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Abstract 

The cathode material used in a photoinjector is chosen to deliver the electron beam parameters for the 

desired application. Since these parameters at the cathode are determined primarily by the cathode material 

and the laser, a priori calculation of the quantum efficiency (QE) and the intrinsic emittance (IE) at the 

cathode can be used to compare the theoretical prediction to the observed performance and to improve it. In 

this chapter, we derive, based on the three step model, the expressions for the quantum efficiency and the 

intrinsic emittance of the electron beam from the cathode held in high accelerating field. We describe the 

specific modifications required for calculating these values for the metal, semiconductor and negative 

electron affinity cathodes. We discuss briefly the impact of surface roughness, impurity and crystal 

orientation to both the QE and IE. We also describe the theoretical formalism for calculating the electron 

yield secondary emitters such as diamond, which shows promise for delivering ampere level currents. 

 

One of the primary components in designing photoinjectors is the photocathode to be used for the injector. 

Several factors dictate this choice: The quantum efficiency of the cathode at the laser’s wavelength, the 

lifetime of the cathode, the total charge deliverable from the cathode in this life time, and its compatibility 

with the injector. This chapter is devoted to developing the theoretical underpinning of the electron yield 

from a material and its relevance to the injectors. 

5.1 HISTORY 

The first publication on photoemission from metals was a study of the photoelectric effect in 1887 [5.1]. 

Einstein offered the first theory describing the major aspects of this process in 1905 [5.2], work that was 

mentioned in the citation for his 1921 Nobel Prize. His theory demonstrated the quantization of the energy 

of light and proposed the existence of a material-dependent escape energy (today called the work function) 

to explain why UV radiation caused electron emission, but visible light did not. In the century since this 

groundbreaking work, many advances have been made in studying photoemission. In particular, the advent 

of lasers allowed the exploration of processes unattainable with less intense light sources, such as 

multiphoton emission [5.3]. Models of photoemission now describe not only the expected electron yield 
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from a given metal and light source, but also provide predictions of the energy- and angular-distributions 

[5.4] of the emitted electrons. 

 

The theory of photoemission relevant to the present work is named the “three-step model” [5.5]–[5.7]. 

Bergland & Spicer used it to explain emission from several materials [5.8], [5.9]. This model breaks down 

the process into three independent steps. The first step is the absorption of a photon and the resulting 

excitation of an electron. The second step is transportation of the excited (hot) electron to the surface; it 

takes into account the collisions that the electron may undergo during transit. The third step is the escape of 

the electron from the material after it reaches the surface. Since the three steps are considered to be 

independent, the probability of a single incident photon generating an emitted electron, defined as the 

quantum efficiency (QE), is the product of the probability of each of these steps. Although exact calculation 

of the QE is feasible, it is extremely tedious. Hence, we derive the equation for the QE, making some basic 

assumptions, and then discuss their validity for different types of cathodes in subsequent sections.  

 

Quantum Efficiency 

For these discussions, QE typically is defined as the ratio of the number of emitted electrons (ne) to the 

number of incident photons (np). We note that this method differs slightly from other treatments [5.8] 

wherein efficiency is calculated with respect to the absorbed laser energy. For a cathode used in an injector, 

the incident laser energy generally is known, but the material’s reflectivity may change with the surface 

preparation technique. Therefore, in these applications, it is standard practice to define the QE with respect 

to the incident beam’s energy. 

 QE = 
ne

np
 = 

][

][

JE

eVh

laser


q [C] (5.1) 

 

where hν is the photon energy, q is the charge released by the cathode and Elaser is the laser energy. 

5.2 THREE-STEP MODEL  

5.2.1 Step 1 – Photon Absorption and Electron Excitation 

This step entails calculating the probability of a photon being absorbed to excite an electron to a higher 

energy state. Two assumptions are made in this step. First, that the states lying below the Fermi energy, Ef, 

are filled and the states above are empty. This is equivalent to treating the material as a conductor at zero 

temperature. The second is that every absorbed photon excites an electron within the material, with an 

excitation probability dependent on only three parameters: The photon energy, the number of electrons in 

the occupied states of the material able to absorb photons (i.e. states below Ef), and the number of available 

states into which the hot electron is excited. The latter assumption, called the random-k approximation, 

implies that no selection rules are needed based on the electron’s momentum. This simplified version deals 

only with indirect transitions wherein only the conservation of energy between the photon and the electron 

is a necessary condition, not the momentum. For polycrystalline metal surfaces typically used as accelerator 

photocathodes, this is generally a good approximation.  
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In the first step of the model, two processes occur. The first is the reflection of the incident laser beam from 

the surface. The probability of transmission into the material, T(ν), and absorption in an infinitely thick 

cathode, A(ν), is calculated from the reflectivity 

 

 T(ν) = A(ν) = 1 – R(ν) (5.2) 

The reflectivity of the various materials can be measured or obtained from the literature [5.10]. The depth 

over which the photons are absorbed is determined by the material’s absorption coefficient at hν. 

 

The second process is the probability of exciting an electron to a given energy within the material. For this 

treatment, only the kinematic (energy) restrictions are considered. No selection rule is imposed on the wave 

vector, k, and the momentum matrix elements are assumed constant. This is equivalent to supposing that the 

electron’s transverse momentum is not conserved. This approximation makes the probability of excitation 

from an initial state of energy E0 to a final state of energy (E0 + hν) solely a function of the material’s 

electronic density of states (EDOS). For convenience, we take the zero of energy to be the lowest in the 

material’s valence band. The EDOS provide the number of available electron states as a function of energy, 

n(E). The probability of excitation to a final state E = (E0 + hν), from an initial state E0 clearly is 

proportional to the number of initial states, N(E0), and the number of final states, N(E) 

 

 P(E,hν) ∝ N(E) N(E0) = N(E) N(E – hν) (5.3) 

 

To obtain the fractional number of electrons excited to an energy E, we must divide by the total number of 

possible transitions 
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The lower limit of integration arises from the exclusion principle. There are no empty states below the 

Fermi level; thus, all excitations must be to states above this level. The upper limit comes from the 

conservation of energy, as the highest energy initial state has E = Ef. Thus we have 

 

 P(E,hν) = 
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 (5.5) 

 

Step one is largely the same for both metallic and amorphous semi-conductor cathodes. The EDOS will be 

distinct; in particular, the semiconductor will have a band of disallowed states between the highest energy-

filled state and the lowest energy-unfilled state. In the special case of spin-polarized photocathodes, the 

EDOS for each spin state must be considered and a different QE is calculated for each spin orientation.  

 

Cathodes for Polarized Electrons 

Currently, the polarized electrons usually are obtained by photoemission from GaAs-based semiconductors 

[5.11], [5.12]. The primary differences in the theoretical calculation in this case are: a) In addition to energy, 

the angular and crystal momenta are also conserved during the absorption of photon; and b) the initial and 

final states are near the absorption edge to reduce electron-phonon (e-p) collisions and preserve the 
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polarization. Electrons from a specific spin state in the valence band is resonantly excited with circularly 

polarized light to the final state in the conduction band allowed by the energy and momentum conservation 

rules. After polarized electrons are generated in the conduction band, they are transported to the emission 

surface of the semiconductor’s photoemitter. This surface is treated to create a negative electron affinity 

which enhances the emission of electrons.  

 

However, since GaAs is a direct band gap semiconductor and has degenerate heavy-hole- and light-hole-

valence bands at the Γ point (the maximum of the valence band), the electrons’ spin polarization is limited 

to 50%. To increase it, degeneracy is removed by using either a strained GaAs layer, or a strained 

superlattice structure. This splits the sub-bands of the heavy-holes and the light-holes, with the former 

possessing greater energy than the latter. Electrons are then excited from the heavy-hole band with 

circularly polarized photons at the absorption edge, as detailed in Chapter 8. The band structure and the 

EDOS for superlattices usually are calculated using a multi-band Kane model (e.g. [5.13]) that supports the 

computation of polarization spectra that can be compared [5.11] with spectra from polarized electron 

emission experiments. 

5.2.2 Step 2 – Photon Absorption Length and Electron Transport 

The purpose of the second step is to calculate the probability that an excited electron reaches the surface of 

the cathode while retaining sufficient energy to escape into vacuum. Unlike the first step, this one differs 

dramatically between metallic- and semiconductor-cathodes. 

 

In both cases, the photon’s absorption length, λph, in the material determines the depth at which the hot 

electron is excited. In metallic cathodes, electron-electron (e-e) scattering limits the range of the hot 

electrons in the material. This is represented by an e-e scattering length, λe. Since the theory herein is being 

developed for “near threshold” emission, a single electron-electron scattering event is likely to remove 

sufficient energy from the excited electron, such that neither of the electrons involved will retain enough 

energy to escape from the material. Thus, electrons that undergo a scattering event in the metal are assumed 

to be lost and not emitted. The e-p scattering in the metal does not change the energy distribution 

significantly. The momentum transfer due to this scattering is not relevant, since we assume isotropic 

velocity distribution for the electrons in the initial state; only energy conservation, not momentum 

conservation, has been taken into account in the transition. 

 

For semiconductor cathodes, if the photon energy used is less than double the band gap energy (Spicer’s 

“magic window”), e-e scattering is forbidden. In this case, other scattering mechanisms dominate 

(principally e-p). Because these processes entail the interaction of the hot electron with the ion lattice of the 

semiconductor, they have a small energy transfer, but a large momentum transfer. Therefore, an electron 

potentially can undergo many scattering events while retaining the energy sufficient to escape. Each event 

essentially will randomize the electron’s direction of travel, leading to the diffusion of carriers to the surface 

under a random walk. This process typically is treated with a Monte Carlo algorithm with a characteristic 

scattering length, though other closed-form approaches exist [5.14]. Each scattering event has an associated 

energy loss and the calculation continues until each excited electron has been emitted or has lost energy 

such that it cannot overcome the work function. For negative electron affinity materials, charge trapping 

must also be considered. 

5.2.2.1    Detailed Metallic Case 

During their journey to the surface, the electrons may undergo a scattering event with an electron, phonon, 

or an impurity. Only electron-electron interaction is considered here, as its typical scattering length [5.8] 
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dominates in the energy region of interest, viz., 4-6 eV above the Fermi level. We make several simplifying 

assumptions herein. We ignore the specifics of the interaction between the excited electron and the 

“valence” electrons and assume that the probability of the interaction is solely a function of the number of 

available initial and final states in the material EDOS (the available phase-space for the interaction). 

Specifically, the probability, S, of an excited electron of energy E > Ef interacting with a valence electron of 

energy E0 < Ef and imparting energy E is proportional to:  

1. The number of electrons, N(E0), with energy E0.  

2. The number of empty states, N(E0 + E), with energy E0 + E. 

3. The number of empty states, N(E – E) with energy E – E. 

 

 S(E,E0,ΔE) ∝ N(E0) N(E0 + ΔE) N(E – ΔE) (5.6) 

 

To obtain the total probability of scattering for an electron of energy E by an electron of energy E0, we must 

integrate Equ. 5.6 over all possible energy transfers, E.  

 

 S(E,E0) ∝  
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The lower limit of integration fulfills the requirement that enough energy must be imparted to the target 

electron to move it into an unfilled energy state (a state with E > Ef). The upper limit requires the initial 

excited electron retaining enough energy to enter an unfilled state. 

 

To obtain the total scattering probability of an excited electron, we integrate Equ. 5.7 over all possible 

“valence” electron energies with a lower limit of integration representing the kinematic limitation that E + 

E0 ≥ 2Ef, thereby yielding  
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The lifetime of the excited state (with respect to e-e scattering), τ(E), is inversely proportional to this 

scattering probability [5.15]: 

 

      τ(E) ∝ 
1

S(E)
 (5.9) 

 

The scattering length is related to the lifetime by the velocity. Here, we assume that the electron velocity is 

proportional to the square root of its kinetic energy (as it would be for a nonrelativistic free electron of 

energy E). The kinetic energy is taken to be the energy above the bottom of the band occupied by the 

electron for a semiconductor and at the Fermi energy for a metal  
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Here, λ0 is a constant of proportionality that is chosen so that the e-e scattering length (the length over which 

the intensity of unscattered electrons is 1/e of the initial intensity) matches a known value of the electron’s 

mean free path at a single energy for a given material. 

 

The depth at which an electron was excited determines the mean distance that it must travel to reach the 

surface of the metal. λph in the material determines this distance. The absorption length is calculated from 

the complex index of refraction, N = n + ik, of the material for each incident wavelength λ [5.10]: 

 

 λph = 
λ

4πk
 (5.11) 

 

The probability that an electron created at a depth d will escape is e
-d/λe

, and the probability per unit length 

that a photon is absorbed at depth d is λ
-1
ph e

-d/λph
. Integrating the product of these probabilities over all 

possible values of d, we obtain the fraction of electrons that reach the surface without scattering, T(E,ν), 

 

 T(E,ν) = 
λe(E)/λph(ν)

1+ ( )λe(E)/λph(ν)
 (5.12) 

5.2.2.2    Detailed Semiconductor Case 

The number of scattering processes involved complicates the derivation of an analytical expression for 

electron transport in semiconductor cathodes. As mentioned, the Monte Carlo method often is applied to 

investigate charge transport in semiconductors. Overall, the method consists of simulating in two main 

steps, the trajectories of charge particles in an applied field. In the first, the free flight of carriers is 

calculated by generally solving Maxwell’s equations; in the second step, a scattering event is identified (e.g. 

with phonons) and executed with specific probability. For a cathode with minimal field penetration, due to 

relatively high conductivity (as is typical for GaAs, the alkali antimonides and tellurides), the solution to 

Maxwell’s equations in the bulk leads to (effectively) field-free drift between scattering events. When the 

energies of conduction electrons and valence holes are sufficiently close to the bottom of the conduction 

band and the top of the valence band, respectively, only one conduction band and one valence band are 

used. This Monte Carlo approach to charge transport in semiconductors is reviewed in Chapter 5 of [5.16]. 

Depending on the energy of absorbed radiation and the energy gap in a semiconductor photocathode, 

electrons and holes of created electron-hole pairs could have sufficiently large enough energies to produce 

additional secondary pairs due to impact ionization scattering. This does not occur in standard 

photocathodes irradiated with near-threshold radiation, but occurs in special cases such as diamond 

amplified photocathode, described below separately. These free charge carriers then move towards the 

emission surface via diffusion, and also drift when an applied electric field is present. In such a case, the 

full-band structure approach is used to generally model charge transport. 

5.2.3 Step 3 – Escape 

Our objective in this section is to calculate the probability that an electron, which has reached the surface, 

will be moving in the correct direction with sufficient energy to overcome the potential barrier and escape 

from the cathode’s surface. This third step in the model accounts for the direction of travel of the electron as 

it approaches the surface. To escape, the electron’s direction of motion must lie within a cone determined by 

the electron’s energy and the material’s work function. 
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The escape criteria are written [5.4] as 

 

 
ħ

2
(k)

2

2m
 ≥ ET (5.13) 

 

where ET is the energy required to escape (ET =  for a metal). The definition of k we use here differs 

slightly from others in the literature [5.4]: for us, it represents the component of the excited electron’s 

momentum directed perpendicular to the surface of the cathode material resulting in an escape cone with an 

opening angle described by [5.17] 

 

 cos(θ) = 
kmin

| |k  
 = 

ET

E – Ef
  (5.14) 

 

Here, kmin refers to the value of the perpendicular component of the electron momentum for which 

Equ. 5.13 is an equality representing the minimum perpendicular momentum required to overcome the work 

function. Only those electrons whose trajectory falls within the cone described by Equ. 5.14 will escape the 

surface. The excitation and scattering processes are assumed to produce electrons with an isotropic angular 

distribution. Thus, the fraction of electrons that escape is given by the fraction of the total solid angle 

subtended by this cone 
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ET
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 (5.15) 

 

The above expression holds as long as (E – Ef) > ET. If E < ET, the electron does not have enough energy to 

escape the surface, so D(E) = 0. 

5.2.4 Yield and QE in the Three-Step Model 

To calculate the total electron yield from a material for known photon flux I, and photon energy, hν, we 

integrate the product of the probabilities calculated in each step: 

 

 Y(ν) = I(ν) A(ν) 
 f

T

Eh

E

dE



P(E) T(E,ν) D(E) (5.16) 

 

Taking the ratio of the electron yield to the incident photon flux, we obtain the QE 

 

 QE(ν) = A(ν) 
 f
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P(E) T(E,ν) D(E) (5.17) 
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For electrons with energy very close to the threshold for emission (E – ET << ET), the escape cone described 

in this section represents the dominant factor in determining the energy dependence of the QE [5.4]. In this 

case, the probability of an electron with energy, E, leaving the metal is proportional only to D(E). The total 

QE then is proportional to the integral of D(E) over all possible electron energies.  

 

 QE(ν) ∝  
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f
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dEED





  (5.18) 

This integration yields 

 

 QE(ν) ∝ (hν – ) + 2 – 2 1 + 
hν – 


 (5.19) 

 

Expanding for (hν – ) << , and keeping the terms to second order 

 

 QE(ν) ∝ (hν – ) + 2 – 2
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 (5.20) 

 

Collecting the terms, we obtain 

 

 QE(ν) ∝ (hν – )
2 

(5.21)
 

 

Thus, for small values of electron energy in excess of the threshold, we expect the QE to show quadratic 

dependence on the excess energy. 

5.3 THE TRANSVERSE EMITTANCE IN THE THREE-STEP MODEL 

The rms transverse emittance in terms of the transverse momentum (referred to as k in material and p in 

vacuum after emission) and position distributions of the electrons can be expressed as 

 

 εx = 〈 〉x
2 〈 〉x'

2
 – 〈 〉xx'

2
; where x' = 

dx

dz
 = 

px

pz
 (5.22) 

 

If the electrons are accelerated rapidly from rest, the longitudinal momentum pz reaches relativistic values 

quickly and can be written at βγmc; then   

 

 εx ≡ 
1

βγmc 〈 〉x
2 〈 〉px

2
 – 〈 〉xpx

2
 (5.23) 

 

If there is no correlation between the position and momentum of the electron, then the cross correlation term 

vanishes. The normalized emittance can then be written as 

 

 εn ≡ βγεx = 
1

mc
 〈 〉x

2 〈 〉px
2

 = σxσpx (5.24) 

 

where σx is the rms spot size and σpx
 is the dimensionless rms transverse momentum. 
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The intrinsic transverse momentum distribution of the electrons in the cathode gives rise to an emittance that 

is characteristic of the cathode material, the photon energy and the external field imposed on the cathode. 

This can be calculated by determining the variance of the transverse momentum of the electrons exiting the 

surface. 

 

The product of the probability densities from each of the three steps (prior to energy integration) provides 

the number of electrons emitted at a given energy from the material. This distribution is called the energy 

distribution curve (EDC). 

 

 EDC(E,ν) = A(ν) P(E) T(E,ν) D(E) (5.25) 

 

As described in Section 5.2.3 and Equ. 5.14, the maximum angle of escape inside the metal, θmax, is given 

by 

 

 cos(θmax) = 
pz

ptotal
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 (5.26) 

 

 px = 2m(E – Ef) sin(θ) (5.27) 

 

where px is conserved upon emission. The variance of the transverse momentum can then be written as 
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 (5.28 cont.) 

 

where E is the energy of the electron and θ is the angle between the surface normal and its trajectory inside 

the cathode. θmax is the angle of the escape cone containing the trajectories of all the electrons and is defined 

by Equ. 5.14. One should keep in mind that for a NEA surface, for which the vacuum level is below the 

bottom of the conduction band, θmax ≈ 90˚ and almost all the electrons reaching the surface escape. The 

three-step model can be applied to a full energy-momentum band structure calculation, which yields an 

angle and energy distribution curve. Such a calculation is beyond the scope of this book. 
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Equ. 5.28 can be simplified following certain assumptions that are valid for a number of cathode materials. 

If the photon energy is close to the effective work function and the electron density of states near the Fermi 

energy can be considered a constant, then the above equation can be analytically integrated to result in 

 

 σpx
 = 

hν – eff

3mc
2  (5.29) 

 

 εn = σx

hν – eff

3mc
2  (5.30) 

 

Experimental results agree with Equ. 5.30, as shown in Chapter 6 and Chapter 7. 

5.4 MODIFICATIONS TO THE THREE-STEP MODEL 

The previous section addressed the process of photoemission from materials with known properties, i.e. 

EDOS and work function. This section discusses the needed modifications to this model to understand the 

behavior of the QE of a cathode in a photoinjector. Two major physical characteristics differentiate an 

electron gun from the “ideal” treatment presented above: The roughness of cathode surface on some scale, 

which would impact both the charge and the velocity distribution of the electrons and the large electric field 

(sometimes greater than 100 MV m
-1

) accelerating the electrons within the gun. In this section, we consider 

the reduction of the material work function caused by applying an external field (Schottky effect) [5.18], 

[5.19]. 

5.4.1 Schottky Effect 

This section determines the change in the work function caused by an external electric field. This derivation 

uses the classical electrodynamic model of work function: the required amount of work to separate a charge 

from its image within the metal. For our calculations, we treat the cathode surface as a perfect conductor. 

 

In classical electromagnetism, the work function is viewed as arising from the attraction of an electron to its 

image charge within the metal. In this definition, the work function is the amount of energy required to 

move an electron from some minimum separation (minimum is undefined in classical theory) to a point at 

infinity [5.19]. In the absence of an applied field, the potential energy between an electron at a distance from 

the surface of a perfect conductor, x, and its image charge is 

 

 We-image(x) = eΦimage(x) = e






-e

2x
  (5.31) 

 

To avoid unnecessary constants and remain true to the reference material, this derivation is performed in 

CGS units. However, the result is stated in MKSA units.  

 

By symmetry, the potential energy between the electron and the surface is half of this value: 

 

 Wsurface(x) = 






-e

2

4x
  (5.32) 
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The work function then is 

 

 0 = Wsurface(∞) – Wsurface(xmin) = 






e

2

4xmin
  (5.33) 

Now, let us add the effect of an applied field at the surface. The potential corresponding to a constant 

electric field normal to the surface is 

 

 Wfield(x) = eΦfield(x) = e(-Ex) (5.34) 

 

Here, E is the magnitude of the electric field that is normal to the surface of the conductor. The total 

potential energy then is  

 

 Wtotal(x) = 






-e

2

4x
 – eEx (5.35) 

 

This combined potential has a maximum below vacuum level, which occurs at x0, such that 

 

 
d

dx
Wtotal(x)|x=x0

 = 
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4x0

2 – eE = 0 (5.36) 
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e
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 (5.37) 

 

 Wtotal(x0) = -e eE (5.38) 

 

This maximum represents a change in the work function due to the applied field 

 

   = Wtotal(x0) – Wtotal(xmin) = 
e

2

4xmin
 – e eE (5.39) 

 

Here, we assume that xmin is so close to the surface that Wfield(xmin) = 0. This change in the work function is 

called the Schottky effect. In MKSA units 

 

 ΔSchottky [eV] = α E 






V

m
 (5.40) 

 

 α = e
e

4πε0
 = 3.7947×10

-5
 [ ]e Vm  

 

The modified work function is then 

 

  = 0 – α E (5.41) 
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In the presence of an external applied field that modifies the work function from 0 to , Equ. 5.20 can be 

written as 

 

 QE(ν) ∝ (hν – 0 + α E)
2 

(5.42) 

 

 QE(ν) = A(hν – 0 + α E) (5.43) 

where A is a constant of proportionality. This expression predicts a linear relationship between QE and E; 

this prediction will be important in analyzing the experimental data in the following chapters. 

5.4.2 Effect of Surface Roughness 

The preceding analysis assumes that the field at the surface of the conductor is uniform and equal to the 

field in the center of the space between the electrodes, as is true for flat, idealized surfaces. Studies of field 

emission [5.21], [5.22] demonstrated that micro-protrusions and surface contaminants can effectively 

enhance the field at the emitting surface. In analyzing field emission curves (charge versus field), it is 

customary to introduce a factor FE (the field enhancement factor) that multiplies the applied field to obtain 

the surface field; enhancement factors of 20-100 for field emission are common in the literature [5.23]. We 

note that some authors [5.22], [5.24] attributed the large “enhancement” to factors other than the emitter’s 

geometry, such as non-metallic inclusions in cracks or grain boundaries. These enhancements generally do 

not impact the calculation of quantum efficiency significantly for a planar geometry. This is due to Gauss’s 

law – unlike field emission, photoemission occurs over the entire illuminated surface. Surface non-

uniformity leads to field enhancement in some areas and field reductions in others. The net effect on the 

calculation of quantum efficiency is negligible; indeed when a field enhancement factor is introduced into Q 

versus field plots for photoemission, β is invariably found to be near one. 

 

An exception to this occurs when a cathode is illuminated with a photon energy below (but close to) the 

work function. In this case, the Schottky effect is required for any emission at all and the cathode will emit 

only from areas where the field is sufficiently enhanced to reduce the local work function below the photon 

energy. In this case the field enhancement factor will be a function of the photon energy used. Another 

exception occurs in the case of needle cathodes, where the field is enhanced over the entire needle tip and 

only the tip is illuminated. In these cases, a field enhancement factor for photoemission, PE, is sometimes 

introduced in front of E in Equ. 5.41 – however, it should be noted that this is an approximation, as the field 

enhancement strictly applies only to a microscopic treatment of the surface, and therefore the enhancement 

should be (x,y), where  is allowed to freely vary from point to point along the surface. 

 

More important than the impact on the QE is the impact of surface roughness on the intrinsic emittance. The 

modification of the applied field at the microscopic photoemission sites has a number of implications to the 

intrinsic emittance of the electrons from the cathode: initial energy, transverse velocity and charge density 

of the emitted electrons become spatially dependent. 

5.4.3 Effect of Field Enhancement on Emittance 

On a macroscopic scale, the applied field is normal to the cathode surface. However, within a few 

nanometers of the surface, the field lines are normal, not to the macroscopic surface, but the microscopic 

contour of the surface. As described earlier, this results in a spatially dependent change in the work function 

and a corresponding spatially dependent charge density. This is shown schematically in Figure 5.1. This 

change in the work function also gives rise to a spatially dependent excess energy as the electrons exit the 
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cathode. In addition, once emitted, these low energy electrons follow the local field lines, leading to a 

spatially dependent velocity distribution transverse to the beam axis. 

 

As can be seen from Equ. 5.28 and Equ. 5.43, the normalized emittance varies as the effective work 

function and the field distribution change from the peak to the valley of the rough cathode surface. One 

should keep in mind the θ occurring in Equ 5.28 refers now to the microscopic surface. The net effect of this 

variation is to introduce a dependence of the intrinsic emittance on the amplitude (n) and spatial period (d) 

of the roughness, and on the electric field. This effect can be characterized by a "roughness" parameter 

ξ = 2πn d
-1

; a parameter of unity results in a significant (~30%) increase in the expected intrinsic emittance 

for reasonable fields (24 MV m
-1

). [5.25] [5.26] 

 
Figure 5.1.  a) Surface roughness of a copper cathode used in LCLS injector; b) distribution of field lines in the vicinity of one of the 

protrusions; c) distribution of the photoemitted charge in the vicinity and a few mm away from the cathode, indicating position 

dependent transverse velocity dependence in the vicinity of the cathode. [5.27] 

In addition to the microscopic protrusions, the roughness of the cathode could be caused by other effects 

such as random orientation of the crystalline cathode or impurities embedded in or on the cathode: all of 

these effects lead to non-uniform charge density at or near the cathode surface.  
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5.5 DIAMOND AMPLIFIER THEORY  

A new concept (a diamond amplifier photocathode) to emit high average current, high brightness electron 

beams was proposed recently, and is currently being developed [5.28]. The underpinning of its operation is 

to first generate a primary beam of electrons (accelerated to ~10 keV) using a conventional photocathode 

and inject them into a diamond, with its entrance face coated with a metal. The energetic primary electrons 

scatter inelastically in the diamond, generating (through impact ionization) a number of secondary electrons 

and holes. These secondary electrons and holes initially relax their energies by producing more electron-

hole pairs via impact ionization. When the energy of these free charge carriers closely approaches the 

energy gap value of diamond, scattering by phonons thereafter dominates the further relaxation of their 

energy. These free charge carriers then move towards the emission surface via diffusion and also drift when 

an applied electric field is present. In such a case, the full-band structure approach is used to generally 

model charge transport. Algorithms for full-band structure charge transport calculations are detailed in 

[5.16]. 

 

Investigating these phenomena requires modeling of the generation of secondary electrons, charge transport 

and electron emission.  

 

Secondary electron generation (impact ionization) is treated using optical models (e.g. [5.29] and references 

therein). Where it is allowed, impact ionization continues until the energies of the free (conduction band) 

electrons and holes in the valence band fall below the energy gap. The scattering rate (or the mean-free-

path) for impact ionization in semiconductors [5.29] of interest is such that the impact ionization is 

completed within several hundred femtoseconds. Modeling the impact ionization is important to understand 

when the free charge carriers are created (with the process initiated by primary electrons with energies of a 

few kiloelectron volts) near the metalized side of the amplifier [5.28] and then transported to its emission 

surface. Electrons recombine at the metal contact due to diffusive expansion, thereby reducing the total 

number of free electrons that reach the emission surface. 

 

After the impact ionization phase is completed, (or electron-hole pairs created with energies below the 

energy gap,) the charge carriers drift under an applied electric field and scatter predominantly with lattice 

excitations (phonons). Scattering with charge impurities and trapping effects must also be accounted for 

when the densities of charge impurities and trapping centers are not negligible [5.30]. Trapping of charge 

carriers also leads to the modification of the effective field in diamond, which in turn, affects the transport 

of free electrons and holes. Both impact ionization and charge transport-related scattering processes are 

treated via Monte Carlo methods.  

  

The emission of electrons from diamond requires modeling surface phenomena that include calculating the 

probability for emission, band bending, electron affinity, surface roughness and charge-trapping effects. 

5.6 CONCLUSION 

In this chapter, we have described the theoretical underpinning of the photoemission process, namely the 

three-step model, and developed the equations relevant to calculate the quantum efficiency of the cathode in 

a photoinjector. These can be used to evaluate the expected performance of the cathode in the injector, its 

optimization and even engineer the appropriate cathode using modern material science techniques. We also 

describe the modification to the model due to Schottky effect when operating the cathodes in the presence of 

high accelerating fields and its effect on the work function and quantum efficiency. We have derived the 
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intrinsic emittance of the electrons arising from the transverse momentum distribution at birth, its 

relationship to the quantum efficiency and the impact of surface roughness on all these parameters. 
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