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We study phase transitions in a softly brokenUð1Þ complex singlet scalar model in which the dark matter
is the pseudoscalar part of a singlet whose direct detection coupling to matter is strongly suppressed. Our
aim is to find ways to test this model with the stochastic gravitational wave background from the scalar
phase transition. We find that the phase transition which induces vacuum expectation values for both
the Higgs boson and the singlet—necessary to provide a realistic dark matter candidate—is always of the
second order. If the stochastic gravitational wave background characteristic to a first order phase transition
will be discovered by interferometers, the soft breaking ofUð1Þ cannot be the explanation to the suppressed
dark matter-baryon coupling, providing a conclusive negative test for this class of singlet models.
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I. INTRODUCTION

Scalar singlet is one of the most generic candidates for
the dark matter (DM) of the Universe [1,2], whose proper-
ties have been exhaustively studied [3–6] (see [7,8] for a
recent review and references). However, the recent results
from direct detection experiments [9–11] have pushed the
singlet scalar DM mass above a TeV-scale (except in a
narrow region around the Higgs resonance). Thus, the
singlet scalar models with the simplest scalar potential, in
which the DM is stabilized by a Z2 symmetry, appear to be
strongly constrained, less natural and less attractive.
This conclusion need not hold for specific realizations of

the singlet scalar DM idea. A neat observation was made
in [12] that for the case of a less general scalar potential
obtained by imposing an Uð1Þ symmetry that is softly
broken, first studied in [13], the direct detection cross
section is strongly suppressed at tree level by the destruc-
tive interference between two contributing amplitudes. This
result persists even if loop-level corrections to the direct
detection cross section are considered [14,15], making
the softly broken scalar singlet model really interesting.
This has motivated follow-up studies demonstrating that it
is possible for pseudo-Goldstone DM to show up at the
LHC [16] or in indirect detection [17].

Is there any other way to test the softly broken Uð1Þ
singlet DM model experimentally and to distinguish the
particularmodel frommoregeneral versions of singlet scalar
DM? A new probe of physics beyond the Standard Model
(SM) became experimentally available due to the discovery
of gravitational waves (GWs) by LIGO experiment [18,19].
It is well known that first-order phase transitions generate a
stochastic GW background [20–22], which can potentially
be probed in future space-based GW interferometers
[23,24]. While the Higgs phase transition in the SM is of
second order [25,26] and, thus, does not generate the GW
signal, in models with extended scalar sector the first-order
phase transition in the early Universe can become exper-
imentally testable by the GW experiments. (For a recent
review on phase transitions and GWs, see [27].)
GWs from the extension of the SM with a scalar singlet

have been extensively studied. In general a two-step phase
transition will take place in those models that can be of the
first order [28–35] and be testable with GWs [36–46]. The
aim of this work is to study the properties of the phase
transition in the scalar singlet model with a softly broken
Uð1Þ symmetry in order to find out whether the GW signal
can distinguish between different versions of the singlet
DM models. We reach a definitive conclusion: in this class
of models with a suppressed direct detection cross section,
the phase transition is necessarily of the second order and
no testable GW background will be generated. Therefore, if
the stochastic GW background characteristic to the first
order phase transition due to scalar singlets will be
discovered, the softly broken singlet model cannot be
responsible for that. In this case, as a consequence, the
negative results from DM direct detection experiments
cannot be explained with the ideas presented in [12]. On the
other hand, note that not discovering a GW signal would
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not rule out models with first-order phase transitions,
because to generate a large signal, the phase transition
must be strongly first-order.
This paper is organized as follows. We describe the

model in Sec. II. The phase transition in this framework is
studied in Sec. III. We conclude in Sec. IV.

II. THE MODEL

We consider the scalar potential of the SM Higgs boson
H together with a complex singlet S,

V ¼ 1

2
μ2HjHj2 þ 1

2
μ2SjSj2 þ

1

4
μ02S ðS2 þ S�2Þ

þ 1

2
λHjHj4 þ λHSjHj2jSj2 þ 1

2
λSjSj4; ð1Þ

where the μ02S term is the only one that softly breaks the
Uð1Þ symmetry S → eiαS. Without loss of generality, the
parameter μ02S can be taken to be real and positive.
We decompose the fields in the electroweak vacuum as

S ¼ vs þ sþ iχ
ffiffiffi

2
p ; H ¼

�

0
vhþh
ffiffi

2
p

�

: ð2Þ

Note that both the Higgs boson and the singlet will get a
vacuum expectation value (VEV) (the Higgs VEV is
vh ¼ 246.22 GeV). The mixing of the CP-even states h
and s will yield two CP-even mass eigenstates h1 and h2.
We identify h1 with the SM Higgs boson with mass m1 ¼
125.09 GeV [47]. Notice that the pseudo-Goldstone χ is the
DM candidate with a mass determined by μ02S .
We express the potential parameters in terms of physical

quantities in the zero-temperature vacuum, such as the
masses m2

1;2 of the real scalars, their mixing angle θ, the
pseudoscalar mass m2

χ , and the VEVs vh and vs:

λH ¼ m2
1 þm2

2 þ ðm2
1 −m2

2Þ cos 2θ
2v2h

; ð3Þ

λS ¼
m2

1 þm2
2 þ ðm2

2 −m2
1Þ cos 2θ

2v2s
; ð4Þ

λHS ¼
ðm2

1 −m2
2Þ sin 2θ

2vsvh
; ð5Þ

μ2H ¼ −
1

2
ðm2

1 þm2
2Þ þ

1

2vh
ðm2

2 −m2
1Þ

× ðvh cos 2θ þ vs sin 2θÞ; ð6Þ

μ2S ¼ −
1

2
ðm2

1 þm2
2Þ þ 2m2

χ þ
1

2vs
ðm2

1 −m2
2Þ

× ðvs cos 2θ − vh sin 2θÞ; ð7Þ

μ02S ¼ −m2
χ : ð8Þ

The tree-level direct detection DM amplitude vanishes at
zero momentum transfer,

AddðtÞ ∝ sin θ cos θ

�

m2
2

t −m2
2

−
m2

1

t −m2
1

�

≃ 0; ð9Þ

which allows one to explain the negative experimental
results from DM direct detection experiments, while still
keeping the pseudo-Goldstone DM mass in the reach of
collider searches.

III. PHASE TRANSITION

In the high temperature limit, the Uð1Þ-symmetric mass
terms take on temperature-dependent corrections:

μ2HðTÞ ¼ μ2Hð0Þ þ cHT2;

μ2SðTÞ ¼ μ2Sð0Þ þ cST2; ð10Þ

where

cH ¼ 1

48
ð9g2 þ 3g02 þ 12y2t þ 12λH þ 4λHSÞ;

cS ¼
1

6
ðλS þ λHSÞ: ð11Þ

The thermal correction to μ02S is zero, because the quartic
couplings do not break the Uð1Þ symmetry.
The cancellation mechanism (9) works only if the CP-

even scalar states mix with each other. The mass matrix
is nondiagonal only if both h and s get VEVs. For that,
the fields must end up in the ðvh; vs; 0Þ vacuum at zero
temperature. Note that we use e.g., vh as a label to indicate
a nonzero VEV of the Higgs boson, not as a particular
solution in terms of the potential parameters. Then the
phase transition pattern consistent with the DM relic
density is

ð0; 0; 0Þ → ð0; vs; 0Þ → ðvh; vs; 0Þ: ð12Þ

Both steps are second-order phase transitions.
There is no possibility to engineer a first-order phase

transition. The only alternative second step, which could
potentially be first-order [48], would be

ð0; 0; vχÞ → ðvh; vs; 0Þ: ð13Þ

For a first-order phase transition, however, both extrema
must be minima at the same time. But if the ðvh; vs; 0Þ
vacuum is a minimum, the ð0; 0; vχÞ vacuum can only be a
saddle point or maximum, because the mass squared of the
s particle is μ02S < 0 in this vacuum. When the potential
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contains a cubic term [49,50], then the phase transition (12)
into ðvh; vs; 0Þ can be of the first order, but such a term
explicitly breaks the Z2 symmetry.
The phase diagram for one particular point of the

parameter space with correct relic density [12] with the
mixing angle sin θ ¼ 0.1, the ratio vh=vs ¼ 0.291, and
masses m2 ¼ 1000 GeV and mχ ¼ 100 GeV is shown in
Fig. 1. In general, the allowed range of dark matter is
between 60 GeV and 10 TeV [12], while in [13] only a
narrow range around the Higgs resonance was studied in
detail as a viable parameter space for DM. The phase
diagram in the left panel shows the evolution of fields
(black line) from the (0,0,0) vacuum (white) through the
ð0; vs; 0Þ vacuum (red) to the ðvh; vs; 0Þ vacuum (yellow).
The phase where only the Higgs has a VEV is shown in
green. The right panel demonstrates the two phase tran-
sitions. Both phase transitions are of the second order: in
the first one the singlet VEV, in the second one, the Higgs
VEV begins to grow continuously at the critical temper-
ature, marked by the thin vertical line.

IV. CONCLUSIONS

Pseudo-Goldstone DM in singlet scalar models with
softly broken Uð1Þ presents an appealing possibility to
sidestep constraints from direct detection on a more general
class of scalar singlet DM with a Z2 symmetry. Motivated

by the aim to find additional tests of this framework, we
study the thermal phase transition pattern of the model. In
order the model to work, the mechanism that cancels the
direct detection cross section needs both the Higgs boson
and the singlet to have VEVs. For that reason, the possible
phase transitions in this model are necessarily of the second
order and, therefore, cannot produce any detectable gravi-
tational wave signal.
Thus, a possible future discovery of a stochastic gravi-

tational wave background characteristic to strong first-
order phase transition would strongly disfavor or even rule
out this class of models. In this case the suppression of DM
scattering cross section off nuclei must be explained by
other means.
However, not discovering a signal would not rule out

models with first-order phase transitions, because to gen-
erate a discoverable signal, the phase transition must be
strong.
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FIG. 1. Phase diagram and thermal evolution of VEVs in the considered model. Left panel: Thermal evolution of the field to T ¼ 0
(dot) is shown by the black line. The scalar fields undergo a two-step phase transition from the completely symmetric phase (white) to
the intermediate phase (red), where only the singlet has a VEV, to the electroweak vacuum (yellow), where both Higgs and the singlet
have VEVs. Right panel: The two phase transitions. Evolution of the VEVs of the Higgs boson (green) and the complex singlet (red)
with temperature. Critical temperatures are marked by thin vertical lines.
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