. We want to define
a composite divergence D™ ([ Fevalid), for 4 € Q° ... To do this, we construct an
extension of F*vi to the edges adjacent to (2 ,,, that are covered by fine level faces.

. ~ lid .
On the valid coarse-level d-faces, F};; 1.0 = F;/"\",. On the faces adjacent to cells
’ 2 ) 2

. . d ~
in QF 4, but not in Qi;:;z@'d' we set [y to be < FC{ >, the average of FC{ onto the next
coarser level.

f _ S/
< Iy Zitled= (Ppes)P Fd,if+§ed
if +lederd
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o1
z+§edecj;+ugi_

Here the sum is over the set of all fine level d-faces that are covered by [i + %ed], which

. . . d
is given as a rectangle in I'/¢".

1 1
Fh=1[i npey + §ed, (i + (u—e"))n.er + §ed]

¢!, consists of all the d-faces in Q¢ on the boundary of Q"*, with valid cells on the low

(£ = —) or high (& = +) side.

1
Q{i — {i:t§ed:i:|:ed€Qc iecnmf(Qf)}

valid>

For both performance reasons and algorithmic reasons, it is useful to express D™P
as a succession of applications of the level divergence operator D applied to extensions
of Fluvalid 1o the entire level, followed by a step that corrects the cells in Q¢ that are
adjacent to Q/. We define a flux register 5/ associated with the fine level

SF! = (OF],...,6F)_))
SF] ¢l u¢l_—R"

Let F° be any coarse level vector field that extends Fevalid je,

. d
Fg _ F;,valzd on Qc,e

valid

Then for 2 € 0 .40
Deemp(FF | Fevalid), — (DF€); + Dr(6F°); (3.3)
Here §F° is a flux register, set to be

SF] =< F] >—Fjon (5 U

Dp is the reflux divergence operator, given by the following for valid coarse level cells
adjacent to /.

D-1
- 1
DR(éFf),-:ﬁ Y
d=0 =+, ?
itgedec)

For the remaining cells in Q¢_,... Dp(0F7) is defined to be identically zero.
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Let H = (Hy...Hp_1), Hy : R® — R™ be a smooth vector field, and define discrete
level and composite vector fields by evaluating H on the grid.
— . 1
qf=@H! .. HL ), HCJ;H%Ed = Hy(xl + (i + §ed)hf)

—

A
H® = (Hj...Hp, ), Hi; 10 = Ha(@+ (i + 5ed)h )

We can then compute the truncation error of the composite divergence using (3.3).

Dcomp(ﬁf’ﬁc,valid) — D(ﬁc) +DR(5ﬁ)
V- H+O(h?) + Dr(6H)

Here Hg’”a“d is given by restricting HS to Qz;ﬁd and we make use of the observation
that the centered difference approximation to the divergence given by (3.2) is second
order accurate. Away from the cells adjacent to €2/, the contribution from the reflux
divergence is zero, and the truncation error is O(h?). To estimate the truncation error at

cells adjacent to the coarse - fine interface, we note that
SHI =< HJ > —HS = O((h*)?)

So that Dy(6H) = O(h°), i.e., we lose one order of accuracy due to the correction to
the divergence that maintains conservation form.

Laplacian

Using the operators described above, we can now define a discretization of the Laplacian
on an adaptive mesh hierarchy. Let ¢ a composite array defined on an AMR grid
hierarchy satisfying proper nesting. The Laplacian is defined as the divergence of the
gradient:

(Lcompspcomp)i = Dcomp(é;l-&—l,valid’ él,valid)i , ic Ql (34)

valid

where Glvalid — G(phvatid | pl=lvalid) i computed using the algorithm in section 3.1.2.2.
It is assumed here that the discrete gradients can be computed using the boundary con-
ditions for the faces that lay on the boundary of the domain. It is not difficult to check
that, if the grids are properly nested, that the stencil of (L“™P@“™P); is contained in
the valid regions of the meshes at levels [, [ £ 1. Away from boundaries between levels,
this discretization reduces to the standard 2D + 1 point discretization of the Laplacian.
On grid interiors, L™ has a truncation error of O(h?) due to cancellation of error
terms in the centered-difference stencil. At coarse-fine interfaces, this drops to O(h) due
to division of the O(h?) interpolant by h? and the loss of centered-difference cancella-
tions. However, if the discrete equation Ly = p is solved using these operators,
the resulting solution ¢ is second-order accurate, because this loss of accuracy occurs
on a set of codimension one [17]. The dependencies of the Laplacian operators may

again be expressed explicitly: if LeomPl(peomP) is [omP(pomP) restricted to ) .., then
Lcomp,l(gpcomp) — Lcomp,l(()Ol,valial7 gpl-i-l,valid? Sol—l,valid).
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3.2 C++ Classes for Two-Level Operators

In this section, we document the user interfaces for a set of C++ classes that implement
the operators described above. Typically, the interface has two parts. The constructor
and define function construct the persistent data, such as interpolation coefficients and
the IntVectSets defining the irregular regions where the operator must be applied. This
can either be done by calling a defining constructor, or by calling a member function
define with the same arguments on an object that has been constructed with a default
constructor. Note that for classes where problem domain information is required for
construction, there are generally two sets of constructors and define functions — one with
a Box to represent the domain, the second with a ProblemDomain; if the functions with a
Box are used, a non-periodic domain is assumed. The second part of the interface consists
of the functions that actually apply the operator to the data. Once the operator has been
defined, the user can apply it multiple times to different data sets. The operator must be
redefined only when the grids change.

3.2.1 Class CoarseAverage

This class sets data on a level equal to an average of the data on a finer level of refinement
wherever the finer level covers the coarse level, using the averaging operator in section
3.1.1.

e void
define(const DisjointBoxLayout& a_fine_domain,
const DisjointBoxLayout& a_crse_domain,
int a_numcomps,
int a_ref_ratio);

Arguments:

— a_fine_domain (not modified): the fine-level grids (valid region).
— a_crse_domain (not modified): the coarse-level grids (valid region).

— a_numcomps (not modified): the number of components of coarse and fine
data sets.

— a_ref_ratio (not modified): the refinement ratio n,..
e void

averageToCoarse(LevelData<FArrayBox>& a_coarse_data,
const LevelData<FArrayBox>& a_fine_data);

Replaces coarse data with the average of fine data, in the valid fine domain. Ar-
guments:

— a_coarse_data (modified): coarse data set, destination of averaging.

— a_fine_data (not modified): fine data set, source of averaging.
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3.2.2 Class CoarseAverageFace

Similar to CoarseAverage, but averaging face-centered data instead of cell-centered data.
Data on coarse-level faces is computed as the average of the overlying fine-level faces.
Both arithmetic and harmonic averaging are supported.

e void define(const DisjointBoxLayout& a_fineGrids,
int a_nComp, int a_nRef)

e void averageToCoarse(LevelData<FluxBox>& a_coarse_data,
const LevelData<FluxBox>& a_fine_data)

averages fine-level data to coarse level using arithmetic averaging

e void averageToCoarseHarmonic(LevelData<FluxBox>& a_coarse_data,
const LevelData<FluxBox>& a_fine_data)

averages fine-level data to coarse level using harmonic averaging

3.2.3 Class FinelInterp

This class fills the valid region of a level of data by piecewise linear interpolation from
data on a coarser level of refinement, using the piecewise linear interpolation operator
described in section 3.1.1.

e void
define(const DisjointBoxLayout& a_fine_domain,
int a_numcomps,
int a_ref_ratio,
const ProblemDomain& a_fine_problem_domain) ;

void

define(const DisjointBoxLayout& a_fine_domain,
int a_numcomps,
int a_ref_ratio,
const Box& a_fine_problem_domain)

Arguments:

— a_fine_domain (not modified): grids (valid region) on the fine level.

— a_numcomps (not modified): number of components of the coarse and fine
data.

— a_ref_ratio (not modified): the refinement ratio N, = Axz¢/Ax/.

— a_fine_problem_domain (not modified): the problem domain in the fine
level index space.
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e void
interpToFine(LevelData<FArrayBox>& a_fine_data,
const LevelData<FArrayBox>& a_coarse_data,
bool a_averageFromDest=false););

Replaces fine data by interpolation from coarse data. Arguments:

— a_fine_data (modified): the fine data set, destination of interpolation.
— a_coarse_data (not modified): the coarse data set, source of interpolation.

— a_averageFromDest: if true, first fill a projection of the fine grid with aver-
aged values from a_fine data before filling with coarse data and performing
interpolation. This is often useful in operations like flattening an AMR hierar-
chy to a single resolution, in which the fine data may not be properly nested
within the coarse data grids. Default is false.

e void
pwcinterpToFine (LevelData<FArrayBox>& a_fine_data,
const LevelData<FArrayBox>& a_coarse_data,
bool a_averageFromDest=false););

Replaces fine data by piecewise-constant interpolation from coarse data. Arguments:

— a_fine_data (modified): the fine data set, destination of interpolation.
— a_coarse_data (not modified): the coarse data set, source of interpolation.

— a_averageFromDest: if true, first fill a projection of the fine grid with aver-
aged values from a_fine data before filling with coarse data and performing
interpolation. This is often useful in operations like flattening an AMR hierar-
chy to a single resolution, in which the fine data may not be properly nested
within the coarse data grids. Default is false.

3.2.4 Class FineInterpFace

This class fills face-centered data in the valid region of a level of data by piecewise linear
interpolation from face-centered data on a coarser level of refinement. This interpolation
is performed in two steps:

1. Data on fine-level faces which overlie coarse-level faces is interpolated using only
the underlying co-planar coarse faces.

2. Data on fine-level faces which do not overlie coarse-level faces is computed using
linear interpolation in the normal direction between the two nearest fine-level faces
which overlie coarse-level faces (and were filled in the previous step)
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e void define(const DisjointBoxLayout& a_fine_domain,
const int& a_numcomps,
const int& a_ref_ratio,
const ProblemDomain& a_fine_problem_domain)

Arguments:

a_fine_domain: the fine level domain
— a_numcomps: the number of components
— a_ref_ratio: the refinement ratio

— a_fine_problem_domain: problem domain

e void define(const DisjointBoxLayout& a_fine_domain, // the fine level domain

const int& a_numcomps, // the number of components
const int& a_ref_ratio, // the refinement ratio
const ProblemDomain& a_fine_problem_domain) ; // problem

domain

Arguments:

a_fine_domain: the fine level domain

— a_numcomps: the number of components

— a_ref_ratio: the refinement ratio

— a_fine_problem_domain: problem domain on finest level
e void interpToFine(LevelData<FluxBox>& a_fine_data,

const LevelData<FluxBox>& a_coarse_data);
bool a_averageFromDest=false);

3.2.5 Class PiecewiselLinearFillPatch

This class fills some of the ghost cells of a level of data by piecewise linear interpolation
from data on a coarser level of refinement. It is intended to be used in the context of a
multilevel time-dependent adaptive mesh refinement (AMR) calculation. The algorithm
used is that described in section 3.1.2.1. The interface described here is slightly more
general, as it allows for the coarse grid data to be a linear combination of the form

gDc,valid — a(pc,old + (1 o a)(pc,new

This can be useful, for example, when one has coarse-level data at two times (tC’Old and
t“"%) and needs interpolated ghost cell data at an intermediate time ¢/i¢ = ¢eold 4
a(tc,new - tc,old>.
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Ghost cells which lie inside the valid region of another fine grid are not filled. Also,
note that cells outside the problem domain are never filled; it is the application devel-
oper's responsibility to fill them elsewhere according to the application-specific boundary
conditions. Cells outside the computational domain in periodic direction, however, are
considered to be inside the problem domain and are filled.

e void
define(const DisjointBoxLayout& a_fine_domain,
const DisjointBoxLayout& a_coarse_domain,
int a_num_comps,
const ProblemDomain& a_crse_problem_domain,
int a_ref_ratio,
int a_interp_radius);

void

define(const DisjointBoxLayout& a_fine_domain,
const DisjointBoxLayout& a_coarse_domain,
int a_num_comps,
const Box& a_crse_problem_domain,
int a_ref_ratio,
int a_interp_radius);

Defines domains of the levels and other persistent data.
Arguments:

a_fine_domain (not modified): grids on the fine level.
— a_coarse_domain (not modified): grids on the coarse level.
— a_num_comps (not modified): number of components of state vector.

— a_crse_problem_domain (not modified): problem domain on the coarse
level.

— a_ref_ratio (not modified): refinement ratio.

— a_interp_radius (not modified): number of layers of fine ghost cells to fill
by interpolation.

e void
fillInterp(LevelData<FArrayBox>& a_fine_data,

const LevelData<FArrayBox>& a_old_coarse_data,
const LevelData<FArrayBox>&% a_new_coarse_data,
Real a_time_interp_coef,

int a_src_comp,

int a_dest_comp,

int a_num_comp) ;
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Fills the ghost cells of the fine level data by interpolation.

Arguments:
— a_fine_data (modified): fine data whose ghost cells are to be filled.
— a_old_coarse_data (not modified): coarse level data at the old time.
— a_new_coarse_data (not modified): coarse level data at the new time.

— a_time_interp_coef (not modified): time interpolation coefficient, a. It is
required that 0 < o < 1.

— a_src_comp (not modified): starting coarse data component.

a_dest_comp (not modified): starting fine data component.

— a_num_comp (not modified): number of data components to be interpolated.

3.2.6 Class PiecewiselLinearFillPatchFace

The PiecewiseLinearFillPatchFace class is similar to the PiecewiseLinearFillPatch
class, but computes interpolated face-centered data to fill “ghost faces” around fine grids
by interpolating from coarse-level face-centered data. This interpolation is performed in
two steps:

1. Data on fine-level faces which overlie coarse-level faces is interpolated using only
the underlying co-planar coarse faces.

2. Data on fine-level faces which do not overlie coarse-level faces is computed using
linear interpolation in the normal direction between the two nearest fine-level faces
which overlie coarse-level faces (and were filled in the previous step)

e void
define(const DisjointBoxLayout& a_fine_domain,
const DisjointBoxLayout& a_coarse_domain,
int a_num_comps,
const ProblemDomain& a_crse_problem_domain,
int a_ref_ratio,
int a_interp_radius)

Defines domains of the coarse and fine levels and other persistent data.
Arguments:

— a_fine_domain (not modified): grids on the fine level.

— a_coarse_domain (not modified): grids on the coarse level.

— a_num_comps (not modified): number of components of state vector.

— a_crse_problem_domain (not modified): problem domain on the coarse
level.
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— a_ref_ratio (not modified): refinement ratio.

— a_interp_radius (not modified): number of layers of fine ghost faces to fill
by interpolation.

° void
fillInterp(LevelData<FluxBox>& a_fine_data,

const LevelData<FluxBox>& a_old_coarse_data,
const LevelData<FluxBox>& a_new_coarse_data,
Real a_time_interp_coef,

int a_src_comp,

int a_dest_comp,

int a_num_comp)

Fills fine-level ghost faces by linear interpolation.

Arguments:
— a_fine_data (modified): fine data whose ghost faces are to be filled.
— a_old_coarse_data (not modified): coarse level data at the old time.
— a_new_coarse_data (not modified): coarse level data at the new time.

— a_time_interp_coef (not modified): time interpolation coefficient, . It is
required that 0 < a < 1.

— a_src_comp (not modified): starting coarse data component.
— a_dest_comp (not modified): starting fine data component.

— a_num_comp (not modified): number of data components to be interpolated.

3.2.7 Class QuadCFInterp

The class QuadCFInterp interpolates data onto the ghost cells along the coarse-fine
interface of a LevelData<FArrayBox>, using the algorithm described in section 3.1.2.2.
It uses one-sided differencing in places where the stencil to do full centered differencing is
partially covered by finer grids. The user interface of QuadCFInterp is given as follows.

e void define(const DisjointBoxLayout& a_fineBoxes,
const DisjointBoxLayout* a_coarBoxes,
Real a_dx,
int a_refRatio,
int a_nComp,
const ProblemDomain& a_domf) ;

void define(const DisjointBoxLayout& a_fineBoxes,
const DisjointBoxLayout* a_coarBoxes,
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Real a_dx,

int a_refRatio,

int a_nComp,

const Box& a_domf);

Full define function. This makes all coarse-fine information and sets internal vari-
ables.
Arguments:

— a_fineBoxes (not modified): The grids at the current level.

— a_coarBoxes (not modified): The grids for the next coarser level in the AMR
hierarchy.

— a_dx (not modified): The grid spacing at the current level.

— a_refRatio (not modified): The refinement ratio between this level and the
next coarser level in the AMR hierarchy.

a_nComp (not modified): The number of components in the data to be inter-
polated.

a_domf (not modified): The problem domain at the fine level.

e void coarseFineInterp(LevelData<FArrayBox>& a_phif,
const LevelData<FArrayBox>& a_phic) const;

Coarse-fine interpolation operator. Fills all the ghost cells on all the faces of the
LevelData<FArrayBox> a_phif with values interpolated with a_phic.
Arguments:

— a_phif (modified): The solution at the current level.

— a_phic (not modified): The solution at the next coarser level in the AMR
hierarchy.

3.2.8 Class LevelFluxRegister

LevelFluxRegister manages the manipulations at coarse-fine boundaries associated
with maintaining conservation form of cell-centered discretizations of the divergence op-
erator, using the algorithm described in section 3.1.2.3. Unlike the previous operators,
LevelFluxRegister holds data, corresponding to the flux register SFf defined in section
3.1.2.3. The class also manages the manipulation of that data.

The user interface for LevelFluxRegister is as follows.

e void define(const DisjointBoxLayout& a_dbl,
const DisjointBoxLayout& a_dblCoarse,
const ProblemDomain& a_dProblem,
int a_nRefine,

64



int a_nComp) ;

void define(const DisjointBoxLayout& a_dbl,
const DisjointBoxLayout& a_dblCoarse,
const Box& a_dProblem,
int a_nRefine,
int a_nComp) ;

Defines the internal state of the flux register, allocating space for the register itself,
as well as the indexing information required to perform the other operations.
Arguments:

— a_dbl (not modified): The grids at the current level.

— a_dblCoarse (not modified): The grids at the next coarser level in the AMR
hierarchy.

— a_dProblem (not modified): The problem domain at the current level.

— a_nRefine (not modified): The refinement ratio between this level and the
next coarser level.

— a_nComp (not modified): The number of variables used in the computation.
void setToZero() Initializes the register to all zeros.

void incrementCoarse(FArrayBox& a_coarseFlux,
Real a_scale,
const Datalndex& a_coarseDatalndex,
const Interval& a_srcInterval,
const Interval& a_dstInterval,
int a_dir);

Increments the register with data from a_coarseFlux, multiplied by a_scale
(a): 6F] = S6FJ 4+ aF%, for all of the d-faces where the input flux (de-
fined on a single rectangle) coincides with the d-faces on which the flux reg-
ister is defined. a_coarseFlux contains fluxes in the a_dir direction for
the grid a_dblCoarse[a_coarsePatchIndex]. Only the registers correspond-
ing to the low faces of a_dblCoarse[a_coarseDatalndex] in the a_dir di-
rection are incremented (this avoids double-counting at coarse-coarse interfaces.
a_srclInterval gives the Interval of components of a_coarseFlux that corre-
spond to a_dstInterval of components of the flux register.

Arguments:

— a_coarseFlux (not modified): Flux to put into the flux register. This is not
const because its box is shifted back and forth - no net change occurs.

— a_scale (not modified): Factor by which to multiply a_coarseFlux in flux
register.
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— a_coarseDatalIndex (not modified): Datalndex which corresponds to which
box in the coarse-level DisjointBoxLayout (a_dblCoarse in the define
function) over which a_coarseFlux was calculated.

— a_srcInterval (not modified): The Interval of components to put into
the flux register.

— a_dstInterval (not modified): The Interval of components of the flux
register which are incremented by the flux data. Should have the same size as
a_srcInterval.

— a_dir (not modified): Direction of faces upon which fluxes live.

e void incrementFine(FArrayBox& a_fineFlux,
Real a_scale,
const Datalndex& a_finePatchIndex,
const Interval& a_srcInterval,
const Interval& a_dstInterval,
int a_dir,
Side: :LoHiSide a_sd);

Increments the register with the average over each face of data from a_fineFlux,
scaled by a_scale (a): 0F] = 6F) + o < FI >, for all of the d-faces where
the input flux (defined on a single rectangle) covers the d-faces on which the flux
register is defined. a_fineFlux contains fluxes in the a_dir direction for the
grid a_dbl [a_finePatchIndex]. Only the register corresponding to the direction
a_dir and the side a_sd is initialized. a_srcInterval and a_dstInterval are
as above.

Arguments:

— a_fineFlux (not modified): Flux to put into the flux register. This is not
const because its box is shifted back and forth - no net change occurs.

— a_scale (not modified): Factor by which to multiply a_fineFlux in flux
register.

— a_finePatchIndex (not modified): Index which corresponds to which box
in the fine-level DisjointBoxLayout (a_dbl in the define function) over
which a_fineFlux was calculated.

— a_srcInterval (not modified): The Interval of components to put into
the flux register.

— a_dstInterval (not modified): The Interval of components of the flux
register which are incremented by the flux data.

— a_dir (not modified): Direction of faces upon which fluxes live.

— a_sd (not modified): Side of the fine face where coarse-fine interface lies.
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e void reflux(LevelData<FArrayBox>& a_uCoarse,
const Interval& a_coarse_interval,
const Interval& a_flux_interval,
Real a_scale);

Increments a_uCoarse with the reflux divergence of the contents of the flux regis-
ter, scaled by a_scale (a): U¢ := U+ aDg(6F). a_flux_interval gives the
Interval of components of the flux register that correspond to a_coarse_interval
of components of a_uCoarse.

Arguments:

— a_uCoarse (modified): LevelData<FArrayBox> which is modified by the
refluxing operation.

— a_coarse_interval (not modified): The Interval of components to put
into a_uCoarse.

— a_flux_interval (not modified): The Interval of components to use from
the flux register.

a_scale (not modified): Factor by which to scale the flux register.

3.2.9 Class LevelFluxRegisterEdge

In Magnetohydrodynamics (among other fields), there is a class of numerical schemes
commonly known as “constrained transport” schemes in which the solenoidal property
of a field is maintained by making use of the identity div(curi(u)) == 0. In MHD, for
example, one can write the evolution of the magnetic field B in terms of the curl of the
electric field E, which ensures that the div(B) = 0 down to roundoff. This is generally
accomplished on a staggered mesh, in which B is face-centered and E is edge-centered.

At coarse-fine interfaces, one must perform a correction analogous to the reflux-
divergence operation in order to maintain a divergence-free magnetic field. This correction
is described, for example, in [3]. The LevelFluxRegisterEdge is a class designed to
manage and apply this correction, and is analogous to the LevelFluxRegister. While
the LevelFluxRegister corrects a cell-centered field with a “reflux-divergence” of face-
centered fluxes, the LevelFluxRegisterEdge corrects a face-centered field with a “reflux
curl” of edge-centered “fluxes”.

e void define(const DisjointBoxLayout& a_dbl,
const DisjointBoxLayout& a_dblCoarse,
const ProblemDomain& a_dProblem,
int a_nRefine,
int a_nComp)

Defines this object
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e void setToZero()

Sets all registers to zero.

e void incrementCoarse(FArrayBox& a_coarseFlux,
Real a_scale,
const Datalndex& a_coarseDatalndex,
const Interval& a_srcInterval,
const Interval& a_dstInterval)

increments the register with data from coarseFlux, multiplied by a_scale. a_coarseFlux
must contain the edge-centered (in 3d, node centered in 2d) coarse fluxes in the dir
direction for the grid m_coarseLayout [coarseDataIndex]. By convention, only

the low side flux is used to avoid double-counting at coarse-fine interfaces.

e void incrementFine(FArrayBox& a_fineFlux,
Real a_scale,
const Datalndex& a_fineDatalndex,
const Interval& a_srcInterval,
const Interval& a_dstInterval)

increments the register with data from fineFlux (which is edge-centered in 3d, node-
centered in 2d), multiplied by a_scale, for all coarse-fine face directions associated
with the grid box m_fineLayout [fineDataIndex]

e void incrementFine(FArrayBox& a_fineFlux,
Real a_scale,
const Datalndex& a_fineDatalndex,
const Interval& a_srcInterval,
const Interval& a_dstInterval,
int a_dir,
Side::LoHiSide a_sd)

increments the register with data from fineFlux (which is edge-centered in 3d, node-
centered in 2d), multiplied by a_scale. a_dir is the normal of the coarse-fine
interface, and a_sd determines whether we're looking at the high-side or the low-
side for the grid box m_fineLayout [fineDataIndex]

e void refluxCurl(LevelData<FluxBox>& a_uCoarse,
Real a_scale)

increments uCoarse with the reflux "CURL" of the contents of the flux register.
This is done for all components so a_uCoarse has to have the same number of
components as input a_nComp. This operation is global and blocking.
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3.3 Class BRMeshRefine

BRMeshRefine is an object which produces a hierarchy of block-structured grids which
obey proper-nesting requirements. See Berger and Colella [7] for an explanation of proper
nesting. BRMeshRefine follows the algorithm of Berger and Rigoutsos [8] to gener-
ate the grids from tagged points in discrete index space. There are two interfaces for
BRMeshRefine grid generation: one takes tags at all levels in the hierarchy and one
takes tags only at the coarsest level. If the BRMeshRefine object is defined with a
ProblemDomain which is periodic in one or more directions, grids generated will be prop-
erly nested in the periodic directions.
The user interface for BRMeshRefine is as follows:

e BRMeshRefine();

Default constructor — the object is defined in an unusable state until the user calls
the define function.

e BRMeshRefine(
const ProblemDomain& a_baseDomain,

const Vector<int>& a_refRatios,
const Real a_fillRatio,
const int a_blockFactor,
const int a_bufferSize,
const int a_maxSize );
BRMeshRefine (
const Box& a_baseDomain,
const Vector<int>& a_refRatios,
const Real a_fillRatio,
const int a_blockFactor,
const int a_bufferSize,
const int a_maxSize );

Full constructor. Places the BRMeshRefine object in a usable state.

Arguments:
— a_baseDomain Problem domain at the coarsest (level 0) level. Output grids
will be constrained to be within the computational domain on each level.

— a_refRatios Refinement ratios between the levels. a_refRatio[i] repre-
sents the refinement ratio between levels i and i+1. The vector indices must
correspond to level number.

— a_fillRatio Overall grid efficiency to be generated. If this number is set
low, the grids will tend to be larger and less filled with tags. If this number
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is set high, the grids will tend to be smaller and more filled with tags. This
controls the aggressiveness of agglomeration by box merging.

— a_blockFactor Blocking factor. For each box B in the grids, this is the num-
ber Nref for which it is guaranteed to be true that re fine(coarsen(B, Nref), Nref) ==
B. Default = 1. Note that this will also be the minimum possible box size.

— a_bufferSize Proper nesting buffer size. This will be the minimum number
of level ¢ cells between any level £+ 1 cell and a level £ — 1 cell. Default = 1.

— a_maxSize Maximum length of a grid in any dimension. An input value of 0
means the maximum value will be co (no limit).

e void

define(
const ProblemDomain& a_baseDomain,
const Vector<int>& a_refRatios,
const Real a_fillRatio,
const int a_blockFactor,
const int a_bufferSize,
const int a_maxSize );

void

define(
const Box& a_baseDomain,
const Vector<int>& a_refRatios,
const Real a_fillRatio,
const int a_blockFactor,
const int a_bufferSize,
const int a_maxSize );

Defines (or redefines) a BRMeshRefine object and places it in a usable state.

Arguments:

— a_baseDomain Problem domain at the coarsest (level 0) level. Output grids
will be constrained to be within the computational domain on each level.

— a_refRatios Refinement ratios between the levels. RefRatio[i] represents
the refinement ratio between levels i and i+1. The vector indices must cor-
respond to level number.

— a_fillRatio Overall grid efficiency to be generated. If this number is set
low, the grids will tend to be larger and less filled with tags. If this number
is set high, the grids will tend to be smaller and more filled with tags. This
controls the aggressiveness of agglomeration by box merging.
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a_blockFactor Blocking factor. For each box B in the grids, this is the num-

ber Nref for which it is guaranteed to be true that re fine(coarsen(B, Nref), Nref)

B. Default = 1. Note that this will also be the minimum possible box size.

a_bufferSize Proper nesting buffer size. This will be the minimum number
of level ¢ cells between any level £+ 1 cell and a level ¢ — 1 cell. Default = 1.

a_maxSize Maximum length of a grid in any dimension. An input value of 0
means the maximum value will be co (no limit).

e int
regrid(
Vector<Vector<Box> >& a_newmeshes,
Vector<IntVectSet>& a_tags,
const int a_baselevel,
const int a_topLevel,

const Vector<Vector<Box> >& a_oldMeshes) const;

The interface for BRMeshRefine which takes tags at all levels and generates a new
multilevel hierarchy of grids which covers the tags at each level while satisfying the
proper nesting requirements. Note that the proper nesting requirement is an over-
riding constraint — if a tagged cell cannot be refined while satisfying proper nesting,
it is not refined. (This is only an issue if a_baseLevel > 0.). The grids pro-
duced by this function will also satisfy the constraints placed by the BlockFactor,
FillRatio, and MaxSize. Returns the finest level on which grids are defined.

Arguments:

a_newmeshes The set of grids at every level. This is resized and filled in this
function.

a_tags Tagged cells on every level from a_baseLevel to a_topLevel-1.
The vector indices must correspond to level number.

a_baseLevel Index of base mesh level. This is the finest level which does
*not* change. For example, if all grids except level 0 are going to be changed
by BRMeshRefine, a_baseLevel = 0.

a_topLevel Index of top level of relevant tags which is the same as one
level *below* the highest level of grids that will be produced. So if the AMR
hierarchy has 9 levels and one wants all of them to change except level 0, then
a_baseLevel = 0 and a_topLevel = 7 (highest level number is 8).

a_oldMeshes Grids before BRMeshRefine is called. If there are no previous
grids, set a_oldMeshes to be the problem domains. See the example shown
in figure 3.4. The vector indices must correspond to level number.

Returns the finest level on which grids are defined in a_newmeshes.
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e int

regrid(

Vector<Vector<Box> >& a_newmeshes,
IntVectSet& a_tags,
const int a_baselevel,
const int a_topLevel,

const Vector<Vector<Box> >& a_oldMeshes) const;

The interface for BRMeshRefine which takes only a single level of tags and generates
a multilevel hierarchy of grids which covers those tags while satisfying the proper
nesting requirements. Note that the proper nesting requirement is an overriding
constraint — if a tagged cell cannot be refined while satisfying proper nesting, it is
not refined. (This is only an issue if a_baseLevel > 0.). The grids produced by this
function will also satisfy the constraints placed by the BlockFactor, FillRatio,
and MaxSize. Returns the finest level on which grids are defined (for this function,
this will normally be TopLevel+1)

Arguments:

a_newmeshes The new set of grids at every level. This is resized and filled in
the function.

a_tags Tagged cells on a_baseLevel.

a_baselevel Index of base mesh level. This is the finest level which does
*not* change. For example, if all grids except level 0 are going to be changed
by BRMeshRefine, a_baseLevel = 0.

a_topLevel Index of top level of relevant tags which is the same as one
level *below* the highest level of grids that will be produced. So if the AMR
hierarchy has 9 levels and one wants all of them to change except level 0, then
a_baseLevel = 0 and a_topLevel = 7 (highest level number is 8).

a_oldMeshes Grids before BRMeshRefine is called. If there are no previous
grids, set a_oldMeshes to be the problem domains. See the example shown
in figure 3.4 The vector indices must correspond to level number.

Returns the finest level on which grids are defined in newmeshes.

Figure 3.4 is a sample code to show the use of BRMeshRefine to create lists of
grids from tags. For an explanation of how to use LoadBalance to transform these
into DisjointBoxLayouts see section 8.4.

e const Vector<int>&
refRatios() const;

Returns the vector of refinement ratios
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int setGrids(

Vector<Vector<Box> >& a_vectGrids,
const Vector<ProblemDomain>& a_vectDomain,
Vector<int>& a_vectRefRatio,
int& a_numlevels,
Real a_fillRat,
int a_maxboxsize)
{
Box btag = a_vectDomain[0].domainBox() ;
int ishrink = btag.size(0)/4;
btag.grow(-ishrink) ;
IntVectSet tags(btag);
Vector<Vector<Box> > VVBoxNew(a_numlevels);
Vector<Vector<Box> > VVBox0ld(a_numlevels);
for(int ilev = 0; ilev <a_numlevels; ilev++)
{
VVBox0ld[ilev] .push_back(a_vectDomain[ilev] .domainBox());
}
int baselevel = 0;
int topLevel = a_numlevels - 2;
int blockFactor = 2;
int buffersize = 1;
if (topLevel >= 0)
{
BRMeshRefine meshRefine(a_vectDomain[0], a_vectRefRatio,
a_fillRat, blockFactor, buffersize,
a_maxboxsize)
meshRefine.regrid(VVBoxNew, tags, baseLevel, topLevel,
VVBox01d) ;
}
else
{
VVBoxNew = VVBox01ld;
}
a_vectGrids = VVBoxNew;
return O;
}

Figure 3.4: Sample code to show the use of BRMeshRefine to create lists of grids from
tags which have been defined on the base level.
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const Real
fillRatio() const;

Returns the FillRatio.

const int

blockFactor() const;

Returns the blocking factor.

const int

bufferSize() const;

Returns the proper nesting buffer size.

const int

maxSize() const;

returns the maximum box length. A value of 0 means the maximum value is co (no
limit).

void

refRatios(const Vector<int>& a_nRefVect);
Sets the vector of refinement ratios

void

fillRatio(const Real a_fillRat);

Sets the FillRatio.

void

blockFactor(const int a_blockFactor);
Sets the blocking factor.

void

bufferSize(const int a_buffSize);
Sets the proper nesting buffer size.

void

maxSize(const int a_maxSize);

Sets the maximum box length. An input value of 0 means the maximum value will
be oo (no limit).
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3.3.1 domainSplit

There are many times when the physical domain on the coarsest AMR level (level 0) is
larger than the maximum desired block size. In this case, the solution is to split the domain
into more than one piece. This is especially useful for parallel computations. To simplify
this process, the stand-alone function DomainSplit is provided (in BRMeshRefine.H):

void
domainSplit(const ProblemDomain& a_domain,
Vector<Box>& a_vbox,
const int a_maxsize,
const int a_blockfactor=1);
void

domainSplit(const Box& a_domain,
Vector<Box>& a_vbox,

const int a_maxsize,
const int a_blockfactor=1);
Arguments:

e a_domain Physical domain

e a_vbox Vector of boxes which satisfy the blocking factor and maxsize requirements
which make up the decomposed domain.

e a_maxsize Maximum allowable box size (0 means no limit).

e a_blockfactor Blocking factor; has the same definition as in BRMeshRefine.

3.4 Multilevel Utilities

In addition to the two-level AMRTools operator objects, there are a set of multilevel tools
which have proved useful in various multilevel AMR codes.

3.4.1 Function computeSum

This function computes the volume-weighted sum of ¢ over an AMR hierarchy by including
only valid-region data in the sum.

Imazx

sum= > > (h")Pe} (3.5)

=Lpqse QL

valid
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e void
Real computeSum(const Vector<LevelData<FArrayBox>* >& a_phi,

const Vector<int>& a_nRefFine,

const Real& a_dxCrse,

const Interval& a_comps = Interval(0,0),
const int& a_lBase = 0);

function which returns the volume-weighted sum of a_phi (essentially the integral
of a_phi) over the valid regions of all levels ¢ > a_1Base.
Arguments:

— a_phi (not modified): data to be summed.

a_nRefFine (not modified): Vector of refinement ratios, where a_refFine[i]
is the refinement ratios between levels 7 and 7 + 1.

a_dxCrse (not modified): cell spacing on level a_1Base.
— a_comps (not modified): components of a_phi to be summed.

— a_lBase (not modified): Coarsest level to be included in sum; sum will include
all levels ¢ > a_1Base.

3.4.2 Function computeNorm

This function computes the norm of ¢ over an AMR hierarchy by including only valid-
region data in the computation.

e void
Real computeNorm(const Vector<LevelData<FArrayBox>* >& a_phi,
const Vector<int>& a_nRefFine,
const Real& a_dxCrse,
const Interval& a_comps = Interval(0,0),
const int a_p = 2,
const int& a_lBase = 0);

function which returns the p—norm of a_phi over the valid regions of all levels
¢ > a_1Base.
Arguments:

— a_phi (not modified): data to be summed.

a_nRefFine (not modified): Vector of refinement ratios, where a_refFine [i]
is the refinement ratios between levels ¢ and 7 + 1.

a_dxCrse (not modified): cell spacing on level a_1Base.

— a_comps (not modified): components of a_phi to be summed.
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— a_p (not modified): type of norm to be computed. a_p=0 is the max (infinity)
norm.

— a_lBase (not modified): Coarsest level to be included in sum; sum will include
all levels ¢ > a_1Base.
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Chapter 4

AMRElliptic Algorithm and
Implementation

4.1 Multigrid Algorithm

We want to solve the equation

Lcompgpcomp — pcomp

on an AMR hierarchy {Ql}ﬁzgz satisfying the nesting conditions described in [7]. The
algorithm we use here is a natural extension of multigrid iteration. The particular version
we describe here [20, 21] is a linear version of the algorithm used in [26] to compute
steady incompressible flow, and has been used in a variety of settings [2, 1, 9, 10].

A pseudo-code description of the algorithm is given in figure (4.3). The operators
Average and I,,. are described in section 3.1.1, and the operator L™ is a two-level
discretization of the Laplacian:

Lnf(wf’ wc,valid) — l)(éjf(wf7 wc,valid))'

It computes a uniform grid 2D + 1 point discretization of the Laplacian applied to an
extension of 1)/ obtained using the quadratic interpolation procedure in section 3.1.2.2.
The smoothing operator mgRelax(p”, R/, r) performs a multigrid V-cycle iteration on ¢/
for the operator L™/, assuming the coarse-grid values required for the boundary conditions
are identically zero.

4.2 The AMR Elliptic User Interface

The implementation of the AMRElliptic package follows the algorithm specification in
section 4.1.
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procedure mgRelax(¢/, R/, r)
{
fore =1, ..., NumSmoothDown
LevelGSRB(/, RY)
end for
if (r > 2) then
0¢:=0
R¢ := Average(R’ — L™ (o7, ¢ = 0))
mgRelax(0¢, R¢,1/2)
pr = QOf + Ipw0(56>
fori =1, ..., NumSmoothUp
LevelGSRB(y/, RY)
end for
end if

Figure 4.1: Recursive relaxation procedure.

procedure LevelGSRB(p”, RY)

Figure 4.2: Gauss-Seidel relaxation with red-black ordering. Here )\ is the relaxation
parameter.
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R:=p—L(p)
while ([|R]| > €||p|])

AMRVCycleMG({™)
R:=p— L(p)
end while

Procedure AMRVCycleMG(level [):
if (I = 1™) then R':= p' — L™ (!, o!71)
if (I > 0) then

(pl,save = gOl on Ql

el :=0on Q'
mgRelax(e!, R, ni;})
o=l 4 e

=t :=0o0n Q!

RI71 = Average(R' — L™ (e!,e!1)) on C"]’TZ}(QZ)
lel = plfl _ Lcomp,lfl(gp) on Qlfl _ Cnlrg} (Ql)
AMRVCycleMG( — 1)

el i=el + (™)

Rl = Rl _ Lnf’l(el,€l_1)

del :==0on Q!
mgRelax(de!, R, nlr;})
e = el + de!
(Pl = (Pl,save + el

else
solve L/ (e%) = R on Q°.
0 = O 4 O

end if

Figure 4.3: Pseudo-code description of the AMR multigrid algorithm.

80



4.2.1 Overview

Code reuse is facilitated by using a Template Method design pattern. The purpose of
the Template Method design pattern is to define an algorithm as a fixed sequence of
steps but have one or more of the steps be variable. In our case, we have a hierarchy
of algorithms that we wish to re-use across a family of applications. The hierarchy of
algorithms is defined by the specific variable steps that an application must provide to
complete the algorithm.

Our variable steps are supplied by a hierarchy of Operator Interfaces. In C++, a
variable step is represented as a virtual function. Our algorithms are in the form of Solver
Templates. Each Solver Template requires virtual functions provided by its corresponding
Operator Interface. The data type used in these algorithms is supplied by a template
parameter.

Various specific solvers derive from the appropriate interface class to utilize the desired
solver algorithm.

An overview of our class structure for this design is presented here. Indentation implies
inheritance
LinearOp<T>: User can utilize solvers that implement the LinearSolver<T> interface

MGLevelOp<T> : Users can utilize solvers that implement LinearSolver<T> and
MultiGrid<T> interfaces.

AMRLevelOp<T> Users can utilize solvers that implement LinearSolver<T>,
MultiGrid<T> and AMRMultiGrid<T> interfaces. Examples of instantiations
of these interfaces are:
* PoissonOp (template data type FArrayBox). A single-level solver
* AMRPoissonOp (template data type LevelData<FArrayBox>) cell-centered
AMR Poisson solver
* VCAMRPoissonOp (template data type LevelData<FArrayBox>) cell-
centered variable-coefficient AMR Poisson and Helmholtz solver.
* EBPoissonOp (template data type LevelData<EBCellFAB>)
*x EBAMRPoissonOp (template data type LevelData<EBCellFAB>)
* AMRNodeOp (template data type LevelData<NodeFArrayBox>) Node-
centered AMRPoisson and Helmholtz solver.

* ResistivityOp (template data type LevelData<FArrayBox>) cell-centered
variable-coefficient operator to solve variable coefficient resistivity opera-
tor.

* ViscousTensorOp (template data type LevelData<FArrayBox>) cell-
centered variable-coefficient operator to solve variable coefficient viscous
tensor operator.

LinearSolver<T>
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e uses Linear0Op<T> interface functions to implement the algorithm's variable steps.
e some example implementations of this algorithm interface are:

— BiCGStabSolver<T>

— RelaxSolver<T>
MultiGrid<T>
e calls the MGLevelOp<T> interface

e uses a LinearSolver<T> as bottom solver.
AMRMultiGrid<T>

e uses AMRLevelOp<T> and MGLevelOp interfaces

e combines AMR coarse-fine operations with MultiGrid<T> and LinearSolver<T>
operations.

4.3 Operator Interfaces

The variable steps of our Template Method are supplied through classes that implement
the Operator Interfaces.

4.3.1 Class LinearQp

LinearOp is an operator class for representing L when solving L(¢) = p This interface
class serves two main purposes. First, It acts as a factory class for the template data
type. Second, it provides the variable steps necessary for the family of LinearSolver<T>
classes in Chombo.

e virtual void residual( T& lhs, const T& phi, const T& rhs, bool homogeneous
= false) = 0;
Compute the residual. For example, if solving L(phi) = rhs, then set lhs =
L(phi) - rhs. If homogeneous is true, evaluate the operator using homogeneous
boundary conditions.

e virtual void preCond( T& cor, const T& residual) = 0;
Given the current state of the residual and correction, apply your preconditioner to
cor.

e virtual void applyOp( T& lhs, const T& phi, bool homogeneous = false)
In the context of solving L(phi) = rhs, set 1hs = L(phi). If homogeneous is
true, evaluate the operator using homogeneous boundary conditions.
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virtual void create( T& lhs, const T& rhs) = 0;
Create data holder 1hs that mirrors rhs. You do not need to copy the data of rhs,
just make a holder the same size.

virtual void clear( T& 1lhs);

Perform any operations required before 1hs is destructed. In general, this function
only needs to be defined if the create function called new. There is a default
implementation of this function, which does nothing (which means that in most
cases, classes derived from LinearOp will not need to define this function).

virtual void assign( T& lhs, const T& rhs) = 0;
Set 1hs equal to rhs.

virtual Real dotProduct(const T& al, const T& a2) = O;
Compute and return the dot product of a1l and a2. In most contexts, this will return
the sum over all data points of al*a2.

virtual void incr ( T& lhs, const T& x, Real scale) = 0;
Increment by scaled amount (1hs += scale*x).

virtual void axby( T& lhs, const T& x, const T& y, Real a, Real D)
Compute a scaled sum (lhs = a*xx + b*y).

virtual void scale( T& lhs, const Real& scale) = 0;
Multiply the input by a given scale 1hs *= scale).

virtual Real norm(const T& rhs, int ord) = 0;
Return the norm of rhs. If ord == 0, compute max norm, If ord == 1, compute
Ly norm: sum(abs(rhs)). Otherwise, compute L,.q norm.

virtual void setToZero(T& 1lhs) = O;
Set 1hs to zero.

4.3.2 Class MGLevelOp

Class MGLevelOp handles the additional tasks of coordinating operations between this level
and the next coarser 'level’. MGLevelOp provides the coarsening and interlevel operations
needed for algorithms that implement the MultiGrid<T> solver class.

e virtual void createCoarser(T& coarse, const T& fine, bool ghosted)
= 0; Create a coarsened (by two) version of the input data container. This does
not include averaging the data. So, if fine is over a Box of (0,0,0) (63,63,63),
coarse should be over a Box of (0,0,0) (31,31, 31).
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e virtual void relax(T& correction, const T& residual, int iterations)
= 0 ; Apply relaxation operator to remove the high frequency wave numbers
from the correction. A point relaxation scheme, for example, takes the form
correction -= lambda*(L(correction) - residual).

e virtual void restrictResidual(T& resCoarse, T& phiFine, const T& rhsFine)
= 0; calculate restricted residual
resCoarse[2h] = I[h->2h] (rhsFine[h] - L[h] (phiFine[h])

e virtual void prolongIncrement(T& phiThisLevel, const T& correctCoarse)
= 0; correct the fine solution based on coarse correction
phiThisLevel += I[2h->h] (correctCoarse)

4.3.3 Class MGLevelOpFactory

Factory class for generating MGLevelOps.

e virtual MGLevelOp<T>* MGnewOp(const ProblemDomain& FineindexSpace,
int depth, bool homoOnly = true) = 0;
Create an operator at an index space = coarsen(fineIndexSpace, 2depth).
Return NULL if no such Multigrid level can be created at this depth. If homoOnly
= true, then only homogeneous boundary conditions will be needed.

4.3.4 Class AMRLevelOp

The AMRLevelOp interface adds variable steps required by the AMRMultiGrid class of
solvers. These pertain to operations between multigrid levels that do not form complete
covering sets, and therefore require information from multiple levels simultaneously for
coarse-fine boundary conditions.

e virtual int refToCoarser() = O;
Return the refinement ratio to next coarser level.
Return 1 when there are no coarser AMR levels.

° virtual void AMRResidual (T& residual,
const T& phiFine,
const T& phi,
const T& phiCoarse,
const T& rhs,
bool homogeneousDomBC,
AMRLevelOp<T>* finerOp) = O0;

Compute the residual: residual = rhs - L(phiFine, phi, phiCoarse).
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e virtual void AMRResidualNF(T& residual,
const T& phi,
const T& phiCoarse,
const T& rhs,
bool homogeneousBC) = 0;

Compute residual = rhs - L(phi, phiCoarse) assuming no finer level.

° virtual void AMRResidualNC(T& residual,
const T& phiFine,
const T& phi,
const T& rhs,
bool homogeneousBC,
AMRLevelOp<T>* finerOp) = O0;

Compute residual = rhs - L(phiFine, phi) assuming no coarser AMR level.
e virtual void AMRRestrict(T& resCoarse,
const T& residual,

const T& correction,
const T& coarseCorrection) = 0;

Set resCoarse = I[h-2h] ( residual - L(correction, coarseCorrection))

virtual void AMRProlong(T& correction,
const T& coarseCorrection) = 0;

Set correction += I[2h->h] (coarseCorrection)
e virtual void AMRUpdateResidual(T& residual,

const T& correction,
const T& coarseCorrection) = 0;

Set residual = residual - L(correction, coarseCorrection)
° virtual Real AMRNorm(const T& coarseResid,
const T& fineResid,

const int& refRat,
const int& ord) = O;

Compute norm over all cells on coarse not covered by finer AMR levels.
° virtual void createCoarsened(T& lhs,

const T& rhs,
const int& refRat) = 0;

Set the output to a coarsened (by the input refinement ratio) version of the finer.
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4.3.5 Class AMRLevelOpFactory

Factory interface for AMRLevelOp generation.

e virtual AMRLevelOp<T>* AMRnewOp(const ProblemDomain& indexSpace)=0;
Return a new operator object. This is done with a call to new; caller is responsible
for deletion.

4.4 Solver Templates

Solver Template requires virtual functions provided by its corresponding Operator Inter-
face. The data type used in these algorithms is supplied by a template parameter.

Various specific solvers derive from the appropriate interface class to utilize the desired
solver algorithm.

4.4.1 Class LinearSolver

LinearSolver represents both a Solver Algorithm and an interface class. It is a Solver
Algorithm with respect to the variable steps provided by the Operator Interfaces. Given an
instantiation of a LinearSolver, any operator that implements the LinearQp interface
can make invocations to its define and solve functions. It is also an interface, in that
LinearSolver does not provide a default implementation, but instead is an interface to
a variety of linear solver algorithms. MultiGrid and AMRMultiGrid provide a default
implementation of geometric multigrid. Generic linear solver templatesBiCGStab and
others are built on top of this.

e virtual void define(LinearOp<T>* operator,
bool homogeneous = false) = 0;

Define the operator and whether it is a homogeneous solver or not. The
LinearSolver does not take over ownership of this operator object. It does
not call delete on it when the LinearSolver is deleted. It is meant to be like a
late-binding reference. If you created operator with new, you should call delete on
it after LinearSolver is deleted if you want to avoid memory leaks.

e virtual void solve(T& phi, const T& rhs) = O;
Solve L(phi) = rhs (phi = L=1 (rhs)).

e virtual void setConvergenceMetrics(Real metric, Real tolerance) = 0;
If appropriate, sets a metric to judge convergence, along with the solver toler-
ance. If not set, use default convergence metrics. This can be useful when using a
LinearSolver as a bottom solver, since one may want to propagate the conver-
gence metric and solver tolerance from the outer solver in to the bottom solver.
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4.4.2 Class BiCGStabSolver

Elliptic solver using the BiCGStab algorithm.

e virtual void define(LinearOp<T>* op, bool homogeneous) ;
Define the solver.

— op is the linear operator.
— homogeneous is whether the solver uses homogeneous boundary conditions.

e virtual void solve(T& phi, const T& rhs);
Solve the equation.

e bool m_homogeneous
public member data: whether the solver is restricted to homogeneous boundary
conditions.

e Linear0Op<T>* m_op:
public member data: operator to solve.

e int m_imax;
public member data: maximum number of iterations.

e int m_verbosity;
public member data: how much screen output the user wants. set = 0 for no
output.

e Real m_eps;
public member data: solver tolerance

e Real m_hang;
public member data: minimum rate that norm of solution should charge per iteration

e Real m_small;
public member data: what the algorithm should consider " close to zero”

e int m_numRestarts;
public member data: number of times the algorithm can restart

e int m normType;
public member data: norm to be used when evaluation convergence.
0 is max norm, 1 isL(1), 2 is L(2) and so on.
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4.4.3 Class MultiGrid

MultiGrid is a class which executes a v-cycle of geometric multigrid. This class is not
meant to be particularly user-friendly, and a good option for people who want something
a tad less raw is to use AMRMultigrid instead.

virtual void define(MGLevelOpFactory<T>& factory,
LinearSolver<T>* bottomSolver,
const ProblemDomain& domain,
int maxDepth = -1);

Function to define a MultiGrid object:

— factory is the factory for generating operators.
— bottomSolver is called at the bottom of v-cycle.
— domain is the problem domain at the top of the v-cycle.

— maxDepth defines the location of the bottom of the v-cycle.

The v-cycle will terminate (hit bottom) when the factory returns NULL for a par-
ticular depth if maxdepth = -1. Otherwise the v-cycle terminates at maxdepth.

virtual void solve(T& e, const T& res);

Execute ONE v-cycle of multigrid. If you want the solution to converge, you will
probably need to iterate this. See AMRMultiGrid for a more automatic solve() func-
tion. This operates residual-correction form of equation so all boundary conditions
are assumed to be homogeneous. L(e) = res

int m_depth, m_pre, m_post, m_cycle,m numMG;

Public solver parameters. m_pre and m_post are the ones that usually get set and
are the number of relaxations performed before and after multigrid recursion. See
AMRMultiGrid for a more user-friendly interface.

Vector< MGLevelOp<T>* > getAllOperators();
For changing coefficients — not for the faint of heart.

4.4.4 Class AMRMultiGrid

Class to execute geometric multigrid over an AMR hierarchy a-la Martin and Cartwright.

[20]

virtual void define(const ProblemDomain& coarseDomain,
AMRLevelOpFactory<T>& factory,
LinearSolver<T>* bottomSolver,
int maxAMRLevels);

Define the solver.
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— coarseDomain is the index space on the coarsest AMR level.

— factory is the operator factory through which all special information is con-
veyed.

— bottomSolver is the solver to be used at the termination of multigrid coars-
ening.
— numLevels is the number of AMR levels.
e virtual void solve(Vector<T*>& phi,
const Vector<T*x>& rhs,

int 1_max,
int 1_base);

Solve L(¢) = p from 1 base to 1.max. To solve over all levels, 1 base = 0,

1 max = max_level = numlLevels-1.

° void setSolverParameters(const int& pre,
const int&  post,
const int& bottom,
const int& numMG,
const int& iterMax,
const Real& eps,
const Real& hang,
const Real& normThresh);

Set parameters of the solve.

— pre is the number of smoothings before averaging.

— post is the number of smoothings after averaging.

— bottom is the number of smoothings at the bottom level.

— numMG = 1 for v-cycle, 2 for w-cycle and so on (in most cases, use 1).
— itermax is the max number of v cycles.

— hang is the minimum amount of change per vcycle.

— eps is the solution tolerance.

— normThresh is how close to zero eps*resid is allowed to get.

4.5 The MultilevelLinearOp<T> class

TheMultilevelLinearOp<T> classis a LinearOperator<Vector<LevelData<T>* > >
designed to support multilevel composite operators. This is useful when using a
LinearSolver such as BiCGStabSolver to solve elliptic equations over a hierarchy of
AMR levels. The MultilevelLinearOp is derived from LinearOp<Vector<LevelData<T>* > >.
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Defining a MultilevelLinearOp requires an AMRLevelOpFactory<LevelData<T> >
which is used to define AMRLevelOps for each AMR level, which are then used to evaluate
the multilevel operator, etc. An example which uses the MultilevellLinearOp<FArrayBox>
in conjunction with the VCAMRPoissonOp to solve the variable-coefficient Helmholtz equa-
tion using multigrid-preconditioned BiCGStab is in
Chombo/example/AMRPoisson/variableCoefficientExec/VCPoissonSolve.cpp
Public member functions and member data:

e MultilevelLinearOp()
— default constructor — leaves object in undefined state
e void define(const Vector<DisjointBoxLayout>& vectGrids,
const Vector<int>& refRatios,
const Vector<ProblemDomain>& domains,
const Vector<RealVect>& vectDx,

RefCountedPtr<AMRLevelOpFactory<LevelData<T> > >& opFactory,
int 1Base)

— full define function

— vectGrids — AMR hierarchy of grids

— refRatios — refinement ratios; refRatios[0] is refinement ratio between levels
0 and 1.

— domains — problem domains for each AMR level.

vectDx — cell-spacing on each AMR level

— opFactory — AMRLevelOpFactory used to define operators for performing
multilevel linear solves.

1Base — base level

e virtual void residual (Vector<LevelData<T>* >& lhs,
const Vector<LevelData<T>* > >& phi,
const Vector<LevelData<T>* > >& rhs,
bool homogeneous = false)

— compute residual = L(phi) - rhs

— 1hs — residual

— phi — current approximation to the solution

rhs — rhs when solving L(phi) = rhs

— homogeneous - if true, evaluate using homogeneous form of physical domain
boundary conditions
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virtual void preCond(Vector<LevelData<T>* >& cor,
const Vector<LevelData<T>* >& residual)

— Apply preconditioner to problem which is already in residual-correction form. If
m_use_multigrid_preconditioner is true (default case), then the precondi-
tioner is m_num_mg_iterations AMR V-cycles using an AMRMultiGrid solver.
Otherwise, use whatever preconditioner is provided by the AMRLevelOp<LevelData<T> >.

— cor — correction (modified by the preconditioner)
— residual — residual (= L(phi) - rhs)
virtual void applyOp(Vector<LevelData<T>* >& 1lhs,

const Vector<LevelData<T>* >& phi,
bool homogeneous = false)

— Evaluate the operator, setting lhs = L(phi) using the AMRLevelOp<T>: : AMROperator
functions. If homogeneous is true, evaluate the operator using homogeneous phys-
ical domain boundary conditions.

virtual void create(Vector<LevelData<T>* >& lhs,

const Vector<LevelData<T>* >& rhs)
— Create data holder 1hs that mirrors rhs, using the appropriate AMRLevelOp: : create
functionality. Does not copy the data of rhs, just makes a holder the same size.
virtual void clear(Vector<LevelData<T>* >& lhs) const

— Clear memory in data holder 1hs. Note that the MultilevelLinearOp class
requires this function be implemented because the create function calls new when
allocating the Vector<LevelData<T>* >.

virtual void assign(Vector<LevelData<T>* >& lhs,
const Vector<LevelData<T>* >& rhs)
— Set 1hs equal to rhs.
virtual Real dotProduct(const Vector<<LevelData<T>* >& a_1,
const Vector<LevelData<T>* >& a_2)

— Compute and return the volume-weighted AMR dot product of a_1 and a_2.
Does this by calling the AMRLevelOp dotProduct functions for each AMR level
and then scaling appropriately.

virtual void incr(Vector<LevelData<T>* >& lhs,
const Vector<LevelData<T>* >& x,
Real scale)

— Increment by scaled amount (lhs += scale*x)
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virtual void axby(Vector<LevelData<T>* >& 1lhs,
const Vector<LevelData<T>* >& x,
const Vector<LevelData<T>* >& y,
Real a,
Real b)

— Set input |hs to a scaled sum (lhs = a*x + b*y).
virtual void scale(Vector<LevelData<T>* >& lhs,
const Real& scale)
— Multiply the input by a given scale (lhs *= scale).
virtual Real norm(const Vector<<LevelData<T>* >& rhs,
int ord)
— Return the AMR norm of rhs (only counts valid regions for each level).
— ord — norm type: 0 is max norm, 1 is L; norm — sum(abs(rhs)), otherwise,
L,.q norm.
virtual void setToZero(Vector<LevelData<T>* >& lhs)

— Set lhs to zero.

bool m_use_multigrid_preconditioner

— if true (default value), use AMRMultiGrid multigrid V-cycles for preconditioner

int m_num_mg_iterations

— number of multigrid v-cycles to do in preconditioner (only relevant if
m_use_multigrid_preconditioner is true).

int m_num_mg_smooth

— parameter for AMRMultiGrid — number of smoothing passes for each multigrid
relaxation step. (only relevant if m_use_multigrid_preconditioner is true).

4.6 Elliptic Examples

We provide several examples of elliptic operators that conform to the AMRLevelOp inter-

face

e AMRPoissonOp is used to solve Poisson’s equation with constant coefficients.

e ResistivityOp is used to solve the variable-coefficient resistivity equations that

arise from MHD.
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e ViscousTensorOp is used to solve the variable-coefficient elliptic equations that
arise when solving the compressible Navier-Stokes equations with variable viscosity.

All of these examples use the boundary condition interface described in section 4.6.4.

4.6.1 AMRPoisson

We provide an AMRPoisson, an example of an AMRLevelOp class. This class is designed
to solve

(al +BA)p = p (4.1)
where v and (3 are constants. The discretization of the Laplacian is the standard centered-
difference approximation

-1

(¢i+ed + gbi—ed - 2¢z)

MU

1
(A")i = o

.
Il

0

Domain boundary conditions are enforced by setting ghost cell values as described in
section 4.6.4. Fluxes through coarse-fine interfaces are needed for the Martin-Cartwright
algorithm. The flux F' through a face at ¢ + %ed is given by

Fifled = §(¢i+ed — ¢i)

4.6.1.1 AMRPoisson Factory Interface

An AMRPoissonOpFactory needs to be defined using the following function.

void define(const ProblemDomain& coarseDomain,
const Vector<DisjointBoxLayout>& grids,
const Vector<int>& refRatios,

const Real& coarsedx,
BCFunc bc,

Real alpha = 0.,

Real beta = 1.);

coarseDomain is the domain at the coarsest level.

grids is the AMR hierarchy.

refRatios are the refinement ratios between levels. The ratio lives with the coarser
level so refRatios[4] is the ratio between AMR levels 4 and 5.

coarseDx is the grid spacing at the coarsest level.
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e BCFunc holds the boundary conditions.
e alpha is the coefficient of the identity.

e beta is the coefficient of the Laplacian.

4.6.1.2 Code fragment

For those of us who find code easier to read than documents, we provide a simplified exam-
ple of how to use AMRMultiGrid and AMRPoisson0Op. In the example below, we start with
a known AMR hierarchy and a right-hand side and we solve (4.1). For a description of the
boundary condition routine along with its code fragment, see subsection 4.6.4. Complete
examples (along with convergence tests) can be found in Chombo/example/AMRPoisson.

/%%
solveElliptic solves (alpha I + beta Laplacian) phi = rhs
using AMRMultiGrid and AMRPoissonOp

Inputs:

rhs: Right-hand side of the solve over the level.
grids: AMRHierarchy of grids

refRatio: refinement ratios

levelODomain: domain at the coarsest AMR level
coarsestDx: grid spacing at the coarsest level
alpha: identity coefficient

beta: Laplacian coefficient

Outputs:
phi = (alpha I + beta Lapl) {-1}(rhs)
*/
void solveElliptic( Vector<LevelData<FArrayBox>* >& phi,
const Vector<LevelData<FArrayBox>* > rhs,
const Vector<DisjointBoxLayout>& grids,
const Vector<int>& refRatios,
const ProblemDomain& levelODomain,
Real alpha, Real beta, Real coarsestDx)
{

int numlevels = rhs.size();

//define the operator factory
AMRPoissonOpFactory opFactory;
opFactory.define(levelODomain,
grids, refRatios, coarsestDx,
&ParseBC, alpha, beta);

//this is the solver we shall use

AMRMultiGrid<LevelData<FArrayBox> > solver;

//this is the solver for the bottom of the muligrid v-cycle
BiCGStabSolver<LevelData<FArrayBox> > bottomSolver;
//bicgstab can be noisy

bottomSolver.m_verbosity = O;

//define the solver
solver.define(levelODomain, opFactory, &bottomSolver, numlevels);

//we want to solve over the whole hierarchy
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int lbase = 0;
//so solve already.
solver.solve(phi, rhs, numlevels-1, lbase);

}

4.6.2 ResistivityOp

ResistivityOp is the AMRLevelOp-derived class which solves the variable-coefficient
equation For notation’s sake, what we are solving is

LB=aB+ 8V F=np.
« and [ are constants and F' is given by
F=n(VB—-VB'+1V-B)

where [ is the identity matrix and 7 = n(Z) > 0. The discretization of the flux divergence
is as follows.

D
1
(VP =1 (FiyseaFd;ye0)
d=1

We discretize normal components of the face-centered gradient using an average of cell-
centered gradients for tangential components and a centered-difference approximation to
the normal gradient.

. 1(Bijroa — By ifd=d'
Bd = h(—’ Z/+e b /
(VB)ii1es <%((vB)g+ed+(vB)g)ifd7éd/>

where ]
BY = —(B,..a — B, .4).
(V )z Qh( i+ed zfe‘i)

4.6.2.1 ResistivityOp Factory Interface
An ResistivityOpFactory needs to be defined using the following constructor.

ResistivityOpFactory(const Vector<DisjointBoxLayout>&
const Vector<RefCountedPtr<LevelData<FluxBox> > >&
Real
Real
const Vector<int>&
const ProblemDomain&
const Real&
BCFunc

e domainCoar is the domain at the coarsest level.
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e grids is the AMR hierarchy.

e refRatios are the refinement ratios between levels. The ratio lives with the coarser
level so refRatios[4] is the ratio between AMR levels 4 and 5.

e dxCoar is the grid spacing at the coarsest level.

e bc holds the boundary conditions.

e alpha is the coefficient of the identity.

e beta is the coefficient of the divergence of the flux.

e etais the variable coeff function. This ought to to be positive if you expect multigrid
to converge.

4.6.3 ViscousTensorOp

ViscousTensorQOp is the AMRLevelOp-derived class which solves the variable-coefficient
equation For notation’s sake, what we are solving is

LB=aB+pV-F=p.
= () and 8 = B(Z). F is given by
F=n(VB+VB")+ IV - B)

where [ is the identity matrix n = n(Z), and A = A\(Z). The discretization of the flux
divergence is as follows.

1 D
EZ it+3 led — ’L %ed)
d—=1

We discretize normal components of the face-centered gradient using an average of cell-
centered gradients for tangential components and a centered-difference approximation to
the normal gradient.

_ l( ited — ')Ifd d
(VB)iger = ( L(VBY o+ (VBY) i d £ )

where

i 1 - 5
(VB)fCLl = ﬁ(Bi—i-ed - Bi—ed)'
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4.6.3.1 ViscousTensorOp Factory Interface

An ViscousTensorOpFactory needs to be defined using the following constructor.

ViscousTensorOpFactory(const Vector<DisjointBoxLayout>&

const Vector<RefCountedPtr<LevelData<FluxBox> > >&
const Vector<RefCountedPtr<LevelData<FluxBox> > >&

Real

const Vector<RefCountedPtr<LevelData<FArrayBox> > >&

const Vector<int>&
const ProblemDomain&
const Real&

BCFunc

e domainCoar is the domain at the coarsest level.
e grids is the AMR hierarchy.

e refRatios are the refinement ratios between levels. The ratio lives with the coarser
level so refRatios[4] is the ratio between AMR levels 4 and 5.

e dxCoar is the grid spacing at the coarsest level.

e bc holds the boundary conditions.

e alpha is the coefficient of the identity.

e beta is the coefficient of the divergence of the flux.

e eta is the variable coeff function that multiplies the gradient.

e lambda is the variable coeff function that multiplies the divergence.

4.6.4 Boundary Condition Interface
The value of the boundary condition is described by the BCValueFunc function interface.

/* Given
pos [x,y,z] position on center of cell edge
int dir direction, x being O
int side -1 for low, +1 = high,
fill in the values array */

typedef void(*BCValueFunc) (Realx pos,
int* dir,
Side: :LoHiSide* side,
Realx* value) ;

The boundary condition function must conform to the BCFunc specification. We provide
both Dirichlet and Neumann boundary condition examples.
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/* Function interface for ghost cell boundary conditions

of EBAMRPoissonOp. If you are using Neumann or Dirichlet
boundary conditions, it is easiest to use the functions
provided. */

typedef void(*BCFunc) (FArrayBox& state,

const Box& valid,

const ProblemDomain& domain,

Real dx,

bool homogeneous) ;

A simple example of a custom boundary condition is given below.

/* this is the bc value func */

void ParseValue(Real* pos,
int* dir,
Side: :LoHiSidex* side,
Real* values)

ParmParse pp;

Real bcVal;

pp.get ("bc_value",bcVal);
values[0]=bcVal;

/*Use ParmParse to select boundary condtions */
/* this is the bcfunc */
void ParseBC(FArrayBox& state,
const Box& valid,
const ProblemDomain& domain,
Real dx,
bool homogeneous)
{
if (!domain.domainBox () .contains(state.box()))
{
std::vector<int> bcLo, bcHi;
ParmParse pp;
pp.getarr("bc_lo", bclo, 0, SpaceDim);
pp.getarr("bc_hi", bcHi, 0, SpaceDim);

Box valid = valid;
for(int i=0; i<CH_SPACEDIM; ++i)
{
Box ghostBoxLo = adjCellBox(valid, i, Side::Lo, 1);
Box ghostBoxHi = adjCellBox(valid, i, Side::Hi, 1);
if (!domain.domainBox() .contains (ghostBoxLo))

{
if (bcLo[i] == 1)
{
pout() << "const neum bcs lo for direction " << i << endl;
NeumBC(state,
valid,
dx,
homogeneous,
ParseValue,
i,
Side::Lo);
}
else if (bcLo[i] == 0)
{
pout() << "const diri bcs lo for direction " << i << endl;
DiriBC(state,
valid,
dx,
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homogeneous,
ParseValue,
i,
Side::Lo);

MayDay: :Error("bogus bc flag lo");
}
}

if (!domain.domainBox () .contains(ghostBoxHi))
{
if (bcHi[i] == 1)
{
pout() << "const neum bcs hi for direction " << i << endl;
NeumBC(state,
valid,
dx,
homogeneous,
ParseValue,
i,
Side::Hi);
}
else if(bcHi[i] == 0)
{
pout() << "comst diri bcs hi for direction " << i << endl;
DiriBC(state,
valid,
dx,
homogeneous,
ParseValue,
i,
Side::Hi);

MayDay: :Error ("bogus bc flag hi");

4.7 Parabolic Equations — the TGA scheme
In this section, we describe our approach to solving parabolic equations of the form:

¢ _

5 = L(6) +5, (4.2)

where L is a second-order linear elliptic operator, and S is a source term.

To evolve ¢ in time from time t" to time t"*! = " + At, we use a variant of the
L-stable Runge-Kutta scheme presented by Twizell, Gumel, and Arigu (TGA) [27], which
is second-order in time. Our variation is based on time-centering the source term S at

time "2 = " 2, and is also described in [19].
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Following [27], we discretize (4.2) in time:
@™ = (I — L) ™I — po L) 7 [(1 + ps L) 6™ + AH(I + puaL)S™3], (4.3)

where ¢" = ¢(nAt), Snts = S((n+ 1)At), and the coefficients pu1, pia, p3, p1a are the
values suggested in [27]:

20 — 1

= — At
H a+ discr
2a — 1
po = = At
a — discr
M3 = (1 o (Z)At,
1
gy = (5 —a)At
a=2—-v2—¢

discr = Va? — 4a + 2,

where ¢ is a small quantity (we use 1078). We use this to define the operator
LTCGA(¢m, Sm+3) as follows:
¢n+1 - ¢n

LTGA<¢n’ Sn+%) = At_ — S”*% (4.4)

~ (Lo)((n+ %)At) +O(AP).

where ¢" T = ¢t (¢n, S"3) is defined to be the expression (4.3).

To simplify the use of the TGA scheme, Chombo includes two classes which implement
LTGA — one for a single AMR level, and one for an entire AMR hierarchy. Note that
computing LT%4 requires solving the heat equation and applying the operator L, these
classes require that there be suitable AMRLevelOp-derived operator classes which discretize
the appropriate Helmholtz operator.

4.7.1 The TGAHelmOp and LevelTGAHelmOp classes

Since implementing the TGA algorithm requires some additional functionality in addi-
tion to that specified in the AMRLevelOp<T> class, we have the TGAHelmOp<T> and
LevelTGAHelmOp<T, TFlux> classes, which are general Helmholtz-type operators like
(a+ V- BV) publicly derived from AMRLevelOp<T>. The multilevel TGA implementation
uses TGAHelmOp. The single-level TGA implementation requires two functions not needed
by the multilevel solve, so it uses LevelTGAHelmOp<T, TFlux>, which is publicly derived
from TGAHelmOp<T> and includes the extra required functions. The AMRPoissonOp,
Resistivity0Op, and ViscousTensor0Qp classes are derived from LevelTGAHelmOp, and
so may be used by both of the TGA solvers.

Additional functions required by TGAHelmOp<T> and LevelTGAHelmOp<T, TFlux>:
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virtual void setAlphaAndBeta(const Real& a_alpha,
const Real& a_beta) = 0

— Set the Helmholtz equation constants in the operator.
virtual void diagonalScale(T& a_rhs) = 0
virtual void diagonalScale(T& a_rhs, bool a_kappaWeighted) = 0

. . . . )
— Set the diagonal scaling of the operator. For example, if solving ,o(x)(.)—‘ftj = L(9),
the diagonalScale would be p. In EB applications, even for constant coefficients, it
means multiplication by k.

virtual void applyOpNoBoundary(T& a_ans, const T& a_phi) = 0

— Apply operator without any boundary or coarse-fine boundary conditions and no
finer level. This implies that we've set ghost-cell values outside the operator and
want to use them in the operator evaluation.

Additional functions required by LevelTGAHelmOp<T, TFlux>:

virtual void fillGrad(const T& a_phi)

— This a function used in operators of fairly complex flux functions in which the gra-
dient of the solution is computed and stored separately. This function is to signal the
operator to do said computation with the input data. The default implementation
does nothing.

virtual void getFlux(TFlux& a_flux,
const T& a_data,
const Box& a_grid,
const Datalndex& a_dit,
Real a_scale) =0

— compute face-centered flux.

— flux — face-centered dataholder into which to place flux

— data — cell-centered data used to compute the flux

— grid — cell-centered box over which to compute face-centered flux.
— dit — Datalndex of grid box we're working with

— scale — scaling factor to multiply flux.

4.7.2 The AMRTGA class

The AMRTGA<T> class is a templated implementation of the TGA algorithm designed to
advance an entire multilevel hierarchy of AMR grids by one (non-subcycled) timestep
where T is the data holder for a single AMR level (like a LevelData<FArrayBox>.
Public member functions:
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e AMRTGA (const RefCountedPtr<AMRMultiGrid<T> >& a_solver,

const AMRLevelOpFactory<T>& a_factory,

const ProblemDomain& a_levelODomain,

const Vector<int>& a_refRat,

int a_numLevels = -1,

int a_verbosity = 0)
— constructor

solver — AMRMultiGrid solver used to do the elliptic solves. This should be
predefined with the appropriate TGAHe1lmOp operators.

— factory — Factory which can be used to create TGAHe1lmOps for this problem.
— levelODomain — problem domain on the coarsest level

— refRat — vector of refinement ratios

— numLevels — number of AMR levels

— verbosity — how much output is written out. Higher number is more verbose
(default is 0).

e void oneStep(Vector<T*>& a_phiNew,
Vector<T*>& a_phiOld,
Vector<T*>& a_source,
const Real& a_dt,
int a_lbase,
int a_lmax)

— advances a parabolic PDE one timestep using TGA on a non-moving domain.

— phiNew — new-time solution computed using TGA.
— phi0ld - old-time solution

— source — source term at the half-time

— dt — timestep

— lbase — coarsest level to be advanced

— 1max — finest level to be advanced

4.7.3 The BaseLevelTGA and LevelTGA classes

The BaseLevelTGA<T, TFlux, TFR> class is a pure-virtual base class which implements
the basic TGA scheme on a DisjointBoxLayout, which corresponds to solving on a single
AMR level. The BaseLevelTGA class is templated on T, a (cell-centered) data holder
over the entire DisjointBoxLayout (which is the same template type T used by the
AMRLevelOp-derived operator, and which is the datatype of the solution on a single
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level), TFlux, a face-centered data holder on a single patch, and TFR, the appropriate
FluxRegister type of object to store diffusive fluxes along any coarse-fine interfaces.

The simplest example of a BaseLevelTGA-derived class is the LevelTGA class, which is
a publicly-derived BaseLevelTGA<LevelData<FArrayBox>, FluxBox, LevelFluxRegister>.
Note that the BaseLevelTGA objects are defined over the entire AMR hierarchy at once,
and then advance a single-level as specified.

Public member functions:

e BaseLevelTGA(const Vector<DisjointBoxLayout>&

const Vector<int>&

const ProblemDomain&
RefCountedPtr<AMRLevelOpFactory< T > >&
const RefCountedPtr<AMRMultiGrid<T > >&

— constructor

a_grids,
a_refRat,
a_levelODomain,
a_opFact,
a_solver)

— grids — grids over the entire AMR hierarchy

— refRat — refinement ratios

— levelOdomain — problem domain on coarsest level

— opFact — factory used to create LevelTGAHelmOps for this problem.

— solver — AMR Multigrid solver over entire AMR hierarchy, pre-defined with
the appropriate LevelTGAHe1lmOp-derived operators.

e void updateSoln(T&
T&
T&

LevelData<TFlux>&

TFR*
TFR*
const Tx
const Tx
Real
Real
Real
Real

int

bool

int

— update ALL components of phi

a_phiNew,
a_phiOld,

a_src,

a_flux,
a_FineFluxRegPtr,
a_CrseFluxRegPtr,
a_crsePhiOldPtr,
a_crsePhiNewPtr,
0ldTime,
crse0l1dTime,
crseNewTime,

dt,

a_level,
a_zeroPhi = true,

a_fluxStartComponent = 0);

— phiNew — updated solution at oldTime + dt

— phi0ld - solution at oldTime
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— src — source term at (oldTime + 0.5*dt)

— flux —

— FineFluxRegPtr — flux register for diffusive fluxes along coarse-fine interface

between this level (level) and the next-finer level (level+1).

— CrseFluxRegPtr — flux register for diffusive fluxes along coarse-fine interface

between this level (level) and the next-coarser level (1evel-1).

— crsePhi01dPtr — pointer to old-time coarse data (for coarse-fine boundary

conditions)

— crsePhilNewPtr — pointer to new-time coarse data (for coarse-fine boundary

conditions)

— 0ldTime — time centering of phi0ld

— crse01dTime — time centering of crsePhi01dPtr

— crseNewTime — time centering of crsePhiNewPtr

— dt — timestep

— level — AMR level which we're advancing

— zeroPhi -

— fluxStartComponent — component at which to place first component of flux

e void computeDiffusion(T&

— compute time-centered LT%4 (¢, S) for use in subsequent update operations. In
this case, we do solve for phiNew, then subtract source and phiOld back out to
get L(phi). Function arguments have the same meanings as for the updateSoln

function.

T&

T&
LevelData<TFlux>&
TFR*
TFR*
const Tx
const Tx
Real
Real
Real
Real

int

a_DiffusiveTerm,
a_phiOld,

a_src,

a_flux,
a_FineFluxRegPtr,
a_crseFluxRegPtr,
a_crsePhiOldPtr,
a_crsePhiNewPtr,
a_oldTime,
a_crse0ldTime,
a_crseNewTime,
a_dt,

a_level);

— DiffusiveTerm — LT¢4(¢, S) as computed by this function.
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4.8 TGA addendum for EB and non-unity identity co-
efficients

Consider the partial differential equation

dp
a = a(x), a>0.

We can extend the TGA algorithm by defining

L, =

SEIN

S, =

The solution is given by
(I = mLa)(I = paLa)d™ = (I + psLa)¢"™ + At(I + p1aL4) S,

Because a (though non-zero), can be quite small, we are reluctant to have it in the
denominator. We use the handy identity (AB)™! = B~'A~! to get

(I - L)' = (al —aL) '(a) (4.6)
to derive
S
" = (al — L) H(alal — p L) (al + pusL)¢™ + At(al + ;ML)E]). (4.7)
Note that we still have to divide the source term by the coefficient but, since this is
typically density, it should be floored reasonably above zero.
Finally, with embedded boundaries, we must also multiply out factors of the volume

fraction k. L is divided by x and s can be arbitrarily small. We can reuse the above
identity to obtain the following.

S
" = (kal — kL) 'ka | (kal — kpo L) H(kal + kusL)¢™ + At(kal + kusL)=])| .

a
Mercifully, we never have to divide by the volume fraction.

To accommodate these variable coefficient issues LevelTGAHelmOp needs some extra
functions.

e virtual void diagonalScale(T& a_rhs, bool a_kappaWeighted)

This function multiplies in place the input by the identity coefficient. In the case of
EB, setting a_kappaWeighting to true means the input gets multiplied by ka.
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virtual void diagonalScale(T& a_rhs)

This version of diagonalScale assumes that x weighting is desired in EB applica-
tions.

e virtual void divideByIdentityCoef(T& a_S)

This function divides the input in place by the a coefficient.

4.9 TGA with time-dependent operator coefficients

Consider a parabolic partial differential equation in which a quantity a¢ is conserved and
in both a and ¢ are time dependent:

0(ag)

— Lo+S (4.8)

a = a(Z,t), a>0.

For the purposes of this discussion, we assume that a can be updated explicitly, and
that a” and a" "' are known and may be used in the solution of (4.8) to obtain ¢"*! from
o".

Equations of this form arise in the diffusion of energy and momentum in compressible
hydrodynamic flows. In fluid flows with heat conduction, for example, the energy per unit
volume F is related to both the mass density p and the temperature 7" by the expression

E = c,pT (4.9)

where ¢, is the specific heat as measured under constant pressure. If we assume that ¢, is
constant within a material, the transfer of energy by heat conduction throughout a body
with thermal conductivity K is described by the conservation equation

9(pT)
ot
where S is an external source of energy. The total energy is conserved in this process.

Cp

=V (KVT)+ 8 (4.10)

4.9.1 Implicit TGA update for ¢

We begin by expressing (4.8) in a form that more closely resembles (4.5). The time

change in a¢ is
o [G)er ()] “

Thus, we can express the evolution equation for ¢ as
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a% = L(¢)+ S — (%) é (4.12)

Since we have explicitly updated a and have a™*! as well as a”, we may explicitly estimate
the second term on the right hand side of (4.12) as a source using the first-order finite

difference
da (@t —a™)
(E) RS T¢ ) (4.13)

Because this expression appears on the right hand side of (4.12), it is then multiplied by
a factor of At and rendered second-order accurate.

In order to conserve a¢, it is crucial that we use values of a at the correct time
centerings in the TGA update for ¢. We define

Lo(t) = Lé?t’ﬁ (4.14)
s, = 2 (t) — ¢"(a"" — a") /A (4.15)

a(t)

where we have added t as a parameter to all time-dependent quantities to emphasize their
time dependence. The TGA update for ¢ is then written

ol = [ — i Lot )] I = pio La(#)] ) x
(I + paLa(E)]g + AL + L (E2)]S,(145) ). (4.16)

where t* is the “intermediate” time used in the TGA update. Hereafter, we use abbreviated
superscripts on a, L, and S to refer to their time centerings.

Using the identity (4.6) and multiplying the last two terms by a™/a™ and a”*é/a’”%
respectively, we obtain the expression

¢n+1 — [an—i-l] _ ﬂan+1]—1an+1[a*[ _ ILLQL*]_IG/* % (4_]_7)
TH*li n an+17an
T )]

This expression is more complicated than (4.7) because the various factors of a are eval-
uated at different times and thus do not cancel.
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49.1.1 Embedded boundary considerations

The same analysis can be carried out in the presence of irregular cells near embedded
boundaries, but since the volume fraction k is constant in time, the same factors appear
as in (4.7). In the Chombo implementation of this algorithm, factors of a and L in the
numerator each include a factor of k, but factors of a in the denominator do not, so we
must take special care in computing ¢"*1!.

To illustrate how these factors must be treated in Chombo, we include all factors
of k instead of accounting for cancellations. In this case the expression for ¢! within
irregular cells with the appropriate factors of  is

¢n+1 _ [/wnﬂj— _ Mlliz‘/n%—l]—lﬁan%—l[ﬁa*[ _ MKL*]—I,W* % (4.18)

(ﬁ[/@anl + pgk L) ¢" + —AL (ka3 T + pyr 3] [S”*”"(gjfla")/m]) .
ka2 a2

The factors of x in the denominator cancel with the factor, say, in front of a*. We can

implement this cancellation by calling diagonalScale with a a_kappaWeighted=false

to indicate that a* should not be multiplied by k. Our final expression for ¢"*! for

operators with time-dependent coefficients in irregular cells is

¢n+1 _ [/mnﬂ[ _ MlﬁLn+1]—1/€an+1[K1a*[ _ /LQHL*]_I&* % (4.19)

n i n (N n
(i[ma”I + pgk L™ o™ + i[,mn%[ + M4I€L”+%][S T2 _gn(antla )/At]> '

am n+% an+%

4.9.2 Conservative calculation of L(¢)

After ¢"! is computed, we obtain a conservative value for L(¢) by calculating

- (an+1¢n+1 _ an¢n)
L(¢) = X — 5. (4.20)

4.9.3 Setting the time centering of a LevelTGAHelmOp

(4.17) is correct for any time-dependent entities a(t) and L(t), but we need a way to
obtain these properly-centered values in practice. Since our algorithm is second-order
accurate, we can compute a time-centered value for a™™* or L™™* by interpolating linearly
between the beginning-of-step values @™, L™ and their end-of-step values a"!, L"*! if
we know their values at t" ™! beforehand. The TGA algorithm sets the time centering of
a LevelTGAHelmOp by calling the setTime method:

virtual void setTime(Real a_oldTime, Real a_mu, Real a_dt)
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Here, a_oldTime is the beginning-of-step time t", a_mu is the fraction of the time step
that has elapsed, and a_dt is the step size. With these three parameters, one can compute
t"T# and can interpolate a or L between t" and t"*! as needed. For example, the time-
interpolated value for a at a fraction p through the step is

n+l _ . n
vt o= gr A ([T
. At

= (1—pa"+ pa"* (4.21)

Implementation details

Currently, the TGA solver assumes that a LevelTGAHelmQOp is time independent unless
otherwise specified. If you wish to create a time-dependent subclass of LevelTGAHe1lmQp,
that subclass must call the single-argument LevelTGAHelmOp constructor that specifies
that it is time-dependent:

LevelTGAHelmOp(bool a_isTimeDependent)
This allows the TGA solver to query the operator via its isTimeDependent method:
bool isTimeDependent() const

Note that LevelTGAHelmOp: : isTimeDependent is not a virtual method— it simply re-
turns the flag passed to the above constructor. The time dependence of an operator
object must be established at the time of its construction.

Additionally, if the operator needs to interpolate any of its coefficients over the time
step, it should store the beginning-of-step and end-of-step values for such coefficients and
ensure that they are valid before the TGA solve.
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Chapter 5
AMRTimeDependent

5.1 Hyperbolic Systems of Conservation Laws

In this section, we will describe a general framework for solving time-dependent problems
using AMR, including refinement in time. In order to motivate that framework, we first
describe in detail the AMR algorithm in [7] for solving systems of hyperbolic conservation
laws.

We want to solve a system of equations of the form

E—FV'.F:O

V =V(zx,t) e R"
F = (F(V), .., FP~Y(V))
F1 R™ - R™

We assume that the system is hyperbolic, i.e., that the matrices ZdD:_Ol £,V F? have real
eigenvalues and a complete set of eigenvectors for all £ € RP. If the system is hyperbolic,
we expect that specifying initial conditions of the form

V(x,0) = V(x)

leads to a well-posed problem.

A variety of multiple-scale phenomena arise in solutions to hyperbolic systems of con-
servation laws arising from continuum mechanics problems that make AMR an attractive
option. These include dynamics of shocks and interfaces, shock-shock intersections, and
nonlinear wave focusing.

We assume that the underlying discretization of the above hyperbolic system of equa-
tions on a uniform grid is an explicit finite-difference method in discrete conservation

form:
urew =y _ At DF onT
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where F is a staggered-grid vector field on I', and D is the discrete divergence operator
defined in section 3.1.2.3. F'is a function of U°?, with a finite domain of dependence:
Fd(UOZd)i_i_%ed depends only on {U,,:Ojfi}‘s_%edlgp where p is independent of the mesh spac-
ing.

We extend this method to an adaptive mesh hierarchy using the Berger—Oliger algo-
rithm [6]. We define

{(UYree, U - R™

where U! = U'(t"). Here {t'} are a collection of discrete times that satisfy the temporal
analogue of proper nesting; {t'} = {t/"' +kAt' : 0 < k < nl_;}. The algorithm in [7] for
advancing the solution in time is given in pseudo-code in figure 5.1. The discrete fluxes
F are computed by using the piecewise linear interpolation function in section 3.1.1.3 to
define an extended solution on

Q=g p)nT,

namely U:Q — R™ where

U, = U’?(tl) for i € QO
) (1= U (EY) + a U + A1) otherwise

tl o tl_l
A1
Regridding is performed in the following steps.

where o =

1. Construct Z! C 2,1 = lpgses -, lmaz — 1 corresponding to those cells for which a
user-specified measure of the error exceeds a specified tolerance.

2. Generate new grids Q"% | = [p5c + 1, ..., lnaz ON Which the new solution is to be
defined. These new grids should satisfy Cnief(Q”l’"ew) D 7', and should be properly
nested, as well as satisfying any other required nesting conditions. If [y,s. > 0, these
conditions impose some constraints on Z', which are met typically by reducing the

size of the Z!'s prior to the grid generation step.

3. Initialize the new data U™“(t!). For | = lpgse, Ul = U™, For | = lygse +

17 b lm(l$1

Ul’new(tregrid)i — Ul(tregrid)i = QN Ql,new;
Ipwl (Ulilmlew (tregrid))i OtherWise.

Ul,new (tregrid)i - {
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procedure advance (/)
Ut 4+ Ath) = U'(t)) — AtDF! on Q!

if | <l
SFj" =—Fionfju¢t),d=0,...D—1
end if
ifl>0
0F) = 6Fj+ == (Fj) on ¢t yUC ;,d=0,.,D—1
end if !

forq=0,..,n.,,—1
advance(l + 1)
end for
U'(t' + At') = Average(U™ (1 + At'), nl, ;) on anmf(Ql*l)
ULt + At == Ut + AtY) — At DRr(§F™1)

th=1t"+ At

nitep = nétep + 1

If (nlstep = 0 mOd nregrid) and (ni;elp 7& O mOd nregrid)
regrid(l)

end if

Figure 5.1: Pseudo-code description of the Berger—Colella AMR algorithm for hyperbolic
conservation laws.
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Refinement Criteria

Generally speaking, there are two approaches to determining which cells are to be tagged
for refinement. One is to tag points at which some local function of the dependent
variables or their derivatives exceeds some threshold. The second approach is to compute
a local estimate of the truncation error, and tag points at which the magnitude of that
error exceeds a given threshold. The first approach can be used very successfully in cases
where the user can exploit application-specific information. The second approach is more
general and more difficult to implement correctly. For that reason, we will discuss it in
some detail here.

Let L"(p") : T — R be a finite-difference approximation on a uniform grid to a
differential operator £ defined for any " : I' — R™. We define the truncation error for
L to be

7= L"W"); — L(Y) (2o + 1h)

where 1" = 1)(xy + h), and 1 is a smooth function ¥ : RP — R™. To compute the
truncation error in a numerical solution to a system of PDE's, ¢ would be the particular
solution being computed. The difficulty is that we don’t know the exact solution to the
PDE. Instead, we can compute the Richardson estimate to the truncation error,

rib2h — (L*"(Average(¢",2)); — Average(L" ("), 2);)

(2

for i € Cy(T). Here 7/%°" = O} + O(hP™') where p is the order of accuracy of the
operator L : ; = O(hP). It is straightforward to extend the definition of 7% to an AMR
grid hierarchy. In that case, one can tag points to be refined based on whether |7/
exceeds some threshold.

We can see two difficulties with this approach. The first is that finite-difference opera-
tors often have a lower-order accurate truncation error at the problem domain boundaries.
In addition, the discussion in section 3.1 indicates that the truncation error is of lower-
order accuracy at coarse-fine boundaries as well. However, as indicated previously, the
effect of the truncation error at boundaries on the solution error is typically much smaller
than the magnitude of the former would indicate. To compute an error estimator that
appropriately reflects this fact, we rescale the tagging criterion at cells adjacent to the
boundaries.

5.2 Classes AMR and AMRLevel

The class AMR implements a framework for the Berger—Oliger adaptive mesh refinement
(AMR) algorithm for time-dependent simulations [6]. The data is organized on a hierarchy
of levels of refinement, stored as a collection of AMRLevels. The class AMRLevel is an
abstract base class from which must be derived a concrete class which defines and contains
the data representation for one level and implements the algorithms for advancing one
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(physics class) ® (data class(es))

lications code ‘w
Eapp )0 : AMR o AMRLeve
A ®&— B A containsaB
C —0D Cisderived from D

Figure 5.2: Class structure. AMR contains some AMRLevels. Physics class is derived from
AMRLevel and contains the data representation.

level in time. The class AMR implements refinement of the time step At based on the
refinement of the grid.

5.2.1 Class structure

The class AMR manages the entire hierarchy of levels. The levels are represented in the
class AMR as a collection of AMRLevels. The class AMRLevel is an abstract base class from
which the applications implementer must derive a concrete physics class which defines the
form of the solution data and, for a single level, implements algorithms for advancement
by At, calculation of a stable At, initialization, input and output, etc. The class AMR
has no knowledge of the form of the solution data. The applications implementer must
instantiate an object of type AMR and an object of the physics class type. The physics
class object is required input to the definition of an AMR. See figure 5.2.

Applications code constructs and invokes public member functions of the class AMR.
The class AMR controls the entire hierarchy of levels. It constructs and invokes member
functions of the AMRLevels. It requires a physics class derived from AMRLevelFactory
as input.

5.2.2 Class AMR

The AMR class is a framework for Berger—Oliger timestepping for adaptive mesh refinement
of time-dependent problems. It is applicable to both hyperbolic and parabolic problems.
It represents a hierarchy of levels of refinement as a collection of AMRLevels. The usage
pattern of this class is as follows:

e Call define to define the parameters that do not change throughout the run (max
level, refinement ratios, domain, and operator).
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e Modify any parameters you like (blocking factor and so forth) using access functions.

e Call any one of the three setup functions so AMR can set up all its internal data
structures.

e Call run to run the calculation.
e Call conclude to produce statistical output, e.g., how many cells were updated.

The important functions of the public interface for the AMR class are:

e void define(int a_max_level,
const Vector<int>& a_ref_ratios,
const ProblemDomain& a_prob_domain,
const AMRLevelFactory* const a_amrLevelFact);

void define(int a_max_level,
const Vector<int>& a_ref_ratios,
const Box& a_prob_domain,
const AMRLevelFactory* const a_amrLevelFact);

Defines this object. User must call a setup function before running.
Arguments:

— a_max_level (not modified): The maximum level number allowed, where the
base level is zero. There may be a total of a_max_level+1 levels, since level
zero and level a_max_level can both exist. Note that it while this is the
maximum possible level, it is possible that fewer levels are actually defined,
depending on the problem and the method and tolerances used to tag cells for
refinement.

— ref_ratios (not modified): Refinement ratios. There must be at least
a_max_level+1 elements or an error will result. Element zero is the base
level.

— a_prob_domain (not modified): Problem domain on the base level.

— a_amrLevelFact (not modified): Pointer to a physics class factory object.
The object it points to is used to construct the collection of AMRLevels in this
AMR as objects of the physics class type.

e void setupForRestart(HDF5Handle& a_handle);

Sets up this object from checkpointed data. User must have previously called
define. A user needs to call either this function or setupForNewAMRRun or
setupforFixedHierarchyRun before she calls run.
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e void setupForNewAMRRun() ;

Sets up this object for cold start. User must have previously called define. Need
to call this function or setupForRestart or setupforFixedHierarchyRun before
you run.

e void setupForFixedHierarchyRun(const Vector<Vector<Box>>& a_amr_grids,

int a_proper_nest = 1);

This sets the grid hierarchy and sets regrid_intervals to -1 (turns off regridding).
If you want to keep regridding on, reset regridIntervals after this call.

e void run(Real a_max_time, int a_max_step);

Run the calculation. User must have previously called both the define function
and a setup function in order to call this.
Arguments:

— a_max_time : Time to stop the calculation.

— a_max_step : Maximum number of iterations.

e void conclude() const: The user should call this last. It writes the last check-
point file and performs other housekeeping functions.

There are also functions in the AMR class which allow the user to reset various pa-
rameters of the run (blocking factor, regridding intervals, checkpointing intervals, etc.
See the reference manual for details. Examples of applications that use the AMR class to
implement an adaptive Godunov method are given in Chombo/example/AMRGodunov.

5.2.3 Class AMRLevel

AMRLevel is an abstract base class for data at the same level of refinement within a
hierarchy of levels. The concrete class derived from AMRLevel is called a physics class.
The domain of a level is a disjoint union of rectangles in a logically rectangular index
space. Data is defined within this domain. There is also a problem domain, which may
be larger, within which data can, in theory, be interpolated from some coarser level.

AMRLevel is the interface that the class AMR uses to call the physics class. The
important parts of the public interface to AMRLevel are:

e virtual void define (AMRLevel* a_coarser_level_ptr,
const ProblemDomain& a_problem_domain,
int a_level,
int a_ref_ratio);

virtual void define (AMRLevel* a_coarser_level_ptr,
const Box& a_problem_domain,
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Defines this AMRLevel.
Arguments:

int a_level,
int a_ref_ratio);

— coarser_level_ptr (not modified): Pointer to next coarser level object.

next finer level.

problem_domain (not modified): Problem domain of this level.
level (not modified): Index of this level. The base level is zero.

ref_ratio (not modified): The refinement ratio between this level and the

virtual Real advance() = O;

Advance this level by one time step. Return an estimate of the new time step at

this level.

virtual void postTimeStep() = 0;

Do all operations that are required after a timestep is completed. Refluxing happens

here.

virtual void tagCells(IntVectSet& a_tags) const = 0;

Create tagged cells for dynamic mesh refinement.

virtual void tagCellsInit(IntVectSet& a_tags) const = O;

Create tagged cells for mesh refinement at initialization.

virtual void preRegrid(int a_base_level,

const Vector<Vector<Box> >& a_new_grids);

Perform any pre-regridding operations which are necessary. This is not a pure
virtual function, to preserve compatibility with earlier versions of AMRLevel. The
AMRLevel: :preRegrid () instantiation does nothing.

virtual void regrid(const Vector<Box>& a_new_grids) = O;

Redefines this level to have the specified grids as its defined union of rectangles.

virtual void postRegrid(int a_base_level);

Perform any post-regridding operations which are necessary. This is not a pure
virtual function to preserve compatibility with earlier versions of AMRLevel. The
AMRLevel: :postRegrid() instantiation does nothing.

virtual void initialGrid(const Vector<Box>& a_new_grids) = 0;

Initialize this level to have the specified domain a_new_grids.
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virtual void initialData() = 0;

Initialize the data.

virtual void postInitialize() = 0;

Do any operations that are required just after initialization.

virtual Real computeDt() = 0;

Returns maximum stable time step for this level.

virtual Real computeInitialDt() = O;

Returns maximum stable time step for this level with initial data.

virtual void writeCheckpointHeader (HDF5Handle& a_handle) const = 0;
Write the header to the checkpoint file handle.

virtual void writeCheckpointLevel (HDF5Handle& a_handle) const = O;
Write checkpoint data for this level.

virtual void readCheckpointHeader (HDF5Handle& a_handle) = O;
Read checkpoint header.

virtual void readCheckpointLevel (HDF5Handle& a_handle) = 0;
Read checkpoint data for this level.

virtual void writePlotHeader (HDF5Handle& a_handle) const = 0;
Write plot file header for this level.

virtual void writePlotLevel (HDF5Handle& a_handle) const = 0;
Write plot file data for this level.

These are all the pure virtual functions of the AMRLevel interface and therefore all the
functions that the user must define for her application. There are other ancillary functions
in the interface that have reasonable defaults. Most of these involve data member access
and modification.

5.2.4 Class AMRLevelFactory

The class AMRLevelFactory is a pure virtual base class, with only one member function:

e virtual AMRLevel* new_amrlevel() const = O;

This is the only member function of AMRLevelFactory, and it must be defined
by the user in a derived class. The derived function will return a pointer to a
physics-specific class derived from AMRLevel.
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A pointer to an object of this class is passed to the define function of an AMR object,
which uses it to construct the various AMRLevel objects that it requires.

5.3 AMRTimeDependent Example: Advection-Diffusion

We provide an example which uses the AMRTimeDependent infrastructure to solve the

advection-diffusion equation. Given an analytic velocity field v and a diffusion coefficient

v, we evolve an advected and diffused scalar ¢ using the advection-diffusion equation:
% + V- (Up) = vAg.

The algorithm is mostly as described in previous sections. The solution to the Riemann

problem is given by simple upwinding. Fj, the advective flux in the d direction, is given

by F; = v¥¢. The characteristic values are the velocity components.

The main difference between the algorithm used in this example and that in Figure
5.1 is in the approach taken to flux correction during the synchronization step. The total
flux is the advective flux minus the diffusive flux: F1°" = vl¢ — vV ¢. Because the fluxes
used to update the solution include both advective and diffusive fluxes, simply performing
the explicit refluxing correction step:

o (t 4+ At == ¢!t + At) — AL DR(OF™)

will be unstable because it represents a forward-Euler update for the heat equation (which
requires that At ~ O(h?) for stability). To preserve stability, we instead apply the flux
correction implicitly, as described in [19]:

We first solve a Helmholtz equation for a correction:

(I — Ateb““z/Acomp)éqﬁ = AtéDR(éﬁtOt’£+1) for ¢ > ly,se (5.1)
Then, the correction is added to the solution:

¢ = @' + 60" for € > lygse. (5.2)

5.3.1 AdvectionDiffusion-Specific Classes

The AMR advection-diffusion application in Chombo/example/AMRGodunov uses the AM-
RTimeDependent infrastructure extensively. These are the classes that are specific to this
application.

e AdvectPhysics is the GodunovPhysics-derived class. It provides PatchGodunov
the physics-specific information needed to advance the solution.
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e LevelAdvect is used to advance an advection-diffusion solution one step:

1

¢new — ¢old o At(V . (6¢))n+5‘

In the case of non-zero diffusion, we use this advance as an input to a semi-implicit
advance using the LevelTGA class described in section 4.7. In the pure advection
case, we can just use this update.

e AMRLevelAdvectDiffuse is the AMRLevel-derived class that drives the calculation.

e AMRLevelAdvectDiffuseFactory is the factory class that the user sends to AMR.
This class generates AMRLevelAdvectDiffuse objects for AMR.

5.3.2 Usage Pattern

In broad strokes, the driver for the AMRLevelAdvectDiffuse example looks something
like this:

// read inputs
ParmParse ppgodunov;

//define the domain of computation
ProblemDomain prob_domain;
getProblemDomain (prob_domain) ;

//define the initial and boundary conditions
RefCountedPtr<AdvectTestIBC> ibc;
getAdvectTestIBC(ibc);

//define the AdvectPhysics object
AdvectPhysics advPhys;
advPhys.setPhysIBC(&(*ibc)) ;

//pick an advection velocity function
AdvectionVelocityFunction velFunc;
getAdvectionVelocityFunction(velFunc) ;

//define the factory object
RefCountedPtr<AMRLevelAdvectDiffuseFactory> amrg_fact;
getAMRLADFactory(amrg_fact, velFunc, advPhys);

//define the AMR object

AMR amr;

defineAMR (amr, amrg_fact, prob_domain, a_refRat);

//sets all the amr parameters (as opposed to a fixed grid run)
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setupAMRForAMRRun (amr) ;

// run

amr .run(a_stopTime,a_nstop);

// output last pltfile and statistics
amr . conclude() ;

To use these functions directly (all of these functions exist in AdvectDiffuseUtils),
one must have an input file that looks something like this:

##cfl number and its initial time counterpart

cfl = 0.9
initial_cfl = 0.1
##nu

diffusion_coef = 0.001

##how much output one wants from the application
verbosity = 1

##max number of time steps

max_step = 100

##final solution time

max_time = 100.0

##number of buffer cells

tag_buffer_size = 3

##tagging threshold for undivided difference of solution
refine_thresh = 0.05

##how often we regrid

regrid_interval =2 2 2 2 2 2

##how fast time step can grow and how far out of bounds it can get
max_dt_growth = 1.1

dt_tolerance_factor = 1.1

## size of the domain

domain_length = 1.0

## distance (in level 1 cells) between levels 1+1 and 1-1
grid_buffer_size = 1

##do periodic boundary conditions or not

periodic_bc =1 11

##fixed time step size. negative if not fixing time step
fixed_dt = -1.0

##maximum AMR level number

max_level = 2

##coarsest AMRLevel grid size

n_cell = 64 64 64

##trefinement ratios between levels

ref_ratio =2 2 2 2

##blocking factor
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block_factor = 4

##maximum size of grids
max_grid_size = 64

##fi11l ratio for Berger-Rigoutsos
fill_ratio = 0.75

## how often to checkpoint. negative if no checkpoints
checkpoint_interval = -1

## how often to dump plotfile. negative if no plotfiles.
plot_interval = 10

##prefix of plotfiles

plot_prefix = plt

##prefix of checkpoint files
chk_prefix = chk

blob_center = 0.75 0.5 0.5
blob_radius 0.1

#0 = constant

#1 = rotating

advection_vel_type = 0O
use_limiting = true
amrmultigrid.num_smooth 8
amrmultigrid.tolerance = 1.0e-10
amrmultigrid.num_mg 1
amrmultigrid.norm_thresh = 1.0e-10
amrmultigrid.hang_eps = 1.0e-10
amrmultigrid.max_iter 100
amrmultigrid.verbosity 1

##1 = neumann, 0 = dirichlet

bc_.lo =111

bcchi =111

bc_value = 0.

5.3.3 AMRLevelAdvectDiffuseFactory Interface

We use the following interface to create an AMRLevelAdvectDiffuseFactory.

AMRLevelAdvectDiffuseFactory(const AdvectPhysics& gphys,
AdvectionVelocityFunction  advFunc,
BCHolder bcFunc,
const Real& cfl,
const Real& domainlLength,
const Real& refineThresh,
const int& tagBufferSize,
const Real& initialDtMultiplier,
const bool& uselimiting,
const Real& nu) ;
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e gphys — The AdvectPhysics used to create the advection term.

e advFunc — The function that provides the advection velocity. This function must
be of the form

typedef Real (xAdvectionVelocityFunction) (const RealVect& point,
const int& velComp) ;

e bcFunc — The boundary condition class sent to solve the diffusion equation. See
section 4.6.4 for details.

e cfl — The CFL number.
e domainLength — The physical length of the domain.

e refineThresh — Undivided gradient size over which a cell will be tagged for refine-
ment.

e tagBufferSize — Number of buffer cells around each tagged point that will also
be tagged.

e initialDtMultiplier — CFL number at the beginning of the calculation.

e useLimiting — Whether to use vanlLeer limiting. Turn this to true unless you are
doing a convergence test.

e nu — Diffusion coefficient.

5.3.4 LevelAdvect Interface

LevelAdvect is used to advance an advection-diffusion solution one step. In the case
of non-zero diffusion, we use this advance as an input to a semi-implicit advance us-
ing LevelTGA. In the pure advection case, we can just use this update. If a user is
simply using the AMRLevelAdvectDiffuse application, this class is entirely internal to
AMRLevelAdvectDiffuse. This discussion is provided for the benefit for those who want
to use this object for other applications.

We define a LevelAdvect with the following interface

void define(const AdvectPhysics& gphys,
const DisjointBoxLayout& thisDisjointBoxLayout,
const DisjointBoxLayout& coarserDisjointBoxLayout,
const ProblemDomain& domain,
const int& refineCoarse,
const bool& uselLimiting,
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const Real& dx,
const bool& hasCoarser,
const bool& hasFiner) ;

e gphys — The AdvectPhysics used to create the advection term.
e domain — The domain of the computation.
e refineCoarse — The refinement ratio to the next coarser level.

e useLimiting — Whether to use vanlLeer limiting. Turn this to true unless you are
doing a convergence test.

e dx — The grid spacing.
e hasCoarser — Whether there is a coarser AMR level.

e hasFiner — Whether there is a finer AMR level.

We present the interface function that advances the solution.

¢new — ¢old . At(V X (6¢))n+%

Real step(LevelData<FArrayBox>& U,
LevelFluxRegister& finerFluxRegister,
LevelFluxRegister& coarserFluxRegister,
LevelData<FluxBox>& advectionVelocity,

const LevelData<FArrayBox>& S,
const LevelData<FArrayBox>%  UCoarse(ld,

const Real& TCoarse0ld,
const LevelData<FArrayBox>&  UCoarseNew,
const Real& TCoarselNew,
const Real& time,
const Real& dt) ;

U — The solution. Input is the old solution ¢°'¢. Input is the new solution ¢"®.

finerFluxRegister — The flux register with the next finer level.

coarserFluxRegister — The flux register with the next coarser level.

e advectionVelocity — The holder for the advection velocity. This is held in a
LevelData to make this object of somewhat more general utility.

e S — Source term. In the case of advection-diffusion, S = vA¢.

UCoarse01d — Solution at next coarser level at the old time.
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TCoarse0ld — Time at which UCoarse01ld exists.
UCoarseNew — Solution at next coarser level at the new time.
TCoarseNew — Time at which UCoarseNew exists.
time — Time at which U exists before advance happens (t°9).

dt — Time step.
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Chapter 6
HDF5 1/0O with Chombo

6.1 HDF51/0

We have developed a user interface for file 1/O based on version 5 of the Hierarchical
Data Format library (HDF5) developed at The National Center for Supercomputing Ap-
plications (NCSA). HDF5 provides efficient and flexible mechanisms for handling 1/0 of
large scientific datasets, and is becoming a standard in the scientific community for binary
portable data files. We exploit a number of features provided by HDF5, including the
portability of data across platforms and the ability to read and write files on distributed
memory parallel systems. HDF5 also has a number of useful utilities, such as h5dump,
which produces a human-readable formatted ASCII output of an HDF5 file.

HDF5 has three main user abstractions: group, dataset, attribute. Group abstracts
the notion of the location in a file, while dataset and attribute are different types of data
that can be stored in an HDF5 file. We provide an API for creating HDF5 files and for
reading from and writing into such files. These are implemented using two classes, plus a
collection of stand-alone functions.

6.1.1 Class HDF5Handle
HDF5Handle is a class that manages the accessing of and navigation within an HDF5 file.

e Constructors.

HDF5Handle () ;

HDF5Handle(const std:string& a_filename, mode);
int open(const std:string& a_filename, mode);
bool isOpen();

void close();

enum mode {CREATE,OPEN_RDONLY,OPEN_RDWR}

A HDF5Handle requires a a_filename supplied either at construction using the second
constructor, or by a call to open. filename follows the semantics of fopen from the
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<stdio.h> of libc. It is an error if a file has already been opened by the HDF5Handle.
It is also illegal to open a single file using two different HDF5Handles. The enumeration
class mode specifies the access permissions. If mode = CREATE, the a file is created,
deleting the previously existing copy of that file if necessary. If mode = OPEN_RDONLY,
an existing file is opened with read-only access. |f mode = OPEN_RDWR an existing file is
opened with read-write access. In the latter two cases, if the file doesn't exist, then the
open operation fails: there is no file bound to the HDF5Handle, and a call to isOpen
would return false. HDF5Handle objects must be explicitly closed by the user, just like file
pointers in standard C. This is done with the close function. You can inquire whether a
handle is open or closed with the isOpen() function. Once close has been called, it is
possible open a new file with the same HDF5Handle using open.

e File Navigation.

int HDFBHandle: :setGroup(const std::string& a_groupAbsPath);
const std::string& HDFS5Handle::getGroup() const;

The function setGroup sets the group (i.e., the location in the file) to be that labeled
with the string a_groupAbsPath. If such a group does not yet exist, setGroup creates
such a group. The function getGroup returns the string corresponding to the group to
which the HDF5Handle is currently set. The input and output strings to which the groups
are set are assumed to be of the form of an Unix absolute directory path, e.g., "/foo",
"/level 1/info", etc. Thereis a distinguished root group "/" to which the HDF5Handle
is initialized when a file is opened. setGroup can be thought of as analogous to a Unix
“cd” command. getGroup can be thought of as analogous to the Unix “pwd” command.
We should emphasize that the setting of the group in an HDF5Handle is usually unrelated
to the actual physical file layout. It just represents an evocative and convenient notation
for navigating within an HDF5 file. setGroup returns O on success, a negative number
if HDF5 had an error. If the group doesn't already exist, then it is created if the file
is write-enabled (CREATE or OPEN_RDWR). In the event of error, file remains open and
setGroup can be called again, but HDF5Handle object is not capable of processing reads
or writes until a successful setGroup has been performed. (except immediately after file
opening when the root group is valid for writing).

6.1.2 Class HDF5HeaderData

The class HDF5HeaderData provides an interface for writing collections of reals, integers,
strings, Boxes and IntVectSets. In this interface, one must associate a name (in the
form of a character string) for each object. The internal treatment of this data assumes
that these are small collections of “metadata”, where the efficiency of storage is not a
serious concern.

class HDF5HeaderData
{
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public:
int writeToFile (HDF5Handle& a_handle) const;
int readFromFile(HDF5Handle& a_handle);
void clear();

map<std::string, Real> m_real;
map<std::string, int> m_int;
map<std::string, std::string> m_string;
map<std::string, IntVect> m_intvect;
map<std::string, RealVect> m_realvect;
map<std::string, Box> m_box;

};

Once an HDF5HeaderData object is created, the user adds objects to to be stored by
adding values to the STL maps that are contained as member data. For example,

HDF5HeaderData metaData;
metaData.m_real ["mesh spacing"] = dx;

If there is already a value in the map corresponding to the string "mesh spacing”, the
value is overwritten. One queries to see if an if an attribute is entered in one of the maps
as follows.

bool ghost_exists =
(metaData.m_intvect.find("ghost") != metaData.m_intvect.end());

Finally, one deletes an attribute from a map as follows:
metaData.m_real.erase("mesh spacing");

Once the user finishes filling in an HDFSHeaderData object, the member functions
are writeToFile and readFromFile write and read group attributes from the group
currently pointed to by a_handle.

6.1.3 HDF5 1/0 for BoxLayoutData

We provide a set of function interfaces for writing out data defined on unions of rectangles.
There are two sets of functions: one for reading and writing the unions of rectangles, the
second for reading and writing BoxLayoutData objects.

e BoxLayout 1/0.

int write(HDFSHandle& a_handle, const BoxLayout& a_layout);
int read (HDF5Handle& a_handle, Vector<Box>& boxes);
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The write function writes out the union of boxes corresponding to all of the BoxLayoutData
objects to be written to that group. Consequently, one can only write one BoxLayout
object for that group. The read function is not symmetric with the write function. The
reason for this is that processor assignment is not written out to the file with the BoxLay-
out. The file is considered parallel neutral. Since a BoxLayout is a combination of Boxes
and processor assignment, the read function does not have enough information to build a
BoxLayout. It is the users responsibility to invoke the appropriate load balancing function
after the boxes have been read in, and build a BoxLayout object

e BoxLayoutData 1/0.

template <class T>

int write(HDF5Handle& a_handle,
const LevelData<T>& a_data,
const std::string& a_name);

template <class T>

int read (HDF5Handle& a_handle,
LevelData<T>& a_data,
const std::string& a_name,
const DisjointBoxLayout& a_layout,
bool redefineData = true);

write writes the collection of T objects in a_data into an HDF5 dataset, linearizing
each object into a into a set of 1D Arrays. The default implementation is to use the
linearization function T::linearQOut that is required to define the LevelData<T> class,
but that will output data in terms of bytes, and in general will not be portable across
platforms. The user may provide a more detailed linearization interface, in which case
the HDF5 files can be made portable across platforms. Such an interface has been
provided in Chombo for the case of T = FArrayBox. read reads a LevelData<T>
object that had been previously written by the write function. On input, a_layout is
a null-constructed LevelData, which is then defined inside read. If redfineData ==
false, then the user takes responsibility for calling define is the correct manner for the
LevelData<T> a_data argument. The a_layout argument must consist of the same
collection of Boxes as that used to define a_data, but may have a different mapping of
boxes to processors than that of the data as it was written.
There are also versions of these functions for the case of BoxLayoutData<T>.

6.1.4 HDF5 Out-Of-Core readers

Frequently, a user will generate a data file from a simulation run (particularly in parallel)
that will exceed a single computers available RAM. This can make auxiliary post-processing
programs impossible to run unless they too are programmed in parallel. The nature of
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many post-processing operation, however, are more like data-mining than a full simula-
tions. For those cases a simpler approach can be used where only a subset of the data

file is read in and operated on.

template <class T>

int readLevel(
HDF5Handle& a_handle,
const int& a_level,
LevelData<T>& a_data,
Real& a_dx,
Real& a_dt,
Real& a_time,
Box& a_domain,
int& a_refRatio,
const Interval& a_comps
const IntVect& ghost =
bool setGhost = false);

int readBoxes(
HDF5Handle& a_handle,

= Interval(),

IntVect: :Zero,

Vector<Vector<Box> >& boxes);

int readFArrayBox(
HDF5Handle& a_handle,
FArrayBox& a_fab,
int a_level,
int a_boxNumber,

const Interval& a_components,
const std::string& a_dataName = "data" );

The first function defaults to reading the entire range of components for a given level
of data. If the user specifies Interval a_comps (currently defaulting to the entire data
range) then a user can select out just a particular range of components.

readFArrayBox is even more specific, in that it reads individual FArrayBox data's

from the file by

level, index

reference.
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6.2 AMR 1/0 routines

WriteAMRHierarchyHDF5 and ReadAMRHierarchyHDF5 are convenient global functions
used in the AMR codes developed by ANAG. There are three main reasons for their use:

1. It relieves the user from having to learn about the HDF5 interface code.

2. It places the data into a format that can subsequently be read successfully by the
Vislt post-processing and visualization tools.

3. They are symmetric and can be used for efficient checkpoint file generation.

6.2.1 Function WriteAMRHierarchyHDF5

void
WriteAMRHierarchyHDF5(const string& filename,
const Vector<DisjointBoxLayout>& a_vectGrids,
const Vector<LevelData<FArrayBox>* >& a_vectData,
const Vector<string>& a_vectNames,
const Box& a_domain,
const Real& a_dx,
const Real& a_dt,
const Real& a_time,
const Vector<int>& a_refRatio,
const int& a_numLevels)

Arguments:
No arguments are modified.

e filename : file to output to.

a_vectGrids : grids at each level.

a_vectData : data at each level.

e a_vectNames: names of variables.

e a_domain : domain at coarsest level.

a_dx : grid spacing at coarsest level.

a_dt : time step at coarsest level.
e a_time : time.

e a_vectRatio : refinement ratio at all levels (ith entry is refinement ratio between
levels i and i + 1).
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e a_numlLevels : number of levels to output.

filename is created if it doesn't already exist, and overwritten if it does exist.
a_vectGrids must match the grids that a_vectData is defined over. a_vectNames are
the names you wish to be associated with the components of the a_vectData. a_domain
is the covering domain box at the coarsest level. a_numLevels is the number of levels,
starting at level O that the user wishes to be output.

6.2.2 Function ReadAMRHierarchyHDF5

int
ReadAMRHierarchyHDF5(const string& filename,
Vector<DisjointBoxLayout>& a_vectGrids,
Vector<LevelData<FArrayBox>* > & a_vectData,
Vector<string>& a_vectNames,
Box& a_domain,
Real& a_dx,
Real& a_dt,
Real& a_time,
Vector<int>& a_refRatio,
int& a_numlevels,
const IntVect& ghostVector)

Arguments:

e filename : file to input from.

a_vectGrids : grids at each level.

a_vectData : data at each level.

a_vectNames: names of variables.

e a_domain : domain at coarsest level.

a_dx : grid spacing at coarsest level.
e a_dt : time step at coarsest level.
e a_time : time.

a_vectRatio : refinement ratio at all levels.

e a_numLevels : number of levels to read.

a_ghostVector : IntVect used to define a_vectData
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return codes:

0: success

—1: number of levels <= 0

-2: number of components <= 0
-3: error in readlevel function
-4: file open failed

the argument notes are the same as for WriteAMRHierarchyHDF5, with the addition of
ghostVector. ghostVector is passed in the argument list and is used in the definition
of the LevelData<FArrayBox> definition of a_vectData. This was most useful for
data moving between a simulation code and a post-processing code where the ghost cell
requirements can be different.

6.3 Other HDF5 1/0 functions

To aid in debugging and in visualizing intermediate data, the functions writeFAB,
writeFABname, writeLevel, and writeLevelname may be used. These functions are
designed to output a single FArrayBox or a LevelData<FArrayBox> into a file which
can then be read by Vislt. These functions may be called from debuggers such as gdb
during the debugging process. The usual way these functions are used is as follows:

1. place the line
#include ‘‘FABView.H’’!
in the file which contains the function main().

2. Run the code in the debugger, calling the needed IO function as needed.

3. in a shell environment, start Vislt to look at the output file

6.3.1 Functions writeFAB and writeFABname

The functions writeFAB and writeFABname write a single FArrayBox into a file which
uses the plotfile format of WriteAMRHierarchyHDF5, and which can then be viewed with
Vislt (called separately). The writeFAB function writes the input FArrayBox into a file
named fab.hdf5, while the writeFABname allows the user to specify the name of the
output file. Note that the data is passed using a pointer to an FArrayBox.

void
writeFAB(const FArrayBox* a_data)

1The actual function declarations are in AMRIO.H, but FABView.H contains fake “calls” to the various
functions to ensure that they are all included in the executable file.
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Arguments:
No Arguments are modified.

e a_data : data to be written

A file named fab.hdf5 is created if it doesn't already exist and overwritten if it does
exist.

void
writeFABname (const FArrayBox* a_data, const char* a_filename)

Arguments:
No Arguments are modified.

e a_data : data to be written
e a_filename : name of file into which data is written

a_filename is created if it doesn't already exist, and overwritten if it does exist.

6.3.2 Functions writeLevel and writeLevelname

The functions writeLevel and writeLevelname write the data from a single LevelData<FArrayBox>
into a file which uses the plotfile format of WriteAMRHierarchyHDF5, and which can
then be viewed with Vislt (called separately). The writeLevel function writes the input
LevelData<FArrayBox> into a file named LDF.hdf5, while the writeLevelname allows
the user to specify the name of the output file.

Notes:

e Data is passed using a pointer to a LevelData<FArrayBox>.

e All data is written on an FArrayBox by FArrayBox basis, including any and all
ghost cells.

void
writeLevel(const LevelData<FArrayBox>* a_data)

Arguments:
No Arguments are modified.

e a_data : data to be written

A file named LDF.hdf5 is created if it doesn't already exist and overwritten if it does
exist.

void
writeLevelname(const LevelData<FArrayBox>* a_data, const char* a_filename)
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Arguments:
No Arguments are modified.

e a_data : data to be written
e a_filename : name of file into which data is written

a_filename is created if it doesn't already exist, and overwritten if it does exist.

6.3.3 Functions writeDBL and writeDBLname

The functions writeDBL and writeDBLname write the data from a single DisjointBoxLayout
into a file which uses the plotfile format of WriteAMRHierarchyHDF5, and which can then

be viewed with Vislt (called separately). It does this by creating a LevelData<FArrayBox>
using the input DisjointBoxLayout with the data initialized to the processor ID of each
grid, and then calling the associated writeLevel functions. The writeDBL function writes

the input DisjointBoxLayout into a file named DBL.hdf5, while the writeDBLname al-
lows the user to specify the name of the output file.

Notes:

e Data is passed using a pointer to a DisjointBoxLayout.

void
writeDBL(const DisjointBoxLayout* a_data)

Arguments:
No Arguments are modified.

e a_data : data to be written

A file named DBL.hdf5 is created if it doesn't already exist and overwritten if it does
exist.

void
writeDBLname (const DisjointBoxLayout* a_data, const char* a_filename)

Arguments:
No Arguments are modified.

e a_data : data to be written
e a_filename : name of file into which data is written

a_filename is created if it doesn't already exist, and overwritten if it does exist.
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Chapter 7
Using PETSc in Chombo

PETSc (Portable, Extensible Toolkit for Scientific Computation) is a library of tools for
computing with structured and unstructured grids. Its primary functionality is a time
stepping class (TS), which has a nonlinear solver (SNES), which has a linear solver
(KSP). Chombo provides support for constructing PETSc composite grid matrices (class
PetscCompGrid) from Chombo's block structured hierarchy of grids. Applications can
then use these sparse (unstructured “AlJ") matrices in PETSc's (time,nonlinear,linear)
solvers.

This approach to solvers in Chombo is motivated by applications that have operators
that are not solved well with Chombo's geometric multigrid solver (§4.4.3). The first
application to use this functionality is the BISICLES ice sheet modeling code.

7.1 Building Chombo with PETSc

Follow the instructions on the PETSc web page and document to build PETSc if there is
not a PETSc build on your machine. This involves setting the make variables PETSC_DIR
and PETSC_ARCH in you environment or as an argument to make. Build your Chombo
application with USE_PETSC=TRUE.

7.2 PETSc Composite Grid Classes

Chombo provides a base class PetscCompGrid that provides a framework for constructing
PETSc matrices from a Chombo AMR hierarchy of grids. Specific operators are derived
from this base class (e.g., PetscCompGridPois). An example of the usage to solve a
Laplacian is in 1ib/test/AMRElliptic/testPetscCompGrid. cpp.
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7.3 PETSc Solver Usage

There are three components to building a PETSc solver in Chombo: 1) making a matrix
(§7.3.1), 2) make a solver (§7.3.2), and 3) make the operator (§7.3.3).

7.3.1 Making a PETSc Matrix

Chombo currently has a constant coefficient Laplacian class (PetscCompGridPois) and
a variable coefficient viscous tensor operator class PetscCompGridVTO. Figure 7.1 shows
an example making a matrix for the constant coefficient Laplacian.

#include "PetscCompGridPois.H"

PetscCompGridPois petscop(0.,-1.,2); /* alpha, beta, and order */
RefCountedPtr<ConstDiriBC> bcfunc = RefCountedPtr<ConstDiriBC>(new
ConstDiriBC(1,petscop.getGhostVect()));

BCHolder bc(bcfunc);

petscop.setCornerStencil (true);
petscop.define(cdomain,grids,refratios,bc,cdx*RealVect: :Unit);
petscop.setVerbose(1);

Mat A; /* linear system matrix */

A = petscop.getMatrix();

Figure 7.1: Example of creating a matrix from testPetscCompGrid.cpp

This example has a simple operator “define” process: « and [, in the matrix for the
operator au+V-5Vu, and the order of the discretization are arguments to the constructor.
The type of stencil is set with an operator specific method. The actual define method
is a base class method and provides the grid hierarchy, domain, and boundary condition
class. See 1ib/src/AMRE1liptic/PetscCompGrid.H for the current version and Figure
7.2 for reference. The class ConstDiriBC implements homogeneous Dirichlet boundary

virtual void define(

const ProblemDomain &a_cdomain,
Vector<DisjointBoxLayout> &a_grids,
Vector<int> &a_refratios,

BCHolder a_bc,

const RealVect &a_cdx,

int a_ibase=0,

int a_maxLev=-1);

Figure 7.2: PetscCompGrid: :define
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conditions. Other boundary conditions can be implemented by deriving from the base
class CompBC in 1ib/src/AMREl1liptic/PetscCompGrid.H

7.3.2 Making a PETSc Solver

Figure 7.3 shows an example of a PETSc linear solver.

// solve A phi = rhs

Vec x, b; /* approx solution, RHS */

KSP ksp; /* linear solver context */

ierr = MatGetVecs(A,&x,&b); CHKERRQ(ierr);

lerr = petscop.putChomboInPetsc(rhs,b); CHKERRQ(ierr);
ierr = KSPCreate(PETSC_COMM WORLD, &ksp); CHKERRQ(ierr);
ierr KSPSetOperators(ksp, A, A, DIFFERENT NONZERO _PATTERN) ;
CHKERRQ(ierr);

ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);

ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);

ierr = KSPDestroy(&ksp); CHKERRQ(ierr);

ierr = petscop.putPetscInChombo(x,phi); CHKERRQ(ierr);

Figure 7.3: Example of a linear solver from testPetscCompGrid.cpp

The PetscCompGrid class provides helper methods to move vector data between
PETSc and Chombo data structures (putChomboInPetsc and putPetscInChombo). The
rest of this solver code is standard PETSc and one can refer to the PETSc documentation
for more information.

7.3.3 Making an operator

The PetscCompGrid class has one pure virtual method: PetscErrorCode createOpStencil(IntVect,
int, Datalterator, StencilTensor &) = 0;. Figure 7.4 shows an example of a

simple 5 and 7 point stencil for the constant coefficient Laplacian. Note, the first two

arguments are the components of a multilevel cell index, which can be used to construct

the multilevel cell index object IndexML. The third argument is a data iterator that could

be use to, for instance, index into a coefficient data structure; this example does not use

this argument. Chombo provides some build-in operators and users are encouraged to

implement their own as needed.
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PetscErrorCode PetscCompGridPois: :createOpStencil(
IntVect a_iv,
int a_ilev,
Datalterator a_dit,
StencilTensor &a_sten)

Real dx=m_dxs[a_ilev] [0],idx2=1./(dx*dx);
PetscFunctionBeginUser;

StencilTensorValue &v0 = a_sten[IndexML(a_iv,a_ilev)];
v0.define(1);

v0.setValue(0,0,m alpha - m betax2.*SpaceDim*idx2) ;
for (int dir=0; dir<CH_SPACEDIM; ++dir)

{

for (SideIterator sit; sit.ok(); ++sit)

{
int isign = sign(sit());
IntVect jiv(a.iv); jiv.shift(dir,isign);
StencilTensorValue &vl = a_sten[IndexML(jiv,a_ilev)];
vl.define(1);
vl.setValue(0,0,m_betaxidx?2) ;

}
}

PetscFunctionReturn(0) ;

Figure 7.4: Example of an operator from testPetscCompGridPois.cpp
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Chapter 8

Parallel Programming with Chombo

8.1 Initialization and Scoping

Chombo provides no special MPl initialization function. This is done intentionally to make
it easier for Chombo users to interface with other parallel packages (which may provide
their own special initialization routines) in the same code that they use with Chombo.

If one is using Chombo in a parallel code, one must somehow call MPI_Init before
instantiating any Chombo data objects (whether that is in the context of some other
package's initialization routines or not). One must also call MPI_Finalize after all
Chombo data objects have gone out of scope. To make sure these get done in the correct
order, some care in scoping is required. Some Chombo classes, by necessity, call MPI
functions in their destructors. One must be careful to make certain that all Chombo
classes go out of scope before MPI_Finalize gets called. A simple way to do this is
shown here:

int main(int argc, char* argv[])

{

#ifdef MPI

MPI_Init(&argc, &argv);

#endif

//this sets the beginning of the scope of Chombo objects
{

LevelData<FArrayBox> phi, rhs;
...do a bunch of calculations...

//this sets the end of the scope of Chombo objects
}

#ifdef MPI

MPI_Finalize();

#endif

return(0) ;
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}

In this example, MPI_Init and MPI_Finalize get used in the normal sense but the braces
between them force Chombo destructors to be called before MPI_Finalize is called.

8.2 Overview of Chombo Data Parallelism

Our parallel model is box-based SPMD parallel programming. Distributed data always lives
in containers (LayoutData, BoxLayoutData, and LevelData are the containers). All
processors execute the same code. All processors have access to the unions of rectangles
(the BoxLayouts and the DisjointBoxLayouts) and what processors each rectangle's
data lives upon. The data associated with the rectangles is distributed among processors.
We use smart iterators over our data objects which stop at the boxes which live on the
current processor. To be complete, broadcast and gather functions are included for situa-
tions where parallelism cannot be hidden by iterators. As of release 3.2 it is also possible to
use hybrid parallelism with OpenMP. When using Chombo's native iterators, it suffices to
modify looping over the boxes. We use the same iterators, however, the boxes are indexed
explicitly to let OpenMP know that they are parallelizable. The lower level code has been
made thread-safe and examples of hybrid parallelism are available in AMRTimeDependent
and AMRE1liptic/AMRPoissonOp.*. Note that the memory tracking feature of Chombo
is not yet usable with hybrid parallelism.

As in the serial case, the class BoxLayout represents an arbitrary union of rectangles
and LayoutData and BoxLayoutData both represent data built upon such a union.
The class DisjointBoxLayout represents a disjoint union of rectangles and LevelData
represents data built upon a disjoint union. The data in these data holders is distributed
among processors according to the boxes that the data lives upon. A box's worth of data
is considered atomic in this model.

Also, as in the serial case, the data holders have very different communication patterns
even though all the holders distribute their data among processors. LayoutData is a
distributed object that can not be involved in communication (it can be neither the
source nor destination in copyTo or exchange). A BoxLayoutData object may be only
the destination of a copyTo function and exchange is not defined for BoxLayoutData.
A LevelData object, because it is built upon a disjoint layout, may be involved in any of
our forms of data communication. Chombo also contains two templated communication
functions that sometimes cannot be avoided in parallel applications: broadcast and gather.
See section 8.5 for details.

8.3 Box-processor assighment

A BoxLayout is a set of boxes and processor assignments. We construct the layout
with two matching lists: a Vector of boxes and a Vector of integers which represent
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the processor into which data over the box will be distributed. Chombo does provide a
load balancing function (see section 8.4 for details) which can generate these processor
assignments. This function is not integrated into the BoxLayout class for the express
purpose of providing a user the ability to use her own load balancing algorithm to generate
processor assignments.

For now, assume we have a vbox = Vector<Box> which represents the grids from
which we generate a BoxLayout and we have a vint = Vector<int> which represents
the processor mapping we desire (we want data which resides on vbox[i] to reside on
processor vint [i]). A BoxLayout can be constructed either incrementally:

BoxLayout boxlayout; //layout

Vector<Box> vbox; //grids

Vector<int> vint; //processor assignments

for(int ibox = 0; ibox < vint.size(); ibox++)
boxlayout.addBox (vbox[ibox], vint[ibox]);

boxlayout.close();

or all at once:

Vector<Box> vbox; //grids

Vector<int> vint; //processor assignments
BoxLayout boxlayout(vbox, vint);
boxlayout.close();

Note that the close function must be called in either case after all the boxes are added. A
DisjointBoxLayout is constructed in exactly the same way. If the boxes which are added
to a DisjointBoxLayout are not disjoint (i.e. they have some nontrivial intersection) a
runtime error is raised when close() is called.

8.4 LoadBalance

Chombo provides a load balancing function (called LoadBalance) to compute an assign-
ment of boxes to processors for an AMR mesh hierarchy. The assignment is made to
balance the computation workload on each processor (i.e., make it as even as possible).
The meshes in the AMR hierarchy are represented using Vector< Vector< Box > >.
The computational workload is a real number for each box in the hierarchy, represented
as a Vector< Vector <Real> >. This is an input which the user may prescribe to her
own needs. Load determination is far too application-specific to permit any kind of gen-
eral solution. The resulting assignment is an integer for each box in the hierarchy, which
gives the processor number (starting at zero) on which each box will reside. LoadBalance
uses the Kernighan-Lin algorithm for solving knapsack problems. This algorithm has been
used quite successfully for load balancing parallel AMR calculations [11]. The interface
to LoadBalance is given by

int LoadBalance(Vector<int>& procAssignments,
const Vector<Box>& boxes) .
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void setGrids(Vector<DisjointBoxLayout>& vectGrids,
const Vector<int>& vectRefRatio,
const Vector<Vector<Box>& VVBoxNew,
const int& numlevels)

{
for(int ilev = 0; ilev < numlevels; ilev++)
{
const Vector<Box>& levelGrids = VVBoxNew([ilev];
Vector<int> procAssign;
int eekflag = LoadBalance(procAssign, levelGrids);
assert(eekflag == 0);
vectGrids[ilev] .define(levelGrids, procAssign);
vectGrids[ilev] .close();
}
}

Figure 8.1: Code snippet to show how LoadBalance is used to transform a list of boxes
into DisjointBoxLayouts.

Here boxes are the input grids and procAssignments are the processor numbers that go
with each box. The load for a given used by this version of LoadBalance is the number
of points in the box. There is a more elaborate version of LoadBalance in Chombo which
allows the user to input the loads for each box. See the reference manual for details. The
return value of LoadBalance is an error code. If LoadBalance exited without error, O
is returned. If anything other than zero is returned, the output values are undefined. An
example of how to use LoadBalance is shown in 8.1.

8.5 Broadcast and Gather

Chombo also contains two templated communication functions that sometimes cannot be
avoided in parallel applications: broadcast and gather. Consider the following example:
suppose one has a LevelData<FArrayBox> called resid and one wants to calculate the
max norm of the data in this container. A naive way to do this would be:

//naive routine to calculate max norm of resid at varNum component
Real maxNorm(LevelData<FArrayBox>& resid, int varNum)
{

Real maxnorm = O;

Datalterator dit = resid.iterator();

for (dit.reset(); dit.ok(); ++dit)

{
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maxnorm = Max(maxnorm, resid[dit()].norm(0, varNum, 1);

}

return maxnorm;

¥

This code is correct in serial and incorrect in parallel. In parallel, every processor will have

a different value of maxnorm. To make this code correct, we must gather all the values

of maxnorm, calculate the maximum value, and broadcast this value to all processors.
The interface to the templated gather function is as follows:

///gather a_input into a_outVec on a_dest
template <class T>
void gather(Vector<T>& a_outVec, const T& a_input, int a_dest);

This function gathers a_input from every processor into Vector<T> a_outVec on pro-
cessor a_dest. a_outVec is a vector of length nProc () long with the value of a_input
on every processor in its elements.

The interface to the templated broadcast function is as follows:

///broadcast a_inAndOut to every processor from a_src
template <class T>
void broadcast(T& a_inAndOut, int a_src);

This function broadcasts a_inAndOut from processor a_src to all processors for both
broadcast<T> and gather<T>. There are some restrictions on T, which are explained
in section 8.5.1.

Here is how to make the previous example work in parallel:

//correct routine to calculate max norm of resid at varNum variable
Real maxNorm(LevelData<FArrayBox>& resid, int varNum)
{
Real maxnormLocal = 0;
Datalterator dit = resid.iterator();
for (dit.reset(); dit.ok(); ++dit)
{
maxnormLocal = Max(maxnormLocal, resid[dit()].norm(0, varNum, 1);
}
//gather all maxnormlLocals onto processor 0
int srcProc = 0;
Vector<Real> allMaxNorm(numProc());
gather (allMaxNorm, maxnormLocal, srcProc);
Real maxnorm = O;
if (procID() == srcProc)
{
for(int ivec = 0; ivec < numProc(); ivec++)
maxnorm = Max(maxnorm, allMaxNorml[ivec]);
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//broadcast the right answer to all procs
broadcast (maxnorm, srcProc);
return maxnorm;

This example will work in both the serial and parallel cases.

8.5.1 linearln, linearOut, linearSize

By “linearize,” we mean “to convert a data structure into a contiguous block of memory.”
For either gather<T> or broadcast<T> to work, T must have the following template
functions:
e int linearSize<T>(const T& inputT)
Return the linear size of the object inputT in bytes.
e void linearIn<T>(T& outputT,
const void* const inBuf)
Initialize the object outputT from the byte stream in inBuf.
e void linearQut<T>(void* const outBuf,
const T& inputT)
Output the object inputT into the byte stream outBuf. The memory for the buffer

is assumed to be allocated elsewhere.

Chombo provides these functions for Box, IntVectSet, Real, int and a templated
function for any Vector<T> (as long as T has the three functions itself).
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Chapter 9

Chombo Fortran

9.1

Introduction

The Chombo library is built with the ability to call Fortran routines from C++. There are
many reasons to want to do this. For example, one many want to use the more complex
data structures that C++ supports but may not want to forfeit the superior floating-point
performance that Fortran offers. The details of mixed language programming, however,
can be complex and both compiler and platform-dependent. Another complication is that
C+-+ can be written in a dimension-independent form but the syntax of Fortran is intrin-
sically dimension-dependent. Array access, declaration and looping all require knowledge
of the dimensionality of the problem. Chombo Fortran is designed to create abstractions
which avoid these problems. Chombo Fortran allows the C++-Fortran programmer many
advantages.

The complicated data structures (classes) provided by Chombo in C++ can be
passed to and used in Fortran routines.

The name-mangling differences between Fortran and C++ are handled automati-
cally and cleanly.

Type checking of arguments in calls to Fortran from C+4+ is handled automatically
by the C++ compiler. This makes mixed language code far less error-prone.

Dimension-independent Fortran code is made possible. This eliminates the main-
tenance problems associated with having to maintain separate Fortran kernels for
simulation codes which differ only in the number of spatial dimensions.

Very long Fortran argument lists and declarations (due to array specification) are
greatly reduced by the Chombo Fortran macros. This makes Chombo Fortran less
error-prone and easier to read.

The basic usage pattern is this. One uses Chombo Fortran to declare her subroutine
argument lists and local floating point arguments. ChF interprets these macros in the
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context of the input dimensionality and precision and creates a Fortran file. ChF also
creates a prototype file to be included in the C++ calling file which unravels the compiler
and platform-dependence of the Fortran name mangling (so C++ will be able to find the
function).

9.2 ChF Fortran macros

There are three classes of Fortran macros in ChF: array declaration, array access and
dimension-handling. The array declaration macros are used to specify arguments to For-
tran subroutines that will be called from C+4++. The array access macros are used to
reference these arguments in the body of Fortran subroutines. The dimension-handling
macros are used in the body of the Fortran subroutines to create dimension-independent
code.

9.3 dimension-handling macros

The dimension-handling macros are:

e CHF_DDECL and CHF_AUTODECL for declaring variables and creating argument lists
e CHF _DTERM for choosing multiple expressions or statements based on dimension

e CHF DINVTERM for choosing multiple expressions or statements based on dimension
and reversing their order

e CHF _DSELECT for choosing one expression or statement based on dimension
e CHF_AUTOID for setting multiple variables based on dimension
e CHF MULTIDO and CHF_AUTOMULTIDO for handling nested DO loops

e CHF_ENDDO goes with CHF_MULTIDO and CHF_AUTOMULTIDO

CHF DDECL [arg0;argl;arg2] translates to arg0, argl, arg2 (in three dimensions).
This is useful when one needs to declare variables that only exist in a dimension-dependent
context. Say, for example, one has SpaceDim components of velocity called (u,v,w) in
three dimensions. Since in two dimensions, the third component is not used in the code,
one could declare these variables as

integer CHF_DDECL[ u; v; w ]

to avoid “unused variable” compiler warnings. This macro will respect carriage returns
and other white space.

This is also used in creating argument lists for calling other routines. Using the previous
example, to call a routine named F0OO that expects SpaceDim arguments, one would write
the call as

147



call FOO( CHF_DDECL[ u; v; w 1 )

The CHF_AUTODECL macro performs a similar function by expanding a root: CHF _AUTODECL [arg]
will expand to arg0, argl, arg?2 (in three dimensions). This can result in more compact
code, especially for code intended to support higher dimensionality.

Similarly, CHF_DTERM [arg0;argl;arg2] translates to argOarglarg? in three dimen-
sions and argOargl in two dimensions. This is useful if one has code that is dimension-
dependent. For example:

integer CHF_DDECL[ii;jj;kk]

CHF_DTERM[

ii = CHF_ID(0,idir);
jj = CHF_ID(1,idir);
kk = CHF_ID(2,idir)]

This macro will respect carriage returns and other white space.

The CHF_DINVTERM[argO;argl;arg2] macro is a variation on CHF_DTERM which
reverses the chosen arguments. It translates to arg2arglarg0 in three dimensions and
arglargO in two dimensions. This is useful if one has indexing loops in code that is
dimension-dependent. For example:

integer CHF_DDECL[ii;jj;kk]

CHF_DINVTERM[

do ii = 0,10;
do jj = 0,10;
do kk = 0,10]

Like CHF _DTERM, this macro respects carriage returns and other white space.

The CHF _DSELECT macro is a variation on CHF_DTERM. Instead of choosing the argu-
ments from 1 to SpaceDim, it chooses only the SpaceDim'th argument. This is useful for
expressions that are different for each dimension. For example:

rho = CHF_DSELECT[ cos(x) ; sin(x*y) ; cos(x*z)*sin(y*z) ]

Like CHF _DTERM, this macro respects carriage returns and other white space.
The macro CHF_AUTOID[ii;idir] generates

CHF_DTERM[

ii0 = CHF_ID(0,idir);
ii1 = CHF_ID(1,idir);
ii2 = CHF_ID(2,idir)]

and can also be called with an additional optional argument, where CHF_AUTOID[ii;idir;factor]
generates

148



CHF_DTERM[

ii0 = factor*CHF_ID(0,idir);
iil = factor*CHF_ID(1,idir);
ii2 = factor*CHF_ID(2,idir)]

CHF _MULTIDO and CHF_AUTOMULTIDO are used to iterate over a box in a dimension-
independent fashion by setting up nested Fortran DO loops. CHF_ENDDQO is used to terminate
those DO loops correctly. Specifically, CHF_MULTIDO [box;i;j;k] will generate a DO loop
for i nested inside a DO loop for j and, in 3D, this will be nested inside a DO loop for k.
The i loop will go from the first element of the low corner of box to the first element
of the high corner of box. Similarly, the j loop will use the second element and, in 3D,
the k loop will use the third element. CHF_ENDDO will end all the DO loops set up by
CHF _MULTIDO.

CHF MULTIDO can also be used to iterate with a stride. The syntax for this is
CHF MULTIDO [box;ij;j;k;2], where the “2" could be any integer constant except O.
A negative stride will make the loop iterate backward in each dimension (from the high
corner to the low corner). Be warned that using a variable name instead of an integer
constant will not produce the desired result because ChomboFortran will just think you've
coded a 4-dimensional loop so it will ignore the last variable.

Here is an example using these macros:

subroutine LOOP(CHF_FRA1[array],CHF_BOX [box])

integer CHF_DDECL[i;j;k]
integer productsum

productsum = 0O

CHF_MULTIDO [box;1i;j;kl]
productsum = productsum + CHF_DTERM[1;*j;*k]
array (CHF_IX[i;j;k]) = productsum

CHF _ENDDO

return
end

The other sections contain exact definitions of the other macros used in this example.
The CHF_AUTOMULTIDO macro also sets up nested loops, but constructs the indices

of the loops based on a root. Specifically, CHF_AUTOMULTIDO [box;i] is the same as

CHF_MULTIDO[box;i0;i1;i2]. Strides are also supported, so CHF_AUTOMULTIDO [box;1i;

2] is the same as CHF_MULTIDO[box;i0;i1;i2;2] (note that the indices start with 0

instead of 1, which is consistent with the conventions elsewhere in ChomboFortran).
Here is the previous example written using the AUTO macros:

subroutine LOOP(CHF_FRA1[array] ,CHF_BOX [box])
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integer CHF_AUTODECL[i]
integer productsum

productsum = 0

CHF_AUTOMULTIDO [box;1i]
productsum = productsum + CHF_DTERM[i0;*il;*i2]
array (CHF_AUTOIX[i]) = productsum

CHF_ENDDO

return
end

9.4 Declaration macros

The declaration macros are used inside Fortran SUBROUTINE statements (in the argument
list) to specify the types of the arguments to the subroutine.

The ChF system automatically generates type declaration statements for the variables
named in ChF declaration macros so explicit declarations statements for these variables
are unnecessary and will likely cause compilation errors.

The declaration macros can be used to declare variables of the basic data types
(INTEGER and REAL_T) and variables corresponding to Chombo C++ classes (Box,
FArrayBox and IntVect, RealVect, Vector). Variables of the basic types can be
scalars or 1D arrays (CHF*1D macros). Variables of FArrayBox type can have single or
multiple components (CHF*F* macros).

The macros automatically create and declare all the extra arguments related to array
sizes that are needed. The ChF access macros can be used to access these variables.
For example, the macro CHF _LBOUND[ A;1 ] would return the lowest index of the array
A in the second dimension (dimensions are counted starting at 0). As a special case,
CHF _UBOUND[ V ] is the same as CHF_UBQUND[ V;0 ] and is used with Vectors and 1D
arrays of basic data types.

The “_CONST” qualifier in the macro names indicates that the variable named in the
macro is not modified in the Fortran subroutine. This form of the macros should be used
when the C++ variable is declared 'const’. This has no direct effect on the Fortran code
or its execution, but it does affect the C++ code that calls the Fortran subroutine and
the C++ prototype that is automatically-generated by ChF.

The following is the complete list of ChF Fortran declaration macros and their uses.

e CHF_INT[<arg>] Declare a scalar integer argument.
e CHF_CONST_INT[<arg>] Declare a read-only scalar integer argument.

e CHF REAL[<arg>] Declare a scalar floating point argument.
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CHF_CONST_REAL [<arg>] Declare a read-only scalar floating point argument.
CHF_COMPLEX [<arg>] Declare a scalar complex argument.
CHF_CONST_COMPLEX [<arg>] Declare a read-only scalar complex argument.

CHF_REALVECT [<arg>] Declare a real vector of SpaceDim length argument (in-
dices go from 0 to SpaceDim-1).

CHF_CONST_REALVECT [<arg>] Declare a constant real vector of SpaceDim length
argument ().

CHF_INTVECT [<arg>] Declare an integer vector of SpaceDim length argument
(")

CHF_CONST_INTVECT [<arg>] Declare a constant integer vector of SpaceDim

length argument (").

CHF_I1D[<arg>] Declare a C array of integers (indices go from 0 to CHF_UBOUND([<arg>]).
CHF_CONST_I1D[<arg>] Declare a read-only C array ().

CHF_R1D[<arg>] Declare a C array of reals (").

CHF_CONST_R1D[<arg>] Declare a read-only C array of reals (").
CHF_VI[<arg>] Declare a Chombo Vector<int>.

CHF_CONST_VI[<arg>] Declare a read-only Chombo Vector<int>.

CHF VR [<arg>] Declare a Chombo Vector<Real>.

CHF_CONST_VR[<arg>] Declare a read-only Chombo Vector<Real>.
CHF_VC[<arg>] Declare a Chombo Vector<Complex>.
CHF_CONST_VC[<arg>] Declare a read-only Chombo Vector<Complex>.

CHF FIA[<arg>] Declare a multi-component integer C++ BaseFab argument.

CHF_CONST_FIA[<arg>] Declare a read-only multi-component integer BaseFab
argument.

CHF_FRA[<arg>] Declare a multi-component floating point BaseFab argument.

CHF_CONST_FRA [<arg>] Declare a read-only multi-component floating point Base-
Fab argument.

CHF_FIA1l[<arg>] Declare a single-component integer BaseFab argument.
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e CHF_CONST_FIA1[<arg>) Declare a read-only single-component integer BaseFab
argument.
e CHF FRA1[<arg>] Declare a single-component floating point BaseFab argument.

CHF_CONST_FRA1[<arg>] Declare a read-only single-component floating point
BaseFab argument.

CHF BOX[<arg>] Declare a Box argument. Boxs are always read-only.

So a typical subroutine declaration would look like this:

subroutine TYPICAL(

& CHF_FRA[fab],

& CHF _CONST_FRA [constfab],
& CHF_BOX [region],

& CHF _CONST_REAL [dx],

& CHF_INT[intflag])

This routine takes two floating point BaseFabs (one constant), a box, a constant floating
point scalar and an integer. Keep in mind that this is still Fortran. All arguments are still
being sent as pointers so they can be changed in the Fortran code. The CONST modifier
of the declaration just adds a const to the C++ prototype to allow the user to send
const C++ variables without the C++ compiler complaining.

Chombo Fortran preprocessing of arguments can be disabled by adding the comment
! NO_CHF to the end of the line with the subroutine statement. Ina “.ChF" file, this should
only be used where absolutely necessary (an example would be an internal procedure as
shown in section 9.9.4). Ordinary Fortran subroutines should normally be placed in a
separate “.F" file.

9.5 Access macros

e CHF_LBOUND [<arg>;<dim>] Access the lower bound of a BaseFab or Box <arg>
in constant dimension <dim>. Returns an integer variable.

e CHF UBOUND [<arg>;<dim>] Access the upper bound of a BaseFab or Box <arg>
in constant dimension <dim>. Returns an integer variable. Also used to access the
upper bound of a 1D array or Chombo Vector, in which case <dim> need not be
specified.!

e CHF NCOMP[<arg>] Access the number of components in the BaseFab <arg>.
Returns an integer. Note that the components in Fortran code are numbered from
0 to CHF_NCOMP (< arg>)-1 to be consistent with the requirements of C++.

Lthe upper bound of a 1D array is always one less than the dimension specified in the C++ call to
CHF_I1D or CHF_R1D.
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e CHF IX[<indez0>;<indexl>;<index2>] Access an element of an array de-
clared with one of the FxA*x macros.

e CHF_AUTOIX[<indexRoot>] Access an element of an array declared with one of
the F*Ax macros. Expands the indexRoot so that CHF_AUTOIX[i] is the same as
CHF_IX[i0;i1;i2].

e CHF OFFSETIX[<indexRoot>;<offsetRoot>] Access an element of an array
declared with one of the FxA* macros. Similar to CHF_AUTOIX, but with an offset.
For example, CHF_OFFSETIX[i;-ii] expands to be the same as CHF_IX[i0-ii0;
i1-ii1; i2-ii2].

e CHF_ID(<diml1>,<dim2>) Return 1 when the arguments have the same value.
Used with CHF_IX for accessing “nearby” array elements. Notice that CHF_ID uses
parentheses instead of square brackets and a comma instead of a semicolon. Simply
put, CHF_ID isn't really a macro—it is a 6x6 (to support up to 6D) identity matrix
which gets declared in every subroutine. The parentheses are consistent with array
access in Fortran,

Notes:

e The <arg> macro argument must be a variable that was declared with one of the
BaseFab, Box, 1D array or Chombo Vector macros.

e The <dim> macro argument must be an integer constant in the range 0. . . CH_.SPACEDIM-1.

e The <dimI> and <dim2> macro arguments must be integer variables or constants
in the range 0...CH_SPACEDIM-1.

e Only SUBROUTINESs can be called from C++. FUNCTIONSs are not supported.

e The dimensions values are 0-based as in C4+4, not 1-based as is the default for
Fortran.

9.6 C++ macros

The ChF C++ macros are intended to be used in C++ code that calls Fortran subroutines
that have been declared using the ChF Fortran macros. The prototype header file that is
automatically generated by the ChF Fortran macros must be #included in any file where
the ChF C++ macros are used to call a Fortran subroutine. The name of this header
file is of the form “<fortran_file_basename>_F .H", where <fortran_file_basename> is the
name of the Fortran source code file without the extension. Every Fortran subroutine that
is called from C++ must appear in one and only one included prototype header file.
There are two aspects to using the ChF macros to call Fortran subroutines: specifying
the name of the Fortran subroutine and specifying the arguments to the Fortran subroutine.
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Fortran subroutines must be called from C++ by prefixing the name of the subroutine
with FORT_ and always using uppercase. For example, the Fortran subroutine named “F00"
must be called from C++ using the name “FORT_FOOQ". Attempts to access the Fortran
name directly will fail on some systems because of compiler-dependent inter-language
calling conventions.

The C++ prototypes for Fortran subroutines with no arguments will be generated
with the keyword “void” in the argument list.

All arguments to a Fortran subroutine called from C++ must be specified in ChF
declaration macros. The macro names indicate the data type of the argument and allow
the ChF system to generate appropriate dimension-independent code. The macros used
in C++ application code should match the macros that appear in the prototypes provided
in the x_F.H header files, except that macros in application code should use the CHF_
prefix where the macros used in the prototypes use the CHFp_ prefix.?

Most of the declaration macros come in a CONST and non-CONST form. The CONST
form should be used to declare arguments that are not modified by the Fortran subroutine.
The Box macro does not have a CONST form because Boxes are assumed to be constant
always.

The ChF C++4 declaration macros are almost identical in syntax and usage to the
Fortran declaration macros. The differences are:

e the C++4 macros are case-sensitive,

e the single-component BaseFab macros (CHF_*F{I|R}1()) take 2 arguments ( Base-
Fab, component_number ) in C++ and 1 in Fortran,

e the 1D array macros (CHF_*1D) take 2 arguments (array, length) in C4++ and 1 in
Fortran,

e for each Fortran subroutine <proc>, a C++ macro FORT_<proc> is defined.

9.7 Declaration macros

The C++ declaration macros are those that the application programmer uses to pass
variables to Fortran routines from C++.
The following is the complete list of ChF C+4+ declaration macros and their uses.

CHF_INT(<arg>) Pass a scalar int variable.

CHF_CONST_INT(<arg>) Pass a const scalar int variable.

CHF_REAL(<arg>) Pass a scalar Real variable.

CHF_CONST_REAL(<arg>) Pass a const scalar Real variable.

2application code should never use the CHFp_ macros directly.
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CHF_COMPLEX (< arg>) Pass a scalar Complex variable.
CHF_CONST_COMPLEX (<arg>) Pass a const scalar Complex variable.
CHF_REALVECT (< arg>) Pass a RealVect variable.
CHF_CONST_REALVECT (< arg>) Pass a constant RealVect variable.
CHF_INTVECT (< arg>) Pass a IntVect variable.
CHF_CONST_INTVECT (<arg>) Pass a constant IntVect variable.
CHF_I1D(<arg>,<len>) Pass a 1D array of ints of length </en>.

CHF_CONST_I1D(<arg>,<len>) Pass a constant 1D array of ints of length
<len>.

CHF R1D(<arg>,<len>) Pass a 1D array of Reals of length </en>.

CHF _CONST R1D(<arg>,<len>) Pass a constant 1D array of Reals of length
<len>.

CHF_VI(<arg>) Pass a Vector<int>.

CHF_CONST_VI(<arg>) Pass a constant Vector<int>.

CHF_VR(<arg>) Pass a Vector<Real>.

CHF_CONST_VR(<arg>) Pass a constant Vector<Real>.

CHF_VC(<arg>) Pass a Vector<Complex>.

CHF_CONST_VC(<arg>) Pass a constant Vector<Complex>.

CHF FIA(<arg>) Pass a BaseFab<int> .

CHF_CONST_FIA(<arg>) Pass a const BaseFab<int> .

CHF _FRA(<arg>) Pass a BaseFab<Real> .

CHF_CONST_FRA(<arg>) Pass a const BaseFab<Real>.
CHF_FIA1(<arg>,<comp>) Pass a single component of a BaseFab<int>.
CHF_CONST_FIA1l(<arg>,<comp>) Pass asingle const component of a BaseFab<int>.
CHF_FRA1(<arg>,<comp>) Pass a single component of a BaseFab<Real>.

CHF_CONST_FRA1(<arg>,<comp>) Pass a single const component of a BaseFab<Real>.
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e CHF BOX(<arg>) Pass a Box. Boxes are always const.

e FORT <proc>(...) Call the Fortran subroutine <proc> with the arguments spec-
ified.

The macros CHF(_CONST)_FIA, CHF(_CONST) FRA, CHF(_CONST) FIA1, and
CHF (_CONST) _FRA1 all come in a version with the appendix _SHIFT and take an extra
IntVect describing the amount to shift the associated box before passing the argument
to Fortran. This can be used to align box data and/or change the reference frame. No
change is required to the corresponding Fortran declaration macro and using the shift
macro has no effect on the original data. In other words, there is no need to un-shift.
A common use is to shift all boxes to the positive quadrant so that coarsening can be
achieved by simple integer division. In the C++ code:

{
const int refRatio = 2;
Box crBox (-IntVect::Unit, IntVect::Unit);
Box fnBox = refine(crBox, refRatio);
FArrayBox crFRA(crBox, 1);
crFRA.setVal(0.);
FArrayBox fnFRA(fnBox, 1);
fnFRA.setVal(1l.);

const IntVect crShiftToZero crBox.smallEnd () ;

const IntVect fnShiftToZero scale(crShiftToZero, refRatio);

FORT_SUMFINE(CHF_FRA1_SHIFT(crFRA, 0, crShiftToZero),
CHF_BOX_SHIFT(fnBox, fnShiftToZero),
CHF _CONST_FRA1_SHIFT(fnFRA, 0, fnShiftToZero),
CHF_CONST_INT(refRatio));

In the Fortran code:

subroutine SUMFINE(
& CHF _FRA1[crFRA],
& CHF_BOX[fnBox],
& CHF_CONST_FRA1[fnFRA],
& CHF _CONST_INT [refRatio])

integer CHF_AUTODECL [iFn]
integer CHF_AUTODECL[iCr]

CHF __AUTOMULTIDO [fnBox;iFn]

c Coarsen iFn
CHF_DTERM[
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iCr0 = iFnO/refRatio;

iCrl = iFnl1/refRatio;

iCr2 = iFn2/refRatio;

iCr3 = iFn3/refRatio;

iCr4 = iFn4/refRatio;

iCr5 = iFn5/refRatio;]

crFRA(CHF_AUTOIX[iCr]) = crFRA(CHF_AUTOIX[iCr]) +

& fnFRA (CHF _AUTOIX[iFn])
CHF_ENDDO

return
end

9.8 Language support

Chombo Fortran supports the Fortran standard language with a few exceptions. The
exceptions include standard Fortran features that are not supported and an extension to
the standard that is required.

Chombo Fortran does not support the following features of the Fortran standard:

e REAL, DOUBLE PRECISION, COMPLEX datatypes. The only floating point datatype
that is supported is REAL_T. REAL_T is a Chombo Fortran extension to the Fortran
standard.

e Appending "*<length>" to a datatype is not supported. This is not standard
Fortran, but is a common extension.

e Non-void functions are not supported by Chombo Fortran. Only subroutine state-
ments are supported and those are only allowed with Chombo Fortran macros as
arguments.

The code generated by the Chombo Fortran preprocessor conforms to the Fortran standard
(ISO/IEC 1539:1991, ANSI X3.198-1992) with the following exceptions:

e The code produced by ChF may violate the Fortran standard maximum number of
continuation lines in a statement (19). If this occurs, it will be necessary to provide
a compiler option to increase the limit or change the original Fortran code so that
it produces fewer continuation lines, usually by breaking a single statement into
several separate statements.

e Chombo Fortran does not support input and output to the standard units (i.e.,
5,6,"*") on all combinations of C++ and Fortran compilers. Input and output to
files should work correctly in all systems. This problem is a fundamental one of
mixed-language programming and cannot be solved in any kind of a general way.
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A special subroutine is provided which allows the Fortran code to print a special
message and terminate execution of the program. This subroutine interfaces with
the MayDay class in the Chombo C++ library. The subroutine has two versions,
named MAYDAY_ERROR and MAYDAY_ABORT.

e The code generated for any ChomboFortran subroutine will contain an IMPLICIT
NONE statement so this statement should not be used in the source code. As a
result, all variables used in the subroutine must be explicitly declared else the code
will not compile successfully.

9.9 Examples

9.9.1 Dot Product Example

This routine multiplies each point of one BaseFab with the corresponding point the other
BaseFab over the input Box and puts the result in the input Real.

subroutine DOTPRODUCT(
CHF _REAL [dotprodout],
CHF _CONST_FRA[afab],
CHF_CONST_FRA [bfab] ,
CHF_BOX [region])

L5 S  S

integer CHF_DDECLI[i;j;k]
integer nv,ncomp

ncomp = CHF_NCOMP [afab]

if (ncomp .ne. CHF_NCOMP[bfab]) then
call MAYDAY_ERROR(Q)

endif

dotprodout = zero
do nv = 0, ncomp-1
CHF_MULTIDO[region; i; j; kil

dotprodout = dotprodout +
& afab(CHF_IX[i;j;k],nv)*
& bfab(CHF_IX[i;j;k],nv)

CHF_ENDDO
enddo

return
end
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9.9.2 RealVect and IntVect Example

subroutine realVectTest (CHF_REALVECT [foo])

CHF_DTERM[
foo(0) = 1.0;
foo(1) = 2.0;
foo(2) = 3.0]
return

end

subroutine intVectTest (CHF_INTVECT [foo])

CHF_DTERM [
foo(0) = 1;
foo(1l) = 2;
foo(2) = 3]
return

end

9.9.3 Laplacian Example

This subroutine produces a standard (3 point in one dimension, 5 point in two dimensions,
and 7 point in three dimensions) discrete Laplacian of the input BaseFab over the input
box.

subroutine OPERATORLAP(
CHF_FRA[lofphil,
CHF_CONST_FRA [phil,
CHF_BOX [region],
CHF _CONST_REAL [dx])

L5 S S

REAL_T dxinv,lphi
integer n,ncomp,idir

integer CHF_DDECL[ii,i;jj,j;kk,k]

ncomp = CHF_NCOMP [phil]

if (ncomp .ne. CHF_NCOMP[lofphi]) then
call MAYDAY_ERROR()

endif

dxinv = one/(dx*dx)
do n = 0, ncomp-1
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CHF_MULTIDO[region; i; j; kIl

lphi = zero

do idir = 0, CH_SPACEDIM-1

CHF_DTERM [
ii = CHF_ID(idir, 0);
jj = CHF_ID(idir, 1);
kk = CHF_ID(idir, 2)]

1phi = lphi +
& ( (phi(CHF_IX[i+ii;j+jj;k+kk],n)
& - phi(CHF_IX[i 3] ik 1,n))
& - (phi(CHF_IX[i 3] sk 1,n)
& - phi(CHF_IX[i-ii;j-jj;k-kk],n))
& ) *(dxinv)
enddo
lofphi(CHF_IX[i;j;k],n) = 1phi
CHF _ENDDO
enddo
return
end
This can also be expressed in a simpler way making full use of the AUTO and OFFSET

macros

5SS =

subroutine OPERATORLAP(
CHF_FRA[lofphil,
CHF _CONST_FRA [phi],
CHF_BOX [region],
CHF_CONST_REAL [dx])

REAL_T dxinv,lphi

integer n,ncomp,idir

integer CHF_AUTODECL[i], CHF_AUTODECL[ii]

ncomp = CHF_NCOMP [phi]

if (ncomp .ne. CHF_NCOMP[lofphi]) then
call MAYDAY_ERROR(Q)

endif

dxinv = one/(dx*dx)
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do n = 0, ncomp-1
CHF_AUTOMULTIDO [region; i]

1phi = zero
do idir = 0, CH_SPACEDIM-1
CHF_AUTOID[ii;idir]

lphi = 1lphi +

& ( (phi(CHF_OFFSETIX[i;+ii],n)
& - phi(CHF_AUTOIX[i],n))
& - (phi(CHF_AUTOIX[i],n)
& - phi(CHF_OFFSETIX[i;-ii]l,n))
& )* (dxinv)

enddo

lofphi (CHF_AUTOIX[i],n) = 1lphi

CHF _ENDDO
enddo
return
end

9.9.4 Internal Procedure Example

This example demonstrates use of an internal procedure in a “*.ChF" file.

Fortran arguments could have also been declared for the internal procedure.

subroutine testNoChFCall(
& CHF_BOX[box])

integer CHF_AUTODECL[i]
integer c

c=0

call countCells
write(*,*) c
call countCells
write(*,*) c
return

contains

subroutine countCells ! NO_CHF
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CHF_AUTOMULTIDO [box;i]
c = c+l
CHF_ENDDO
end subroutine

end

0.10 Landmines

This section is intended to point out some known uses of Chombo Fortran that will result
in errors.

e Be aware that using C+-+ and Fortran together defeats most bounds checkers. If
you step out of bounds in a Fortran, as a rule, your bounds checker will not save
you. This holds for both Fortran and Chombo Fortran.

e Combining Fortran and Chombo Fortran in the same file is a bad idea, with the
exception of internal procedures as shown in the example of section 9.9.4. The
Chombo Fortran parser keys on the word “subroutine,” and dissects the argument
list as described above. If ordinary Fortran subroutines are put into a Chombo
Fortran file, the parser will fail to produce correct code. To use both Fortran
and Chombo Fortran in the same application, put them into separate files. The
Chombo makefile system recognizes files with “.F" extensions as Fortran and files
with “.ChF" extensions as Chombo Fortran files.

e Send constants to Chombo Fortran (or plain Fortran, for that matter) using tem-
porary variables. The C+4 macros in Chombo Fortran are precisely that—-macros.
If you insert an explicit constant in a Chombo Fortran call, the macro will simply
try to take the address of the explicit constant, resulting in undefined behavior. Say
you want to send the number four to a Chombo Fortran routine. Here are both the
incorrect and correct ways to do so.

//error! gets tranlated to senseless:
//myfunc_(&4) ;
FORT_MYFUNC (CHF _CONST_INT(4));

//correct. address sent to Fortran is legal. This gets translated to
//myfunc_(&ivar) ;

int ivar = 4;

FORT_MYFUNC (CHF _CONST_INT (ivar));

The exception to this is the 2nd argument to the CHF _*1D macros, which can be a
literal constant.
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e The arguments of a ChF Fortran macro must be enclosed in square brackets and
separated by semicolons. Commas between the brackets will pass through to
Fortran, as in the example in section 9.9.3 where CHF _DDECL[ii,i;jj,j;kk,k]
translates to ii,i,jj,j,kk,k or ii,i,jj,j. The one apparent exception is
CHF_ID(<d%im1>,<dim2>), but as noted above, CHF_ID is a matrix, not a macro.

e Chombo Vectors and 1D arrays always start at index 0. You cannot call
CHF _LBOUND on a Vector or 1D array. The value returned from CHF _UBOUND on a
1D array will always be one less than the length value passed as the 2nd argument
in the C++ call to CHF_*1D.
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Chapter 10

Multidimensional Chombo

This section describes the Chombo support for solving multidimensional systems of equa-
tions. “Multidimensional” in this sense means a system in which part of the solution
approach is in an N—dimensional space, while another part is in an M —dimensional
space, where N # M.

10.1 Namespace implementation

To implement multidimensional Chombo, we make use of namespaces to encapsulate
each dimensionality. If Chombo is compiled with multidimensional support, then a version
of the Chombo libraries is complied for each dimension and placed in a corresponding
namespace. This allows the different dimensionalities to co-exist in a single build while
avoiding naming collisions. Note that in order for Chombo's multidimensional build system
to work correctly with your application code, you must include the namespace headers
and footers in your source and header files (see Section 1.2.8). The lone exception is for
code in which inter-dimensional transfers take place, which must explicitly reference each
dimensionality by name.

10.2 Transdimensional utilities

To move between the different dimensionalities, we will need slicing and injection capa-
bility. This functionality is found in /Chombo/1ib/src/MultiDim

10.2.1 struct SliceSpec

A SliceSpec specifies a slice in space, using a direction d and a position p. The
SliceSpec class is actually a dimensional object, and is a part of the BoxTools li-
brary. A DIM-dimensional SliceSpec defines a (DIM-1)-dimensional slice through DIM-
Dimensional space, with the d-th coordinate index set to p. When referring to an IntVect,
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the d index defines which element will be removed. For a Box and related objects, d refers
to the dimension which will be removed during a slicing operation.

10.2.2 Slicing

To move to a lower-dimensional space, we use the slicing functionality found in
Slicing.H.transdim, which supports moving from the D space to the D — 1 space.
The Slicing code is heavily templated to work in a multidimensional setting. If DLo is
the lower-dimension namespace and DHi is the higher dimension namespace (for example,
DLo = D2 and DHi = D3), then the following functions are available.

e void sliceIntVect(DLo::IntVect& a_to,
const DHi::IntVectT& a_from,
const DHi::SliceSpec& a_spec )

Makes a_to the indicated (by a_spec) slice of a_from; a_from must be of dimen-
sion one larger then a_to.

e void sliceBox(DLo: :Box& a_to,
const DHi::Box& a_from,
const DHi::SliceSpec& a_slicespec,
bool* a_outofbounds=0 )

Defines a_to as a_from with its a_slicespec.direction-th coordinate missing;
a_to is one dimension lower, e.g. if a_from is a D3: :Box, then a_to is a D2: : Box.
If a_outofbounds isn't NULL, we set it to true if a_slicespec.position is
outside of a_from, along the a_slicespec.direction-th axis.

e DLo: :ProblemDomain
sliceDomain(const DH1l::ProblemDomain& DHi::a_from,
const DHi::SliceSpec& a_slicespec,
bool* a_outofbounds=0 );

Functions similarly to the sliceBox function, but also maintains periodicity infor-
mation appropriately.

e template<T>
void sliceBaseFab(DLo: :BaseFab<T>& a_to,
const DHi: :BaseFab<T>& a_from,
const DHi::SliceSpec& a_slicespec )

Sets a_to to be a slice of a_from, along the a_slicespec.direction-th axis at
the a_slicespec.position-th position. Data from the slice of a_from is copied
to the destination BaseFab> a_to. As usual, a_to is one dimension lower than
a_from; if a_from is a D3: :BaseFab, a_to is a D2: :BaseFab. It is an error if
a_slicespec.position is outside of a_from.
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e void
sliceDisjointBoxLayout(DLo: :DisjointBoxLayout& a_to,
const DHi::DisjointBoxLayout& a_from,
const DHi::SliceSpec& a_slicespec )

e template<class T>
void
slicelLevelData(DLo: :LevelData<T>& a_to,
const DHi::LevelData<T>& a_from,
const DHi::SliceSpec& a_slicespec )

e void
sliceLevelFlux( DLo: :LevelData<FluxBox>& a_to,
const DHi: :LevelData<FluxBox>& a_from,
const DHi::SliceSpec& a_slicespec )

Template specialization for LevelData<FluxBox> Makes a_from a slice of a_to
at a_slicespec.position along the a_slicespec.direction-th axis. If a_to
is defined, we use its DisjointBoxLayout, otherwise we create an appropriate new
DisjointBoxLayout for it.

10.2.3 Injection

To move from the D space to the D + 1 space, we use the injection functionality
in Injection.H.transdim. In general, the inject functions simply define a higher-
dimensional version of the lower-dimensional input, with the “new” dimension defined
by the SliceSpec::direction argument d. For the case of an IntVect, the value of
the newly added dimension is set to SliceSpec: :position p. For a Box and containers
defined on a Box or DisjointBoxLayout, the higher-dimensional destination is defined
to be one-cell wide in the new direction, and is located at 74 = p.

e void injectIntVect(DHi::IntVectT& a_to,
const DLo::IntVect& a_from,
const DHi::SliceSpec& a_spec )

Makes a_to like a_from, only one dimension higher. The "new" transverse dimen-
sion is a_spec.direction, and the value at that dimension is a_spec.position.

e void injectBox(DHi::BoxT& a_to,
const DLo::Box& a_from,
const DHi::SliceSpec& a_slicespec )

Sets a_to to be a_from with an extra dimension — a_slicespec.direction — in
which it's just one cell thick and has coordinate value a_slicespec.position.
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e template<typename T>
void injectBaseFab(DHi: :BaseFab<T>& a_to,
const DLo::BaseFab<T>& a_from,
const DHi::SliceSpeck a_slicespec )

Sets a_to to be a_from with an extra dimension — a_slicespec.direction —
in which it's just one cell thick and has coordinate value a_slicespec.position.

e void injectDisjointBoxLayout(DHi::DisjointBoxLayout& a_to,
const DLo::DisjointBoxLayout& a_from,
const DHi::SliceSpec& a_slicespec)

Sets a_to to be a_from with an extra dimension — a_slicespec.direction —
in which it's just one cell thick and has coordinate value a_slicespec.position.
Data values are copied from a_from to fill a_to.

e template <class T>
void injectLevelData(DHi::LevelData<T>& a_to,
const DLo::LevelData<T>& a_from,
const DHi::SliceSpec& a_slicespec )

Sets a_to to be a_from with an extra dimension — a_slicespec.direction — in
which it's just one cell thick and has coordinate value a_slicespec.position.
If a_to is defined, we use its DisjointBoxLayout, otherwise we give it a
DisjointBoxLayout with the same assignment-to-processors as a_from has. Data
values are copied from a_from to fill a_to.

e void injectLevelFlux(DHi: :LevelData<FluxBox>& a_to,
const DLo::LevelData<FluxBox>& a_from,
const DHi::SliceSpec& a_slicespec )

Version of injection for LevelData<FluxBox>. Sets a_to to be a_from with an
extra dimension — a_slicespec.direction — in which it's just one cell thick
and has coordinate value a_slicespec.position. If a_to is defined, we use its
DisjointBoxLayout, otherwise we give it a DisjointBoxLayout with the same
assignment-to-processors as a_from has. Data values are copied from a_from to
fill a_to.

10.2.4 The ReductionCopier class

The ReductionCopier is a specialized Copier designed to support a reduction from a
higher-dimensional DisjointBoxLayout to a smaller-dimensional one by copying all of
the data in the transverse direction to the destination boxLayout. It is assumed that this
will be used with a different sort of LDOperator (such as the SumOp described below),
since a simple copy operation wouldn't make much sense.

167



Essentially, the ReductionCopier computes and stores the intersection list required
to do a copyTo operation which copies all of the data in src into dest, assuming that an
intersection can be found by shifting the location of a data point in src in the transverse
direction.

Note that this class operates entirely in a single dimensional namespace. The usage
pattern is to perform the reduction operation in the higher-dimensional space, then use a
slicing operation to move to a lower-dimensional space. A simple usage example is shown
in figure 10.1, with a corresponding code example in figure 10.2.

e ReductionCopier(const DisjointBoxLayout& a_level,
const BoxLayout& a_dest,
const IntVect& a_destGhost,
int a_transverseDir,
bool a_exchange = false);

void define(const DisjointBoxLayout& a_level,
const BoxLayout& a_dest,
const IntVect& a_destGhost,
int a_transverseDir,
bool a_exchange = false);

Full constructor and define functions (constructor simply calls define)

— a_level — source DisjointBoxLayout

a_dest — destination boxes

a_destGhost — number of ghost cells to be filled around the destination grids

— a_transverseDir — the direction of the reduction operation

a_exchange — if true, this copier is being defined for an exchange, rather than
a copy To operation.

10.2.5 The SpreadingCopier class

The SpreadingCopier is a specialized Copier designed to support a reduction from a
lower-dimensional DisjointBoxLayout to a higher-dimensional one by copying all of the
data in the transverse direction to the destination boxLayout. It is assumed that this will
be used with an appropriate LDOperator such as the Spreading0Op described below.

Essentially, the SpreadingCopier computes and stores the intersection list required
to do a copyTo operation which copies the data in src into dest, assuming that an
intersection can be found by shifting the location of a data point in src in the transverse
direction.

Like the ReductionCopier (only in reverse) this class operates entirely in a single
dimensional namespace. The usage pattern is to use an injection operation to move the
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data from the lower-dimensional space to the higher-dimensional space, then perform the
spreading operation in the higher-dimensional space.

e SpreadingCopier(const DisjointBoxLayout& a_level,

const BoxLayout& a_dest,
const IntVect& a_destGhost,
int a_transverseDir,

bool a_exchange = false);

void define(const DisjointBoxLayout& a_level,

const BoxLayout& a_dest,
const IntVect& a_destGhost,
int a_transverseDir,

bool a_exchange = false);

Full constructor and define functions (constructor simply calls define)

10.2.6

a_level — source DisjointBoxLayout

a_dest — destination boxes

a_destGhost — number of ghost cells to be filled around the destination grids
a_transverseDir — the direction of the reduction operation

a_exchange — if true, this copier is being defined for an exchange, rather than
a copy To operation.

The SumOp class

The SumQOp class is an instance of LDOperator<FarrayBox> which performs a summing
operation of the data in src in the summingDir direction, multiplies by the scale, and
places the sum in the corresponding location in dest. Note that scale is a public
member function, and so may be set without an access function.

e SumOp(int a_summingDir);

Constructor — sets scale to one.

a_summingDir — direction in which to sum

e void op(FarrayBox& dest,

const Box& RegionFrom,

const Interval& Cdest,
const Box& RegionTo,

const FArrayBox& src,

const Interval& Csrc) const;

Computes componentwise sum of src over the RegionFrom in the summingDir
direction, multiplies by scale and places the result in dest in the RegionTo.
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— dest — destination FAB

— RegionFrom — Region in src over which to compute sum

— Cdest — Interval in dest into which sum will be computed.

— RegionTo — Region in dest into which the sum will be placed.

— src — source FAB

— Csrc — interval in src over which sum will be computed (must be the same

size as Cdest).

e virtual void linearIn(FArrayBox& arg,
voidx*x buf,
const Box& R,
const Interval& comps) const;

Linearization function.

10.2.7 The SpreadingOp class

The SpreadingOp class spreads the data in src along the summingDir direction, multi-
plying by scale, and placing the resulting values in the corresponding locations in dest.
Essentially the inverse of the SumOp class. Like the SumOp, scale is a public data member.

e SpreadingOp(int a_spreadingDir);

Defining constructor. Sets default value for scale to 1.0.
— a_spreadingDir — direction in which to spread data.

e void op(FArrayBox& dest,
const Box& RegionFrom,
const Interval& Cdest,
const Box& RegionTo,
const FArrayBox& src,
const Interval& Csrc) const;

Perform spreading operation — for each IntVect in RegionFrom, scale value
in src by scale and then place scaled value into dest for each IntVect in
RegionTo which corresponds to a translation from the source location along the
spreadingDir direction. This is a componentwise operation, so the scaled values
of the first component of Csrc will be placed in the first component of Cdest, etc.
— dest
— RegionFrom

— Cdest — Interval in dest over which operation is performed.
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srcData

Reduction

Slice

YV

destData
reducedData

Figure 10.1: schematic of reduction operations carried out by the code in Figure 10.2

— RegionTo
— src
— Csrc — Interval in src over which operation is performed. Must have the same

size as Cdest.

e virtual void linearIn(FArrayBox& arg,
void* buf, const Box& R,
const Interval& comps) const;

Linearization function.
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// function to reduce a 2D LevelData<FArrayBox> to 1D by
// summing over the y-direction
void reduce2DTolD(D1::LevelData<D1::FArrayBox> >& destData,

{

D2::LevelData<D2: :FarrayBox> >& srcData)

// create 2D version of 1D boxes
D2::LevelData<D2: :FarrayBox> sliceGrids;
D2::SliceSpec slice(1,0);

injectDisjointBoxLayout (sliceGrids, srcData.getBoxes(), slice);

// define sliced data holder
D2::LevelData<D2: :FArrayBox> reducedData(sliceGrids, srcData.nComp) ;

// define ReductionCopier to compute intersections (sum in the y-direction)
int transverseDir = 1;
ReductionCopier reduceCopier(srcData.getBoxes(), sliceGrids, 1);

SumOp op(transverseDir);
op.scale = 1.0;

// do summing operation -- sums data in srcData along lines in the
// y-direction and places sum in reducedData
srcData.copyTo(srcData.interval (),

reducedData, reducedData.interval(),

reduceCopier, op);

// finally, take the data in reducedData (which is a 2D object)
// and slice to 1D
slicelevelData(destData, reducedData, slice);

Figure 10.2: Code fragment illustrating use of ReductionCopier
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10.3 Phase field example

As a simple example of a multidimensional application, we solve the phase space example
from [28]:

of Ovf daf

EjL%JF_@v 0 (10.1)
a = éhﬁ
T or
0%¢ ;
82(3325 —47TG/fxvt (10.2)

where G is the gravitational constant (7 for the example in [28]). This example may be
found in releasedExamples/MultiDimPhase in the Chombo distribution.

10.3.1 Algorithm

At time t we have fit = f(x;,v;,t").

1. Compute phase velocity a

(a) Compute rhs for Poisson solve: p; = ZKNJ LAY
(b) do 1D Poisson solve for ¢(z,t): Solve LIP¢ = p;
(c) Compute a in 1D: a; = G}7“¢

(d) Spread a to 2D mesh: a;; = a;.

2. Advect f

a) predict fn+% using AMRGodunovUnsplit predictor
face
(b) update f:

N n At At n+2 n+%
i = 5= A Wil — vl 73> N @iy — ki)

10.4 Building the multidim example

Building a multidim Chombo application like the MultiDimPhase example is somewhat
different from the standard Chombo build process, since it relies on a build shell script to or-
chestrate the build. This script has been incorporated into the build system rules, so build-
ing is fairly straightforward, but does require two separate GNUmakefiles, as may be found
in releasedExamples/MultiDimPhase/exec. The primary makefile (GNUmakefile in
the MultiDimPhase example) merely specifies the location of CHOMBO_HOME, the min and
max dimensions used by the given compilation, and the name of the second makefile.
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The second makefile (GNUmakefile.multidim in the MultiDimPhase example, speci-
fies which directories should be compiled in which dimensionalities (including the “multi-
Dim"” dimensionality which is where any inter-dimensional transfers happen and which is
compiled without a particular SpaceDim) are defined in the 1dsrc_dirs, 2dsrc.dirs,
3dsrc._dirs, 4dsrc.dirs, bdsrc.dirs, 6dsrc_dirs and mdsrc_dirs (for the multi-
dimensional source files) variables in the local GNUmakefile.multidim in the exec directory.
At this point, the only real difference when invoking the makefile is that no dimensionality
should be specified (you can, but it won't do anything):

obtain Chombo

edit Chombo/lib/mk/Make.defs.local as usual

cd Chombo/releasedExamples/MultiDimPhase/exec
gmake all

(go get a cup of coffee, and maybe some lunch...)
./phase<config>.ex inputs

Note that the executable doesn’t have a “<DIM>d" in its name — just look for a phasex.ex
executable.

10.5 Some Pointers That Could Save You Some Heartache

Here a few non-obvious things that you can check to make compiling a multi-dimensional
example somewhat less painful.

e Have your code organized by directories that you can easily categorized as dimen-
sional or non-dimensional.

e In all your files that are NOT your main driver, be sure have (after all the includes
and before all the code) #include “NamespaceHeader.H" and (after all the code)
#include “NamespaceFooter.H” (and remember that Sis never capitalized in these
declarations).

e In your file that includes main, do not use the namespace headers and footers.
Instead use #include” UsingNamespace.H".

e Do not try to link with Chombo Fortran functions directly from the library. It
messes with the dependencies and gives helpful errors such as "cannotfind a rule
to generate...". Either write a c-code wrapper (in the library) or copy the relevant
subroutines to your application and change the names.

e Once the libraries are compiled (and you have stopped changing them) use "make
noLibs" to save yourself a lot of time in compiling.
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e You might be tempted to do something sensible like make a class with mixed-
dimension member data. Don't do that. You will never get it to compile. Make
sure your interfaces are single dimension.
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Chapter 11

Particles in Chombo

The previous sections of this manual focus on tools for solving PDEs using Eulerian dis-
cretizations of space, in which the underlying grids on which the solution is represented
are stationary. Many problems, however, are better suited to Lagrangian - or Particle -
methods, in which the mesh points themselves move with time. Each of these points
carries with it a position coordinate, as well as any number of other properties, which may
or may not also change as the simulation advances. The simplest example of a problem
amenable to solution by particle methods is the gravitational N-body problem, in which
a collection of N self-gravitating particles evolves under Newton's laws of classical me-
chanics. Other applications of particle methods include vortex methods for incompressible
fluid flow, molecular dynamics, Lagrangian flow tracers, and Particle-in-Cell methods for
solving the Vlasov-Poisson equation for plasma physics or cosmology.

Chombo provides a number of tools for implementing these methods. These tools have
been designed so that, as far as practical, Chombo code for doing particle simulations looks
like Chombo code for doing Eulerian simulations. At the data container level or higher,
all the particle classes have a straightforward analog to a class in traditional, rectangular
array-based Chombo. Included are classes that represent single particles, container classes
analogous to FArrayBox for storing and spatially sorting particle data, and distributed data
containers analogous to BoxLayoutData to facilitate SPMD-based parallel programming.
As with BoxLayoutData, these containers have been designed so that all the necessary
data communication happens internally, so that the user rarely has to invoke MPI calls
directly. In in this section, we describe these tools and explain how to use them in your
own simulations. Only the basic components of each class's API are described here, for
the full interface, please consult the Doxygen documentation.

11.1 Particle Datatypes

The base class for particle data is the BinItem - an item capable of being assigned to a bin
based on its spatial location. The BinItem class has only one data member - a SpaceDim-
dimensional RealVect that stores the item's physical position. The most important parts
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of the public interface for BinItem are described below. The full constructor looks like:

e BinItem(const RealVect& a_position)
Full constructor. Places the BinItem object in a usable state.
Arguments:

— a_position The position coordinate of this object.
It also includes methods for getting and setting the position:

e void setPosition(const RealVect& a_position)
Change the position attribute.
Arguments:
— a_position The new position coordinate of this object.
e void setPosition(const Real a_position, const int a_dimension)
Change one component of the position attribute.
Arguments:

— a_position The new position component.

— a_dimension The dimension to change.

e RealVect& position()

Return a reference to the position.

e const RealVect& position()

Return a const reference to the position.

e Real position(const int a_dir)

Get one component of the position.

Arguments:

— a_dir The dimension to get.
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and equality and inequality operators:

e virtual bool operator==(const BinItem& a_p) const

Check whether two Binltems have equal data.

e virtual bool operator==(const BinItem* a_p) const

Same as the above, defined for a pointer.

e virtual bool operator!=(const BinItem& a_p) const

Check whether two Binltems don’t have equal data.

Finally, it's also necessary to define linearization functions, so that each particle knows
how to write a serial representation of itself into a chunk of memory. These functions
won't be used commonly in application code, but are used internally for 10 and data
communication. The linearization routines are:

e virtual int size() const

Return the number of bytes in the linear representation of this object.

e virtual linearQOut(void* a_buf) const

Write out a serialized representation of this object into the memory address pointed
to by a_buf.

e virtual linearIn(void* a_buf)

Set the data for this object by reading in the serialized representation from the
memory address pointed to by a_buf.

It is expected that users will need to define their own derived particle types based
on BinItem that are better suited to their application domain. One example of how
to do this provided in the Particle class. In addition to a position, Particle also
contains RealVects that store the Particle’s velocity and acceleration, as well as a
Real attribute that stores the mass. The full constructor for Particle looks like:
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e Particle(const Real& a_mass,
const RealVect& a_position,
const RealVect& a_velocity=RealVect::Zero)

Full constructor. Places the Particle object in a usable state.

Arguments:

— a_mass The mass of this particle.
— a_position The position coordinate of this particle.

— a_velocity The velocity of this particle. Defaults to zero.

The are also additional methods for getting and setting the mass, acceleration, and
so on. For example:

e void setMass(const Real a_mass)

Set / change the mass attribute.

Arguments:

— a_mass The new mass of this object.

e Real& mass()

Retrieve a reference to the mass attribute.

e const Real& mass()

Return a const reference to the mass attribute.

These additional attributes make Particle appropriate for gravitational N-body cal-
culations, or for Vlasov-Poisson simulations in which the forces are gravitational-only, as in
cosmological dark matter simulations. Other possibilities include adding a charge attribute
for plasma simulations, or giving each particle a unique integer id. Whenever you define
a new particle type, the equality / inequality operators and the linearization routines will
need to be modified to account for the new data. The Particle class shows one example
of how to do this.
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11.2 Particle Containers

We also provide templated container classes for storing and sorting particle items based
on their position. There are several reasons you might want to do this; for example,
to divide the particles among processors based on a spatial domain decomposition, or
to compute which particles are “nearby” in a molecular dynamics calculation. Currently,
Chombo provides two different types of containers, those based on BinFab<T> and those
based on ListBox<T>. We describe each of these, as well as the advantages of each,
below.

11.2.1 BinFab<T>

BinFab<T> is a class for storing particle data on the Box level. It works just like an
FArrayBox, except that instead of a floating point number, each cell in the Box contains
a List<T>. Each of these cells in the BinFab<T> is associated with a region in space,
and T-objects belong in the associated List if and only if their position lie within that
region. The constructor for BinFab<T> looks like this:

e BinFab(const Box& a_domain,
const RealVect& a_mesh_spacing,
const RealVect& a_origin)

Full constructor. Constructs an empty BinFab<T> on the Box a_domain.
Arguments:
— a_domain The Box on which this BinFab<T> is defined.

— a_mesh_spacing The physical size of the cells in this BinFab<T>, used for
binning.

— a_origin The origin of the coordinate system, also used for binning.

Since each BinItem or derived particle datatype stores its own physical position, the
BinFab<T> must have a coordinate system origin in order to interpret this information
properly. BinFab<T> also contains methods for adding items to the container. When one
of these is called, the items automatically gets sorted into the proper cell. For example:

e virtual void addItem(const T& a_item)

Copy one item into the appropriate bin.

Arguments:

— a_item The T-object that will be copied.
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e virtual void addItems(const List<T>& a_list)

Copy multiple items into the appropriate bins.

Arguments:
— a_list The List of T-objects that will be copied.

e virtual void addItemsDestructive(List<T>& a_list)

Copy multiple items into the appropriate bins, and remove them for the input list.

Arguments:

— a_list The List of T-objects that will be transferred.

If any of the particle positions change after them to the container (which they probably
will in a time-dependent calculation), there are also reBin() functions to put them all back
in the right Lists:

e virtual void reBin()

Sort all the items into the appropriate bins. This version loses all the items not in
this BinFab<T>'s domain.

e virtual void reBin(List<T>& a_lost,
const Box& a_valid = Box(),
bool a_in = true)

Sort all the items into the appropriate bins. ltems that leave the domain defined by
a_valid go into a_list.

Arguments:

— a_lost The List of T-objects lost items will go into.

— a_valid The Box that defines the valid domain. If this is omitted, the Box
used to define the BinFab<T> will be used instead.

— a_in If this is false, this will put *valid* objects into a_lost, instead.

Note that indexing the BinFab<T> with an IntVect index will allow one to access the
List<T> associated with that cell. For example, the code snippet in 11.1 demonstrates
how to move all the particles in a BinFab<T> by some amount, and then call the reBin
function to make sure they are in the proper cells.

Finally, BinFab<T> can also be used to define Derived classes. For instance, you
might want a class that bins particles in velocity space instead of position space. This can
be accomplished by deriving from BinFab and re-implementing the reBin and addItem
methods as necessary.
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void moveParticles(BinFab<BinItem>& a_particles,
const Real a_dt)

{
BoxIterator bit(a_particles.box());
RealVect velocity(D_DECL(1.0,0.5,0.0));
RealVect amountToMove = a_dt*velocity;
for (bit.reset(); bit.ok(); ++bit)
{
CH_XD::List<BinItem>& thisList = a_particles(bit(),0);
if (thisList.length() > 0)
{

// now loop over the items in the list and move them

ListIterator<BinItem> lit(thisList);

for (lit.rewind(); 1lit; ++1it)

{
BinItem& thisParticle = thisList[1lit];
thisParticle.position() = thisParticle.position()
+ amountToMove;
}
}
}
// finally, do rebinning
a_particles.reBin();
}

Figure 11.1: Code snippet to show how move all the particles in a BinFab<T> and re-bin
them.
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void moveLevelParticles(LevelData<BinFab<BinItem> >& a_particles,
const Real a_dt,
const int a_numSteps)
{
for (int step = 0; step < a_numSteps; step++)
{
// do exchange
a_particles.exchange(levelBins.interval());
DisjointBoxLayout grids = a_particles.disjointBoxLayout()
Datalterator dit = grids.datalterator();
for (dit.begin(); dit.ok(); ++dit)
{
moveParticles(a_particles[dit()], a_dt);
}

Figure 11.2: Code snippet to show how move all the particles in a BinFab and re-bin
them.

11.2.2 Distributed BinFab<T>s

BinFab<T> implements the proper linearization functions so that it can be used with
the LevelData and BoxLayoutData containers to store data that is distributed accross
processes. That is, you can have a LevelData<BinFab<BinItem> >, and the copyTo
and exchange () functions all work as expected, as does indexing into the container using
a DataIndex. The code snippet in 11.2 shows how to use the moveParticles function
from 11.1 to advance an entire domain’'s worth of particles in parallel. For simplicity,
we assume that the DisjointBoxLayout used to define the LevelData<BinFab<T> >
covers the entire domain - i.e. this is a unigrid, domain decomposed calculation. This
example also assumes that the LevelData<BinFab<T> > has been defined with one row
of ghost cells, and that the time step is limited such that the particles will not move more
than one cell in a single step.

11.2.3 ListBox<T>

The BinFab<T> data structure is appropriate when there are many particles in every cell
of every box. However, in many applications, this will not be the case. Furthermore,
we often do not care where individual particles are found within a single Box, but merely
want a convenient way to distribute the particles among the MPI processes. In this case,
a ListBox<T> may be more appropriate. a ListBox<T> is like a BinFab<T>, except
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that there is only one List<T> for the entire box instead of one for every cell. The
ListBox<T> has methods for adding, accessing, and removing Ts from the List, as well
as for checking whether the Ts lie within the domain of the defining Box. The (partial)
public interface for ListBox<T> is as follows:

e BinFab()

Default constructor. The ListBox<T> is left unusable, and define() must be called
later.

e BinFab(const Box& a_domain,
const RealVect& a_mesh_spacing,
const RealVect& a_origin)

Full constructor. Constructs an empty BinFab<T> on the Box a_domain.
Arguments:
— a_domain The Box on which this BinFab<T> is defined.

— a_mesh_spacing The physical size of the cells in this BinFab<T>, used for
binning.

— a_origin The origin of the coordinate system, also used for binning.

e define(const Box& a_domain,
const RealVect& a_mesh_spacing,
const RealVect& a_origin)

Define function - same as full constructor.

Arguments:

— a_domain The Box on which this BinFab<T> is defined.

— a_mesh_spacing The physical size of the cells in this BinFab<T>, used for
binning.
— a_origin The origin of the coordinate system, also used for binning.

undefine()

Free memory, return object to unusable state.

inline List<T>& listItems()
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Get a reference to the list of items.

inline const List<T>& listItems() const

Get a reference to the list of items, const version.

virtual void getItems(List<T>& a_list,
const Box& a_valid) const

Copy items from this ListBox<T> and put them into a_list only if they are con-
tained within a_valid.

Arguments:

— a_list The List<T> into which to copy the items.
— a_valid The Box that defines the valid region.
virtual void getItemsDestructive(List<T>& a_list,
const Box& a_valid) const

Copy items from this ListBox<T> and put them into a_list only if they are con-
tained within a_valid. This operation removes the items from this ListBox<T>.

Arguments:

— a_list The List<T> into which to copy the items.

— a_valid The Box that defines the valid region.

virtual void getInvalid(List<T>& a_list,
const Box& a_valid) const

Copy items from this ListBox<T> and put them into a_list only if they are NOT
contained within a_valid.

Arguments:

— a_list The List<T> into which to copy the items.

— a_valid The Box that defines the valid region.
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virtual void getInvalidDestructive(List<T>& a_list,
const Box& a_valid) const

Copy items from this ListBox<T> and put them into a_list only if they are NOT
contained within a_valid. This operations removes the items from this ListBox.

Arguments:

— a_list The List<T> into which to copy the items.
— a_valid The Box that defines the valid region.

virtual void addItem(const T& a_item)
Add an item to this ListBox if it is contained within the defining Box.
Arguments:

— a_item The item to add.

virtual void addItems(const List<T>& a_list)

Add all the items in a_list to this ListBox if it is contained within the defining
Box.

Arguments:
— a_item The item to add.

virtual void addItemsDestructive(const List<T>& a_list)

Add all the items in a_list to this ListBox if it is contained within the defining
Box. This operation removes this items from a_list.

Arguments:
— a_item The item to add.

virtual size_t numItems()

Returns the number of items in the container.

virtual RealVect& meshSpacing()

Returns the mesh spacing used for binning.
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e virtual const Box& box()

Returns the Box that defines this ListBox<T>.

e virtual void clear()

Delete all the items in this ListBox<T> and return to an undefined state.

11.2.4 ParticleData<T>

Internally, data communication must be handled somewhat differently for particle data
defined on a set of ListBox<T>s. To facilitate this, we have provided a new data container
class: the ParticleData<T>. In addition to representing a collection of ListBox<T>es
on a single AMR level, a ParticleData<T> has an outcast list for storing particles that
do not belong on any of the constituent Boxes, and methods for redistributing these
particles to the proper ListBox<T> and MPI process. These methods can be used to
perform parallel rebinning on a set of particles after their positions have been modified in
a simulation.

ParticleData<T> behaves quite similarly to a LevelData<FarrayBox>, with a few
exceptions. One major difference is that the BoxLayout on which the ParticleData<T>
is defined must used fixed-size Boxes. This simplifies the interal implementation of
ParticleData<T>, because the right Box for a given particle can be computed using
a simple binning operation. Another difference is that you are not restricted to defining
a ParticleData<T> on a DisjointBoxLayout. This is done to support load-balancing
schemes in which particles that lay on the same spatial bin are handled by different pro-
cessors. Other than that the use of the two classes is quite similar. For example, a
ParticleData<T> can be indexed with a DataIndex, allowing data-parallel access to
distributed ListBox<T>s. It also provides methods for handling ghost particles, as well
as methods analagous to BinFab<T>: :reBin() for shuffling particles between Boxes and
processes. Some the most important functions in the API for ParticleData<T> are:

e ParticleData()

Default constructor. The ParticleData<T> is left unusable, and define() must be

called later.
e ParticleData(const BoxLayout& a_dp,
const ProblemDomain& a_domain,
const int& a_fixedBoxSize,
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const RealVect& a_meshSpacing,
const RealVect& a_origin);

Full constructor. Constructs an empty ParticleData<T> on the BoxLayout a_dp.
Arguments:

— a_dp The BoxLayout on which this ParticleData<T> is defined. This layout
must used fixed-size Boxes.

a_domain The problem domain of the simulation on this level. Used for
handling periodic boundaries.

a_fixedBoxSize The size of the Boxes in the layout.
— a_meshSpacing The mesh spacing on this level.

— a_origin The origin of the coordinate system, used to bin the particle posi-

tions.
e void define(const BoxLayout& a_dp,
const ProblemDomain& a_domain,
const inté& a_fixedBoxSize,
const RealVect& a_meshSpacing,
const RealVect& a_origin);

Define function - same as full constructor.

Arguments:

— a_dp The BoxLayout on which this ParticleData<T> is defined. This layout
must used fixed-size Boxes.

a_domain The problem domain of the simulation on this level. Used for
handling periodic boundaries.

a_fixedBoxSize The size of the Boxes in the layout.
— a_meshSpacing The mesh spacing on this level.
— a_origin The origin of the coordinate system, used to bin the particle posi-
tions.
e const BoxLayout& getBoxes() const;

Get the BoxLayout on which this ParticleData<T> is defined.

e void gatherQutcast();

Collect the particles that are not in the right Boxes anymore and put them in the
outcast list.
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e void remapOutcast();

Redistribute the particles in the outcast list to the right ListBox<T>. The can
involve parallel communication.

e void fillGhosts(ParticleData<P>& a_particlesWithGhosts,
const int a_numGhost);

A routine for grabbing copies of “ghost particles.” On exit, each ListBox<T> in
a_particlesWithGhosts will

contain all the particles within a_numGhost of its Box. Periodic boundaries will be
respected.

Arguments:

— a_particlesWithGhosts A ParticleData<T> like this one, except that the
grids have all been grown by a number of ghost cells.

— a_numGhosts The number of cells the Boxes have been grown by.

For example, to move a ParticleData worth of particles, rebinning every time step,
you would do something like the code snippet in figure 11.3

11.3 AMR with particles

For calculations with AMR, we provide the following tools for transferring particles be-
tween AMR levels: the ParticleValidRegion, for defining the region of space a given
AMR level “owns”, and the collectValidParticles function, for transferring particles
to/from a given level based on its ParticleValidRegion. To see these tools in action,
please see the AMRParticleMesh released example.

11.3.1 ParticleValidRegion

This is a class for defining the spatial region on which particle data is valid for an AMR
level - that is, if a particle lives on an level’s valid region, then it will be stored in that
level's ParticleData<T>. In principle, this is could the same as the “valid region” of the
AMR hierarchy, but for some applications it is convenient to shrink the valid region by
some number of buffer cells around the coarse/fine boundaries. For example, for Particle-
in-Cell calculations, it's convenient to arrange the particles onto AMR levels in such a way
that particles on the fine level are guaranteed to have their entire interpolation kernels on
the fine level for some number of time steps.
To create a ParticleValidRegion, you use the following constructor:
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void advanceParticleData(ParticleData<BinItem> >& a_particles,
const Real a_dt,
const int a_numSteps)
{
for (int step = 0; step < a_numSteps; step++)
{
DisjointBoxLayout grids = a_particles.disjointBoxLayout ()
Datalterator dit = grids.datalterator();
for (dit.begin(); dit.ok(); ++dit)
{
moveParticles(a_particles[dit()], a_dt);

}

// particles have moved, gather and rebin here.
a_particles.gatherQutcast();
a_particles.remapOutcast();

Figure 11.3: Code snippet to show how move all the particles in a BinFab and re-bin
them.
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e ParticleValidRegion(const DisjointBoxLayout& a_domain,
const LevelData<BaseFab<bool> >* a_crseValid,
const int a_refRatio,
const int a_buffer);

Routine for defining an AMR level's valid region for particles.
Arguments:
— a_domain The grids on this AMR level.

— a_crseValid A boolean mask that defines the valid region of the coarser
AMR level.

— a_refRatio The AMR refinement ratio.
— a_buffer The number of buffer cells used to define the AMR level.
You can also use the following method to get a pointer to the boolean mask the
defines a ParticleValidRegion:

e const LevelData<BaseFab<bool> >* mask() const

Get a pointer to the valid region. The mask will be True if the cell belongs on this
region, False if not.

11.3.2 collectValidParticles

The following function is used to transfer particles on to or off of a ParticleData<T>,
based on whether the particles lives on a given ParticleValidRegion. Usage:

e void collectValidParticles(List<P>& a_partValid,
ParticleData<P>& a_PD,
const LevelData<BaseFab<bool> >* a_mask,
const RealVect a_meshSpacing,
const int a_refRatio,
const bool a_flip,
const RealVect a_origin);

Routine for transferring particles between different levels.
Arguments:

— a_partValid The destination to which particles will be sent if they meet the
requirements.
— a_domain The source from which the particles will be transfered.

— a_mask This defined the valid region.
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— a_meshSpacing The mesh spacing used for binning particles. Should be for
the same level as a_mask.

— a_refRatio The src will be coarsened or refined by this amount before it is
compared to the mask.

— a_flip If false, particles will be transfered if they live in cells where the mask
is true. If true, they will be transferred if the mask is false.

— a_origin The origin of the coordinate system, used to bin the particle posi-
tions. Default is (0.0, 0.0, 0.0)

11.4 Particle 10

For data analysis and plotting, we provide the following HDF5 10 functions, analagous to
writeAMRHierarchyHDF5 and readAMRHierarchyHDF5. These functions read or write a
single ParticleData to or from a given HDF5 file. For an example of how to incorporate
this into an AMR program, please see the AMRParticleMesh released Example.

e writeParticlesToHDF (HDF5Handle& a_handle,
const ParticleData<P>& a_particles,
const std::string& a_dataType) ;

Write the particles in the ParticleData to an HDFb5 file.
Arguments:

— a_handle The previously opened HDF5 filehandle to which the particles will
be written.
— a_particles The particles that will be written out.

— a_dataType A string labelling these particles; useful when you have multiple
particle types.

o readParticlesFromHDF (HDF5Handle& a_handle,
ParticleData<P>& a_particles,
const std::string& a_dataType) ;

Read the particles from the HDFb5 file and used them to initialize the ParticleData.
Arguments:

— a_handle The previously opened HDF5 filehandle from which the particles
will be read.

— a_particles The ParticleData that the particles will be placed into.

— a_dataType A string labelling these particles; useful when you have multiple

particle types.

These routines output the particles in a format that can be recognized by the yt
analysis code.
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11.5 Example code

To demonstrate the use of the Chombo’s particle tools in a relatively simple application,
we have provided the AMRParticleMesh released example. This example implements the
collisionless fluid and self-gravity components of the hybrid AMR scheme for cosmology
calulculations described in [22], i.e. there is no hyperbolic component, just particles and
an elliptic solve. W use a kick-drift-kick leapfrog time integrator to advance the particles
and AMR multigrid to solve Poisson’s equation with periodic boundary conditions.

The code can be found in releasedExamples/AMRParticleMesh in the Chombo
distribution. This example program uses the full AMRTimeDependent class structure, and
demonstrates how to work with ListBox<T> and ParticleData<T> in an AMR context.
We provide initial conditions for a “Zel'dovich Pancake” collapse calculation. To build the
program, navigate to Chombo/releasedExamples/AMRParticleMesh/exec, and then
type make with the desired configuration flags. For instance:

make -3j8 DIM=2 MPI=TRUE DEBUG=FALSE OPT=TRUE amrPM
To run the program in parallel, use:
mpirun -np 4 ./amrPM2d.Linux.64.mpiCC.gfortran.0PT.MPI.ex inputs

Your configuration string might be slighly different, depending on your platform and
the flags you set for compilation.

In addition to the full example program, there are also a number test programs in
Chombo/lib/test/ParticleTools. These programs test the basic functionality of the
ParticleTools classes in isolation, and can also be referenced to see basic usage of the
tools in practice.
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Chapter 12

Chombo Debugging and Performance
Tools

12.1 Overview of Chombo Debugging Tips

Chombo contains many complex datatypes and it can be difficult to look at one’s data
with simple gdb print statements. This chapter is intended to provide some tools for the
user to be able to debug her applications with more facility.

Here are some general points.

e All the examples provided use gdb.

e To avoid ugly printouts while in gdb, one puts in her */.gdbinit :

set print static-members off
set print pretty on

e To stop in a Fortran function, one usually has to add an underscore to the end of
the name. To stop in Fortran subroutine myfortranfunc,

<gdb prompt> break myfortranfunc_
e gdb is most useful when run within emacs. To do this, type
Meta-x gdb

while the buffer is in a file in the same directory as the executable (the input file or
the makefile are popular choices). The advantages of this are many:

— One gets emacs’s nifty color scheme.
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— One interacts with the code directly. This means that when her code segfaults
at a particular point, she will be looking at the offending line of code.

— One can set breakpoints by just being at the line she wants to stop at and
typing control-x spacebar.

e Avoid using more than one gdb session in an emacs session. It gets confusing. One
should fire up another emacs if one needs to debug two codes at once.

e If one wants to view some complex datatype (say class BagODonuts) for which
Chombo does not yet have a nifty print function, she can write her own print
function and call it using

<gdb prompt> call printBagODonuts (&myBagODonuts)

All such functions will work most reliably if she always writes them to take pointers
and define them using extern ¢ ‘C’’. Then gdb will not get confused about copy
constructors and demangling. Chombo provides many examples of such functions.
They live in

Chombo/1ib/src/BoxTools/Debuglut .H

e These functions are not “safe.” There is no type checking in gdb. Anything one
sends to the function will be interpreted as a pointer and it will try to run with it.
It is very easy to seg fault one's gdb session if she

— Forgets the & so the address you are sending is nonsense.

— Mismatches the call with the data type.

12.2 Chombo Print Utilities

Chombo provides a bunch of functions to print out various datatypes in the debugger.
To use these functions, one includes DebugDump.H in her code. The prototypes for the
functions are in are in Chombo/1ib/src/BoxTools/DebugQut.H. The functions are used
in gdb as follows:

<gdb prompt> call dumpIVS(&myIVS).
A list of some of them and what they print out follows:

e void dumpLDF(const LevelData<FArrayBox>* memLDF);

Dump a level's worth of data to standard out. Only use this for small data sets.
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e void dumpDBL(const DisjointBoxLayout* a_dblInPtr);

Dump a DisjointBoxLayout to standard out.

e void dumpIVS(const IntVectSet* a_ivsInPtr)

Dump the points of an IntVectSet to standard out.

12.3 Viewing data objects with Vislt from gdb

There are two ways to use Vislt to help examine data during a debugging session. One
may use the writeFAB, writeFABname, writeLevel, and writeLevelname functions
described in section 6.3 to write data in a FArrayBox or LevelData<FArrayBox> to a
file, and then call VisIt from a shell to view the data. Alternatively, the viewFAB and
viewLevel functions allow VisIt to be called directly from the gdb session.

If one has an FArrayBox fab and a LevelData<FArrayBox> 1df, one may do the
following:

<gdb prompt> call viewFAB(&fab)
<gdb prompt> call viewLevel(&1ldf)

which will result in fab and Idf being written to separate temporary files, and then one
Vislt processes being started with two windows controlling the different data objects.

12.4 pout()

In Chombo, the pout () function is used in place of the std::cout output stream object.
defined in header parstreamH

In serial this function returns std::cout. In parallel, this creates a file called pout.n
where n is the procID() of the given processor. Output is then directed to these files.
This keeps the output from different processors from getting all jumbled up. Used just as
one would use a standard output stream.

if (verbose >= 3)
{

pout ()<<’’In such-and-such piece of code \n’’
<<?’Value of var == ‘‘<<var<<std::endl;
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12.5 Memory Tracking

Chombo provides a simply internal memory tracking facility.
from memtrack.H:

class Memtrack
{
public:
static void ReportUnfreedMemory(ostream& os);

/// calls ReportUnfreedMemory with pout ()
static void UnfreedMemory() ;

static void memTrackingOn();
static void memtrackingQff();

static void overallMemoryUsage(long long& currentTotal,
long long& peak);

};

This is compiled into Chombo and turned on by default when the compiler macro
ENABLE_MEMORY_TRACKING is defined.

ReportUnfreedMemory produces a breakdown of current memory usage broken down
by Chombo class. This does not include the system image of the program itself, or stack
usage. This will also not include memory allocated by the user, just memory allocated by
Chombo functions. RTTlI is used in some places to identify the type of objects held in a
Chombo Vector template container.

example output of an UnfreedMemory () call:

Vector 3Box: 56 bytes (0 Mb)
Vector BEntry: 252 bytes (0 Mb)
Vector Ui: 28 bytes (0 Mb)
Vector i: 16 bytes (0 Mb)

Total Unfreed : 352 bytes (0 Mb)
peak memory usage: 360 bytes (0 Mb)

12.6 TraceTimer

TraceTimer class is a self-tracing code instrumentation system for Chombo (or any other
package really). The user interface is specified by a small set of macros. The usage
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model is that you just leave these timers in the code, for good. Initially, your application
will have 'main’ and a few heavy functions instrumented, and the lower level Chombo
library instrumentation. As your tool or application matures, it will garner a larger set of
instrumentation giving clear views of your code performance. After a routine has been
cleverly and lovingly optimized, the timers are left in place to spot when some later bug
fix or *improvement* undoes your previous labors.

You should never need to use or interact with the the classes TraceTimer or AutoStart.
Use the macros. They call the right functions and classes for you.

The first macro is what people will use the most:

CH_TIME("label");

This is the simplest interface for TraceTimer. You place this macro call in a function
you wish to be timed. It handles making the timer, calling 'start’ when you enter the
function, and calling 'stop’ when you leave the function. A good idea is to use a 'label’
specific enough to be unambiguous without being overwhelming. for instance:

void AMRLevelPolytropicGas::define(AMRLevelsx a_coarserLevelPtr,
const ProblemDomain& a_problemDomain,
int a_level,
int a_refRatio)

{

CH_TIME("AMRLevelPolytropicGas::define");

}

In this case, we have a class with many constructors and define functions that all
funnel into a single general function. We can just call this 'define’ and not worry about
naming/instrumenting all the different overloaded instances. If you slip up and use the
same label twice, that is not a real problem, the two locations will be timed and tracked
properly (even if one is a sibling or parent of the other). The only place it will make things
a little harder is in the output where you might have the same name show up and look
confusing.

In serial, you will see a file called time.table (in parallel, you will get a time.table.n
(where n is the rank number) files).

By default, Chombo compiles in the instructions for the timers wherever the macros
appear. If the compiler macro CH_TIMER is defined, then all the CH_TIME* macros evaluate
to empty expressions at compile time.

So, you put some CH_TIME calls in your code and ran it, and nothing happened:
Chombo looks for the environment variable CH_TIMER. If it is set to anything (even if
it is set to 'false’ or 'no’ or whatever) then the timers will be active and reporting will
happen. If this environment variable is not set, then all the timers check a bool and return
after doing nothing.
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One point of interest with using the environment variable: In parallel jobs using
mpich, only processor 0 inherits the environment variables from the shell where you invoke
'mpirun’, the rest read your .cshrc (.bashrc, etc.) file to get their environment. To time
all your processes, you need to make sure the CH_TIMER environment variable gets to
all your processes.

12.6.1 Auto hierarchy

The timers automatically figure out their parent/child relationships. They also can be
placed in template code. This has some consequences. First, if you have a low level
function instrumented that has no timers near it in the code call stack, you will see it
show up as a child of a high level timer. the root timer "main” will catch all orphaned
timers. So, even though you might make no call to, say, 'exchange’ in your 'main’ function,
you might very well call a function, that calls a function, that calls 'exchange’. Since no
code in between was instrumented, this exchange is accounted for at 'main’. This might
look strange, but it should prove very powerful. An expensive orphan is exactly where you
should consider some more timers, or reconsidering code design.

For performance reasons, child timers have only one parent. As a consequence each
CH_TIME("label”) label can show up at multiple places in your output. Each instance
has it's own timer. So, each path through the call graph that arrives at a low-level
function has a unique lineage, with it's own counter and time. Thus, | can instrument
LevelData::copyTo once, but copyTo can appear in many places in the time.table file.

12.6.2 Finer control

The next level up in complexity is the set of *four* macros for when you want sub-function
resolution in your timers. For instance, in a really huge function that you have not figured
out how to re-factor, or built with lots of bad cut n paste code 're-use’.

CH_TIMERS("parent");
CH_TIMER("child1l", t1);
CH_TIMER("child2", t2);
CH_START(t1);

//some code go here
CH_STOP(t1);

CH_START (t2) ;

//some other code go here
CH_STOP (t£2) ;
CH_START(t1);

//can start something here again
CH_STOP(t1);
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One very good place to use the more sophisticated APl is within loops. START and
STOP are very fast compared to the timer declaration:

CH_TIMERS("parent"); // parent declared and started

CH_TIMER("t1", tl1); // tl1 declared and made child parent, not started

for(IVSIterator it(ivs); it.ok(); ++it){
CH_START(t1) ;
//some code go here
CH_STOP(t1);
//other stuff you don’t want timed
}

CH_TIMERS has the same semantic as CH_TIME, except that you can declare an
arbitrary number of children after it in the same function scope. The children here do
not autostart and autostop, you have to tell them where to start and stop timing. The
children can themselves be parents for timers in called functions, of course. The children
obey a set of mutual exclusions. The following generate run time errors:

double start called

double stop called
e start called when another child is also started

e you leave the function with a child not stopped
the following will generate compile time errors:

e more than one CH_TIME macro in a function

e invoking CH_TIMER(" child", t) without having first invoked CH_TIMERS

e re-using the timer handle ie. CH_TIMER("bobby", t1); CH_-TIMER("sally", t1)
e mixing CH_TIME macro with CH_TIMER

e mixing CH_TIME macro with CH_TIMERS

You do not have to put any calls in your main routine to activate the clocks or gener-
ate a report at completion, this is handled with static initialization and an atexit func-
tion. The exception to this is for parallel reporting. Since atexit and MPI Finalize()
do not interact in an agreeable fashion, you need to explicitly call the Chombo macro
CH_TIMER REPORT () before the code reaches MPI Finalize

There is a larger argument about manual instrumentation being detrimental to clean
software. Profiling the code is supposed to tell you where to expend your optimization
effort. Manual instrumentation opens the door to people wasting time *assuming* what
parts of the code are going to take up lots of time and instrumenting them, before seeing
any real performance data. Good judgment is needed. We have a body of knowledge about
Chombo that will inform us about a good minimal first set of functions to instrument.
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Chapter 13

Troubleshooting

1. error: ’HbPset_fapl mpio’ was not declared in this scope

e This is a compilation error. The user is trying to build the parallel ver-
sion of Chombo but is not linking against an HDF5 build that has used
—-—enable-parallel when it was configured

e Most Chombo users need access to both a serial and a parallel version of
their HDF5 libraries. These are distinguished in the Chombo makefiles as
HDFINCFLAGS and HDFMPIINCFLAGS (these values should be different).

201



Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A.S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. J. Welcome. A conservative
adaptive projection method for the variable density incompressible Navier-Stokes
equations. J. Comput. Phys., 142(1):1-46, May 1998.

A. S. Almgren, T. Buttke, and P. Colella. A fast adaptive vortex method in three
dimensions. J. Comput. Phys., 113(2):177-200, 1994.

D.S. Balsara. Divergence-free adaptive mesh refinement for magnetohydrodynamics.
J. Comput. Phys., 174(2):614-648, 2001.

J. B. Bell, M. J. Berger, J. S. Saltzman, and M. Welcome. A three—dimensional adap-

tive mesh refinement for hyperbolic conservation laws. SIAM Journal on Scientific
Computing, 15:127-138, 1994.

M. Berger and S. Bokhari. A partitioning strategy for non-uniform problems on
multiprocessors. IEEE Trans. Comp., 1986.

M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53:484-512, March 1984.

M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynam-
ics. J. Comput. Phys., 82(1):64-84, May 1989.

M. J. Berger and I. Rigoutsos. An algorithm for point clustering and grid generation.
IEEE Transactions Systems, Man, and Cybernetics, 21(5):1278-1286, 1991.

Matthew Tyler Bettencourt. A Block-Structured Adaptive Steady—State Solver for
the Drift-Diffusion Equations. PhD thesis, Dept. of Mechanical Engineering, Univ.
of California, Berkeley, May 1998.

P. Colella, M. Dorr, and D. Wake. Numerical solution of plasma-fluid equations using
locally refined grids. J. Comput. Phys., 152:550-583, 1999.

[11] W. Y. Crutchfield. Load balancing irregular algorithms. Technical Report UCRL-JC-

107679, LLNL, July 1991.

202



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

W. Y. Crutchfield and M. Welcome. Object-oriented implementation of adaptive
mesh refinement algorithms. Scientific Programming, 2(4):145-156, 1993.

Stephen J. Fink, Scott B. Baden, and Scott R. Kohn. Flexible communication
schedules for block structured applications. In Third International Workshop on
Parallel Algorithms for Irregularly Structured Problems, Santa Barbara, California,
August 1996.

R. Hornung and J. A. Trangenstein. Adaptive mesh refinement and multilevel it-
eration for flow in porous media. J. Comput. Phys., 136(2):522-545, September
1997.

L. H. Howell, R. B. Pember, P. Colella, J. P. Jessee, and W. A. Fiveland. A con-
servative adaptive-mesh algorithm for unsteady, combined-mode heat transfer using
the discrete ordinates method. Numerical Heat Transfer, Part B: Fundamentals,
35:407-430, 1999.

J. P. Jessee, W. A. Fiveland, L. H. Howell, P. Colella, and R. B. Pember. An adaptive
mesh refinement algorithm for the radiative transport equation. J. Comput. Phys.,
139(2):380-398, January 1998.

Hans Johansen and Phillip Colella. A cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. J. Comput. Phys., 1998.

Scott R. Kohn and Scott B. Baden. Irregular coarse-grain data parallelism under
Iparx. J. Scientific Programming, 1996.

D. Martin, P. Colella, and D. T. Graves. A cell-centered adaptive projection method
for the incompressible Navier-Stokes equations in three dimensions. Journal of Com-
putational Physics, 227:1863-1886, 2008.

D. F. Martin and K. L. Cartwright. Solving Poisson’s equation using adaptive mesh
refinement. Technical Report UCB/ERI M96,/66 UC Berkeley, 1996.

Daniel Francis Martin. An Adaptive Cell-Centered Projection Method for the Incom-
pressible Euler Equations. PhD thesis, University of California, Berkeley, 1998.

F. Miniati and P. Colella. Block structured adaptive mesh and time refinement for
hybrid, hyperbolic + N-body systems. J. Comput. Phys., 227:400-430, 2007.

R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. An
adaptive Cartesian grid method for unsteady compressible flow in irregular regions.
J. Comput. Phys., 120:278-304, 1995.

R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland,
and J. P. Jessee. An adaptive projection method for unsteady, low mach number
combustion. Combustion Science and Technology, 140:123-168, 1998.

203



[25]

[26]

[27]

[28]

Charles A. Rendleman, Vincent E. Beckner, Mike Lijewski, William Crutchfield, and
John B. Bell. Parallelization of structured, hierarchical adaptive mesh refinement
algorithms. Computing and Visualization, 1999.

M. C. Thompson and J. H. Ferziger. An adaptive multigrid technique for the incom-
pressible Navier-Stokes equations. J. Comput. Phys., 82(1):94-121, May 1989.

E.H. Twizell, A.B. Gumel, and M.A. Arigu. Second-order, [y-stable methods for the
heat equation with time-dependent boundary conditions. Advances in Computational
Mathematics, 6:333-352, 1996.

Paul R. Woodward. Piecewise-parabolic methods for astrophysical fluid dynamics.
Technical report, Lawrence Livermore National Laboratory, 1983. prepared for Pro-
ceedings of the NATO Advanced Workshop in Astrophysical Radiation Hydrodynam-
ics, Munich, West Germany, August 1982.

204



