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Abstract

The quasinormal modes (QNMs) associated with the decay of massless arbitrary spin fields around a

Schwarzschild black hole are investigated by using the continued fraction method in a united form and their

universal properties are found. It is shown that these QNMs become evenly spaced for large angular quantum

number l (for the boson perturbations) and j (for the fermion perturbations) and the spacing is independent

of the spin number s and overtone number n, and in the complex plane they have an interesting trend which

depends on n before they become the same value with the increasing l (or j). It is also shown that the angular

quantum number has the surprising effect of increasing real part of the QNMs, but it almost does not affect

imaginary part, especially for the lowest lying mode. In addition, the spacing for imaginary part of the QNMs

at high overtones is equidistant and equals to −i/4M , which is independent of l (or j) and s.
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I. INTRODUCTION

The evolution of the external field perturbation around a black hole is dominated by three stages

[1]: the initial wave burst, the damped oscillations called QNMs and the power-law tail behavior of

the waves at very late time. The QNMs have become astrophysically significant with the realistic

possibility of gravitational wave detection because they provide us the information about the main

parameters of a black hole such as its mass M , charge Q and angular momentum per unit mass a ≡
J/M [2]. In addition, the study of the QNMs can lead to a deeper understanding of the thermodynamic

properties of black holes in loop quantum gravity [3] [4], and the QNMs of anti-de Sitter black holes

have a direct interpretation in terms of the dual conformal field theory [5] [6] [7].

Regge and Wheeler first studied the linear perturbations of static black holes in 1957 [8]. This

pioneering work on this topic has led to many investigations concerning the evolution of various fields

in different black holes. Vishveshwara [9] and Press [10] first found the QNMs through numerical

computations of the time evolution of the gravitational waves around the black hole. Chandrasekhar

and Detweiler proposed the first approach for calculating the QNMs numerically and gave the values of

the first few least-damped QNMs [11]. In 1985, Leaver [12] presented a continued fraction method used

for calculating the QNMs of both static and rotating black holes. Then, Onozawa et al improved this

method for the extreme case in 1996 [13]. The continued fraction method provides extremely accurate

values for the QNMs of each black hole which involves the scalar, electromagnetic and gravitational

perturbations [14, 15]. Recently it was extended to compute the QNMs of the Dirac field [16, 17].

However, as far as we know nobody use this method to study the Rarita-Schwinger perturbations

around a black hole.

Nowadays, it seems that people are searching some possible way to deal with the QNMs of any

spacetime with arbitrary spin fields in a united form [18–21]. When we compute the QNMs of the

Dirac field perturbations around a black hole, we found that the wave functions and potentials of

the Dirac field in the static and rotating spacetimes can be expressed as new forms [17][22]. Starting

from the new wave functions and potentials, we can easily extend the continued fraction method

to calculate the QNMs associated with the decay of massless scalar (s = 0), Dirac (s = ±1/2),

electromagnetic (s = ±1), Rarita-Schwinger (s = ±3/2) and gravitational (s = ±2) perturbations

around a Schwarzschild black hole in a united form. The main purpose of this paper is to calculate the

QNMs associated with the decay of massless boson and fermion perturbations around a Schwarzschild

black hole using the continued fraction method and to find universal properties of the QNMs of these

perturbations.

The organization of this paper is as follows. In Sec.2 the wave equations of the Schwarzschild black

hole with arbitrary spin fields are obtained by using Newman-Penrose formalism. In Sec.3 a short
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description of the continued fraction method is given. In Sec. 4 the numerical results for the QNMs

of the Schwarzschild black hole with arbitrary spin fields are presented. Last section is devoted to a

summary and conclusion.

II. WAVE EQUATIONS OF THE SCHWARZSCHILD BLACK HOLE

In the Boyer-Lindquist coordinates (t, r, θ, ϕ), the metric for the Schwarzschild black hole is given

by

ds2 =
∆r

r2
dt2 − r2

∆r
dr2 − r2(dθ2 + sin2θdϕ2), (2.1)

where ∆r = r2 − 2Mr and M represents the mass of the black hole . Throughout this paper we use

G = c = 1. The null tetrad of this black hole can be taken as

lµ = (
r2

∆r
, 1, 0, 0),

nµ =
1
2
(1, − ∆r

r2
, 0, 0),

mµ =
1√
2r

(
0, 0, 1,

i

sinθ

)
. (2.2)

Assuming that the azimuthal and time dependence of our fields will be the form e−i(ωt−mϕ), we find

that the derivative operators are

D ≡ lµ∂µ = D0, ∆ ≡ nµ∂µ = −∆r

2r2
D†0,

δ ≡ mµ∂µ =
1√
2r
L†0, δ∗ ≡ m∗µ∂µ =

1√
2r
L0, (2.3)

where

Dn =
∂

∂r
− iK

∆r
+

n

∆r

d∆r

dr
, D†n =

∂

∂r
+

iK

∆r
+

n

∆r

d∆r

dr
,

Ln =
∂

∂θ
+

m

sin θ
+ n cot θ, L†n =

∂

∂θ
− m

sin θ
+ n cot θ, K = r2ω. (2.4)

Using the Newman-Penrose formalism [23], we can easily obtain the separated equations for

massless scalar, Dirac, electromagnetic, Rarita-Schwinger and gravitational perturbations around a

Schwarzschild black hole [17] [24] [25]

[∆rD1−sD†0 + 2(2s− 1)iωr − (As + 2s)]∆s
rRs = 0, (2.5)

[L†1−sLs + (As + 2s)]Ss = 0, (2.6)

with the spin number s = 0, +1/2, +1, +3/2 and +2;

[∆rD†1+sD0 + 2(2s + 1)iωr −As]Rs = 0, (2.7)
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(L1+sL†−s + As)Ss = 0, (2.8)

with s = −1/2, −1, −3/2 and −2. As is the angular separation constant which can be determined

analytically for the boson perturbations [26–28]

As = (l − s)(l + s + 1), l = |s|, |s|+ 1, · · · ; (2.9)

for the fermion perturbations

As = (j − s)(j + s + 1), j = |s|, |s|+ 1, · · · , (2.10)

where l and j both are the quantum number characterizing the angular distribution for the boson

and fermion perturbations respectively.

Introducing an usual tortoise coordinate

dr∗ =
r2

∆r
dr (2.11)

and resolving the equation in the form

Rs =
∆−s/2

r

r
Ψs, (2.12)

we can rewrite the radial Eqs. (2.5) and (2.7) as

d2Ψs

dr2∗
+ [ω2 − Vs(r)]Ψs = 0, (2.13)

where

Vs(r) = isωr2 d

dr

(
∆r

r4

)
+

1
r4

[
(s + As)∆r +

(
s

2
d∆r

dr

)2
]
− ∆r

r3

d

dr

[
∆r

d

dr

(
1
r

)]
. (2.14)

with s = 0, ±1/2, ±1, ±3/2 and ±2. Thus, we will study the QNMs of the Schwarzschild black

hole with arbitrary spin fields from Eqs. (2.13) and (2.14).

III. THE CONTINUED FRACTION METHOD

It is well known that the quasinormal frequencies are defined to be the modes with purely ingoing

waves at the event horizon and purely outgoing waves at infinity [11]. The boundary conditions of the

wave function Ψs at the event horizon (r = r+) and infinity (r → +∞) for the Schwarzschild black

hole can be given by

Ψs ∼




(r − r+)−
s
2
−iωr+ , r → r+;

r−s+iωr+eiωr, r → +∞.
(3.1)
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A solution to Eq. (2.13) which satisfies the desired behavior at the boundary can be written as

Ψs = r−
s
2
+2iωr+(r − r+)−

s
2
−iωr+eiωr

∞∑

n=0

an

(
r − r+

r

)n

. (3.2)

The sequence of the expansion coefficients an is determined by a three-term recurrence relation starting

with a0 = 1:

α0a1 + β0a0 = 0,

αnan+1 + βnan + γnan−1 = 0, n = 1, 2, .... (3.3)

where the recurrence coefficients αn, βn, and γn are given in terms of n and the black-hole physical

parameters by

αn = n2 + (C0 + 1)n + C0,

βn = −2n2 + (C1 + 2)n + C3,

γn = n2 + (C2 − 3)n + C4 − C2 + 2, (3.4)

with

C0 = −s + 1− 2iωr+,

C1 = −4 + 8iωr+,

C2 = s + 3− 4iωr+,

C3 = −s− 1 + 4iωr+ + 8ω2r2
+ −As,

C4 = s + 1− 2(s + 2)iωr+ − 4ω2r2
+. (3.5)

The radial series solution (3.2) converges and the boundary conditions (3.1) are satisfied as the

frequency ω is a root of the three-term continued fraction equation [12, 13]

0 = β0 − α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
α3γ4

β4− · · · . (3.6)

So we will calculate the QNMs of the Schwarzschild black hole with arbitrary spin fields using the

continued fraction method first proposed by Leaver with this united three-term recurrence relation

(3.6).

IV. NUMERICAL RESULTS

In order to compare with other authors’ results, we set r+ = 2M = 1. Since Eqs. (2.5) and (2.7)

are proportional to complex-conjugate equations, it will suffice to study s = 0, −1/2, −1, −3/2

and −2 only. In this section we present the numerical results of the QNMs of the Schwarzschild black
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hole with arbitrary spin fields obtained by using the numerical approach just outlined in the previous

section. The results will be organized into two subsections: the large angular quantum number and

high overtones. We note that our results are in good agreement with the Shu’s and Cho’s results

which are obtained by the WKB approach if we take M = 1 [18, 32].

A. Large angular quantum number

The fundamental QNMs (n=0) with arbitrary spin fields for k = 1 to k = 30 are listed in the Table

I (k = l for the boson perturbations and k = j + 1/2 for the fermion perturbations). Figs. 1 and 2

show that ∆ω = ωk+1 − ωk as a function of k for the first 4 QNMs with arbitrary spin fields. From

the table and figures we know that the QNMs become evenly spaced for large k and the spacing is

given by

∆ω =
2

3
√

3
− 0.0000i, (4.1)

which is independent of s and n. This numerical result confirms the analytical work which was first

presented by Ferrari and Mashhoon [29, 30].
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FIG. 1: The spacing ∆ωR as the functions of k for the first 4 QNMs with arbitrary spin fields. In each panel,

the five dashed lines from the top to the bottom correspond to s = −2, −3/2, −1, −1/2 and 0 respectively.

These panels shows that the spacing of the real part is 0.3849 = 2
3
√

3
for large k.
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TABLE I: Fundamental quasinormal frequencies of the Schwarzschild black hole with k = 0 to k = 30 for the

boson perturbations (k = l) and j = 0.5 to j = 29.5 for the fermion perturbations (k = j + 1/2).

k ω0 ω−1 ω−2 ω−1/2 ω−3/2

0 0.220910-0.209791i

1 0.585872-0.195320i 0.496527-0.184975i 0.365926-0.193965i

2 0.967288-0.193518i 0.915191-0.190009i 0.747343-0.177925i 0.760074-0.19281i 0.622583-0.180174i

3 1.35073-0.192999i 1.31380-0.191232i 1.19889-0.185406i 1.14819-0.192610i 1.06010-0.187501i

4 1.73483-0.192783i 1.70619-0.191720i 1.61836-0.188328i 1.53471-0.192540i 1.46950-0.189757i

5 2.11922-0.192674i 2.09583-0.191963i 2.02459-0.189741i 1.92059-0.192507i 1.86873-0.190752i

6 2.50377-0.192610i 2.48399-0.192102i 2.42402-0.190532i 2.30614-0.192490i 2.26306-0.191281i

7 2.88842-0.192570i 2.87128-0.192189i 2.81947-0.191019i 2.69150-0.192479i 2.65465-0.191595i

8 3.27312-0.192544i 3.25801-0.192247i 3.21239-0.191341i 3.07675-0.192473i 3.04455-0.191798i

9 3.65787-0.192525i 3.64435-0.192288i 3.60359-0.191565i 3.46192-0.192468i 3.43332-0.191936i

10 4.04264-0.192512i 4.03041-0.192317i 3.99358-0.191728i 3.84704-0.192464i 3.82132-0.192034i

11 4.42744-0.192501i 4.41627-0.192339i 4.38267-0.191849i 4.23212-0.192462i 4.20874-0.192107i

12 4.81225-0.192493i 4.80198-0.192356i 4.77108-0.191942i 4.61717-0.192462i 4.59575-0.192162i

13 5.19708-0.192487i 5.18757-0.19237i 5.15897-0.192015i 5.00219-0.192459i 4.98243-0.192205i

14 5.58191-0.192482i 5.57306-0.192381i 5.54645-0.192073i 5.38720-0.192457i 5.36885-0.192239i

15 5.96676-0.192478i 5.95848-0.192389i 5.93359-0.192121i 5.77220-0.192456i 5.75507-0.192266i

16 6.35161-0.192475i 6.34383-0.192396i 6.32046-0.192160i 6.15718-0.192456i 6.14112-0.192288i

17 6.73647-0.192472i 6.72913-0.192402i 6.70710-0.192192i 6.54215-0.192455i 6.52704-0.192307i

18 7.12133-0.192470i 7.11439-0.192407i 7.09355-0.192219i 6.92711-0.192455i 6.91285-0.192322i

19 7.50619-0.192468i 7.49961-0.192412i 7.47985-0.192242i 7.31207-0.192454i 7.29856-0.192335i

20 7.89106-0.192466i 7.88480-0.192415i 7.86600-0.192262i 7.69702-0.192454i 7.68419-0.192347i

21 8.27593-0.192465i 8.26997-0.192418i 8.25204-0.192279i 8.08197-0.192453i 8.06974-0.192356i

22 8.66081-0.192463i 8.65511-0.192421i 8.63798-0.192294i 8.46691-0.192453i 8.45524-0.192365i

23 9.04569-0.192462i 9.04022-0.192424i 9.02383-0.192307i 8.85185-0.192453i 8.84069-0.192372i

24 9.43056-0.192461i 9.42533-0.192426i 9.40960-0.192319i 9.23679-0.192453i 9.22609-0.192378i

25 9.81544-0.192461i 9.81041-0.192428i 9.79531-0.192329i 9.62172-0.192452i 9.61145-0.192384i

26 10.2003-0.192460i 10.1955-0.192429i 10.1809-0.192338i 10.0067-0.192452i 9.99678-0.192389i

27 10.5852-0.192459i 10.5805-0.192431i 10.5665-0.192346i 10.3916-0.192452i 10.3821-0.192393i

28 10.9701-0.192458i 10.9656-0.192432i 10.9521-0.192353i 10.7765-0.192452i 10.7673-0.192397i

29 11.3550-0.192458i 11.3506-0.192433i 11.3376-0.192359i 11.1614-0.192452i 11.1526-0.192401i

30 11.7399-0.192457i 11.7357-0.192434i 11.7230-0.192365i 11.5464-0.192452i 11.5378-0.192404i

Motivated by Eq. (4.1), we further investigate the QNMs with arbitrary spin fields for large angular

quantum number. Fig. 3 shows the behavior of the first 4 QNMs with arbitrary spin fields for k = 1

to k = 40. We find that in the complex plane these QNMs have an interesting trend before they

become the same value with the increasing k. For n = 0 the QNMs with s = 0 and −1/2 will tend
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FIG. 2: The spacing ∆ωI as the functions of k for the first 4 QNMs with arbitrary spin fields. In each panel,

the five dashed lines from the top to the bottom correspond to s = 0, −1/2, −1, −3/2 and −2 respectively.

These panels shows that the spacing of the imaginary part becomes zero for large k.

to the same value from the bottom which are contrary to those with s = −1, −3/2 and −2. But for

n = 1 the QNMs with s = 0, −1/2 and −1 will tend to the same value from the bottom which are

different from those with s = −3/2 and −2. For n = 2 the QNMs with s = 0, −1/2, −1 and −3/2

will tend to the same value from the bottom except s = −2. For n ≥ 3 the QNMs with arbitrary spin

fields all tend to the same value from the bottom.

From the Table I and Fig. 3 we learn that the real part of this same value only depends on k and

the imaginary part only depends on n for large angular quantum number and the distribution can be

expressed as (for the cases n ¿ k)

ωn ≈ 2
3
√

3

[
l(orj) +

1
2
− (n +

1
2
)i

]
, (4.2)

which is independent of s. This numerical result agrees with the Ferrari and Mashhoon’s analytical

work [29, 30].

B. High overtones

There is a great deal of effort which has been contributed to compute the QNMs of the

Schwarzschild black hole for the boson and Dirac perturbations [2, 12, 17–21, 29–32]. But the Rarita-
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FIG. 3: Graphs of the first 4 QNMs with arbitrary spin fields for k = 1 to k = 40. In each panel, the five dashed

lines from the top to the bottom correspond to the modes for s = −2, −3/2, −1, −1/2 and 0 respectively.

Schwinger perturbations around the Schwarzschild black hole have not been computed by using the

continued fraction method. Therefore, we will study the gravitino QNMs (s = −3/2) for the high

overtones in this subsection.
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FIG. 4: Dependence of the gravitino QNMs (s = −3/2) on j for the Schwarzschild black hole. The left figure

shows that j has the surprising effect of increasing real part ωR, and the right one shows that it almost does

not affect imaginary part ωI , especially for the lowest lying mode.

The gravitino QNMs of the Schwarzschild black hole for j = 1.5 to j = 5.5 and n = 1 to n = 15

are given by Table II and their dependence on j is described by Fig. 4. We learn from Table I-II and

Fig. 4 that j has the surprising effect of increasing real part of the gravitino QNMs, but it almost
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TABLE II: Gravitino quasinormal frequencies of the Schwarzschild black hole for j = 1.5 to j = 5.5 and n = 1

to n = 15.

n ω (j = 1.5) ω (j = 2.5) ω (j = 3.5) ω (j = 4.5) ω (j = 5.5)

1 0.562595-0.561302i 1.02278-0.570846i 1.44209-0.573812i 1.84700-0.575121i 2.24505-0.575815i

2 0.473382-0.993289i 0.956371-0.977592i 1.39057-0.971049i 1.80520-0.967913i 2.20995-0.966192i

3 0.393367-1.46850i 0.876418-1.41586i 1.32163-1.38829i 1.74668-1.37405i 2.15970-1.36600i

4 0.332719-1.96285i 0.798736-1.88258i 1.24433-1.82858i 1.67643-1.79704i 2.09720-1.77823i

5 0.286619-2.46360i 0.731529-2.36818i 1.16735-2.29023i 1.60027-2.23823i 2.02614-2.20485i

6 0.250036-2.96630i 0.675875-2.86411i 1.09639-2.76845i 1.52373-2.69655i 1.95060-2.64651i

7 0.219764-3.46949i 0.629985-3.36518i 1.03371-3.25794i 1.45085-3.16924i 1.87437-3.10250i

8 0.193842-3.97265i 0.591705-3.86865i 0.979327-3.75448i 1.38387-3.65289i 1.80045-3.57103i

9 0.171028-4.47564i 0.559259-4.37316i 0.932298-4.25522i 1.32354-4.14436i 1.73079-4.04982i

10 0.150495-4.97842i 0.531316-4.87804i 0.891450-4.75839i 1.26971-4.64118i 1.66639-4.53656i

11 0.131664-5.48101i 0.506902-5.38295i 0.855700-5.26291i 1.22178-5.14154i 1.6075-5.02923i

12 0.114113-5.98343i 0.485303-5.88772i 0.824139-5.76813i 1.17903-5.64420i 1.55396-5.52619i

13 0.0975169-6.48571i 0.465986-6.39228i 0.796036-6.27366i 1.14074-6.14832i 1.50536-6.02622i

14 0.0816168-6.98791i 0.448546-6.89660i 0.770808-6.77929i 1.10628-6.65333i 1.46120-6.52838i

15 0.0661918-7.49005i 0.432674-7.40066i 0.747993-7.28486i 1.07509-7.15888i 1.42098-7.03202i

does not affect imaginary part, especially for the lowest lying mode. The conclusion is also true for

other perturbations [2, 12, 17, 29–32].

0 5 10 15
n

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

D
Ω
I

j=1.5

j=2.5

FIG. 5: The spacing ∆ωI versus overtone number n with j = 1.5 and 2.5 for the gravitino QNMs. The figure

shows that ∆ωI ≈ −1/4M for large n.

From Table II and Fig. 5 we know that the gravitino QNMs for j = 1.5 and 2.5 demonstrate the
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following asymptotic behavior

Im(ωn+1)− Im(ωn) ≈ − i

4M
, as n →∞, (4.3)

which is the same as that of the boson and Dirac perturbations [2, 12, 17]. This conclusion not only

confirms the results which are obtained by the analytical approaches [19–21], but also resolves the

controversy on the spacing for the imaginary part of the QNMs for the spin-1/2 field [16, 17]. Thus,

we can conclude that the spacing for imaginary part of the QNMs at high overtones is −i/4M which

is independent of l (or j) and s.

V. SUMMARY

The wave equations for the boson and fermion perturbations in the Schwarzschild black hole

spacetime are obtained by means of the Newman-Penrose formulism. Then, the QNMs of this black

hole with arbitrary spin fields are evaluated by using the continued fraction method. Five universal

properties of the QNMs for these perturbations are listed in the following: (i) These QNMs become

evenly spaced for large angular quantum number l (for the boson perturbations) and j (for the fermion

perturbations) and the spacing is given by ∆ω = 2
3
√

3
− 0.0000i, which is independent of s and n. (ii)

These QNMs have an interesting trend which depends on n before they become the same value with

the increasing k in the complex plane. (iii) The distribution of the QNMs for large values l (or j)

and small n can be written by ωn ≈ 2
3
√

3

[
l(orj) + 1

2 − (n + 1
2)i

]
, which is independent of s. (iv) The

angular quantum number l (or j) has the surprising effect of increasing real part of the QNMs, but

it almost does not affect imaginary part, especially for the lowest lying mode. (v) The QNMs also

become evenly spaced for large n and the spacing for the imaginary part is equidistant and equals to

−i/4M , which is independent of l (or j) and s.
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