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I. Introduction. 

If G is a semi-simple compact Lie group of rank k, then the 

maximal toroidal subgroup, TG, of G is isomorphic to the group 

T k = U(1)xU(1)x ...×U(1), which consists of a direct product of k groups 

U(1). A group element of T k takes the form (e i~l, e i~2, ... e i~k) 

where ~j, for j=l,2 ... , k, is a real parameter. An arbitrary 

irreducible representation of Tk, and thus of TG, is specified by 

{Wl}X{W2}X ...x{w k} , and this representation is defined by the mapping: 

ei~k) i(Wl~l + w2~ 2 + ... + Wk~ k) (e i~l e i~2 + e 
, , ... 

If a representation %G of G decomposes on restriction of the 

group elements to those of the subgroup T G in accordance with the 

branching rule: w 

G ~ T g IG~ I m~ G {Wl}X{w2}X .... ×{w k} ' 
w 

then w : (Wl, w2, ... ,Wk) is said to be a weight vector of the 
w 

representation IG' and its multiplicity is the coefficient m~G 

To determine the weight vectors and their multiplicities it is 

therefore only necessary to evaluate certain branching rules. It is 

shown that in the case of covariant tensor irreducible representations of 

the group U(k) this leads in a natural way to the use of both Gelfand 

patterns and Young tableaux. The generalisation to mixed tensor 

representations of U(k) is also made and the group Sp(2k) is treated 

in detail. Some conmaents are made on the tensor and spinor representations 

of O(2k) and O(2k+l), and some concluding remarks on the results 

obtained are presented. 

(1.1) 

(1.2) 

2. Covariant Tensor Representations of U(k). 

The irreducible covariant tensor representations of U(k) are 

specified by {~} where (~) = (~i,~2, .... la ) is a partition of £ 

into a non-vanishing parts with a~k. The branching rule appropriate to 

the restriction to the subgroup U(k-I)×U(1) takes the form: (i) 

U(k)$ U(k-l)xU(1) {%} $ ~ {o} x {Wk} , (2.1) 
o,w k 

with ~i ~ °i ~ ~i+l and Wk=£ - s, where (o) is a partition of s into 

c non-vanishing parts with c~k -I. 

It follows from the rules appropriate to S-function division 
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enunciated by Littlewood (2) that the branching rule (2.1) may also 

be written in the form(3): 

U(k) ~ U(k-l)xU(1) {%} ~ ~ {%/Wk} x {Wk} (2.2) 
w e 

The repeated application of this rule to the chain 

U(k) ,~ U(k-l)xU(1) $ U(k-2)xU(1)xU(1) ~ ... ~ T k , (2.3) 

yields the branching rules 

{%} ~ I {%/Wk}X{W k} $ ~ {%/Wk_lWk}×{Wk_l}×{Wk } 
w k Wk_ 1 ,We 

• .. ~ ~ {%/WlW2...w k} {Wl}X{w2}x...X{Wk} , (2.4) 
w 

k 
where & = ~ w i . Thus the weight multiplicities may be evaluated 

c=l 
using the formula 

W 

m{~} = {%/WlW2...w k} (2.5) 

The relationship between S-functlon quotients and outer products 

of S-functions is such that 

{Wl}. {w 2} ..... {w e } = ~ m ~ {%} (2.6) 
x {x} 

It follows from the fact that S-function multiplication is commutative 

that the symmetry group of the weight diagrams is the symmetric group 

associated with the permutations of the components of the weight vectors 

w . Furthermore, since the coefficients in (2.6) are known to be ~ 

independent of k, the weight multiplicities of the covariant tensor 

representations of U(k) are k-independent. 

This method of determining weight multiplicities, involving as it 

does the step by step reduction of a representation of U(k) into a 

set of one dimensional irreducible representations of the Abelian group 

Tk, yields two equivalent labelling schemes for the basis states of such 

a representation {%} of U(k). The repeated application of (2.1) gives 

rise to Gelfand patterns (5) " in accordance with the extension of labels 

defined by 

%1 %2 %k 

° 1 o2"''Ok_ I 
n> 

mlk m2k ...... mkk 

mlk- I m2k- I .... mk_ik_ I 

m12 m22 

mll 
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The canstraints applying to (2.1) are such that m.. is a non-negative 
I] 

integer, that mij+l >. mij>. mi+lj+l and that 

J i -1 
wj = {=imij i=l mij-i for j = 1,2,...,k. (2.7) 

Similarly the repeated application of (2.2) to the Young diagrams 

specified by S-functions gives rise to Young tableaux(6): 

Row lengths 

I I 

12 

+ ~I -, kkJ 11223... kk~ 

÷ o 2 + kk~ 2333...ikkk ! 
| ; i I 
; > / 

In  t h i s  c a s e  t h e  c o n s t r a i n t s  a r e  s u c h  t h a t  t h e  n u m b e r s  i n  t h e  t a b l e a u  

a r e  n o n - d e c r e a s i n g  a c r o s s  e a c h  row f r o m  I e f t  t o  r i g h t  a n d  a r e  s t r i c t I y  

increasing down each column from top to bottom, and 

w. = the number of j's in the tableau. 
J 

The multiplicity of each weight is the number of distinct Gelfand 

patterns, or equivalently the number of distinct Young tableaux, whose 

entries satisfy the given constraints. 

For example in the case of the group U(5), for which k = 5, 

the multiplicity of the weight w = (1,2,O,2,O) in the irreducible 

representation {I} = {3,2} is 2, corresponding to the existence of 

the two Young tableaux i12--~ ~ and the two 
4~S 1241 

(2.8) 

Gelfand patterns 3 2000 3 20 00 
3200 3200 
300 210 
3O 21 
I I 

The symmetry of the weight diagram is exemplified by the fact that 

(22100) (12020) (20102) 
m{32} = m{32} = m{32} = ... = 2 , 

and the k-independence of the weight multiplicities by the fact that 

(22100...O) 
m{32} = 2 

3. Mixed Tensor Representations of U(k). 

The irreducible mixed tensor representations of U(k) are 

specified (7) by {~;I} where (I) and (~) are partitions of £ and 

respectively, into a and b non-vanishing parts such that a + b~k. 

m 

The 
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generalisation of the branching rule (2.1) takes the form: 

U(k) i U(k-l)xU(1) {~;l} ~ ~ {~;o} x {pk-qk } 
r,o,Pk,q k 

(3.1) 

with Xi~°i~ki+l '~j~Tj~Uj+I and Wk = Pk - qk where (o) and (T) 

are partitions of s and t into c and d non-vanishing parts such 

that Pk = £ - s, qk = m - t and c + d~k-i . This result corresponds 

to the fact that the appropriate generalisation of (2.2) is (3) 

U(k) ~ U(k-l)xU(1) {~;X} ~ ~ {~-7~k;X/pk} x {pk-qk } . (3.2) 

Pk,qk 

The repeated application of this rule to the chain (2.3) gives the 

result: 

U(k) ~ T k {~;X} ~ ~ {~/qlq2...qk ;k/plP2...pk }{pl-ql}x{P2-q2}x...×{pk-qk}. 
P,q 
~ ~ (3.3) 

It then follows from the definition, (1.2), of weights that 

w 
m{~;X } = [ {~/qlq2...qk ; X/plP2...p k} iL 1 ~wi , (3.41 

p,q Pi-qi 

The corresponding generalisation of the Gelfand patterns arises 

as a result of the extension of labels defined by 

kl 12"'" laO'''O-~b'''-~2 -~I 

o I o2- -ocO. • • O-Td. • .-T2--TI 

mlk m2k ..... mkk 

mlk-i m2k-1 .-.mk_lk_ 1 

m12 m22 

mll 

The constraints applying to (3.1) are such that, once again, 

mij +i >" mij >" mi+lj+l and 

j-I 
wj = c=l mij - i=l[ mij-i for j = 1,2 ..... k, 

but now m.. may be any integer: positive, negative or zero. 
13 

Furthermore a generalisation of Young tableaux following immediately 

from (3.2) takes the form 

(3.5) 
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Row lengths. 

,,. 

P2;X2 L'~--] 2 - ~  a 2--~k ~ ~ . . 4 2  45... k k I 

• ,I Y l= I ,r > r-- 
~b; Xb I I I a 

i i I I 
I t 1 I 

: I 
a 

kkk I 

The numbers in the tableau are non-decreasing across each row from 

left to right and are strictly increasing in magnitude down each column 

from top to bottom where an entry T is to be interpreted as -j. In 

addition if the lowest rows in which j and ~ appear are the x-th and 

y-th then x + y ~ j. Finally: 

w. = the number of j's - the number of j's in the tableau. (3.6) 
2 

Once more the multiplicity of each weight is the number of distinct 

patterns, or equivalently the number of distinct tableaux, whose entries 

satisfy the given constraints. 

For example in the case of the group U(5), for which k=5, the 

multiplicity of the weight w = (O,I,I,I,I), where i= -I, in the 

irreducible representation {~;X} = {~3;21} is 2, corresponding to the 

existence of the tableaux ~ ~ and the 

patterns 2 1 1 1 1 2 1 1 1 1 

2111 2111 

2YY 10Y 

2Y IO 

0 O 

The syr~metry group of the weight diagram is once again S k since the 

multiplicities are invariant under permutations of the components of the 

weight vectors as illustrated by the fact that 

m (01111) = m (ilO11) = m (IIilO) = ... = 2 . 

{i3;21} {i3;21} {i3;21} 

Now however, due to the cancellations that take place between pj and qj 

in defining w. for j = 1,2,...,k, the multiplicities are no longer 
3 

k-lndependent. Indeed if the same example is considered for the group 

U(k) the appropriate tableaux corresponding to the weight vector (IIii00...0) 
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are  ywt enem" ..... 

4. Representations of Sp (2k). 

The irreducible representations of Sp(2k) are specified by 

<~> where (~) is a partition of £ into a non-vanishing parts with 

a~k . Zhelobenko (8) has derived the branching rule 

Sp(2k)~Sp(2k-2)xU(1) <~>$ [ <%/qkPk>X{Pk-qk } , (4.1) 

Pk,qk 

with °i ~ P i ~ Oi+l ' ~ i ~ o i ~ li+l and 

and (p) are partitions of s and r into c and 

such that Pk = s - r, qk = ~ - s and c.<k, e.<k-l. 

appropriate to S-functions this takes the form 

Sp (2k)~p(2k-2)xU(1) <~>~ ~ <~/qkPk>X{Pk-qk} • 

Pk,qk 

The repeated application of this rule to the chain 

Sp(2k)~Sp(2k-2)×U(1) ~Sp(2k-4)×U(1)xU(1) ~... ~ r k , 

gives 

<%>~ ... ~ ~ <%/qmPlq2P2"''qkPk > {Bl-ql}x{P2-q2}x...×{pk-q k} , 
p,_q 

so that the weight multiplicities are given by 

w. 
w k i 

m~>s ~ <~ /qlPlq2P2...qkPk> i~l 
~,q Pi-qi • 

Wk = Pk - qk where (o) 

e non-vanlshing parts 

In the notation 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

It follows from 

takes the form: 

(4.1) that the Gelfand pattern generalisation 

/ %1 )'2 . . . .  %k\ /mlk m2k . . . . . . . . . .  mkk\ 
° l °1  "'" % \  /ml~ m2~ . . . . . . . . . .  mk,~\ 

,'l ° 2  ,',~l \ / talk-1 m2~1 .... ~1~-1 \ 

/ \ ml2 m22 / 
I \ ~ m2~ / 

/ \  / 
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The constraints appropriate to (4.1) 

are both non-negative integers, that 

and 

wj=pj-qj where PJ = iLlmij I mij 

In the same way it follows from (4.2) 

to yield tableaux of the form: 

Row lengths• 

X a 2 +kkkk .,~ 
• t 

X a kk [ 

are such that m.. and m.r 
13 iJ 

.r .... mi~mij_l~mi+l~ mij~mlj>ml+l] 

and qj = mi~ - mij_l . 
l 

that the Young tableaux generalise 

Tl122...kkkkk I 

223...kkkk I 
l 

• .kk [ 

The constraints are such that with the ordering of the entries defined by 

l<l<2<2<...<k<k, the entries are non-decreasing across each row from 

left to right and are strictly increasing do~ each colum from top to 

bottom• If the lowest ro~in which j and j appear are the x-th and 

~th then x~j and y~j. Finally 

w. = the number of j's - the number of ~'s in the tableau• 
3 

As before the multiplicity of each weight is just the nu~er of distinct 

patterns, or equivalently the number of distinct tableaux, whose entries 

satisfy the given constraints. 

For example in the case of the group Sp(6) , for which k=3, 

the weight w = (102) has multiplicity 5 in the irreducible 

representation <%>=<32>, corresponding to the existence of the t~leaux 

and the ~atterns 

/  oo\ / 00\ /210\ /210\ /210\ 

,o  ,o  . , .  1,  ,o  

(102) 
Hence m<32> = 5 

(4.6) 
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The symmetry group of the weight diagrams of Sp(2k) is the 

hyperoctohedral group generated by the permutations of the components 

of the weight vectors and changes of the signs of these components. For 

example 

(102) (210) m(IO2) (2TO) = 5. 
m<32> = m<32> = -<32> = m<32> = "'" 

Once more the fact that wj=pj-qj for j=l,2,...,k leads to the weight~ 

being k-dependent. Extending the example to the case of the group Sp(2k) 

yields for the weight w = (210...O) the tableaux 

(21) 3k-4. so that: m<32> = 

5. Tensor and Spinor Representations of O(2k) and O(2k+l). 

The irreducible tensor and spinor representations of O(2k) and 

O(2k+l) are specified by [ % ] and [ A;k ] respectively, where (%) 

is a partition of ~ into a non-vanishing parts with a ~ k. The 

branching rules appropriate to these representations may be derived from 

those given elsewhere (3) and take the form: 

O(2k)+O(2k-2)×U(1) [ k ] + ~ [k/qkPk] x {pk-qk } , 
Pkqk 

~;k] + X [A;~/qkp J x ({pk-qk+~}+ {pk-qk-~} ) . 
Pkqk 

The application of these results to the chain 

O(2k)+O(2k-2)×U(1)+O(2k-4)xU(1)xU(1)+ .... +T k 

leads to the formulae 
k 

O(2k) m~k ] = X ~/qlPlq2P2 "'" qkP~ i~l 

Wo 
I 6 

pi-qi • 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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k w i ½ 
m~ = [ [A~ X/qlPlq2P2 "'" '] i~l ~ + 6 [A;X] qkPm~ Pi-qi r i r i " ~,9,E 

(5.5) 

Corresponding formulae for O(2k+l) may then be written down by noting 

the rules (3) 

O(2k+l)+O(2k) [ X ] + ~ ~/m] , 
m 

[A;I] + ~ [A;I/m] 

It is then a straightforward task to draw up the appropriate 

generalisations of Gelfand patterns and Young tableaux. The former have 

of course been given Gelfand and Tseitlin (9) . In defining the latter 

care has to be taken in interpreting the S-function quotients. It is 

necessary to use the modification rules (3'I0'II) for both tensor and 

spinor representations of the group O(n). If this is done the resulting 

tableaux provide an easy way of deriving results such as: 

(21) (A;ll) 
O(2k) m[32] = 3k-5 m[A;31] = (3k 2 - 7k + 4)/2 

(21) (A;ll) 
O(2k+l) mr3~[2j = 3k-3 m--;31~[A ] (3k 2 - k + 2)/2 

(5.6) 

(5.7) 

6. Conclusions. 

The branching rule associated with the subgroup chain leading 

from U(k) to T. was first used to calculate weight multiplicities by 
k 

Delaney and Gruber (4) , who exploited the connection with patterns and 

tableaux described here. The generalisation to the other classical 

groups was suggested by Gilmore (12'13) who did not however arrive at the 

generalised Young tableaux which are seen here to provide the most 

efficient means of calculating weight multiplicities. The great merit of 

using these tableaux is that results are readily obtained for groups of 

arbitrary rank. Considerable tables of results for the tensor and spinor 

representations of the groups O(n) have been compiled by Plunkett (14). 

It is hoped to publish these, and similar results for U(k) and Sp(2k), 

elsewhere. 



499 

References. 

I. H. Weyl, "The Theory of Groups and Quantum Mechanics", Methuen, 

London, (1931). 

2. D.E. Littlewood, "The Theory of Group Characters" Oxford University 

Press, Oxford, (1940). 

3. R.C° King, J. Phys. A: Math. Gen. 8 429 (1975). 

4. R.M. Delaney and B. Gruber, J. Math. Phys. I0 252 (1969). 

5. I.M° Gelfand and M.L. Tseitlin, Dokl. Akad. Nauk. SSSR 71 825 (1950). 

6. M. Hamermesh, "Group Theory", Addison Wesley, Reading, Mass. (1962). 

7. Y.J. Abramsky and R.C.King, Nuovo Cimento A 67 153 (1970). 

8. D.P. Zhelobenko , Miss. Math. Surveys 17 1 (1962). 

9. I.M. Gelfand and M.L. Tseitlin, Dokl. Akad. Nauk. SSSR 71 1017 (1950). 

I0. R.C. King, J. Math. Phys. 12 1588 (1971). 

ii. M.J. Newell, Proc. Roy. Irish Acad. 54 153 (1951). 

12. R. Gilmore, J. Math. Phys. II 513 (1970). 

13. R. Gilmore, J. Math. Phys. II 1853 (1970). 

14. S.P.O. Plunkett, M. Phil. Thesis, Southampton (1971). 


