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1 Introduction

In the last few years, the problem of computing one-loop amplitudes efficiently has been
attacked by several groups. Standard techniques, such as the Passarino-Veltman [1] tensor
reduction and its many variances [2]-[4], have been used for many years, and have produced
a great deal of useful results [5]. Nowadays new developments, in which the amplitude is
directly reconstructed are widely used. Such approaches rely on the fact that the basis of
one-loop scalar integrals is known in terms of Boxes, Triangles, Bubbles and (in massive
theories) Tadpoles, so that any one-loop amplitude M can then be written as:

M = Z d; Box; + Z ¢; Triangle; + Z b; Bubble; + Z a; Tadpole; + R,  (1.1)

where d;, ¢;, b; and a; are the coefficients to be determined and R is a remaining piece,
called Rational Term (RT). The first attempt in this direction was the Unitarity approach
[6], by Bern, Dixon and Kososwer, in which two-particle cuts are performed on the one-loop
amplitude (or, equivalently, two tree-level amplitudes are glued) in order to get information
on the coefficients in eq. 1.1. The method produced many useful — mainly analytical —
results, especially for massless theories [7], but a systematic way to determine all the
coefficients of eq. 1.1 was missing.

Later it was shown by Britto Cachazo and Feng [8] that the d; coefficients can be
easily separated from the rest and computed by introducing quadruple cuts in which the
loop integration momentum is completely frozen by four on-shell conditions. It was then
possible to perform a full reconstruction of the amplitude for theories with only boxes,
such as N = 4 super-Yang-Mills. However, a systematic procedure to get all the other
coeflicients was still missing.



Recently the problem of determining in a systematic way the coefficients d;, ¢;, b; and
a; was completely solved by the OPP method of refs. [9] and [10]. Within this method,
eq. 1.1 is substituted by its unintegrated counterpart, at the price of introducing the so
called spurious terms, defined by the property of vanishing upon integration over the loop
momentum ¢. In practice, since the functional form in ¢ of the spurious terms is universal,
one has to find, besides d;, ¢;, b;, and a;, an additional set of coefficients. The OPP method
allows to find all those coefficients by computing the unintegrated amplitude at different
values of ¢ for which 4, 3, 2 and 1 propagators vanish. At each stage, the coefficient that
have been already computed are numerically subtracted from the original amplitude, so
that, by using such an OPP subtraction, it is possible to disentangle all the coefficients in
a systematic way. The OPP approach was inspired by the unitarity method and the tensor
reduction at the integrand level [11].

More recently the OPP subtraction method was used by the authors of [12] together
with the Unitarity approach, giving rise to the so called generalized Unitarity techniques,
that, nowadays, include both semi-analytical [13] and fully numerical versions [14]-[15].
Nevertheless, in practice, only the so called cut-constructible part of the amplitude, namely
that one proportional to the one-loop scalar functions, can be easily obtained. The remain-
ing Rational Terms R [16]-[17] require some additional work. For instance, in [14] the Ra-
tional part is obtained by explicitly computing the amplitude at different integer values of
the space-time dimensions (n). Other possibilities are to get them through n-dimensional
cuts [18] or with the help of recursion relations [19].

On the other hand, in the OPP method, two classes of terms contributing to R nat-
urally arise [20]. The first class, called Ry, can be derived straightforwardly within the
same framework used to determine all other coeflicients, while the second class, called Rs,
is coming from the (n — 4)-dimensional part of the amplitude and can be obtained by
computing, once for all, tree-level like Feynman Rules for the theory under study. More-
over, it is worthwhile to mention that only the full R = Ry + Ro constitutes a physical
gauge-invariant quantity in dimensional regularization. On the other hand, R; can be di-
rectly read out from the analytic expressions of the cut-constructible part of the amplitude,
irrespectively of the method used to derive it.

In this paper, we explicitly compute the entire set of Feynman Rules producing Rs
needed in any (massive or massless) QCD 1-loop calculation. We perform our calculation
in the £ = 1t Hooft-Feynman gauge. As a consequence, also the §Z couterterms [2] needed
to build renormalized scattering amplitudes should be computed in the £ = 1 gauge.

In the next section we briefly recall the origin of Ro and give a detailed computational
example. In section 3, we list our results and present numerical comparisons with known
amplitudes. In section 4 we draw our conclusions and, in three appendices, we collect
diagrams and formulae used for the calculation as well as our results expressed in the color
connection language.



2 The origin of R,

Before carrying out our program, we spend a few more words on the origin of Ry, that is
also necessary for setting up the framework of our calculation.

Our starting point is the general expression for the integrand of a generic m-point
one-loop (sub-)amplitude
i N(q) > 2 2

AlG) = =—=——"—=——, D;=(G+p;)°—m; 2.1

(@) b0 P (q+pi) i (2.1)

where ¢ is the integration momentum. In the previous equation, dimensional regulariza-

tion is assumed, so that we use a bar to denote objects living in n = 4 + ¢ dimensions

and a tilde to represent e-dimensional quantities. Notice that, when a n-dimensional in-

dex is contracted with a 4-dimensional (observable) vector v, the 4-dimensional part is

automatically selected. For example
g-v=(g+q) -v=q-v and ﬁzf’yﬂv“:ﬁ. (2.2)
An important consequence is
=+ (2.3)

The numerator function N(q) can be further split into a 4-dimensional plus an e-
dimensional part

N(q) = N(q) + N(¢*, q.€) . (2.4)

N(q) lives in 4-dimensions while N (G2, q, €), once integrated, gives rise to the RTs of kind
Ro, defined as

1 _ N(@%q.¢)
Ry = dlg—17 2.5
2 @wﬂ¢/ “DyD;---D,, 1 (2:5)

To investigate the explicit form of N (G%,q,¢) it is important to understand better the
separation in eq. 2.4. From a given integrand A(g) this is obtained by splitting, in the
numerator function, the n-dimensional integration momentum ¢, the n-dimensional gamma
matrices J; and the n-dimensional metric tensor g”” into a 4-dimensional component plus
remaining pieces:

q=q+q,
ﬁlﬂ = ’YM + :Y[L 9
g = g" + " . (2.6)

A practical way to determine Ry is then computing, once for all and with the help of
eq. 2.6, tree-level like Feynman Rules by calculating the Ro part coming from one-particle
irreducible amplitudes up to four external legs. The fact that four external legs are enough
is guaranteed by the ultraviolet nature of the RTs, proven in [16]. Through eq. 2.5 a set
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Figure 1. Diagrams contributing to the gluon self-energy.

of basic integrals with up to 4 denominators is generated, containing powers of ¢ and € in
the numerator. A list that exhausts all possibilities in the £ = 1 't Hooft-Feynman gauge
is presented in appendix A. Notice that, according to the chosen regularization scheme,
results may differ. In eq. 2.5 we use the 't Hooft-Veltman (HV) scheme, while in the Four
Dimensional Helicity scheme (FDH), any explicit € dependence in the numerator function
is discarded before integration. Therefore

1 N(§ g, e =
9 _ /dnq _ (C;I ’Qa67 0) . (27)
FDH (27T)4 DOD1 s Dm,1

As an explicit and simple example of the described procedure, we detail the calculation

1

of Ry coming from the gluon self-energy. The contributing diagrams * are drawn in figure 1.

As for the ghost loop with 2 external gluons, we can write the numerator as

2

N(@ = el S 0+ 0 (2.8)

Since p; and po are external Lorentz indices, that are eventually contracted with 4-
dimensional external currents, their e-dimensional component is killed due to eq. 2.2.
Therefore, Ro = 0 for this diagram, being N(ch,q, €) = 0. With this same reasoning,
one easily shows that ghost loops never contribute to Ra, even with 3 or 4 external gluons.

The contribution due to Ny quark loops is given by the second diagram of figure 1,
whose numerator reads

_ g2 )

N(@) = ~ i Ny Tl @+ g 5+ m) (29)
where the external indices p1 and po have been directly taken in 4 dimensions. By anti-
commuting v#2 and ¢ and using the fact that, due to Lorentz invariance, odd powers of ¢
do no contribute, one immediately arrives at the result

~ 2
N(@) = g5 Nf aras Gy (2.10)

Eq. 2.10, integrated with the help of the first one of eqs. A.1, gives the term proportional
to Ny in the 2-point effective vertex of figure 2.

1Our conventions and notations are listed in appendix B.
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Figure 2. Effective vertices contributing to Ry in pure QCD. > P(234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {t%t% } = t*¢% + t%t%. Agy = 1 in the HV
scheme and Agy = 0 in the FDH scheme. N, is the number of colors and Ny is the number of
fermions running in the quark loop.
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Figure 3. Effective vertices contributing to Ry in mixed QCD. Agy = 1 in the HV scheme and
Anv = 0 in the FDH scheme. In the case of neutral external vectors or scalars, the formulae should
be read as the contribution given by one quark loop. In the case of charged external particles, they
refer instead to the contribution of one quark family.



Finally, the numerator function of the diagram with a gluonic loop reads

2
\T (A g aibc rasc =~ ~ o = =
N(q) - _2(27T)4f b f 2 meB@(Z% —q—D, q)vp,;/ﬁ(_p7 —4q,9 +p) 9 (211)

with V given in eq. B.1. The contraction of the two V' tensors gives terms containing
C=d+7, and g5 =4+, (2.12)
from which one obtains

e
2(2m)4

N((f, q, 5) = - falbcf@d) 29#1#2 62 + 45(.7;” Quy + 26‘1#11%2 + 26]);“ Quy + €Ppi Dps ] .

(2.13)

Performing the integration, gives the expression written in the first line of figure 2, where
the contribution proportional to Ary is generated by the € dependence of eq. 2.13.

The complete set of effective vertices obtained with the described technique is presented
in the next section.

3 Results

As already explained, 1-loop irreducible Feynman diagrams up to 4 external legs are suffi-
cient to compute Ry for any amplitude with any number of external legs. Each contributing
diagram has been calculated analytically by using the Feynman rules listed in appendix B,
which also contains the list of the relevant graphs. Different contributions have then been
summed and reorganized to identify the effective Ry vertices listed in figures 2 and 3,
which represent the main result of this work and that allow to determine Ry needed in the
computation of the NLO QCD corrections to any process in the Standard Model.

In figure 2 we collect the “pure” QCD effective vertices, namely all vertices gener-
ated by QCD corrections to processes with external QCD particles. The complete set
of contributing diagrams is given in figure 5. In figure 3 we list, instead, the “mixed”
QCD vertices generated by QCD corrections to processes containing at least one external
electroweak particle. In this paper, this last class is parametrized by introducing generic
couplings of a (pseudo)-vector and of a (pseudo)-scalar with a quark line, as in the last two
vertices of figure 4. The non vanishing diagrams contributing to Ry are listed in figure 6.

In all figures, N¢o is the number of colours, Ny is the number of fermions running
in the quark loop and Agy is a parameter allowing to read our formulae in two different
regularization schemes: Ay = 1 corresponds to the HV scheme of eq. 2.5 while Aipy = 0
in the FDH scheme defined in eq. 2.7.

Notice that the whole structure of the three-gluon effective vertex is always propor-
tional to the tree-level, while the four-gluon effective vertex is more complicated.

Notice also that, when a completely antisymmetric € tensor occur in the formulae of
the mixed QCD vertices, it always multiplies the axial coupling a. Therefore, summing
over all quark loops gives zero in the Standard Model, due to the anomaly cancellation.
Such terms can then be taken to be zero from the very beginning.



In figures 2 and 3 the effective vertices are given in terms of traces of color matrices
and structure constants. The same result in terms of color connections is presented in
appendix C.

Just as a showcase of our ability to reproduce the rational terms Rg correctly for
higher multiplicity of external legs, we have computed the 1-loop six gluon amplitude using
an extension [21] of HELAC-PHEGAS [22], HELAC-1loop, that includes virtual corrections
through an interface with CutTools [10].

The comparison against the results of ref. [23] is given in table 1, that refers to one
color configuration only and to the following phase space point:

p1=(—3.000000000000000, 1.837117307087384, —2.121320343559642, 1.060660171779821)

p2=(—3.000000000000000,—1.837117307087384,2.121320343559642, —1.060660171779821)
ps=(2.000000000000000, 0.000000000000000, —2.000000000000000, 0.000000000000000)
pa=(0.857142857142857,0.000000000000000, 0.315789473684211, 0.796850604480708)
p5=(1.000000000000000, 0.866025403784439, 0.184210526315789, 0.464829519280413)
pe=1(2.142857142857143, —0.866025403784439, 1.500000000000000, —1.261680123761121)

(3.1)

We find an excellent agreement among the results when including the Rs contribution.
Finally, we mention that, always with the help of HELAC-11loop, we successfully compared
our predictions for six-quark 1-loop amplitudes (with three different flavours) with the
results produced by the GOLEM group [4]. In addition, for all sub-processes included in
the 2007 Les Houches wish list [24], we explicitly checked that the validity of the Ward
Identity for a single on-shell external gluon (when present) is preserved by the sum R; +Ra.

4 Conclusions

We have derived the tree-level Feynman rules needed to compute the Rational Terms Rso
in QCD, both using explicit color configurations and in the color connection language. We
listed all effective vertices generated by QCD corrections to processes with external QCD
particles and all possible mixed QCD effective vertices generated by QCD corrections to
processes with at least one external EW particle. The inclusion of the derived vertices in
an actual calculation gives numerical agreement with known expressions for processes up
to 6 external legs. So we have explicitly checked that 1,2,3 and 4-point vertices are enough
to solve the problem for an arbitrary number of external legs. In addition, all relevant
integrals needed to compute Ry in the £ = 1 ’t Hooft-Feynman gauge have been explicitly
listed. The next obvious step is the determination of the Feynman Rules needed in the
complete Standard Model. We leave this for a future publication.
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CC Ry Ro | Ag|
++++++
2.417991007837614 - 10~17 — 4 4.793031572579084 - 10~ 17
— — — 0.529806483643855
- - 0.529806483661295

4.105695207224680 - 10~16 | —0.1382337836650667 | —9.500309796373058 - 10~2 | 0.520806483661327
i 1.504282270415678 - 10-15 | 44 0.360080242802749 | i 0.1156249885933891
—+++++

9.755813312628327, -10~19 4 4 1.353208509225273 - 10— 16
— — — 3.25996704351899
- - 3.25996705427236

3.812889817765093 - 10~ 10 1.762222300120013 | —3.777721263438941 - 1072 | 3.25996705427262
+i 1.011089409856760 - 10~° | +i 2.633781480837803 |  +i 0.1327460047079652
——++++

—2.806856204696471 — 7 28.35268397049988
— — — 1373.74753500854
— — - 1373.74753500828
33436785.84436276 —33438045.33273086 6.674685589922374 1373.74753500852

—i 14771512.10073091 +i 14772021.20888190 +i 61.85407887654488
—+—-+—+

3.131859164936308 — 7 0.2073463331363808
_ — — 151.043950328960
_ — — 151.043950337947

—370592.0271294174 370518.3987124019 —6.563948099154568 151.043950337955
i 28580469.70894824 —i 28580599.25806605 | 44 0.9730930522347396
+—F—+-

3.131859164936308 + ¢ 0.2073463331363808
— — — 153.780101529836
— — 153.780101415986
—370533.5799977572 370518.3987124019 —6.563948999154568 153.780101615242
—1 28580750.73535662 414 28580599.25896605 —1 0.9730930522347396

Table 1. Results for the finite part of the 1-loop virtual amplitudes for some helicity configurations
for the case of six external gluons for the phase space point given in the text. The first row for each
helicity configuration is the tree-order result. The second (unitarity) and the third (semi-numerical)
rows are the results for |Ag| taken from [23]. The fourth is our result for the cut-constructible, CC
(with renormalization scale = /s), R; and Rs terms in the HV scheme as well as for the |Ag|
in FDH scheme, to facilitate comparisons. The relation of HV scheme result to the FDH scheme
result is given in [23].
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A The needed integrals

In this appendix, we collect the integrals needed to perform our calculation of Ro. A non
vanishing contribution is generated only by integrals with zero or higher superficial degree
of divergence. They fall in two classes, namely integrals involving even powers of ¢ (odd
powers do no contribute due to Lorentz invariance) and Pole Parts (P.P.) of ultraviolet
divergent integrals. This second class is relevant when using regularization schemes (such
as the HV one) where the e dependence in the numerator is kept. In the following, we



further classify the integrals according to the number of denominators D; = (g+p;)? — ml2
The results for the Pole Parts have been checked against ref. [2].

2-point integrals:

~2 .2 2
_q 2 2 (pi—pj)
d%a*f‘“fﬁm+mﬂ 3 | T00:
)
P.P.</dnq—1— > :_21L7
Di i €
)
_q iT
P.P. </dan_%A> = T(pz +Di)us
il/j
in?® [ (pi —pj)® — 3m7 — 3m}
P.P. </ dnqgﬂq_lf> = g{ ‘ J 5 . ]g;w — 2pz’,upiu — 2pj,upju (Al)
il/j

—PiuPjiv — pj,upiu} .

3-point integrals:

~9 -2
_ q 1T
d"f==—= = —— +0(e),
/ D:D; Dy, 2 (€)
~9 -2
_ 3%q im
dtg—Ft_ — 2 _(p.. O
/ "D.D;D, ~ 6 (Pijk ) + O(e)

-2
 quy i
P.P. d'g—L"_ ) = ——gq,,
(/ quDjDk> 9¢ I
> ir2

= g |:gﬂl/(pljk)P + gl/p(pijk;),u, + gup(p”k)y] , (AQ)

with p;;r = p; +pj + Dk-

4-point integrals:

» .,
[ 15555 =~ 00
~2 2 -2
Lﬂ”aaaa:‘%*o@’
P.P. ( / d"q%) = —g (gwgpo + GupGve + guogyp> . (A.3)

B QCD Feyman rules and diagrams

In this appendix, we present the Feynman rules and the diagrams used in the calculation.
In figure 4 we list QCD propagators and vertices as well as our parametrization of the Vqq
and Sqq couplings. Ghosts are drawn with dashed arrows, vectors with wavy lines and

,10,
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Figure 4. Feynman rules used for the computation. The last two vertices parametrize a generic
coupling of a (pseudo)-vector V and of a (pseudo)-scalar S with a quark line, respectively.

scalars with dotted lines; Greek letters denote Lorentz indices; k,l = 1,2,3 are the three
colors of the quarks while all remaining color indices range from 1 to 8; f%¢ is the QCD
SU(Nco1) structure constant and t* (a = 1,...,8) are the color matrices in the fundamental

representation; myg is the quark mass and Vy, 5 (D1, P2, p3) is given by

V,uuu,us (plap2ap3) = Guipe (p2 - pl)ug + Gusps (p3 - p2)ﬂ1 + Guzm (pl - p3)u2 . (B'l)

Finally, in figure 5 and 6, we draw the pure QCD graphs and the mixed QCD diagrams
which give a non vanishing contribution to Re. As explained in section 2, diagrams involving
QCD FP ghosts do not to contribute to Re and are not included.
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Figure 6. Mixed QCD diagrams contributing to Ra.
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C Effective vertices in the color connection language

In this appendix, we write down the Feynman rules for the QCD effective vertices in the
color connection language. Such rules are obtained by contracting any gluon index a;,
appearing in the vertices of figures 2 and 3 , by a color matrix thli. Any gluonic color
index a; is therefore projected out in terms of two quark like color and anti-color indices
k; and [;. By then summing over gluon indices with the rule

1 1
ity = 3 k031 — N—15k15ij ; (C.1)
CcO

the color part of the effective vertices can be entirely written down in terms of §’s, which
correspond to color connections. Graphically, a color connection can be represented with
a solid line, in such a way that two solid lines stand for a gluon, while one single solid
line symbolize a quark. Finally, different color lines can be connected by the exchange of
a scalar colorless gluon, represented by a dashed line. In such a language, the pure QCD
effective vertices of figure 2 can be written as in figures 7 and 8. Analogously, the last five
mixed QCD vertices of figure 3 give the results reported in figures 9-11.

,13,
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Figure 7. Effective 4-gluon vertices contributing to Ry in pure QCD in the color connection
language. Ny is the number of fermions running in the quark loop.
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Figure 8. Effective 3- and 2- point vertices contributing to Ry in pure QCD in the color connection
language. All momenta are incoming. The first three diagrams represent the ggg and gg vertices;
the last three ggg and gg. Ny is the number of fermions running in the quark loop.
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Figure 10. Effective VVgg and SSgg vertices contributing to Re in mixed QCD in the color
connection language. In the case of neutral external vectors or scalars, the formulae should be read
as the contribution given by one quark loop. In the case of charged external particles, they refer
instead to the contribution of one quark family.
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