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ABSTRACT

In this thesis, we explored three different implications of scalar fields in warped extra dimension.

• First, scalar fields were employed to dynamically generate singular branes in Randall-

Sundrum (RS)-like models by appropriate profiles — the smooth/thick-branes. In the

context of thick-branes, we constructed four different setups: (i) a smooth generalization

of RS2 where a scalar field dynamically generates a singular brane allowing symmetric

or asymmetric warped geometries on either side of the brane; (ii) a double thick-brane

scenario which mimics two positive tension branes and allows to address the hierarchy

problem; (iii) a Z2 symmetric triple thick-brane; and (iv) a dilatonic thick-brane scenario.

The stability of background solution is verified in all the above mentioned setups.

• Second, we considered a thick-brane cosmological model with warped fifth-dimension

where dynamics of the 4D universe is driven by time-dependent five-dimensional (5D)

background. Different scenarios were found for which the cosmic scale factor a(t, y) and

the scalar field φ(t, y) depend non-trivially on time t and fifth-dimension y.

• Third, we discussed a symmetric 5D model with three D3-branes (IR–UV–IR) where the

Higgs doublet and the other Standard Model (SM) fields are embedded in the bulk. The

Z2 geometric symmetry led to the warped KK-parity for all the bulk fields. Within this

setup we investigated the low-energy effective theory for the bulk SM bosonic sector. It

turned out that the zero-mode scalar sector contains an even scalar which mimics the SM

Higgs boson and a second, stable odd scalar particle which is a dark matter candidate.

The model that resulted from the Z2-symmetric background geometry resembles the

Inert Two Higgs Doublet Model. Implications for dark matter were discussed within this

model.
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) of particle physics has been the most successful theory of elementary

particles and their interactions, except gravity. Its predictions have been tested and verified in

many experiments over the last few decades. The last missing piece of the SM was the Higgs

boson, which has been found at the Large Hadron Collider (LHC) by ATLAS [8] and CMS [9]

collaborations in 2012. The properties of the newly found particle – a Higgs boson – are very

similar to that of the SM predictions, hence verifying the SM as the most accurate theory of

elementary particles.

Apart from the enormous success of the SM, it is commonly believed that the SM is not

the complete theory but is an effective theory of a more complete theory, since there are

many unanswered puzzles that cannot be answered within the framework of the SM. Some

of the puzzles are pure theoretical in nature, motivated by naturalness, e.g. gauge hierarchy

problem, fermion mass hierarchy problem etc. and the others are observational in nature, e.g.

dark matter, dark energy etc. There are many models beyond the SM which try to answer

some of these questions, among them the most celebrated are the supersymmetry and extra

dimensions 1. In this dissertation we take the road through extra dimensions and see how one

can answer some of these puzzles.

The simplest way to phrase the gauge hierarchy problem is to ask: why gravity is much

weaker than the other fundamental forces of nature? In other words, why the gravity mass

scale (Planck scale) is much bigger than the electroweak mass scale, i.e. MPl ' 1019 GeV �
mEW ' 103 GeV? The huge hierarchy between the gravity and electroweak mass scales is

“bad” because it prevents fundamental scalars (like SM Higgs) to have small mass 2. The

reason lies in the fact that scalars get large contributions (proportional to the cutoff scale

Λ) to their masses due to quantum corrections. For example, the main contribution to the

1For reviews on supersymmetry, see for example [10, 11] and for extra dimensions, see [12, 13, 14, 15, 16, 17, 18].
2The gauge bosons and the fermions masses are protected by the gauge and chiral symmetries, respectively, but
there is no symmetry present in the SM which insures light scalars.
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1. Introduction

quantum corrections to the Higgs boson (h) mass, within the SM at the 1-loop level of the

perturbative expansion, comes from the exchanges of the top quark (t), massive gauge bosons

(W, Z) and Higgs boson (h), as is shown in the following Feynman diagrams:

h h

t

t̄ h h

W,Z

h h

h, χ

The quantum corrections within the SM to the tree-level Higgs mass squared are:

δSMm2
h =

3Λ2

8π2v2

[
4m2

t − 2m2
W −m2

Z −m2
h

]
,

where v is vacuum expectation value (vev) of the SM, mi are the masses for i = t,W,Z, h (top

quark, W , Z and Higgs bosons), and Λ is the cutoff scale. If the SM is valid up to the Planck

scale then the cutoff scale Λ ∼ MPl. The above equation implies that the Higgs mass should

be of the order of Planck mass in contradiction with the observed Higgs mass mh ' 125 GeV.

This is only possible if there is large fine-tuning (cancellation) between the tree-level Higgs

mass and the quantum corrections. To avoid this fine-tuning one must assume that there is

some new physics beyond the SM (BSM) which gives quantum contributions to the Higgs mass

such that it cancels the large quadratically divergent part of the SM. One of the example of

such a BSM theory is supersymmetry, see for reviews [10, 11].

Arkani-Hamed, Dimopoulos and Dvali [19, 20, 21] proposed an alternative to supersymmetry

for a solution to the hierarchy problem where compact flat extra dimensions were considered to

show that the fundamental gravitational mass scale can be of the order of a few TeV with large

volume of extra dimensions. Hence in such theories with large extra dimensions the hierarchy

problem is alleviated by the virtue of large extra dimensions. In the models with flat extra

dimensions the fine-tuning problem is not fully solved as these models require “large volume” of

the extra dimensions which is another fine-tuning problem by itself. This pathology of the flat

extra dimensions were resolved in the seminal work of Randall and Sundrum (RS) [22] which

provided an elegant solution to the hierarchy problem without the requirement of large volume

of extra dimension. Their proposal involves one extra dimension with a non-trivial warp factor

due to the assumed anti-de Sitter (AdS) geometry along the extra dimension. Moreover, their

model involves two D3-branes localized at the fixed points of an orbifold S1/Z2; a “UV-brane”

at y = 0 and an “IR-brane” at y = L. The solution for the RS geometry is [22, 23],

ds2 = e−2k|y|ηµνdxµdxν + dy2, (1.1)

where k is the curvature of the AdS space. In RS1 model [22] it was assumed that the

Standard Model (SM) is localized on the IR-brane, whereas the gravity is localized on the

UV-brane and propagates through the bulk to the IR-brane. They famously showed that if

2



the 5D fundamental theory involves only one mass scale M∗ – the Planck mass in 5D – then,

due to the presence of non-trivial warping along the extra dimension, the effective mass scale

on the IR-brane is rescaled to mKK ∼ ke−kL ∼ O( TeV) and hence ameliorates the hierarchy

problem for mild values of kL ∼ O(35) with k 'M∗.
Usually the models with extra dimensions are required to be compactified as the gravity at

large distances is almost perfectly described by 4D general relativity. It has been pointed out

by Randall and Sundrum in their second seminal paper [23] that the extra dimension can be

“infinite” and yet it can lead to nearly standard 4D gravity. The main idea in this second

paper (RS2) is that a single D3 brane of positive tension is embedded in a 5D AdS geometry.

They showed that the 4D graviton is localized on the brane and the low energy effective gravity

is nearly 4D general relativity, hence RS2 is an alternative to compactification. However, the

RS2 model having just one D3 brane is not addressing the hierarchy problem.

In spite of a great success of brane-world models in explaining some of the SM puzzles,

a common pathology associated with these models is the presence of singular (Dirac delta)

branes without any dynamical mechanism of generating them. One of the main goal of this

dissertation is to provide smooth generalizations of RS-like models where the singular branes

are dynamically generated. Some of the aspects of this issue were addressed and it was shown

in Refs. [24, 25, 26], that a kink-like background scalar field configuration – the smooth/thick

brane – could mimic a singular brane. Moreover, it was shown by [25, 26] that only a positive

tension brane can be mimicked by a real scalar field configuration and hence the RS2 can be

smoothed by a scalar field configuration. On the other hand RS1 cannot be smoothed by a

scalar field configuration because of mainly two reasons:

• The negative tension brane is not possible to mimic with a real scalar field minimally

coupled to gravity [25].

• Periodic solutions like RS1 are impossible to achieve with a smooth non-trivial scalar

profile [27].

It is important to note that the above two conclusions are made for the case when the scalar

field is minimally coupled to gravity, the generalization is explored in part of this dissertation

with a non-minimal coupled scalar-gravity scenario. In this thesis we employ the scalar field

with different profiles to dynamically generate different brane-world scenarios and provide a

general prescription of modeling branes within warped extra dimensions. Another important

question related to the thick-branes models is the 5D cosmological evolution of such models.

In this dissertation we also explore this question, i.e. the 5D cosmological evolution of the

thick-brane models, where we allow the 5D background to depend not only on fifth-dimension

but also on time and analyze the 4D cosmological evolution.

Another outstanding puzzle of the SM is the lack of a candidate for dark matter (DM) which

constitutes 83% of the observed matter density in the universe [28]. The most popular models

of DM assume that the DM interaction strength is of the same order as that of the electroweak,

hence known as weakly interacting massive particle (WIMP), see for reviews [29, 30, 31, 32].

3



1. Introduction

In this dissertation we will consider a DM model involving an extra dimension in particular a

warped extra dimension. Since the extra dimensional models have Kaluza-Klein (KK) modes

corresponding to the bulk fields therefore it is natural to ask if the lightest stable KK-particle

can be a candidate for DM.

In what follows we explore three different roles of scalar fields in warped extra dimensions:

• First, we consider smooth generalization of RS models with scalar fields. In the context

of thick-branes, we construct a setup which can potentially solve the hierarchy problem

due to non-trivial warping along the extra dimension, similar to that of RS1 model.

Generalization of RS2 is also considered within thick-brane scenarios and it is shown that

any scalar field profile can mimic the singular branes provided couple of mild properties

are met.

• Second, a cosmological model is presented in the context of thick-branes in 5D warped

extra dimension where dynamics of the 4D universe is driven by time-dependent 5D

background with the bulk scalar field. Different scenarios are found for which the cosmic

scale factor a(t, y) and the scalar field φ(t, y) depend non-trivially on time t and fifth-

dimension y.

• Third, we consider a bulk scalar (Higgs) field in a Z2 symmetric warped geometric setup

which allows the even and odd KK-modes. We explore implications of the bulk Higgs

field in the Z2 symmetric warped geometry. In the zero-mode effective theory the even

zero-mode Higgs mimics the SM Higgs boson while the lowest odd KK-mode of the bulk

Higgs field – the dark Higgs – is stable and hence can serve as a candidate for dark

matter.

1.1. Structure of the dissertation

Chapter 2 of this thesis contains a brief review of RS models and their generalizations with

singular branes. We consider two generalizations of RS-models with singular branes:

1. A Z2-symmetric generalization of RS1, where we extend the RS1-like warped geometry

in such a way that the whole geometric setup becomes symmetric around a fixed point

in the bulk. Two Z2 symmetric warped configurations are possible. In the first, two

identical AdS patches are symmetrically glued together at a UV fixed point, while in the

second, two identical AdS patches are symmetrically glued together at an IR fixed point.

Our focus is on the geometric configuration when the two AdS copies are glued together

at the UV fixed point, referred as “IR-UV-IR geometry”.

2. Generalization of RS2 allowing different AdS geometries on either sides of the UV-brane,

hence resulting to an asymmetric geometric setup.

The smooth generalizations of RS models with scalar field configurations are discussed in

Chap. 3. We consider a thick-brane generalization of the RS2 with a single thick-brane such

that a scalar field configuration can give a class of RS2-like models in a certain limit where the

bulk-cosmological constants on each side of the brane can have different values. We present a

4



1.1. Structure of the dissertation

thick-brane model which can address the hierarchy problem, like RS1 but it does not require

compactification, like RS2. We employ a scalar field configuration which has a double kink-like

profile and it mimics two positive tension branes. The distance between the two thick-branes

is adjusted such that if the gravity is localized on one of the thick-branes and the Higgs field

is localized on the other then the hierarchy problem can be addressed. We also consider a Z2

symmetric triple thick-brane model which mimics IR-UV-IR setup in the brane-limit, where

all the branes have positive tension. The stability of the thick-brane background solutions is

also the addressed in this chapter.

The cosmological implications of a thick-brane model are the subject of Chap. 4. We con-

sider a 4D conformal time τ - and fifth-dimension y-dependent scale-factor a(τ, y) and the bulk

scalar field φ(τ, y) which constitutes the thick-brane. We discuss different scenarios where

the cosmological evolution of the 5D geometric setup leads to different 4D cosmological solu-

tions. Analytic and numerical analyses are presented for different scenarios for the thick-brane

cosmology.

In Chap. 5 we place all the SM fields, including the Higgs doublet, in the bulk of the IR-UV-

IR geometry. The geometric Z2 geometric symmetry (y → −y symmetry) leads to “warped

KK-parity”, i.e. there are towers of even and odd KK-modes corresponding to each bulk field.

We focus on electroweak symmetry breaking (EWSB) induced by the bulk Higgs doublet and

low energy aspects of the 4D effective theory for the even and odd zero-modes assuming the

KK-mass scale is high enough ∼ O(few) TeV. In the zero-mode effective theory the even and

odd Higgs doublets mimic a two-Higgs-doublet model (2HDM) scenario with the odd doublet

similar to the inert doublet but without corresponding pseudoscalar and charged scalars — the

“truncated” inert-doublet model. All the parameters of this truncated 2HDM are determined

by the fundamental 5D parameters of the theory and the choice of boundary conditions for

the fields at boundary branes. The symmetric setup yields an odd Higgs zero-mode that is a

natural candidate for dark matter. We compute the one-loop quadratic (in cutoff) corrections

to the two scalar zero modes within the effective theory and discuss their mass splitting. The

dark matter candidate is a WIMP — we calculate its relic abundance in the cold dark matter

paradigm.

Chapter 6 comprises the summary and conclusions. Moreover, we supplement this thesis

with two Appendices:

• The linearized Einstein equations corresponding to a general 5D scalar-gravity warped

geometries are presented in Appendix A, where we give a general treatment to the lin-

earized scalar, vector and tensor perturbations. The results obtain in this Appendix are

generic and are used in the main text especially to address the issue of localization of

gravity and stability of the background solutions.

• In Appendix B we discuss spontaneous symmetry breaking (SSB) of a discrete symmetry

with a real scalar in the bulk of our geometric setup. Many of the results obtained in

this Appendix, especially the wave-functions of scalar fields in AdS geometries and the

mass splitting between different KK-modes, are generic and are used in Chap. 5.

5



1. Introduction

1.2. Conventions and notations

In this dissertation, we use the mostly plus metric signature, i.e. diag
(
−,+,+,+,+

)
. In our

conventions the capital roman indices represent five-dimensional (5D) objects, i.e. M,N, · · · =
0, 1, 2, 3, 5, the Greek indices label four-dimensional (4D) objects, i.e. µ, ν, · · · = 0, 1, 2, 3, and

the lowercase Roman indices i, j, · · · = 1, 2, 3 represent the 3D spatial coordinates. In our

notation a prime denotes a derivative w.r.t. the 5th coordinate y and an overdot will represent

the derivative w.r.t. time t (or conformal time τ), unless otherwise said.

We use the following most general 4D Poincaré invariant metric ansatz throughout this

thesis, unless otherwise stated:

ds2 = e2A(y)ηµνdx
µdxν + dy2, (1.2)

where A(y) is a general y-dependent warp-function and in different models it will have different

forms, hence resulting in different geometries. Here and afterwards ηµν will represent the 4D

Minkowski metric. For the 5D metric we will use gMN , which can be read from Eq. (1.2), i.e.

gMN =

(
e2A(y)ηµν 0

0 1

)
, (1.3)

and the 4D warped metric will be gµν ≡ ĝµν = e2A(y)ηµν . We use g as the determinant

of the 5D metric gMN and ĝ as the determinant of the 4D metric ĝµν . The inverse metric

gMN is defined through: gMAg
AN = δNM . The definition of a 5D covariant derivative acting

on the contravariant and covariant vectors are ∇MV N = ∂MV
N + ΓNMAV

A and ∇MVN =

∂MVN − ΓAMNVA, respectively. The 5D d’Alambertian operator ∇2 is defined as,

∇2 ≡ ∇M∇M =
1√−g∂M

√−ggMN∂N . (1.4)

The mass dimensionality of different objects in the 5D theory are as follows:

5D Ricci scalar:
[
R
]

= 2, 5D scalar field:
[
Φ
]

=
3

2
, (1.5)

5D fermion field:
[
Ψ
]

= 2, 5D vector field:
[
VM
]

=
3

2
. (1.6)

Due to the presence of singular branes in the warped extra dimensions there are discontinuities

in the values of certain functions at the location of singular branes. We define a discontinuity

or jump of a general function f(y) across a singular brane located at yα as:[
f(y)

]
yα
≡ lim

ε→0

[
f(yα + ε)− f(yα − ε)

]
. (1.7)

It is also useful to define an average value of a function g(y) across the brane at yα as:

{
g(y)

}
yα
≡ lim

ε→0

[g(yα + ε) + g(yα − ε)
2

]
. (1.8)

6



CHAPTER 2

RS MODELS AND THEIR GENERALIZATIONS

In this chapter we provide a brief review of RS models and their generalizations. The chapter

is organized as follow: In Sec. 2.1 we review background solutions of RS1 – a model with

two D3-branes compactified on S1/Z2 orbifold – and show how it can potentially solve the

hierarchy problem. We also briefly review RS2: a single brane model with non-compact extra

dimension. Section 2.2 contains background solutions of a Z2 symmetric generalization of RS1

where three D3-branes are employed. An asymmetric generalization of RS2 is considered in

Sec. 2.3. Section 2.4 is dedicated to address the issue of localization of gravity in RS2-like

models with a non-compact extra dimension.

2.1. RS models: a brief review

The idea of extra dimensions offers a possibility of explaining the hierarchy between the Planck

and the electroweak scales, therefore it has received a lot of attention during last decade or so,

for reviews see e.g. [12, 13, 14, 15, 16, 17, 18]. Randall and Sundrum proposed a very elegant

model (RS1) to solve the hierarchy problem [22] and also an attractive alternative (RS2) for a

compactification of the extra dimension [23]. Below we briefly review the two models.

2.1.1. RS1: a solution to the hierarchy problem

Randall-Sundrum model-I (RS1) [22] employs an AdS geometry on an S1/Z2 orbifold with

two D3-branes localized at the fixed points of the orbifold, a “UV-brane” at y = 0 and an

“IR-brane” at y = L, where y is the coordinate of the fifth-dimension and L = πrc, with rc

being the radius of the circle in the fifth-dimension, see Fig. 2.1. The action for RS1 model

can be written as,

SRS1 =

∫
d5x
√−g

{
2M3
∗R− ΛB − λUV δ(y)− λIRδ(y − L)

}
, (2.1)

where R is the 5D Ricci scalar, M∗ is the 5D Planck mass, ΛB is the bulk cosmological constant

and λUV (λIR) are the brane tensions at the UV(IR) fixed points. The metric ansatz considered
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Figure 2.1.: Cartoon of RS1 geometry.

by Randall and Sundrum [22, 23] has the following form (1.2), i.e.,

ds2 = e2A(y)ηµνdx
µdxν + dy2, (2.2)

where e2A(y) is so-called warped factor multiplied by the 4D part of the metric. The met-

ric ansatz Eq. (2.2) has the non-factorizable form and is the most general 5D metric which

preserves the 4D Poincaré invariance.

The Einstein equation resulting from the action (2.1) is

RMN −
1

2
gMNR =

1

4M3∗
TRS1
MN , (2.3)

where RMN is the 5D Ricci tensor and TRS1
MN is the energy-momentum tensor corresponding to

the RS1 setup:

TRS1
MN = −

[
ΛBgMN +

√−gUV√−g λUV g
UV
µν δ

µ
Mδ

ν
Nδ(y) +

√−gIR√−g λIRg
IR
µν δ

µ
Mδ

ν
Nδ(y − L)

]
, (2.4)

where gUV (IR) is the determinant of the 4D induced metric g
UV (IR)
µν on the UV (IR) brane.

Following from the above Einstein equation (2.3) with the metric ansatz (2.2), one gets the µν

and 55 components as:

6A′2 = − ΛB
4M3∗

, (2.5)

3A′′ + 6A′2 = − 1

4M3∗

(
ΛB + λUV δ(y) + λIRδ(y − L)

)
. (2.6)

Equation (2.5) gives the following solution, consistent with the orbifold symmetry S1/Z2,

A(y) = −k|y|, where k ≡
√
−ΛB
24M3∗

, (2.7)

which implies that the bulk cosmological constant is negative, i.e. ΛB < 0. As the RS

geometry is periodic in y, therefore, the second derivative of warp function A(y) that results

from Eq. (2.7) as,

A′′ = −2k
(
δ(y)− δ(y − L)

)
. (2.8)
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2.1. RS models: a brief review

Now it is straight forward to see that the Einstein equation (2.6) can only be satisfied if the

following relation hold:

λUV = −λIR = 24M3
∗k. (2.9)

A priori ΛB, λUV and λIR are independent parameters but they all are interrelated through

the above relations. These relations are necessary for the 4D Poincaré invariance. This is the

so-called fine-tuning in the RS models.

With the above RS solution we can rewrite the metric (2.2) as

ds2 = e−2k|y|ηµνdxµdxν + dy2. (2.10)

The solution to RS1 geometry Eq. (2.10) is a slice of Anti-de Sitter (AdS), where k is the

inverse of the AdS radius. One can obtain the effective 4D theory of gravity by integrating-out

the extra dimension. To calculate the 4D gravitational coupling we just focus on the curvature

term:

SGR ⊃ 4M3
∗

∫
d4x

∫ L

0
dye−2k|y|√−ĝR̂,

= 2M2
Pl

∫
d4x
√
−ĝR̂, (2.11)

where ĝ and R̂ are the determinant and the Ricci scalar corresponding to the 4D metric ĝµν(x),

respectively. Above MPl is the 4D Planck mass, given as

M2
Pl =

M3
∗
k

[
1− e−2kL

]
. (2.12)

The above result implies that the 4D Planck mass depends weakly on the size of extra dimension

L, i.e. one can get finite 4D effective theory of gravity with very large extra dimension, which

is the main result of RS2 as will be described in the next section.

Below we show how RS1 gives a possible solution to the hierarchy problem. It is important

to note that RS1 assumes the SM is localized on the IR-brane, whereas gravity is localized

on the UV-brane and propagates through the bulk to the IR-brane. To understand how the

hierarchy problem is addressed in RS1, let us consider the action for the SM and in particular

for the Higgs field localized at the IR-brane with the following action:

SHiggs = −
∫
d4x
√−gIR

{
gµνIR∂µH

†∂νH −m2|H|2 + λ|H|4
}
, (2.13)

where gIR is the determinant of the 4D induced metric on the IR-brane gIRµν = e−2kLηµν , with

L = πrc and rc being the radius of compactification. Above m is the Higgs mass parameter in

the 5D theory. The above brane localized action for the Higgs field can be written as:

SHiggs = −
∫
d4x

{
e−2kLηµν∂µH

†∂νH −m2e−4kL|H|2 + λe−4kL|H|4
}
. (2.14)
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Figure 2.2.: The geometric configuration of RS2.

In order to obtain a canonically normalized Higgs field, we rescale, H → ekLH, such that,

SHiggs = −
∫
d4x

{
ηµν∂µH

†∂νH −m2e−2kL|H|2 + λ|H|4
}
,

= −
∫
d4x

{
ηµν∂µH

†∂νH − µ2|H|2 + λ|H|4
}
, (2.15)

where µ ≡ me−kL is the effective Higgs mass parameter at the IR-brane. If we assume that the

5D fundamental theory involves only one mass scale M∗ ' O(1019) GeV – the Planck mass in

5D – then, due to the presence of non-trivial warping along the extra dimension, the effective

mass scale on the IR-brane µ = me−kL ' O(103) GeV for mild values of kL ∼ O(35). This is

the geometric solution to the hierarchy problem due to Randall and Sundrum [22].

2.1.2. RS2: an alternative to compactification

Randall-Sundrum model-2 (RS2) [23] is a special case of the RS1 where the IR-brane is moved

to infinity (rc →∞ in RS1), i.e. it is no more present in the set up and the fifth-dimension y

is infinite. In other words RS2 is a non-compact 5D AdS Z2 symmetric geometry with single

D3-branes localized at the fixed point of the Z2 at y = 0, see Fig. 2.2. In the RS2 not only

the gravity is localized on the brane at y = 0 as in the RS1 but also it is assumed that the SM

is localized on this brane. The gravitational action for RS2 model can be written as,

SRS2 =

∫
d5x
√−g

{
2M3
∗R− ΛB − λδ(y)

}
, (2.16)

and metric ansatz is the same as in RS1 Eq. (2.2).

The Einstein equation resulting from the action (2.16) is

RMN −
1

2
gMNR =

1

4M3∗
TRS2
MN , (2.17)

where TRS2
MN is the energy-momentum tensor corresponding to the RS2 setup:

TRS2
MN = −

[
ΛBgMN + gµνδ

µ
Mδ

ν
Nλδ(y)

]
, (2.18)

where the parameters are defined in the previous subsection. From the above Einstein equation
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2.2. A Z2 symmetric generalization of RS1: the IR-UV-IR model

(2.17) with the metric ansatz (2.2), one gets:

6A′2 = − ΛB
4M3∗

, (2.19)

3A′′ + 6A′2 = − 1

4M3∗

(
ΛB + λδ(y)

)
. (2.20)

Equation (2.19) gives the same warp-function solution as in RS1 Eq. (2.7), i.e.

A(y) = −k|y|, where k ≡
√
−ΛB
24M3∗

, (2.21)

which implies ΛB < 0. The above solution is consistent with the geometric Z2 symmetry. The

second derivative of warp-function A(y) resulting from Eq. (2.21) is,

A′′ = −2kδ(y). (2.22)

Now it is easy to see by comparing the Einstein equation (2.20) with the above equation that:

λ = 24M3
∗k. (2.23)

This is the fine-tuning required in the RS models in order to have zero 4D cosmological constant.

With the above RS solution we can rewrite the explicit form of the RS metric as

ds2 = e−2k|y|ηµνdxµdxν + dy2, (2.24)

which implies that RS2 geometry Eq. (2.24) is a 5D AdS space with k being its curvature. It

is straight forward to see from Eq. (2.12) that the 4D Planck mass MPl is (taking rc →∞ in

Eq. (2.12)):

M2
Pl =

M3
∗
k
. (2.25)

The above relation manifests that even for a non-compact geometry the 4D effective gravity

can be recovered on the brane at y = 0 with k ' M∗ ' MPl. In Sec. 2.4 we present the

localization of gravity in detail for the RS2 model and its generalization.

2.2. A Z2 symmetric generalization of RS1: the IR-UV-IR model

In this section we consider a Z2 symmetric generalization of RS1 with three D3-branes [5].

We consider an interval y ∈ [−L,L] in the extra dimension, where on each end of the interval

y = ±L there is a D3 brane with negative tension and at the center of the interval, y = 0, we

place a positive tension brane where we assume that gravity is localized. We call the boundary

branes “IR-branes” and the brane at y = 0 we term the “UV-brane”, hence the resulting model

is called IR-UV-IR model. Since the brane tensions of the two IR-branes are the same, this

geometry is Z2 symmetric. Note that the end points of the interval at y = ±L are not the fixed

points of the Z2, the only fixed point of the Z2 is at y = 0. This set up is different from the

S1/Z2 orbifold where y = 0 and y = L are both fixed points of the Z2. The IR-UV-IR model

11
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Figure 2.3.: The geometric configuration for IR-UV-IR setup.

leads to many interesting phenomenological implications which are the subject of Chap. 5.

The 5D gravity action for such a geometry can be written as,

SG =

∫
d5x
√−g

{
2M3
∗R− ΛB − λUV δ(y)− λIRδ(y + L)− λIRδ(y − L)

}
+ SGH , (2.26)

where R is the Ricci scalar, ΛB is the bulk cosmological constant and λUV (λIR) is the brane

tension of the UV (IR)-brane . In this section the Dirac delta functions at y = ±L are defined

in such a way that their integral is 1/2. Since our geometry is compact with boundaries, the

action contains the Gibbons-Hawking boundary term, 1

SGH = −2M3
∗

∫
∂M

d4x
√
−ĝK, (2.27)

where K is the intrinsic curvature of the surface of the boundary manifold ∂M, given by

K = −ĝµν∇µnν = ĝµνΓMµνnM , (2.28)

with nM being the unit normal vector to the surface of the boundary manifold ∂M and ĝµν is

the induced boundary metric. For the 5D manifold with 4D Poincaré invariance (n5 = 1 and

nµ = 0), the intrinsic curvature reduces to

K = −1

2
ĝµν∂5ĝµν . (2.29)

The IR-UV-IR geometry and a pictorial description of such a geometric setup is shown in Fig.

2.3. The solution of the Einstein equations resulting from the above action is the RS metric

(2.10), where the AdS curvature k is related to ΛB by

ΛB = −24M3
∗k

2. (2.30)

Since the above setup is compactified on an interval y ∈ [−L,L], rather than on a circle

as in RS1, one needs to be careful and show that the solution (2.10) is compatible with the

boundaries and that the effective 4D cosmological constant is zero, see also [33]. We will see

1The Gibbons–Hawking boundary term is needed in order to cancel the variation of the Ricci tensor at the
boundaries so that the RS metric (1.2) is indeed a solution of the Einstein equations of motion.
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2.3. Asymmetric generalization of RS2

below that we need a fine tuning between the 5D cosmological constant ΛB and the brane

tensions λUV,IR in order to get zero 4D cosmological constant. One can calculate the effective

4D cosmological constant Λ̄ from the action (2.26) by integrating out the extra dimension,

Λ̄ = −
∫ L

−L
dy
√−g

{
2M3
∗R−ΛB−λUV δ(y)−λIR

[
δ(y+L)+δ(y−L)

]}
+2M3

∗
√
−ĝK

∣∣∣L
−L
, (2.31)

where R = −20A′2 − 8A′′ and ΛB = −24M3
∗A
′2 corresponding to the solution (2.10). Using

A(y) = −k|y| we find,

Λ̄ =
(
λUV − 24M3

∗k
)

+
(
λIR + 24M3

∗k
)
e−4kL, (2.32)

which can only be zero if

λUV = −λIR = 24M3
∗k. (2.33)

This result explicitly shows that one needs a positive tension brane at y = 0 and two negative

tension branes at y = ±L in order to obtain zero 4D cosmological constant. This is the usual

fine tuning which appears in brane world scenarios [22, 34, 25]. Hence the resulting geometry

is a 5D warped geometry (IR-UV-IR) with negative bulk cosmological constant, a positive

tension brane in the middle and two equal negative tension branes at the end of the interval,

see Fig. 2.3.

We would like to mention here that we are considering a rigid IR-UV-IR geometry where the

distance L is tuned in order to solve the hierarchy problem. To stabilize the IR-UV-IR setup

one needs to consider a stabilization method like Goldberger-Wise (GW) mechanism [34, 25]

by introducing a bulk scalar field with appropriate brane potentials such that the minimum

of this potential would set the size of the 5D interval and yield a compactification scale that

would solve the hierarchy problem without fine-tuning of the parameters. The GW mechanism

is beyond the scope of this thesis, hence we merely assume that such a mechanism exists.

2.3. Asymmetric generalization of RS2

In this section we generalized the RS2 such that the resulting geometry is asymmetric AdS

space [2, 3, 35]. We consider the following action which is an extension of the Randall-Sundrum

model with a single brane (RS2) [23],

S =

∫
d5x
√−g

{
2M3
∗R− Λ+Θ(y − y0)− Λ−Θ(−y + y0)− λδ(y − y0)

}
, (2.34)

where Λ+ and Λ− are 5D cosmological constants for y > y0 and y < y0, respectively, whereas,

y0 is the brane location and λ represents the brane tension. In Eq. (2.34) Θ is the Heaviside

theta function and δ is the Dirac delta function. For simplicity we will choose y0 = 0.

We are going to look for solutions of the Einstein equations taking the 5D warped metric

ansatz (1.2), i.e.

ds2 = e2A(y)ηµνdx
µdxν + dy2. (2.35)
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2. RS models and their generalizations

Then the Einstein equations following from the action (2.34) reduce to,

6A′2 = − 1

4M3∗

[
Λ+Θ(y) + Λ−Θ(−y)

]
, (2.36)

3A′′ + 6A′2 = − 1

4M3∗

[
Λ+Θ(y) + Λ−Θ(−y) + λδ(y)

]
, (2.37)

The solution of Eq. (2.36) is given by,

A(y) = −|y|k± for y ≷ 0, (2.38)

where k± ≡
√
−Λ±
24M3

∗
are the AdS curvatures for y ≷ 0. Now one can calculate the A′ and A′′

from the above expression as,

A′(y) = ∓k± for y ≷ 0 and A′′(y) = −(k+ + k−)δ(y). (2.39)

Discontinuity of A′(y) at y = 0 results in the following jump

[
A′
]
0

= − λ

12M3∗
, (2.40)

where [A′]0 is defined through Eq. (1.7). From Einstein equations (2.36) and (2.37), we have,

A′′(y) = − λ

12M3∗
δ(y). (2.41)

Comparing (2.41) and the second equation of (2.39) yields,

λ =
√

6M3∗
[√
−Λ+ +

√
−Λ−

]
, (2.42)

which is an analogue of the Randall-Sundrum relation between the bulk cosmological constant

and the brane tension, see Sec. 2.1.2. It is important to note that the relation (2.42) is necessary

in order to recover the 4D Poincaré invariance on the brane. Note that for k+ = k−, we recover

the standard RS2 results.

It will be important to see if the 4D effective gravity on the brane could be recovered and

also to check if the background solution found above is stable or not. To answer these questions

we will perturb the metric around the background solution and see how do the perturbations,

especially the zero mode of tensor perturbations which corresponds to the 4D graviton, behave

in our generalized RS2 case. This is the subject of next section.

2.4. Localization of gravity

In this section we employ general results from Appendix A and show how the gravity is localized

on the brane in the warped extra dimensions. Here we will confine ourselves to only tensor

perturbations as our goal is to investigate the properties of the localization of the gravity on

the brane in warped extra dimension. As shown in the Appendix A the tensor perturbation of
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2.4. Localization of gravity

the warped metric (1.2) can be written as

ds2 = e2A(y)(ηµν +Hµν)dxµdxν + dy2, (2.43)

where, Hµν ≡ Hµν(x, y) is the transverse and traceless tensor fluctuation, i.e.

∂µHµν = Hµ
µ = 0. (2.44)

Following the generic results from Appendix A the linearized field equation for the tensor mode

can be written as (
∂2

5 + 4A′∂5 + e−2A�(4)
)
Hµν = 0, (2.45)

where ∂5 ≡ ∂/∂y and �(4) is the 4D d’Alembertian operator. The zero-mode solution of the

above equation represents the 4D graviton while the non-zero modes are the Kaluza-Klein

(KK) graviton excitations.

In order to gain more intuition and understanding of the tensor mode equation of motion

(2.45), it is convenient to change the variables such that we can get rid of the exponential

factor in front of the d’Alembertian and the single derivative term with A′, so that we can

convert the above equation into the standard Schrödinger-like form. We can achieve this in

two steps; first by changing coordinates such that the metric becomes conformally flat:

ds2 = e2A(z)
(
ηµνdx

µdxν + dz2
)
, (2.46)

with z defined through the differential equation: dz = e−A(y)dy. In the new coordinates

Eq. (2.45) takes the form (
∂2
z + 3Ȧ(z)∂z +�(4)

)
Hµν = 0, (2.47)

where the overdot represents a derivative with respect to z coordinate. Now we can perform

the second step; removing the single derivative term in (2.47) by the following redefinition of

the tensor fluctuation

H̃µν(x, z) = e3A(z)/2Hµν(x, z). (2.48)

Hence the Eq. (2.47) will take the form of the Schrödinger equation,(
∂2
z −

9

4
Ȧ2(z)− 3

2
Ä(z) +�(4)

)
H̃µν(x, z) = 0. (2.49)

We can KK-decompose the H̃µν(x, z) into the x and z dependent parts as:

H̃µν(x, z) =
∑
n

Ĥnµν(x)H̄n(z), (2.50)

where we consider the 4D plane wave solutions for Ĥnµν(x), i.e. Ĥnµν(x) ∝ eipnx such that
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2. RS models and their generalizations

�(4)Ĥnµν(x) = m2
nĤnµν(x), with −p2

n = m2
n being the 4D mass of the tensor KK-modes.

Employing the plan-wave solutions for the 4D KK-modes we get the following equation of the

bulk profiles for the KK-mode H̄n(y):[
− ∂2

z + V(z)
]
H̄n(z) = m2

nH̄n(z), (2.51)

where V(z) is the Schrödinger-like potential,

V(z) =
9

4
Ȧ2(z) +

3

2
Ä(z). (2.52)

Note that we can rewrite the Schrödinger-like equation (2.51) in supersymmetric quantum

mechanics form as,

Q†QH̄n(z) =

(
−∂z −

3

2
Ȧ

)(
∂z −

3

2
Ȧ

)
H̄n(z) = m2

nH̄n(z). (2.53)

The zero mode (m2
0 = 0) profile, H̄0(z), corresponds to the wave-function of the graviton in

the 4D effective theory. The stability with respect to the tensor fluctuations of the background

solution is guaranteed by the positivity of the operator Q†Q in the supersymmetric quantum

mechanics version of the equation of motion (2.53) as it forbids the existence of any tachyonic

mode with negative mass square, m2
n < 0 2. So, in that case, the perturbation is not growing

in time, hence the background solution is stable.

The zero-mode wave function H̄0(z) can be obtained by noticing that

QH̄0 =

(
∂z −

3

2
Ȧ

)
H̄0 = 0, (2.54)

which implies that,

H̄0(z) = e
3
2
A(z). (2.55)

For massive KK modes one should solve the Eq. (2.51) with m2
n 6= 0, which is presented at the

end of this section.

From here on we employ the warp-function A(y) of the generalized RS2 scenario, i.e.

Eq. (2.38) (the standard RS2 results can be obtained for the special case of generalized RS2

with k+ = k−). We use the relation e−A(y)dy = dz to obtain A(z) as:

A(z) ≡ A[y(z)] = − ln(k±|z|+ 1) for z ≷ 0, (2.56)

where we used the initial condition: A(0) = 0. Now one can easily evaluate Schrödinger

2Since
∫
dz(QH̄n)2 + H̄nQH̄n

∣∣+∞
−∞ = m2

n

∫
dzH̄2

n and the first term
∫
dz(QH̄n)2 is definite non-negative, there-

fore in order to guarantee m2
n ≥ 0 the boundary term (second term) must vanish or be positive.

16



2.4. Localization of gravity

-1 0 1

-1

0

1

2

3

4

5

z

k− k+
1 1
1 1.2
1 1.5
1 1.8

V(z)

Figure 2.4.: The Schrödinger potential V(z) for different values of k±.

potential V(z) (2.52) as,

V(z) =
15

4

(
k2

+

(1 + k+|z|)2
Θ(z) +

k2
−

(1 + k−|z|)2
Θ(−z)

)
− 3

2

(
k+

1 + k+|z|
+

k−
1 + k−|z|

)
δ(z),

(2.57)

The potential V(z) is plotted in Fig. 2.4 for different values of k±.

To calculate the 4D Plank mass let us focus on the kinetic term corresponding to the 4D

graviton Ĥ0µν(x):

S0 = 2M3
∗

∫
dzH̄2

0 (z)

∫
d4x∂αĤ0µν(x)∂αĤµν

0 (x). (2.58)

Now we are able to identify the 4D Planck mass as a coefficient in front of the kinetic term for

the 4D graviton (which is the standard 4D general relativity normalization of graviton kinetic

term):

M2
Pl ≡M3

∗

∫
dzH̄2

0 (z) =
M3
∗

2k+
+
M3
∗

2k−
, (2.59)

where H̄0(z) = 1/(k±|z| + 1)3/2 satisfies the supersymmetric quantum mechanic equation

(2.53) for m2
0 = 0. Equation (2.59) implies that M2

Pl is finite (so Ĥµν(x) is normalizable) for

our generalized RS2 model. Therefore we conclude that the 4D General Relativity on the brane

can be recovered, like in the standard RS2 scenario, even if the AdS space is not symmetric

on both sides of the brane.

To complete the discussion of the generalized RS2 case we will discuss some properties

of KK modes. There have been many studies on KK modes within the context of different

non-compact 5D models, see for example [23, 35, 36, 37, 38, 39, 40, 41].

Before performing any calculations one can make the following comments resulting from the

shape of the Schrödinger-like potential V(z) shown in Fig. 2.4:

• As V(z)→ 0 for |z| → ∞, therefore the KK-mass spectrum is continuous without a gap

and it starts from m0 = 0.

• The (asymmetric) volcano-like shape of V(z) in Fig. 2.4 suggests that at large z the wave

function H̄n(z) should have a plane wave behaviour.
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2. RS models and their generalizations

• The presence of the large barriers near the brane implies that corrections to the Newton’s

law due to continuum spectrum of the KK modes will not be large [23].

For the complete analysis one needs to solve the Schrödinger-like equation (2.51) for m2 6= 0

along with the following jump condition across the brane at y = 0:

H̄ ′n(0) = −3

2
k̄H̄n(0), (2.60)

where we define:

k̄ ≡ 1

2
(k+ + k−), ∆k ≡ 1

2
(k+ − k−). (2.61)

The solution of the Schrödinger-like equation (2.51) can be written as a linear combination of

Bessel functions as follows

H̄n(z) =



an(|z|+ 1
k̄+∆k

)1/2J2

(
mn(|z|+ 1

k̄+∆k
)
)

+bn(|z|+ 1
k̄+∆k

)1/2Y2

(
mn(|z|+ 1

k̄+∆k
)
)

z > 0

cn(|z|+ 1
k̄−∆k

)1/2J2

(
mn(|z|+ 1

k̄−∆k
)
)

+dn(|z|+ 1
k̄−∆k

)1/2Y2

(
mn(|z|+ 1

k̄−∆k
)
)

z < 0

, (2.62)

where an, bn, cn and dn are integration constants and they can be fixed by the boundary

(jump) conditions. For instance, we can find an in terms of bn adopting (2.60), for z ≥ 0, the

result reads,

an =

(
− 96(k̄ + ∆k)4∆k

(8k̄ + 5∆k)πm4
n

+
32(k̄ + ∆k)2(8k̄2 + 4k̄∆k −∆k2)

(8k̄ + 5∆k)2πm2
n

)
bn. (2.63)

Similarly we can find cn in terms of dn using the boundary condition (2.60) for z ≤ 0, the

result reads

cn =

(
96(k̄ −∆k)4∆k

(8k̄ − 5∆k)πm4
n

+
32(k̄ −∆k)2(8k̄2 − 4k̄∆k −∆k2)

(8k̄ − 5∆k)2πm2
n

)
dn. (2.64)

Now we are left with two unknown constants bn and dn, one of them can be found in terms of

other using the fact that both branches for z ≷ 0 of the solution H̄n(z) must match at z = 0,

that will fix say bn in terms of dn. Using the above relations for an and cn in Eq. (2.62) and

applying the boundary condition H̄n(z > 0) = H̄n(z < 0) at z = 0, one obtains bn in terms of

dn as follows

bn =

(
k̄ −∆k

k̄ + ∆k

)5/2(
8k̄ + 5∆k

8k̄ − 5∆k

)
dn. (2.65)
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Now we can write Eq. (2.62) as,

H̄n(z) ≈ Nn



(|z|+ 1
k̄+∆k

)1/2
(
k̄−∆k
k̄+∆k

)5/2 (
8k̄+5∆k
8k̄−5∆k

)[
Y2

(
mn(|z|+ 1

k̄+∆k
)
)

+(
− 96(k̄+∆k)4∆k

(8k̄+5∆k)πm4
n

+ 32(k̄+∆k)2(8k̄2+4k̄∆k−∆k2)

(8k̄+5∆k)2πm2
n

)
J2

(
mn(|z|+ 1

k̄+∆k
)
)]

z > 0

(|z|+ 1
k̄−∆k

)1/2

[
Y2

(
mn(|z|+ 1

k̄−∆k
)
)

+(
96(k̄−∆k)4∆k

(8k̄−5∆k)πm4
n

+ 32(k̄−∆k)2(8k̄2−4k̄∆k−∆k2)

(8k̄−5∆k)2πm2
n

)
J2

(
mn(|z|+ 1

k̄−∆k
)
)]

z < 0

(2.66)

The normalization constant Nn ≡ dn can be obtained by the delta function normalization of

the H̄n(z). It turns out that the dominant contribution to Nn is not sensitive to the splitting

between k+ and k− with the result

Nn ∼
πm5/2

8k̄2
+O(∆k). (2.67)

For large values of z (z � 1/k̄) one can neglect 1/(k̄ ± ∆k) in the argument of the Bessel

functions and the KK massive modes will indeed asymptote plane waves:

H̄n(z) ≈ Nn

√
2

πmn



(
1− 15

4
∆k
k̄

)
sin
(
mn|z| − 5

4π
)

+(
4k̄2

m2
nπ
− 12k̄4+10k̄2m2

n
m4π

∆k
k̄

)
cos
(
mn|z| − 5

4π
)

z > 0

sin
(
mn|z| − 5

4π
)

+(
4k̄2

m2
nπ

+ 12k̄4−5k̄2m2
n

m4π
∆k
k̄

)
cos
(
mn|z| − 5

4π
)

z < 0

, (2.68)

where terms O(∆k)2 were neglected.

After obtaining the KK modes of the effective theory in 4D, we can now calculate the non-

relativistic gravitational potential between two test masses m1 and m2 separated by a distance

r at the location of the brane (z = 0) as

V (r) ' GN
m1m2

r
+

1

2M3∗

∞∑
n=1

∫ ∞
0

dmn
m1m2e

−mnr

r
|H̄n(0)|2, (2.69)

where the first term comes from the exchange of zero-mode (the 4D graviton), whereas, the

second term is generated by exchanges of the continuum of massive KK modes. In the above

formula GN ≡ (2M2
Pl)
−1 is the 4D Newton’s gravitational constant. The strength of KK

modes at z = 0, H̄n(0), can be easily calculated since the Bessel function of the first kind

J2

[
mn

(
|z|+ 1/(k̄ ±∆k)

)]
→ 0 for small arguments, whereas the Bessel function of the second

kind, Y2

[
mn

(
|z|+ 1/(k̄ ±∆k)

)]
for small arguments can be expanded as follows

Y2

[
mn

(
|z|+ 1/(k̄ ±∆k)

)]
' − 4

πm2
n

(
|z|+ 1

k̄±∆k

)2 −
1

π
,

' − 4k̄2

πm2
n

[
(k̄ ±∆k)|z|+ 1

]2 − 1

π
+O(∆k). (2.70)
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2. RS models and their generalizations

Now it is easy to find the approximate value of |H̄n(0)|2 from Eq. (2.66) as

|H̄n(0)|2 ' Cmn

k̄
+O

(
∆k

k̄

)2

, (2.71)

where C is a constant of the order of unity. Hence, neglecting O(∆k/k̄)2 contributions, we can

estimate the Newton’s gravitational potential as,

V (r) ' GN
m1m2

r
+

1

2M3∗

∞∑
n=1

∫ ∞
0

dmn
m1m2e

−mnr

r
C
mn

k̄
. (2.72)

Since
∑

n

∫∞
0 dmnmne

−mnr = 1/r2, therefore the above equation will read as,

V (r) ' GN
m1m2

r
+

1

2M3∗

C

k̄

m1m2

r3
,

= GN
m1m2

r

(
1 +

C

r2k̄2

)
, (2.73)

where we have used the equation (3.168) which relates the 4D Planck mass with that of the 5D

and we have adopted the approximation of small ∆k. This result shows, that the correction

due to the KK modes is small for distances larger than the AdS curvature 1/k±. Since in our

case k± is of the order of the Planck mass therefore this implies that for distances above the

Planck length one would effectively reproduce the 4D Newton’s gravitational potential.

2.5. Summary

To summarize this chapter, in Sec. 2.1 we review the RS models: RS1 provides an elegant

solution to the hierarchy problem, while RS2 gives an alternative to compactification in warped

extra dimension. Section 2.2 contains a Z2 symmetric generalization of RS1 presented in our

paper [5]; see Chap. 5 for detailed phenomenological implications due to this background

geometry. An asymmetric warped geometry is considered in Sec. 2.3 which is a generalization

of RS2 allowing different AdS geometries on either side of the brane. In the next chapter we

consider a smooth/thick-brane version of this asymmetric warped model, see also [2, 3]. The

issue of localization of gravity on a brane in our asymmetric warped extra dimensional model

is addressed in detail in Sec. 2.4.
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CHAPTER 3

BRANE MODELING IN WARPED EXTRA DIMENSION

RS models and its generalizations discussed in the previous chapter employ the singular D3

branes without any dynamical mechanism. In this chapter our goal is to provide smooth

generalizations of the RS models and their extensions by some dynamical fields. As we have

pointed out in the Introduction that there were many attempts to avoid the presence of singular

branes. It has been shown in Refs. [24, 25, 26, 39, 42, 43, 44, 45, 46, 47, 48] that the positive

tension brane could be smoothed by a background scalar field configuration which we term

here as the smooth- or thick-brane. As shown in the previous chapter the hierarchy problem is

addressed within RS1 scenario which requires two D3-branes of opposite tension and periodicity

due to the S1/Z2 orbifold. There is no satisfactory simple strategy to model a negative tension

brane at least for real scalar fields minimally coupled to gravity. For examples of existing

attempts to generate negative tension branes see [49]. Moreover, it has been shown by Gibbons,

Kallosh and Linde [27], periodicity of set-ups like RS1 are generically in conflict with the idea

of a smooth non-trivial scalar profile. To conclude, smoothing the RS1 scenario is severely

limited by mainly two reasons: (i) impossibility of generating a negative tension brane by a

real scalar field configuration and (ii) periodicity. Note that this conclusion holds at least

for the case when the scalar field is minimally coupled to gravity, the generalization will be

considered below.

On the other hand, as we discussed in Chap. 2, RS2 model having just one D3 brane is not

sufficient to address the hierarchy problem. In the following the hierarchy problem is one of

the main motivations, therefore we will try to improve the scenario by introducing a second

brane. The main purposes of this chapter:

• First, to see if one can overcome the above mentioned obstacles (periodicity and positivity

of brane tension) to achieve a smooth version of RS1 in modified gravity with the scalar

field non-minimally coupled to the Ricci scalar.

• Second, to verify if one can address the hierarchy problem with two thick-branes (which

in a certain “brane limit” mimic two positive tension singular branes) with non-compact
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3. Brane modeling in warped extra dimension

warped extra dimension.

• Third, to give a smooth generalization of the RS2 which would allow, in the “brane

limit”, different bulk cosmological constants on each side of the positive tension brane.

• Fourth, to consider a Z2 symmetric triple brane model which could mimic three positive

tension branes in the brane limit.

• Fifth, to see if a scalar field can be localized on the thick-brane.

As far as the first task is concerned, we will show, by generalizing the Gibbons-Kallosh-Linde

sum rules [27], that it is not possible to achieve the periodicity for scalar field and metric

solutions even with the scalar field non-minimally coupled to the Ricci scalar. The consistency

conditions have been discussed following the strategy of Gibbons et al. [27] in the modified

gravity set-up [50], however the authors consider the scalar field in the bulk with singular

branes, this is exactly what we want to avoid for our set-up, i.e. we wish to have smooth

branes instead of singular branes. Another attempt to overcome the problem of periodicity

was discussed in [51]. Concerning the issue of the positivity of a brane tension generated by

a scalar profile we also find that even with non-minimal scalar couplings there is no way to

generate a negative tension brane. Therefore we turn our attention to models with only positive

tension branes (e.g. the RS2) and non-compact (to avoid restrictions imposed by periodicity

a’la [27]) with real scalar field non-minimally coupled to gravity.

In order to be able to address the hierarchy problem we will propose a model with two thick

(smooth) branes, which, in an appropriately defined limit (so called “brane limit”) approaches

two singular branes. The limiting version of the model was discussed earlier by Lykken and

Randall (LR) in [36]. As we will show, in our set-up of two thick-branes, different possible

solutions for the warped factor can emerge, for instance, we can have the AdS or Minkowski

geometry in different regions along the extra dimension. We will discuss three such config-

urations, (i) the two thick-branes between the AdS vacua so that we have warped geometry

and hierarchy problem could be addressed in this set-up (this is the thick-brane version of the

Lykken-Randall model [36]), (ii) the case when we can have the Minkowski background in be-

tween the two branes and the AdS geometry to the right and left of both branes and, (iii) with

the Minkowski geometry to right or left of both branes and the AdS in the other regions along

the extra dimension, which gives the thick-brane version of the Gregory, Rubakov, Sibiryakov

(GRS) model [37] except that we have the second brane also with positive tension instead of

the negative tension as in the original GRS model with singular branes.

For the third point above, we will give a smooth or thick-brane generalization of the RS2

model which allows departure from the Z2 symmetric case by allowing different bulk cosmo-

logical constants on each side of the brane. We are going to prove that under certain mild

assumptions, the relation between the brane tension and the cosmological constants obtained

in the brane limit of the thick-brane scenario does not depend on detailed shape of the scalar

field profile. Hence a class of thick-models can be constructed with a scalar field configuration

with certain generic properties. The fourth point raised above can be addressed by considering
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3.1. Thick brane generalization of RS1 in modified gravity

a scalar field profile like three kinks and we show that the resulting geometry has Z2 geometric

symmetry and in the brane limit it mimics IR-UV-IR model with all positive tension branes.

The fifth task of localization of a scalar field on a thick-brane is addressed by allowing the

localized interactions of the scalar field with the field generating the thick-brane..

In all the above mentioned cases we study stability of the background solutions and also

existence and localization of the zero-modes of the scalar, vector and tensor (SVT) per-

turbations of the solutions. The issue of stability and localization of the zero-modes have

been extensively discussed in the past in the context of thin as well as thick-brane scenarios

[25, 26, 39, 42, 43, 52, 53, 54, 38, 55, 56, 57, 58, 59, 60, 61, 62, 63]. We find that the SVT per-

turbation equations could be transformed into a supersymmetric quantum mechanics form so

that they guarantee stability of these perturbations in all the configurations considered above

and therefore the absence of tachyonic modes. It turns out that the zero-mode of the tensor

perturbation wave function (that corresponds to the 4D gravitons) can be localized on the

desired brane by using certain boundary conditions. on the other hand the zero-modes corre-

sponding to the scalar and vector perturbations are not localized, as they are not normalizable

modes, consequently they do not affect the 4D physics.

3.1. Thick brane generalization of RS1 in modified gravity

Our first goal is to mimic (regularize) D3-branes which appear in various five-dimensional (5D)

scenarios that solve the hierarchy problem by warping the metric along the extra dimension

in the spirit of [22]. The most natural approach is to introduce a 5D scalar field φ with a

non-trivial profile (that satisfies equations of motion) that in certain limit could mimic a brane

by approaching a delta-like energy distribution along extra dimension. However, as it was

shown in [27], in the case of compact extra dimensions the idea of a non-trivial scalar profile

(a thick-brane) is severely restricted by the requirement of periodicity. Arguments adopted in

[27] apply for a scalar that is minimally coupled to gravity. Therefore here, we are going to

discuss first a class of models allowing for non-minimal scalar-gravity coupling:

SMG =

∫
dx5√−g

{
f(φ)R− 1

2
gMN∇Mφ∇Nφ− V (φ)

}
, (3.1)

where f(φ) is a general smooth positive definite function of the scalar field φ(y) which is

supposed to compose the D3-branes that are present in the RS1 scenario [22]. In other words,

branes would be made of the scalar field while other fields could be dynamically localized in

certain regions of the 5D space, see for instance Sec. 3.3 and Refs. [64, 65, 66, 67]. Thick branes

in the presence of non-minimally coupled scalar was discussed earlier by [68, 69].

We will look for a solution of the Einstein equations with the 5D warped metric ansatz (1.2),

i.e.

ds2 = e2A(y)ηµνdx
µdxν + dy2, (3.2)

where A(y) is a general warp-function. The Einstein’s equation and scalar field equation of
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motion resulting from the action (3.1) are

RMN −
1

2
gMNR =

1

f(φ)

{
1

2
TMN +∇M∇Nf(φ)− gMN∇2f(φ)

}
, (3.3)

∇2φ− dV

dφ
+R

df

dφ
= 0, (3.4)

with the energy-momentum tensor for the scalar field φ as

TMN = ∇Mφ∇Nφ− gMN

(
1

2
(∇φ)2 + V (φ)

)
. (3.5)

From the Einstein equations (3.3) and (3.4), one can get the equations of motion for the metric

ansatz (1.2) as,

6(A′)2 =
1

f

{
1

4
(φ′)2 − 1

2
V − 4A′f ′

}
, (3.6)

3A′′ + 6(A′)2 =
1

f

{
−1

4
(φ′)2 − 1

2
V − 3A′f ′ − f ′′

}
, (3.7)

φ′′ + 4A′φ′ − dV

dφ
−
(
8A′′ + 20(A′)2

) df
dφ

= 0, (3.8)

where it is understood that f and V are functions of the scalar field φ(y).

3.1.1. Thick branes with periodic extra dimensions

Here we would like to verify if the scenario with a non-trivial profile of a bulk scalar could

be consistent with periodicity in the case of compact extra dimension. The authors of [27]

derived elegant, simple and powerful sum rules that severely restrict thick-brane scenarios

with periodic extra dimensions. From our perspective the most relevant result obtained there

is the following condition that must be satisfied for periodic extra dimensions with a bulk

scalar φ when singular branes are absent:∮
dy φ′ · φ′ = 0. (3.9)

The above result implies that non-trivial scalar profiles are inconsistent with periodicity, the

only allowed configuration is φ =const.. The sum rule (3.9) was obtained assuming minimal

scalar-gravity coupling. In the following we are going to generalize the result for the case of

non-minimal coupling described by the action (3.1).

It is easy (subtracting Eqs. (3.6) and (3.7)) to derive an equation of motion that contains

only the warp function A(y) and the input profile φ(y):

3fA′′ = f ′A′ − f ′′ − 1

2
(φ′)2. (3.10)

It is useful to rewrite the above equation by the change of variables X(y) = A′(y):

X ′(y) = F (y)X(y) +G(y), (3.11)
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where,

F (y) ≡ f ′(y)

3f(y)
, (3.12)

G(y) ≡ −f
′′(y) + 1

2φ
′(y)2

3f(y)
. (3.13)

We assume that the profile is periodic with a period L:

φ(y + L) = φ(y),

then f(φ) and consequently, F (y) and G(y) are also periodic with the same period L. Since∮
dy F (y) = 0 (3.14)

it is straightforward to notice that the solution of the homogeneous part of Eq. (3.11)

X(y) = X0e
∫ y
y0
F (s)ds

(3.15)

is periodic as well.

The inhomogeneous equation (3.11) could be rewritten in the following form

[Z(y)X(y)]′ = Z(y)G(y), (3.16)

where Z(y) ≡ Z(0)e−
∫ t
0 F (s)ds is a solution of the following homogeneous equation,

Z ′(y) = −F (y)Z(y). (3.17)

Integrating (3.16) over the period we obtain the following condition:∮
dy G(y)Z(y) = 0, (3.18)

which constitutes the proper generalization of the Gibbons-Kallosh-Linde sum rule (3.9). For

F (y) defined in (3.12) one obtains Z(y) explicitly

Z(y) = Z(0)

[
f(0)

f(y)

]1/3

(3.19)

Then, after integrating by parts, the sum rule (3.18) reads∮
dy

[
4

3

1

f1/3

(
f ′

f

)2

+
1

2

(
φ′

f2/3

)2
]

= 0 (3.20)

The above sum rule again implies that even in the presence of non-minimal couplings, f(φ)R,

only the trivial profile, φ =const., is consistent with periodicity.

Note that (3.20) holds also for multicomponent scalar fields, therefore even in that case

non-trivial profiles in the absence of singular branes are excluded by periodicity. It is also
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worth mentioning that the result (3.20) could be obtained by writing the action (3.1) in the

Einstein frame where the scalar field is minimally coupled to gravity. In the Einstein frame the

standard GKL sum-rule (3.9) holds, and when the sum rule is rewritten back in the Jordan

frame defined by (3.1), the result (3.20) is reproduced.

3.1.2. Negative tension brane in modified gravity

In the RS1 set-up one of the two 3-branes must have a negative tension. Therefore in this

subsection we turn to the question weather a negative tension brane can be constructed out

of a real scalar field in the modified gravity scenario when the scalar field is non-minimally

coupled to gravity as in (3.1). By the virtue of the result of the previous subsection we discard

the possibility of periodic extra dimensions. Let us assume, without loosing any generality,

that the scalar filed φ(y) has a kink-like profile,

φ(y) =
κ√
β

tanh(βy), (3.21)

where β is a brane-thickness controlling parameter. For β →∞ (the brane limit), as it will be

discussed in details in Sec. 3.2.2, the profile φ(y) generates singular energy density localized at

y = 0 that could mimic a D3-brane.

The action for the kink configuration (3.21) can be written as,

Sφ = −
∫
d5x
√−g

[
1

2
(φ′)2 + V (φ)

]
, (3.22)

while the action for a brane localized at y = 0 with a negative tension (λ > 0) reads

S3-brane =

∫
d5x
√−gλδ(y). (3.23)

Using the equations of motion (3.6) and (3.7) we can rewrite the action (3.22) as follows

−
∫
dy

[
1

2
(φ′)2 + V

]
=

∫
dy
[
−(φ′)2 + 12(A′)2f + 8A′f ′

]
. (3.24)

As it will be clear from the next section, the only interesting set-up is such that the warp

function A(y) reaches its maximum at the brane location (so A′(0) = 0), therefore among the

above terms only the very first one contributes to the brane tension. However, as it is seen from

(3.23) there is no possibility to reproduce the sign required by the negative tension. Therefore

we conclude that a single kink-like profile can generate only a positive tension brane even in

the case of modified gravity.

3.1.3. Conclusions on thick-brane generalization of the RS1 model

As we have shown in the proceeding subsections there is a conflict between the RS1 scenario

and the idea of branes generated by bulk scalar profiles:

• As shown in Sec.3.1.1, even in the presence of the non-minimal scalar-gravity coupling

f(φ)R, periodicity in the extra coordinate can not be reconciled with a non-trivial profile.
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• One of the branes in the RS1 scenario must have negative tension, however as we have

shown in Sec.3.1.2 even if scalars interact non-minimally with gravity there is no way to

generate a brane with negative tension.

The above observations prompt to give up compactness and therefore to discuss a possibility of

mimicking the RS2 model with non-compact extra dimension. Since we would like to allow for

solution of the hierarchy problem by the virtue of warping the metric along extra dimensions,

we will introduce a scalar field, the profile of which could mimic a scenario with two branes

of positive tension with warped metric in between them. This is what we are going to discuss

in Sec. 3.2.2 limiting ourselves to the case of minimal scalar-gravity coupling, however the

analysis could be easily extended to non-minimal scenarios as well.

3.2. Modeling branes with scalar fields minimally coupled to gravity

In this section our goal is to construct thick-brane models with scalar fields minimally coupled

to gravity, which mimic positive tension branes, in a non-compact warped extra dimension.

From now onwards in this chapter we will adopt the following action for a 5D scalar field

minimally coupled to the Einstein-Hilbert gravity

S =

∫
dx5√−g

{
2M3
∗R−

1

2
gMN∇Mφ∇Nφ− V (φ)

}
. (3.25)

The Einstein’s equation and the equation of motion for φ, resulting from the action (3.25) are

RMN −
1

2
gMNR =

1

4M3∗
TMN , (3.26)

∇2φ− dV

dφ
= 0, (3.27)

where the energy-momentum tensor TMN for the scalar field φ(y) is,

TMN = ∇Mφ∇Nφ− gMN

[
1

2
(∇φ)2 + V (φ)

]
. (3.28)

From the Eqs. (3.26) and (3.27), one can get the following equations of motion for the metric

ansatz (1.2)

24M3
∗ (A′)2 =

1

2
(φ′)2 − V (φ), (3.29)

12M3
∗A
′′ + 24M3

∗ (A′)2 = −1

2
(φ′)2 − V (φ), (3.30)

φ′′ + 4A′φ′ − dV

dφ
= 0. (3.31)

Superpotential method: In the following we will layout the so-called superpotential method for

solving the above set of coupled scalar-gravity equations [25]. Although the use of this method

is motivated by supersymmetry, no supersymmetry is involved in our set-up. The method is

elegant and very efficient, in particular it applies to the system of second order differential
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3. Brane modeling in warped extra dimension

equations (3.29)-(3.31) and reduces them to a set of first order ordinary differential equations

which are much easier to deal with. It is assumed that the scalar potential V (φ) could be

expressed in terms of the superpotential W (φ) as [25],

V (φ) =
1

2

(
∂W (φ)

∂φ

)2

− 1

6M3∗
W (φ)2, (3.32)

where W (φ) satisfies the following relations,

φ′ =
∂W (φ)

∂φ
, A′ = − 1

12M3∗
W (φ). (3.33)

It is worth to mention that the standard (and straightforward) application of the superpotential

method is limited to the single scalar-field case since with multi-scalar fields it becomes difficult

to handle analytically. However in Sec. 3.3 we extend the superpotential method to two field.

We are interested in the case where the scalar field φ(y) is given by kink-like profiles 1, i.e.

φα(y) =
∑
α

κα√
βα

tanh
(
βα(y − yα)

)
, (3.34)

where βα are the thickness regulators and κα parameterize tensions of the branes in the so

called brane limit βα → ∞ (from here on we will consider βα = β, i.e. all the branes have

equal thickness, although that could be relaxed). Above α numbers kinks (anti-kinks) which

correspond to the number of thick-branes. As it will be shown in the next subsections the

profile (3.34) in the brane limit corresponds to 3-branes with brane-tensions given by

λα =
4

3
κ2
α. (3.35)

It is important to note that this set-up implies that only positive brane tensions could be mim-

icked by scalar filed configurations, as was also pointed out by DeWolfe et al. [25]. Therefore

the scalar field can not reproduce the RS1 scenario where the IR brane has a negative tension.

3.2.1. Single asymmetric thick-brane model

In this subsection we will extend the solution found in Sec. 2.3 for a singular D3-brane to a

thick-brane scenario. The action for a 5D scalar field minimally coupled to the Einstein-Hilbert

gravity is given in Eq. (3.25) and we employ the superpotential method described above to

get the asymmetric thick-brane. For a single thick-brane we consider the scalar field profile as

φ1(y) =
κ√
β

tanh(βy), (3.36)

where, as mentioned above, β is the thickness regulator and κ parameterizes tension of the

brane in the so called brane limit : β → ∞. We can find the superpotential W (φ1) in such a

way that it allows a solution of the scalar field φ1(y) as in Eq. (3.36). This can be obtained

1The profile of the scalar field could be different from the standard kink but the essential concept holds for any
profile which is monotonic and satisfies equations of motion, see Sec. 3.2.5 below.
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3.2. Modeling branes with scalar fields minimally coupled to gravity

from Eq. (3.33) as,

φ′1(y) =
∂W (φ1)

∂φ1
=
∂W [φ1(y)]

∂y

∂y

∂φ1(y)
=
W ′(y)

φ′1(y)
, (3.37)

W (y) =

∫ y

y0

(
φ′1(y)

)2
dy +W0, (3.38)

where W0 is some constant of integration. Deriving the above relation it is assumed that φ1(y)

is an invertible function of y, therefore superpotential could be explicitly written as a function

of y:

W (y) =κ2

{
tanh(βy)− 1

3
tanh3(βy)

}
+W0. (3.39)

The integration constant W0 can be fixed by initial conditions imposed upon A′(y), e.g. such

that A′(ymax) = 0) for a given ymax. The non-zero value of W0 turns out to be essential to

reproduce, in the brane limit, the generalized RS2 model presented in Sec. 2.3, whereas for

W0 = 0 the solution for A(y) is symmetric under y ↔ −y and it corresponds to the standard

RS2 in the brane limit, see Sec. 2.1.2. It is instructive to write down explicitly the brane-

limit results for the thick-brane scenario in order to determine necessary relations that must

be satisfied to reproduce the RS2 relations (2.42) in the brane limit. As we will show below

there is a direct relation between W0 6= 0 and the fact that Λ+ 6= Λ−, where Λ± are the bulk

cosmological constants for y ≷ 0 2.

Let us consider only the scalar field part of the action:

Sφ1 = −
∫
dx5√−g

{
1

2
gMN∇Mφ1∇Nφ1 + V (φ1)

}
= −

∫
dx5√−g

{(
∂W (φ1)

∂φ1

)2

− 1

6M3∗
W 2(φ1)

}

= −
∫
dx5√−g

{
βκ2

cosh4(βy)
− 1

6M3∗

[
κ2

(
tanh(βy)− 1

3
tanh3(βy)

)
+W0

]2
}
. (3.40)

In the brane limit, i.e. β →∞ we have,

lim
β→∞

{
β

cosh4(βy)

}
=

4

3
δ(y),

such that the scalar action (3.40) can be written as,

Sφ1 = −
∫
dx5√−g

{
4

3
κ2δ(y) + Λ+Θ(y) + Λ−Θ(−y)

}
. (3.41)

2After our work, presented in this subsection, has appeared in Ref. [3], another interesting study on asymmetric
thick-brane has been publicized in Ref. [70].
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3. Brane modeling in warped extra dimension

The values of the bulk cosmological constants Λ± are

Λ± = lim
β→∞

{
− 1

6M3∗

[
±κ2

(
tanh(βy)− 1

3
tanh3(βy)

)
+W0

]2}
,

= − 1

6M3∗

(
λ

2
±W0

)2

, y ≷ 0, (3.42)

and λ ≡ 4κ2/3 corresponds to the brane tension. Hereafter, we will consider the case −Λ+ >

−Λ−, that implies W0 > 0. It is also important to note that Eq. (3.42) implies that the bulk

cosmological constants Λ± are negative on either side leading to anti-de Sitter vacua or in the

case with W0 = λ/2 corresponding to a Minkowski geometry in that region of space. Equation

(3.42) implies that in order to reproduce the generalized RS2 scenario defined by a given M∗,

λ and Λ±, the following constraints on the parameters (κ, W0) of the thick-brane model must

hold:

κ2 =
3

4
λ, W0 =

√
3

2
M3∗

(√
−Λ+ −

√
−Λ−

)
. (3.43)

For consistency of the above choice for W0, the following inequality must hold:

0 < W0 <
λ

2
. (3.44)

Therefore, only scenarios with limited splitting between cosmological constants could be real-

ized: √
6M3∗

(√
−Λ+ −

√
−Λ−

)
< λ. (3.45)

Then, for W0 within the limit (3.44), Eq. (3.42) implies that

λ =
√

6M3∗
(√
−Λ+ +

√
−Λ−

)
, (3.46)

which is identical as the generalized RS2 relation (2.42). Note that for the Z2 symmetric case

(the standard RS2 model) for which Λ+ = Λ− = ΛB, we recover the RS2 relation between the

brane tension and bulk cosmological constant, i.e. λ =
√
−24M3∗ΛB (see Secs. 2.1.1 and 2.1.2)

and W0 = 0.

It is straightforward to calculate the warp function A(y) by integrating the second equation

in Eq. (3.33) w.r.t. y. The result reads,

A(y) =− κ2

72M3∗β

(
tanh2(βy) + ln cosh4(βy)

)
− W0

12M3∗
y. (3.47)

The integration constant above was fixed by the condition A(0) = 0. As we have shown in

(3.43) W0 is fixed uniquely to a non-zero value, then as a consequence, in the smooth case

the warp function A(y) will not have maxima on the brane location, i.e. y = 0 but it will be

shifted to a position ymax, for instance for M∗ = 1, κ = 1 and W0 = 0.5M4
∗ ,

ymax ∼ −
0.6

β
. (3.48)
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Figure 3.1.: This graph shows the behavior of A(y) for different values of β showing the location of
maxima for A(y) for W0 = 0.5M4

∗ and M∗ = κ = 1.

It is worth noticing that even though A′(0) 6= 0, nevertheless the maxima of A(y) approaches

the brane location, i.e. ymax → 0 as β → ∞, which is manifested from the above equation

and is illustrated in Fig. 3.1. Note that far away from the thick-brane the warp function

asymptotically approaches the generalized RS2 form as presented in Sec. 2.3,

A(y) ≈ −k±|y|, |y| → ∞, (3.49)

where

k± =
1

24M3∗
λ± W0

12M3∗
,

It is also important to note that one obtains the same behavior of A(y) (3.49), for all values

of y in the brane limit when β →∞, i.e.

A(y) ≈ −k±|y|, β →∞ for y ≷ 0.

Since φ1(y) is invertible therefore we can write the superpotential W (φ1) and the scalar po-

tential V (φ1) as follows:

W (φ1) =κ
√
βφ1

(
1− β

3κ2
φ2

1

)
+W0, (3.50)

V (φ1) =
β3

2κ2

(
φ2

1 −
κ2

β

)2

− 1

54M3∗

β3

κ2
φ2

1

(
φ2

1 − 3
κ2

β

)2

+
1

9M3∗

β3/2

κ
φ1

(
φ2

1 − 3
κ2

β

)
W0 −

1

6M3∗
W 2

0 . (3.51)

Note that the constant term of superpotential W0, in Eq. (3.50), plays the most crucial role

in producing the asymmetry in the bulk cosmological constants and then in the warp function

A(y) on the left and the right of (thick) brane. In the left panel of Fig. 3.2 we have shown

y-dependent shapes of A(y) and φ1(y), while in the right one W (φ1) and V (φ1) are plotted as

functions of φ1.

3.2.2. Double thick-brane model

In this subsection we consider two kinks corresponding to two thick-branes at locations y = y1

and y = y2. They are supposed to mimic two positive-tension branes in the brane limit, so the
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Figure 3.2.: This left graph shows the behavior of A(y) and φ1(y) as a function of y, whereas, the right
graph presents the superpotential W (φ1) and the potential V (φ1) as a function of the scalar
field φ1. The solid curves correspond to W0 = 0.5M4

∗ (asymmetric RS2 smooth model),
whereas the dashed curves represent W0 = 0 (standard RS2 smooth model), for β = 2 and
M∗ = κ = 1.

scalar profile φ2(y) could be chosen as follows,

φ2(y) =
κ1√
β

tanh
(
β(y − y1)

)
+

κ2√
β

tanh
(
β(y − y2)

)
, (3.52)

where β is the thickness controlling parameter and κ1,2 are the brane tension (strength) pa-

rameters. Using the superpotential method as described above the superpotential W (φ) could

be written as a function of y as follows:

W (y) =κ2
1

(
tanh[β(y − y1)]− 1

3
tanh3[β(y − y1)]

)
+ κ2

2

(
tanh[β(y − y2)]− 1

3
tanh3[β(y − y2)]

)
+W0, (3.53)

where in deriving Eq. (3.53) we assume that the cross term is negligible as far as β is large

and/or the separation “y2 − y1” between the two thick-branes is large such that,∫
dy

2βκ1κ2

cosh2
(
β(y − y1)

)
cosh2

(
β(y − y2)

) ≈ 0

After obtaining the superpotential W (y) we find from Eq. (3.33),

A′(y) = − 1

12M3∗

[
κ2

1

(
tanh

(
β(y − y1)

)
− 1

3
tanh3

(
β(y − y1)

))
+κ2

2

(
tanh

(
β(y − y2)

)
− 1

3
tanh3

(
β(y − y2)

))
+W0

]
. (3.54)

The integration constant W0 can be fixed by the requirement that A(y) has a maximum at

y = y0. The location of maximum with respect to y1,2 will correspond to different 5D geometric

configurations that we will discuss in Sec.3.2.2. Therefore, we choose the integration constant

W0 as,

W0 = −
[
κ2

1

(
tanh

(
β(ymax − y1)

)
− 1

3
tanh3

(
β(ymax − y1)

))
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+κ2
2

(
tanh

(
β(ymax − y2)

)
− 1

3
tanh3

(
β(ymax − y2)

))]
, (3.55)

such that A′(ymax) = 0. Now it is straightforward to find the warp factor A(y) by integrating

Eq. (3.54) w.r.t. y. The result reads,

A(y) =
1

72M3∗β

[
κ2

1

(
1

cosh2
(
β(y − y1)

) − ln cosh4
(
β(y − y1)

))

+κ2
2

(
1

cosh2
(
β(y − y2)

) − ln cosh4
(
β(y − y2)

))]
+

1

12M3∗
W0y +A0, (3.56)

where A0 is a constant of integration which can be fixed by the requirement such that A(ymax) =

0. Note that far away from the thick-branes the warp function is asymptotically AdS, i.e. of

the RS form [22, 23]

A(y →∞) ∼ −κ|y|, |y| � |y1 − y2|, (3.57)

where κ = 1
24M3

∗

(
4
3κ

2
1 + 4

3κ
2
2 −W0

)
. It is easy to see that we get the same behavior, i.e. the

RS form of A(y), for all values of y in the brane limit when β →∞, which will be discussed in

detail in the next section.

It should be mentioned that this set-up reduces to the usual single thick-brane discussed in

the previous subsection if we assume that one of the branes is far away from the other brane,

say y1 = 0 and y2 → ∞ such that the second brane can be removed from the set-up and in

that case κ = 1
24M3

∗

(
4
3κ

2
1

)
. Unfortunately in the one-brane case the hierarchy problem remains

unsolved, that is why we focus on the two-brane scenario as the hierarchy problem is one of

the main motivations of this subsection. In our case the second thick-brane is located in the

AdS space at suitable location y2 such that the hierarchy problem could be addressed as in a

similar way as it was done in the original RS1 set-up [22] or in the LR set-up [36].

Before closing this section it is instructive to discuss the shape of the scalar potential, that is

determined by our requirement of having (3.52) together with the ansatz (1.2) as solutions of

the equations of motion. Having the superpotential W determined, one can, using (3.32), find

the scalar potential as a function of y. However, since φ(y) is an invertible function, therefore

it is also possible to plot the potential V (φ) (3.32), as a function of φ. However, in order to

develop some intuition, let us first consider the presence of just one-kink profile φ1(y) (3.36)

with parameters κ and β. Then the potential V (φ1) could be determined analytically since one

can easily solve equations of motion for A(y), from the invertible profile one can find y = y(φ1)

and then adopt it, for instance, in (3.29). The results reads from Eq. (3.51) for Z2-symmetric

case with W0 = 0:

V (φ1) =
β3

2κ2

(
φ2

1 −
κ2

β

)2

− 1

54M3∗

β3

κ2
φ2

1

(
φ2

1 − 3
κ2

β

)2

. (3.58)

Note that the above form of the potential applies, strictly speaking, only for −κ/√β < φ <
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Figure 3.3.: The potential V (φ2) plotted as a function of the scalar field φ2 for different values of the
thickness parameter β with the same brane tensions κ1 = κ2 = 1. Hereafter we assume

M∗ = 1, therefore the field strength is expressed in unites of M
3/2
∗ .

κ/
√
β since the profile that is required to fulfill equations of motion varies in that range. For

small field strengths, φ <∼ M
3/2
∗ , gravitational effects (the second term) are small, so that the

dominant contribution is just the Mexican-hat potential (the first term). In the present case

the scalar profile is a sum of two kinks (3.52), therefore its range of variation is roughly a “sum”

of ranges for two separate kinks. In the absence of gravity each kink is a solution of equation

of motion for a Mexican-hat type potential, again if a field strength is small comparing to the

5D Planck mass3/2 the dominant contribution to the potential is the Mexican-hat component.

Since kink profiles vary in between field strengths corresponding to the two minima therefore

the shapes which we observe in Fig. 3.3 are roughly “sums” of inner parts (only the inner part

could be determined) of two Mexican-hat like potentials; one centered around −κ1/(2
√
β) and

the other one around +κ2/(2
√
β). In reality (with gravity) the picture is slightly distorted by

the gravity effects that become relevant around the external ends of region of variation where

φ/M
3/2
∗ ∼ 1.

In the case of double kink it is not possible to find the potential analytically, so V (φ)

determined numerically is shown for several choices of the parameters β in Fig. 3.3. Since

the strength of the profile field varies between −(κ1 + κ2)/
√
β and +(κ1 + κ2)/

√
β therefore

the potential V (φ2) can also be determined in that region only, which is manifest in Fig. 3.3.

Note that in order to trust classical field theory results, the scalar field strength φ must be

limited by the 5D Planck mass M
3/2
∗ , therefore we conclude that our results are consistent if

β >∼ k2
1,2/M

3
∗ . Since in Fig. 3.3 we assumed κ1 = κ2 = 1 and M = 1 therefore we are limited

by β >∼ 1, so those cases were plotted and then the range of variation of φ2 is appropriate.

The brane limit and the hierarchy problem

In this subsection we will consider different possible scenarios that could be realized with two

thick-branes and then we will discuss limiting (the brane limit) solutions corresponding to thin

(singular) branes. To show how scalar field φ2 is making the two branes, we start by looking

at its action calculated for the profile (3.52),

Sφ2 = −
∫
dx5√−g

{
1

2
gMN∇Mφ2∇Nφ2 + V (φ2)

}
,
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= −
∫
dx5√−g

{
βκ2

1

cosh4
(
β(y − y1)

) +
βκ2

2

cosh4
(
β(y − y2)

)
− 1

6M3∗

[
κ2

1

(
tanh

(
β(y − y1)

)
− 1

3
tanh3

(
β(y − y1)

))
+κ2

2

(
tanh

(
β(y − y2)

)
− 1

3
tanh3

(
β(y − y2)

))
+W0

]2
}
. (3.59)

In the brane limit we have,

lim
β→∞

{
β

cosh4
(
β(y − yi)

)} =
4

3
δ(y − yi) for i = 1, 2

such that the scalar action (3.59) can be written as,

Sφ2 = −
∫
dx5√−g

{
4

3
κ2

1δ(y − y1) +
4

3
κ2

2δ(y − y2) + ΛB(y)

}
, (3.60)

where ΛB(y) is a function that generates cosmological constants in various regions of the bulk:

ΛB(y) = lim
β→∞

{
− 1

6M3∗

[
κ2

1

(
tanh

(
β(y − y1)

)
− 1

3
tanh3

(
β(y − y1)

))
+κ2

2

(
tanh

(
β(y − y2)

)
− 1

3
tanh3

(
β(y − y2)

))
+W0

]2}
,

= − 1

6M3∗

[
2

3
κ2

1 sgn(y − y1)
)

+
2

3
κ2

2 sgn(y − y2)
)

+W0

]2

. (3.61)

Therefore, depending on the choice of the extremum location ymax, different values of cosmo-

logical constant to the left, in between and to the right of the two branes could be generated.

In what follows we will find analytic solutions for the two positive tension branes in the

brane limit
(
β →∞) and numerical results for the corresponding thick-brane scenarios. In the

brane limit, we can write the total action as,

Sφ2 =

∫
dx5√−g

{
2M3
∗R− λ1δ(y − y1)− λ2δ(y − y2)− ΛB(y)

}
, (3.62)

where λ1,2 = 4
3κ

2
1,2 are the respective brane tensions at each brane located at y = y1 and y = y2

and ΛB(y) is the bulk cosmological constant, defined in Eq. (3.61). In the brane limit we can

obtain the equations of motion from action (3.62) as,

24M3
∗
(
A′
)2

= −ΛB, (3.63)

12M3
∗A
′′ + 24M3

∗
(
A′
)2

= −ΛB − λ1δ(y − y1)− λ2δ(y − y2), (3.64)

In the brane limit the smooth solution of A′(y) (3.54) will take the following form,

A′(y) = − 1

12M3∗

[
2

3
κ2

1 sgn(y − y1) +
2

3
κ2

2 sgn(y − y2) +W0

]
. (3.65)
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From Eqs. (3.63) and (3.64), one gets (which is also manifested from Eq. (3.65)),

12M3
∗A
′′ = −λ1δ(y − y1)− λ2δ(y − y2), (3.66)

which implies that A′′ < 0 as λ1,2 > 0, thus allowing for maxima of A(y). Let us denote the

location of the maxima by ymax, that can be chosen anywhere along the extra dimension, such

that,

A′(ymax) = 0. (3.67)

In the brane limit W0 (3.55) takes the form,

W0 = −
[

2

3
κ2

1 sgn(ymax − y1) +
2

3
κ2

2 sgn(ymax − y2)

]
. (3.68)

Therefore we obtain (in the brane limit) for the bulk cosmological constant, the following result

ΛB(y) =
−1

6M3∗

[
2

3
κ2

1

(
sgn(y − y1)− sgn(ymax − y1)

)
+

2

3
κ2

2

(
sgn(y − y2)− sgn(ymax − y2)

)]2

.

(3.69)

It is also important to note that the equation of motion (3.63) implies that the bulk cosmological

constant is negative leading to anti-de Sitter vacua or, in the case where it is zero, that the

corresponding geometry will be Minkowski in that region of space.

In the following we will consider different cases depending on the location of the extremum

point ymax along the extra dimension.

Case-I: We consider the case when the extremum location is on one of the branes, say at

ymax = y1, we get the analytic results for A′(y) as,

A′(y) =


1

24M3
∗
λ1 y < y1

− 1
24M3

∗
λ1 y1 < y < y2

− 1
24M3

∗
(λ1 + 2λ2) y > y2

(3.70)

The corresponding bulk cosmological constant ΛB, in different regions along the extra dimen-

sion, reads as,

ΛB =


− 1

24M3
∗
λ2

1 y < y1

− 1
24M3

∗
λ2

1 y1 < y < y2

− 1
24M3

∗
(λ1 + 2λ2)2 y > y2

, (3.71)

and the values of bulk cosmological constant at the brane locations are ΛB(y1) = 0 and

ΛB(y2) = − 1
12M3

∗

(
2λ2

2 + λ1λ2

)
. Note that (3.71) implies in the brane limit correlations between

the brane tensions λi and the bulk cosmological constant ΛB. It is worth to write down relations

between ΛB, the slope of the warp function A′ and the brane tensions λi in the asymptotic
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3.2. Modeling branes with scalar fields minimally coupled to gravity

y
y1 y2

φ2(y)

e2Aφ′2
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T00

y
y1 y2

e2A(y)

V [φ2(y)]

ΛB

ymax = y1

Figure 3.4.: The left-graph shows the shape of the scalar field profile, the corresponding energy density
T00 and also the localized energy density e2Aφ′ 2 for the Case-I with β = 2 and κ1 =
κ2 = 1, whereas, the right-graph illustrates the shape of the warped factor e2A, the bulk
cosmological constant ΛB and the potential V [φ(y)] for the case-I when the maxima of the
warp factor is located on the thick-brane, i.e. ymax = y1.

regions:

ΛB
A′

=

{
−λ1 y → −∞
λ1 + 2λ2 y → +∞

(3.72)

In the RS2 (with one brane of positive tension λ) the corresponding relation is ΛB/k = ±λ,

where k corresponds to ±A′.
Numerical solutions for the thick-branes in the Case I are shown in Fig. 3.7. This configu-

ration is such that the warping function A(y) is positive (negative) to the left (right) of the

branes, we will see that this scenario will have the normalizable zero-modes of the metric tensor

perturbations (around the background solution) which correspond to the 4D graviton. In the

brane limit this set-up is similar to the two positive D3-brane model considered by Lykken and

Randall in [36].

In order to illustrate how are the branes generated, in Fig. 3.7 (left panel) we show the energy

density T00 = e2A
(
φ′ 2/2 + V (φ)

)
corresponding to the profile. Using equations of motion T00

could be rewritten as e2A(φ′ 2 − 24M3
∗A
′ 2). This form separates two contributions to T00:

local (one that ”creates” the branes) e2Aφ′ 2 and non-local ∝ e2AA′ 2 (one that generates bulk

cosmological constants).

As it is seen from Fig. 3.7 (right panel) to the left and to the right of the branes the

warp factor is quickly vanishing, that has been already observed in (3.57). If the branes are

sufficiently thin (or well separated) then in between them the warping is also nearly exponential

so that the hierarchy problem could be addressed. We will call the brane located at y1 and

y2 as UV and IR branes, respectively. To illustrate consequences of the warped background

geometry lets assume that the Higgs field is bounded at the IR brane and its action can be

written as,

SHiggs = −
∫
d4x
√−gIR

{
gµνIR∂µH

†∂νH −m2|H|2 + λ|H|4
}
, (3.73)
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3. Brane modeling in warped extra dimension

where gµνIR is the 4D metric induced on the IR brane, gµνIR = e−2A(y2)ηµν , with A(y2) being the

value of warped factor at the IR brane and m is the 5D Higgs mass parameter (of the order of

5D Planck mass). Now the effective 4D action for the Higgs field can be written as,

SHiggs = −
∫
d4x

{
e2A(y2)ηµν∂µH

†∂νH −m2e4A(y2)|H|2 + λe4A(y2)|H|4
}
, (3.74)

where we used the fact that,
√−gIR = e4A(y2). In order to obtain canonically normalized Higgs

field, we rescale, H → e−AH, such that,

SHiggs = −
∫
d4x

{
ηµν∂µH

†∂νH −m2e2A(y2)|H|2 + λ|H|4
}
,

= −
∫
d4x

{
ηµν∂µH

†∂νH − µ2|H|2 + λ|H|4
}
, (3.75)

where µ = meA(y2) is the effective Higgs mass parameter as viewed on the IR brane. If we

assume that the fundamental mass scale of the 5D theory is the Planck mass then we can

require the value of warped factor at IR brane such that we get the effective 4D Higgs mass

parameter µ ∼ TeV. From Eq. (3.70) we have

A(y2) = − 1

24M3∗
(λ1 + λ2) y2, (3.76)

therefore if 1
24M3

∗
(λ1 + λ2) y2 ∼ 30 then the hierarchy problem could be solved. Furthermore,

as it will be shown in Sec. 3.4.3, in this scenario (i.e. ymax = y1) there exits a normalizable

zero-mode which corresponds to the 4D graviton.

It should be emphasized that the scenario of solving the hierarchy problem described above

assumes that the Higgs field H could be localized on the IR brane. The issue of localization

of a generic scalar field on thick-brane will be discussed in Sec. 3.3, see also e.g. [42, 69, 71,

72, 73, 74, 75].

Case-II: Lets now consider the case when the extremum position is in between the two thick-

branes such that y1 < ymax < y2, in that case corresponding values of A′(y) (3.65) in the brane

limit are given by,

A′(y) =


1

12M3
∗
λ1 y < y1

0 y1 < y < y2

− 1
12M3

∗
λ2 y > y2

(3.77)

This situation is interesting since the 4D graviton is now normalizable and it is localized in

between the two positive branes. However in this scenario the hierarchy problem can not be

solved since there is no warping in between the two branes which is manifest in Fig. 3.5-(left

panel). The two positive branes set-up is now similar to the single brane RS-2 [23].

Case-III: Now we consider the scenario with extremum located to the left of the left brane or

to the right of the right brane, so ymax < y1 or ymax > y2. For the case when the extremum

38
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Figure 3.5.: The left-graph shows the warped factor e2A, the bulk cosmological constant ΛB and the
potential V [φ(y)] for y1 < ymax < y2 while the right-graph for ymax < y1. Parameters
chosen: β = 2 and κ1 = κ2 = 1.

lies to the left of y1, in the brane limit, A′(y) (3.65) is given by,

A′(y) =


0 y < y1

− 1
12M3

∗
λ1 y1 < y < y2

− 1
12M3

∗
(λ1 + λ2) y > y2

, (3.78)

In this case we have Minkowski background to left of the brane located at y1 which could

be called the UV brane, however to the right of this brane we have the warped geometry,

so that the hierarchy problem could be approached in the same way as it was discussed for

the case-I. It is worth mentioning that similar geometrical configuration was considered by

Gregory, Rubakov, Sibiryakov (GRS) [37] with singular branes. The important difference is

that GRS model have one positive and one negative tension D3-brane while in our case the

both branes are made out of scalar field which mimics two positive tension branes in the brane

limit. Numerical results for corresponding thick-branes are shown in Fig. 3.5-(right panel). We

would like to comment here that even though this scenario addresses the hierarchy problem,

it does not have the normalizable 4D graviton, for details see Sec. 3.4.3. Similarly the other

possibility could be considered when the extremum position is to the right of the brane located

at y2, i.e. with ymax > y2, then in the brane limit the A′(y) is given by,

A′(y) =


1

12M3
∗

(λ1 + λ2) y < y1

1
12M3

∗
λ2 y1 < y < y2

0 y > y2

, (3.79)

So in this case geometry to the right of the brane at y2 is Minkowski.

In Table 3.1 we summarize results for the cosmological constant in the brane limit, the

regions I, II and III are defined as y < y1, y1 < y < y2 and y > y2, respectively.
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3. Brane modeling in warped extra dimension

Location of ymax Region-I Region-II Region-III

y1 < ymax < y2 − 1
6M3
∗
λ2

1 0 − 1
6M3
∗
λ2

2

ymax < y1 0 − 1
6M3
∗
λ2

1 − 1
6M3
∗

(λ1 + λ2)2

ymax > y2 − 1
6M3
∗

(λ1 + λ2)2 − 1
6M3
∗
λ2

2 0

Table 3.1.: The bulk cosmological constant ΛB when ymax 6= y1,2.

In all the above cases, in the brane limit, the A′(y) have discontinuities at the brane locations

y = y1 and y = y2. The discontinuities (or jump) are as follows

[A′]y1 = − 1

9M3∗
κ2

1 = − 1

12M3∗
λ1 y = y1, (3.80)

[A′]Y2 = − 1

9M3∗
κ2

2 = − 1

12M3∗
λ2 y = y2. (3.81)

A jump in A′(y) implies that A′′(y) have delta-like singularity, which is consistent with the

equation of motion (3.64), in fact one can also obtain the above jump conditions by integrating

Eq. (3.64) from yi − ε to yi + ε and then matching the coefficients of delta functions.

3.2.3. Triple Z2-symmetric thick-brane model

In this subsection we consider a scalar field profile such that it corresponds to three Z2 sym-

metric thick-branes at locations y = yUV and y = ±yIR. They are supposed to mimic three

positive-tension branes in the brane limit and the gravity would be localized at y = yUV ,

whereas if we assume that the SM fields in particular Higgs field is localized at y = ±yIR such

that the distance is tuned in such a way that one can solve the hierarchy problem as we have

shown in the two thick-brane case. This Z2 symmetric thick-brane setup mimics the IR-UV-IR

model presented in Sec. 2.2 but there are some key differences which we enlist at the end of

this subsection. To construct a triple thick-brane scenario the scalar profile φ3(y) could be

chosen as,

φ3(y) =
κUV√
β

tanh
(
β(y − yUV )

)
+
κIR√
β

tanh
(
β(y − yIR)

)
+
κIR√
β

tanh
(
β(y + yIR)

)
, (3.82)

where β is the thickness controlling parameter and κUV,IR are the brane tension (strength)

parameters. Using the superpotential method as described above the superpotential W (φ)

could be written as a function of y as follows:

W [φ3(y)] = κ2
UV

(
tanh[β(y − yUV )]− 1

3
tanh3[β(y − yUV )]

)
+ κ2

IR

(
tanh[β(y − yIR)]− 1

3
tanh3[β(y − yIR)]

)
+ κ2

IR

(
tanh[β(y + yIR)]− 1

3
tanh3[β(y + yIR)]

)
, (3.83)
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3.2. Modeling branes with scalar fields minimally coupled to gravity

where in deriving Eq. (3.83) we assume that the cross terms are negligible as far as β is large

and/or the separation “L ≡ |yIR − yUV |” between the two thick-branes is large such that,∫
dy

2βκUV κIR

cosh2
(
β(y − yUV )

)
cosh2

(
β(y ± yIR)

) ≈ 0

After obtaining the superpotential W (y) we have A′(y) from Eq. (3.33), i.e.

A′(y) = − 1

12M3∗
W [φ3(y)]. (3.84)

The integration constant is fixed by the requirement that W (yUV ) = 0, i.e. A(y) has a

maximum at y = yUV , which implies that the graviton zero-mode is localized at y = yUV . The

warp factor A(y) can be found from the above equation by integrating Eq. (3.84) w.r.t. y, i.e.

A(y) =
1

72M3∗β

[
κ2
UV

(
1

cosh2
(
β(y − yUV )

) − ln cosh4
(
β(y − yUV )

))

+ κ2
IR

(
1

cosh2
(
β(y − yIR)

) − ln cosh4
(
β(y − yIR)

))

+κ2
IR

(
1

cosh2
(
β(y + yIR)

) − ln cosh4
(
β(y + yIR)

))]
, (3.85)

where the integration constant is fixed by the requiring that A(yUV ) = 0. Note that far away

from the thick-branes the warp function is asymptotically AdS, i.e. like RS form [22, 23]

A(y →∞) ∼ −κ|y|, |y| � L, (3.86)

where κ = 1
24M3

∗

(
4
3κ

2
UV + 8

3κ
2
IR

)
. It is easy to see that we get the same behavior, i.e. the RS

form of A(y), for all values of y in the brane limit when β →∞, which discuss below.

To understand how the above scalar field φ3(y) profile is dynamically generating three pos-

itive tension branes, let us take the brane limit of the scalar field action, i.e.

Sφ3 = − lim
β→∞

∫
dx5√−g

{
1

2
gMN∇Mφ3∇Nφ3 + V (φ3)

}
,

= −
∫
dx5√−g

{
λUV δ(y − yUV ) + λIRδ(y − yIR) + λIRδ(y + yIR) + ΛB(y)

}
, (3.87)

where λUV,IR = 4
3κ

2
UV,IR are the respective brane tensions at each brane located at y = yUV

and y = yIR and ΛB(y) is the bulk cosmological constant given by:

ΛB(y) =
−1

24M3∗

[
λUV sgn(y − yUV )

)
+ λIR sgn(y − yIR)

)
+ λIR sgn(y + yIR)

)]2
. (3.88)

It is worth showing how the thick-branes are generated, in left panel of Fig. 3.6 we have

plotted, scalar field profile φ3(y), the energy density T00 = e2A
(
φ′ 23 /2+V (φ)

)
corresponding to

the profile and the localized energy density e2Aφ′ 23 . The right panel of Fig. 3.6 illustrates the
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Figure 3.6.: The left-graph shows the shape of the scalar field profile, the corresponding energy density
T00 and also the localized energy density e2Aφ′ 23 for the Case-I with β = 2 and κ1 =
κ2 = 1, whereas, the right-graph illustrates the shape of the warped factor e2A, the bulk
cosmological constant ΛB and the potential V [φ3(y)] for the case-I when the maxima of the
warp factor is located on the thick-brane, i.e. ymax = y1.

shape of the warp factor e2A, scalar potential V [φ3(y)] and the shape of bulk energy density

(cosmological constant) ΛB(y).

In what follows we will find analytic solutions for the three positive tension branes in the

brane limit
(
β → ∞) and we take yUV = 0. In the brane limit the smooth solution of A′(y)

(3.84) will take the following form,

A′(y) = − 1

24M3∗

[
λUV sgn(y) + λIR sgn(y − yIR) + λIR sgn(y + yIR)

]
,

= − 1

24M3∗

{
λUV sgn(y) |y| ≤ L
(λUV + 2λIR) sgn(y) |y| > L

, (3.89)

where L is the distance between the UV and IR branes. The explicit form of the warp function

A(y) in the brane limit:

A(y) = − 1

24M3∗

{
λUV |y| |y| ≤ L
(λUV + 2λIR)|y| |y| > L

, (3.90)

It is important comment here that the above Z2 symmetric triple thick-brane model resembles

the IR-UV-IR model presented in Sec. 2.2 but there are some key differences between the two

scenarios:

• First, the IR-UV-IR model presented in Sec. 2.2 is an interval from −L ≤ y ≤ L, whereas

the Z2 symmetric thick-brane has infinite extra dimension, i.e. y → ±∞.

• Second, the IR-UV-IR model presented in Sec. 2.2 has negative tensions branes located

at end points of the interval, whereas in the brane limit the thick-brane model mimics

the positive tension branes.

• Third, the IR-UV-IR model of Sec. 2.2 has a mass gap as it is compactified, whereas

the thick-brane counterpart presented here has no mass gap so it is not clear how to

construct a viable low energy effective theory in this setup.
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3.2. Modeling branes with scalar fields minimally coupled to gravity

3.2.4. Dilatonic thick-brane

In the previous subsections we have adopted the strategy of constructing a thick-brane model

by considering a particular kink-like profile of the scalar field and then using the superpotential

method to find the warp-function and the scalar potential. In this subsection we will briefly

present an example, which will be relevant for the next chapter in the context of thick-brane

cosmology, where we start with a particular form of the superpotential W (φ) and then using

Eqs. (3.32) and (3.33) we find the scalar field profile, warp-function and the scalar potential.

We focus on the following form of dilatonic superpotential W (φ):

W (φ) = W0 exp
[ −γ

4M∗3/2φ
]
, (3.91)

where W0 and γ are constants and, as we will see, the different values of dimensionless constant

γ will correspond to classes of different solutions. The resulting scalar potential V (φ) is,

V (φ) =
W 2

0

4M3∗

(
γ2

8
− 2

3

)
exp

[ −γ
2M∗3/2φ

]
. (3.92)

The scalar field φ(y) and the warped function A(y) obtained from Eq. (3.33) are

φ(y) = −4M
3/2
∗
γ

ln

(
1 +

γ2

16M3∗
W0y

)
, (3.93)

A(y) =
16M3

∗
3γ2

ln

(
1 +

γ2

16M3∗
W0y

)
. (3.94)

The above result (3.92)-(3.93) and (3.94) represents a class of solutions parameterized by γ.

For γ = ±
√

8
3 along with 4M3

∗ = 1, we recover our results found in Eqs. (4.82)-(4.83) and

(4.84) for W0 = 3b0. Whereas, for γ = ±
√

4
3 we recover the linear dilaton solution discussed

by Antoniadis et al. [76]. It is instructive to notice that the metric given by Eq. (11) of Ref.

[76] coincides with (3.94) for α = W0.

3.2.5. Generalized thick-branes

In this subsection we consider a general case for the background scalar field. We are going to

show that even without a priori defined shape of the scalar field profile, the thin brane general-

ized RS2 relation (2.42) between the brane tension λ and the bulk cosmological constants Λ±
is reproduced in the brane limit under certain mild assumptions. In other words the relation

is independent of the function adopted to regularize (smooth) a thin brane. For this purpose

we consider the following general form of the scalar background field,

φ(y) =
φ0(βy)√

β
, (3.95)

where β will turn out to be the thickness controlling parameter. We assume that φ0(βy) is

monotonic, and
(√
βφ′0(βy)

)2
is an integrable function of y 3. We employ the superpotential

3It is interesting to notice that this condition is equivalent to the normalizability of one of the two scalar zero
modes (spin zero fluctuations around the background solution (3.34) and (3.56)) related to the shift along the
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3. Brane modeling in warped extra dimension

method described above.

Let us consider the scalar field action

Sφ = −
∫
dx5√−g

{
1

2
gMN∇Mφ∇Nφ+ V (φ)

}
= −

∫
dx5√−g

{(
∂W (φ)

∂φ

)2

− 1

6M3∗
W 2(φ)

}

= −
∫
d5x
√−g

{
φ′2 − 1

6M3∗

(∫ y

0

(
φ′(ȳ)

)2
dȳ +W0

)2
}
, (3.96)

where V (φ) and W (φ) are obtained from Eqs. (3.32) and (3.33), respectively. Since W0 is an

arbitrary integration constant the lower integration limit could be chosen at ȳ = 0 without

compromising generality. After using equation (3.95) and changing variables from ỹ → βȳ one

gets

Sφ = −
∫
d5x
√−g

{
1

β

(
φ′0(βy)

)2 − 1

6M3∗

(∫ βy

0

(
φ′0(ỹ)

)2
dỹ +W0

)2
}
. (3.97)

From the above scalar field action, one finds that in the brane limit, i.e. β →∞:

• The integrand
(
φ′0(βy)

)2
/β converges to zero everywhere except y = 0 (as the function

is integrable) therefore the first term above approaches −λδ(y), with

λ =

∫ +∞

−∞

(
φ′0(ỹ)

)2
dỹ,

where δ(y) is the Dirac delta function.

• The second term converges to a sum of contributions to bulk cosmological constants

−Λ+Θ(y)− Λ−Θ(−y), where

Λ+ = − 1

6M3∗

(∫ +∞

0

(
φ′0(ỹ)

)2
dỹ +W0

)2

(3.98)

Λ− = − 1

6M3∗

(
−
∫ 0

−∞

(
φ′0(ỹ)

)2
dỹ +W0

)2

. (3.99)

Equations (3.98)-(3.99) imply that in order to reproduce the generalized RS2 relation (2.42)

the following inequality must hold√
6M3∗

(√
−Λ+ −

√
−Λ−

)
< λ. (3.100)

Note that this is the same condition that was limiting the splitting between the cosmological

constants which was obtained in Sec. 3.2.1. Therefore we conclude that regardless what is the

choice of the scalars profile, only those thin brane models could be obtained in the brane limit

extra dimension y → y + const., for more details see [1].
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3.3. Localization of a scalar field on a thick-brane

for which (3.100) is satisfied. It is easy to see that if W0 is chosen as

W0 =

√
3

2
M3∗

(√
−Λ+ −

√
−Λ−

)
+

1

2

(∫ 0

−∞

(
φ′0(y)

)2
dy −

∫ +∞

0

(
φ′0(y)

)2
dy

)
, (3.101)

then indeed

λ =
√

6M3∗
(√
−Λ+ +

√
−Λ−

)
. (3.102)

Thus we recover the result (2.42) for our generalized RS2 model. It is worth to rephrase the

above result as follows. For any given thin brane model to be reproduced in the brane limit

and any profile of the scalar field φ0(y) (monotonic with
(
φ′0(y)

)2
integrable), the Eq. (3.101)

provides the choice of the integration constant W0 which guaranties that the condition (2.42)

holds.

In the case of the kink-like profile considered in Sec. 3.2.1,
(
φ′0(y)

)2
was an even function

of y therefore W0 reduces to the value adopted in (3.43). Of course, if we limit ourself to the

Z2-symmetric case, W0 must vanish as in order to mimic standard RS2.

3.3. Localization of a scalar field on a thick-brane

As we have seen in the previous section in order to solve the hierarchy problem within thick-

brane scenarios one needs to localized the Higgs field on the thick-brane. In this section we

will investigate the issue of localization of a scalar field ξ(y) on top of a bulk scalar field

(kink-like profile) φ(y) which mimics the branes. We consider a scalar field localization on the

thick-brane through the localized interactions with the scalar field which mimics the branes.

Since the scalar field ξ(y) can also contribute to the background solution so we must take into

account the back reaction of the scalar field ξ(y). The action for the proposed setup can be

written as,

S =

∫
dx5√−g

{
2M3
∗R−

1

2
f(ξ)gMN∇Mφ∇Nφ−

1

2
gMN∇Mξ∇Nξ − V (φ, ξ)

}
, (3.103)

where f(ξ) is a general function of ξ, later we will limit ourselves to the particular form this

function. The Einstein’s equations and the equation of motion for φ and ξ, resulting from the

action (3.103) are

RMN −
1

2
gMNR =

1

4M3∗
TMN , (3.104)

f(ξ)∇2φ+
∂f(ξ)

∂ξ
ξ′φ′ − ∂V

∂φ
= 0, (3.105)

∇2ξ − 1

2
(∇φ)2 ∂f(ξ)

∂ξ
− ∂V

∂ξ
= 0, (3.106)

where ∇2 is 5D covariant d’Alambertion operator and the energy-momentum tensor TMN for

the scalar field φ(y) is,

TMN = f(ξ)∇Mφ∇Nφ+∇Mξ∇Nξ − gMN

[
1

2
f(ξ)(∇φ)2 +

1

2
(∇ξ)2 + V (φ, ξ)

]
. (3.107)
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From the Einstein equations (3.104), (3.105) and (3.106), one can get the following equations

of motion for the metric ansatz (1.2)

24M3
∗ (A′)2 =

1

2
f(ξ)(φ′)2 +

1

2
(ξ′)2 − V (φ, ξ), (3.108)

12M3
∗A
′′ + 24M3

∗ (A′)2 = −1

2
f(ξ)(φ′)2 − 1

2
(ξ′)2 − V (φ, ξ), (3.109)

f(ξ)
(
φ′′ + 4A′φ′

)
+
∂f(ξ)

∂ξ
ξ′φ′ − ∂V

∂φ
= 0. (3.110)

ξ′′ + 4A′ξ′ − 1

2
φ′2

∂f(ξ)

∂ξ
− ∂V

∂ξ
= 0. (3.111)

We assume that the scalar potential V (φ, ξ) could be expressed in terms of the superpotential

W (φ, ξ) as [25],

V (φ, ξ) =
1

2

1

f(ξ)

(
∂W (φ, ξ)

∂φ

)2

+
1

2

(
∂W (φ, ξ)

∂ξ

)2

− 1

6M3∗
W (φ, ξ)2, (3.112)

where W (φ, ξ) satisfies the following relations,

φ′ =
1

f(ξ)

∂W (φ, ξ)

∂φ
, ξ′ =

∂W (φ, ξ)

∂ξ
, and A′ = − 1

12M3∗
W (φ, ξ). (3.113)

To see how this superpotential method or the choice of the potential V (φ, ξ) (3.112) satisfies

the set of the equations of motion (3.108)-(3.111), let us consider these equations one by one.

The first equation (3.108) is just the definition of the potential (3.112) and to see how the

second equation (3.109) is satisfied one can subtract the Eq. (3.108) from Eq. (3.109) and get,

12M3
∗A
′′ = −f(ξ)(φ′)2 − (ξ′)2. (3.114)

The above equation is identically satisfied by the virtue of Eq. (3.113). Now to see if the above

potential and superpotential choices can satisfy the equation of motion for the scalar field φ(y)

(3.110), we take the partial derivative of the V (φ, ξ) (3.112) w.r.t. φ(y) as,

∂V

∂φ
=

∂

∂φ

(
1

2

1

f(ξ)

(
∂W (φ, ξ)

∂φ

)2

+
1

2

(
∂W (φ, ξ)

∂ξ

)2

− 1

6M3∗
W (φ, ξ)2

)
,

=
1

f(ξ)

∂W

∂φ

∂2W

∂φ2
+
∂W

∂ξ

∂2W

∂φ∂ξ
− 1

3M3∗
W
∂W

∂φ
,

= f(ξ)
(
φ′′ + 4A′φ′

)
+
∂f(ξ)

∂ξ
ξ′φ′, (3.115)

where in the last line of the above equation we have used constraints that superpotential

W (φ, ξ) have to satisfy from Eq. (3.113) and also the fact that,

φ′′ =
d

dy

(
1

f(ξ)

∂W (φ, ξ)

∂φ

)
,

=

[
φ′
∂

∂φ
+ ξ′

∂

∂ξ

](
1

f(ξ)

∂W (φ, ξ)

∂φ

)
,
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3.3. Localization of a scalar field on a thick-brane

=
1

f(ξ)

∂2W (φ, ξ)

∂φ2
φ′ +

1

f(ξ)

∂2W (φ, ξ)

∂ξ∂φ
ξ′ − 1

f(ξ)

∂f(ξ)

∂ξ
ξ′, (3.116)

such that the first two terms of second line in Eq. (3.115) are,

1

f(ξ)

∂W

∂φ

∂2W

∂φ2
+
∂W

∂ξ

∂2W

∂φ∂ξ
= f(ξ)φ′′ +

∂f(ξ)

∂ξ
ξ′. (3.117)

Equation (3.115) shows that the choice of potential V (φ, ξ) (3.112) and superpotential W (φ, ξ),

satisfying the constraints in Eq. (3.113), satisfies the equation of motion for the scalar field φ.

Similarly below we will repeat the same procedure to show that the potential V (φ, ξ) (3.112)

and superpotential W (φ, ξ) satisfies the equation of motion for the scalar field ξ(y) (3.111). To

show that we take the partial derivative of the V (φ, ξ) (3.112) w.r.t. ξ(y) as,

∂V

∂ξ
=

∂

∂ξ

(
1

2

1

f(ξ)

(
∂W (φ, ξ)

∂φ

)2

+
1

2

(
∂W (φ, ξ)

∂ξ

)2

− 1

6M3∗
W (φ, ξ)2

)
,

=
1

f(ξ)

∂W

∂φ

∂2W

∂φ∂ξ
− 1

2

1

f2(ξ)

∂f(ξ)

∂ξ

(
∂W

∂φ

)2

+
∂W

∂ξ

∂2W

∂ξ2
− 1

3M3∗
W
∂W

∂ξ
,

= ξ′′ + 4A′ξ′ − 1

2

∂f(ξ)

∂ξ
φ′2, (3.118)

where,

ξ′′ =
d

dy

(
ξ′
)

=
d

dy

(
∂W (φ, ξ)

∂ξ

)
=

[
φ′
∂

∂φ
+ ξ′

∂

∂ξ

](
∂W (φ, ξ)

∂φ

)
,

=
∂2W (φ, ξ)

∂ξ∂φ
φ′ +

∂2W (φ, ξ)

∂ξ2
ξ′,

=
1

f(ξ)

∂W

∂φ

∂2W

∂φ∂ξ
+
∂W

∂ξ

∂2W

∂ξ2
, (3.119)

such that we get the last line in Eq. (3.118). Hence we have shown that the superpotential

method works elegantly and it solves all the equations of motion as long as the superpotential

W (φ, ξ) fulfills the conditions defined in Eq. (3.113).

Now we can make an ansatz for the superpotential W (φ, ξ) such that our scalar field φ(y)

can have a kink-like solutions. For this purpose we can make the following ansatz for the

W (φ, ξ),

W (φ, ξ) = W (φ)f(ξ), (3.120)

where,

W (φ) = κ
√
βφ

(
1− β

3κ2
φ2

)
. (3.121)

For simplicity, we assume that f(ξ) is quadratic in ξ field, such that,

f(ξ) = 1− 1

2
αξ2, (3.122)

where α is a constant α ∈ [0, 1]. It is important to note that α = 0 is the case when there is
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Figure 3.7.: The left graph shows the profiles of the scalar fields φ(y), ξ(y), superpotential W (φ, ξ) and
potential V (φ, ξ) as a function of y for α = 0 (weak localization), whereas, the right graph
shows the same but for α = 1 (strong localization) with κ = M∗ = 1 and β = 2.

no direct coupling of the scalar field ξ(y) with the kink φ(y), where as the α = 1 sets a strong

coupling between the two scalar fields. Hence the superpotential is given by,

W (φ) = κ
√
βφ

(
1− β

3κ2
φ2

)(
1− 1

2
αξ2

)
, (3.123)

Now we can determine the forms of the scalar fields φ(y) and ξ(y) from Eq. (3.113) as:

φ(y) =
κ√
β

tanh(βy), (3.124)

ξ(y) = ξ0e
−α

∫
dyW (φ) = ξ0e

−ακ2
6β (ln cosh4(βy)+tanh2(βy)), (3.125)

where ξ0 is the value of ξ(y) at y = 0. For the superpotential defined in Eq. (3.123) one can

write the explicit form of the warped function A(y) after integrating Eq. (3.123) (we fixed the

integration constant such that A(0) = 0),

A(y) = − κ2

72M3∗β

(
tanh2(βy) + ln cosh4(βy)

)
− 1

48

[
e
−ακ2

3β (tanh2(βy)+ln cosh4(βy)) − 1

]
. (3.126)

The profiles of the scalar fields φ(y) and ξ(y) and shapes of the superpotential W (φ, ξ) and

the potential V (φ, ξ) are plotted as a function of y shown in Fig. 3.7 for α = 0, 1. The form of

potential V (φ, ξ) for the given superpotential W (φ, ξ) (3.123) is given by,

V (φ, ξ) =
β3

2κ2

(
κ2

β
− φ2

)2(
1− 1

2
αξ2

)
+

1

9

α2β3

κ2
φ2ξ2

(
3
κ2

β
− φ2

)2

− 1

54M3∗

β3

κ2
φ2

(
3
κ2

β
− φ2

)2(
1− 1

2
αξ2

)2

. (3.127)

3.4. Stability of the background solutions

In this section our focus is to show that the scalar, vector and tensor perturbations in the

context of thick-brane models do not lead to destabilization of the setup. We will show that
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3.4. Stability of the background solutions

the 4D effective gravity on the thick-brane could be recovered and the background solutions

found earlier for different thick-brane models are stable. We will adopt most the general results

from Appendix A in this section.

3.4.1. Scalar perturbations

The linearized field equations corresponding to the scalar modes of the perturbation are given

by Eqs. (A.56), (A.58) and (A.59), i.e.

6A′∂µψ + 3∂µψ
′ =

1

4M3∗
φ′∂µϕ, (3.128)

e−2A�(4)ϕ+ ϕ′′ + 4A′ϕ′ − ∂2V (φ)

∂φ2
ϕ− 6φ′ψ′ − 4

∂V (φ)

∂φ
ψ = 0, (3.129)

ψ′′ + 2A′ψ′ − e−2A�(4)ψ =
1

6M3∗
φ′ϕ′. (3.130)

One can integrate Eq. (3.128) over x-coordinates and get the following equation,

6A′ψ + 3ψ′ =
1

4M3∗
φ′ϕ, (3.131)

where we have put the y-dependent integration constant to zero by the requirement that the

perturbations vanish at 4D infinities. It is more convenient to use the conformal frame where

the metric can be written as in Eq. (2.46), i.e.

ds2 = e2A(z)
(
ηµνdx

µdxν + dz2
)
, (3.132)

with z defined through dz = e−A(y)dy. Hence, in the new coordinates our equations of motion

(3.129)-(3.131) take the following form,

�(4)ϕ+ ϕ̈+ 3Ȧϕ̇− e2A∂
2V (φ)

∂φ2
ϕ− 6φ̇ψ̇ − 4e2A∂V (φ)

∂φ
ψ = 0, (3.133)

ψ̈ + Ȧψ̇ −�(4)ψ =
1

6M3∗
φ̇ϕ̇, (3.134)

2Ȧψ + ψ̇ =
1

12M3∗
φ̇ϕ, (3.135)

where the overdot represents derivative w.r.t. z-coordinate. First we solve Eq. (3.135) with

respect to ϕ and calculate ϕ̇ as,

ϕ̇ =
12M3

∗
φ̇2

[(
2Äψ + 2Ȧψ̇ + ψ̈

)
φ̇−

(
2Ȧψ + ψ̇

)
φ̈
]
, (3.136)

and then use it in (3.134), so that we obtain an equation only for ψ,

ψ̈ +

(
3Ȧ− 2

φ̈

φ̇

)
ψ̇ +

(
4Ä− 4Ȧ

φ̈

φ̇
+�(4)

)
ψ = 0. (3.137)
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3. Brane modeling in warped extra dimension

To convert this equation into the Schrödinger form it is instructive to remove the first derivative

terms of the perturbation ψ, to do so we redefine the scalar perturbations as,

ψ(x, z) = e−
3
2
A(z)φ̇ψ̃(x, z). (3.138)

Then the linearized field equation for the scalar perturbation ψ takes the following form,

− ¨̃
ψ +

9

4
Ȧ2 − 5

2
Ä+ Ȧ

φ̈

φ̇
+ 2

(
φ̈

φ̇

)2

−
...
φ

φ̇

 ψ̃ = �(4)ψ̃. (3.139)

We can further decompose the ψ̃(x, z) into ψ̃(x, z) = ψ̂(x)ψ̄(z), where ψ̂(x) = eipx is a z-

independent plane wave such that �(4)ψ̂(x) = m2ψ̂(x), with −p2 = m2 being the 4D KK mass

of the fluctuation. So, with this field decomposition Eq. (3.139) can be written as,

− ¨̄ψ(z) +

9

4
Ȧ2 − 5

2
Ä+ Ȧ

φ̈

φ̇
+ 2

(
φ̈

φ̇

)2

−
...
φ

φ̇

 ψ̄(z) = m2ψ̄(z). (3.140)

The properties of this equation has also been explored in the past in the context of stability

and dynamics of radion in [43, 56, 57] and [58]. To develop some intuition concerning this

equations it is convenient to rewrite it in supersymmetric quantum mechanics form. For this

purpose we introduce an auxiliary function α(z) defined by

α(z) ≡ e
3
2
A(z)φ̇(z)

Ȧ(z)
. (3.141)

Now we can write the potential of the above equation in the following form,

Uψ(z) =

9

4
Ȧ2 − 5

2
Ä+ Ȧ

φ̈

φ̇
+ 2

(
φ̈

φ̇

)2

−
...
φ

φ̇

 = α(z)∂2
z

(
1

α(z)

)
= ω2(z)− ω̇(z), (3.142)

where ω(z) ≡ α̇(z)
α(z) . Then we can rewrite the Eq. (3.140) in a supersymmetric quantum me-

chanics form as,

−∂2
z ψ̄ +

(
ω2(z)− ω̇(z)

)
ψ̄ = m2ψ̄

A†Aψ̄ = m2ψ̄, (3.143)

where the operator A† and A are defined as,

A† = (−∂(z) + ω(z)) , A = (∂(z) + ω(z)) . (3.144)

The above supersymmetric form of the scalar perturbation equation (3.143) guarantee that

there is no solution for ψ̄ with m2 < 0, hence the fluctuation ψ can not destabilize the back-

ground solution. The zero-mode for the scalar perturbation ψ̄(z) can be obtained from (3.143)
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3.4. Stability of the background solutions

as,

ψ̄0(z) =
1

α(z)
=

Ȧ(z)

e
3
2
A(z)φ̇(z)

. (3.145)

It is important to note that the zero-mode for the scalar perturbation ψ̄(z) is not normal-

izable. As one can easily see from the above expression, ψ̄0 diverges when z → ∞ (then

φ̇(z) → 0 and also e
3
2
A(z) → 0 for the scenarios considered in Sec. 3.2). Hence ψ0(x, z) =

e−
3
2
A(z)φ̇ψ̂(x)ψ̄0(z) = ψ̂(x)e−3A(z) ˙A(z) is not normalizable.

Although our main concern here is to verify the stability, nevertheless it is worth to check

the behavior of the potential at z → ±∞ in order to see whether there is a mass gap in the

spectrum of scalar modes. From (3.142) one can easily find the explicit form of the potential

as a function of z

Uψ(z) = e2A[y(z)]

[
−7

2
A′′ +

3

4
A′ 2 + 2A′

φ′′

φ′
+ 2

(
φ′′

φ′

)2

− φ′′′

φ′

]
y=y(z)

, (3.146)

where y as a function of z could be determined from∫ y

ymax

e−A(y′)dy′ = z(y)− z(ymax). (3.147)

If we limit ourself to the large y region and the integration constant ymax is large enough, we

can use the asymptotic behavior of A = A(y) as in (3.57) then we find

y(z) ∼ 1

κ
ln(κz + const.) (3.148)

where κ = 1
24M3

∗

(
4
3κ

2
1 + 4

3κ
2
2 −W0

)
. From (3.146) we find that limz→±∞ Uψ(z) = 0 4, therefore

we conclude that the spectrum is continuous starting at m2 = 0.

It is worth to comment on another possible zero mode solution. The theory that we are

discussing here is invariant with respect to a shift along the extra dimension: y → y + ε,

therefore if a given metric gMN (x, y) and a scalar field φ(x, y) are solutions of equations of

motion, then so are gMN (x, y + ε) and φ(x, y + ε). Expanding them around ε = 0 one obtains

gMN (x, y + ε) = gMN (x, y) + gMN (x, y)′ε+ · · · (3.149)

φ(x, y + ε) = φ(x, y) + φ′(x, y)ε+ · · · ,

where ellipsis stand for higher powers in ε. Since gMN (x, y + ε) and φ(x, y + ε) and also

gMN (x, y) and φ(x, y) satisfy the equations of motion, therefore gMN (x, y)′ and φ′(y) satisfy

linearized equations of motion. In our parameterizations of the perturbations, (A.17)-(A.19),

that corresponds to

ψ(x, y) = −A′(y), ϕ(x, y) = φ′(y) and B = E = χ = 0 (3.150)

4Of course, limy→±∞ Uψ[z(y)] = 0, as well.
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3. Brane modeling in warped extra dimension

As ψ and ϕ given by (3.150) correspond to modifications of the field configuration (that satisfies

the equations of motion) along the symmetry directions therefore it is supposed to be a zero

mode. Indeed, it could be verified explicitly that ψ and ϕ given by (3.150) satisfy linearized

Einstein equations (A.55)-(A.57) together with the scalar field equation of motion (A.16). It

should be emphasized that in this case the relation ∂µ∂ν (2ψ − χ) = 0 does not hold by the

virtue of 2ψ − χ = 0, but by the fact that ψ(x, y) is x-independent while χ = 0. We will

not consider those modes any more since they do not depend on x and therefore can not be

localized in 4D.

3.4.2. Vector perturbations

The field equation obtained for the transverse vector mode of the perturbation, after integrating

Eq. (A.63) w.r.t. x-coordinate, is,

�(4)Cµ = 0, C ′µ + 2A′Cµ = 0, (3.151)

where we have set the integration constant to zero by using the fact that perturbations should

be localized in 4D so that they do vanish far away from sources. It is more intuitive to write

the vector perturbation in the conformal coordinates so that the results can be interpreted

easily. Therefore, in the conformal frame the equations of motion for the vector modes of the

perturbation take the form,

�(4)Cµ = 0, Ċµ + 3ȦCµ = 0. (3.152)

One can immediately notice from Eqs. (3.152) that the vector modes of perturbations are

massless.

Since the Eq. (3.152) is first order in z-derivatives so it can not be put into an elegant

Schrödinger like form as for the case of tensor and scalar modes. Therefore to see if these

modes are localized or not we have to find canonical normal modes of these perturbations from

the second order perturbation of the action [56], the result reads:

δ2SV =

∫
d5x

1

2

(
ηµν∂µC̃

α∂νC̃α

)
, (3.153)

where, C̃µ = e
3
2
ACµ corresponds to the canonical normal mode. From Eq. (3.152), one finds

that Cµ(x, z) = Ĉ(x)e−3A. So the canonical normal zero-mode of the vector perturbation can

be given as,

C̃µ = e−
3
2
AĈµ(x), (3.154)

where Ĉµ satisfies the equation �(4)Ĉµ(x) = 0. As we will show in the next subsection, the

requirement of reproducing the General Relativity at low energies we had

M2
Pl = M3

∗

∫
dze3A(z). (3.155)

52



3.4. Stability of the background solutions

Therefore the canonical normal vector modes can not be localized since the integral
∫
dze−3A(z)

must be divergent (as a consequence of the finiteness of the 4D Planck mass). Hence, the vector

modes of the perturbation are not localized and therefore they do not affect issue of stability.

3.4.3. Tensor perturbations and localization of gravity

In order to illustrate stability for tensor modes of our background solutions discussed in the

previous section, we will use most of the general results obtained in Sec. 2.4. The only difference

will be that here we will use the warp-function A(y) obtained for the thick-brane models.

We employ the tensor perturbations of the form given by Eq. (2.43) and then after changing

to the conformal coordinates the tensor perturbation follow equation of motion (2.47), i.e.(
∂2
z + 3Ȧ(z)∂z +�(4)

)
Hµν(z) = 0. (3.156)

To put the above equation in the Schrödinger equation form we redefine of the tensor fluctuation

as

H̃µν(x, z) = e3A(z)/2Hµν(x, z), (3.157)

which transforms the Eq. (3.156) into the form of the Schrödinger equation,(
∂2
z −

9

4
Ȧ2(z)− 3

2
Ä(z) +�(4)

)
H̃µν(x, z) = 0. (3.158)

Similarly to Sec. 2.4 we can KK-decompose the H̃µν(x, z) into the x and z dependent parts as:

H̃µν(x, z) =
∑
n

Ĥnµν(x)H̄n(z), (3.159)

where we consider the 4D plane wave solutions for Ĥnµν(x), i.e. Ĥnµν(x) ∝ eipnx such that

�(4)Ĥnµν(x) = m2
nĤnµν(x), with −p2

n = m2
n being the 4D KK mass of the tensor mode.

Recalling the results from Sec. 2.4, the zero-mode wave-function for tensor perturbation

H̄0(z) reads:

H̄0(z) = e
3
2
A(z). (3.160)

In Fig. 3.8 we have plotted the zero-mode wave-function of tensor perturbations (3.160) and

the Schrödinger-like potential V(z) Eq. (2.52), i.e.

V(z) =
9

4
Ȧ2(z) +

3

2
Ä(z). (3.161)

for the single thick-brane (a)symmetric warp-function A[y(z)] Eq. (3.47) for W0 = 0 and

W0 = 0.5M4
∗ . Figure 3.9 shows the plots of the zero-mode wave-function of tensor perturbations

H̄0(z) and the Schrödinger-like potential V(z) for the double thick-brane with warp-function

A[y(z)] given by Eq. (3.56) for different cases of Sec. 3.2.2.

For massive KK modes we need to solve Eq. (2.51) with m2 6= 0. For large z the potential
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Figure 3.8.: The left graph shows the behavior of the zero-mode for tensor perturbations H̄0(z) and
the Schrödinger-like potential V(z) as a function of z for the Z2 symmetric case W0 = 0,
whereas, the right graph shows the same for asymmetric case with W0 = 0.5M4

∗ for M∗ = 1,
β = 2 and κ = 3.

z

z1 z2

H̄0(z)

V(z)

z0 = z1

z

z1 z2

H̄0(z)

V(z)

z0 < z1

z

z1 z2

H̄0(z)

V(z)

z1 < z0 < z2

z

z1 z2

H̄0(z)

V(z)

z0 > z2

Figure 3.9.: These graphs illustrate the shape of the quantum mechanics potential V(z) in gray for all
the scenarios that we have considered in Sec. 3.2.2 and the corresponding shape of the
zero-mode (4D graviton) in black curve. Parameters chosen: β = 2, κ1 = 3 and κ2 = 1.

U(z) goes to zero for the case (i) and (ii) as shown in Fig. 3.9 (upper left) and (upper right),

so Eq. (2.51) reduces to one dimensional Klein-Gordon (KG) equation, i.e.(
∂2
z +m2

n

)
H̄n(z) = 0. (3.162)

Therefore in the large z limit, we expect,

H̄n(z) ≈ c1 cos(mnz) + c2 sin(mnz), (3.163)

where c1 and c2 are constants. Therefore the massive KK modes are plane wave normaliz-

able and we have a continuum spectrum of KK states for the case-I and case-II discussed in

Sec. 3.2.2.

One can make the following comments resulting from the profile of the zero-mode for tensor
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3.4. Stability of the background solutions

perturbations H̄0(z) and the Schrödinger-like potential V(z) shown in Fig. 3.8:

• The zero-mode H̄0(z) implies that∫
dzH̄2

0 (z) =

∫
dze3A(z) =

∫
dye2A(y) <∞, (3.164)

therefore H̄0(z) is normalizable and it turns out that the effective 4D Planck mass M2
Pl

is finite, hence the effective 4D gravity can be reproduced for the thick-brane case.

• As V(z) → 0 as |z| → ∞, therefore the KK-mass spectrum is continuous without a gap

and it starts from m0 = 0.

• The (asymmetric) volcano-like shape of V(z) in Fig. 3.8 suggests that at large z the wave

function of massive KK modes should have a plane wave behaviour.

• The presence of the large barriers near the thick-brane (z=0) implies that corrections to

the Newton’s law due to continuum spectrum of the KK modes will not be large [39, 40].

Before closing this subsection we will briefly comment on the effective 4D gravity. We are

going to estimate the effective 4D Plank mass and discuss the localization of the zero-mode

of the perturbation and then corrections to the Newton’s potential due to the massive KK

modes. To calculate the 4D Plank mass it is important to note that Eq. (3.158) only involves

2nd derivatives of the metric perturbation H̃µν(x, z). This is related to the fact that in the

action these fluctuations have the following canonical kinetic term

S ⊃M3
∗

∫
d4xdz∂MH̃µν(x, z)∂MH̃µν(x, z), (3.165)

where the indices are contracted with the 5D Minkowski metric ηMN . Using the KK-decomposition

of H̃µν(x, z), Eq. (3.159), the above equation takes the form

S ⊃M3
∗

∫
dzH̄2

0 (z)

∫
d4x∂αĤ0µν(x)∂αĤµν

0 (x) + · · · , (3.166)

where the ellipses represent the non-zero KK-modes. Now we can read out the effective 4D

linearized gravity as,

S ⊃M2
Pl

∫
d4x∂αĤµν(x)∂αĤµν(x) + · · · , (3.167)

where MPl is the effective 4D Planck mass, i.e.

M2
Pl = M3

∗

∫
dzH̄2

0 (z), (3.168)

where H̄0(z) satisfies the supersymmetric quantum mechanic equation (2.53) for m2
0 = 0. In

order to reproduce the standard 4D General Relativity, M2
Pl must be finite, in other words

H̄0(z) must be normalizable. It is easy to see from (2.55) that indeed H̄0(z) is normalizable for

different scenarios considered in Sec. 3.2 for which the warp function A(y) posses the following
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3. Brane modeling in warped extra dimension

asymptotic behavior (see Eqs. (3.70) and (3.79)),

A′(y) < 0 as y →∞, (3.169)

A′(y) > 0 as y → −∞. (3.170)

The above implies that ∫
dzH̄2

0 (z) =

∫
dze3A(z) =

∫
dye2A(y) <∞, (3.171)

therefore H̄0(z) is normalizable [see also Fig. 3.9 (upper left) and (upper right)] and M2
Pl is

finite for the case-I and case-II of Sec. 3.2.2. The situation for the case-III of Sec. 3.2.2 is far

more complicated, as there neither we have the finite 4D effect Planck mass nor we have a

normalizable zero-mode, see Fig. 3.9 (lower left) and (lower right). However, as it was pointed

out for similar singular brane set-up (GRS [37]), the effective 4D gravity on the brane can be

reproduced and we could have the quasi-localized gravity [38, 40, 77, 41].

3.5. Summary

In this chapter we consider the dynamical mechanism of generating singular branes in warped

extra dimensions [1, 2, 3, 4]. A possibility of periodic extra dimension is discussed in the

presence of non-minimal scalar-gravity coupling and a generalized Gibbons-Kallosh-Linde sum

rule is found in Sec. 3.1. In order to avoid constraints imposed by periodicity, a non-compact

spatial extra dimension is considered in Sec. 3.2 and different thick-brane models have been

constructed with scalar fields. In particular, we considered four scenario: (i) an asymmetric

thick-brane model which mimics generalized RS2 model presented in Sec. 2.3 in the brane limit

[2, 3]; (ii) a double thick-brane model which allows the possibility to address the hierarchy

problem within the context of thick-branes [1]; (iii) a Z2 symmetric thick-brane setup which,

in the brane limit, mimics three positive tension branes; and (iv) a dilatonic thick-brane [4].

In Sec. 3.3 an issue of localization of a scalar field on thick-brane is addressed. Stability

of the background solutions was discussed and verified in the presence of the most general

perturbations of the metric and the scalar field in Sec. 3.4.
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CHAPTER 4

THICK-BRANE COSMOLOGY

The cosmological implications of the extra dimensions, and in particular to that of RS models,

have been studied in detail by many groups [78, 79, 80, 81, 82, 83, 84, 85, 86]. We will briefly

review the brane-world cosmology within the context of RS models in Sec. 4.1. The main

purpose of this chapter is to study the cosmology of models where singular branes are replaced

by regularized counterparts, the thick-branes which were discussed in detail in the previous

chapter. Here we will confine ourself to the cosmology of RS2 and its thick-brane version.

There have been only few studies in this direction, where the smooth/thick brane cosmological

implications have been discussed [87, 88, 89]. In Sec. 4.2 we employ a scalar field, which

constitutes the thick-brane, with and without time-dependence in the presence of 5D gravity

and study the cosmological evolution of the 5D background solutions.

4.1. Brane-world cosmology: a brief review

In this section we review some of the results from brane-world cosmology in particular we focus

on RS2 cosmology [78, 79, 80, 81, 82]. The goal of this section is to show that RS2 model gives

the cosmological evolution of scale factor nearly same as in the standard 4D FRW cosmology.

The most general 5D metric, with 3-spatial dimensions, homogeneous and isotropic can be

written as

ds2 = −n2(t, y)dt2 + a2(t, y)gijdx
idxj + b2(t, y)dy2, (4.1)

where gij is the 3-dimensional spatial metric. The Einstein equations are given by 1,

RMN −
1

2
gMNR = TMN , (4.2)

where TMN is the energy-momentum tensor, RMN is the 5D Ricci tensor and R is the corre-

1In this chapter we will use the unit system such that 4M3
∗ = 1.

57



4. Thick-brane cosmology

sponding Ricci scalar. The energy momentum tensor can be decomposed into two parts,

TMN = T̃MN + T̂MN , (4.3)

where the T̃MN is the bulk energy-momentum tensor and T̂MN is the brane localized energy

momentum tensor. The bulk and brane localized energy-momentum tensors in RS2 have the

following forms:

T̃MN = − (ΛB, ΛB, ΛB, ΛB, ΛB) , (4.4)

T̂MN =
δ(y)

b
(−λ− ρ, λ+ p, λ+ p, λ+ p, 0) . (4.5)

Above ΛB is the bulk cosmological constant, λ is the brane tension, ρ is the energy density

due to matter source on the brane and p is the corresponding pressure on the brane due to the

matter source. We consider the equation of state as ρ = ωp, with constant ω. Components of

the Einstein equation (4.2) corresponding to the metric (4.1) can be written as,

00 :
3

n2

[
ȧ

a

(
ȧ

a
+
ḃ

b

)
− n2

b2

{
a′′

a
+
a′

a

(
a′

a
− b′

b

)}]
= ΛB +

δ(y)

b
(λ+ ρ), (4.6)

ij :
1

b2

{
a′

a

(
a′

a
+ 2

n′

n

)
− b′

b

(
n′

n
+ 2

a′

a

)
+ 2

a′′

a
+
n′′

n

}
+

1

n2

{
ȧ

a

(−ȧ
a

+ 2
ṅ

n

)
+
ḃ

b

(
ṅ

n
− 2

ȧ

a

)
− 2

ä

a
− b̈

b

}
= −ΛB +

δ(y)

b
(λ+ p), (4.7)

05 : 3

(
a′

a

ḃ

b
+
n′

n

ȧ

a
− ȧ′

a

)
= 0, (4.8)

55 :
3

b2

[
a′

a

(
a′

a
+
n′

n

)
− b2

n2

{
ä

a
+
ȧ

a

(
ȧ

a
− ṅ

n

)}]
= −ΛB. (4.9)

One can recover the effective 4D equation of energy momentum conservation on the brane from

the Bianchi identity ∇MGMN = 0 and the 05-component of Einstein equation as

ρ̇+ 3(ρ+ p)
ȧ0

a0
= 0, (4.10)

where a0 is the value of a(t, y) at y = 0. Matching the delta functions in the 00 and ij

components of the Einstein equations one gets the following jumps in a′(t, y) and n′(t, y),[
a′
]
0

a0b0
= −1

3
(λ+ ρ),

[
n′
]
0

n0b0
=

2

3
(λ+ ρ) + (λ+ p). (4.11)

Now we take the jump of the 55 component of the Einstein equations to get[
a′
]
0

a0

{
a′
}

0

a0
+

1

2

[
a′
]
0

a0

{
n′
}

0

n0
+

1

2

[
n′
]
0

n0

{
a′
}

0

a0
= 0. (4.12)
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4.1. Brane-world cosmology: a brief review

After using the values of the jumps from Eq. (4.11), the above expression gives,{
a′
}

0

a0
(λ+ p) =

1

3
(λ+ ρ)

{
n′
}

0

n0
. (4.13)

By using the fact that there is no energy-momentum flow along the extra dimension, i.e.

T05 = 0, one can get the 00 and 55 components of Einstein equation (4.6) and (4.9) in the bulk

as (using G05 = 0):

F ′ =
2a′a3

3
T 0

0 , (4.14)

Ḟ =
2ȧa3

3
T 5

5 , (4.15)

where F is a function of t and y, given by

F (t, y) ≡ (a′a)2

b2
− (ȧa)2

n2
. (4.16)

where T 0
0 = −

(
ΛB + δ(y)

b (λ+ ρ)
)

and T 5
5 = −ΛB. We can integrate Einstein equation (4.15)

w.r.t. t to get,

F (t, y) = −a
4

6
ΛB + C(y), (4.17)

where C(y) is constant w.r.t. t but in general it is a function of y. To figure out the exact form

of C(y), we plugin the solution of F (t, y) in Eq. (4.14) and we get,

C′(y) = −2a′a3

3b
ρ0δ(y), (4.18)

which implies that C′(y) = 0 for y 6= 0, such that C is a constant and at y = 0, C(y) has the

following jump: [
C(y)

]
0

= −2a3
0

3b0
ρ0

{
a′
}

0
, (4.19)

and if we use the fact that the scale factor is Z2 symmetric then {a′}0 = 0, implying that C is

a constant everywhere both w.r.t. t and y. Hence the Eq. (4.17) can be written explicitly in

more familiar form of the Friedmann type equation,(
ȧ

na

)2

=
ΛB
6

+

(
a′

ba

)2

− C
a4
. (4.20)

Since we are interested in cosmological evolution of the scale factor on the brane therefore we

take the average of the Friedmann-like equation (4.20) to get,

(
ȧ0

n0a0

)2

=
ΛB
6

+
1

4

([
a′
]
0

b0a0

)2

+

({
a′
}

0

b0a0

)2

− C
a4
. (4.21)

After using the jump
[
a′
]
0

from Eq. (4.11) and average value of
{
a′(y)

}
0

= 0 (due to Z2
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4. Thick-brane cosmology

symmetry in scale factor) the Friedmann equation (4.21) on the brane can be written as,(
ȧ0

a0

)2

=
ΛB
6

+
1

36
(λ+ ρ)2 − C

a4
0

. (4.22)

Above we set n0 = 1 (value of n on the brane) and impose the Z2 symmetry, i.e. a(t, y) is

a function of |y|. Now by using the RS2 relation between the bulk cosmological constant ΛB

and the brane tension λ, i.e. λ =
√−6ΛB, and the fact that ρ � λ, one recovers the usual

behavior of the Hubble parameter H ≡ ȧ0/a0 on the brane, i.e.(
ȧ0

a0

)2

=
1

18
λρ+

1

36
ρ2 − C

a4
0

. (4.23)

Hence the cosmology resulted from the RS2 model is nearly 4D FRW cosmology with small

corrections when the matter energy density ρ is much smaller than the brane tension λ.

4.2. Thick brane cosmological solutions

In this section our goal is to study cosmological evolution of the scale-factor and Hubble

parameter with a dynamical background scalar field.

We will consider 5D space-time for which the metric takes the following (4D conformal)

form,

ds2 = a2(τ, y)gµνdx
µdxν + dy2, (4.24)

where xµ are 4D coordinates while gµν is the 4D metric that we take as the usual Robertson-

Walker metric. The function a(τ, y) is a scale factor which depends on the 4D conformal time

τ and 5th dimension y; we will also refer to it as a warp factor because of its y-dependence.

The action for scalar field in the presence of 5D gravity reads,

S =

∫
dx5√−g

{
R

2
− 1

2
gMN∇Mφ∇Nφ− V (φ)

}
. (4.25)

We assume that the scalar field φ depends exclusively on conformal time τ and the extra

coordinate y; V (φ) is the potential for the scalar field.

The Einstein equation and the equation of motion for φ resulting from the above action

(4.25) are

RMN −
1

2
gMNR = TMN , (4.26)

∇2φ− dV

dφ
= 0, (4.27)

where energy-momentum tensor TMN for the scalar field φ(τ, y) is given by Eq. (3.28), i.e.

TMN = ∇Mφ∇Nφ− gMN

(
1

2
(∇φ)2 + V (φ)

)
. (4.28)
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4.2. Thick brane cosmological solutions

The explicit form of the components of the Einstein equation for the metric ansatz (4.24) can

be written as,

00 : 3

[
1

a2

ȧ2

a2
−
(
a′′

a
+
a′2

a2

)
+

k

a2

]
=

1

2
φ′2 +

1

2

1

a2
φ̇2 + V (φ), (4.29)

ij :
1

a2

(
2
ä

a
− ȧ2

a2

)
− 3

(
a′′

a
+
a′2

a2

)
+

k

a2
=

1

2
φ′2 − 1

2

1

a2
φ̇2 + V (φ), (4.30)

05 :
a′

a

ȧ

a
− ȧ′

a
=

1

3
φ′φ̇, (4.31)

55 : 3

[
2
a′2

a2
− 1

a2

ä

a
− k

a2

]
=

1

2
φ′2 +

1

2

1

a2
φ̇2 − V (φ). (4.32)

where k = 0, ± 1 denotes the spatial curvature of the 4D homogeneous and isotropic space-

time for Minkowski, de Sitter and anti-de Sitter space, respectively. The scalar field equation

of motion can be written as,

φ′′ − 1

a2
φ̈+ 4

a′

a
φ′ − 2

a2

ȧ

a
φ̇− dV

dφ
= 0. (4.33)

In the following two subsections we will consider two cases, one with time-independent

(static) scalar field and the other with time-dependent scalar field.

4.2.1. Static thick-brane solutions

In this subsection we will consider a static scalar field scenario, in other words we assume

φ(τ, y) = φ(y), but still allow a(τ, y) to be time-dependent. In this case the Einstein equations

(4.29)-(4.32) simplify as follows,

00 : 3

[
1

a2

ȧ2

a2
−
(
a′′

a
+
a′2

a2

)
+

k

a2

]
=

1

2
φ′2 + V (φ), (4.34)

ij :
1

a2

(
2
ä

a
− ȧ2

a2

)
− 3

(
a′′

a
+
a′2

a2

)
+

k

a2
=

1

2
φ′2 + V (φ), (4.35)

05 :
a′

a

ȧ

a
− ȧ′

a
= 0, (4.36)

55 : 3

[
2
a′2

a2
− 1

a2

ä

a
− k

a2

]
=

1

2
φ′2 − V (φ). (4.37)

The equation of motion of the scalar field (4.27) reduces to,

φ′′ + 4
a′

a
φ′ − dV

dφ
= 0. (4.38)

Evolution of the scale factor

The assumption that scalar field φ is time independent implies that T05 = 0, consequentially

G05 = 0, i.e. Eq. (4.36). This requires ∂t∂y ln a = 0, which implies that a is separable:
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4. Thick-brane cosmology

a(τ, y) = â(τ)ā(y). Using this, the remaining Einstein equations become

00 :
1

â2

˙̂a2

â2
+

k

â2
=
ā2

3

[
3

(
ā′′

ā
+
ā′2

ā2

)
+

1

2
φ′2 + V (φ)

]
, (4.39)

ij :
1

â2

(
2

¨̂a

â
−

˙̂a2

â2

)
+

k

â2
= ā2

[
3

(
ā′′

ā
+
ā′2

ā2

)
+

1

2
φ′2 + V (φ)

]
, (4.40)

55 :
1

â2

¨̂a

â
+

k

â2
=
ā2

3

[
6
ā′2

ā2
− 1

2
φ′2 + V (φ)

]
. (4.41)

where the left (right) hand sides depend only on τ (y). We then obtain the following set of

equations for â(τ):

00 :
1

â2

˙̂a2

â2
+

k

â2
= Cτ , (4.42)

ij :
1

â2

(
2

¨̂a

â
−

˙̂a2

â2

)
+

k

â2
= Cx, (4.43)

55 :
1

â2

¨̂a

â
+

k

â2
= Cy, (4.44)

where Cτ,x,y are constants. It is easy to see that in order for the first two equations to be

consistent with the third one it is necessary that

Cy =
Cτ + Cx

2
. (4.45)

On the other hand, form the right hand sides of (4.39)-(4.41) one obtains for the y-dependent

functions the following equations

00 : Cτ =
ā2

3

[
3

(
ā′′

ā
+
ā′2

ā2

)
+

1

2
φ′2 + V (φ)

]
, (4.46)

ij : Cx = ā2

[
3

(
ā′′

ā
+
ā′2

ā2

)
+

1

2
φ′2 + V (φ)

]
, (4.47)

55 : Cy =
ā2

3

[
6
ā′2

ā2
− 1

2
φ′2 + V (φ)

]
. (4.48)

Then (4.46)-(4.47) immediately imply that

Cx = 3Cτ , (4.49)

so that all the constants can be expressed in terms Cy that will be denoted by Λ̄:

Cy ≡ Λ̄, Cτ =
1

2
Λ̄, Cx =

3

2
Λ̄. (4.50)

As we will see below, the constant Λ̄ is related to the 4D cosmological constant and its different

values will correspond to the flat, de Sitter or anti-de Sitter space-time and it has non-trivial

consequences on the evolution of the scale factor. Then one finds the following equations that
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4.2. Thick brane cosmological solutions

must be satisfied by â(τ):

¨̂a

â
− 2

˙̂a2

â2
− k = 0, (4.51)

˙̂a2

â2
− Λ̄

2
â2 + k = 0. (4.52)

As it will be shown below, even though the above equations look independent, solutions that

satisfy both of them do exist for each possible k = 0,±1. Before we proceed, it is worth

discussing the relations between (4.51) and (4.52). First note that Eq. (4.52) can be rewritten

as
˙̂a2

â4
− Λ̄

2
+

k

â2
= 0, (4.53)

which is a first integral of Eq. (4.51): a derivative of (4.53) reproduces Eq. (4.51). So, one

can recognize in (4.51) and (4.52) the analogs of classical equation of motion and energy

conservation, respectively. Therefore the role of Eq. (4.52) is just to adjust “velocity” at the

initial moment such that “energy” is properly matched.

Note also that (4.52) is identical with the standard Friedman equation written in terms of

the conformal time, thus one finds that Λ̄ has the interpretation of 4D cosmological constant.

The solutions of Eq. (4.51) are

â(τ) =

√
2

|Λ̄|


sech(τ) k = −1 (Λ̄ < 0)(
− τ
)−1

k = 0 (Λ̄ > 0)

sec(τ) k = +1 (Λ̄ > 0)

(4.54)

Note that for k = 0, 1 the metric is singular at a finite time τsing = (s+ 1/2)πk, where s is an

integer. It is instructive to write the scale factor â as a function of cosmological time t instead

of the conformal time τ , as

â(t) =

√
2

|Λ̄|


sech

[
2 arctanh

[
tan

(√
|Λ̄|
8 t
)]]

k = −1 (Λ̄ < 0)

exp
(√

|Λ̄|
2 t
)

k = 0 (Λ̄ > 0)

cosh
(√

|Λ̄|
2 t
)

k = 1 (Λ̄ > 0)

(4.55)

Using Eq. (4.55), the evolution of the Hubble parameter H ≡ ˙̂a(t)/â(t) is

H(t) =

√
|Λ̄|
2


sec
(√

|Λ̄|
2 t
)

tanh

[
2 arctanh

[
tan

(√
|Λ̄|
8 t
)]]

k = −1 (Λ̄ < 0)

1 k = 0 (Λ̄ > 0)

tanh
(√

|Λ̄|
2 t
)

k = 1 (Λ̄ > 0)

(4.56)

Note that when k = −1, Λ̄ must be negative, which corresponds to anti-de Sitter geometry; for

k = 0,+1, Λ̄ must be positive, thus representing de Sitter space-time. As one can notice from

the Eq. (4.55), for the de Sitter space-time we have exponentially growing scale factor while
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Figure 4.1.: The left graph shows the behavior of the 4D conformal scale factor â(t) as a function of t,
whereas, the right graph presents the Hubble parameter H(t) as a function of t for different
values of spatial curvature k. We choose the value of constants α0 = 0 and α1 =

√
2.

for the case of anti-de Sitter space-time the scale factor has bouncing (oscillatory) behavior. In

Fig. 4.1 we have plotted the scale factor â(t) and the Hubble parameter H(t) for k = 0, ± 1.

When Λ̄ = 0 there are no (real) solutions when k = +1. When k = −1, known as the

Milne universe in the conventional cosmology, Eqs. (4.47)-(4.48) reduce to the standard static

equations considered e.g. in [25, 1]. In this case time-dependent part of the scale factor

is determined by Eqs. (4.51)-(4.52), whose general solution is a linear combination of the

following functions

â(τ) = α0e
√
−kτ , k = −1, 0; Λ̄ = 0, (4.57)

or in terms of the cosmological time t the scalar factor can be written as,

â(t) =
√
−kt+ α1, k = −1, 0; Λ̄ = 0, (4.58)

where α0,1 are some integration constants. Note that the static solution requires k = 0 and

Λ̄ = 0.

In the following section we focus on the y-dependent solutions of Eqs. (4.47) and (4.48).

Extra-dimensional profiles

In this section we will determine y-dependent part of solutions that are governed by Eqs. (4.47)-

(4.48). For this purpose it is useful to define ā(y) ≡ eA(y), such that our y-dependent Einstein

equations Eqs. (4.47)-(4.48) and the scalar field equation (4.38) can be written as,

3A′′ +
3

2
Λ̄e−2A = −φ′2, (4.59)

6A′2 − 3Λ̄e−2A =
1

2
φ′2 − V (φ), (4.60)

φ′′ + 4A′φ′ − dV

dφ
= 0. (4.61)

The procedure we follow begins by assuming A(y) is a known function, so the above conditions

are to be considered as equations to determine φ(y) and V (φ). 2.

2In the literature there are few known analytic de Sitter and anti-de Sitter solutions of the system (4.59)-(4.60),
see for example [43, 90, 91, 92, 93].
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Figure 4.2.: The warp function A(y) and its derivatives A′(y) and A′′(y) as a function of y for β = 1.

Specifically, we will consider the following form of the warp function A(y),

A(y) = − ln cosh(βy), (4.62)

where β is a parameter. The above choice is dictated by simplicity and by a desire to have

a warp factor which behaves as ∼ exp (−|y|) at large y, so that it mimics RS solutions and

the hierarchy problem can be in principle approached. This choice of A(y) approximates

well the static solution obtained in Sec. 3.2, see also [25, 1], for a kink profile of the scalar

field. Figure 4.2 shows the warp function and its derivatives. It is difficult to find an exact

analytical solution for φ(y) from Eq. (4.59), however if one considers separately regions of

small (|y| <∼ β−1) and large (|y| >∼ β−1) y then approximate analytical solutions are easy to

obtain. When β is large (which is the case of our interest) then for small values of y, one can

ignore 3 the exponential term in Eq. (4.59), i.e.

3A′′ = −φ′2, (y → 0) (4.63)

with the following solution

φs(y) = 2
√

3 arctan[tanh(βy/2)], (y → 0) (4.64)

where φs(y) denotes the solution for small y. It is important to note that dropping the

exponential term in Eq. (4.59) is a reasonable assumption in the vicinity of y = 0 if β is

larger than Λ̄, as illustrated in Fig. 4.3 for β = 5 and Λ̄ = −1. On the other hand, for large

values of y, the exponential term dominates in Eq. (4.59) and we can ignore A′′(y), i.e.

3

2
Λ̄e−2A = −φ′2, (4.65)

with Λ̄ < 0. The solution of above equation reads

φl(y) =

√
−3Λ̄

2

1

β
sinh(βy), (|y| → ∞) (4.66)

3When y → 0 then A(y) → 0 and A′′ → −β2, therefore in the vicinity of y = 0 the Eq. (4.59) behaves as
−3β2 + 3

2
Λ̄ = −φ′2, implying φs(y) linear in y. For values of β adopted here the Λ̄ term is negligible.
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Figure 4.3.: These graphs show the exact numerical solution for the scalar field φn(y), the approximate
analytic solution for small (φs(y)) and large (φl(y)) values of y as a function of y in units
of β−1 for β = 5 and Λ̄ = −1. The right graph shows the zoomed central region of the left
graph.

where φl(y) denotes the solution valid for large values of y.

In Fig. 4.3 we have plotted the approximate analytic solutions φs,l(y) and the exact numerical

one φn(y). For large y the quality of the approximation can be easily estimated from the figure;

one finds that for |y| >∼ 5β−1, φn ' φl. For small y the right panel of the figure shows that

for |y| <∼ β−1, φn ' φs. In the intermediate region β−1 <∼ |y| <∼ 5β−1 the approximations φn,s

are less accurate. It is also worth to mention that as β grows the region of applicability of φs

shrinks, and φl converges to the exact numerical solution φn.

There is a comment here in order. If, instead of (4.62), we had used the solution obtained

in the static case of Sec. 3.2, then for Λ̄ = 0 we would reproduce exactly the kink profile for

the scalar field and the corresponding potential as in Sec. 3.2. In that case (with k = −1), the

time evolution of the scale factor would be governed by (4.58) while the scalar profile would

preserve its shape. In this special case the time evolution in 4D and source (the scalar field

profile) along the extra dimension fully decouple, so that the scalar profile is retained while

non-trivial time evolution of the scale factor has purely 4D nature.

We then substitute the solutions we obtained for A(y) and φ(y) in (4.60) to obtain the

scalar potential V (φ), which we plot as a function of φ in Fig. 4.4. To get approximate

analytic results for the scalar potential V (φ) corresponding to small and large values of φ(y),

we use the Einstein equation (4.60) along with the analytic solutions of scalar field φs(y) and

φl(y). For small values of scalar field φs(y) the scalar potential is 4,

Vs(φ) =

(
3

2
β2 +

9

4
Λ̄

)
+

(
−5

2
β2 +

3

4
Λ̄

)
φ2 +O

(
φ4
)
, (φ→ 0). (4.67)

For large values of scalar field φl(y) we can write the potential as,

Vl(φ) = −3

2
β2φ2 +

(
−6β2 +

9

4
Λ̄

)
+O

(
φ−2

)
, (|φ| → ∞). (4.68)

Note that the potential is unbounded from below. In fact this is a generic consequence of the

4For Λ̄ = 0 one would reproduce the standard bottom of a wine bottle potential as in the previous chapter.
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Figure 4.4.: The scalar potential V (φ) as a function of φ for different values of β and Λ̄ = −1.

requirement that the warp function A(y) has a linear dependence on y as |y| → ∞. Indeed,

as seen from (4.59)-(4.60), for large y, V (y) ∼ 9
4 Λ̄e−2A ∼ 9

4 Λ̄e2β|y|. Since at large |y|, φ ∝ eβ|y|
we find V (φ) ∝ −φ2, so the potential is always unbounded from below.

An alternative approach to solve Eqs. (4.59)-(4.60) is to reduce these equations into the

following first order equations by the use of the superpotential method for non-zero 4D cos-

mological constant [25],

A′ = −1

3
Wγ(y), (4.69)

φ′ =
1

γ(y)

∂W
∂φ

, (4.70)

V =
1

γ(y)2

(
∂W
∂φ

)2

− 2

3
W2, (4.71)

where γ(y) is defined by,

γ(y) =

(
1 +

9

2

Λ̄

W2
e−2A(y)

)1/2

. (4.72)

The superpotential method reduces the second order non-linear differential equations (4.59)-

(4.61) to system of first order nonlinear differential equations (4.69)-(4.71). However, obtaining

the solution are less straightforward when Λ̄ 6= 0 (for Λ̄ = 0 see Sec. 3.2 and Refs. [25, 1]).

Unfortunately, for the present case, one can not start with a desired shape for the scalar profile,

our strategy is instead to solve a system of first order nonlinear equations by first choosing

the warp function A(y). Next we solve Eq. (4.69) algebraically for W(y), and then solve the

following equation for φ(y)

φ′(y) =

√
W ′(y)

γ(y)
. (4.73)

Then Eq. (4.71) gives the potential V (y) which can be written as V (φ) after inverting φ(y) as

y = y(φ). We will not further investigate these solutions for φ(y), we only note that choosing

A(y) as in (4.62) one would reproduce the result obtained earlier in this subsection.
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4. Thick-brane cosmology

4.2.2. Time-dependent thick-brane solutions

In this subsection we will look for solutions of the Einstein equations (4.29)-(4.32) allowing for

time-dependence of the scalar field.

Boosted solutions

In this subsection we show how the a static solution for the warp factor, a(y) and scalar field

φ(y) can be promoted to a time-dependent solution through a boost along the extra dimension:

y → y′ = γ(vt + y), where γ = 1/
√

1− v2 and v is a relative velocity. It proves to be more

convenient first to redefine the fifth coordinate y so that the length element (4.24) is written

as

ds2 = a2(z)
(
ηµνdx

µdxν + dz2
)
, (4.74)

Let us consider a Lorentz transformation t′ = γ(t+ vz) and z′ = γ(vt+ z). It is easy to check

that a′(t′, z′) = a(t, z), since φ is a scalar field φ′(t′, z′) = φ(t, z). By general covariance a′(t′, z′)

and φ′(t′, z′) are also solutions on the Einstein equations. Therefore we conclude that for any

given stationary solution a(y) and φ(y), the functions a
[
γ
(
−vt+z(y)

)]
and φ

[
γ
(
−vt+z(y)

)]
also satisfy the Einstein equations. This strategy could be applied to any stationary solution,

e.g. to the kink solution discussed in Sec. 3.2.

Twisted solutions

In this subsection we return to the fifth dimensional coordinate y. We will to show that one

can obtain a class of interesting solutions assuming that a and φ depend on y and t only

through the combination η ≡ cτ + dy 5 where c and d are non-zero constants. In the next

subsection we will show that if the superpotential method is used, the 05 component of the

Einstein equations in fact implies such a dependence on η for φ. With this assumption the

Einstein equations (4.29)-(4.32) become,

00 : 3
c2

a2

a′2

a2
− 3d2

(
a′′

a
+
a′2

a2

)
+

3k

a2
=
d2

2
φ′2 +

1

2

c2

a2
φ′2 + V (φ), (4.75)

ij :
c2

a2

(
2
a′′

a
− a′2

a2

)
− 3d2

(
a′′

a
+
a′2

a2

)
+

k

a2
=
d2

2
φ′2 − 1

2

c2

a2
φ′2 + V (φ), (4.76)

05 :
a′′

a
− a′2

a2
= −1

3
φ′2, (4.77)

55 : 6d2a
′2

a2
− 3

c2

a2

a′′

a
− 3k

a2
=
d2

2
φ′2 +

1

2

c2

a2
φ′2 − V (φ). (4.78)

Note that in this section a prime denotes a derivative w.r.t. η. If now we add Eqs. (4.76)-(4.78),

and then the use of Eq. (4.77) gives

a′′

a
+
a′2

a2
+

2k

c2
= 0. (4.79)

5Note that this is not a boost of a stationary solution.
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On the other hand, subtracting Eqs. (4.75)-(4.76) and using (4.79) gives

a′2

a2
+
k

c2
=

1

6
φ′2. (4.80)

Using the above two relations in Eq. (4.78), we obtain the following form for the scalar potential

V (φ)

V (φ) = d2

(
−1

2
φ′2 +

6k

c2

)
. (4.81)

At this point the strategy is clear, one first solves (4.79) for a(η), then φ is easily determined

from (4.80). If φ(η) is an invertible function of η then V (φ) can be found from (4.81). In the

following we will find such solutions for each possible value of k.

k = 0: In this case the warp factor a(η) is obtained by integrating Eq. (4.79):

a(η) = a0 (1 + 2b0η)1/2 , (4.82)

where a0 and b0 are integration constants. It is important to note that the above solution is

only valid in the region of the space-time where η > −1/2b0, and we will see below that the

scalar field is singular at η → −1/2b0. With this explicit expression for a(η), we use Eq. (4.80)

to find the scalar field φ(η):

φ(η) = ±
√

3

2
ln (1 + 2b0η) + φ0, (4.83)

where φ0 is an integration constant. Then the scalar potential takes the form

V (φ) = −3b20e
−
√

8
3

(φ−φ0)
. (4.84)

It is noteworthy that the above potential is similar to the dilaton potential Vdilaton = −|Λ|e
√

4/3φ

studied in a 5D context in Sec. 3.2.4, see also Antoniadis et al. [76]. In our case, however, the

argument of the exponent is
√

8/3φ, while in [76] it is
√

(4/3)φ, see Sec. 3.2.4. The left panel

of Fig. 4.5 shows the behavior of the scalar field φ(η) and the warp factor a(η) for k = 0 case.

k = 1: In this case the warp factor a(η) found from (4.79) reads

a(η) = a0

√
cos(2η/c+ c0), (4.85)

where a0 and c0 are integration constants. The above solution is applicable in the region

|η + cc0/2| < cπ/4. With this expression for a(η), we use Eq. (4.80) to find the scalar field

φ(η):

φ(η) =

√
3

2
ln

(
1 + tan(η/c+ c0/2)

1− tan(η/c+ c0/2)

)
+ φ0, (4.86)

where φ0 is an integration constant. Then the scalar potential is given by

V (φ) =
3d2

2c2

[
3− cosh

(√
8

3
(φ− φ0)

)]
. (4.87)
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Figure 4.5.: The above graphs shows the behavior of φ(η) (4.86) and a(η) as a function of η for k = 0
(left panel) and k = 1 (right panel) with parameters: a0 = b0 = c = d = 1 and φ0 = c0 = 0.

It is important to note that these solutions for k = 1 case have a singularity at η = (±π −
2c0)c/4. Right panel of Fig. 4.5 illustrates the behavior of the scalar field φ(η) and the warp

factor a(η) for k = 1 case.

k = −1: In this case (4.79) yields

a(η) = a0

√
cosh(2η/c+ c0), (4.88)

where a0 and c0 are integration constants. In this case, however, there are no real solutions

for φ′(η), so we will not consider this possibility further.

4.2.3. Generalized superpotential method

It is instructive to develop an analogue of the superpotential method for the time dependent

scalar field in 5D warped space-time. We define the following quantities,

a′

a
≡ −1

3
W (φ),

ȧ

a
≡ −1

3
H(φ), (4.89)

where W (φ) and H(φ) are functions of φ(τ, y). In the above equation and in the following,

unless otherwise stated, we return to τ and y derivatives by a dot and a prime respectively.

With the above definitions we find from the 05 component of the Einstein equations (4.31),

∂W (φ)

∂φ
= φ′,

∂H(φ)

∂φ
= φ̇. (4.90)

Now, if we re-express the 55 (or 00) component of the Einstein equations in terms of the

superpotential variables W (φ) and H(φ) through Eqs. (4.89) and (4.90) we get the potential

V (φ) as,

V (φ) =
1

2

(
∂W (φ)

∂φ

)2

− 2

3
W (φ)2 − 1

a2

(
1

2

(
∂H(φ)

∂φ

)2

− 1

3
H(φ)2 − 3k

)
. (4.91)

The ij components of the Einstein equation (4.30) then give

1

2

(
∂H(φ)

∂φ

)2

− 1

3
H(φ)2 − 3k = 0. (4.92)
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For the k = 0 case this gives

∂H(φ)

∂φ

1

H(φ)
= ±

√
2

3
. (4.93)

with solution

H(φ) = H0e
±
√

2
3
φ
. (4.94)

where, H0 ≡ H(0) is a constant of integration. It is important to note that the superpotentials

W (φ) and H(φ) are related to each other since from (4.90) one obtains

∂2W (φ)

∂φ2
φ̇ = φ̇′,

∂2H(φ)

∂φ2
φ′ = φ̇′, (4.95)

which implies, along with Eq. (4.90), that,

∂2W (φ)

∂φ2

∂H(φ)

∂φ
=
∂2H(φ)

∂φ2

∂W (φ)

∂φ
. (4.96)

Hence,

W (φ) = A0H(φ) +W0, (4.97)

where A0 and W0 are constants on integration.

In order to determine φ we use (4.92) together with (4.90) to obtain,

φ̇ = ±
√

2

3
H0e

±
√

2
3
φ
. (4.98)

On the other hand, from (4.90) and (4.97) we find,

φ′ = ±
√

2

3
A0H0e

±
√

2
3
φ
. (4.99)

Therefore from Eqs. (4.98) and (4.99), we have,

φ̇(τ, y) =
1

A0
φ′(τ, y), (4.100)

which implies that, as claimed previously, φ can depend on t and y only through η (with

d = A0 c). For simplicity, hereafter we choose c = d = 1. Then from Eq. (4.98) we obtain

dφ(η)

dη
= ±

√
2

3
H0e

±
√

2
3
φ(η)

. (4.101)

with solution

φ(η) = ∓
√

3

2
ln

(
−2

3
H0η + e

∓
√

2
3
φ0

)
, (4.102)

where φ0 is an integration constant. Note that the above solution is valid only for −2
3H0η +

e

√
2
3
φ0 > 0 and therefore is singular at −2

3H0η + e

√
2
3
φ0 = 0. Also one can see that for the

choice H0 = −3b0 and φ0 = 0 the above result for φ(η) matches the one obtained in (4.83).
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In order to determine the warp factor a we use Eq. (4.89):

ȧ

a
≡ −1

3
H(φ) = ∓

√
1

6

∂H(φ)

∂φ
= ∓

√
1

6
φ̇, (4.103)

which can be solved to obtain a(τ, y) as,

a(τ, y) = a(τ0, y)e
∓
√

1
6

(
φ(τ,y)−φ(τ0,y)

)
, (4.104)

where a(τ0, y) and φ(τ0, y) are functions of y at the constant time slice τ0. a(τ0, y) can be

found by substituting the above expression for a(τ, y) into the first equation in Eq. (4.89); we

then find

a(τ0, y) = a(τ0, y0)e
∓
√

1
6

(
φ(τ0,y)−φ(τ0,y0)

)
− 1

3
W0y, (4.105)

inserting this in Eq. (4.104) we find

a(τ, y) = a(τ0, y0)e
∓
√

1
6

(
φ(τ,y)−φ(τ0,y0)

)
− 1

3
W0y, (4.106)

where a(τ0, y0) and φ(τ0, y0) are constants. Since φ(τ, y) = φ(η); then, for φ(τ0, y0) ≡ φ0 = 0,

W0 = 0 and H0 = −3b0, we recover the result that a(τ, y) ≡ a(η) as in Eq. (4.82).

a(η) = a0 (1 + 2b0η)1/2 . (4.107)

Since W (φ) has been found we can determine the potential V (φ) directly from (4.91)

V (φ) = −1

3

(
A0H0e

±
√

2
3
φ

+ 2W0

)2

+
2

3
W 2

0 . (4.108)

We recover the result for V (φ) as in Eq. (4.84) with H0 = −3b0, A0 = 1, W0 = 0 and the

lower sign (minus sign) in the exponent. Similarly one can reproduce all the results obtained in

Sec. 4.2.2 adopting the superpotential method for non-zero k values. Hence, we conclude that

the superpotential method is equivalent to the assumption that φ and a depend on τ and y

only through η = cτ + dy. The advantage of this method this that it reduces the second order

differential equations into to first order equations which are much easier to solve analytically.

4.3. Summary

In this chapter we have presented cosmological solutions of 5D warped extra dimensional mod-

els with smooth/thick-branes. In the case of static thick-brane cosmology, time-independent

scalar field configurations are employed and the evolution of the scale factor is discussed and de-

termined. Whereas for the case of dynamical thick-branes, time-dependent scalar field and the

scale factor are considered and various cosmological solutions are discussed. It is found that for

the case of time-dependent scalar fields φ(τ, y) there exist class of solutions that depend on 4D

conformal time τ and the 5D coordinate y only through the combination η = cτ+dy, where c, d

are constants. A generalized superpotential method is developed which allows time-dependent

warp factor.
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CHAPTER 5

WARPED HIGGS DARK MATTER

As we have reviewed in Chap. 2 the RS1 [22] provides an elegant solution to the hierarchy prob-

lem, soon after the RS proposal, many important improvements to the model were considered.

First, a stabilization mechanism for the RS1 setup was proposed by Goldberger and Wise [34];

it employs a real scalar field in the bulk of AdS geometry with localized potentials on both of

the branes, see also [25]. A second interesting observation, which could potentially solve the

fermion mass hierarchy problem within the SM, was made by many groups [64, 66, 67, 94, 95].

The core idea of these works was to allow all the SM fields to propagate in the RS1 bulk, except

the Higgs field which was kept localized on the IR-brane. In this way, the zero-modes of these

bulk fields correspond to the SM fields and the overlap of y-dependent profiles of fermionic

fields with the Higgs field could generate the required fermion mass hierarchy. To suppress

the EW precision observables, the symmetry of the gauge group was enhanced by introducing

custodial symmetry in Ref. [96]. The common lore, in the RS1 model and its extensions,

was to keep the Higgs field localized on the IR-brane in order to solve the hierarchy problem.

The first attempt to consider the Higgs field in the bulk of RS1 was made by Luty and Okui

[97]. They employed AdS/CFT duality 1 to argue that a bulk Higgs scenario can address the

hierarchy problem by making the Higgs mass operator marginal in the dual CFT.

A study of electroweak symmetry breaking (EWSB) within the bulk Higgs scenario was first

performed in the RS1 setup by Davoudiasl et al. [100]; they showed that the zero-mode of

the bulk Higgs is tachyonic and hence could lead to a vacuum expectation value (vev) at the

TeV scale. Recently there have been many studies where a bulk Higgs scenario was considered

from different perspectives — see for example: a study with custodial symmetry in the Higgs

sector[101]; models with soft wall setup [102]; bulk Higgs mediated flavor changing neutral cur-

rents (FCNCs) [103]; suppression of electroweak precision observables by modifying the warped

metric near the IR-brane [104, 105, 106]; and, a bulk Higgs as the modulus stabilization field

(Higgs–radion unification) [107]. Different phenomenological aspects after the Higgs discovery

1For the phenomenological applications of AdS/CFT with RS1 geometry, see for example [98, 99].
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were explored in [108, 109, 110, 111, 112, 113, 114]. These phenomenological studies show

that the RS1 model with bulk SM fields and its descendants with modified geometry (RS-like

warped geometries in general) are consistent with the current experimental bounds and EW

precision data.

As we discussed above, RS-like warped geometries, being consistent with the experimental

data, offer an attractive solution to many of the fundamental puzzles of the SM, mostly through

geometric means. In the same spirit, one can ask if RS-like warped extra dimensions can shed

some light on another outstanding puzzle of SM, the lack of a candidate for dark matter (DM)

which constitutes 83% of the observed matter in the universe [28]. It appears that unlike (flat)

universal extra dimensions (UED), where the KK-modes of the bulk fields can be even and odd

under KK-parity (implying that the lowest KK-odd particle (LKP) could be a natural dark

matter candidate [115, 116]), RS1-like models (involving two branes and warped bulk) are

unable to offer an analogue of KK-parity. The reason lies in the fact that the RS1 geometry is

just a single slice of AdS space and, since warped, cannot be symmetric around any point along

the extra dimension and hence does not allow a KK-parity. As a result it cannot accommodate

a realistic dark matter candidate. To cure this problem in the warped geometries, usually extra

discrete symmetries are introduced such that the SM fields are even while the DM is odd under

such discrete symmetries in order to make it stable [117, 118, 119, 120]. Another way to mend

this problem in warped geometries is to introduce an additional hidden sector with some local

gauge symmetries such that only DM is charged under the hidden sector gauge symmetries

and it couples to the SM very weakly [121, 122], (see also [123]).

An alternative to introducing additional symmetries, is to extend the RS1-like warped ge-

ometry in such a way that the whole geometric setup becomes symmetric around a fixed point

in the bulk. Two Z2 symmetric warped configurations are possible. In the first, two identical

AdS patches are symmetrically glued together at a UV fixed point, while in the second two

identical AdS pathes are symmetrically glued together at an IR fixed point. The geometric

configuration when the two AdS copies are glued together at the UV fixed point will be re-

ferred as “IR-UV-IR geometry”, whereas the geometry corresponding to the setup when two

AdS copies are glued at the IR fixed point is called “UV-IR-UV geometry”. We confine our-

selves to the IR-UV-IR geometric setup presented in Sec. 2.2 — it is straight forward to extend

our analysis to the UV-IR-UV geometries. (A common pathology associated with this latter

type of geometry is the appearance of ghosts.) We are aware of only two earlier attempts

to construct a similar setup. The first [124] treated the lowest odd KK gauge mode as the

DM candidate. The second employed a kink-like UV thick-brane [125] and the corresponding

dark-matter was the first odd KK-radion [126].

In this chapter, we place all the SM fields, including the Higgs doublet, in the bulk of the

IR-UV-IR geometry. The geometric Z2 parity (y → −y symmetry) leads to “warped KK-

parity”, i.e. there are towers of even and odd KK-modes corresponding to each bulk field.

We focus on EWSB induced by the bulk Higgs doublet and low energy aspects of the 4D

effective theory for the even and odd zero-modes assuming the KK-mass scale is high enough
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∼ O(few) TeV. In the effective theory the even and odd Higgs doublets mimic a two-Higgs-

doublet model (2HDM) scenario with the odd doublet similar to the inert doublet but without

corresponding pseudoscalar and charged scalars — the truncated inert-doublet model. All the

parameters of this truncated 2HDM are determined by the fundamental 5D parameters of the

theory and the choice of boundary conditions for the fields at ±L. (Note that the boundary

or “jump” conditions at y = 0 follow from the bulk equations of motion in the case of even

modes, whereas odd modes are required to be zero by symmetry.) There are many possible

alternative choices for the b.c. at ±L. We allow the y-derivative of a field to have an arbitrary

value at ±L as opposed to requiring that the field value itself be zero, i.e. we employ Neumann

or mixed b.c. rather than Dirichlet b.c. at ±L, see also [127] for general discussion on the

choice of b.c.. Only the former yields a non-trivial theory allowing spontaneous symmetry

breaking (SSB), whereas the latter leads to an explicit symmetry breaking scenario in which

there are no Goldstone modes and the gauge bosons do not acquire mass. With these choices,

the symmetric setup yields an odd Higgs zero-mode that is a natural candidate for dark matter.

We compute the one-loop quadratic (in cutoff) corrections to the two scalar zero modes within

the effective theory and discuss their mass splitting. The dark matter candidate is a WIMP

— we calculate its relic abundance in the cold dark matter paradigm.

This chapter is organized as follows. In Sec. 5.1, we discuss the manifestation of KK-parity

due the Z2 geometric setup presented in Sec. 2.2. An Abelian Higgs mechanism, with a complex

scalar field and a gauge field, is studied in our background geometry in Sec. 5.2. In the Abelian

case we lay down the foundation for SSB due to bulk Higgs, which is later useful for the case

of EWSB in the SM. Two apparently different approaches are considered to study SSB in the

Abelian case: (i) SSB by vacuum expectation values of the KK modes; and, (ii) SSB via a

vacuum expectation value of the 5D Higgs field. Low energy (zero-mode) 4D effective theories

are obtained within the two approaches and we find that the effective theories are identical up

to corrections of order O
(
m2

0/m
2
KK

)
, where m0 and mKK are the zero-mode mass and KK-

mass scale, respectively. Section 5.3 contains the main part of our work. There, we focus on

EWSB for the SM gauge sector due to the bulk Higgs doublet in our Z2 symmetric geometry

and obtain a low-energy 4D effective theory containing all the SM fields plus a real scalar – a

dark matter candidate – which is odd under the discrete Z2 symmetry. In the subsequent two

subsections of Sec. 5.3, we consider quantum corrections to scalar masses below the KK-scale

∼ O(few) TeV and explore possible implications of the dark-matter candidate by calculating

its relic abundance. For a warmup, Appendix B discusses SSB of a discrete symmetry with a

real scalar in the bulk of our geometric setup.

5.1. Warped KK-parity

In this section we employ the background solution for the Z2 symmetric background (IR-

UV-IR) geometry considered in Sec. 2.2 and show how KK-parity is manifested within this

geometric setup. The IR-UV-IR geometry of Sec. 2.2 is Z2-symmetric and we will consider this

symmetry to be exact for our 5D theory. If the 5D theory has this Z2-parity (symmetry) then

75



5. Warped Higgs dark matter

the Schrödinger-like potential for all the fields is symmetric, resulting in even (symmetric) and

odd (antisymmetric) eigenmodes under this parity. Thus, a general field Φ(x, y) can be KK

decomposed,

Φ(x, y) =
∑
n

φn(x)fn(y),

and, due to the Z2 geometry, the wave functions fn(y) are either even or odd. As a result:

Φ(x, y) ≡ Φ(±)(x, y), (5.1)

where

Φ(+)(x, y) =
∑
n

φ(+)
n (x)f (+)

n (y)
y→−y−−−−→ +Φ(+)(x, y),

Φ(−)(x, y) =
∑
n

φ(−)
n (x)f (−)

n (y)
y→−y−−−−→ −Φ(−)(x, y).

Due to the geometric Z2 symmetry, a single odd KK-mode cannot couple to two even KK-

modes in the 4D effective theory, which will ensure that the lowest odd KK-mode will be stable.

To understand this point better let us consider the following interaction term in the action:

Sodd = − 1√
L

∫
d4x

∫ +L

−L
dy
√−gΦ(−)(x, y)Φ(+)2(x, y) + · · · ,

= − 1√
L

∑
l,m,n

∫ +L

−L
dy
√−gf (−)

l (y)f (+)
m (y)f (+)

n (y)

∫
d4xφ

(−)
l (x)Φ(+)

m (x)Φ(+)
n (x) + · · · ,

= 0, (5.2)

where the ellipses denote other possible odd terms with odd number of odd fields. Above in

the second line we used the KK-decomposition and last line follows from the fact that the y

integration of an odd function vanishes, i.e.∫ +L

−L
dy
√−gf (−)

l (y)f (+)
m (y)f (+)

n (y) = 0. (5.3)

Above we assumed the Z2 symmetric background geometry, i.e. the warp-function A(y) is

symmetric. This is the geometric manifestation of warped KK-parity, i.e. any term with odd

number of odd KK-modes must vanish. Hence, the lowest of the odd KK-modes would be a

stable particle. Furthermore, as the geometry is Z2 symmetric in y ∈ [−L,L], the continuity

conditions for odd and even modes at y = 0 strongly impact the physics scenario. Our choice

will be that the odd (even) modes satisfy Dirichlet (Neumann or mixed) boundary (jump)

conditions (b.c.) at y = 0, respectively. As for the odd modes, continuity implies that they

must be zero at y = 0, but we could also have demanded the Neumann conditions that their

y derivative be zero at y = 0. We choose not to impose this additional b.c. in this work. As

regards the even modes, one cannot choose Dirichlet b.c. at y = 0 because of the presence of

the UV-brane and associated “jump” conditions following from the equations of motion.
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5.2. SSB in the IR-UV-IR model: the Abelian Higgs mechanism

In this section we will discuss the mechanism of spontaneous symmetry breaking (SSB) for an

Abelian case with the Higgs field (a complex scalar) in the IR-UV-IR geometry of Sec. 2.2.

The metric is given by Eq. (1.1), we will neglect the back reaction of the bulk fields on the

geometry. We will borrow most of our results from Appendix B, and focus here on gauge-

symmetric aspects of the model. We start by specifying the 5D Abelian action,

SAb = −
∫
d5x
√−g

{
1

4
FMNF

MN + |DMH|2 + µ2
BH

∗H

+ VIR(H)δ(y + L) + VUV (H)δ(y) + VIR(H)δ(y − L)

}
, (5.4)

where DM ≡ ∂M−ig5AM with the 5D U(1) coupling constant g5
2 and FMN ≡ ∂MAN−∂NAM .

We require that the bulk potential and the UV-brane potential have only quadratic terms

whereas the IR-brane potential is allowed to have a quartic term:

VUV (H) =
m2
UV

k
H∗H, VIR(H) = −m

2
IR

k
H∗H +

λIR
k2

(H∗H)2 . (5.5)

In this way EWSB is mainly triggered by the IR-brane. Above, H is a complex scalar field

and the parametrization is such that mUV and mIR have mass dimensions while λIR is dimen-

sionless. The gauge transformations can be written as

H(x, y)→ H ′(x, y) = eiΛ(x,y)H(x, y), (5.6)

AM (x, y)→ A′M (x, y) = AM (x, y) +
1

g5
∂MΛ(x, y), (5.7)

where Λ(x, y) is the gauge parameter.

As one can see from the toy model discussed in Appendix B, the fields in the IR-UV-IR

setup have even and odd bulk wave functions implied by the geometric Z2 symmetry. Hence,

in our Abelian model, it is convenient to decompose the generic Higgs and the gauge field into

fields of definite parity as follows

H(x, y) = H(+)(x, y) +H(−)(x, y), AM (x, y) = A
(+)
M (x, y) +A

(−)
M (x, y), (5.8)

where ± denotes the even and odd states. The gauge transformations for the even and odd

parity modes are,

A(±)
µ (x, y)→ A

′(±)
µ (x, y) =A(±)

µ (x, y) +
1

g5
∂µΛ(±)(x, y), (5.9)

A
(±)
5 (x, y)→ A

′(±)
5 (x, y) =A

(±)
5 (x, y) +

1

g5
∂5Λ(∓)(x, y). (5.10)(

H(+)

H(−)

)
→
(
H
′(+)

H
′(−)

)
=eiΛ

(+)1eiΛ
(−)τ1

(
H(+)

H(−)

)
, (5.11)

2The 5D coupling constant g5 has mass dimension −1/2.
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where 1 is a 2× 2 unit matrix, whereas τ1 =

(
0 1

1 0

)
is the Pauli matrix.

With this decomposition the above action can be written as

SAb = −
∫
d5x
√−g

{
1

4
F (+)
µν F

µν
(+) +

1

2
F

(+)
µ5 Fµ5

(+) +DMH
(+)∗DMH(+) + µ2

BH
(+)∗H(+)

+
1

4
F (−)
µν F

µν
(−) +

1

2
F

(−)
µ5 Fµ5

(−) +DMH
(−)∗DMH(−) + µ2

BH
(−)∗H(−)

+ VIR(H(±))δ(y + L) + VUV (H(+))δ(y) + VIR(H(±))δ(y − L)

}
, (5.12)

where,

F (±)
µν ≡ ∂µA(±)

ν − ∂µA(±)
ν , F

(±)
µ5 ≡ ∂µA

(±)
5 − ∂5A

(∓)
µ . (5.13)

The brane localized potentials for the Higgs field, VUV (H) and VIR(H), can be written in terms

of even and odd parity modes as

VUV (H(+)) =
m2
UV

k
|H(+)|2, (5.14)

VIR(H(±)) =− m2
IR

k
|H(+)|2 − m2

IR

k
|H(−)|2 +

λIR
k2
|H(+)|4 +

λIR
k2
|H(−)|4

+
4λIR
k2
|H(+)|2|H(−)|2 +

λIR
k2

(
(H(+)∗H(−))2 + h.c.

)
. (5.15)

In the above, we have not written H(−) terms in VUV since H(−)(0) = 0. Moreover, we

have not written terms which are odd as they will not contribute after integration over the

y-coordinate. One can easily check that the above brane potentials are invariant under the

gauge transformations defined above. Also note that F
(±)
µν and F

(±)
µ5 are gauge invariant under

the gauge transformations (5.9) and (5.10). In the even/odd basis, the covariant derivatives

Dµ and D5 following from DM ≡ ∂M − ig5AM , take the form

Dµ

(
H(+)

H(−)

)
≡
[
∂µ − ig5

(
A

(+)
µ A

(−)
µ

A
(−)
µ A

(+)
µ

)](
H(+)

H(−)

)
, (5.16)

D5

(
H(+)

H(−)

)
≡
[
∂5 − ig5

(
A

(−)
5 A

(+)
5

A
(+)
5 A

(−)
5

)](
H(+)

H(−)

)
. (5.17)

Under the gauge transformations the covariant derivative transforms as

DM

(
H(+)

H(−)

)
→ D′M

(
H ′(+)

H ′(−)

)
= eiΛ

(+)1eiΛ
(−)τ1DM

(
H(+)

H(−)

)
, (5.18)

i.e. it transforms the same way as complex scalar field transforms (5.11). It is important to

note that the above action is manifestly gauge invariant under the gauge group U(1)′ × U(1),

where the corresponding gauge functions are Λ(+)(x, y) and Λ(−)(x, y).

The next two subsections are devoted to two possible strategies for implementing spon-

taneous gauge symmetry breaking for this Abelian U(1) symmetric case. We are going to
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describe and compare: (i) SSB by vacuum expectation values of the KK modes and (ii) SSB

by a y-dependent vacuum expectation value of the 5D Higgs field. Readers can either follow

and continue, or, as we would advise, one may consider warming up within a toy model of a real

scalar field and spontaneous symmetry breaking which is discussed in Appendix B and then

return to the following subsections. In Appendix B we also consider the above two possible

approaches to SSB.

5.2.1. SSB by vacuum expectation values of KK modes

In this case we will choose the 5D axial gauge, A
(±)
5 = 0. This gauge is realized by choosing

the gauge parameter such that,

Λ(±)(x, y) = −g5

∫
dyA

(∓)
5 (x, y) + Λ̂(±)(x), (5.19)

where Λ̂(±)(x) is the integration constant (residual gauge freedom) and only depends on xµ.

Note that the Λ̂(−)(x), being an odd function of y, must vanish. Consequently, we are left with

only one 4D gauge function, Λ̂(+)(x). In this gauge, the Abelian action reduces to,

SAb = −
∫
d5x
√−g

{
1

4
F (+)
µν F

µν
(+) +

1

2
∂5A

(+)
µ ∂5Aµ(+) +DMH

(+)∗DMH(+) + µ2
B|H(+)|2

+
1

4
F (−)
µν F

µν
(−) +

1

2
∂5A

(−)
µ ∂5Aµ(−) +DMH

(−)∗DMH(−) + µ2
B|H(−)|2

+ VIR(H(±))δ(y + L) + VUV (H(+))δ(y) + VIR(H(±))δ(y − L)

}
, (5.20)

where the brane potentials are given by Eqs. (5.14) and (5.15). It is convenient to parameterize

the complex scalar field H(±)(x, y) in the following form,(
H(+)

H(−)

)
≡ eig5(π(+)1+π(−)τ1)

(
Φ(+)

Φ(−)

)
, (5.21)

where Φ(±)(x, y) and π(±)(x, y) are real scalar fields. We KK-decompose the scalar fields

Φ(±)(x, y), π(±)(x, y) and the gauge fields A
(±)
µ (x, y) as

Φ(±)(x, y) =
∑
n

Φ(±)
n (x)f (±)

n (y), (5.22)

π(±)(x, y) =
∑
n

π(±)
n (x)a(±)

n (y), (5.23)

A(±)
µ (x, y) =

∑
n

A(±)
µn (x)a(±)

n (y), (5.24)

where the wave-functions f
(±)
n (y) satisfy Eq. (B.8) from Appendix B.1. (We borrow the results

for the wave-functions f
(±)
n (y) from Appendix B.1.) We choose gauge wave-functions a

(±)
n (y)

to satisfy

−∂5

(
e2A(y)∂5a

(±)
n (y)

)
=m2

A
(±)
n
a(±)
n (y). (5.25)
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The wave-functions a
(±)
n satisfy the following orthonormality conditions,∫ +L

−L
dya(±)

m (y)a(±)
n (y) = δmn. (5.26)

It is worth commenting here that the gauge field A
(±)
µ (x, y) and the scalar field π(±)(x, y)

share the same y-dependent KK-eigen bases a
(±)
n (y), this is a convenient choice. The KK-

modes satisfy �(4)A
(±)
µn (x) = m2

A
(±)
n

A
(±)
µn (x). The boundary (jump) conditions for a

(±)
n (y) at

y = 0 and y = ±L are,

∂5a
(+)
n (y)

∣∣∣
0+

= 0, a(−)
n (y)

∣∣∣
0+

= 0, ∂5a
(±)
n (y)

∣∣∣
±L∓

= 0. (5.27)

We choose the Neumann b.c. for a
(+)
n (y) at y = 0,±L in order to insure that we get non-zero

even zero-mode gauge profiles. With regard to the odd modes, we have chosen the Neumann

b.c. of ∂5a
(−)
n (±L) = 0, as the other choice of a

(−)
n (±L) = 0 would lead to a trivial theory with

a
(−)
n (y) = 0 everywhere.

With the above KK-decomposition we can write the effective 4D action for the Abelian case,

with the Higgs brane localized potentials, as

SAb =−
∫
d4x

{
1

4
Fn(+)
µν Fµνn(+) +

1

2
m2

A
(+)
n
An(+)
µ Aµn(+) +

1

4
Fn(−)
µν Fµνn(−) +

1

2
m2

A
(−)
n
An(−)
µ Aµn(−)

+ ∂µΦ(+)
n ∂µΦ(+)

n +m2(+)
n Φ(+)2

n + ∂µΦ(−)
n ∂µΦ(−)

n +m2(−)
n Φ(−)2

n

+
(
g

(+)2
klmnΦ(+)

m Φ(+)
n + ḡ

(+)2
klmnΦ(−)

m Φ(−)
n

)(
A

(+)
kµ − ∂µπ

(+)
k

)(
A

(+)µ
l − ∂µπ(+)

l

)
+
(
g

(−)2
klmnΦ(+)

m Φ(+)
n + ḡ

(−)2
klmnΦ(−)

m Φ(−)
n

)(
A

(−)
kµ − ∂µπ

(−)
k

)(
A

(−)µ
l − ∂µπ(−)

l

)
+ 4g2

klmnΦ(+)
m Φ(−)

n

(
A

(+)
kµ − ∂µπ

(+)
k

)(
A

(−)µ
l − ∂µπ(−)

l

)
+ 6λklmnΦ

(+)
k Φ

(+)
l Φ(−)

m Φ(−)
n

+ λ
(+)
klmnΦ

(+)
k Φ

(+)
l Φ(+)

m Φ(+)
n + λ

(−)
klmnΦ

(−)
k Φ

(−)
l Φ(−)

m Φ(−)
n

}
, (5.28)

where the indices in this action are raised and lowered by Minkowski metric and the coupling

constants are given as

λ
(±)
klmn = e4A(L)λIR

k2
f

(±)
k f

(±)
l f (±)

m f (±)
n

∣∣∣
L
, λklmn = e4A(L)λIR

k2
f

(+)
k f

(+)
l f (−)

m f (−)
n

∣∣∣
L
, (5.29)

g
(±)2
klmn = g2

5

∫ L

−L
dye2Aa

(±)
k a

(±)
l f (+)

m f (+)
n , ḡ

(±)2
klmn = g2

5

∫ L

−L
dye2Aa

(±)
k a

(±)
l f (−)

m f (−)
n , (5.30)

g2
klmn = g2

5

∫ L

−L
dye2Aa

(+)
k a

(−)
l f (+)

m f (−)
n , (5.31)

where the superscripts ± on the coupling constants are just for notational purposes and do

not refer to the parity.

The above action is valid for all KK-modes. Assuming that the KK-scale is high enough, i.e.

mKK ∼ O(few) TeV, we can derive effective theory where only the lowest modes (zero-modes

with masses much below mKK) are considered. Equation (5.25) along with the b.c. (5.27)
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imply that the odd zero-mode wave-function of the gauge boson is zero, i.e. a
(−)
0 = 0. As a

result, in the effective theory the odd zero-mode gauge boson A
(−)
0µ and odd parity Goldstone

mode π
(−)
0 are not present. In contrast, the even zero-mode wave-function for the gauge boson

has a constant profile in the bulk, i.e. a
(+)
0 = 1/

√
2L, implying that the couplings of the even

zero-mode gauge boson g+
00mn and ḡ+

00mn are equal (see Eq. (5.30)), which, in turn, implies

g
(+)
00mn = ḡ

(+)
00mn ≡ g4δmn, with g4 ≡ g5/

√
2L. The forms of the scalar zero-mode wave functions

f
(±)
0 (y) are given by Eq. (B.24). We can now write down the low-energy effective action for

the zero-modes:

SeffAb = −
∫
d4x

{
1

4
F 0(+)
µν Fµν0(+) + ∂µΦ

(+)
0 ∂µΦ

(+)
0 − µ2Φ

(+)2
0 + ∂µΦ

(−)
0 ∂µΦ

(−)
0 − µ2Φ

(−)2
0

+
(
g

(+)2
0000 Φ

(+)2
0 + ḡ

(+)2
0000 Φ

(−)2
0

)(
A

(+)
0µ − ∂µπ

(+)
0

)2

+ λ
(+)
0000Φ

(+)4
0 + λ

(−)
0000Φ

(−)4
0 + 6λ0000Φ

(+)2
0 Φ

(−)2
0

}
, (5.32)

where the couplings can be read from Eqs. (5.29) and (5.30) and the mass parameter µ is

defined as µ2 ≡ (1 + β)m2
KKδIR, with the parameters defined as

δIR ≡
m2
IR

k2
− 2(2 + β), mKK ≡ ke−kL and β ≡

√
4 + µ2

B/k
2. (5.33)

By using the results from Appendix B, we get the following couplings in terms of the parameters

of the fundamental theory:

λ
(±)
0000 = λ0000 ' λ ≡ λIR(1 + β)2, g

(+)
0000 = ḡ

(+)
0000 = g4 ≡

g5√
2L
. (5.34)

Our effective theory could also be described by redefining A
(+)
0µ (x) ≡ Aµ(x), π

(+)
0 (x) ≡ π(x)

and

H1(x) ≡ eig4π(x)Φ
(+)
0 (x), H2(x) ≡ eig4π(x)Φ

(−)
0 (x), (5.35)

in which case the above effective action can be written in a nice gauge covariant form as

SeffAb = −
∫
d4x

{
1

4
FµνF

µν +DµH∗1DµH1 +DµH∗2DµH2 + V (H1, H2)

}
, (5.36)

where the covariant derivative is defined as

Dµ ≡ ∂µ − ig4Aµ, (5.37)

and the scalar potential can be written as

V (H1, H2) =− µ2|H1|2 − µ2|H2|2 + λ|H1|4 + λ|H2|4 + 6λ|H1|2|H2|2.

Note that the action (5.36) is symmetric under Z′2×Z2 under which H1 → −H1 and H2 → −H2,

respectively.

It is important to note that, after choosing the gauge A5(x, y) = 0, we are left with a
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residual gauge freedom with a single purely 4D gauge parameter Λ̂(+)(x) such that the above

Lagrangian is invariant under the U(1) gauge transformation,

Aµ(x)→ A′µ(x) = Aµ(x) +
1

g4
∂µΛ̂(+)(x), (5.38)

H1(x)→ H ′1(x) = eig4Λ̂(+)
H1(x), H2(x)→ H ′2(x) = eig4Λ̂(+)

H2(x). (5.39)

Thus, besides Z′2 × Z2 symmetry, the above potential is invariant under U(1)′ × U(1). One

U(1) has been gauged while the other is a global remnant of unbroken symmetry associated

with the odd gauge transformation (Λ(−)) defined in Eqs. (5.10)-(5.11).

As illustrated in the toy model Appendix B.1, we choose the vacuum such that the even

parity Higgs H1 acquires a vev, whereas the odd parity Higgs H2 does not. That choice of

vacuum implies values of v1 and v2 given by,

v2
1 =

µ2

λ
, v2 = 0. (5.40)

Now let us consider fluctuations around our choice of the vacuum,

H1(x) =
1√
2

(
v1 + h

)
eig4π(x), H2(x) =

1√
2
χeig4π(x). (5.41)

We rewrite our effective action (5.36) only up to the quadratic order in fluctuations as

S
(2)
Ab = −

∫
d4x

{
1

4
FµνF

µν +
g2

4v
2
1

2

(
Aµ − ∂µπ

)2

+
1

2
∂µh∂

µh+
1

2
m2
hh

2 +
1

2
∂µχ∂

µχ+
1

2
m2
χχ

2

}
. (5.42)

The mixing between Aµ and π in the above action can be removed by an appropriate 4D gauge

choice. Here we will choose the 4D unitary gauge such that π = 0 and the gauge field acquires

mass. The remaining scalars are h and χ with masses

m2
h = m2

χ = 2µ2. (5.43)

Hence, the full effective Abelian action can be written in the 4D unitary gauge as

SeffAb = −
∫
d4x

{
1

4
FµνF

µν +
1

2
m2
AAµA

µ +
1

2
∂µh∂

µh+
1

2
m2
hh

2 +
1

2
∂µχ∂

µχ+
1

2
m2
χχ

2

+ λv1h
(
h2 + 3χ2

)
+

1

4
λh4 +

1

4
λχ4 +

3

2
λh2χ2

+ g2
4v1hAµA

µ +
1

2
g2

4

(
h2 + χ2

)
AµA

µ

}
, (5.44)

where

m2
A ≡ g2

4v
2
1 = g2

4

µ2

λ
. (5.45)

To summarize, the zero-mode effective theory for the Abelian case has two real scalars with
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5.2. SSB in the IR-UV-IR model: the Abelian Higgs mechanism

equal mass and a massive gauge boson. The above action is invariant under a Z2 symmetry:

h→ h and χ→ −χ.

5.2.2. SSB by a vacuum expectation value of the 5D Higgs field

In this subsection, we write the complex scalar fields H(±) as(
H(+)(x, y)

H(−)(x, y)

)
=

1√
2
eig5(π(+)(x,y)1+π(−)(x,y)τ1)

(
v(y) + h(+)(x, y)

h(−)(x, y)

)
. (5.46)

As mentioned above, the vev v(y) is only associated with the even Higgs field H(+). The fluc-

tuations h(+)(x, y) and π(+)(x, y) are even, whereas the fluctuations h(−)(x, y) and π(−)(x, y)

are odd under the warped KK-parity.

We can write the action Eq. (5.12) up to quadratic order in fields as

S
(2)
Ab =−

∫
d5x

{
1

4
F (+)
µν F

(+)µν +
1

2
e2A(y)

(
(∂µA

(+)
5 )2 + (∂5A

(+)
µ )2 + g2

5v
2A(+)

µ A(+)µ
)

+
(
e2A(y)g2

5v
2π(+) − ∂5(e2A(y)A

(−)
5 )

)
∂µA

(+)µ +
1

2
e2A(y)

(
(∂µh

(+))2 + g2
5v

2(∂µπ
(+))2

)
+

1

2
e4A(y)

(
(∂5v + ∂5h

(+))2 + g2
5v

2
(
A

(−)
5 − ∂5π

(+)
)2

+ µ2
B(v + h(+))2

)
+

1

4
F (−)
µν F

(−)µν +
1

2
e2A(y)

(
(∂µA

(−)
5 )2 + (∂5A

(−)
µ )2 + g2

5v
2A(−)

µ A(−)µ
)

+
(
e2A(y)g2

5v
2π(−) − ∂5(e2A(y)A

(+)
5 )

)
∂µA

(−)µ +
1

2
e2A(y)

(
(∂µh

(−))2 + g2
5v

2(∂µπ
(−))2

)
+

1

2
e4A(y)

(
(∂5h

(−))2 + g2
5v

2
(
A

(+)
5 − ∂5π

(−)
)2

+ µ2
Bh

(−)2
)}

. (5.47)

where the indices are raised and lowered by the Minkowski metric. The bulk equation of

motion for the background Higgs vev corresponding to the above action is(
− 1

2
∂5

(
e4A(y)∂5

)
+

1

2
µ2
Be

4A(y)
)
v(y) = 0, (5.48)

and the bulk equations of motion for all the fluctuations are(
− 1

2
e2A(y)�(4) − 1

2
∂5

(
e4A(y)∂5

)
+

1

2
µ2
Be

4A(y)
)
h(±)(x, y) = 0, (5.49)

�(4)A(±)
µ + ∂5

(
M2
A∂5A

(±)
µ

)
−M2

AA
(±)
µ − ∂µ

(
∂νA(±)

ν + ∂5(e2A(y)A
(∓)
5 )−M2

Aπ
(±)
)

= 0, (5.50)

�(4)A
(±)
5 − ∂5

(
∂νA(∓)

ν

)
−M2

A

(
A

(±)
5 − ∂5π

(∓)
)

= 0, (5.51)

�(4)π(±) − ∂νA(±)
ν −M−2

A ∂5

(
M2
Ae

2A(y)(A
(∓)
5 − ∂5π

(±))
)

= 0, (5.52)

where M2
A ≡ g2

5v
2(y)e2A(y). The jump conditions at the UV-brane following from the equations

of motion above are:(
∂5 −

∂VUV (v)

∂v

)
v(y)

∣∣∣
0+

= 0,

(
∂5 −

∂2VUV (v)

∂v2

)
h(+)(x, y)

∣∣∣
0+

= 0, (5.53)

whereas the odd fields must vanish at y = 0. In addition, we choose the boundary conditions
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5. Warped Higgs dark matter

at ±L following the logic of our earlier discussion (see Eq. (5.27) and Appendix B.2):(
±∂5 +

∂VIR(v)

∂v

)
v(y)

∣∣∣
±L∓

= 0,

(
±∂5 +

∂2VIR(v)

∂v2

)
h(±)(x, y)

∣∣∣
±L∓

= 0, (5.54)

∂µA
(±)
5 (x, y)− ∂5A

(∓)
µ (x, y)

∣∣∣
±L∓

= 0, A
(∓)
5 (x, y)− ∂5π

(±)(x, y)
∣∣∣
±L∓

= 0. (5.55)

In the above action there are mixing terms of ∂µA
(±)µ with the scalars π(±) and A

(±)
5 , which

can be canceled by adding the following gauge fixing Lagrangian to the above action,

SGF = −
∫
d5x

{
1

2ξ

[
∂µA

µ(+) − ξ
(
M2
Aπ

(+) − ∂5

(
e2A(y)A

(−)
5

))]2

+
1

2ξ

[
∂µA

µ(−) − ξ
(
M2
Aπ

(−) − ∂5

(
e2A(y)A

(+)
5

))]2
}
. (5.56)

One can identify the Goldstone modes from the above two Eqs. (5.47) and (5.56):

Π(±)(x, y) ≡M2
Aπ

(±) − ∂5

(
e2A(y)A

(∓)
5

)
, (5.57)

along with the two pseudoscalars A(±)
5 (x, y) given as

A(±)
5 (x, y) ≡ A(±)

5 − ∂5π
(∓). (5.58)

The resulting four pseudoscalars above along with the two h(±) scalar fields agrees with the

naive counting before SSB of three even-parity scalars (h(+)(x, y), π(+)(x, y) and A
(+)
5 (x, y))

and three odd-parity scalars (h(−)(x, y), π(−)(x, y) andA
(−)
5 (x, y)). It is seen from the Eq. (5.47)

that both the even and odd gauge bosons A
(±)
µ (x, y) acquire mass from the Higgs mechanism,

whereas the two Goldstone bosons are eaten up by these gauge bosons.

In order to obtain an effective 4D Lagrangian we need to integrate the above quadratic

Lagrangian over the y-coordinate. The first step to achieve this is to decompose all the fields

in KK-modes. We will use the following decomposition,

A(±)
µ (x, y) =

∑
n

A(±)
µn (x)ã(±)

n (y), h(±)(x, y) =
∑
n

h(±)
n f̃ (±)

n (y), (5.59)

Π(±)(x, y) =
∑
n

Π(±)
n (x)ã(±)

n (y)m̃
(±)
An
, A(±)

5 (x, y) =
∑
n

A(±)
n (x)η(±)

n (y), (5.60)

where ã
(±)
n (y), η

(±)
n (y) and f̃

(±)
n (y) are the 5D profiles for the vector fields (the same for the

Goldstone fields), the pseudoscalars and the Higgs bosons, respectively. The e.o.m. for the

wave-functions f̃
(±)
n (y), ã

(±)
n (y) and η

(±)
n (y) are

−∂5(e4A(y)∂5f̃
(±)
n (y)) + µ2

Be
4A(y)f̃ (±)

n (y) = m̃(±)2
n e2A(y)f̃ (±)

n (y), (5.61)

−∂5(e2A(y)∂5ã
(±)
n (y)) +M2

Aã
(±)
n (y) = m̃

(±)2
An

ã(±)
n (y), (5.62)

−∂5

(
M−2
A ∂5(M2

Ae
2A(y)η(±)

n (y))
)

+M2
Aη

(±)
n (y) = m

(±)2
An η(±)

n (y), (5.63)
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where m̃
(±)
n , m̃

(±)
An

and m
(±)
An are KK-masses for h

(±)
n , A

(±)
µn (x) and φ

(±)
n (x). The Higgs profiles

f̃
(±)
n (y) are exactly the same as in Appendix B.2 since they follow the same e.o.m and b.c.;

thus, we borrow the results here. The normalization conditions for the wave-functions ãn(y)

and ηn(y) are∫ +L

−L
dyã(±)

m (y)ã(±)
n (y) = δmn,

∫ +L

−L
dy
M2
Ae

2A(y)

m
(±)
Amm

(±)
An

η(±)
m (y)η(±)

n (y) = δmn. (5.64)

Following the general strategy mentioned in Sec. 5.1 and Appendix B.2, we choose the y = 0

b.c. for the even wave functions as Neumann (or mixed) b.c., whereas all the odd-mode wave

functions satisfy Dirichlet b.c. at y = 0:

∂5ã
(+)
n (y)

∣∣∣
0

= 0, ã(−)
n (y)

∣∣∣
0

= 0, ∂5η
(+)
n (y)

∣∣∣
0

= 0, η(−)
n (y)

∣∣∣
0

= 0. (5.65)

The b.c. for wave-functions ã
(±)
n and η

(±)
n at y = ±L follow from Eqs. (5.54)-(5.55),(

±∂5 −
m2
IR

2k
+

3λIR
2k2

v2(y)

)
f̃ (±)
n (y)

∣∣∣
±L∓

= 0, ∂5ã
(±)
n (y)

∣∣∣
±L

= 0, η(±)
n (y)

∣∣∣
±L

= 0. (5.66)

One can also easily find the KK-decomposition of the fluctuation fields A
(±)
5 (x, y) and π(±)(x, y)

in terms of Goldstone bosons Π(±) and the physical scalars A(±)
5 from Eqs. (5.57)-(5.58):

A
(±)
5 (x, y) =

∑
n

(
Π

(∓)
n (x)

m̃
(∓)
An

∂5ã
(∓)
n (y)− M2

A

(m
(±)
An )2

A(±)
n (x)η(±)

n (y)

)
, (5.67)

π(±)(x, y) =
∑
n

(
Π

(±)
n (x)

m̃
(±)
An

ã(±)
n (y)− M−2

A

(m
(∓)
An )2

∂5

(
M2
Ae

2A(y)η(∓)
n (y)

)
A(∓)
n (x)

)
, (5.68)

Now we consider the low-energy effective theory obtained by assuming the KK-mass scale

is high enough so that we can integrate out all the heavier KK modes and keep only the

zero-modes of the theory. From here on, we choose the unitary gauge such that ξ →∞ which

implies Π
(±)
n (x)→ 0. Moreover, with our choice of boundary conditions for a

(−)
0 (y) and η

(±)
0 (y)

in Eqs. (5.65) and (5.66) one can see that the corresponding wave-functions for zero-modes are

vanishing, i.e. there will be no zero-modes A
(−)
0µ (x) and A(±)

0 (x) in our effective theory. The

y-dependent vev and zero-mode profiles for even and odd Higgs are (see Appendix B.2):

v(y) ≡ v4fv(y), with v4 ≡ µ/
√
λ, fv(y) ≡

√
k(1 + β)ekLe(2+β)k(|y|−L), (5.69)

f̃
(±)
0 (|y|) ≈

√
k(1 + β)ekLe(2+β)k(|y|−L), f̃

(−)
0 (y) = ε(y)f̃

(−)
0 (|y|), (5.70)

where µ2 ≡ (1 +β)m2
KKδIR and λ ≡ λIR(1 +β)2. It is important to comment here that at the

leading order the vev profile and zero-mode profiles are the same. However, there are finite

corrections which are suppressed by O
(
m2
h/m

2
KK

)
as given below and also depicted in Fig. 5.1,
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Figure 5.1.: The left graph shows the profile of the vev fv(y) and the zero-mode profiles f̃
(±)
0 (y) as

functions of y with all the fundamental parameters of order one and kL = 5. (We use a
mild value of kL to show the small differences near the IR-brane which will be hard to see
if we use kL ' 35, this latter value being required (see the main text) to solve the hierarchy
problem.) The right plot is the same as the left but focused near the origin.

f̃
(±)
0 (|y|)
fv(|y|)

= 1 +
m2
h

m2
KK

(
1− e2k(|y|−L)

4(1 + β)
+O

( m2
h

m2
KK

))
. (5.71)

We can now write down the effective theory for the zero-modes in the unitary gauge:

Seff = −
∫
d4x

{
1

4
FµνF

µν +
1

2
m̃2
AAµA

µ +
1

2
∂µh∂

µh+
1

2
m̃2
hh

2 +
1

2
∂µχ∂

µχ+
1

2
m̃2
χχ

2

+
1

4
λh4 +

1

4
λχ4 +

3

2
λh2χ2 + λv4h

(
h2 + 3χ2

)
+ g̃2

4v4hAµA
µ +

1

2
g̃2

4

(
h2 + χ2

)
AµA

µ

}
, (5.72)

where we have denoted A
(+)
0µ (x) ≡ Aµ(x) and we have suppressed the zero-mode subscript ‘0’

for all modes. After some algebra, using the boundary conditions, one can find the masses of

the zero-mode scalars and gauge boson at the leading order:

m̃2
h = m̃2

χ ' 2µ2, m̃2
A '

1

2L

∫ L

−L
dyM2

A = g̃2
4v

2
4, (5.73)

where µ2 ≡ (1 + β)m2
KKδIR, v4 ≡ µ/λ and g̃4 ≡ g5/

√
2L.

Comparison: In order to facilitate comparison between the two approaches, we collect in-

formation concerning all the low-energy degrees of freedom for both pictures in Table 5.1.

Comparing the effective theories obtained within EWSB induced by the Higgs KK-mode vev

and by a 5D-Higgs vev in (5.44) and (5.72) one finds that both approaches give exactly the

same zero-mode effective theory up to O(m2
h/m

2
KK ∼ 10−3) corrections. We have checked

that the scalar masses are exactly same to all orders in the expansion parameter m2
h/m

2
KK . In

contrast, the gauge boson masses and the couplings can have subleading differences of order

O(m2
h/m

2
KK). Note that we have neglected all the effects due to the non-zero KK-modes, such

effects being suppressed by their masses, i.e. O(m2
h/m

2
n). Hence we conclude that the two

approaches to EWSB discussed above give the same low-energy (zero-mode) effective theory
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EWSB by KK mode vev EWSB by 5D Higgs vev

5D fields KK-modes n = 0 n 6= 0 KK-modes n = 0 n 6= 0

ReH(+) φ
(+)
n (x) 3 3 hn(x) 3 3

ReH(−) φ
(−)
n (x) 3 3 χn(x) 3 3

ImH(+) π
(+)
n (x) 7(4D g.c.) 3 Π

(+)
n (x) 7(4D g.c.) 7(4D g.c.)

ImH(−) π
(−)
n (x) 7(b.c.) 3 Π

(−)
n (x) 7(4D g.c.) 7(4D g.c.)

A
(+)
5 A

(+)
5n (x) 7(5D g.c.) 7(5D g.c.) A(+)

n (x) 7(b.c.) 3

A
(−)
5 A

(−)
5n (x) 7(5D g.c.) 7(5D g.c.) A(−)

n (x) 7(b.c.) 3

A
(+)
µ A

(+)
µn (x) 3 3 A

(+)
µn (x) 3 3

A
(−)
µ A

(−)
µn (x) 7(b.c.) 3 A

(−)
µn (x) 7(b.c.) 3

Table 5.1.: Comparison of dynamical d.o.f. between KK-mode-vev and 5D-Higgs-vev EWSB. The b.c.
(boundary condition) and g.c. (gauge choice) show why a given mode is not present in the

corresponding effective theory. Note that Π
(±)
n is a mixture of π

(±)
n and A

(±)
5n , see Eq. (5.57).

EWSB by KK mode vev EWSB by 5D Higgs vev Comment

f0(y) '
√
k(1 + β)ekLe(2+β)k(|y|−L) f̃0(y) '

√
k(1 + β)ekLe(2+β)k(|y|−L) same

v2
1 = µ2

λ

(
1−O

(
m2
h

m2
KK

))
v2

4 = µ2

λ and fv(y) = f̃0(y) O
(

m2
h

m2
KK

)
m2
h = m2

χ = 2µ2
(

1−O
(

m2
h

m2
KK

))
m̃2
h = m̃2

χ = 2µ2
(

1−O
(

m2
h

m2
KK

))
same

a0(y) = 1√
2L

ã0(y) = 1√
2L

(
1 +O

(
m2
h

m2
KK

))
O
(

m2
h

m2
KK

)
g4 = g5√

2L
g̃4 = g5√

2L

(
1−O

(
m2
h

m2
KK

))
O
(

m2
h

m2
KK

)
m2
A =

g25
2L

µ2

λ

(
1−O

(
m2
h

m2
KK

))
m̃2
A =

g25
2L

µ2

λ

(
1−O

(
m2
h

m2
KK

))
O
(

m2
h

m2
KK

)
Table 5.2.: Comparison of the effective parameters in terms of the fundamental parameters of the 5D

theory, for µ2 ≡ (1 +β)m2
KKδIR and λ = (1 +β)2λIR. Here we explicitly show the presence

of corrections of order of the expansion parameter, m2
h/m

2
KK ∼ 10−3, and we neglect effects

O
(
e−2βkL

)
; the latter ones are extremely small for β > 0 and kL ∼ 35.

aside from small deviations of order O(m2
h/m

2
KK). To make this comparison more transparent

we summarize the parameters of both effective theories in terms of the fundamental parame-

ters of the 5D theory in Table 5.2. The observed agreement is a non-trivial verification of the

results obtained here.

5.3. SM EWSB by a bulk Higgs doublet

In this section we consider all the SM fields in the bulk and study phenomenological implications

of our symmetric geometry. Note that vev’s of effective 4D scalar fields are of the electroweak

scale which is much smaller than the gravity (Planck mass) scale, therefore their back-reaction

on the background geometry would be negligible, see e.g. [128]. Therefore we employ the

background gravitational solution (1.1) throughout the manuscript.

The 5D action for the electroweak sector of the SM can be written as

S = −
∫
d5x
√−g

{
1

4
F aMNF

aMN +
1

4
BMNB

MN + |DMH|2 + µ2
B|H|2

+ VIR(H)δ(y + L) + VUV (H)δ(y) + VIR(H)δ(y − L)

}
, (5.74)
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where F aMN and BMN are the 5D field strength tensors for SU(2) and U(1)Y , respectively with

a numbering generators of SU(2). Above, H is the SU(2) doublet and its brane potentials are

VUV (H) =
m2
UV

k
|H|2, VIR(H) = −m

2
IR

k
|H|2 +

λIR
k2
|H|4. (5.75)

In our approach, we do not put the Higgs quartic terms in the bulk nor on the UV-brane since

we want EWSB to take place near the IR-brane 3. The covariant derivative DM is defined as

follows:

DM = ∂M − i
g5

2
τaAaM − i

g′5
2
BM , (5.76)

where τa are Pauli matrices and g5(g′5) is the coupling constant for the AaM (BM ) fields.

It is instructive to make the usual redefinition of the gauge fields,

W±M ≡
1√
2

(
A1
M ∓ iA2

M

)
, (5.77)

ZM ≡
1√

g2
5 + g′25

(
g5A

3
M − g′5BM

)
, (5.78)

AM ≡
1√

g2
5 + g′25

(
g′5A

3
M + g5BM

)
. (5.79)

Analogous to the 4D procedure, we define the 5D Weinberg angle θ as follows:

cos θ ≡ g5√
g2

5 + g′25
, sin θ ≡ g′5√

g2
5 + g′25

. (5.80)

The 5D gauge fields corresponding to the gauge group SU(2)× U(1)Y are then

AM (x, y) ≡
(

sin θAM + cos2 θ−sin2 θ
2 cos θ ZM

1√
2
W+
M

1√
2
W−M − 1

2 cos θZM

)
. (5.81)

The gauge transformations for the Higgs doublet H(x, y) and gauge fields AM under the gauge

group SU(2)× U(1)Y can be written as

H(x, y)→ H ′(x, y) = U(x, y)H(x, y), (5.82)

AM (x, y)→ A′M (x, y) = U(x, y)AM (x, y)U−1(x, y)− i

g5

(
∂MU(x, y)

)
U−1(x, y), (5.83)

where U(x, y) is the unitary matrix corresponding to the fundamental representation of SU(2)×
U(1)Y gauge transformations.

We will choose the 5D axial gauge analogous to the Abelian case by taking A5(x, y) = 0.

Note that we can always find U(x, y) such that the axial gauge is manifest, i.e. A5(x, y) = 0.

3The UV Higgs quartic operator, i.e. VUV (H) ⊃ λUV /k
2|H|4 is highly suppressed as λUV /k

2 ∼ O(M−2
Pl ).

Whereas, for the IR Higgs quartic operator suppression in the λIR/k
2 is reduced to ∼ O(m−2

KK) due to the
non-trivial warp factor at the IR-brane, see also [111]. Similarly the bulk quartic term would also be suppressed
by some intermediate scale. For simplicity we ignore those options.
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5.3. SM EWSB by a bulk Higgs doublet

We employ an axial gauge choice for the non-Abelian case of the form

U(x, y) = Û(x)Pe−ig5
∫ y
0 dy

′A5(x,y′), (5.84)

where Û(x) is the residual 4D gauge transformation and P denotes path-ordering of the expo-

nential. Another key point for the later discussion is that this 4D residual gauge transformation

Û(x) is independent of y and thus automatically even under the geometric parity. As we have

demonstrated in Sec. 5.2, due to the symmetric geometry the background fields in the IR-

UV-IR setup separate into even and odd bulk wave functions. Hence, it is straightforward to

generalize the results obtained in Sec. 5.2 for the Abelian model to the electroweak sector of

the SM. Let us start by decomposing the Higgs doublet and gauge fields into components of

definite parity as follows:

H(x, y) = H(+)(x, y) +H(−)(x, y), VM (x, y) = V
(+)
M (x, y) + V

(−)
M (x, y), (5.85)

where VM ≡ (AM ,W
±
M , ZM ). We can write the action (5.74) up to quadratic level in the

A5(x, y) = 0 gauge as

S(2) =−
∫
d5x
√−g

{
1

2
W+

(+)µνW
−µν
(+) + ∂5W

+
(+)µ∂

5W−µ(+) +
1

4
Z(+)
µν Zµν(+) +

1

2
∂5Z

(+)
µ ∂5Zµ(+)

+
1

2
W+

(−)µνW
−µν
(−) + ∂5W

+
(−)µ∂

5W−µ(−) +
1

4
Z(−)
µν Zµν(−) +

1

2
∂5Z

(−)
µ ∂5Zµ(−)

+
1

4
F (+)
µν Fµν(+) +

1

2
∂5A

(+)
µ ∂5A

µ
(+) +

1

4
F (−)
µν Fµν(−) +

1

2
∂5A

(−)
µ ∂5Aµ(−)

+ DMH(+)†DMH(+) + µ2
B|H(+)|2 + DMH(−)†DMH(−) + µ2

B|H(−)|2

+
m2
UV

k
|H(+)|2δ(y)− m2

IR

k

(
|H(+)|2 + |H(−)|2

)[
δ(y + L) + δ(y − L)

]}
, (5.86)

where we have adopted the following definitions:

Ṽ(±)
µν ≡ ∂µṼ (±)

ν − ∂ν Ṽ (±)
µ , F (±)

µν ≡ ∂µA(±)
ν − ∂νA(±)

µ , (5.87)

Dµ

(
H(+)

H(−)

)
≡
[
∂µ − ig5

(
A(+)
µ A(−)

µ

A(−)
µ A(+)

µ

)](
H(+)

H(−)

)
, (5.88)

D5

(
H(+)

H(−)

)
≡
[
∂5 − ig5

(
A(−)

5 A(+)
5

A(+)
5 A(−)

5

)](
H(+)

H(−)

)
, (5.89)

where Ṽµ ≡ (W±µ , Zµ) and A(±)
M was defined in (5.81). It is convenient to write the Higgs

doublets in the following form:(
H(+)

H(−)

)
= eig5(Π(+)1+Π(−)τ1)

(
H(+)

H(−)

)
, (5.90)
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5. Warped Higgs dark matter

where H and Π are defined as (the parity indices are suppressed)

H(x, y) ≡ 1√
2

(
0

h(x, y)

)
, Π(x, y) ≡

(
cos2 θ−sin2 θ

2 cos θ πZ
1√
2
π+
W

1√
2
π−W − 1

2 cos θπZ

)
. (5.91)

We KK-decompose the Higgs doublets H(±)(x, y) and the gauge fields V
(±)
µ (x, y) as

H(±)(x, y) =
∑
n

H(±)
n (x)f (±)

n (y), (5.92)

π
(±)

Ṽ
(x, y) =

∑
n

π
(±)

Ṽ n
(x)a

(±)

Ṽ n
(y), V (±)

µ (x, y) =
∑
n

V (±)
µn (x)a

(±)
Vn

(y), (5.93)

where the wave-functions f
(±)
n (y) and a

(±)
Vn

(y) satisfy

−∂5

(
e4A(y)∂5f

(±)
n (y)

)
+ µ2

Be
4A(y)f (±)

n (y) = m2(±)
n e2A(y)f (±)

n (y), (5.94)

−∂5

(
e2A(y)∂5a

(±)
Vn

(y)
)

= m2

V
(±)
n

a
(±)
Vn

(y), (5.95)

and, for our background geometry, A(y) = −k|y|. The y-dependent wave functions f
(±)
n (y)

and a
(±)
Vn

(y) satisfy the following orthonormality conditions:∫ +L

−L
dye2A(y)f (±)

m (y)f (±)
n (y) = δmn,

∫ +L

−L
dya

(±)
Vm

(y)a
(±)
Vn

(y) = δmn. (5.96)

The even modes are subject to jump conditions at y = 0 while the odd modes are required to

vanish by continuity at y = 0, resulting in the following boundary conditions:(
∂5 −

m2
UV

k

)
f (+)
n (y)

∣∣∣
0

= 0, f (−)
n (y)

∣∣∣
0

= 0, ∂5a
(+)
Vn

(y)
∣∣∣
0

= 0, a
(−)
Vn

(y)
∣∣∣
0

= 0. (5.97)

The b.c. at y = ±L are:(
±∂5 −

m2
IR

k

)
f (±)
n (y)

∣∣∣
±L∓

= 0, ∂5a
(±)
Vn

(y)
∣∣∣
±L∓

= 0. (5.98)

As pointed out in the Abelian case, the choices of b.c. for a
(+)
n (y) at y = 0,±L are motivated

by the requirement that the even zero-mode profiles for gauge boson be non-zero.

It is worth mentioning here that the choice of writing the Higgs doublets H(±) in the form of

Eq. (5.90) and using the KK decomposition for the pseudoscalars π
(±)

Ṽ
as given in Eq. (5.93)

are both motivated by model-building considerations discussed below. The other possibility

is to choose different KK bases and b.c. for the pseudoscalars π
(±)

Ṽ
such that after SSB these

pseudoscalars become Nambu-Goldstone bosons (NGB). The even zero-mode gauge bosons

would then acquire masses by eating up the even-parity NGB, whereas the odd-parity NGB

would remain in the spectrum (the odd zero-mode gauge boson fields being zero, see below).

An effective potential for the odd-parity NGB would be generated through their interactions

with gauge bosons, hence making them pseudo-NGB. We don’t follow this approach here but
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5.3. SM EWSB by a bulk Higgs doublet

it is an interesting possibility in which the neutral odd pseudo-NGB would be a composite

dark Higgs in the dual CFT description.4

We assume that the KK-scale is high enough, i.e. mKK ∼ O(few) TeV, that we can consider

an effective theory where only the lowest modes (zero-modes with masses much below mKK)

are kept. It is important to note that the odd zero-mode wave functions obey a
(−)
V0

(y) = 0, as

can be easily seen from Eq. (5.95) along with the b.c. (5.97) and (5.98). As a consequence

of a
(−)
V0

(y) = 0, the odd zero-mode gauge fields V
(−)

0µ (x) and the odd Goldstone modes π
(−)

Ṽ0
(x)

will not be present in the effective 4D theory. Moreover, the even zero-mode gauge profile is

constant, i.e. a
(+)
V0

(y) = 1/
√

2L. Using the results from Sec. 5.2, we can determine values of

the couplings and mass parameters in the effective 4D theory in terms of the parameters of

the fundamental 5D theory. The result is that we can write down the effective 4D action for

the zero-modes as

S
(2)
eff =−

∫
d4x

{
1

4
F0(+)
µν Fµν0(+) +

1

4
Z0(+)
µν Zµν0(+) +

1

2
W+0(+)
µν W−µν0(+) + ∂µH(+)†

0 ∂µH(+)
0

+ ∂µH(−)†
0 ∂µH(−)

0 +m
2(+)
0 |H(+)

0 |2 +m
2(−)
0 |H(−)

0 |2 − ig4∂µH(+)†
0 MµH(+)

0

+ ig4H(+)†
0 M†µ∂µH(+)

0 + g2
4H(+)†

0 M†µMµH(+)
0 + g2

4H(−)†
0 M†µMµH(−)

0

}
, (5.99)

where Mµ is defined as

Mµ ≡ U†Â(+)
0µ U +

i

g4
U†∂µU, (5.100)

with U ≡ eig4Π̂
(+)
0 and g4 ≡ g5/

√
2L. In the above action H(±)

0 are real doublets defined in Eq.

(5.91), implying that H(±)†
0 = H(±)ᵀ

0 , whereas Â(+)
0µ and Π̂

(+)
0 are defined as (below we suppress

the parity indices and zero-mode index):

Âµ(x) ≡
(

sin θAµ + cos2 θ−sin2 θ
2 cos θ Zµ

1√
2
W+
µ

1√
2
W−µ − 1

2 cos θZµ

)
, (5.101)

Π̂(x) ≡
(

cos2 θ−sin2 θ
2 cos θ πZ

1√
2
π+
W

1√
2
π−W − 1

2 cos θπZ

)
. (5.102)

It is important to comment here that the above action is manifestly gauge invariant under the

following SU(2)× U(1)Y gauge transformation,

Â(+)
µ → Û Â(+)

µ Û † − i

g4
(∂µÛ)Û †, U→ Ûeig4Π̂(+)

, (5.103)

whereas the H(±)
0 are gauge invariant under the 4D residual gauge transformation Û . Equa-

tion (5.99) is a non-Abelian analog of the Abelian zero-mode action given by (5.32).

We introduce a convenient notion for our effective theory by redefining V
(+)

0µ (x) ≡ Vµ(x),

4At the final stages of the present work, Ref. [129] appeared where the authors considered composite dark
sectors. A similar construction can be naturally realized as a CFT dual to the model considered here.
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π
(+)

Ṽ 0
(x) ≡ πṼ (x), Π̂

(+)
0 (x) ≡ Π̂(x) and

H1(x) ≡ eig4Π̂(x)H(+)
0 (x), H2(x) ≡ eig4Π̂(x)H(−)

0 (x). (5.104)

Now the above effective action, including the scalar interaction terms, can be written in a nice

gauge covariant form as5

Seff = −
∫
d4x

{
1

4
FµνFµν +

1

4
ZµνZµν +

1

2
W+
µνW−µν

+
(
DµH1

)†DµH1 +
(
DµH2

)†DµH2 + V (H1, H2)

}
, (5.105)

where the scalar potential can be written as

V (H1, H2) =− µ2|H1|2 − µ2|H2|2 + λ|H1|4 + λ|H2|4 + 6λ|H1|2|H2|2. (5.106)

The covariant derivative Dµ is defined as

Dµ = ∂µ − ig4Â(+)
µ , (5.107)

where Âµ is defined in Eq. (5.101). In the above scalar potential the mass parameter µ is

defined as (see Sec. B.1 and Appendix B.1),

µ2 ≡ −m2(±)
0 = (1 + β)m2

KKδIR,

where δIR, mKK and β are defined in Eq. (5.33).

Concerning the symmetries of the above potential, one can notice that V (H1, H2) is invariant

under [SU(2) × U(1)Y ]′ × [SU(2) × U(1)Y ], where one of the blocks has been gauged while

the other one survived as a global symmetry. The zero-modes of the four odd vector bosons

(W
(−)±
0µ , Z

(−)
0µ and A

(−)
0µ ) and the three would-be-Goldstone bosons Π

(−)
0 have been removed by

appropriate b.c., implying that the corresponding gauge symmetry has been broken explicitly.

What remains is the truncated inert doublet model, that contains H1,2, and the corresponding

residual SU(2)×U(1)Y global symmetry of the action. Symmetry under the above mentioned

U(1)′ × U(1) implies in particular that V (H1, H2) is also invariant under various Z2’s, for

example H1 → −H1, H2 → −H2 and H1 → ±H2.

As explained in the Abelian case, we choose the vacuum such that the even parity Higgs

field H1 acquires a vev, whereas the odd parity Higgs field H2 does not, i.e.

v2
1 ≡ v2 =

µ2

λ
, v2 = 0. (5.108)

Let us now consider fluctuations around the vacuum of our choice

H1(x) =
1√
2
eig4Π̂

(
0

v + h

)
, H2(x) =

1√
2
eig4Π̂

(
0

χ

)
, (5.109)

5Note that the action of Eq. (5.105) is a non-Abelian version of the Abelian zero-mode action (5.36).
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5.3. SM EWSB by a bulk Higgs doublet

where Π̂ (defined in Eq. (5.102)) contains the pseudoscalar Goldstone bosons πW±,Z . We

choose the unitary gauge in which πW±,Z are gauged away, that is they are eaten up by the

massive gauge bosons W±µ and Zµ. Hence in the unitary gauge our effective action up to the

quadratic order in fluctuations is

S
(2)
eff = −

∫
d4x

{
1

2
W+
µνW−µν +

1

4
ZµνZµν +

1

4
FµνFµν +m2

WW
+
µ W

−µ +
1

2
m2
ZZµZ

µ

+
1

2
∂µh∂

µh+
1

2
m2
hh

2 +
1

2
∂µχ∂

µχ+
1

2
m2
χχ

2

}
, (5.110)

where the masses are,

m2
h = m2

χ = 2µ2, m2
W =

1

4
g2

4

µ2

λ
, m2

Z =
1

4

(
g2

4 + g′24
)µ2

λ
=

m2
W

cos2 θW
. (5.111)

It is worth noticing here that the Higgs mass mh and the dark scalar mass mχ are degenerate

at the tree level. However, as we demonstrate below, this degeneracy is lifted by the quantum

corrections predicted by the effective theory below the KK-mass scale. The interaction terms

for effective theory can be written as

Sint = −
∫
d4x

{
λvh3 +

λ

4
h4 +

λ

4
χ4 + 3λvhχ2 +

3

2
λh2χ2 +

g2
4

2
vW+

µ W
−µh

+
g2

4

4
W+
µ W

−µ(h2 + χ2) +
1

4
(g2

4 + g′24 )vhZµZ
µ +

1

8
(g2

4 + g′24 )ZµZ
µ(h2 + χ2)

}
, (5.112)

where we have omitted terms involving gauge interactions alone as they are irrelevant to our

discussion below.

5.3.1. Quantum corrections to scalar masses

In this subsection we will study quantum corrections to the tree-level scalar masses of the

Higgs boson h and the dark matter candidate χ.

Before proceeding further, we want to point out here that in this work we have not studied

fermions in our geometric setup since our focus is on the bosonic sector of the SM and EWSB.

For the sake of self-consistency, we mention here three possibilities for fermion localization and

their implications in our geometric setup:

1. In the first scenario, one takes heavy (top) quarks to be localized towards the IR-brane,

while the light quarks and leptons are localized towards the UV-brane. Through this

geometric localization one can address the fermion mass hierarchy problem. In this

scenario the even and odd zero-modes corresponding to the heavy quarks will be almost

degenerate in our symmetric geometry, whereas the odd zero-modes corresponding to the

light quarks could be much heavier than their corresponding even zero-modes [124, 125].

2. In the second scenario, all the fermions have flat zero-mode profiles. This can be achieved

by the choice of appropriate bulk mass parameters for the fermions. As a consequence

of flat profiles the odd fermion zero-modes have to disappear and the even zero-modes

will correspond to the SM fermions (in this case the fermion mass hierarchy problem is
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Figure 5.2.: One-loop diagrams in the unitary gauge contributing to the Higgs boson mass and the DM
scalar mass.

reintroduced).

3. In the third scenario all the fermions are localized towards UV-brane. In this case the

masses of all odd zero-modes of the fermions could be heavier than their corresponding

even zero-modes.

In this study we implicitly limit ourselves to the last two cases in order that the dark Higgs

be the lightest odd particle and all the other odd zero-modes are either not present in our

low-energy effective theory or they are much heavier that the dark Higgs, which will therefore

be the only relevant dark matter candidate. For either of the choices 2. or 3. above, the top

Yukawa coupling yt in the low-energy effective theory will be the same as in the SM and the

top-quark loop correction to the SM Higgs boson mass will be exactly as in the SM up to the

KK cutoff. In case 2., the n 6= 0 fermion KK-modes are all much heavier than the KK cutoff,

mKK , and will not significantly influence the radiative corrections to the SM Higgs mass. We

leave the study of the complete fermionic sector associated with our geometric setup for future

studies.

The quantum corrections to the Higgs boson (h) mass and the dark-Higgs (χ) mass within

our effective theory below the KK-scale are quite essential for breaking the mass degeneracy

of Eq. (5.111). For instance, at the 1-loop level of the perturbative expansion, the main

contributions (quadratically divergent) to the masses of the SM Higgs and the dark-Higgs

come from the exchanges of the top quark (t), massive gauge bosons (W, Z), Higgs boson (h)

and the dark-Higgs (χ), see Fig. 5.2.6 It is instructive to write the general 1-loop effective

scalar potential Veff (H1, H2) for our effective theory, described in the previous section, as 7

Veff (H1, H2) = V0(H1, H2) + V1(H1, H2), (5.113)

where V0(H1, H2) is the tree level scalar potential given by Eq. (5.106) and V1(H1, H2) is the

1-loop effective potential, given by (see for example Refs. [130, 131, 132])

V1(H1, H2) =
Λ2

32π2

[
3
(
g2

4 +
1

2
(g2

4 + g′24 ) + 8λ
)

(|H1|2 + |H2|2)− 12y2
t |H1|2

]
+ · · · , (5.114)

6Another scalar which could be potentially present in our effective theory is the radion, which is responsible
for the stabilization of the set-up. The stabilization mechanism is beyond the scope of this thesis, as here we
assume a rigid geometrical background with no fluctuations of the 5D metric. However, we want to comment
here that if the radion were present in our effective theory, because of it bosonic nature it would likely reduce
the fine-tuning much in the manner that the χ does.

7Note that in this section we are considering the Higgs doublets H1,2 in the unitary gauge, such that H1(x) =

1√
2

(
0

v1 + h

)
and H2(x) = 1√

2

(
0

v2 + χ

)
, where at tree level our choice was v1 = v and v2 = 0.
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where yt is the top Yukawa coupling, related to top mass through m2
t = y2

t v
2/2. We use the

momentum cut-off regularization. Also it is important to comment here that H2 is odd under

the geometric Z2 parity, implying that it does not couple to the even zero-mode fermions.

Moreover, we consider only the quadratically divergent part of the effective scalar potential

and the ellipses in the above equation represent terms which are not quadratically divergent.

The minimization of the effective potential Veff (H1, H2), i.e.

∂Veff
∂Hi

∣∣∣
Hi=〈Hi〉

= 0, where 〈Hi〉 =
1√
2

(
0

vi

)
i = 1, 2 (5.115)

gives the following set of conditions for the global minimum,

λv2
1 = µ2 − δµ2 − 3λv2

2, or v1 = 0, (5.116)

and

λv2
2 = µ2 − δµ2 +

3

8

Λ2

π2
y2
t − 3λv2

1, or v2 = 0, (5.117)

where δµ2 is given by

δµ2 =
3Λ2

32π2

[
g2

4 +
1

2
(g2

4 + g′24 ) + 8λ− 4y2
t

]
. (5.118)

Of the four possible global minima of Eqs. (5.116) and (5.117), we will choose the vacuum such

that H1 acquires the vev, whereas H2 does not:

v1 = v, v2 = 0,

where v ' 246 GeV is the vacuum expectation value of the SM Higgs doublet. With this choice

of vacuum, the 1-loop corrected masses for the fluctuations around the vacuum are

m2
h =

∂2Veff (H1, H2)

∂H2
1

∣∣∣
H1=v,H2=0

=
(
− µ2 + δµ2

)
+ 3λv2 = 2λv2, (5.119)

m2
χ =

∂2Veff (H1, H2)

∂H2
2

∣∣∣
H1=v,H2=0

=
(
− µ2 + δµ2

)
+ 3λv2 +

3

8

Λ2

π2
y2
t ,

= 2λv2 +
3

4

Λ2

π2v2
m2
t . (5.120)

To get mh = 125 GeV, equivalent to v ' 246 GeV, we need to fine-tune the parameters of

the theory. To quantify the level of fine-tuning, we employ the Barbieri–Giudice fine-tuning

measure ∆mh [133, 131, 132]:

∆mh ≡
∣∣∣∣δµ2

µ2

∣∣∣∣ =

∣∣∣∣δm2
h

m2
h

∣∣∣∣ . (5.121)

We plot the fine-tuning measure ∆mh as a function of the effective cutoff scale Λ in Fig.

5.3. If one allows fine-tuning of about 10%, i.e. ∆mh = 10, then the effective cutoff scale is

Λ ' 2 TeV. The most stringent bounds on the KK-scale mKK in RS1 geometry with a bulk

Higgs come from electroweak precision tests (EWPT) by fitting the S, T and U parameters
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Figure 5.3.: The left plot gives the value of the fine-tuning measure ∆mh
for a Higgs mass of 125

GeV as a function of the cutoff Λ. The right plot shows the dependence of mχ on Λ for
mh = 125 GeV. In our model Λ = mKK . The vertical dashed gray line indicates the
current lower bound on the KK mass scale coming from EWPT.

[111]. The lower bound on the KK mass scale in our model (AdS geometry, i.e. A(y) = −k|y|)
is mKK & 2.5 TeV for β = 0 and mKK & 4.3 TeV for β = 10 at 95% C.L. [111]. This implies

a tension between fine-tuning (naturalness) and the lower bound on the KK mass scale mKK .

The region within the dashed gray lines in Fig. 5.3 shows the current bounds on the KK

mass scale for our geometry and the associated fine-tuning. It is important to comment here

that a slight modification to the AdS geometry (for example, models with soft wall or thick-

branes) leads to a considerable relaxation of the above mentioned lower bound on KK mass

scale [104, 105, 106]. For instance, a mild modification to the AdS metric in the vicinity of the

IR-brane can relax the KK mass scale to mKK & 1 TeV [104, 105, 106, 114, 134]. Needless to

say, the generalization of our model to modified AdS geometries with soft walls or thick-branes

is possible.

The 1-loop quantum corrected dark matter squared mass m2
χ is:

m2
χ = m2

h +
3

4

Λ2

π2v2
m2
t . (5.122)

Hence, mχ is raised almost linearly with the large Λ. This is illustrated in Fig. 5.3. An

interesting aspect of our model is that dark matter is predicted to be heavier than the SM

Higgs boson. A natural value of the cutoff coincides with the mass of the first KK excitations,

which are experimentally limited [135] to lie above a few TeV (depending on model details and

KK mode sought). Requiring that the fine-tuning measure ∆mh be less than 100 implies that

mKK should be below about 6 TeV. Meanwhile, the strongest version of the EWPT bound

requires mKK >∼ 2.5 TeV, corresponding to mχ ∼ 500 GeV, for which ∆mh is a very modest

∼ 18. In short, our model is most consistent for 500 GeV <∼ mχ <∼ 1200 GeV.

5.3.2. Dark matter relic abundance

In this subsection we calculate the dark matter relic abundance. The diagrams contributing to

dark matter annihilation are shown in Fig. 5.4. The squared amplitudes |M|2 corresponding
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Figure 5.4.: Dark matter annihilation diagrams.

to the contribution of each final state to dark matter annihilation are:

∣∣∣M(χχ→ Ṽ Ṽ )
∣∣∣2 =

4m4
Ṽ

SṼ v
4

(
1 +

3m2
h

s−m2
h

)2
2 +

(
1− s

2m2
Ṽ

)2
 , (5.123)

∣∣M(χχ→ ff̄)
∣∣2 = 18Nc

m2
fm

4
h

v4

s− 4m2
f

(s−m2
h)2

, (5.124)

|M(χχ→ hh)|2 =
9m4

h

2v4

[
1 + 3m2

h

(
1

s−m2
h

+
1

t−m2
χ

+
1

u−m2
χ

)]2

, (5.125)

where Ṽ = W,Z and SW = 1 and SZ = 2 are the symmetry factors accounting for the identical

particles in the final state; Nc refers to the number of “color” degrees of freedom for the given

fermion and s, t, u are the Mandelstam variables. Here, we ignore the loop-induced γγ and

Zγ final states, which are strongly suppressed. Note that the first term in the parenthesis in

Eq. (5.123) and the first term in the square bracket in Eq. (5.125) arise from the χχṼ Ṽ and

the χχhh contact interactions, respectively. The former channel is present in our model since

χ is a component of the (truncated) odd SU(2) doublet.

In the left panel of Fig. 5.5 we plot the annihilation cross-section for the contributing

channels as a function of mχ. (Note that the parameter Λ would only enter if we performed this

calculation at the one-loop level.) As seen from the plot, the total cross section is dominated

by WW and ZZ final states. The main contributions for these final states are those generated

by the contact interactions χχṼ Ṽ . In fact, in our model, the Ṽ Ṽ final states are additionally

enhanced by a constructive interference of the contact χχṼ Ṽ interaction with the s-channel

Higgs-exchange diagram. In addition, for low mχ, there is a comparable contribution from χχ

annihilation into hh. (The dip at mχ ∼ 210 GeV is caused by cancellation between the contact

interaction and s, t, u-channel diagrams.) Fermionic final states are always irrelevant; even

χχ → tt̄ production is very small in comparison to χχ → Ṽ Ṽ . Then, adopting the standard

cold dark matter approximation [136], we find the present χ abundance Ωχh
2 shown in the

right panel of Fig. 5.5. We observe that Ωχh
2 <∼ 10−4 once the EWPT bound of mχ >∼ 500 GeV

is imposed. Clearly, some other dark matter component is needed within this model to satisfy

the Planck measurement, Ωχh
2 ∼ 0.1 [28].
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Figure 5.5.: The above graphs show the annihilation cross-section σ0 for different final states (left) and
the χ abundance Ωχh

2 × 104 (right) as a function of dark matter mass mχ.

5.4. Summary

In this chapter we have studied the phenomenological implications of the IR-UV-IR model

presented in Sec. 2.2. Within this geometric setup we investigate the low-energy effective

theory for the bulk SM bosonic sector. The Z2-even zero-modes correspond to known standard

degrees of freedom, whereas the Z2-odd zero modes might serve as a dark sector. We discuss

two scenarios for spontaneous breaking of the gauge symmetry, one based on expansion of the

bulk Higgs field around an extra dimensional vev with non-trivial profile and the second in

which the symmetry breaking is triggered by a vev of the Kaluza-Klein modes of the bulk

Higgs field. It is shown that they lead to the same low-energy effective theory. The effective

low-energy scalar sector contains a scalar which mimics the Standard Model (SM) Higgs boson

and a second stable scalar particle (dark-Higgs) that is a dark matter candidate; the latter

is a component of the zero-mode of the Z2-odd Higgs doublet. The model that results from

the Z2-symmetric background geometry resembles the Inert Two Higgs Doublet Model. The

effective theory turns out to have an extra residual SU(2) × U(1) global symmetry that is

reminiscent of an underlying 5D gauge transformation for the odd degrees of freedom. At tree

level the SM Higgs and the dark-Higgs have the same mass; however, when leading radiative

corrections are taken into account the dark-Higgs turns out to be heavier than the SM Higgs.

Implications for dark matter are discussed; it is found that the dark-Higgs can provide only a

small fraction of the observed dark matter abundance.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

Five dimensional RS1-like models offer an elegant and simple solution to the hierarchy problem,

whereas RS2-like models give an alternative to the compactification. In Chap. 2 we briefly

reviewed the RS models and presented two generalizations of RS models:

• First scenario is a Z2 symmetric generalization of RS1 on an interval y ∈ [−L,L] such

that two identical AdS patches are glued together at y = 0, where y is the coordinate

of the fifth dimension. We considered three D3-branes, one at y = 0 referred to as the

UV-brane where gravity is assumed to be localized and two branes at y = ±L referred

to as the IR-branes — the IR-UV-IR model, see Sec. 2.2.

• Second scenario is an asymmetric generalization of RS2 which allows different bulk cos-

mological constants on either sides of the brane such that it leads to asymmetric warp-

function and different AdS geometries on each side of the brane, see Sec. 2.3.

To understand the issue of localization of gravity in the noncompact RS2-like models we worked

out the 4D effective theory at linearized level in Sec. 2.4. It is shown that the zero-mode of

tensor perturbation corresponds to the 4D graviton and is localized on the brane in generalized

RS2 model. In the low energy limit it is shown that the corrections to Newton’s gravitational

potential due to non-zero KK-modes of graviton are suppressed by one higher power of the

distance r, than the leading zero-mode contribution. Hence the 4D effective gravity on the

brane is the standard 4D Einstein general relativity with small and calculable corrections due

to non-zero KK-modes of gravitons.

The standard formulation of RS models and their generalizations assume the presence of

infinitesimally thin branes embedded in 5D space-time. In order to avoid infinitesimally thin

branes and instead to model them dynamically by physical objects, we presented a generic

mechanism of smoothing the singular branes by background profiles of scalar fields — the

thick-branes. In RS1 and IR-UV-IR model the IR-branes have negative tension, see Chap. 2.

There is no clear mechanism to generate a negative tension smooth brane by a scalar field

configuration, moreover, it was shown by Gibbons, Kallosh and Linde [27] that periodicity of
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6. Summary and conclusions

RS1 can not be achieved through a non-trivial scalar field minimally coupled to gravity. We

have shown in Chap. 3 that even in the presence of non-minimal scalar-gravity coupling it is

not possible to mimic a negative tension brane. In an attempt to construct a model that is

periodic in the extra dimension we have derived a generalization of the Gibbons-Kallosh-Linde

sum rule that holds also if the scalar field couples non-canonically to the Ricci scalar. It turns

out that even for the case of non-minimal scalar-gravity coupling, periodicity forbids to have

any non-trivial scalar field profile which could possibly mimic RS1 model. Therefore we have

focused on non-compact extra dimensions to construct thick-brane models in Sec. 3.2. We

have considered four different models of thick-branes, summarized below.

• First, a thick-brane version of an asymmetric generalization of RS2 in which we employ

different cosmological constants on two sides of the brane. In this scenario coupled

scalar-gravity equations have been solved through the so-called superpotential method and

stability of the solution has been illustrated. The thin brane limit of the model have been

discussed. Properties of the thick-brane solution have been considered in details. It has

been shown that, under mild assumptions, the relation between cosmological constants

and the brane tension of the generalized RS2 could be obtained in the brane limit of

our model by an appropriate choice of an integrating constant (that defines the scalar

potential) independently of particular profile of the scalar field.

• Second, in order to have a chance to address the hierarchy problem, a scalar field is

employed with two kink-like profiles in Sec. 3.2.2. This set-up, in the brane limit, corre-

sponds to a model with two thin branes with positive tensions. Various possible cases,

depending on the location of the maximum of the warp function has been considered.

The most attractive option turned out to be the one with the maximum located on top

of one of the thick-branes, which implies that the gravity is localized on that brane and

if one allows the localization of Higgs field on the other brane then one could potentially

address the hierarchy problem within this thick-brane scenario.

• Third, we considered a Z2 symmetric triple thick-brane model in Sec. 3.2.3 which resem-

bles the IR-UV-IR model in the brane limit. The key differences between the thick-brane

model and the IR-UV-IR model (see Sec. 2.2) are the fact that the thick-brane model

is non-compact and allows only positive tension brane, whereas the IR-UV-IR model is

compact and it requires IR-branes to be negative.

• Fourth, we consider a class of the thick-brane models where a thick brane is generated

through the dilaton-like scalar fields — the dilatonic thick-brane. It turns out that such

thick-branes naturally appear in the cosmological thick-brane models.

The stability of the thick-brane background solutions has been discussed in details in Sec. 3.4

and was verified in the presence of the most general perturbations of the metric and the scalar

fields.

The issue of localization of a scalar field on a thick-brane has been presented in Sec. 3.3. A

generalized superpotential method has been presented which could solve the coupled two-scalar
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field and gravity equations. The scalar field is localized on the thick-brane though localized

interactions with the thick-brane and we have investigated different properties of localization

in this scenario.

In Chap. 4 we have analyzed a 5D scenario with a scalar field in the presence of gravity

looking for non-stationary solutions. We have found solutions of the Einstein equations for

the case of time-independent scalar field assuming a conformal form of the 4D metric. Both

the evolution of the scale factor, its extra dimensional shape and the profile of scalar field

were discussed and determined for different values of spatial curvature k = 0,±1. Also for the

time-dependent scalar field φ(τ, y) and 4D conformal metric, analytic solutions were obtained

in certain cases. We have also formulated a superpotential method for t- and y-dependent

profiles of the scalar field. For the solution which has been found both the scalar filed φ and

the scale factor a depends on the conformal time τ and y only through η = cτ + dy, where c

and d are constants.

Chapter 5 is dedicated to construct a warped extra dimensional model with singular branes,

with SM fields in the bulk and the possibility of having a dark-matter candidate. The moti-

vation of this work was twofold: (i) to analyze the situation where EWSB is due to the bulk

Higgs in this Z2 symmetric geometry; and (ii) to discuss the lowest odd KK-mode as a dark

matter candidate. Concerning EWSB, we discussed in detail many important aspects of SSB

due to a bulk Higgs. We first considered an Abelian gauge group and then generalized to the

SM gauge group. In the Abelian case, we followed two apparently different approaches for

SSB. In one approach, the symmetry breaking is triggered by a vev of the KK zero-mode of

the bulk Higgs field. The second approach is based on the expansion of the 5D bulk Higgs

field around an extra dimensional vev with non-trivial y profile. The comparison between the

two Abelian scenarios is summarized in Tables 5.1 and 5.2. The (zero-mode) effective theories

obtained from the two approaches are identical and the most intriguing feature of the Abelian

Higgs mechanism is that the even and odd Higgs zero-modes have degenerate mass at tree-level

— a feature that is also present in the SM case.

To achieve SSB, choice of boundary conditions for the fields at ±L is critical. In both

the above two approaches to the Abelian case, we allowed y-derivative of a field to have an

arbitrary value at ±L as opposed to requiring that the field value itself be zero, i.e. we employed

Neumann or mixed b.c. rather than Dirichlet b.c. at ±L. The latter choice would have led to

an explicit symmetry breaking scenario in which there are no Goldstone modes and the gauge

bosons do not acquire mass. (Note that the boundary or “jump” conditions at y = 0 follow

from the bulk equations of motion in the case of even modes, whereas odd modes are required

to be zero by symmetry.)

Following this introductory material, we considered EWSB assuming that the SM gauge

group is present in the bulk of our Z2 symmetric 5D warped model. The zero-mode effective

theory appropriate at scales below the KK scale, mKK , was obtained. For appropriate Higgs

field potentials in the bulk and localized at the UV and IR-branes, SM-like EWSB is obtained

when only the IR-branes have a quartic potential term. In contrast, quadratic mass-squared
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6. Summary and conclusions

terms are allowed both on the branes and in the bulk. Of course, to achieve spontaneous EWSB,

we employed the same boundary conditions as delineated above for the Abelian model. The

resulting model has the following features.

• Due to geometric Z2 symmetry all fields develop even and odd towers of KK-modes in

the 4D effective theory.

• Assuming that the KK-scale is high enough (mKK ∼ O(few) TeV), we derived the low

energy effective theory which includes only zero-modes of the theory.

• In the effective theory, the symmetry of the model is [SU(2) × U(1)Y ]′ × [SU(2) ×
U(1)Y ], where the unprimed symmetry group is gauged while the other stays as a global

symmetry. The zero-mode odd gauge fields and the corresponding Goldstone modes from

the odd Higgs doublet are eliminated due to the b.c..

• In the low energy effective theory, we are left with all the SM fields plus a dark-Higgs –

the odd zero-mode Higgs. This dark-Higgs and the SM Higgs (the even zero-mode) are

degenerate at tree level.

• In order to get the SM Higgs mass of 125 GeV, we need to fine-tune the 5D fundamental

parameters of theory to about 1% − 5%, where the upper bound is determined by the

lower bound on the KK scale coming from EWPT requirements.

• We computed the one-loop quantum corrections to the tree-level masses of the SM Higgs

and the dark Higgs assuming that the cutoff scale of our effective theory is the KK-scale,

mKK . One finds that the dark-Higgs mass is necessarily larger than the SM Higgs mass,

the difference being quadratically dependent on mKK .

• Requiring that the fine-tuning measure ∆mh be less than 100 implies that mKK should

be below about 6 TeV. Meanwhile, the strongest version of the EWPT bound requires

mKK >∼ 2.5 TeV, corresponding to mχ ∼ 500 GeV, for which ∆mh is a very modest ∼ 18.

In short, our model is most consistent for 500 GeV <∼ mχ <∼ 1200 GeV.

• We calculated the relic abundance of the dark-Higgs in the cold dark matter approxi-

mation. For mχ in the above preferred range, Ωχh
2 <∼ 10−4 as compared to the current

experimental value of ∼ 0.1. To obtain a more consistent dark matter density, one needs

to either assume another DM particle or perform a more rigorous analysis of our model

by considering the even and odd higher KK-modes in the effective theory.
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APPENDIXA

LINEARIZED EINSTEIN EQUATIONS

In this Appendix we consider fluctuations around the background solutions discussed in the

main text. We start by perturbing the 5D metric gMN (y) defined through Eq. (1.2) by:

gMN (y)→ gMN (x, y) = ḡMN (y) + hMN (x, y), (A.1)

where ḡMN (y) is the unperturbed background metric, given as

ḡµν = e2Aηµν , ḡµ5 = 0, ḡ55 = 1. (A.2)

It is convenient to adopt the Einstein equations in the Ricci form as,

RMN =
1

4M3∗
T̃MN , (A.3)

where

T̃MN = TMN −
1

3
gMNT

A
A, (A.4)

where TMN is the energy-momentum tensor for scalar field φ given in Eq. (3.28), which leads

to:

T̃MN = ∇Mφ∇Nφ+
2

3
gMNV (φ). (A.5)

The perturbations in the T̃MN will correspond to fluctuations of the scalar field φ(y) as

φ(x, y) = φ(y) + ϕ(x, y) and of the metric gMN (x, y) = ḡMN (y) + hMN (x, y). These per-

turbations can be calculated order by order in perturbation expansion as,

T̃MN = T̃
(0)
MN + T̃

(1)
MN + · · · ,
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A. Linearized Einstein equations

where ellipses correspond to the higher order fluctuations in ϕ(x, y) and hMN (x, y). The zeroth

and the first order terms are as follows,

T̃ (0)
µν =

2

3
e2AηµνV (φ), T̃

(0)
55 = φ′2 +

2

3
V (φ), T̃

(0)
µ5 = 0. (A.6)

T̃ (1)
µν =

2

3

(
e2Aηµν

∂V (φ)

∂φ
ϕ+ V (φ)hµν

)
, (A.7)

T̃
(1)
55 = 2φ′ϕ′ +

2

3

∂V (φ)

∂φ
ϕ+

2

3
h55V (φ), T̃

(1)
µ5 = φ′∂µϕ+

2

3
hµ5V (φ). (A.8)

The explicit forms of components of the Ricci tensor in the zeroth and first order are:

R(0)
µν =− e2A

(
A′′ + 4A′2

)
ηµν , R

(0)
55 = −4

(
A′′ +A′2

)
, R

(0)
µ5 = 0, (A.9)

R(1)
µν =− 1

2
∂µ∂νh55 + e2Aηµν

(
A′′ + 4A′2

)
h55 +

1

2
e2AηµνA

′h′55 +
1

2

(
∂µh

′
ν5 + ∂νh

′
µ5

)
+A′ (∂µhν5 + ∂νhµ5)− 1

2
e−2A�(4)hµν +

1

2
e−2Aηρσ (∂µ∂ρhνσ + ∂ν∂ρhµσ − ∂µ∂νhρσ)

− 1

2
h′′µν −

1

2
A′ηµνηρσh′ρσ −A′2 (2hµν − ηµνηρσhρσ) +A′ηµνηρσ∂ρhσ5, (A.10)

R
(1)
µ5 =

1

2
e−2Aηρσ

(
∂ρh
′
µσ − ∂µh′ρσ

)
− e−2AA′ηρσ (∂ρhµσ − ∂µhρσ)

+
3

2
A′∂µh55 −

1

2
e−2A

(
�(4)hµ5 − ηρσ∂ρ∂µhσ5

)
−
(
A′′ + 4A′2

)
hµ5, (A.11)

R
(1)
55 =e−2A

(
A′ηρσh′ρσ +A′′ηρσhρσ −

1

2
ηρσh′′ρσ

)
− 1

2
e−2A�(4)h55 + 2A′h′55 + e−2Aηρσ∂ρh

′
σ5.

(A.12)

Having all the components of the Ricci tensor (A.10)-(A.12) and T̃MN (A.7)-(A.8), one can

write down the equations of motion for the metric fluctuations hMN (x, y):

(µν) : − 1

2
∂µ∂νh55 + e2Aηµν

(
A′′ + 4A′2

)
h55 +

1

2
e2AηµνA

′h′55 +
1

2

(
∂µh

′
ν5 + ∂νh

′
µ5

)
+A′ (∂µhν5 + ∂νhµ5)− 1

2
e−2A�(4)hµν +

1

2
e−2Aηρσ (∂µ∂ρhνσ + ∂ν∂ρhµσ − ∂µ∂νhρσ)

− 1

2
h′′µν −

1

2
A′ηµνηρσh′ρσ −A′2 (2hµν − ηµνηρσhρσ) +A′ηµνηρσ∂ρhσ5

=
1

4M3∗

2

3

(
e2Aηµν

∂V (φ)

∂φ
ϕ+ V (φ)hµν

)
, (A.13)

(µ5) :
1

2
e−2Aηρσ

(
∂ρh
′
µσ − ∂µh′ρσ

)
− e−2AA′ηρσ (∂ρhµσ − ∂µhρσ) +

3

2
A′∂µh55

− 1

2
e−2A

(
�(4)hµ5 − ηρσ∂ρ∂µhσ5

)
=

1

4M3∗
φ′∂µϕ, (A.14)

(55) : e−2A

(
A′ηρσh′ρσ +A′′ηρσhρσ −

1

2
ηρσh′′ρσ

)
− 1

2
e−2A�(4)h55 + 2A′h′55 + e−2Aηρσ∂ρh

′
σ5

=
1

4M3∗

(
2φ′ϕ′ +

2

3

∂V (φ)

∂φ
ϕ+

2

3
h55V (φ)

)
. (A.15)
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A.1. SVT decomposition of perturbations and gauge choice

Additionally, we also have the equation of motion of the scalar field φ (3.27) in the first order

in the fluctuations hMN (x, y) and ϕ(x, y) as,

e−2A�(4)ϕ+ ϕ′′ + 4A′ϕ′ − ∂2V (φ)

∂φ2
ϕ+

1

2
φ′
(
e−2Ah

)′ − 1

2
φ′h5′

5 −
(
φ′′ + 4A′φ′

)
h5

5 = 0, (A.16)

where h ≡ ηµνhµν .

In the remaining part of this Appendix we will derive equations of motion for perturbations

of the metric and the scalar field. We are going to adopt a decomposition of the metric

perturbation hMN into scalar, vector and tensor (SVT) components.

A.1. SVT decomposition of perturbations and gauge choice

In this sub-appendix we review the decomposition of most general symmetric perturbation

hMN into scalar, vector and tensor (SVT) modes. The matter of gauge choice in the warped

extra dimension in the presence of a scalar field is also discussed. These issues were studied in

the literature, see for example, [43, 60, 55, 56, 57, 137].

Due to the symmetries (4D Poincáre invariance) of the background metric and the energy-

momentum tensor, we can decompose the perturbations hMN into scalars, vectors and tensors

as follows,

hµν = e2A [−2ψηµν − 2∂µ∂νE + ∂µGν + ∂νGµ +Hµν ] , (A.17)

hµ5 = ∂µB + Cµ, (A.18)

h55 = 2χ, (A.19)

where ψ, χ, B and E are scalars, whereas, Cµ and Gµ are divergenceless vectors and Hµν is

the transverse and traceless tensor, i.e.

∂µCµ = ∂µGµ = 0, ∂µHµν = Hµ
µ = 0. (A.20)

The perturbation modes are functions of x and y coordinates.

Let us discuss the uniqueness of the above decomposition. It is easy to see that B is

determined by hµ5 as follows

�(4)B = ∂µhµ5. (A.21)

Therefore shifting B by a solution the homogeneous equation �(4)λ = 0 leads to another

allowed solution of (A.21) 1. In order to specify the solution of �(4)λ = 0 one has to fix

initial conditions, that can be done e.g. by specifying λ(t, ~x, y) and ∂tλ(t, ~x, y) at a given

time. Hereafter we are going to assume that at a certain time t = t0 that is far enough in

the past both λ(t, ~x, y) = 0 and ∂tλ(t, ~x, y) = 0. That assumption is physically well motivated

as there is no reason to observe any perturbations at the very beginning and implies that the

1Another way of seeing the same freedom in determining B and Cµ is to notice that a shift B → B + λ can
be compensated by an appropriate change of Cµ, Cµ → Cµ − ∂µλ. Requiring �(4)λ = 0, guaranties that Cµ
remains divergenceless.
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A. Linearized Einstein equations

only solution of �(4)λ = 0 is in fact λ = 0. Therefore the decomposition (A.18) is unique.

Similar strategy could be adopted to show uniqueness of the decomposition of hµν provided

appropriate initial conditions are adopted. We start by determining E as a solution of the

following equation that is implied by (A.17):

�(4)2E =
1

3
e−2A

(
1

4
�(4)hµµ − ∂µ∂νhµν

)
. (A.22)

Having E determined (with appropriate initial conditions that ensures uniqueness) one can

find ψ solving

ψ = −1

8
e−2Ahµµ −

1

4
�(4)E. (A.23)

Then Gµ is a solution of

�(4)Gµ = e−2A∂νhµν + 2∂µ(ψ +�(4)E). (A.24)

Now we can write down the first order Einstein equations in terms of the scalar, vector and

tensor (SVT) components defined in (A.17)-(A.19) as,

(µν) : e2Aηµν

[
2
(
A′′ + 4A′2

)
χ+A′χ′ + 2

(
A′′ + 4A′2 +

1

2
e−2A�(4)

)
ψ + 8A′ψ′ + ψ′′

]
+ ∂µ∂νB

′ + 2A′∂µ∂νB +A′ηµν�(4)B +
1

2

(
∂µC

′
ν + ∂νC

′
µ

)
+A′ (∂µCν + ∂νCµ)

+ e2A
[
2
(
A′′ + 4A′2 +�(4)

)
∂µ∂νE + ηµνA

′�(4)E′ + 4A′∂µ∂νE′ + ∂µ∂νE
′′
]

−
(
A′′ + 4A′2 +

1

2
�(4)

)
(∂µGν + ∂νGµ)− 1

2
e2A

[
∂µG

′′
ν + ∂νG

′′
µ + 4A′

(
∂µG

′
ν + ∂νG

′
µ

)]
+ ∂µ∂ν (2ψ − χ)−

(
A′′ + 4A′2 +

1

2
�(4)

)
Hµν − 2e2AA′H ′µν −

1

2
e2AH ′′µν

=
1

4M3∗

2

3
e2A

[
ηµν

∂V (φ)

∂φ
ϕ+ V (φ) (−2ψηµν − 2∂µ∂νE + ∂µGν + ∂νGµ +Hµν)

]
,

(A.25)

(µ5) : 3∂µψ
′ + 3A′∂µχ−

1

2
e−2A�(4)Cµ +

1

2
�(4)G′µ =

1

4M3∗
φ′∂µϕ, (A.26)

(55) : 4
(
ψ′′ + 2A′ψ′

)
+ 4A′χ′ − e−2A�(4)χ+�(4)

(
E′′ + 2A′E′

)
+ e−2A�(4)B′

=
1

4M3∗

[
2φ′ϕ′ +

2

3

∂V (φ)

∂φ
ϕ+

4

3
V (φ)χ

]
. (A.27)

Adopting the background equations of motion the above equations could be simplified as

follows:

(µν) : e2Aηµν

[
2
(
A′′ + 4A′2

)
χ+A′χ′ + e−2A�(4)ψ + 8A′ψ′ + ψ′′ + e−2AA′�(4)B +A′�(4)E′

]
+ ∂µ∂ν

[
2ψ − χ+B′ + 2A′B + e2A

(
2�(4)E + 4A′E′ + E′′

)]
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+
1

2
∂µ

[
C ′ν + 2A′Cν − 4e2AA′G′ν − e2AG′′ν

]
+

1

2
∂ν

[
C ′µ + 2A′Cµ − 4e2AA′G′µ − e2AG′′µ

]
− 1

2

(
�(4)Hµν + 4e2AA′H ′µν + e2AH ′′µν

)
=

1

4M3∗

2

3
e2Aηµν

∂V (φ)

∂φ
ϕ, (A.28)

(µ5) : 3∂µψ
′ + 3A′∂µχ−

1

2
e−2A�(4)Cµ +

1

2
�(4)G′µ =

1

4M3∗
φ′∂µϕ, (A.29)

(55) : 4
(
ψ′′ + 2A′ψ′

)
+ 4A′χ′ − e−2A�(4)χ+�(4)

(
E′′ + 2A′E′

)
+ e−2A�(4)B′

=
1

4M3∗

[
2φ′ϕ′ +

2

3

∂V (φ)

∂φ
ϕ+

4

3
V (φ)χ

]
. (A.30)

Now comparing the coefficients of ηµν , ∂µ∂ν , ∂ν and the tensors on both sides we get from (µν)

components the following equations of motion for the scalar, vector and tensor modes of the

perturbations

2
(
A′′ + 4A′2

)
χ+A′χ′ + e−2A�(4)ψ + 8A′ψ′ + ψ′′ + e−2AA′�(4)B +A′�(4)E′

=
1

4M3∗

2

3

∂V (φ)

∂φ
ϕ, (A.31)

∂µ∂ν

[
2ψ − χ+B′ + 2A′B + e2A

(
2�(4)E + 4A′E′ + E′′

)]
= 0, (A.32)

∂ν

[
C ′µ + 2A′Cµ − 4e2AA′G′µ − e2AG′′µ

]
= 0, (A.33)

−1

2

(
�(4)Hµν + 4e2AA′H ′µν + e2AH ′′µν

)
= 0. (A.34)

For (µ5) and (55) we obtain the following equations:

∂µ

(
3ψ′ + 3A′χ− 1

4M3∗
φ′ϕ
)

= 0, (A.35)

e−2A�(4)Cµ −�(4)G′µ = 0, (A.36)

4
(
ψ′′ + 2A′ψ′

)
+ 4A′χ′ − e−2A�(4)χ+�(4)

(
E′′ + 2A′E′

)
+ e−2A�(4)B′

=
1

4M3∗

[
2φ′ϕ′ +

2

3

∂V (φ)

∂φ
ϕ+

4

3
V (φ)χ

]
. (A.37)

The above equations of motion for the scalar, vector and tensor modes of perturbations are

applicable for any gauge choice, in the main text we decided to choose the longitudinal gauge

defined by the condition B = E = Gµ = 0 as discussed below.

Now we will consider the coordinate/gauge transformations and then we will turn to the

question of choosing the appropriate gauge in order to eliminate artifacts of the freedom of

choosing a reference frame. Lets consider the following coordinate transformation,

x̌M = xM − ξM , (A.38)

where the ξM is an infinitesimally small function of space time, i.e. |ξM | << |xM | and ξM =

(ξµ, ξ5) with ξµ being a 4D vector and ξ5 a scalar change in the 5th coordinate y. In order to
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write down corresponding gauge transformations of the decomposed scalars, vector and tensor

modes, it is useful to decompose also the 4D vector ξµ into the divergenceless vector ξµ⊥ and

gradient of the scalar ξ‖, i.e.

ξµ = ξµ⊥ + ∂µξ‖, ∂µξ
µ
⊥ = 0. (A.39)

It is easy to show that the change in metric perturbation hMN corresponding to (A.38) reads

ȟMN = hMN + δhMN , with δhMN = ∇MξN +∇NξM . (A.40)

The explicit form of the components of δhMN are given by,

δhµν = ∂µξ⊥ν + ∂νξ⊥µ + 2∂µ∂νξ‖ + 2A′e2Aηµνξ5, (A.41)

δhµ5 = ∂µξ5 + ∂µξ
′
‖ + ξ′⊥µ − 2A′ξ⊥µ − 2A′∂µξ‖, (A.42)

δh55 = 2ξ′5, (A.43)

The above transformations of the metric perturbation hMN induce corresponding transforma-

tions of the metric perturbation components defined by Eqs. (A.17)-(A.19) as,

ψ̌ = ψ −A′ξ5, Ě = E − e−2Aξ‖, (A.44)

χ̌ = χ+ ξ′5, B̌ = B + ξ′‖ + ξ5 − 2A′ξ‖, (A.45)

Čµ = Cµ + ξ′⊥µ − 2A′ξ⊥µ, Ǧµ = Gµ + e−2Aξ⊥µ, (A.46)

whereas, Hµν is unaffected by the coordinate transformations. Similarly, the gauge transfor-

mation of the scalar field perturbation ϕ can be easily obtained as,

ϕ̌ = ϕ+ δϕ = ϕ+ φ′ξ5. (A.47)

Similarly, the gauge transformations of the energy momentum tensor can be written as,

ˇ̃T
(1)
MN = T̃

(1)
MN + δT̃

(1)
MN , (A.48)

where,

δT̃
(1)
MN = T̃

(0)
MA∇NξA + T̃

(0)
NB∇MξB +∇C T̃ (0)

MNξ
C . (A.49)

Now we turn our attention towards the issue of choosing a gauge. It proves to be convenient

to adopt the so-called longitudinal or Newtonian gauge defined by the conditions: B̌ = Ě = 0

in the scalar and Ǧµ = 0 in the vector sector. It is important to note that, indeed, one can

always choose the gauge parameters such that the gauge conditions are satisfied, i.e.

ξ‖(x, y) = e2AE, (A.50)

ξ5(x, y) = −B − e2A
(
e−2AE

)′
, (A.51)

ξ⊥µ(x, y) = −e2AGµ. (A.52)
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Here one can note that this choice of gauge fixing completely fixes the gauge and so that there

is no residual gauge freedom left.

A.2. Scalar perturbations

Scalar perturbations contribute to the metric as follows

ds2 = e2A [(1− 2ψ) ηµν − 2∂µ∂νE] dxµdxν + ∂µBdx
µdy + (1 + 2χ) dy2, (A.53)

The scalar modes appearing here are not gauge invariant, i.e. their values are affected by the

choice of different coordinates. It is therefore instructive to either work with the gauge invari-

ant quantities or choose a suitable gauge such that the ambiguities related to the coordinate

transformations can be removed. Here we choose the longitudinal gauge such that the gauge

freedom is fixed completely, as discussed in Appendix A.1. Therefore, for the scalar modes of

perturbation, we have B = E = 0 2.

In the longitudinal gauge the perturbed metric (A.53) is of the form,

ds2 = e2A (1− 2ψ) ηµνdx
µdxν + (1 + 2χ) dy2. (A.54)

Adopting the general results from the Appendix A.1 we find the following form of the linearized

field equations for the scalar modes,

(µν) : e2Aηµν

[
2
(
A′′ + 4A′2

)
χ+A′χ′ + e−2A�(4)ψ + 8A′ψ′ + ψ′′

]
+ ∂µ∂ν (2ψ − χ) =

1

6M3∗
e2Aηµν

∂V (φ)

∂φ
ϕ, (A.55)

(µ5) : 3A′∂µχ+ 3∂µψ
′ =

1

4M3∗
φ′∂µϕ, (A.56)

(55) : 4
(
ψ′′ + 2A′ψ′

)
+ 4A′χ′ − e−2A�(4)χ =

1

4M3∗

[
2φ′ϕ′ +

2

3

∂V (φ)

∂φ
ϕ+

4

3
V (φ)χ

]
.

(A.57)

One can notice from Eq. (A.55) that the absence of the ∂µ∂ν term on the right hand side

implies ∂µ∂ν (2ψ − χ) = 0 so that χ = 2ψ + c(y). Where c(y) is a y-dependent constant of

integration which can be fixed by the requirement that at 4D infinities χ, ψ → 0, therefore

c(y) = 0.

When χ = 2ψ the equation of motion for the scalar field fluctuation (A.16) simplifies,

e−2A�(4)ϕ+ ϕ′′ + 4A′ϕ′ − ∂2V (φ)

∂φ2
ϕ− 6φ′ψ′ − 4

(
φ′′ + 4A′φ′

)
ψ = 0. (A.58)

It is important to note that, as usually in such cases, the equations of motions (A.55)-(A.58)

are not independent. Adopting the relation χ = 2ψ and the background equations of motion

2We suppress the ˇ signs hereafter, as it is clear that we are referring the modes in the new reference frame as
discussed in Appendix A.1.
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A. Linearized Einstein equations

one derives the following equation that we will use instead of (A.55) and (A.57)

3ψ′′ + 6A′ψ′ − 3e−2A�(4)ψ =
1

2M3∗
φ′ϕ′. (A.59)

Hence, Eqs. (A.56), (A.58) and (A.59) complete the set of linearized equations for the scalar

modes. In the subsequent section we will use these equations to study stability of scalar field

perturbations.

A.3. Vector perturbations

We can write down the metric for the vector perturbations as,

ds2 = e2A (ηµν + ∂µGν + ∂νGµ) dxµdxν + Cµdx
µdy + dy2, (A.60)

where Cµ and Gµ are divergenceless vectors defined in Eqs. (A.17) and (A.18). Adopting

the general results from the Appendix A.1 we find the following form of the linearized field

equations for the vector modes

∂µ

[
C ′ν + 2A′Cν +−4e2AA′G′ν − e2AG′′ν

]
= 0, (A.61)

e−2A�(4)Cν −�(4)G′µ = 0. (A.62)

Since we are working in the gauge where Gµ = 0 so the equations of motion for the vector

modes of the metric perturbations read

�(4)Cν = 0, ∂µ
(
C ′ν + 2A′Cν

)
= 0. (A.63)

A.4. Tensor perturbations

The tensor metric perturbation of metric (1.2) can be written as,

ds2 = e2A(y)(ηµν +Hµν)dxµdxν + dy2, (A.64)

where, Hµν = Hµν(x, y) is the tensor fluctuation as defined in (A.17). Adopting general results

from the Appendix A.1 we find the following form of the linearized field equations for the tensor

modes (
∂2

5 + 4A′∂5 + e−2A�(4)
)
Hµν = 0. (A.65)

The zero-mode solution (corresponding to �(4)Hµν = 0) of the above equation should represent

the 4D graviton while the non-zero modes are the Kaluza-Klein (KK) graviton excitations.
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APPENDIXB

SSB IN THE IR-UV-IR MODEL: REAL SCALAR CASE

In this Appendix, in order to gain some intuition concerning properties of models based on IR-

UV-IR Z2-symmetric geometry, we consider a simple setup with a real scalar in the geometry

defined in Sec. 2.2. The action for this toy model with a real scalar field Φ(x, y) is:

Stoy = −
∫
d5x
√−g

{
1

2
gMN∇MΦ∇NΦ +

1

2
µ2
BΦ2

+ VIR(Φ)δ(y + L) + VUV (Φ)δ(y) + VIR(Φ)δ(y − L)

}
, (B.1)

where µB is bulk mass parameter and,

VUV (Φ) =
m2
UV

2k
Φ2, VIR(Φ) = −m

2
IR

2k
Φ2 +

λIR
4k2

Φ4, (B.2)

are the scalar field potentials localized on the UV and IR-branes, respectively. The background

metric for the IR-UV-IR geometric setup is given by Eq. (1.2). It is important to note that

the above action is invariant under Φ(x, y) → −Φ(x, y). In the following two sub-Appendices

we consider two different strategies for spontaneous breaking (SSB) of the discrete symmetry:

(i) SSB by vacuum expectation values of KK modes, and (ii) SSB by a vacuum expectation

value of the 5D scalar field. Later we will compare the effective theories obtained within the

two approaches.

B.1. SSB by vacuum expectation values of KK modes

Within this approach, we first KK-decompose the scalar field Φ(x, y) of the above action (B.1)

as

Φ(x, y) =
∑
n

Φn(x)fn(y). (B.3)
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The wave-functions fn(y) are chosen to satisfy the following equation and orthonormality

condition in the bulk,

−∂5

(
e4A(y)∂5fn(y)

)
+ µ2

Be
4A(y)fn(y) + e4A(y)m

2
UV

k
fn(y)δ(y) = m2

ne
2A(y)fn(y), (B.4)∫ +L

−L
dye2A(y)fm(y)fn(y) = δmn. (B.5)

In the presence of Dirac delta function δ(y) (UV-brane) at y = 0 there is a discontinuity (jump)

in the first derivatives of fn(y). The corresponding jump condition at y = 0 and the boundary

conditions at y = ±L are chosen to be:(
∂5 −

m2
UV

2k

)
fn(y)

∣∣∣
0+

= 0,

(
±∂5 −

m2
IR

2k

)
fn(y)

∣∣∣
±L∓

= 0, (B.6)

where 0+ ≡ 0+ε and L± ≡ L±ε with ε→ 0. Equation (B.4) together with the jump-boundary

conditions (B.6) defines the basis for the KK decomposition. It is easy to see that the choice

of (B.4) implied by the orthogonality relations (B.5) eliminates non-diagonal bulk mass terms

(i.e. quadratic in fn(y)) in the effective 4D action. The first condition in (B.6) is dictated by

integrating (B.4) around y = 0 (jump across the UV-brane), while the second one is imposed

in order to eliminate non-diagonal terms ∝ ∂5fn(y)fm(y)|±L∓ at the ends of the interval.1

This strategy will be often employed hereafter and in the main text to get rid of non-diagonal

quadratic KK terms.

Since our background geometry is Z2-symmetric under y → −y therefore solutions of the

Eq. (B.4) will have defined (even or odd) parity w.r.t. y. We denote the even and odd wave-

functions as f
(+)
n (y) and f

(−)
n (y), respectively. It is instructive to write the KK-decomposition

as

Φ(x, y) = Φ(+)(x, y) + Φ(−)(x, y),

=
∑
n

Φ(+)
n (x)f (+)

n (|y|) + ε(y)
∑
n

Φ(−)
n (x)f (−)

n (|y|), (B.7)

where ε(y) is ±1 for y ≷ 0. We rewrite Eq. (B.4) as

− ∂5

(
e4A(y)∂5f

(±)
n (y)

)
+ µ2

Be
4A(y)f (±)

n (y) + e4A(y)m
2
UV

k
f (±)
n (y)δ(y) = m2

ne
2A(y)f (±)

n (y). (B.8)

The jump and boundary conditions for the even and odd profiles follow from Eq. (B.6),(
∂5 −

m2
UV

2k

)
f (+)
n (y)

∣∣∣
0+

= 0, f (−)
n (y)

∣∣∣
0

= 0. (B.9)(
±∂5 −

m2
IR

k

)
f (±)
n (y)

∣∣∣
±L∓

= 0. (B.10)

1The other choice fn(y)|±L = 0 eliminates all the IR-brane interactions, so it will not be considered.
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We find the following general solutions of Eq. (B.8):

f (±)
n (|y|) =

e2k|y|

N
(±)
n

[
Jβ

(
m(±)
n ek|y|/k

)
+ b(±)

n Yβ

(
m(±)
n ek|y|/k

)]
, (B.11)

with f
(−)
n (y) ≡ ε(y)f

(−)
n (|y|). Above Jβ and Yβ are the Bessel functions with weight β ≡√

4 + µ2
B/k

2, which parameterizes the bulk mass. Above N
(±)
n and b

(±)
n are the two integration

constants for each parity mode. N
(±)
n are fixed by the orthogonality condition (B.5). The

coefficients b
(+)
n and b

(−)
n are implied by the jump conditions at y = 0 for even and odd wave

functions:

b(+)
n = −

k2δUV Jβ

(
m

(+)
n
k

)
+ km

(+)
n Jβ+1

(
m

(+)
n
k

)
k2δUV Yβ

(
m

(+)
n
k

)
+ km

(+)
n Yβ+1

(
m

(+)
n
k

) , b(−)
n = −

Jβ

(
m

(−)
n
k

)
Yβ

(
m

(−)
n
k

) , (B.12)

where δUV is the UV-brane dimensionless parameter defined as

δUV ≡
m2
UV

k2
− 2(2 + β). (B.13)

Now the boundary condition at y = ±L implies the following equation whose roots determine

the mass spectrum of KK-modes,

m
(±)
n

mKK

[
Jβ+1

(
ekLm

(±)
n

k

)
+ b(±)

n Yβ+1

(
ekLm

(±)
n

k

)]

= −1

2
δIR

[
Jβ

(
ekLm

(±)
n

k

)
+ b(±)

n Yβ

(
ekLm

(±)
n

k

)]
, (B.14)

where mKK and the IR-brane dimensionless parameter δIR are defined in Eq. (5.33). We solve

the above equation for the KK mass eigenvalues in the approximation kL� 1 and m
(±)
n � k,

such that one can set b
(±)
n ≈ 0. With this simplification we get the following equation for the

zero-mode mass m
(±)
0 :

m
(±)
0

mKK

Jβ+1

(
m

(±)
0

mKK

)
Jβ

(
m

(±)
0

mKK

) ' −1

2
δIR. (B.15)

Expanding around m
(±)
0 ∼ 0, we find the following mass for the zero-mode,

m
2(±)
0 ' −(1 + β)m2

KKδIR

[
1− δIR

2 + β
+

2δ2
IR

(2 + β)2(3 + β)
+O(δ3

IR)

]
. (B.16)

Note that the above zero-mode mass must be negative in order to trigger the spontaneous

symmetry breaking. Therefore we assume at this point that δIR > 0. The above solution

implies that for δIR ∼ O(1) the zero-mode mass is of the order of KK mass scale mKK . In

order to have a light zero-mode (of order of the electroweak scale), we need to fine-tune δIR
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B. SSB in the IR-UV-IR model: real scalar case

such that |m(±)
0 | � mKK which implies that δIR ∼ 10−3 for mKK ∼ O(few) TeV (as required

in a more realistic context by the EWPT, see Sec. 5.3.1). For non-zero KK mode masses

(excited KK states with n 6= 0) we assume that m
(±)
n ≥ mKK so that we can use δIR ≈ 0.2

Hence the non-zero KK-mode masses m
(±)
n read:

m(±)
n '

(
n+

β

2
− 3

4

)
πmKK , (B.17)

which implies that masses of even and odd excited KK-modes are degenerate.

Now we can write the 4D effective action for the toy model (B.1) by using the above KK-

decomposition and integrating over the extra dimension y, as:

Stoy = −
∫
d4x

{
1

2
∂µΦ(+)

n ∂µΦ(+)
n +

1

2
∂µΦ(−)

n ∂µΦ(−)
n +

1

2
m2(+)
n Φ2(+)

n +
1

2
m2(−)
n Φ2(−)

n

+
λ

(+)
klmn

4
Φ

(+)
k Φ

(+)
l Φ(+)

m Φ(+)
n +

λ
(−)
klmn

4
Φ

(−)
k Φ

(−)
l Φ(−)

m Φ(−)
n +

3

2
λklmnΦ

(+)
k Φ

(+)
l Φ(−)

m Φ(−)
n

}
, (B.18)

where λ
(±)
klmn and λklmn are quartic couplings given by,

λ
(±)
klmn = e4A(L)λIR

k2
f

(±)
k f

(±)
l f (±)

m f (±)
n

∣∣∣
L
, λklmn = e4A(L)λIR

k2
f

(+)
k f

(+)
l f (−)

m f (−)
n

∣∣∣
L
. (B.19)

The above action (B.18) is symmetric under Z′2 × Z2 under which Φ
(+)
n → −Φ

(+)
n and Φ

(−)
n →

−Φ
(−)
n , respectively. Note that it has been taken into account that the integration of the IR-

brane delta functions will provide a factor of 1/2 instead of 1, as our geometry is an interval,

assuming that there is nothing outside [−L,+L]. The above effective action is valid for all the

KK-modes. In order to obtain the low-energy effective action we limit ourself to zero-modes

only. The low energy (zero-mode) effective action for our toy model is:

Sefftoy = −
∫
d4x

{
1

2
∂µΦ

(+)
0 ∂µΦ

(+)
0 +

1

2
∂µΦ

(−)
0 ∂µΦ

(−)
0 − 1

2
µ2Φ

2(+)
0 − 1

2
µ2Φ

2(−)
0

+
λ

(+)
0000

4
Φ

4(+)
0 +

λ
(−)
0000

4
Φ

4(−)
0 +

3

2
λ0000Φ

2(+)
0 Φ

2(−)
0

}
, (B.20)

where λ
(±)
0000 and λ0000 are given by Eq. (B.19), whereas µ is the zero-mode mass parameter

defined as

−m(±)2
0 ' µ2 ≡ (1 + β)m2

KKδIR, (B.21)

In order to get more insight into the above results we find also the wave-function for the

zero-modes f
(±)
0 (y).3 Following the above mentioned approximation, kL � 1 and m

(±)
0 � k

2For the zero-mode mass this approximation does not hold, as m
(±)
0 /mKK is of the same order as δIR ∼ 10−3.

3One can also get the solutions for the zero-mode wave functions f
(±)
0 (y) by solving the Eq. (B.4) for m

(±)
0 = 0.
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B.1. SSB by vacuum expectation values of KK modes

(such that b
(±)
0 ≈ 0), the wave-function for zero-modes f

(±)
0 (y) has the following simple form

f
(±)
0 (|y|) ' e2k|y|

N
(±)
0

Jβ

(
m

(±)
0

k
ek|y|

)
, (B.22)

with f
(−)
0 (y) ≡ ε(y)f

(−)
0 (|y|). The normalization N

(±)
0 can be fixed by Eq. (B.5):

N
2(±)
0 = 2 ∈ τL0 dy

e2kyJβ

(
m

(±)
0

k
eky

)2
 ' e2kL

k(1 + β)
Jβ

(
m

(±)
0

k
ekL

)2

. (B.23)

We get the zero-mode wave-functions f
(±)
0 (y), after expanding the Bessel functions around

zero (m
(±)
0 ≈ 0), as

f
(±)
0 (|y|) '

√
k(1 + β)ekLe(2+β)k(|y|−L). (B.24)

Hence for f
(±)
0 (±L) '

√
k(1 + β)ekL, the quartic couplings are:

λ
(±)
0000 = λ0000 ' λ, where λ ≡ λIR(1 + β)2. (B.25)

After calculating all the parameters of the effective action (B.20) in terms of the fundamental

5D parameters, we can proceed further to find vevs of the scalar fields Φ(±) (from hereon in

the Appendix we drop the subscripts 0 from zero-modes). We can write the scalar potentials

for even and odd fields as

V (Φ(±)) = −1

2
µ2Φ(+)2 − 1

2
µ2Φ(−)2 +

λ

4
Φ(+)4 +

λ

4
Φ(−)4 +

3

2
λΦ(+)2Φ(−)2. (B.26)

Note that the above scalar potential has Z′2 × Z2 symmetry as pointed out earlier. One of the

discrete symmetry factors will be spontaneously broken when Φ(±) develop a non-zero vev. We

find the following conditions for global minima of the potential:

v(+)2 =

(
µ2

λ
− 3v(−)2

)
, or v(+) = 0, (B.27)

and

v(−)2 =

(
µ2

λ
− 3v(+)2

)
, or v(−) = 0. (B.28)

One can easily see from Fig. B.1 that the scalar potential V (Φ(+),Φ(−)) has four degenerate

global minima at (±v(+), 0) and (0,±v(−)). One can choose any of these global vacua. We

select the vacuum where the even mode Φ(+) acquires a vev, whereas Φ(−) has zero vev. In

this case the above minimization condition is,

v(+) =
µ√
λ
, v(−) = 0. (B.29)

This choice of the vacuum breaks Z′2 spontaneously. Now we perturb the even and odd modes
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Figure B.1.: This graph illustrates the shape of the scalar potential V (Φ(±)) as a function of the fields
Φ(±) for µ = 1, and λ = 1.

around the vacuum of our choice as:

Φ(+)(x) = v(+) + φ(x), Φ(−)(x) = χ(x). (B.30)

The effective toy action in terms of the even and odd fluctuations can be written as

Sefftoy = −
∫
d4x

{
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ+
1

2
m2φ2 +

1

2
m2χ2 +

λ

4
φ4 +

λ

4
χ4

+
√
λµφ

(
φ2 + 3χ2

)
+

3

2
λφ2χ2

}
, (B.31)

where m2 ≡ 2µ2. It is important to note that both even and odd fluctuations have the same

mass m and the same quartic coupling λ. Moreover, the above action has an unbroken discrete

Z2 symmetry, under which the fields transform as φ→ +φ and χ→ −χ.

B.2. SSB by a vacuum expectation value of 5D scalar field

In this approach we perturb the 5D scalar field Φ(x, y) around a y-dependent vev v(y) as

Φ(x, y) = v(y) + φ(x, y), (B.32)

where v(y) is the background solution for the toy action (B.1) and φ(x, y) is a perturbation

around the background. The e.o.m. for v(y) and φ(x, y) read as:[
− ∂5

(
e4A(y)∂5

)
+ µ2

Be
4A(y)

]
v(y)

= −e4A(y)

[
∂VIR(v)

∂v
δ(y + L) +

∂VUV (v)

∂v
δ(y) +

∂VIR(v)

∂v
δ(y − L)

]
, (B.33)[

− e2A(y)�(4) − ∂5

(
e4A(y)∂5

)
+ µ2

Be
4A(y)

]
φ(x, y)

= −e4A(y)

[
∂2VIR(v)

∂v2
φδ(y + L) +

∂2VUV (v)

∂v2
φδ(y) +

∂2VIR(v)

∂v2
φδ(y − L)

]
. (B.34)

116



B.2. SSB by a vacuum expectation value of 5D scalar field

Note that the above e.o.m. for the perturbation φ(x, y) (B.34) is obtained by Taylor series

expansion of the brane potentials around the background v(y) and only quadratic terms in

field φ(x, y) are kept such that the KK-mass matrix for the field φ(x, y) will be diagonal.

The following jump and boundary conditions for v(y) and φ(x, y) are implied by the general

strategy adopted in the main text,(
∂5 −

m2
UV

2k

)
v(y)

∣∣∣
0+

= 0,

(
±∂5 −

m2
IR

2k
+
λIR
2k2

v2(y)

)
v(y)

∣∣∣
±L∓

= 0, (B.35)(
∂5 −

m2
UV

2k

)
φ(x, y)

∣∣∣
0+

= 0,

(
±∂5 −

m2
IR

2k
+

3λIR
2k2

v2(y)

)
φ(x, y)

∣∣∣
±L∓

= 0. (B.36)

Our geometric setup is Z2 symmetric under y → −y, therefore we can look for solutions

possessing a definite parity; the even v(+)(y) and the odd v(−)(y). Since our geometric setup

is symmetric, therefore we choose the even vacuum solution v(+)(y) for the scalar field. Note

that the choice of odd vacuum solution could lead to the breaking of geometric Z2 symmetry.

As discussed in the main text, the jump (boundary) conditions for the even solutions at y = 0

and y = ±L are:(
∂5 −

m2
UV

2k

)
v(+)(y)

∣∣∣
0+

= 0,

(
±∂5 −

m2
IR

2k
+
λIR
2k2

v2(±)(y)

)
v(±)(y)

∣∣∣
±L∓

= 0. (B.37)

We find the following solutions for the even background vev v(+)(y):

v(+)(y) = C1e
(2+β)k|y| + C2e

(2−β)k|y|, − L ≤ y ≤ L, (B.38)

where C1 and C2 are the integration constants. We apply the jump condition (5.53) at y = 0

and the boundary condition at y = ±L (5.54) to fix the two integration constants as,

C2 = − δUV
δUV + 4β

C1, (B.39)

C1 =

√
k3

λIR

(
δIR −

δUV (δIR + 4β)

δUV + 4β
e−2βkL

)
e−(2+β)kL

(
1− e−2βkLδUV

δUV + 4β

)−3/2

, (B.40)

where δUV ≡ m2
UV /k

2 − 2(2 + β) and δIR is defined in Eq. (5.33). For kL � 1 and β > 0,

the terms proportional to e−2βkL are negligible in the region of interest (near the IR-brane).

Hence the vacuum solution for the scalar field can be written as:

v(+)(y) '
√
k3δIR
λIR

e(2+β)k(|y|−L) ≡ v4fv(y), (B.41)

where the constant vev v4 and the y-dependent vev profile fv(y) are:

v4 ≡
√

m2
KKδIR

λIR(1 + β)
, fv(y) ≡

√
k(1 + β)ekLe(2+β)k(|y|−L). (B.42)
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The y-dependent vev profile satisfies the orthonormality condition∫ L

−L
dye2A(y)f2

v (y) = 1. (B.43)

From the above solution we conclude that for λIR > 0 (as required by the positivity of the

tree-level potential) one needs δIR > 0, i.e. m2
IR/k

2 > 2(2 + β). It is worth mentioning here

that the quartic term in the IR-brane potential is crucial for a non-trivial vev profile v(±)(y).

If the quartic term would have been absent in the VIR, i.e. λIR = 0, then the b.c. (5.53) and

(5.54) would have implied v(y) = 0. Even though the quartic term is not in the bulk (only

localized at the IR-brane), nevertheless, the b.c. imply the non-zero profile in the bulk.

Next we deal with the fluctuation field φ(x, y) by KK-decomposing it as

φ(x, y) =
∑
n

φn(x)f̃n(y), (B.44)

such that the e.o.m. for the wave-function f̃n(y) that follows from Eq. (B.34) reads

− ∂5

(
e4A(y)∂5f̃n(y)

)
+ µ2

Be
4A(y)f̃n(y) + e4A(y)m

2
UV

k
f̃n(y)δ(y) = m̃2

ne
2A(y)f̃n(y), (B.45)

while the KK-modes satisfy �(4)φn(x) = m2
nφn(x). Our symmetric Z2 geometry implies that

the solutions of the Eq. (B.45) are even and odd under y → −y. Since the wave functions have

definite parity therefore it is instructive to rewrite the KK-decomposition for the fluctuation

field φ(x, y) (B.44) as:

φ(x, y) =
∑
n

φ(+)
n (x)f̃ (+)

n (|y|) + ε(y)
∑
n

φ(−)
n (x)f̃ (−)

n (|y|). (B.46)

The even and odd solutions are subject to different jump conditions at y = 0 that follow from

Eq. (B.36): (
∂5 −

m2
UV

2k

)
f̃ (+)
n (y)

∣∣∣
0+

= 0, f̃ (−)
n (y)

∣∣∣
0

= 0, (B.47)(
±∂5 −

m2
IR

2k
+

3λIR
2k2

v2(y)

)
f̃ (±)
n (y)

∣∣∣
±L∓

= 0. (B.48)

Now we write the 4D effective action for the toy model (B.1) by using the above KK-

decomposition and integrating over the extra dimension y, as

Sefftoy = −
∫
d4x

{
1

2
∂µφ

(+)
n ∂µφ(+)

n +
1

2
∂µφ

(−)
n ∂µφ(−)

n +
1

2
m̃2(+)
n φ2(+)

n +
1

2
m̃2(−)
n φ2(−)

n

+ λ̃
(+)
lmnφ

(+)
l φ(+)

m φ(+)
n + 3λ̃

(−)
lmnφ

(+)
l φ(−)

m φ(−)
n +

λ̃
(+)
klmn

4
φ

(+)
k φ

(+)
l φ(+)

m φ(+)
n

+
λ̃

(−)
klmn

4
φ

(−)
k φ

(−)
l φ(+)

m φ(+)
n +

3

2
λ̃klmnφ

(+)
k φ

(+)
l φ(−)

m φ(−)
n

}
, (B.49)
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B.2. SSB by a vacuum expectation value of 5D scalar field

where,

λ̃
(±)
lmn =

λIR
k2

v4e
4A(y)fv(y)f̃

(+)
l (y)f̃ (±)

m (y)f̃ (±)
n (y)

∣∣∣
L
, (B.50)

λ̃
(±)
klmn =

λIR
k2

e4A(y)f̃
(±)
k (y)f̃

(±)
l (y)f̃ (±)

m (y)f̃ (±)
n (y)

∣∣∣
L
, (B.51)

λ̃klmn =
λIR
k2

e4A(y)f̃
(+)
k (y)f̃

(+)
l (y)f̃ (−)

m (y)f̃ (−)
n (y)

∣∣∣
L
. (B.52)

For the warped (AdS) geometry the general solutions for Eq. (B.45) corresponding to the

even and odd f̃
(±)
n (y) are the same as in Eq. (B.11). From the b.c. at y = ±L we get the

following equation whose roots will determine the mass spectrum of the KK-modes,

m̃
(±)
n

mKK

[
Jβ+1

(
ekLm̃

(±)
n

k

)
+ b(±)

n Yβ+1

(
ekLm̃

(±)
n

k

)]

= δIR

[
Jβ

(
ekLm̃

(±)
n

k

)
+ b(±)

n Yβ

(
ekLm̃

(±)
n

k

)]
, (B.53)

where mKK and δIR are defined in Eq. (5.33). Assuming that kL� 1 and m̃
(±)
0 � k, we find

b
(±)
n ≈ 0. Hence the above mass eigenvalue equation takes the following form for the zero-mode

masses m̃
(±)
0 ,

m̃
(±)
0

mKK
Jβ+1

(
m̃

(±)
0

mKK

)
' δIRJβ

(
m̃

(±)
0

mKK

)
. (B.54)

We expand the above expression around m̃
(±)
0 ∼ 0 to get the following masses for the zero-

modes,

m̃
2(±)
0 ' 2(1 + β)m2

KKδIR

[
1− δIR

2 + β
+

2δ2
IR

(2 + β)2(3 + β)
+O(δ3

IR)

]
. (B.55)

As explained in the previous sub-Appendix, in order to have the light zero-mode mass ∼
O(100) GeV, we need to fine-tune δIR ∼ 10−3. The above result also implies that the odd

zero-mode is degenerate in the mass with the even zero-mode. For the non-zero modes (excited

KK-modes) we assume that m̃
(±)
n /mKK � δIR, hence the m̃

(±)
n for the non-zero KK-modes

(n 6= 0) are:

m̃(±)
n '

(
n+

β

2
− 3

4

)
πmKK , (B.56)

which implies that masses of the even and odd excited KK-modes are the same.

Assuming the KK-scale mKK is large enough, we can write down the low-energy effective

action for lowest even and odd modes φ
(±)
0 from the action (B.49) as:

Sefftoy = −
∫
d4x

{
1

2
∂µφ

(+)
0 ∂µφ

(+)
0 +

1

2
∂µφ

(−)
0 ∂µφ

(−)
0 +

1

2
m̃

(+)2
0 φ

(+)2
0 +

1

2
m̃

(−)2
0 φ

(−)2
0

+ λ̃
(+)
000φ

(+)3
0 + 3λ̃

(−)
000φ

(+)
0 φ

(−)2
0 +

λ̃
(+)
0000

4
φ

(+)4
0 +

λ̃
(−)
0000

4
φ

(−)4
0 +

3λ̃0000

2
φ

(+)2
0 φ

(−)2
0

}
, (B.57)
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where couplings take the following values implied by Eqs. (B.50) and (B.52):

λ̃
(±)
000 '

√
λµ, λ̃

(±)
0000 = λ̃0000 ' λ, (B.58)

with µ2 ≡ (1 + β)m2
KKδIR and λ ≡ λIR(1 + β)2. Simplifying our notation (φ

(+)
0 = φ, φ

(−)
0 = χ

and m̃0 = m̃), we can write the above effective action (B.57) in the following form:

Seff = −
∫
d4x

{
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ+
1

2
m̃2φ2 +

1

2
m̃2χ2 +

λ

4
φ4 +

λ

4
χ4

+
√
λµφ

(
φ2 + 3χ2

)
+

3

2
λφ2χ2

}
, (B.59)

where m̃0 is the mass of the zero-modes given by Eq. (B.55); the leading term is, m̃2
0 = 2µ2.

Let us conclude this Appendix by comparing the effective theories obtained in the previous

sub-Appendix (B.31) and here (B.59). It is straight forward to see that the low energy (zero-

mode) d.o.f. in the both actions are same. Moreover, the effective theories are identical,

for example, all the masses and coupling constants are same in terms of 5D fundamental

parameters of the theory. This is a non-trivial matching and the core of this matching lies

in the fact that the y-dependent vev v(y) can be written as constat v4 times the normalized

y-dependent profile fv(y) such that v4 = v1 = µ√
λ

and f0(y) ' fv(y), where v1 and f0(y)

are the vev and the zero-mode profile, respectively, obtained in the previous sub-Appendix.

Once this matching is realized then masses and coupling constants in both low-energy effective

theories are exactly identical. In other words, consistently with our expectations, operations

of KK-expansion and the expansion around y-dependent vev do commute (at least for the zero

modes).
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