SLAC-R-95-464
CONF-9505198- -

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May 1-3, 1995
Stanford, California

Convened by
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM
Pam Taylor of The Workstation Group
James Weissman

Prepared for the Department of Energy
under Contract number DE-ACO03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

Proceedings of the 6th International REXX Symposium

Table of Contents

g o114 Y 1 1
REXX 1995 — The Growth of a Languageoiiivevieenuensensencscnncacannes 8
The Future of REXXvvuuiiiiiiiiiietiiinnieiieeerecrasssssssonsssssannnne 34
Problems and Issues Writing RExx Compilers............cioiiiiiiiiiiennnnns, 50
Writing CGI Scripts for WWW Using REXX. . .iiiiiiiiiiieeriinirensssennnenns 68
Object RExx: Up Closeand Personal........cccciiiiiiiiieererncnnersanensans 100
Object RExx: OpenDoc Supportcoiiviiiiiirerincrocensanns ceeereaaes 138
Report from the X3J18 Committeec..ciiviiiiiiiieirseenseoerasaanens 144
CenterPiece and Object Oriented REXX....oitiiiieiririnentenrosroscnnesnoss 150
REXX, Distributed Systgems and Objects..........ooiiiiiiiiiiiiiiereensnnns 174
Getting Ready for Object REXX ...oitiiireiiinoinencnsnnsasesonascvsnssonens 194
SOM —Present and Future..........oiiiiiiiiiiiiieniniierenrossnsasonsasses 220
4 1 ' . 236
REXX for CICS/ESA .. iiiitiiiiiiiiiitiiiitiiitecteresesssecesnnssascannnns . 252
REXX Changes in OS/2 Warp....coiieiiiiieiiiiiiroiisesinerensassnssesanans 274
S/REXX by BENAROY A .. i iiiiiiiiiiiitttetteireteesnenssocesnnas 284

A Rexx-based Stock Exchange Real-time Client/Server Environment for Re-
search, Educational and Public Relations Purposes: Implementation and Usage

] =T 292
REexx/370 Compiler and Library 1995 ... it iiiiiiiiiiiiiiiiiineennrsennnens 324
How RExX Helped Me Hit the Ground Running in UNIX 360

Proceedings of the 6th International Rexx Symposium i

6th International REXX Symposium

Program

Pages 1-6

Proceedings of the 6th International Rexx Symposium 1

p R

Mondaz= 1 Maz 1995

8:45 Welcome and Announcements

Cathie Dager, Stanford Linear Accelerator Center

9:00 Introduction to RExx Tutorial
Chip Davis, Aresti Systems

10:00 Break

10:15 Intermediate Programming in RExx Tutorial

Chip Davis, Aresti Systems

11:15 Advanced RExX Programming Tutorial
Chip Davis, Aresti Systems

12:15 Lunch

1:30 Keynote Address: RExx 1995 - The Growth of a Language
M. F. Cowlishaw, IBM Fellow

Much of the character of REXX today was determined during the first year of its development. In
this talk, Mike will take highlights from that first year, and show how the design decisions and
user feedback of 1979 have let to steady growth since then and the world-wide use that we see
today.

2:30 Break

2:45 The Future of REXX
Tim Browne, IBM

This presentation discusses IBM’s plans for Object REXX including making REXX more pervasive
in the industry and aligning with key industry standards. Includes an opportunity for Q&A with
the IBM REXX Product Manager.

3:45 Rexx in PC/DOS 7.0

Dave Gomberg, Experimenta

Another operating system acquired a built-in RExX when IBM shipped DOS 7.0. Although DOS
is no longer a cutting edge OS, it now has the latest and greatest shell language available at no ex-
tra cost. And legacy users can take advantage of REXX as a shell and prototyping language. This
new offering will enhance REXX’s claim to be the universal language.

4:15 Issues and Problems Writing RExx Compilers

Markus Pelt-Layman, Pelt Industries
This session will cover issues and problems writing REXX compilers.

Tuesdaz, 2 MazfI 1995

9:00 Writing World Wide Web CGI Scripts in RExx
Les Cottrell & Bebo White, Stanford Linear Accelerator Center

The Common Gateway Interface (CGI) is an interface for running external programs, or gateways,
under an information server such as the World Wide Web (WWW). Gateway programs, or CGI
Scripts, are executable programs designed to enhance the functionality of a server by providing
non-native services. Les and Bebo will describe the operation of CGI and demonstrate how CGI
scripts may be written in RExX. In addition, they will point out some of the “gotchas" that SLAC
has encountered when using RExxX with WWW. This talk will primarily focus on the use of REXX
in a Unix environment with the CERN and NCSA WWW servers. Some mention will be made of
the VM WWW server written in REXX by Rick Troth.

9:45 Object RExx Demo
Rick McGuire, IBM

A demonstration of the latest features in Object REXX, including support for the Workplace Shell,
persistent objects, shared objects, and more. See how Object REXX can be used to enhance your
08/2 desktop.

10:45 Break

11:00 Object RExx: Open Doc Support
Tom Brawn, IBM

11:45 Report from the X3J18 Committee
Brian Marks, IBM

The first REXX symposium produced enthusiasm for the idea of a REXX language standard, and of-
fers to participate in the development. The effort started in 1991 and fifteen committee meetings
later there is now a proposal for what the standard should say. It is being reviewed by the public.
This presentation will cover: choices, corrections, and extensions made by the committee; what is
new, what is not, and why; what happens to the proposal next; how you can get a copy; how to un-
derstand its more formal parts; what you can do about flaws you detect or perceive in the proposal.

12:15 Lunch

1:15 CenterPiece - An Object-Oriented RExx Development and Runtime
Environment

Sandy Syx, Mantissa Corporation

CenterPiece is a modern, graphical, object-oriented, programmable, distributed, multi-platform,
multi-user, interpretive, interactive environment. CenterPiece is suitable for both rapid develop-
ment and delivery of complex, multi-user, pseudo-realtime applications. CenterPiece was built to
be the foundation for developing all types of monitoring and control applications. Mantissa’s spe-
cific area of interest is in datacenter management solutions. This talk will explore CenterPiece
specifically focusing on the object-oriented REXX aspects of CenterPiece.

2:15 Break

2:30 Beyond Client Server
John Tibbetts, Kinexis

3:30 Getting Ready for Object Rexx
Rick McGuire, IBM

-

4:30 SOM: Present and Future
Simon Nash, IBM

IBM’s System Object Model (SOM) was introduced in 1992 and is now in its third release, run-
ning on eight platforms. A major component of IBM’s object strategy, SOM provides a language-
neutral object model that allows class libraries to be developed and used in a number of object-
oriented and procedural languages (both compiled and interpreted). SOM defines interfaces that
allow class libraries to be distributed in binary form and used from other languages than the imple-
mentation language, thus enhancing their reusability. Other SOM features include CORBA-
compliant object distribution (allowing remote location of objects, transparent to client code) and
release-to-release compatibility (allowing new versions of class libraries to be used by unmodi-
fied and unrecompiled client code). This talk gives an overview of SOM today, and looks at possi-

ble future directions, particularly relating to support for Object RExX and similar dynamic (non-
compiled) languages.

Wednesdaz= 3 MazfI 1995

8:30 Rexinda, A Rexx Implementation of the Linda Parallel Programming Model
Stephen Rondeau, AugmenTek

The Linda® parallel programming model was conceived by David Gelernter at Yale University in
the 1980’s to simplify programming parallel applications. Linda extends a language with four ba-
sic functions and two variations on them. These functions put data into and get data from a
global, content-addressable data area ("tuple space"). User functions can access that global data
and execute in parallel, via multitasking or multicomputing. Since the tuple space and REXX’s
compound variables are associative, a REXX user may be "comfortable with" Linda. RExX makes
it easier to prototype and experiment with hot topics such as data mining and software agents,
which can exploit Linda. This presentation will describe Linda and Rexinda in more detail,
briefly show how to parallelize a program, elaborate on a simple example and comment on future
directions.

9:30 RExx for CICS/ESA
Bob Vogel, IBM

10:15 Break

10:30 RExx Changes in OS/2 Warp Version 3
Dick Goran, C F S Nevada, Inc.

11:15 S/Rexx for Unix
David Salthouse, Open Direct

S/Rexx is an implementation of REXX 4.00 for Unix systems with some extensions developed by
Robert Benaroya. The presentation discusses the design objectives and gives examples of the
benefits. S/Rexx is completely integrated with a Unix Xedit-like editor SEDIT. The principle
characteristics are: an interpreter free from size or shape limitations; support for dynamic loading
of external procedures which can share global variables with the main procedure; enhanced debug-
ging facilities including a more detailed trace output as well as a Motif based debugger; simpli-
fied interface to the Unix platform via a number of additional built-in functions; new ADDRESS
environments; extended syntax on a number of instructions.

12:15 Lunch

1:15 A Rexx-based Stock Exchange Realtime Client-Server Environment for
Research, Educational and Public Relations Purposes: Implementation and
Usage Issues

Martin Misseyer, Free University of Amsterdam

This paper presents the design, development, and implementation of C/S systems from both devel-
oper and user views and from both technical and non-technical points of view. Questions ad-
dressed include: the difference between quasi-C/S and full C/S; how to develop quasi or full C/S
environments in REXX using APIs; REXX portability in C/S environments (designing applications
for portability); which REXX programming techniques should be used developing a full C/S envi-
ronment; which performance and programming techniques should be used in a full C/S environ-
ment having large scale database operations and I/O (designing applications for performance);
how to create C/S GUIs (specific applications as well as monitors) in REXX.

2:00 Break

2:15 RExx/370 Compiler and Library: What, Why, and How **
Rick McGuire, IBM

What can the IBM REXx/370 Compiler and Library do for you? What’s new with Release 37
This presentation covers performance, other advantages, compatibility, enhancements, supported
systems, and tips.

2:45 Rexx and How I Hit the Ground Running in Unix__

Lois White, Stanford Linear Accelerator Center

Possible subtitles for this talk might be something like "uni-REXX, Rx for Making the Transition
from VM/CMS to Unix a Little Less Painful” or "How I Learned to Stop Worrying and Love to
Type in Significant Mixed Case". Using REXX in Unix really did make it possible for me to move
to and, dare I say, "thrive" in the Unix environment. This presentation will show how I use REXX
in Unix and how being able to use it there made it possible for me to hit the round running instead
of barely crawling.

3:15 Closing Remarks
Cathie Dager, Stanford Linear Accelerator Center

** Session replaced by a general session. Presentation included in the Proceedings.

Rexx 1995 — The Growth of a Language

M. F. Cowlishaw
IBM Fellow

Pages 8-32

Proceedings of the 6th International Rexx Symposium 8

Rexx 1995
The Growth of a Language

Mike Cowlishaw

IBM UK Laboratories
Hursley, England

© IBM Corporation 1995

Outline

4 The first year
— Background and context
— Initial specification, refinement, and evolution ‘-
— Retrospective

4+ 1980-1995

Reference:

The Early History of Rexx, Mike Cowlishaw
IEEE Annals of the History of Computing,
Vol 16, No. 4, 1994

© IBM Corporation 1995 -1- Mike Cowlishaw

Whence Rexx?

Rexx grew from two concepts:

1. A single macro language for many applications (first
expounded by Stephenson in 1973)

2. A language designed for the benefit of the user
(programmer), not the language implementer

© IBM Corporation 1995 -2- Mike Cowlishaw

</

Traditional macro languages

Macro languages assumed that most of the content of a
program would be literal data:

&IF &NODE&J -= &LOCAL &USER = &STRING OF
&USER&T AT &NODE&J |

By 1979, programs existed where more than 50% of the
tokens began with “&”.

The solution:
1if node.j-=1local then user=user.j ‘AT’

|

node. j

© IBM Corporation 1995 -3- Mike Cowlishaw

£/

March 20-29, 1979

Discussion with EXEC 2 people [March 22]

“... I'm thinking of implementing an experimental EXEC
processor to handle a more ... PL/I-like language. ...
This is of course the dual of the EXEC/EXEC 2 |
languages, in that literals are identified, rather than
variables/control words, but ... EXECs nowadays often
seem as complex as programs ... and that therefore
literals are often a very small percent of the tokens in
an EXEC”.

—> first specification for REX [March 29]

© IBM Corporation 1995 -4 - Mike Cowlishaw

A1

First specification (1)

4 5 pages of introduction and rationale
4+ 10-page language description
4+ 4 pages of examples

4+ Eleven instructions (IF, DO WHILE/UNTIL, SELECT
QUEUE, PUSH, PULL, SAY, EXIT, RETURN,
TRACE ON/ERROR, ERROR)—plus a proposal for
REX (INTERPRET) |

4+ 8 special variables (BLANKS, DATE, N, NL, Q, RC,
RETCODE, TIME); DATE, Queued, and TIME
became functions.

© IBM Corporation 1995 -5- Mike Cowlishaw

<1

First specification (2)

4+ There were three example programs (including bugs).

r—'nr ovamnla
NCAI] |rJ|U

/* Send file to a local user =/
Pull name fn ft fm;

CP SPOOL PUN name CLASS
1f rc==0 then ﬂm- /* —~h

7 o
I S S lli.11l AN L1\

A

ck 1t worked

say name 1s not a valid userid;
exit 102; end;

PUNCH Fn Ft Fm;

CP SPOOL PUN * CLASS A;
elc.

© IBM Corporation 1995 -6-

*x /

/

Mike Cowlishaw

2/

Reﬁnement

- 4+ Hundreds of pieces of mail refined the initial

specification
4+ Arguments such as DO...END versus IF.. ENDIF

4+ Version 0.01 to Les Koehler and Ray Mansell [May
21]

4+ Initial specification had evolved to 30-page reference
manual [by June] |

+ Rapid growth of features, following suggestions - ‘
(better tracing, hex strings, nested comments, efc.)

© IBM Corporation 1995 -7- Mike Cowlishaw

1

Key features

4+ Control structures

4+ Parsing—PULL and decompose into words
4+ Fluidity of symbols (multiple uses)

4+ Concatenation with blank

4+ Alternative quotes for literals

4+ Lack of “boilerplate”

4+ Case-insensitive comparisons (later removed)
4+ Case-preservation for literals (later removed)
4+ Tracing

© IBM Corporation 1995 -8~

Mike Cowlishaw

&/

Performance

4+ Comparisons with EXEC, EXEC 2, and PL/I

4+ Test loop: 3.31 seconds (on S/370 model 155):
1=0
do 2000
1=1+42
end

1995:
4+ 0.19s on a 486/33MHz PC

© IBM Corporation 1995 -9- Mike Cowlishaw

bt

| |
|
A typical week— the first of 1980

4+ Requests for a more PL/I-like DO instruction, with the
ability to step a control variable

4+ Requests for subscripts (rejected because, among
other things, “... the obvious syntax, using square
brackets, is not practical because so few people have
brackets on their keyboards”)

4+ A user contributed a draft quick-reference card

4 Positive feedback:

“REX is getting some really good press around here.
People really sit up and take notice, but wonder why
someone didn’t do it 30 years ago”

© 1BM Corporation 1995 -10- Mike Cowlishaw

9z

Development and usage report

“The value of this communication with other
programmers and users cannot be underestimated.
Without the communications provided by the network
REX would never have been developed.”

4+ 10,000 lines of assembiler, 5,000 of documentation
+ 27 man-weeks (1000 hours)

4+ Only evenings and weekends—when response t|me
was good and interruptions were few. 1

© IBM Corporation 1995 -11- Mike Cowlishaw

1z

© IBM Corporation 1995

CPUsT
70 -

60 -
50 -
40 -
30 -
20 1

10 1

Growth chart

Jun

' Jul'

Aug '

Sep

-2

' Oct'

Nov '

Dec '

>
1979

Mike Cowlishaw

77

Retrospective—design errors

4+ Comparison should have been case-insensitive

4+ DO should have been split into DO...END and
LOOP...END ,

4+ Too much emphasis in the External Data Queue

4+ Parsing is something of a compromise

© IBM Corporation 1995 -13- Mike Cowlishaw

€z

Retrospective—successes

4 Deliberate minimizing of “boilerplate” and punctuation,
and notations in general

4+ Hardware independence and robustness

4+ Upgradeable language (keywords only reserved in
context)

4+ String support (especially “blank operator”)
4+ Associative arrays (stems)
4 Decimal arithmetic

4+ Use of the electronic network for rapid design
evolution

© IBM Corporation 1995 -14 - Mike Cowlishaw

AZ

1980-1984

4+ 30 internal releases
4+ Customers, led by SLAC, ask for REX
4+ Name changed to REXX

4+ VM/SP 3, with REXX, announced and shipped world-
wide (1983)

© IBM Corporation 1995 -15- Mike Cowlishaw

Lz

Help!

There are some omissions in the following.

Please let me know of them (and any corrections)—/’ll
incorporate in a WWW page soon. |

© IBM Corporation 1995 -16- Mike Cowlishaw

9¢c

1985-1988

4+ First non-IBM implementation (Charles Daney, 1985)
4+ The Rexx Language published (1985)

4+ First Unix implementation (Andy Pierce, IBM, 1985)
4+ Experimental OS/2 implementation (1986)

A Ravyv fAar \/MQ \/AY /(Charloe Nanaoav 1QQR?\

FHTOAA VI VIVIND VI \\JI IAITUY /A I y, I VUV .)

4+ IBM SAA has Rexx as “Procedures Language” (1987)
+ Amiga Rexx (AREXX, Bill Hawes, 1987)

4+ Rexx in MVS and TSO/E (1988) ;

4+ T-REXX for Tandem (Keith Watts, 19887?)

© IBM Corporation 1995 -17 - Mike Cowlishaw

1989-1990

4+ IBM and Microsoft agree Rexx is the best scripting
language for OS/2 (1989)

4+ Rexx compiler for VM (IBM Haifa and Vienna, 1989)
4+ uni-Rexx (The Workstation Group, 1989)
4+ Rexx 4.00 published (1990)

4+ First Rexx Symposium (SLAC, 1990)

4 Rexx in AS/400 (1990)

4 Rexx in OS/2 (1990)

© IBM Corporation 1995 -18 - Mike Cowlishaw

gz

1991-1994

4+ Work on ANSI standard for Rexx starts (1991)
4+ Rexx/imc (lan Collier, 1992)

4+ Regina Rexx (Anders Christensen, 1993)

4+ Rexx for VSE (1993)

4+ Rexx for AIX/6000 (1993)

4+ Rexx Language Association formed (1994)

4+ Rexx for Novell NetWare (1994)

+ Simware Rexx: Windows, Macintosh, NetWare (1994)

4 Rexx for CICS/ESA (1994)

© I1BM Corporation 1995 -19 -

Mike Cowlishaw

bz

11995

4+ Rexx in PC-DOS 7, as the “programming language of
choice”

4+ World-Wide Web pages for Rexx; start at:

=> http://rexx.hursley.ilbm.com/rexx/

4+ Object Rexx public beta
4 ...and more...

© IBM Corporation 1995 —-20 - Mike Cowlishaw

o

| \
|
REXX Language Products Available

'y
Products : /

25 -
20 -
151

10 1

0 ' v ' T v v v v ' Y v v
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 Year

© IBM Corporation 1995 -21- Mike Cowlishaw

e

REXX Books and Manuals

BooksT
70 4

60 -
50 -
40 -
30-
20 -

10 1

!
—

0- v ' T T ' ' T v ' v T Y
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

© IBM Corporation 1995 -22 -~

Year

Mike Cowlishaw

7€

Summary

4+ Rexx is a carefully designed, purpose-built scripting
language

4+ Steady growth over 15 years, especially rapid in last
2-3 years

4 Rexx is installed on 15-25 million users’ machines
4+ Well over 2 million Rexx programmers

4+ It wouldn’t have been possible without people.

© IBM Corporation 1995 -23- Mike Cowlishaw

The Future of Rexx

Tim S. Browne
IBM Endicott

Pages 34-49

Proceedings of the 6th International Rexx Symposium

34

The Future of REXX

Object
Oriented
REXX

"Cyberspace”
Internet

Networked
computing

‘Agents

-

Evolution of REXX

5/1/95

IBM Endicott

2€

REXX Mission

Continue to support users of "Classic" REXX
products
Continue to evolve "Classic" REXX into Object

REXX
Make Object REXX pervasive across platforms and

applications

Align Object REXX with key technologies and
standards

Facilitate the creation of software agents and the
environment they operate in

Get others to exploit, build, and use our software
agent technology

Open Scripting Pro

1994 Accomplishments

® OREXX 4/94 (OS/2 Beta
10/94 AIX Alpha
11/94 AIX Beta
11/94 OS/2 Developer's Connection
11/94 Windows Alpha

l€

e Classic REXX 3/94 Netware GA
7/94 CICS GA
7/94 DOS GA
12/94 0OS/400 GA

REXX Requirements Summary

Requirements# | Description Current Status 5@ "~ I New Status , i
SOUIZ91007, REXX for AIX AIX/6000: Rejected S AIX/6000: Avallable as 3 '
SALANG90203 Lo AIX PS/2 Future Objectlve o PRPQ#

SALANG90206 | Remove 500 char. limit on statement | Available on OS/2 only. Future - Available on all IBM REXX

ge

SOMVSE93027

length objective on other. systems | implentations

IBM should provide a ncher sunte of
debugging tools for REXX

Under study

Future Objective

SAREXX90210

Pull instruction should not type a "?‘

[Available - OS/2 2.0 GA 3/92

SAREXX90211

Document PARSE rules exphc:ty
and formally

‘Accepted

SOCMSX89023

REXX file /OON Implement CMS
REXX

{ Avallable

Extend DATE functnon

1 [Implement REXX File l/Ofunctlans_ T
| that will read/write files both '
- sequenttaltyand randomiy

fAvallabIe

' SOCMSX89056‘ ”

variables

g
T VM Available
- TSO Acoepted

SALAN%204

Share variables between extemaf
REXX Functions

SAREXXS 2002

Object Oriented Extensmns

SAREXX91001

Call through expressvons

- SOCMSX89026

Traverse Stem variables

SAREXX91201

Improve Error Messages

SOCMSX89008

Passing Stems to Subroutmes

SAA REXX

- Generic Bindings

GO5SCME91003

Date processing in REXX

~

Pervasiveness

Platforms

0S/2
PPC
MVS
AlX

VM
Windows
LINUX
NetWare
DOS
CICS
AS/400
VSE

Classic Complier/RTL
X

X

X (RTL only)

Future Considerations

OEM Platforms

PC DOS
NetWare
Amiga
Windows
DCE/VAX

oF

| Object REXX Exploits OO
Technologies

= Object Oriented Programming
— Encapsulation, Inheritance, Polymorphism
¢ Object REXX supports IBM's SOM
— Object Oriented Documents

¢ Embedded, Composite documents
¢ Documents as a new programming model
- Object REXX is the OPENDOC scripting language
— Object Oriented Visual Programming
® Programming via direct manipulation of icons
- Object REXX support of VisualAge

i+

'Object REXX Programming
Environment

Visual Tools/Builder

ODP FORM

WINDOW

GUl

PARTS

COMM
PARTS

IBM

SOM CLASS LIBS

APIs

-

SOM

OPENDOC
APPS
P

OPEN OBJECT
DOC REXX

COMM

- ,"-

Generates

OBJECT REXX SCRIPT

NMI

“JOE "
CLASS

VOBJ = IWINDOWS ~ NEW (...)

VOBJ ~.SHOW ()

VOBJ ~ SIZE (:...)

VOBJ ~ SETBACKGROUND COLOR (..)

Functional Requirements - Importance

Ratings - Planned Availability

OpenDoc 1.0
Debugger 1.4
Class Browser 1.5
Visual Programming 1.7
Visual Builder 1.8
Export Classes to SOM 2.0

OLE Support for Windows Version 2.8

T

z/

Shift Towards N etwork Centric
Computing

Standalone Local and wide area Network-centric
private networks Computing

Customer and

Location A
Suppli(fr

Public wide
arca

. nctwork
File Server

Location B

File Server >
Environment Shif_t__///, complexity, heterogenity, mobility

Making "The Customer' Centric
in Network Centric Computing

= Agent Services...
— Personalized Information Retrieval
e News Services
e Mail Filtering
e Internet Surfing
- Travel Information
- Medical Information
- etc.
— Personalized Event Notification
e Network Mangement
e Reservation Alerts
e Personal Scheduler
= Personal Transaction Services
e Banking
e Business Services
- Food Services
- Retail Stores
- etc.
= Agent "Meeting Places"...
- Store Fronts
— Information Databases
— Trading Floors

s

Model for Agents and Agent
"Meeting Place

"

RIS

T,

St

Demonstration

Your Agent

Internet

TCP/IP
WWW Explorer

Auction is Good Test of Agent Technology
e Agent working on Users behalf
e Agents have guildelines (3100 maximum bid)

* Agent interaction at meeting place (bidding
process)

® Value of a moderator (auctioneer)

Demonstrates

e Agent Technology
— Mobile Agents
e Meeting Place

- Cooperative Processing

I

REXX Business

n,
4gr&pabri
s ey Agent
Technology/Services

- PreFabricated Agent
 Integration Service

Agent
Integration

-

OREXX
Source Code

OREXX os/2 os/2 |
P jWind
Interpreter, (Intel) (PPC) BOX incows

?

Ported by IBM

HP

Cost Center

Revenue Source

SCO-UNIX

|

Ported by Interested Parties

Lt

Summar

m REXX has a bright future:

— Substantial progress made against existing
requirements

— REXX language 1S being extended to other
platforms

— REXX 1s evolving it's application development role
for network centric computing

3t

Problems "the Shift" Creates

m Access to needed information is:

- Difficult due to complexity of the environment
e numerous network services with a multitude of online services
* mobility in work force increasing
— Not always timely and/or relevant
e information overload
e insufficient technology

— Labor and effort intensive
e manual

Our Approach to the Problem

= Provide "Agent Technology" where agents act on
behalf of end users

= Turn data sources into "Meeting Places" where
agents go to perform assigned tasks

= Turn end-users into information consumers rather
than information seekers

Problems and Issues Writing REXX Compilers

Markus Pelt-Layman
Pelt Industries

Pages 50-66

Proceedings of the 6th International Rexx Symposium 50

50

M Pelt Industries

Problems and Issues writing
REXX Compilers

© Copyright 1994 Pelt Industries. All Rights Reserved. 1

z&

Pelt Industries
History

> 1979 DPS command language (JES2 look-alike)
1985 Intercept aka AF/Operator command language

\

(TSO CLIST language look-alike for operations automation)

1986 OPS/MVS REXX interpreter contract |
(ADDRESS ISPEXEC, automation rules, cmd/response API) .

1987 Windows Net*Edit and Elan Workstation contracts
1989 OPS/MVS REXX External Product Interface
1992 0OS/2 Smalltalk GUI front-end (REXX EHLLAPI) ;
1994 REXXANNE full-time

\

Y Y Y Y

© Copyright 1994 Pelt Industries. All Rights Reserved. 2

£

HY REXXANNE ?

> I love REXX s simplicity and power
> Serious development requires a compiler
> [need

¢ Speed
¢ Portability
¢ High-level GUI framework

© Copyright 1994 Pelt Industries. All Rights Reserved.

#S

OFTWARE FORCES

More hardware/
software platforms

More APIs

© Copyright 1994 Pelt Industries. All Rights Reserved.

Portability

I LANGUAGE DEFINITION
TRL/ANSI REXX/Object REXX

II DEVELOPMENT ENVIRONMENT

Portable interpreter/compiler, IDE

I[II RUNTIME ENVIRONMENT

Portable run-time lib (built-in functions)
Portable ADDRESS environments (cmd/response)

IV OBJECT CLASS HIERARCHY
Portable base class library, GUI class library

© Copyright 1994 Pelt Industries. All Rights Reserved.

|

25

REXXANNE

(no new learning on new platform)

¢ Cross-platform compiler

¢ Cross-platform IDE

¢ Cross-platform run-time library
¢ Cross-platform base class library
& Cross-platform GUI class library

> Shorten execution time
through compilation and optimization

© Copyright 1994 Pelt Industries. All Rights Reserved.

REXXANNE
DESIGN ISSUES

> Runtlme hcensmg (INTERPRET)

> Run “interpreted” during development,
compiled in production

> GUI portability versus platforms’ native
look and features (synthesis problem)

© Copyright 1994 Pelt Industries. All Rights Reserved. 7

e

REXXANNE

Version 1 Version 2

Parser ¥

Emitter

ﬁ =
Assembler &

New phases

© Copyright 1994 Pelt Industries. All Rights Reserved. 8

b6

8 g0
U] ols
g8
Stangara eqition

Princess Edition

REXXANNE
Compiler

Editor

Debugger

LINKER
RXNLINK

Manager

RXNMAKE

© Copyright 1994 Pelt Industries. All Rights Reserved.

02

Generated by RexxAnne compiler

include prolog.i
; §5 START

RX_TEXTosegment byte pubtic ‘CODE
; assume cs:RX_TEXT

_R¥PGM proc far

push bp ; save caller bp

mov bp,sp ; load catler's stack pointer .
mov ax,.sp ; adjust sp

calt _rxfix H for Intermediate

mov sp,ax ; resulis !

initialization

REXXANNE Compiler Version 2.0
Copyright (C) 1991-1995 Markus Pelt-Lagman. All Rights Reserved.

No errrors - No warnings

© Copyright 1994 Pelt Industries. All Rights Reserved. 10

/19

REXXANNE

WINDOWS IDE

090
oS

: R
Window

Y%‘ ‘& s

"Zlf" A e
mpiler

erated by

Gen RexxAnns co

include prolog.i

;33 START
RX_TEXT segment byte)Fublic ‘CODE'
assume ¢s:RX_TEXT

_RXPGM proc far

push bp . save caller bp)
mov bp.sp ; load caller's stack pointer to bp
mov ax,sp ; ad;;st. sp]
call _rxfix : r intermediate
mov sp,ax ; results
call _rxini ; initialization
N Line 1 ========
mov bx.offset DGROUP:L1 ; $3 RVALUE; string
PUSHARG ds
: 3% SAY1

call far ptr _RXSAY
add sp tElemtSize

;33 HALT _
mov sp,bp . restore stack pointer
pbp bp ; restore bp
ret ; return

_RXPGM .33 END

REXXANNE Compiler Version 2. ‘
Copyright (C) 1991-1995 Markus Pelt-Layman. All Rights Reserved.

- No warnings

11

SN Ul
AN 40 4
) \awde/ K2
= 4w AN\ 2Ly .

= We are WAY behind schedule
¢ under-staffed

¢ under-capitalized

¢ too ambitious a vision ?

» Lack of user interest/support in REXX

© Copyright 1994 Pelt Industries. All Rights Reserved. 12

e

> Task out work
¢ Lenny Koff - online tutorial & doc
¢ John Kastner - OS/2 IDE
¢ Billy Jack - runtime library B
¢ Find Windows/Windows NT/Windows 95 guru

» Cut down on vision

|

© Copyright 1994 Pelt Industries. All Rights Reserved. 13

]

> (Generate revenue
¢ INTER REXX subscriptions
¢ InfoREXX sales
¢ Enterprise REXX sales
¢ Miscellaneous REXX product sales
¢ Beta sales (free upgrade)

> Look for business partners
> Look for capital

© Copyright 1994 Pelt Industries. All Rights Reserved.

14

> (enerate interest in REXX language

¢ INTER REXX newsletter

¢ Get articles published in other magazines
¢ Prod IBM and others to better marketing

» Publish information on REXX

¢ InfoREXX multimedia help file
¢ Novice tutorial

» (Generate interest in REXXANNE ;

¢ comp.lang.rexx newsgroup participation
& MSJ advertisements

© Copyright 1994 Pelt Industries. All Rights Reserved. 15

99

REXXANNE
FUTURE

> Continue REXX evangelism
> Release “early bird” version (free upgrade)

> Share development of new features
with other vendors (IDE, APIs)

> (et users involved in development
> Continue long-term commitment to REXX.

© Copyright 1994 Pelt Industries. All Rights Reserved. 16

Writing CGI Scripts for WWW Using RExx

Les Cottrell
Bebo White
Stanford Linear Accelerator Center

Pages 68-99

Proceedings of the 6th International Rexx Symposium 68

(3]

Writing CGI Scripts For

Using

THE

LANMNGUV AG

Les Cottrell and Bebo White, SLAC
Oth International REXX Symposium
May 2, 1995

Start

Writing WWW CGI Scripts in REXX

This presentation may be found at:

http://www.slac.stanford. edu/~bebo/rexx/title.html

Next

70

What is WWW?

The largest service on the Internet

e The Internet is like the road system
o WWW is like the parcel delivery service

e 27,000 current WWW sites
e Number now doubling every 53 days
¢ 5 million documents stored in WWW sites

Source:Quoted in BusinessWeek, February 27, 1995

[Nextl

7/

Log (Byte Count) by Service
4

—— log(www)

Statisucs provided by Merit NIC Services machine
Graph by: James E_ Pitkow, pitkowi@ec gatech edn

[Nextl

1400000 — charactersf<second Largest

interactive
1200000 + service
ooooao L WWW traffic on
NSF backbone —

500000 + per second \
o000%0 Owvertake

Gopher
400000 +
Z00oao +
D E\: j‘ : 1 } 1 ! =

"Over the past three years the traffic on the NSF backbone has increased from 1
TB per month to 18 TB, with a good portion attributable to WWW services." -
Vinton Cerf

INextl

T3

Integration of earlier Internet systems

e Gopher, NEWS, Archie, WAIS, ftp, ... are all seamlessly
available

Clients

Archie VALY Lopher

MNews FTF

=X

Archie YWALS L ionhat HTTP News TP

Servers

) 7 INextl

79

Format independent

e HTML is not a format but a way of structuring documents
e Formatted documents are available through their native
applications

Multiple Media

e Images

e Sound

e Movies

e Launching of sessions (video, telnet, conferencing, ...

INext|

79

Some Neglected Uses of WWW

By the provider: -

o CWIS

e Search engines

e Data Base interfaces
e Collaborative work
e Special formats

By the user:
e Home pages

e Structuring of own local information
e Participation (delurking?)

INextl

76

What is CGI?

The Common Gateway Interface, or CGI, is a standard for
external gateway programs to interface with information
servers such as HTTP servers.

Gateways are programs (called CGI scripts) that serve data
which is not directly readable by a client program, such as a
database of high energy physics preprints or personnel
information, and convert it to an acceptable form, such as an
HTML page, a PostScript file, some images, or a combination
of these.

Familiar examples of Web applications which use CGI scripts
are fill-out forms, interactive graphics (e.g., banners, maps,

and menubars, etc.) and search engines (e.g., Yahoo, Lycos).

INextl

77

How Do Gateways Operate?

Gateways can be run by themselves, but are designed to be

run by the HTTP server. The server sets up an environment
which is
e secure (to prevent willful damage by users)
e informative (to allow communication between httpd
server and gateway)
e contained - so all output is sent by the server back to the
client

An example of a database query

Another example of a database query

Communication between client, server, and CGI gateway

78

This is a searchable index. Enter search keywords:

SLAC SPIRES: HEP Preprint database search

Send corrections to: LIBRARY@SLAC.STANFORD EDU . Use QSPIRES search language (see
examples below). Note that there is no possibility for iterative search (yet) in WWW. Therefore, when
needed, combine several criteria in a single request. Need more help ?

Examples:

show indexes

find author perl, m and title tau and date before 1980

find title prefix supercollid and date 1994

find t so2n+l [finds title SO(2n+1)!]
find bulletin-bd hepex and date-added 9/94

find cn mark-iii and date after march 1991

browse coden physics letters

find ¢ phlta, 70b, 487 [finds citations of a paper!]
find a abe and date 1988 (using wwwcite [shows citations!]
find author gross, david and journal phys rev

browse affiliation caltech

find af cal tech and date 1994 (result

browse topic higgs

find topic higgs boson or title higgs and date 1-95 (using wwwbrief
browse last ppf

find ppf 9442 (seq rs

To learn more about authors, institutions, or acronyms, try WHOIS, WHEREIS, or WHATIS:

-whois ginsparg
whereis cern
whatis sld

" See also other SPIRES databases, or SPIRES News, or the SLAC home page.

19 April 1995

79

SLAC Phone Directory: Search Form

SLAC 13 Apr 1995

This fill-out form can be used to search the SLAC phone directory (previously called BINLIST). Fill in
the entries you know, leave others blank. Family name, First name and E-mail ID will support truncated
searches, using an asterisk (eg: john*).

Family name:
First name:

E-mail ID:
Work Extension:

HELP

The original of this form was created by Evelyn Aviles-Hernandez.

Diana Gregory

&0

Communication Between Client, Server, and CGI Script

hitp server
client
#
qateway J
CGl environment

Next

8/

Design of a CGI Script

1. Design the CGI script interface:
o Use of the <ISINDEX> or <ISMAP> in an HTML page;
o Design of a fill-out form using HTML;

o Specify the format of a CGI script-compliant URL which can
be used as a link in an HTML page.

2. Design and code a CGI script which performs the following:
o Argument decoding;
o Argument validation;
o Processing (including error handling);
o Output and cleanup;

INext|

74

CGI Scripts In REXX

e Webshare - the VM HTTP server
o Written entirely in REXX;;

o Supports CGI scripting in REXX;
o Information at

http://ualvm.ua.edu/~troth/software/cmshttpd.html

e Today’s discussion is limited to use with Unix-based servers;

INextl

&3

Providing Input to a CGI Script

e The QUERY STRING environmental variable

o QUERY_ STRING is defined as anything following the first "?" in
the script-invoking URL;

o Generated automatically by the HTML tag <ISINDEX> or a
fill-out form (with method=GET);

o Encoded to include URL information with spaces converted
to "+" and special characters according to their hex encoding;

o Example of ouery STRING use.

INextl

<14

Providing Input to a CGI Script

e The paTH_INFO environmental variable

o CGI allows additional context-specific information to be
embedded in a URL;

o This additional information is contained in the paTa_1NFO
environmental variable;

o The information in PATH INFO is not encoded;

o Example of paTH 1INFO USeE.

[Nextl

Providing Input to a CGI Script

e Standard Input (stdin)
o Used with fill-out forms using method=POST;

o The environmental variable coNTENT LENGTH contains the
amount of data to be read from standard input;

o Example of conTENT LENGTH use.

INext|

86

‘Guide to Writing CGI Scripts in REXX or
Perl

9 Apr, 1995

[SLAC Brochure | SLAC Home | Net Search]

Contents

@ Introduction

@ Getting Input to the Script

® Decoding Forms Input

@ Sending Document Back to the Client
® Reporting Errors

® My First REXX CGI Script

Introduction

This Guide is aimed at people who wish to write their own WWW executable scripts using WWW’s
Common Gateway Interface (CGI). Since there are security and other risks associated with executing
user scripts in a WWW server, the reader may wish to first view a document providing information on a
SLAC Security Wrapper for users’ CGI scripts. Besides improving security, this wrapper also simplifies

~_ ‘the task of writing a CGI script for a beginner.

~ The CGI is an interface for running external programs, or gateways, under an information server.
Currently, the supported information servers are HTTP (the Transport Protocol used by WWW) servers.

Gateway programs are executable programs (e.g. UNIX scripts) which can be run by themselves (but
you wouldn’t want to except for debugging purposes). They have been made executable to allow them
to run under various (possibly very different) information servers interchangeably. Gateway programs

_ conforming to this specification can be written in any language, including REXX or Perl, which
- produces an executable file :

Getting the Input to the Script

The input may be sent to the script in several ways depending on the client’s Uniform Resource Locator
(URL) or an HyperText Markup Language (HTML) Form:

® (QUERY STRING Environment Variable

87

QUERY_STRING is defined as anything which follows the first ? in the URL used to access your
gateway. This information could be added by an HTML ISINDEX document, or by an HTML
Form (with the GET action). It could also be manually embedded in an HTML hypertext link, or
anchor, which references your gateway. This string will usually be an information query, e.g. what
the user wants to search for in databases, or perhaps the encoded results of your feedback Form. It
can be accessed in REXX by using String=GETENV (‘ QUERY STRING’)

or in Perl by using
$string=$ENV (' QUERY STRING’);

This string is encoded in the standard URL format which changes spaces to +, and encoding
special characters with %xx hexadecimal encoding. You will need to decode it in order to use it.
You can review the REXX or Perl code fragments giving an example of how to decode the special
characters.

If your server is not decoding results from a Form, you will also get the query string decoded for
you onto the command line. This means that the query string will be available in REXX via the
PARSE ARG command, or in the Perl $aARGV [n] array.

For example, if you have a URL http://www.slac.stanford.edu/cgi-bin/foo?hello+world
and you use the REXX command PARSE ARG Argl Arg2 then Argl will contain "hello” and
Arg2 will contain "wor1d" (i.e. the + sign is replaced with a space).

In Perl $ARGV[1] contains "hello" and $ARGV[2] contains "world". If you choose to use the
command line to access the input, you need to do less processing on the data before using it.

PATH INFO Environment Variable

Much of the time, you will want to send data to your gateways which the client shouldn’t muck
with. Such information could be the name of the Form which generated the results they are
sending.

CGI allows for extra information to be embedded in the URL for your gateway which can be used
to transmit extra context-specific information to the scripts. This information is usually made
available as "extra" information after the path of your gateway in the URL. This information is not
encoded by the server in any way. It can be accessed in REXX by using

String=GETENV (* PATH_INFO’), or in Perl by using $string=$ENV (‘ PATH INFO’);

To illustrate this, let’s say I have a CGI script which is accessible to my server with the name foo.
When I access foo from a particular document, I want to tell foo that I'm currently in the English
language directory, not the Pig Latin directory. In this case, I could access my script in an HTML
document as:)

foo

When the server executes foo, it will give me PATH_INFO of /language=english, and my
program can decode this and act accordingly.

The PATH_INFO and the QUERY_STRING may be combined. For example, the URL:
http://www/cgi-bin/htimage/usr/www/img/map?404, 451

will cause the server to run the script called ht image. It would pass remaining path information

86

"/usr/www/img/map" to htimage in the PATH_INFO environment variable, and pass "405, 451"
in the QUERY_STRING variable. In this case, ht image is a script for implementing active maps
supplied with the CERN HTTPD.

® sStandard Input

If your Form has METHOD="POST" in its FORM tag, your CGI program will receive the
encoded Form input on standard input (stdin in Unix). The server will NOT send you an EOF on
the end of the data, instead you should use the environment variable CONTENT_LENGTH to
determine how much data you should read from stdin. You can accomplish this in REXX by using
In=CHARIN (, 1, GETENV (* CONTENT LENGTH’)), or in Perl by using

read (STDIN, $in, $ENV{’ CONTENT LENGTH'});

You can review the REXX Code Fragment giving an example of how to read the various form of input
into your script.

Decoding Forms Input

When you write a Form, each of your input items has a NAME tag. When the user places data in these
items in the Form, that information is encoded into the Form data. The value each of the input items is
given by the user is called the value.

Form data is a stream of name=value pairs separated by the & character. Each name=value pair is URL
encoded, i.e. spaces are changed into plusses and some characters are encoded into hexadecimal.

Yoﬁ can review the REXX or the Perl code fragment giving examples of decoding the Form input.

Sending Document Back to Client

- CGI programs can return a myriad of document types. They can send back an image to the client, an
HTML document, a plaintext document, a Postscript documents or perhaps even an audio clip of your
_ bodily functions. They can also return references to other documents (to save space we will ignore this
latter case here, more information may be found in NCSA’s CGI Primer). The client must know what
kind of document you’re sending it so it can present it accordingly. In order for the client to know this,
your CGI program must tell the server what type of document it is returning.

In order to tell the server what kind of document you are sending back, CGI requires you to place a short
. header on your output. This header is ASCII text, consisting of lines separated by either linefeeds or
carriage returns followed by linefeeds. Your script must output at least two such lines before its data will
be sent directly back to the client. These lines are used to indicate the MIME type of the following
document

Some common MIME types relevant to WWW are:
® A "text" Content-Type which is used to represent textual information in a number of character
sets and formatted text description languages in a standardised manner. The two most likely

subtypes are:
O text/plain: text with no special formatting requirements.

€9

O text/html: text with embedded HTML commands
® An "application” Content-Type, which is used to transmit application data or binary data. Two
frequently used subtypes are:
O application/postscript: The data is in PostScript, and should be fed to a PostScript
interptreter. o
O application/binary: the data is in some unknown binary format, such as the results of a
file transfer.
® An "image" Content-Type for transmitting still image (picture) data. There are many possible
subtypes, but the ones most often used on WWW are:
O image/gif: an image in the GIF format.
O image/xbm: an image in the X Bitmap format.
O image/jpeg: an image in the JPEG format.

In order to tell the server your output’s content type, the first line of your output should read:
Content-type: type/subtype
where type/subtype is the MIME type and subtype for your output.

Next, you have to send the second line. With the current specification, THE SECOND LINE SHOULD
BE BLANK. This means that it should have nothing on it except a linefeed. Once the server retrieves
this line, it knows that you’re finished telling the server about your output and will now begin the actual
output. If you skip this line, the server will attempt to parse your output trying to find further
information about your request and you will become very unhappy.

You can review a REXX Code Fragment giving an example of handling the Content-type information.

After these two lines have been outputted, any output to stdout (e.g. a REXX SAY command) will be
included in the document sent to the client.

~ Diagnostics and Reporting Errors

Since stdout is included in the document sent to the, diagnostics diagnostics outputted with the SAY

. command will appear in the document. This output will need to be consistent with the content-type:
type/subtype mentioned above.

You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, too many arguments

. specified, requested an invalid command to be executed, invalid syntax in the REXX exec) the script
should provide detailed information on what is wrong etc. It may be very useful to provide information
on the settings of various WWW Environment Variables that are set.

You can review a REXX Code Fragment giving an example of error reporting and Typical Output
Generated from such a code fragment.

My First REXX CGI Script

To get your Web server to execute a CGI script you must:

‘70

@ Write the script and save it somewhere. For example let’s say we write a trivial REXX script
called cgil.rxx and save it in our home bin directory (e.g. in /u/sf/cottrell/bin/cgil.rxx).

® Make the script executable by your Web server. On Unix this is done using the chmod command,
c.g.

O chmod o+x /u/sf/cottrell/bin/cgil.rxx -

® Get your Web-Master to add a rule to the Web server’s rules f11e to allow the Web server to
execute your script. You can look at SLAC WWW Rules to see how SLAC URLSs currently map
to the UNIX file system.

The Web-Master will want to insure that Security Aspects of your script have been addressed before
adding your script to the Rules file.

Acknowledgements

Much of the text on the Common Gateway Interface and Forms comes from NCSA documents. Useful
information and text was also obtained from The World-Wide Web: How Servers Work, by Mark
Handley and John Crowcroft, published in ConneXions, February 1995.

Les Cottrell 15 Jan 1995
[Top | Suggestion Box | Disclaimer]

@/

/* LR S R R R R R R R R R R S RS R R L L A R */

/* Some browsers insert ASCII codes (preceded by a %) for some characters */
/* such as space or +. We replace them by the appropriate character */
/* N.B. the encodings maybe in upper or lower case (e.g. %2F=/ or $%$2f=/ */
/* Thhdhhhkhhhhhhhkdkhhdhd bk dr A hkhkd ko kA hkr Ak kA A hkhh Ak hh kA b hh kA hk kA hkkkkkkkdkokh ok kK */
Hex='"%2b=+8&%20=+%2f=/6%3f=+&"
/* 52b=+ %20= %2f=/ %3f=? */
Hex=Hex | | TRANSLATE (Hex) /*Allow for upper case*/
IF POS('%’,Str)/=0 THEN DO/*Any %s in input*/
DO UNTIL Hex="’/*Check for hex codes*/
PARSE VAR Hex Code’=’Char’s&’Hex; Out='’
PARSE VAR Str Pre (Code) Str
DO WHILE (Str /== '")
Out=0Out | |Pre]| |Char
PARSE VAR Str Pre (Code) Str
END /*DO*/
Str=0ut| |Pre
END /*DO*/
END /*IF*/

qz

Reading HTML Forms Input in REXX

PARSE ARG Parms
StdinFile=’/tmp/wrap—stdin’_GETPID()/* Get unique name*/
Script=GETENV (' SCRIPT NAME’)

/* % e de g de de o g ek Je de de ke ok g e e g de g de e e g de de e g de de e ke de de g e dede ok de g gk de de e ke g ke Kok */

/* Read the input from the various possible sources */
/* Note that we preserve or save all */
/* input in case we need to send it to another command. */
/* If so we can restore the stdin for the called command */
/* by calling it using the REXX command: */
/* ADDRESS UNIX script ‘<’ StdinFile */
/* hdkdddekkhkhkhhkddhkhkhhkdkdkhhhkhhkhhhhhkhkhkkhkhkkkhkhhkrhkhhkhkhkhkhhkhkhkh */
IF GETENV (' REQUEST METHOD’)="POST" THEN DO
IF LINES()=0 THEN,
CALL Exit 400, Script’: null input from POST method!
’
Line.0=0
DO L=1 BY 1 WHILE LINES()>0
Line.L=LINEIN(); Line.O=Line.O0+1
IF L>1 THEN Fail=LINEOUT (StdinFile,Line.L)
ELSE Fail=LINEOUT (StdinFile, Line.L, 1)
IF Fail=0 THEN LEAVE L
END L
Fail=LINEOUT (StdinFile) /* Close the file*/
END
Path info=GETENV (’'PATH INFO’)/*Insert path info in front*/
IF Path info/='’ THEN,
Cmd=SUBSTR (Path info,2) Cmd/*Remove leading / from path*/
Temp=GETENV (' QUERY STRING’)
IF Temp=’’ THEN Temp=Parms
IF Temp/=’’ THEN Cmd=Cmd Temp /* Insert query info at end*/
IF Cmd='’ THEN,
'~ CALL Exit 402, Script’: no input provided!
’

93

Example of Decoding HTML Forms input in REXX

/* e de Jo Je de e de Je ke e de K e g de ke de ke de dede Fede K de de kg de ke ke ke ke kke ke */
/* Input from a form comes in the form: */

/* namel=valuelé&name2=value2 */
/* Here we decode the input into an */
/* array of names and values. */

/* ¥ Je & ¢ do de de de g de dede ke de de g ke e de de de de de Fe de de de de K ke kg e g ke ke ke */

DO I=1 BY 1 UNTIL Input='"'
PARSE VAR Input Name.I’=’Value.I’&'Input
END I

94

Handling Content-type Info in REXX

/* ***7‘

/* Code fragment to set the Contentype subtype based */
/* on the file type (as determined by the characters*/
/* following the last period in the filename). */
/* ***/

FileName=’/u/sf/cottrell/public_html/cgi.html'
L=LASTPOS (' .’ ,Filename); Type=’"'
IF L>0 THEN DO
IF LENGTH (FileName)>I, THEN
Type=TRANSLATE (SUBSTR (FileName, L+1))
END

SELECT
WHEN Type=’'HTM’ | Type='HTML’ THEN
SAY ’'Content-type: type/html’
WHEN Type=’'PS’ THEN
SAY ’'Content-type: application/postscript’
WHEN FIND (' TXT RXX PL FOR C’,Type)/=0 | Type=’’ THEN
SAY ’'Content-type: type/text’

OTHERWISE DO
SAY ’'Content-type: type/html’; SAY '’
CALL Exit 409, ’'Unknown Content-type="'Type’".’
END
END
SAY '’

a5

Reporting CGI Diagnostics in REXX

/* J¢ do Je Fe do de e de de e K de de e e de do g K de K de de de g de do e K ke dede de do ke koK ke */

/* Code fragment for reporting CGI Script */
/* diagnostic */
/* e Jc e de de ke Je ke ke ke ke ke de ke Kk g de de e de de ke de g ke de de ke de g ke ode kg ke K */

PARSE SOURCE $ArchName $Efn $Fn
Debug=1
SAY "Content-type: text/html"; SAY

IF Debug>0 THEN SAY,
SEfn’ : PATH _INFO="'GETENV ('PATH INFO’')’'".
’

96

Reporting CGI Errors in REXX

/** */

/*Code Fragment for REXX CGI Error Reporting*/
/** */
ADDRESS 'COMMAND’; SIGNAL ON SYNTAX
PARSE Arg Parms

IF QueryInput=’’ THEN,
CALL Exit 490, 'No input given!
’

/***/

/*Rex will jump to this error exit if a * /
/*syntax error occurs. It returns the user */
/*ito the line in the exec with the error. */
/***/
Syntax:

PARSE SOURCE Arch . $Fn

CALL Exit 499, ‘Syntax error on line’,

SIGL ‘of’ $Fn’. Line="’ SOURCELINE (SIGL) ' "’

Exit: PROCEDURE EXPOSE Debug Parms
/* % e Je Je de Je de de e e ek g g ok ke e g g ek ke ke ke de e ok kg g gk ke ok ke

| Exit - Assumes Content-type: text/html
I khkkhkhkhkkhhkdkhkkdkdkhkhkhkdkhkhkkkhkhkhkhkhkhkhhkhkidkkhkii */
PARSE ARG Code, Msg
SAY f<title>'GETENV(’SCRIP?_NAME')’ error’ Code’</title>’
SAY ’'<h2>Error Code’ Code ’reported by’
SAY GETENV (’ SCRIPT NAME’)’ .</h2> The WWW utility on’
SAY ’<tt>’GETENV (‘' SERVER NAME’)
SAY ’:’GETENV (’ SERVER PORT’)’</tt>that you are using’
SAY ’'which reports the following error:’
'IF Msg/=’’ THEN SAY ’<hr><hl><code>’Msg’</code></h1>’
IF Debug>0 THEN DO
) SAY ’'<hr>The complete environment follows:<p><pre>’
ADDRESS Unix "tcsh -c printenv"
SAY ’'
Arguments="’'Parms’".’
SAY ’</pre>’
END
SAY ’'<hr>[’
SAY ‘SLAC Home Page |’
SAY ’‘Suggestion Box]’

SAY ’'<address>Zaphod</address>’
" IF Code=0 THEN RETURN

EXIT /*Code*/

97

Error Code 490 reported by cgi-wrap

The WWW utility on wwwl.slac.stanford.edu: 80 that you are using from your

WWW browser (Mozilla/l.1b1 (X11; international; AIX 2 000003643500)) on
ATLAS.SLAC.Stanford.EDU called (using the GET method) a Common Gateway

Interface (revision CGI/1.1) script command wrapper, which reports the following error: .

No input given!

[SLAC Home Page | Suggestion Box]
Les Cottrell

98

Sample Dangerous CGI Script in REXX

#!/usr/local/bin/rxx
/* Sample dangerous CGI Script written in */
/* Uni-REXX. */

SAY "Content-type: text/plain"; SAY
Query=TRANSLATE (GETENV (' QUERY_STRING'),’ ’,’'+’)

Valid=" abcdefghijklmnopgrstuvwxyz’
Valid=Valid| | ' ABCDEFGHIJKLMNOPQRSTUVWXYZ’
Valid=Valid||’0123456789—-_/.Q@’
V=VERIFY (Query,Valid)
IF Vv/=0 THEN DO

SAY ’'Invalid Character (' SUBSTR(Query,V,1),

’)in:"’Query’ wos

EXIT 99

END

ADDRESS UNIX Query

EXIT RC

b9

Object Rexx: Up Close and Personal

Rick McGuire
IBM Endicott

Pages 100-136

Proceedings of the 6th International Rexx Symposium 100

/00

VEDemo-1

Rick McGuire

Object REXX Development
Endicott, NY

a/

VW Background ‘

= Work began in 1988
= Prototyped since 1989

= Beta version available on OS/2 Developers Connection
Volume 6 (1-800-6DEVCON)

= Complete rewrite of interpreter

~ « Language architecture "in progress" and subject to change

VEDemo-2

R&xX
bjecf

VW Why Object REXX? |

- Remove limitations of current REXX language
.« Bring the power of OO programming to REXX
= Bring the usability of REXX to OO programming
- = Extend REXX usage
: - windowing, object manipulation, concurrency, efc.
 « Build on large base of existing REXX programs
- fully upward compatible

- Interact with emerging new technologies such as SOM and
OpenDoc

Rexx
VEDemo-3 bj ec+

o/

VEDemo-4

W What's New in Object REXX?

= Objects
- Everything in Object REXX is an object
= Methods
- Everything that happens in Object REXX is a method

= Messages
- Everything that happens in Object REXX is caused by a
message

(Re&xx ,
bj ect

so/

W What is an Object? i

- Everything in Object REXX!

= Encapsulation of data and code (methods) which operate on
data

= Manipulated via messages
- Code outside object has no direct access to object data
- Responds to messages by running methods

= Primitive (e.g. string, directory) or programmed

= Automatically reclaimed (garbage collection)

BALANCE | withdraw(156.23)
. INTEREST | |
.m_-AQQQ.,U.N_T_.E.f |

Deposit —

| deposit(1457.11)

 Withdraw e

VEDemo-5 : T f bjecf

W Whatis a Method? ,

= Everything that happens in Object REXX!
= Bits of code that operate on object data
= Similar to subroutines/functions
- Optionally return results
- All variables local unless explicitly exposed
= May be private or public
- Like internal vs. external subroutines/functions
= Defined on object-by-object basis

- Different objects may have same names for different
methods

» "Polymorphism”

R&xx
VEDemo-6 bj ect

VEDemo-7

W What is a Message? |

= What causes everythihg to happen in Object REXX!

= Something "sent" to an object causing the object to run a
method

= Message name = method name
= Sender waits for reply
- Reply may contain returned data

B S

Deposit | CePOsHITIN i s deposit(1457.11)

2 | expose balance
use arg amount a
balance = balance + amount |

retum‘ balance, ‘ 1458.11

Rexx
bj ect

W Messages |

New syntax:

- receiver~ message(arguments)

- receiver~~ message(arguments)

- receiver[arguments]

arguments are optional, e.g.:

- receiver~ message

May appear as term, instruction, or assignment target
All REXX operators become messages

- Can use either syntax

Rexx
VEDemo-8 bj ect

VW Polymorphism }

= Definition: The ability tb send the same message to different
objects, which may have very different underlying
characteristics.

= Powerful feature of object-oriented programming
- Sender does not need to know internals of receiver
» Example: "+" method

- Allows common usage of common words to improve
readability and maintainability

» Example: PRINT method

Réexx
VEDemo-9 bj ect

VEDemo-10

W Variables

- All variables are references to objects
- Strings are just one type of object

= Method variables (a.k.a. "local") exist only while method is

running

= Object variables last as long as the object does

BALANCE

,,,_.,_H.*._.A_._,_..._w_,_,,-_,.u.,».w;_.,_.._,,_“_.._,mm~,._.,_—,.—.<

“expose balance interest

return balance

amount = balance * interest
~ balance = balance + amount |

Rexx
'ojecf

W EXPOSE Instruction |

= Used to expose and create object variables within methods

= Used for sharing between methods, or just for allowing
persistence between invocations of same method

= Subsidiary lists also supported
= Dynamically adds to list of object variables
= Must be the first instruction in a method

R R R

CBALANCE
 INTEREST
ACCOUNT #

Deposﬂ lexpose baiance S

Withdraw 'expose balance

Rexx

VEDemo-11 Interest lexpcse baiance mterest bject

VW Passing Arguments |

= Arg and Parse Arg work only with strings

- All arguments are converted to strings via STRING
method

= New instruction: USE ARG name[,name...]
- Assigns each name to the corresponding object

» Does not make a copy of the object referred to, only
assigns a reference to the variable

- This allows a kind of call-by-reference
» If object can be directly modified (such as stems)

Rexx
VEDemo-12 bj ect

]

W New Condition Handling ,

= Significantly enhanced' over existing REXX
= New conditions for object oriented needs:
- NOMETHOD - object cannot find requested method

- NOSTRING - object with no string value used where
string value required

"« New ANY condition name for CALL/SIGNAL ON
- Allows handling of any error not handled by more specific

VEDemo-13

handler

- Example: NOVALUE raised, no NOVALUE handler ==>
ANY trap is invoked |

!

Rexx

bj ect

W New Condition Handling... |

= New user condition support allows users to define own
conditions

« New RAISE instruction
- RAISE condition DESCRIPTION expression
- "condition” can be any of
» rexxcondition
» SYNTAX number
» USER usercondition '
- "expression" is returned to handler by CONDITION('D")

- RAISE PROPAGATE passes conditions up to the next
call level

R&xx
VEDemo-14

bj ect

&

VEDemo-15

W Classes |

v

Need for many objects with same behavior (i.e. methods)
Use class object to define shared behavior

Class object is an "object factory”

- Creates new "instances"” with same methods but separate

object data

» e.g. Rick's savings account, Pam's savings account
Once created, instances not dependent on classes
- Methods can be added or replaced per instance
- Sometimes called "enhanced" objects

RexX
bj ect

91

VW Inheritance

. Classes maintained in a
hierarchy

= Subclass acquires
behavior of superclass and

- modifies it

~ Variables scoped by class

= Allows easy reuse of code
- programming by

differences
= Major benefit of

object-oriented
programming

VEDemo-16

Loan

Secured

Bank Account

Checking Savings
Passbook

Unsecured (D
Rexx

bj ect

Ll

VEDemo-17

W Directives |

Purpose: to allow more complex program structures to be
contained within a single source file

- Provides way to identify program entities that previously
required separate files

Object REXX programs can package classes, methods, and
routines

- Routines similar to external functions
Packages can make objects public

Programs can identify other programs/packages that they
require

R&XX
bj ect

W Directives |

= New packaging directives:
— ::CLASS classname options -- creates a new class to be
used by your program

_ ::METHOD methodname options -- creates methods that
are associated with classes

- -*ROUTINE routinename -- creates functions or
subroutines

— :REQUIRES programname -- brings in public ::CLASS
and :ROUTINE definitions from another source file

Rexx
VEDemo-18 bj ect

VW Environment Symbols |

VW Environment

= A look-up table (directory) that is shared among all objects
: = Entries created with a name and a value. |
- Essentially a global variable pool
= Available via "dot-variables"
- .array, .true, .false |
~ « Preloaded with Object REXX classes and public objects
- Public objects include .Input, .Output, and .Environment

bl

oz/

VW Environment Symbols

= Symbols with initial period
= Searches a hierarchy of locations to find a value
- Classes defined within a program
- PUBLIC classes accessed via a ::REQUIRES directory
- The process local directory
- The global environment directory
= User can explicitly insert entries into environment
- value(name,object,")
- .environment~setentry(name,object)
- .environment[name] = object

Rexx
VEDemo-20 '()j ec+

1z

VEDemo-21

W Object-based Concurrency

= Objects are the units of concurrency
= All objects can execute concurrently
= Most object awaiting either a message or a reply
= Actual concurrency achieved via:
- REPLY instruction
- START message

Re&xx

bj ect

W Sequential Execution ,

Sender Receiver

Send a message
account~deposit(1.98)

expose balance

use arg amount

F balance = balance + amount
- : Return a result return balance

Processing continues

Rexx
bj ect

VEDemo-22

gel

VEDemo-23

W Concurrent Execution |

Sender

account~deposit(1.98)

(Processing continues)

Recelver

Send a message

expose balance

Return a result use arg amount
balance = balance + amount

reply balance
(Processing continues)

self~audit('Deposit’, amount)

Rexx
bj ect

bzl

W Explicit Concurrency |
|

Sender Agent Receiver

agent = account~start('deposit’, 1 98)

Send a message

Return the agent account~deposit(1.98)

Processing continues |
Send a message

. expose balance

- use arg amount
balance = balance + amo
return balance

balance = agent~result | Return a result

Request the result

| | ‘ Rexx)
VEDemo-24 Return the result ; bject

VEDemo-25

' aYaValVde i

= SOCKET: an OS/2 sockets encapsulation
- Goal: Clients, Servers without knowing TCP
- "Server" contains concurrent TCP Objects
» "Known Port" socket for service requests
» "Client Sessions" created for each client
- "Client" Object(s) request service via TCP

Rexx
bj ect

2Z!

VEDemo-26

W Playing Around, continued

= Socket 'Mirror' TCP C/S Applet:
- "Framework" classes: 165 lines
- Client Script: 15 lines
- Server Script: 27 lines

- = Second applet -- "Toss server':

- Inherit Socket framework
- Client Script: 2 changed lines
- Server Script: 15 new/changed lines

Rexx

bj ect

z!

VEDemo-27

v Com‘municatiohs Modes for
"Mobile Computing"

= Client Programs
- Used directly by users
- Always local

= Server Programs
- Invoked by client programs
- May be local or remote

= Agent Programs

- Work independently for users, even
If disconnected

Rexx

bj ect

a3z/

VYEDemo-28

- Mobile Computing":
¥ Modes of Communications !

Local Application/Server

- My word processor

Local Agent

- My mail filtering program
Remote Server

- My database server
Remote Server with Agents
- My Stock Brokerage Auto-Alert
Remote Interactive Agents

- Brokers, buyers and sellers
Wandering Agents

- Information Scavengers

VW A Simple Object REXX Program }

= or, JimBob and Rambd play TicTacToe

"TheGame" manages
interacting "Players” on
one system

Re&xx

VEDemo-29

bj ect

oe!

VEDemo-30

W Adding Interaction to the Game
|
"Viewer" object

- Same methods as "Players”

- Manages user interface

The Game is now interactive.

OO0 Jargon: 'polymorphism’

Rexx
bj ect

e/

VEDemo-31

W ATicTacToe Agency

"Send" Player agent to Game server.

Same Game object as before.
Same Player objects as before.

Uses Rexx Sockets APl in TCP/IP.

Exploits existing name servers.

zel

VEDemo-32

W Messaging with Proxies
"Proxy Obijects"

- capture messages intended for a target object
- relay message to and response from target

- transparent to sending and receiving objects
- useful for debugging and message tracing and...

cel

VEDemo-33

VW Communications Proxies

When proxies relay messages over a network
connection, the objects appear to be local to each
other -- the network is completely hidden.

So, communications prOX|es can network-enable

I‘\ L llllllll AIAA

objects that 'know' nothing about

IAAL

ietworks.

Rexx
bj ect

VW Remote Messaging via Proxies
|

'Send' a communications proxy for a Player, and
objects on two systems interact around the task of
playing the game.
- Same '‘Game’ object
- Same 'Player’ objects

-~

VEDemo-34

el

VEDemo-35

W Remote Interaction via Proxies |
|

Send a communications proxy for a 'Viewer' object,
and users and objects on three systems interact

- Same Game objects
- Same Player objects
- Same Viewer objects

Rexx

bj ect

W What You've Seen |

= Multitasking, multi-user TGP/IP servers

= Scripting within, and across systems

= Agent-based and Client/Server computing
= Agents collaborating around a task

TMNADI/IID AnaldAadA AAaAA vl # Tf‘D/ID
B /71T ~Cliaiicu VUUGC WILHTUUL T o /i

= ...and about 600 lines of Object REXX

:5
«Q

Rexx
VEDemo-36 bj ect

Object Rexx: OpenDoc Support

Tom Brawn
IBM Endicott

Pages 138-142

Proceedings of the 6th International Rexx Symposium 138

i38

{Thomas Brawn

| Object Rexx
& ,, OpenDoc Support

: IBM Corporation

‘tombrawn@vnet.ibm.com

OpenDoc

| = Compound
Document
Architecture

= Key technologies

- Parts and Part
handlers

= Bento
- SOM
= 0sA

® Multi-platform
— Apple
- IBM
» OS/2
» AIX
» PPC
— Wordperfect
» Windows

:

Copyright IBM Corporation 1995 - T.Brawn

OpenDoc

Open Scripting Architecture

= OSA Framework classes
— Component class
— Scripting Component class
— Terminology class

® OSA Event Manager
= Component Manager

—_—

Object Rexx
’OSA Language Support

= ScriptableApp class (scriptable
application proxy)
= Connect method

- | ® Object Specifiers

- — Identify target within application

m Send OSA Events to scriptable
applications

Copyright IBM Corporation 1995 - T.Brawn

/10

1 Object Rexx

ScriptableApp Example

Lotus123 = .Scriptable App~connect('lotus123")
FirstCell = table[1] cell[1]
Lotus123 FirstCell~setdata(100)

‘Obj'ect Rexx
OSA Scripting Component

m SOM Class

— Subclass of OSA Scripting Component
class

—~ Accessed through Component Manager
m Required functions

- Execute

— Load, Store

— Display, Dispose, GetScriptinfo,
= SetScriptInfo, ScriptError

Copyright IBM Corporation 1995 - T.Brawn
14/

Object Rexx
Scripting Component...

= Compile functions
— Compile
— CopylD, ScriptingComponentName
® GetSource
— GetSource
= Recording
— StartRecording, StopRecording

Object Rexx
OpenDoc Support - Summary

= Language Support
— ScriptableApp class, Object Specifiers
— OSA Events

m Scripting Component functions

_. = Required

= Compile

- GetSource
~— Recording

Copyright IBM Corporation 1995 - T.Brawn

JH2

Report from the X3J18 Committee

Brian Marks
Formcroft Ltd.

Pages 144-149

Proceedings of the 6th International Rexx Symposium 144

144

History & Status

Enthusiasm at first Rexx Symposium.

First committee meeting 1991.

Fifteenth meeting 1995.

First public review completes May 3rd 1995.
Expected approval as ANSI standard, 1993.
Already an influence on implementations.

Committee continues for maintenance and further versions.

45

Proposal Document

167 pages including the informal parts.
Has been circulated.
Available commercially.

On the World Wide Web. http://rexx.hursley.ibm.com/rexx/

Available at this symposium.

/46

Method

Backus-Naur Form describes syntax.
Prose describes facilities provided by the “configuration”.
Complicated Rexx described in terms of simpler Rexx.

Some “pseudo-Rexx” to glue parts of the definition together.

147

Content

"The scope of the standard will be the second edition of the Cowlishaw book, plus
consideration of implementation experience. The scope may be altered as necessary
to promote portability, reliability, maintainability and efficient execution of REXX
programs on a variety of computing systems. Both compiling and interpreting
REXX programs will be considered."

Not “Design a Rexx for the nineties”.
Although Date conversion, error subcodes, command I/O

Not “The union of every existing implementation”.
Although alternatives for negation and blank characters.

Not “Better wrong than changed”

For example D2C(0), DATATYPE(*’,’B’), 1.0000000003 non-
integer.

148

You can help:

Correct the document.
Talk to your supplier of Rexx about the Standard.

Join the committee for the next version of the standard.

149

CenterPiece and Object Oriented RExx

Sandy Syx
Mantissa Corporation

Pages 150-173

Proceedings of the 6th International Rexx Symposium 150

150

‘V“ Mantissa Corporg?lQp

CenterPiece and Object
Oriented REXX .

Sandy Syx - ssyx@mantissa.com
205-945-8930

M) Introduction

» Mantissa Corporation

» Data Center Automation software products
since 1981. f

» RMS “The Report Management Sysieni”
» OPS “Operatwns Productivity System” .

» FYI “Wmdows/LAN-based Document/Image
Management and more”

15/

A“ Agenda

» CenterPiece Architectural Overview

» CenterPiece Built-in Classes -

» CenterPiece Object-Oriented REXX

» REXX Improvements for Complex Problems
» Developing CenterPiece Classes ‘

CenterPiece
Architectural
Overview

i52

u\ What is CenterPlece"

» CenterPiece is a Dzstnbuted Multt-platform,
Object-Oriented, Interpretive, Development
and Runtime Environment.

» Two main Executables:

® The Engine - a multi-threaded interpreter that

serves objects to multiple simultaneous chents in
psuedo realtime.

@ The User Interface - A graphical application that
allows one to view and manipulate objects that
exist in an “engine”.

a4\ CenterPiece Architecture

Persistent objects are stored here.

bjects are viewed and
manipulated here.

Objects exist here.
ALL program interpretation occurs here.

i53

AA‘ CenterPiece is Multi-platform

Object files are
platform independent.

Multi-platform, supporting
multiple look-and-feels.

Engine supports multiple concurrent connections to user mterfaces
Engine can run on multiple platforms. -

A“ The Engine Is...

» The heart of the systeni
» An object server.

» A multi-threaded object oriented REXX
executor.

» Basically event driven. ,
> Responsible for reading and wrltmg object

files.
» Not visual.

A“ The User Intgrface;. "

» Graphical User Interfuce

» Runs on multiple platforms and wmdow
systems (X-Motif, OS/2 Presentation
Manager, MsWindows)

» Supports multiple look-and-feels (Motzf,
CUA, Windows)

» Very interactive allowing direct

manipulation (object menus and drag-and-

drop).

CenterPiece Bullt--ln
Classes

is5

10

AA‘ Fundamental Built-in Classes

» Workspace
212 Dimensional Vtsual Container
of WorkspaceObjects.

» WorkspaceObject
Gives objects the ability to be on
a workspace. (Name,X,Y,Layer,
Icon,Workspace, etc...)

» Class T
Allows one to create new classes.

11

\j - ,
AA‘ Programmer’s Helper Classes

» Program |
Allow interpretation and executton '
of REXX logic. ‘

» Thread
Instance of executing program.

» List - Ordered collection of items.

» Dictionary - Unordered collectton of
key/data pairs.

» Semaphore - Resource Arb‘itof _
> Queue - Object version of REXX queues

12

/56

M Simple Visual Objects

» Text

Floating text. O’ont color, angle)

» Line o
Line segments. (X2,Y2, wzdth color)

» Rectangle
Hollow or filled rectangles (width,
height fillcolor) ‘

» Image
2D color images. Can be large and deep

A“ Dialog Objects

> Button - Action button that runs a
“Click” method when pressed.

» Checkbox - State selector runs a “Clzck”
method when pressed.

» TextEntry - Text entry field, allows ?’? -

multi-line, scrollbars, etc.. Runs a

“Changed” method when the textis

entered.

)57

14

. ‘ P
u‘ More Dialog Objects
» ListBox - Combination of a List and a o
ListView. Visual list, allows images and
text. Items can be dragged from the list.

» Slider - Allows a value to be selected within

some range. Runs a “Slide” method when
the slider is sltd

» RadioGroup - Mutually exclusive group.
Runs a “Click” method when the selection
changes.

» Spinner - Allows spmmng or typing in a
number from a specified range of values. 15

y e e
“‘ Communication Classes

» MTAServer
Message Transport Agent - allows one
to create a “server” that will listen for
connections from “clients” at any number
of access points (tranport,port). Allows
telneting mto the server lf tcp is used.

» MTAClient -

Allows one to connect 10 a server to
exchange messages.

16

)\ Object Storage to Disk

» ObjectFile :
Saves all owned ob]ects toa dtsk f Ie

7

2\ Application Delivery

» UserProfile - This class allows one to secure
access to a CenterPiece engine by defining
exactly who can connect, and how they
connect. Users can be “Developers”,
“EndUsers” or both. An “EndUser” has a
“Connect” method that can be ovemdden
to show the approprmte appltcatton
dialogs for the user on c 'nnectzon to
engine. HEEE

18

159

CenterPiece

Object-Oriented
Extensions to REXX

A“ Objects

» Objects are instances’; bf some Class -
» Objects have any number of attributes.
» Objects are globally visible. s

» Every object has a universally unique

immutable identifier.
> Any object can be made persistent.

/60

19

20

5\ Object Ownership

» Objects can own any number of other
objects.

» An object can have at most one owher

» When an object is destroyed, all of a‘s owned
objects are also destroyed L

» When an object is saved, all bf its owned ,;
objects are saved. - o

-

A\ Attributes

» Attributes act much like REXX variables.
» They can be simple or compound.

» Object attributes must be defined in some
superior class.

> Attributes names are case and space :
preserving, but case and space msenszttm

16/

IA‘ Referencmg Ob i ects

> Objects have global visibility.

> Each object is unique not because of its
name, class, nor attribute values, but .
because of its universally unique tmmutable
identifier (UUID). These are normally just
called object tdentztzer or object-ids.

> Objects are referenced by REXX variables
that have an object-id as their value.

23

A“ Attribute Access .

Object Attributes are selected with a double-dot (..)

object. attnbute -
object identifier or, <———+—-> attribute speclﬁcatmn
classname v

The symbol to the left of the double-dot is translated
into a value. The translated value must be an object-ld ora
class name. :

The symbol to the righf (up to thé next double-dot)
is treated exactly like a variable symbol and must
reference an object or class member.

24

/64

A“ Attribute Ac‘cess Examples

Simple Attribute Access
Assume b is an object of the Button class.

b..Name = “Press Me”
b..BackgroundColor = “maroon”

Multiple Indirections »
Assume that b is a-Button, and assume that the button

has an attribute “Workspace” that references an object
of the Workspace class that the button is on. The name
of the workspace could be accessed by

b..Workspace. .Name
the button |
L the button’s workspace

28

a\ Object Creation/Destruction
Accomplished with two new REXX built-in functions:
object_id = ObjectCreate(%cléssname>) ‘
rc = ObjectDestroy(<object_id>)

For Example,
aLine = ObjectCreate(“Line”)
alLine.. = 100 o
aLine..y =
aLine..x2 = 200
alLine..y2 = 200

call ObjectDestroy aLine

26

/63

» Classes define attrtbutes that each mstance
of the class will have. -

» CenterPiece allows multiple mherttance “

» Classes are objects and are instances of the
“Class” class.

» Classes are typtcally used by thelr name.

2y

AA‘ Inheritance Model

> Attributes are mherzted dynamlcally

> A class can be modified “on the ﬂy” wlth
existing instances. |

» Attribute lookup precedence:
1. Local Object Override
2. Object’s Class
3. Primary Superclass--->Root Class .
4.Secondary Superclass—-->Root Class
In other words: “A Depth first, breadth next

search up the class hierarchy”.
28

164

A“ Dropping.&AttributeS

The REXX - DROP instruction:can be used to cause an
attribute to revert to its class default.

For example, assume that a class “Author” exists which
has an attribute named “Name” that has a class default
value of “anonymous”.

anAuthor = ObjectCreate(”Author")
anAuthor..Name = “Fred Braoks"

say anAuthor..Name ==> woul(i prmt “Fred Brooks”
drop anAuthor. .Name
say anAuthor..Name ==> would prmt “anonymo‘us?’.‘ .

29

Object Related
Built-in Functions

» ObjectCreate > ObjectOpen
» ObjectDestroy » ObjectOpenAsDialog
» ObjectClone » ObjectClose.
» ObjectFindOfClass » ObjectGoto
: » ObjectGetOwner
» IsObject i » ObjectSetOwner
> IsObjectOfClass .
» ClassOfObject > Objeth ileOpen
> ClassIsSubclassOf > ObjectFileSave

» ClassIsDirectSubclassOf > ObjectFileClose

/&5

i\ Iterating Q .ver Ob;ei:ts
DO ekt - N
l-repetltorJ l-condltwnal-I I!mstructlonll ;: f:gme

repetitor (extensions):

FOR EVERY class loopvariable —— —
—E FOR EVERY class loopvariable ON workspace %‘
FOR EVERY class loopvariable OWNED BY ob]ect

31

i\ Object Iteration Example

Iterating Over All Oblects of a Given Class

num_employees = 0

DO FOR EVERY Employee e
SAY e..Name .
num_employees = num_employeesy} 1 _

END

32

sz

M| Object Member Iteration

DO ;- END -
[epetitor) Leonditonst) Wongracgonll Lnome!
repetitor- L conditional instruction o

repetitor (extensions):

FOR EVERY MEMBER membervary OF object
[SIMPLE — ‘»PR_EF]XED BY preﬁx--l
COMPOUNDJ :

o

A\ Composite Objects

» “An object by itself is intensely
uninteresting”. - Grady Booch

» Object Identifiers behave much like pomters
to structures in ‘C’ or ‘C++’, \

» Any object attribute can contain an ob]ect
identifier of another object.

» Composite objects can be made in wluch
one object references and owns any number
of other objects.

134

le?

I\ Embedded Objects

» It is possible to embed objects wrthm other
objects. o

» This must be done by adding a class member
that references an object of a specified. class

» The embedded object will be cloned for each
instance of the class.

» The embedded object may not be destroyed
independently of its owner.

35

A'A‘ Methods

» Methods are simply objects of the Prog;ram
class that are referenced by some attrzbute of
an object. |

» Method invocation is no different thlm 4
calling any other REXX Junction or. =
subroutine. T he method is addressed)]uSt
like any other object attribute, except that zt
is used where a function or subroutme name
would normally be used. "

36

/68

A\ Self Reference In Methods

The double-dot with no prefix is an object self reference
inside an object method.

For example, imagine a user interface Button method that
runs when the button is clicked.

/* begin Button,i:Click */
. .Name = “Hello”
return 0

In this example the double-dot w1th no prefix means .
“this” button. -

37

REXX Extensionsﬁttfor;
Complex Problems

38

169

M| Multl-Threaded REXX

» An additional buzlt-m flmctton, Starz‘
provided to allow one thread to start anm‘her.

urd Avennestnro NnssngIe

X Kownke #leses ~ re (
’Lu'y’l "’l Ui CACLUICD LUnLurL c’lllyc

» Threads are re-dispatched, baswally, afte
each source instruction. .

39

Unwinding the stack on a
Raised Condition

Normal REXX, strangely, doesn’t unwind ,
the call stack when a condition (exception) is raised

We extended the CALL ON and SIGNAL ON
instruction to allow them to be prefixed with
the keyword UNWIND

For example,

UNWIND CALL ON syntax NAME mysyntnxtrap

mysymaxtrap
say “Tarfu”
refurn

40

/170

Developing CenterBiece
Classes

41

2\ Modularity

» Instances do not have 1o be savedin the :
same ObjectFile as their classes.

» Classes do not have to be saved in the same
ObjectFile as their superclasses.

4?2

A“ Constructors/Destructors

» Any class can have a “Create” method.
Simply add an attribute named Create and

class.

> The method will automatically be run-ygheng
an instance of the class is created.

» Ditto for “Destroy” and ‘ﬁLoad” which wzll

Jfrom an object file, respecttvely

43

A\ User Even‘ft’sj :

» Many classes have methods that are run in
response to user actions.

» These methods are optional, and if not
provided, a default built-in action occurs in
response to the user event.

> Some examples are:
WaorkspaceObject..Drop ar DroppedUpon
Button..Click
TextEntry..Changed

;;‘;;i;;a .

44

/1 Tz

‘“ User Events Co

» The first argument to a user event method is
always a Dictionary object that contams &
entries that indicate what happened.

» The attributes present in the context
dictionary depend on the event. ;
For example, a Drop event would have the
new X and Y locations of the object dropped.

45

173

REexx, Distributed Systems and Objects

John Tibbetts
Kinexis

Pages 174-193

Proceedings of the 6th International Rexx Symposium 174

174

il

Rexx, Distributed Systems
and Objects

John Tibbetts
Kinexis
(415)558-9277
email: john@kinexis.com

Rexx Symposium
May 2, 1995

Copyright Kinexis 1988-1993. All rights reserved.

L/

i

Rexx, Distributed Systems and Objects

Rexx + Client/Server Database

e Simple architecture for simple C/S apps
ORexx + SOM

e Beginning of strong client/server platform
Current technology (ORexx)

e Functions as SOM requester

e Adequate for client-side activity
Coming technology

e Exporting OREXX classes as SOM classes

e Scripting language for OpenDoc

e Suitable as server platform

Copyright Kinexis 1988-1993. All rights reserved.

L1

i

Our approach...

m Discuss paradigm issues

e Evolution of distributed architectures in Four Phases
m Discuss transaction issues

e Agenda of TP
m Examine Rexx C/S implementation strategies

Copyright Kinexis 1988-1993. All rights reserved.

8L/

il

Computing Architecture Phases

1. Centralized
2. Clients to Database Server

3. Clients to Function Server

4. Objects

Copyright Kinexis 1988-1993. All rights reserved.

Iy

Phase 1. Centralized Computing

il

Strong control & manageability

» Good security
» Weak user empowerment

» Weak on distributed computing

» LLimits business “reach”

Copyright Kinexis 1988-1993. All rights reserved.

29/

Phase 2.

il

Clients to Database Server

* Power to the user
» Power to the user interface

* Uneven performance and
integrity

 Weak 3-tier architecture

* Trust problems

Copyright Kinexis 1988-1993. All rights reserved.

/9/

% Phase 3. Clients to Function Server

 Improved performance

and integrity
» Stronger 3-tier architecture
* Trust tuning

* But significant software complexity

Copyright Kinexis 1988-1993. All rights reserved.

zg/

Phase 4. And Then There Are Objects...

i

* Inately partitioned
» Semantic continuity

» Limited transactional awareness

An Object is Data
surrounded by a protective layer of Code

Copyright Kinexis 1988-1993. All rights reserved.

€8/

i

Transaction = “The Deal”

m In clay
e Baked invoices at Ebla (3rd millenium BC)

m On paper
e Sales orders and invoices
e Double-entry ledgers
e Contracts and deeds

m Online
® Reservations for travel, hotels, cars, etc
e Banking & stock trading documents
e Order entry, inventory planning, accounting
e Telephone call setup and billing, email

Copyright Kinexis 1988-1993. All rights reserved.

res

i

ACID Test for Transactions (And All Deals)

Atomicity
e Transactions are “all or nothing” (integrity principle)
e Wedding vows (two-phase commit)

Consistency
e Transactions are a correct transformation of state
e Debits = credits

Isolation
e Concurrent transactions behave as if executed serially
e Transactions don’t see other transactions partial results

Durability
e Once committed, transactions are not forgotten
e Bound to honor COMMITments

Transactions are the computer equivalent of contract law

10

Copyright Kinexis 1988-1993. All rights reserved.

i

The Transactional Discipline

f

roblem
State

58/

roblem
State

Non-transactional: state changes continuously

Solution
State

Transactional: orderly, coordinated, audited state change

Solution
State

Copyright Kinexis 1988-1993. All rights reserved.

99/

How TP Monitors are organized

RM: Storage

TP
Mon 3
RM: Database
Remote
* Transaction
Manager
RM: Queue

RM = resource manager

RM: Printer

RM: Database

12

Copyright Kinexis 1988-1993. All rights reserved.

9/

il

Full-Fledged TP: X/Open DTP Model

...........
...........

Native

Resource
Manager
(RM)

Application

Y

Native

Trans Mgr (TM

Comm
Manager
(CM)

13

Copyright Kinexis 1988-1993. All rights reserved.

89/

i

TP-Lite: Transactions Inside Database

m Today’s client/server databases bundle TM and
DM together

Oracle/Sybase/etc.

m TM should be unbundled for open systems
e Coordinate multi-vendor DBMS
e Coordinate user-written function

e Coordinate other resources

14

Copyright Kinexis 1988-1993. Al rights reserved.

b8/

Imagine Transactional Objects

M Objects distributed about network
M Send messages to
Debit savings acct object
Credit load account

B Commit changes all object states

M Simultaneous to multiple consumers

Customer

Objects are microscopic Resource Managers:
Subsystem driven by a formal API that has state.

15

Copyright Kinexis 1988-1993. All rights reserved.

ob/

i

OMG Transactional Object

VY Transaction g

Transactional Client Transactional Object Recoverable Object
A A A
D e
m ?
r Propagation Propagation %
g Transactional Operation Transactional Operation g
| %
0 n
Registration

» Lransaction Y

Service

Service

16

Copyright Kinexis 1988-1993. All rights reserved.

/167

i

Mapping Paradigm & Transactionality

TP

Phase 1 Phase 2 Phase 3 Phase 4
o Any RPC CORBA,
Monolithic client/server Msg Queue DSOM,
program DBMS Sockets COM,
DOE
Monolithic Any Dist TP: CORBA
program client/server TRPC, (W/OTS),
under TP: DBMS TMQ, DSOM,
CICS, IMS, with LU6.2 (COM) '
Guardian, RUOW or ‘
ACMS DUOW

17

is 1988-1993. All rights reserved.

zb/

% Steps to Distributed, then Transactional, Objects

1. Compatibility among differin

nhlppf models in same machine

Y ALAVUNAWINYD L1 WS ALAW BRAAGES W ALA

e CORBA (coarse-grain)
e SOM (fine-grain)

“oQ

2. Distributed homogeneous objects
e CORBA

e DSOM

3. Distributed heterogeneous objects

e CORBA2.0
e DSOM

4. Distributed transactional objects
e CORBA w/OTS

Copyright Kinexis 1988-1993. All rights reserved.

%4

i

Rexx implementation strategies

Rexx or ORexx Client to Client/Server database
e Phase 2 or Phase 4/2 hybrid
Rexx or ORexx Client to Function server
e Phase 3 or Phase 4/3 hybrid (non-transactional)
Rexx or ORexx Client to TP Monitor (eg. CICS ECI)
e Phase 3 or Phase 4/3 hybird (transactional)
ORexx Client to DSOM
e Phase 4 (non-transactional)
ORexx modifying Server behavior
e Phase 4 (non-transactional)
ORexx Client or Server with ORB transaction services
e Phase 4 (transactional)

19

Copyright Kinexis 1988-1993. All rights reserved.

Getting Ready for Object RExx

Rick McGuire
IBM Endicott

Pages 194-218

Proceedings of the 6th International Rexx Symposium 194

194

Rick McGuire
Object REXX Development
IBM Endicott

Rexx

bj ect

2b(

v ANSwers 10 uesuons VVIIanUI
‘Answers

= A major goal of Object REXX is removing limitations of the
existing REXX language.

= Many of the limitations are seen in some of the most

frequently asked (and frequently unanswered) questions on
bulletin boards.

Rexx
b] ect

Yy

W .Let's Practice

-‘.J. oy

= Question: How do | convert dates from on e RE
to another?

= Current Answer: Well, you don't..

= Object REXX Answer: Just spemfy the input date as the

second argument to the Date() function. A third option
argument tells Date() what input format you are using:

— Date('b’, '28 Feb 1995')

- Date(n', '02/28/1995', 'U) -

Rexx

b} ect

26/

W Passing Stems

= Question: How do | pass a
stem to a function or
subroutine

= Answer: Just specify the
stem in the argument list
and access the argument
with the USE ARG
instruction.

call StemSort stem., count

StemSort: procedure
use arg x., count

return

Rexx

bj ect

VW Returning Multiple Values

= Question: How do | return
more than just a single

string value from a
function?

object

= Answer: Just return a
stem or other "composite”

lines. = ReadFile(filename)

ReadFile: procedure
parse arg filename

count=0 J—

do while lines(filenamey' <> 0
count = count +1
x.count = lingin(filename)

end

x.0 = count

return x.

‘ Rexx)
bj ect

o

.v Expressions in Compound Tails

= Question: How do |
specify that A.i = A.i+17?

= Answer: Specify the
variable part of the tail
within square brackets

("[I")

lines. = ReadFile(filename)

ReadFile: procedure

parse arg filename

Xx.0=0 -

do while Iines(filenaq;@)@i 0
Xx0=x0+1
x.[x.0] = linejri(filename)

end

return Xx.

Rexx
bj ect

W Traversing Stems

= Question: How do | Do tail over stem.
traverse all of the tails say stem.tail
currently assigned to a end
stem?

= Answer: Use the DO
OVER instruction

oy,

‘ Rexx)
bj ect

z0Z

W Packaging Multiple Functions

= Question: Now do |
distribute a "bunch"” of
external functions without
creating a file for each
function?

= Answer: Package the
routines in a "Requires" file

::routine function2 pbhc

.:requires sitefunc.cmd

::routine function1 public

e
y 4

:routine function3 public

‘ Rexx)
b} ect

R ~

W Bonus Function

= Requires files can also /* load required functions */

perform needed global call rxfuncadd 'a', 'b', 'c
setup

::routine function1 public

y

:routine functioh2 public

i

Rexx
b) ect

hov

W Sharing Variables Between Programs

= Question: How can | share
"global variables" between
multiple programs?

= Answer: Access the

variables as a REXX
"environment" variable

.environment-setentry(,

'‘MY.PROGRAM',,
.directory new

.my.program name = "xyz"

Rexx

bj ect

s9¢C

W The "Procedure Expose" Dilemma

= Question: How can | share :class data_manager
variables between related *'method X

subroutines without doing expose name time type
a PROCEDURE EXPOSE

for every variable through

all of the caller's levels?

Answer: Structure the :

related routines as an zmethody .
object and share the expose time type attributes
variables with the EXPOSE _ yd
Instruction |

expose attributes

‘ Rexx >
bjecf

Sl

W . Computed CALL instructions

= Question: How do | make
a call to a routine whose
name is contained in a
variable?

= Answer: Use an indirect
CALL instruction, placing
the routine variable name
iIn parentheses

parse arg name, argument
call (hame) argument

e

Rexx
bj ect

LT

VW Replacing Common Idioms

= Some common REXX idioms can be made easier using
features of Object REXX or by replacing stems with other

DECVYV AlhiAaAta
REXAX ODjects.

Rexx
bj ect

g9

VW Stems vs. Arrays

= A REXX array may be the
more appropriate choice

— Variable size

- Automatically tracks the
size

- DO OVER traverses in
order

lines = ReadFile(filename)

ReadFile: procedure
parse arg filename

output = .queue~new

do while lines(filename) <> O
output-add(Ilnegg»m(flllename))
end |

return output-makearray

Rexx
bj ect

ore

W Stems vs. Directories |

» Compound variables can
be "vulnerable" to other
variable usage in a
program

employee.name

Can fail if name is used as a
variable, but

employee = .directory-hew
employee-name = "Rick"

is always safe!

Rexx
bj ect

1z

VW Stems vs. Directories

= Using compound variables
as both "collections" and
"structures" simultaneously
can be awkward

employees.i.name = "Rick"
employees.i.salary = "??7"

VS.

employees|i] = nextWorker()

— S R
oS
L

zIT

W Consider Building You Own Objects

= While many problems can be adequately solved by stems,
arrays, directory, etc., consider building your own objects:

— Hide the processing logic
- Can be placed in a REQUIRES file for better reuse.

;%7;@‘%}3

Rexx
,bj ect

v A Common Problem

= Customer wants to process a group of records contained in
a flat file, with the data fields organized in columns.

— Records must be easily accessed, updated, and written
out to a new file in the same format.

— Record formats are subject to change, so updates must
be easily performed.

~ Multiple programs will be written to perform updates
against the same files.

Rexx
bj ect

hIT

W A Solution

::class employee

::method init

expose name id address salary manager

parse arg name 25 id 32 address 100 salary ,
106 manager 131

::method name attribute
::method id attribute
::method address attribute
::method salary attribute Py
::method manager attribute o

::method string
return left(name, 25) Il left(id, 7) Il left(address, 68) Il ,
right(salary, 6) Il left(manager, 25)

Rexx
bj ect

W A Solution (continued)

[* Give everybody a raise! */
parse arg oldFile newFile

do while lines(oldFile) <> 0
employee = .employee-new(linein(oldFile))
employee-~salary = employee-~salary +,
employee-salary * .10
call lineout newFile, employee
end

::requires employ /* include the employee records */

a
)

Rexx
b)' ect

YT

VW Building New Idioms

= Over the years, many common REXX idioms have been
developed
= These idioms are still valid, but...
— New Object REXX idioms may replace some existing
ones
—~ New Object REXX programming idioms will be added to
existing ones

P (g}y\\\:\ < ““‘,«v/z«f\’ il
g

bj ect

LT

W For Your Consideration... -

= A new Object REXX programming idiom, the "caching
directory”

- Keep a cache of items read from a disk file
- Caching is done on first reference to an item
- Subsequent requests pull the item from the cache

Rexx

bj ect

W The Caching Directory

/* Create an employee file caching directory */
cache = .directory-new /* get a directory */

[* add an unknown handler
cache setmethod('UNKNOWN', .methods['UNKNOWN'])
return cache [* set up is done! */

::method unknown -
expose dataFile s
parse arg employeeld

if \var(dataFile) then dataFile = .stream”™ emp rec')
record = dataFile"linein(Employeeld%10l
record = .employee new(record) |
selffemployeeld] = record

return record

y : Rexx
::requires employ bject

SOM - Present and Future

Simon Nash
IBM Austin

Pages 220-235

Froceedings of the oth International Kexx Symposium

220

SOM - Present and Future

Simon C. Nash

IBM Corporation
Austin, TX

nash@austin.ibm.com

What is SOM?

x System Object Model

» Part of the OS

+» Language-neutral

« Language bindings (toolkit)
* Cdmpiler support (DTS)

~ » Distributed objects (DSOM, CORBA)

SCN 2 May 95

Why SOM?

x» OO language interoperability

» Binary format for objects

* Release-to-release binary compatibility

» Procedural language access

» Support for distribution

SCN 2 May 95

223

Platforms

Available:

0S/2, AIX, Windows, Macintosh

Announced:
MVS, AS/400

Other ports in progress

SCN

2 May 95

224

Languages

Available:

C, C++, Smalltalk
Beta:

Object REXX
Ahnounced:

OO COBOL

SCN

225

2 May 95

SOM Releases

1992: SOM 1.0

(C, OS/2 WPS)
1993: SOMobijects 2.0

(C+ +, IDL, CORBA, DSOM)
1994: SOMobjects 2.1

(Warp, DTS C+ +)

1995: 777

SCN

2 May 95

SOM Components

x kernel
x toolkit:
— SOM compiler, language bindings
x class libraries:
— collections
* frémeworks:

— persistence, replication, events,
metaclass, IR, emitter

x distribution

— DSOM (workstation and workgroup)

SCN 2 May 95

A SOM Example: stack.idl

#include <somobj.idl>

interface Stack: SOMObject

{
void push (in SOMObject element);

SOMObject pop ();
long size ();

implementation
{
SOMObject contents[100];
long top;
somDefaultInit: override;
}s
}s

SCN

228

2 May 95

A SOM Example: stack.c

#include "stack.ih"

SOM Scope void SOMLINK push(Stack *somSelf,
Environment *ev, SOMObject* element)

{
StackData *somThis = StackGetData(somSelf);
StackMethodDebug ("Stack","push");
_contents[top++] = element;

}

SOM _Scope SOMObject* SOMLINK pop(Stack *somSelf,
' Environment *ev)

{
StackData *somThis = StackGetData(somSelf);
StackMethodDebug ("Stack", "pop"):
return contents[-- top];

}

SCN 2 May 95

229

A SOM Example: stack.c

SOM Scope long SOMLINK size(Stack *somSelf,

{

Environment *ev)

iiackData *somThis = StackGetData(somSelf);
StackMethodDebug("Stack","size");

return top;

SOM_Scope void SOMLINK somDefaultInit(Stack *somSelf,

{

somInitCtrl™* ctrl)

StackData *somThis; /* set in BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
StackMethodDebug("Stack","somDefaultInit");

Stack BeginInitializer somDefaultInit;

Stack Init SOMObject somDefaultInit(somSelf, ctrl);

_top = 0;

SCN 2 May 95

230

A SOM Example: test.c

#include <stdio.h>
#include <som.h>
#include "stack.h"

void main (void)

{

}

Stack *stackl, *stack?2;
Environment *ev;
SOMObject *objl;

i

stackl = StackNew();

stack?2 = StackNew();

ev = somGetGlobalEnvironment();
_push(stackl,ev,stack?);

printf("stackl size is %1i\n", size(stackl,ev));
objl = pop(stackl,ev);

printf("stack2 size is %1i\n", size(objl,ev));
_somFree(stackl);

_somFree(stack?);

SCN 2 May 95

231

A SOM Example: test.exe

sc -sc stack.1idl

/* code the method implementations */
sc -shj;ih stack.id]l

icc test.c stack.c som.1ib

test

/* output is:

stackl size is 1
stack? size is 0

*/

SCN 2 May 95

232

A SOM Example: stack.dll

sc -sc stack.idl

/* code the method implementations */
sc -sh;ih;def stack.id]

icc /Ge- stack.c som.1ib stack.def
implib stack.lib stack.def

icc test.c stack.lib som.lib

test

/* output is:

stackl size is 1
stack? size is 0

)

SCN

233

2 May 95

SOM Features

» static compile/link time binding
— for high performance
+» name lookup, programmable dispatch
— for flexibility, dynamic languages
* cléss and metaclass objects
~x Mmultiple inheritance

» transparent proxies

SCN 2 May 95

L9

SOM Challenges

» scaleability: many fine-grained objects

« performance: approaching native C+ +

* shared objects: multi-process

» run-time footprint: class metadata

» local/remote transparency

» OMG services, CORBA 2

» dynamic language support

SCN 2 May 95

Rexinda

Stephen Rondeau
AugmenTek

Pages 236-251

Proceedings of the 6th International Rexx Symposium

23e

236

Rexinda™

Stephen Rondeau
AugmenTek

3606 S. 180th St. C-22
SeaTac, WA 98188
Phone: 206-246-6077

augmentek@acm.org

Rexinda is a trademark of AugmenTek.

Copyright 1995 AugmenTek. All Rights Reserved.

Agenda

—Linda®

- Rexinda

-- Applications
-- Future

If enough time...
— Availability

-- Parallelization

Linda is a registered trademark of Scientific Computing Associates, Inc.

Page 2 of 15

254

Copyright 1995 AugmenTek. All Rights Reserved.

Linda: Background

- David Gelenter, early 1980s dissertation
- Parallel programming model

> coordinate execution and data sharing
to solve common problem
> simple to use
> shared memory model
> "tuple space” (global data area) managed
by aserver

- C and FORTRAN implementations
-- Several companies
> Scientific Computing Associates, Inc.

> Torque Systems, Inc.
> Others

Page 3 of 15

Copyright 1995 AugmenTek. All Rights Reserved.
Linda: Terminology

- Tuple: like a database recordv

(field1, field2, field3, ...)

> Examples: ("ball", "color", "red")
("lst", {2,4,6,8,10})

- Tuple Space: unordered collection of tuples,
possibly distributed over many
Processors

> Example:

("ball", ncolorn, nredn) ("bOX", "Size", 10)
("list", {2,4,6,8,10}) ("ball", "color", "green")
(27) (4989, 67,828763) ("box","size",10) -

- Matching: uses number of fields, data types,
field order, and user values

Page 4 of 15

Copyright 1995 AugmenTek. All Rights Reserved.

Linda; Functions

-- Six functions: out(), rd(), in(),veV.alw(),
rdp(), inp()

> Examples use Rexinda’s syntax
— out(): put tuple into tuple space

Call out "ball", "color", "red"
> ("ball", "color", "red")

Doi=1to5
number.i = 1*2

End

number.0 =5

Call out "List", "@S$S number."
> ("list", {2,4,6,8,10})

Page 5 of 15

Copyright 1995 AugmenTek. All Rights Reserved.
Linda: Functions (continued)

- rd(). in(), rdp(). Inp(): get values from tuple
space by matching

L p - 3 L

in() -- wait, copy values, remove tuple
rdp() -- match not found, return 0; else rd()
inp() -- match not found, return 0; else in()

rd() -- wait for match, copy values

> Examples given later
—eval(); start a new process
> Example:

Call eval "sort_result", "CA\SORTRXI"
> ("sort_result", 0) after completion

Page 6 of 15

24z

Copyright 1995 AugmenTek. All Rights Reserved.

Linda: Matching Examples

Given the tuple space (TS):
(Hba]l"’ "COIOrH, Hredﬂ) ("bOX", "Size", 10)
("list", {2,4,6,8,10}) ("ball", "color", "green")
(27) (4989, 67,828763) ("box", "size", 10)

In order of execution;

Call rd "ball", "color", "? color"
> color="green" -- or "red", TS unchanged

Callin ".C", "size", 10
> One of ("box", "size", 10) is removed

If rdp("box", "size", "IN size") =0
then Call out "box", "size", 20
else Say "size="size /* 10 in this case */

Call rd "ball", "size", "N size"
> waits for matching tuple to appear

Page 7 of 15

243

Copyright 1995 AugmenTek. All Rights Reserved.

Rexinda: Rationale

-- Popularize parallel programming

> models world

> requires modularity
> allows recoverability
> offers scalability

— Follows REXX fairly well

> functions are easy to remember
> associativity similar to stems
> tuple space is global, like default scope

- Leverage REXXs fast prototyping

- Extend REXX to handle user-defined
events (data appearing in tuple space)

Page 8 of 15

24¢

Copyright 1995 AugmenTek. All Rights Reserved.
Rexinda: Goals
- Goals

> C Linda-like (conversion, reference)
> Avoid preprocessing source code

> Extendable

> Automatic datatyping with overrides
> Progressive disclosure philosophy

> Handle errors

-- Basic method: prefix string argument with
"markers"

Page 9 of 15

295

Rexinda: Syntax Markers
-- Needed on out() only to force data type

> "@d" string
where data type d 1s:
-- "C" or missing for character

- "N" for a valid REXX number
--"S" for a stem

- Input functions really need it:

>"?d varname"
get value of type d and put it in varname

:> ".(1"
ignore field that has data type d

> "@d" string
force data type d for this string

Page 10 of 15

24¢

Copyright 1995 AugmenTek. All Rights Reserved.

Applications: Simple Emal

Email:

My program:
Parse arg name message
Call out "mailto", name,,

"from", "stephen”,,
message

Everyone is running this program:
Parse arg my_name .
Do Forever
Call in "mailto”, my_name, ,
"from", "? sender”,,
"7 message”
Say "Mail from" sender":" message
End

Page 11 of 15

297

Copyright 1995 AugmenTek. All Rights Reserved.
Applications: Simple Print Spooler

-- Print spooler client:

Parse arg file_name
If rdp("'spooler”) =0
then Call eval "CASPOOLER"

Call in "id", "?N 1d"
Call out "id", id+1

Call out "print", id, file_name
Call in "done", 1d

Say "Job" id "has printed."

-- Print spooler ("C\SPOOLER"):
“Call out "spooler”
id=1
Call out "id", id

Do while rdp("spooler”, "quit") =0
Select
When inp("print", id, "? file_name") then do
Address CMD "@COPY" file_name "/B LPT1"
Call out "done", id

id = 1d+1
end
Otherwise Call Delay 1 /* Every inactive second */
End

End

Page 12 of 15

298

Copyright 1995 AugmenTek. All Rights Reserved.

Future; Enhancements

— Matching:

> Aggregates: match and return values for
more than one tuple per call (1.0)
> Counting: count number of matches (1.0)
> Inequalities: allow matches based on
<, >, \=, <=, >=avalue
> Patterns: allow matches within a field to
cause match of tuple

- Persistence
- Security
— Recoverability

-- Transparent data/object access

Page 13 of 15

249

Copyright 1995 AugmenTek. All Rights Reserved.

- Availability

—- Rexinda Base (version 0.1): Now

> Source code

> No user support

> Inconvenient and slow

> Cannot distribute server source code

> US$20. plus $3. S&H, US Destinations
(WA residents add 8.2% tax)
-- Price subject to change without notice

-- Rexinda 1.0: if sufficient interest
> Function library (DLL) and fast server
> No source code, compatible with Base

> Some enhancements (TBD)
-- Rexinda n.0, n > 1: success of v1.0

-- Rexinda Net 1.0: if sufficient interest

> Network (TCP/IP) version
> Some enhancements for networking

Page 14 of 15

Copyright 1995 AugmenTek. All Rights Reserved.
Parallelization

-- Carriero and Gelemter:
How to Write Parallel Programs, MIT Press,
1991, ISBN 0-262-03171-X

-- Three approaches:
> Result -- the shape of the problem
Example: SQRT(elements of matrix A)
> Specialist - the makeup of the workforce
Example: send requests to servers
> Agenda -- the tasks to do

Example: many capable workers, list of
tasks

Page 15 of 15

Rexx for CICS/ESA

Bob Vogel
IBM Dallas
Pages 252-272
Proceedings of the 6th International Rexx Symposium 252

252

Bob Vogel

May 3, 1995

(C) Copyright IBM Corporation 1993, 1995

253

W
il
iy

Cohtents

e
i
fiy
i

Introductionttt ittt ae it e et e e e e 1
What is "REXX for CICS/ESA” ... i ittt it ittt s st st annnns 2
The REXX LanQuagettt irrennnenreronenrsssnnsaanessssonscsnanns 3
Trends toward REXX popularity e e e e e 4
Shift to very high level languages ittt iranrenrsanrsensans 5
Backgroundt i st e r ey 6
Project historyttt it e st a e s aannaaenaennnes 7
Backgroundt et e e e e 8
FUNCHON OVEIVIEW . . vt ittt ittt st ettt e aeeeseeansnaaeeereassann e snnnenns 9
Function Overview {continued) i i i i it it e s 10
11 =YY« 11
REXX File System (RFS)t i i i i it e it na s ea s 12
REXX/CICS Text Editorttt i m et st s e et ennnassanennnnsannonnsns 13
£ 7= o 1 1 4/ T 14
2=y Y 2.1 = 12 1 - J 15
EXEC CICS commands notsupportedt eer s 16
SUMMAIY .. . ittt ittt e it s et s m s e s s e n e e s e 17
QUESHIONS ... ittt ittt sttt s st s e n s e s e e e s 18

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 i

2549

Introduction FEEL

e Copyright

(C) Copyright IBM Corporation 1993, 1995

e Trademarks

The following terms used in this paper are trademarks or
service marks of IBM Corporation in the United States or
other countries:

 CICS/ESA, IBM, MVS/ESA, OfficeVision, 0S/2

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 1

255

What is "REXX for CICS/ESA”

el
l,u“[l
il

e Two products (GA 7/29/94)
— REXX Development System for CICS/ESA (5655-086)
— REXX Runtime Facility for CICS/ESA (5655-087)

* REXX language support for CICS/ESA

e EXEC CICS Command support from REXX
e CEDA and CEMT REXX interfaces

» REXX-DB2 Interface

» Native CICS application environment
- — REXX Panel Facility
— High-level file system & filelist utility
— Text Editor
— Interactive shell

— Open Application Integration facilities
* . High-level Client/Server support

e And More

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 2

256

The REXX Language IBH

* Created by Mike Cowlishaw, at IBM Hursley

* In ANSI X3J18 committee since 1991, target for standard is
1995

e Strengths of REXX
— Natural / high-level
— Avoids unnecessary detail
— Typeless
. — Strong parsing
— Command and function support
— Source level interactive tracing
— Complete set of modern programming constructs
— Fairly small language, easy to learn
— Rich set of functions

— Can be interpreted or compiled

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 3

z57

| 2 % A VAY 4 _

Trends toward REXX popularity IBM

e Widespread use of REXX under 0S/2
— Now in PC DOS 7.0

« REXX moving aggressively to new platforms

» Shift to very high level languages / devp systems
* Macro support taking off industry wide

e ANSI REXX effort progressing well

e REXX compilers

e Dramatic increases in computing power (improves REXX
.~ performance)

e Shift to new system architectures, where REXX is a natural
— Client/Server computing
-- — Workstation GUI to Enterprise data/appls (Visual REXX)
— Object Oriented (OO REXX)
- — Messaging and Queueing (Workflow Scripts)

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 4

25¢

Shift to very high level languages IBM

e Highly competitive times demand higﬁer productivity

« Large numbers of non-DP pros coming on board

» Alignment of programming with business organization

e More complex systems difficult to develop & maintain

» . Prototyping Development Methodology has come of age

» Building block approach and code reuse popular

e REXX and BASIC beefed up for serious programming

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 5

259

Tlnf}

el
syt
]

Background

What were design goals for REXX/CICS

Deliver a strong productivity tool

Create a serious REXX-based application environment

Make REXX work with CICS languages and facilities

Provide a native prototyping, development and
customization environment

Common REXX support across CICS platforms

Provide high-level Client/Server interfaces

» . Utilize the power of REXX in an open application integration

platform

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995
260

Project history =M

e REXX prototype to IBM Program Product

— From Assembler to PL/X for portability

— FROM TSO/E REXX base to direct use of REXX kernel

.. — From 1 person research project to formal development
team

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 7

26/

Background | IBM

Why Now

* Growing exposure to REXX and its power
 Growing emphasis on productivity

* Product requirements for REXX under CICS

. Opportunity to improve a very important environment
* Enhance customers’ large mainframe investment

— REXX for CICS actually introduces some of the concepts
of personal computing into the MVS/CICS environment.

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 8

262

Function Overview IEM

Highlights

e Full REXX 3.48 language support under CICS

e Dynamic EXEC CICS command level support

e REXX interface to CEDA, CEMT

 DB2 Interface (SQL statements & DB2 commands)

e CICS native text editor for REXX execs and data

-i | High-level VSAM-based REXX file system (RFS)

* Execs may also be run from MVS Partitioned Datasets

* High-level Panel I/O facility

- — Also supports BMS

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 9

2Ze3

Function Overview (continued) IBM

* Support for REXX Subcommands (themselves written in
REXX)

* Pseudo-conversational support (conventional and auto)
 System and user profile exec support

* Shared execs in storage (via EXECLOAD & EXECDROP)
 High-level Client/Server interfaces

- Online help and softcopy REXX/CICS manuals

. Improved run-away REXX task management

* Concurrent international language support (English + 6)
— German, Spanish, French, Canadian French

- — Japanese Kaniji, Simplified Chinese

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 10

26¥

Need

Need for REXX/CICS

As a tool to streamline support staff activities

— CICS Systems Programmers and Administrators
— DB2 Analysts

— CICS and DB2 testers, other support staff

More productive CICS application development
— Native CICS development (simpler)
— Enjoy the strengths of REXX under CICS

More flexible, powerful product customization & extension
(macros)

Quick prototyping and procedural language functions

. Preserve REXX investments in migrations

Needed for products with REXX requirements

As a script language to automate/streamline development
sequences

Help enable enterprise-wide Client/Server computing
Better enable CICS end-user computing |

- CICS Application Integration
— Glue language to tie the pieces together
— Building block support

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995

65

1

1

REXX File System (RFS) Features

e Hierarchical Directory structure (like 0S/2, AIX)
e VSAM based

e No need to register most new users

* No need to register individual EXECs

e Import/Export from/to MVS Partitioned Datasets

e Management functions for members (COPY, DELETE,
- RENAME)

o FLST file directory interface utility
e An EXECIO-like 1/O utility (RFS)
e VSAM datasets can be added to a Filepool dynamically

e Number of filepools only limited by DASD

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 12

Leb

REXX/CICS Text Editor imM

Editor features

e Two personalities

— XEDIT

— ISPF

e RFS and PDS file support

¢ Terminal models 2, 3, 4 & 5 supported

e Customizable

e REXX macro support

* Execs can be run without leaving editor

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 13

267

Security

Security features

e CICS security facilities (via ESM) to control access
e REXX/CICS Authorized Command support
e REXX/CICS Authorized Library support

o REXX/CICS Authorized User support

* Security exits

e RFS AUTH command for directory sharing

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995

268

[E]
llu“"
il

Performance

REXX/CICS interpreter uses sophisticéted performance
techniques

Majority of execution time usually not in language
processing

Shared and Reentrant code / execs

Performance numbers, courtesy of Steve Ware, University
of Florida on WWW (see last page for Web address)

REXX/CICS run-time support for compiled REXX/CICS execs

a possibility

15

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995

269

T

oyl
el

EXEC CICS commands not supported

HANDLE ABEND

HANDLE AID

HANDLE CONDITION

IGNORE CONDITION

PUSH HANDLE

- POP HANDLE

(C) Copyright IBM Corporation 1993, 1995

16

May 3, 1995
270

Summary 1M

REXX/CICS Summary

REXX Development System for CICS/ESA much more than
another language

REXX/CICS introduces significant new capability

REXX/CICS provides new approaches to CICS computing
REXX/CICS opens CICS to a broader range of uses
REXX/CICS is a strong productivity tool for devp and support
REXX/CICS is a good application integration platform

REXX/CICS is useful for serious programming

- REXX/CICS is natural for Client/Server computing

REXX/CICS is in step with industry trends (application
server)

CICS and REXX are very synergistic
— REXX = ease of use, high productivity, native devp env.

— CICS = production computing and common support

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 17

2.7/

Questions 1B

Questions and Wrabup

* Future direction
— Runtime Lite
— Compiler Support

— TCP/IP Sockets

* How to get more information on REXX or REXX/CICS
- http://rexx.hursley.ibm.com/rexx/
— http://sfware.nerdc.ufl.edu/rexxcics/rxkixhom.html

— dshriver@vnet.ibm.com

e Questions

May 3, 1995 (C) Copyright IBM Corporation 1993, 1995 18

27Z

Rexx Changes in OS/2 Warp

Dick Goran
CFS Nevada, Inc.

Pages 274-282

Proceedings of the 6th International Rexx Symposium 274

27y

2 e x]x]
Changes in 0S/2
Warp

REXX Symposium
May 1-3, 1995
Palo Alto, California

Dick Goran
C F S Nevada, Inc.
953 E. Sahara Avenue, Suite 9B

HEVAOA Las Vegas, Nevada 89104-3012
Voice: 702-732-9616
FAX: 702-732-3847

Email: 71154.2002(@CompuServe.com

275

Warp and REXX

arp, or 0S/2 Warp Version 3.0 as

W it is officially named, has added
5 new functions to the
REXXUTIL application programming
interface, or API as IBM likes to call it.
Figures 1 through 5 contain a description
of these new functions as they appear in
the REXX Reference Summary Handbook.
Unfortunately, IBM did not do a very good
job in documenting these new functions.

While copying, moving, or creating
shadows of workplace shell objects (WPS)
is somewhat intuitive, saving and opening
WPS objects with the new functions is not.

SysCopyObject(), SysMoveObject(), and
SysCreateShadow() are fairly
straightforward in their purpose. These
functions permit a simple means of
copying, moving, or creating a shadow of
WPS objects from within a REXX program.
However, there are some points of special
interest when using these three functions.

When an object is copied, no object ID is
provided for in the copy. Whether the
original object has an object ID or not, the
copy will not have an object ID. The only
currently available mechanism for
assigning an object ID to the copy is with
a third-party utility such as DeskMan/2.
When a shadow is created, the shadow ID
of the newly created object will have the
same value as the object ID of the original
object.

The purpose of the SysSaveObject()
function is to force 0S/2 to flush the file

h:\os2-ref1\course\rexxsym1

276

system objects properties (stored as
extended attributes) and the Workplace
Shell abstract objects properties (stored in
the OS2.INI and OS2SYS.INI files) to disk.

The SysOpenObject() function is just as
obscurely documented in the online
REXX.INF file that comes with Warp. As
with many of the other WPS functions
contained in REXXUTIL, the IBM-supplied
documentation refers to WPS and program
manger C** language functions that the
average 0S/2 user would not have access
to without owning the toolkits made for
0S/2. The information shown in Figure 1
was compiled from a combination of "bit-
digging" research along with some
assistance from IBM's Glendale
Laboratories - the group responsible for
REXX development. The numeric values
shown in Figure 1, and used to tell the
SysOpen() function which view is to be
opened, may not be complete. It will take
some trial-and-error testing along with
independent research to determine what
other values may be used. I suggest that
users who want to keep up with the latest
information, as it becomes available, stay
current with the material in the various
REXX related fora on CompuServe
(OS2DF1, Section 6), IBM's IBMLink and
TALKLink (OS2REXX CFORUM),
comp.lang.rexxon the Internet along with
your favorite local BBS.

Development Technologies and Greg Czaja
have released version 1.51 of DeskMan/2
with updated REXX functionality as well
as interfacing with the WPS functions for

© 1995 by CF S Nevada, Inc.

Warp. CF S Nevada, Inc. has released the
third edition of the REXX Reference
Summary Handbook (ISBN 0-9639854-2-6 |
IBM SRL & PUBORDER $246-0078-01) with
the Warp additions.

One of the other major changes in Warp
that is directly related to REXX is the
ability to both create and change printer
objects (WPPrinter class) and the new
LaunchPad (WPLaunchPad) with the
REXXUTIL functions. Figure 11 is an
example of a REXX program used to
replace an existing LaunchPad with one
configured within the program.

SysSaveObject(object_name, timing_flag)

Returns 1 if the WPS object object_name was
successfully saved; otherwise, returns 0. File system
objects (WPFileSystem) are saved in the file system’s
extended attributes and abstract objects are saved in the
OS2.INI (user) file. Transient objects (WPTransient)
cannot be saved.

Object_name can be a WPS object ID (the unique string
preceded with a ’<’ and terminated with a *>’) assigned
to the object when it was created (e.g.
<WP_DESKTOP>) or a fully qualified file name.

Timing_flag can be 0 (Boolean false - object is to be
saved synchronously) or 1 (Boolean true - object is to
saved asynchronously).

Figure 1 - SysSaveObject() function

SysCreateShadow(object_name, -
- object_destination)

Returns 1 if a shadow of object_name was successfully
created at the specified location, object_destination;
otherwise, returns 0.

Both object_name and object_destination can be a WPS
object ID (the unique string preceded with a '<’ and
terminated with a ’>’) assigned to the object when it
was created (e.g. <WP_DESKTOP>) or a fully qualified
file name.

Figure 2 - SysCreateShadowf() function

h:\os2-refl\course\rexxsym1

277

SysOpenObject(object_name, view, flag)

Returns 1 if the WPS object object_name was
successfully opened on the Desktop; otherwise, returns

Object_name can be a WPS object ID (the unique string
preceded-with a <’ and terminated with a '>') assigned
to the object when it was created (e.g.
<WP_DESKTOP>) or a fully qualified file name.

View specifies the view to be opened and can contain
either a numeric value or the equivalent string. The
function will pass all numeric values to the underlying
wpOpen() or wpViewObject() function without testing
the value for validity.

0 - DEFAULT
1-ICON

4 - RUNNING
5 - PROMPTDLG
121 - PALETTE

Flag can contain a 1 indicating that an existing view of
an object can be opened on top of the Desktop
(resurfaced) by calling the wpViewObject method or a
0 indicating that the view specified in view is to be
opened using the wpOpen method. The following
comment originated in the description of the wpOpen
method:

"In general, wpViewObject should be used instead of
the wpOpen method. This is because wpViewObject
takes into consideration the setting in the Object Open
Behavior field on the Window page of the Settings
notebook for the object. If a view of the object is
already open, wpViewObject will depending on the
setting of the Object Open Behavior field, either display
the existing window for the object or create a new
object.”

“In contrast, wpOpen always opens a new view of the
object. Under certain circumstances this might be
called for, but, under most circumstances,
wpViewObject should be called instead."”

Figure 3 - SysOpenObject() function

SysMoveObject(object_name, -
-~ object_destination)

Returns 1 if object_name was successfully moved to
object_destination; otherwise, returns 0. If the object
already exists in the destination location, it is not moved
and a O is returned.

Both object_name and object_destination can be a WPS
object ID (the unique string preceded with a’<’ and
terminated with a '>') assigned to the object when it
was created (e.g. <WP_DESKTOP>) or a fully qualified
file name.

Figure 4 - SysMoveObject() function

© 1995 by C F S Nevada, Inc.

SysCopyObject(object_name, -
- object_destination)

Returns 1 if object_name was successfully copied to
object_destination; otherwise, returns 0. If the object
already exists in the destination location, it is not copied
and a 0 is returned.

Both object_name and object_destination can be a WPS
object ID (the unique string preceded with a ’<’ and
terminated with a *>") assigned to the object when it
was created (e.g. <WP_DESKTOP>) or a fully qualified
file name.
Note 01: The copied object will not have an
OBJECTID whether the original object
had one assigned or not.

Note 02: Some of the object’s other properties are
not copied along with the object.
Specifically, ASSOCTYPE= belonging to
the original object does not appear on the
copy. This is consistent with what occurs
when using drag & drop to copy an
object.

Figure 5 - SysCopyObject() function

Tips on Using REXX
and the Workplace Shell

Any changes which are made to an open
Settings notebook via SysSetObjectData()
are not necessarily reflected in that
notebook until it is closed and reopened.

If the same key name is specified more
than once within a setup string, it
generally appears as though the first key
name-value pair is the one which prevails;
however, that is not always the case.

Where a numeric value of 0 or 1 is used to
represent NO or YES respectively; it
appears that any numeric value other than
0 will be used as if the value had been 1.

Some of the alphabetic values of the key
" name=value pairs have been found to be
case sensitive with uppercase being
required; therefore, all alphabetic values

h:\osz-reﬁ\course\re)sxsyml

should be created in uppercase.

A new line character, '0A'x, may be used to
cause a value such as Title to occupy more
than one line. Also, it appears that the
occurrence of the escape character, ™,
causes a new line to be created; however,

2nd and subsequent escape characters

. used for this purpose appear to be ignored.

278

If both ICONFILE and ICONRESOURCE are
specified in the same setup string,
ICONFILE prevails.

An OBJECTID should not be assigned to an
object defined as a template since this
would lead to multiple objects with the
same OBJECTID.

The object pointer or handle can only be
retrieved via the wpclsQueryObject
method or the WinQueryObject function,
respectively (neither of which are
currently available via REXX).

Prior to Warp, there was no method for
altering the background characteristics for
a folder other than the bitmap image
name (e.g. image vs. color; normal, scaled
or tiled image; etc.) using either
SysCreateObject() or SysSetObjectData().
Warp allows all of the characteristics of
the Desktop background to be specified.

Prior to Warp, there was no method for
altering "Always maintain sort order"
using either SysCreateObject() or
SysSetObjectData(). Warp introduced the
“ALWAYSSORT=YES;” setup string
parameter.

If OPEN=SETTINGS is specified, the

© 1995 by C F § Nevada, Inc.

program object's notebook is opened;
however, if OPEN=DEFAULT is specified,
the program object is launched (its icon is
cross-hatched) and the program appears in
the task list but it does not come to the
foreground without either a second call to
SysSetObjectData() or manual
intervention.

Warp | REXX
Mystery Failures

There has been a "fix" in Warp Version 3
implemented by IBM that is subtly causing
REXX programs, that ran with prior
versions of 0S/2, to fail. The culprit is the
lack of file handles in the 0S/2 session
where the REXX program is running.

The default number of file handles, a
resource required for each open file, is,
and has been, twenty. Of the twenty,
fifteen are available for user programs
with five being reserved for system-related
files. Prior to Warp Version 3.0, when
multimedia support was installed it
changed the default for the number of file
handles from twenty to eighty.
Apparently, this was being done without
the knowledge of the kernel developers

/* 9506LS07.CMD (RXLS05.CMD)

LaunchPadID = *<WP_LAUNCHPAD>"’
location = "CWP_0S2SYS>”
title = 'LaunchPad’
class = "WPLaunchPad’
J K e e e e e oL *\
| Setup LaunchPad string |
* */
parameters =,

"CCVIEW=NO; "’

h:\os2-ref1 \course\re)‘(xsyrnl

279

and they deemed it necessary to "correct”
this problem.

The end result is that if you have a REXX
program that inadvertently references file
with any of the input/output (I/O)
functions: CHARIN(), CHAROUT(), CHARS(),
LINEIN(), LINEOUT(), or LINES() or uses any
library functions that do not close all of
their files (for example - the
SysGetMessage() function); these programs
may begin to fail. The only way to prevent
this from happening is to increase the
number of file handles available in the
particular session where the program is
running. This can be done with the
GrowHandles() C function. Quercus
Systems has implemented this capability
in their latest version of REXXLIB, a
commercial product that is available in a
fully functional "demo” form from your
favorite OS/2 BBS or repository. With the
addition of REXXLIB.DLL, you can call the
DOSFILEHANDLES() function and specify
the number of file handles you want to be
available for that session. Once the
number of file handles has been increased,
the larger number of file handles remain
available to that session until the session
is closed.

- Build your own Launchpad */

/*
/*
/-k
/*
/*
/*
/~k
/*
/*
/*
/*

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

© 1995 by C F S Nevada, Inc.

"HELPPANEL=32253;" , /* 0013 */

"ICONRESOURCE=74 PMWP.DLL;"’ ' /* 0014 */

"LPACTIONSTYLE=0FF;"’ |, /* 0015 */

"LPCLOSEDRAWER=YES; "’ | /* 0016 */

"LPDRAWERTEXT=YES; "’ , /* 0017 */

"LPFLOAT=NO;"’ L /* 0018 */

"LPHIDECTLS=YES;"’ , /* 0019 */

"LPSMALLICONS=YES;"’ , /* 0020 */

"LPTEXT=YES;"® , /* 0021 */

"LPVERTICAL=YES;" , /* 0022 */

"NOPRINT=YES;"’ , /* 0023 */

"FPOBJECTS=" |, /* 0024 */

"<WP_DRIVES>,”’ /* 01 */ ||, /* 0025 */

"<WPPO_HPLaserd>,’ /* 02 */ |}, /* 0026 */

"<Corel_Draw!>,”’ /* 03 */ ||, /* 0027 */

"<KWP_MEGASCAN~3>,” /* 04 %/ ||, /* 0028 */

"KWP_OS2WIND /* 05 */ |}, /* 0029 */

"<TAPCIS>,” /%06 */ |], /* 0030 */

"WordPerfect_for_Windows>,” /* 07 */ ||, /* 0031 */

"<WP_GAMES>,” /* 08 */ ||, /* 0032 */

T [, /* 0033 */

"OBJECTID=" || LaunchPadID || ;’ /* 0034 */

/* 0035 */

call SysCreateObject class,, /* 0036 */

title,, /* 0037 */

location,, /* 0038 */

parameters,, /* 0039 */

. 'R’ /* 0040 */

if RESULT <> 1 then /* 0041 */

do /* 0042 */

say ’ Error creating launchpad’ /* 0043 */

exit /* 0044 */

end /* 0045 */

/* 0046 */

A R *\ /* 0047 */

| Setup drawer strings | /* 0048 */

NKom */ /* 0049 */

drawer_01 =, /* 0050 */

"DRAWEROBJECTS=01," |, /* 0051 */

"<BackMaster>,”’ [, /* 0052 */

TLIAWWW, [, /* 0053 */

Ty /* 0054 */

/* 0055 */

drawer_02 =, /* 0056 */

"DRAWEROBJECTS=02, "’ [, /* 0057 */

"<WPPO_FxPrint>,”’ [, /* 0058 */

Y /* 0059 */

/* 0060 */

drawer_03 =, /* 0061 */

"DRAWEROBJECTS=03," [, /* 0062 */

"c:\osZ2addon\pmcamera.exe,’ |, /* 0063 */

T /* 0064 */
h:\os2-refl\course\rexxsym1 6 © 1995 by CF S Nevada, Inc.

X80

/* 0065 */

drawer_05 =, /* 0066 */
"DRAWEROBJECTS=05,"’ [, /* 0067 */
"KWP_WINFS>,”’ |, /* 0068 */
TCWP_WINZWINY, [, /* 0069 */
"<WP_DOSFS>,”’] /* 0070 */
"<WP_DOSWIN>,” |, /* 0071 */
"<KWP_QS2FS>,” [, /* 0072 */

. /* 0073 */

/* 0074 */

drawer_06 =, /* 0075 */
"DRAWEROBJECTS=06, "’ , /* 0076 */
"CIAK_SLIPPM>, /* 0077 */
"<ADV_DIALER>,’ /* 0078 */

||

I
"<WP_0S/2_CIM__ >, 1. /* 0079 */

|1

|1

"<KWP_INTERNETACY>, /* 0080 */

TKWP_XTALK_AMK_ >, /* 0081 */

Ty /* 0082 */

/* 0083 */

drawer_Q7 =, /* 0084 */

"DRAWEROBJECTS=07, "’ |, /* 0085 */

"KWP_WP_5.1>," I, /* 0086 */

"<WP_REXX_~HAND>,’ [, /* 0087 */

N /* 0088 */

/* 0089 */

A R e *\ /* 0090 */

| Add drawers to LaunchPad & open it on Desktop | /* 0091 */

) R */ /* 0092 */

call SysSetObjectData LaunchpadID, drawer_01 /* 0093 */

call SysSetObjectData LaunchpadID, drawer_02 /* 0094 */

call SysSetObjectData LaunchpadID, drawer_03 /* 0095 */

call SysSetObjectData LaunchpadID, drawer_05 /* 0086 */

call SysSetObjectData LaunchpadID, drawer_06 /* 0097 */

call SysSetObjectData LaunchpadID, drawer_07 /* 0098 */

/* 0099 */

call SysOpenObject LaunchpadID, 0, 1 /* 0100 */

exit /* 0101 */
h:\os2-refl\course\rexxsym1 7 © 1995 by C F $ Nevada, Inc.

28/

Referenced Resources

REXXLIB - 0S/2 REXX API ($20.00 to $50.00)
Quercus Systems
14500 Big Basin Way, Suite E
Saratoga, CA 95070
800-440-5944 orders
408-867-7399 voice
408-867-7489 FAX
408-867-7488 BBS
CompusServe, PCVENA, Sec 11 (GO CIS:QUERCUS - Charles Daney 75300,2450)

REXX Reference Summary Handbook ($27.95) by Dick Goran
C F S Nevada, Inc.
953 E. Sahara Ave, Suite 9B
Las Vegas, Nevada 89104-3012
800-739-9672 orders
702-732-9616 voice
702-732-3847 FAX

Biographical info - Dick Goran:

A veteran of the computer industry for 34 years, Goran is a contributing editor and
monthly columnist for OS/2 Magazine and serves as one of IBM’s OS/2 Advisors on
CompuServe. Considered one of the leading authorities on 0OS/2 REXX, Goran
authored the best-selling, award-winning REXX Reference Summary Handbook.

His company, C F S Nevada, Inc. located in Las Vegas, offers the 0S/2 REXX class
to the public as well as publishing the REXX Reference Summary Handbook. Goran
speaks to OS/2 User Groups and other industry associations throughout the country
on both OS/2 and the REXX programming language.

Goran returned to the software business in 1991 after having sold his IBM mainframe
systems software development business in 1987, retiring, and relocating to Las Vegas
from Boston. While in Las Vegas, Goran began hosting an evening radio talk show
and has since appeared in several movies.

Goran is highly visible in the OS/2 forums on CompuServe and can be reached via e-
mail at 71154.2002@ CompuServe.com. He also maintains an FTP directory at

fip.netcom.com./pub/dg/dgoran where many of his 0S/2 REXX utilities are available
to the public at no charge.

h:\os2-ref1\course\rexxsym1 8 © 1995 by CF S Nevada, Inc.

2B

S/REXX by BENAROYA

David Salthouse
Open Direct

Pages 284-290

Proceedings of the 6th International Rexx Symposium

2e4

284

S/REXX by BENAROYA

David Salthouse Open Direct
david.salthouse@utopia.fnet.fr

285

History

——————

1989 SEDIT

1991 S/REXX

1994 S/REXX DEBUGGER

Platforms

AIX
HPUIX
SUNOS
SOLARIS
IRIS
ULTRIX
LINUX

b

S/REXX VERSION 4 REXX
——NO LIMITS ON:- I

Procedure Size

Expression complexity
Nesting of Parenthesis
Variables number and content
Recursive function Depth
Argument number and size

LANGUAGE EXTENSIONS:-

Full Function EXECIO
Dynamic Loading of Routines
Multiple Procedure Expose
LEAVE or ITERATE within an INTERPRET
CD
- DO name IN expr; End;
OPTION case, setenv, load
LOWER,UPPER
PARSE EXTERNAL and PARSE NUMERIC
{3 DO; END
[SUBSTR

2867

S/REXX VERSION 4 BUILT-IN FUNCTIONS

Dialog Management Openlook or Motif:-
buttons

labels

input fields

toggles

Other BUILT IN FUNCTIONS:-

ARCHY()
CHDIR(),MKDIR(),RM()
LINEIN(),LINEOUT()
UNIX(cmd,stem)
STATUS()
date(date(‘b’)+7)

Programming Interface
add user supplied builtin functions
embed S/REXX into C applications

TEST DRIVE SEDIT, S/REXX AND RXD

download from
http://www.sedit.com/sedit

http://www.portal.com/~sedit

229

Z : : Z : : 2 ﬁ
ex = dy_input(29, 1.3, 2 . . a .
: o : : : : . : : 7 /,f’;f;
call dy label 14, 3.3; WITH THIS ’ : - ; i i ; : 2 ,//%;’#fﬁm/
Swith dy ex = dy 1oput(29, 3.3, 29) :

¢ =*call dy;iahel 5, 6, ‘From Solum:®
$frowc dy ex = dy. input(18, b, 10, ‘zd

call dy label 30, 6. ’To Colum:’
$toc dy ex = dy input(42, 6, 10, zond

call dy label 5, 8, ° From Line:’
$framl dy ex = dy input(18, 8, 10, li

dy exch: starts the EXCHANGE dyalog box:

| DISMISS| EXCHANGE THIS:

HITH THIS:

From Colwmn: .. (1) To Column:

From Line: (4) " To Line:

i Consider Case 1 Whole Word

| Do IT |

.
*
*
*x
.
x
W
X
*
X
X
*
’(.
x
x
*
*
*x
X
X
w

I o
signal on novalue
option mixed setenw
trace x

*extract/zone/case/1ine/size/nbfile’

_if nbfile.1 = 0 then
{ 'prompt Open a file first’
exit 0
}

if ~$%handle_dy ex then

e

A Rexx-based Stock Exchange Real-time
Client/Server Environment for Research, Educa-
tional and Public Relations Purposes: Implemen-

tation and Usage Issues

Martin P. Misseyer
Lou W. M. Guse

Armoud W. Morsink
Vrije Universiteit Amsterdam

Pages 292-322

Proceedings of the 6th International Rexx Symposium 292

292

A REXX-based Stock Exchange Real-time Client/Server
Environment for Research, Educational and Public Relations Purposes:
Implementation and Usage issues - .

Martin P. hﬁiié}"é‘r‘, Lou W.M. G‘l'iie, Arnoud W, Morsink

Vrije Universiteit
Faculty of Economic Sciences, Business Administration and Econometrics
Department of Information Systems

Amsterdam, April 1995
Abstract

For many years now the Faculty of Economic Sciences, Business Administration and Economics of the Vrije Universiteit in
Amsterdam propagates to impart students of economics scientific 'real market' skills and experience in, for example, portfolio
management. Aside from the risk neither the faculty nor most of the students have sufficient means to practice in portfolio
management. In the early 1980s the idea evolved at the faculty to develop and use a portfolio management simulation. The
Amsterdam Stock Exchange (ASE) granted the faculty in 1983 afree of charge data link with its administrative clearing information
system. The data link provided the faculty with real-time data including stocks traded (time, price and volume), exchange news,
stock splits and many more. At the time the technology used was relatively simple: the data link consisted of a 1200 bps modem
connection using the X-modem protocol to receive data. The received data were put in flat files and were in turn read by a
- small, written in C, in-house developed portfolio management simulation system named TRANSPAS.

Tn 1990s it became inevitable for ASE to acquire a modern trading system as more and more trade leaked to more sophisticated

“foreign exchanges (London, Paris, and Frankfurt). ASE developed a new trade system, entailing major operational and technical
changes. In September 1994 a new, fully automated, trade system became operational for complete administration of all ASE
transactions (to be) made. Nowadays at the ASE tens of millions of stocks, bonds, futures change hands every day.
The major changes were twofold. First the trade itself was re-enginecred by ASE, however this is not discussed in this paper.
Secondly, a remendous change at the technology level was unavoidable. ASE moved from simple analogue asynschronous

_communication to X.25-based digital synchronous communication (SDLC), anticipating on the need for both much more capacity
as data streams increase (re-engineering!) and for full reliable data-link monitoring. Therefore, the faculty was faced with the
fact that TRANSPAS as well as its data link became outdated, and implied that the whole system had to be rebuilt.

In 1993 the first author of this paper headed the project team, a composition of colleagues (researchers, graduates, automation
staff) and enthusiastic undergraduates, to rebuild TRANSPAS and its ASE data link. The first step the project team took, before
setting up several projects, was re-examining the faculty goal. After thorough research, two goals were aimed at. First, the
basis of the integrated environment should be based on state-of-the-art relational database technology (the database project
was named after the database to be developed: BeursBase) in which all the raw ASE data received would be stored real-time/on-line
for a long period of time, preferably three years or more. Secondly, the project team distinguished three major application
areas for the database: research, education and public relations. For each of these areas a specific range of application programs

2493

must be developed. Obviously, one of the core application programs is the portfolio management simulation system TRANSPAS,
which was renamed into: VUPOS. It became clear that VUPOS could be used in all three areas defined.

Concurrently with the ASE new trade system, the faculty-built REXX-based Client/Server (C/S) became operational. Though
already halfway implementation the faculty was informed by the Computer Services Center about its new strategy: the IBM
$/390 host facility, the VM Server in the REXX C/S environment (and the basis for both BeursBase and several applications
including VUPOS) would be stopped at the end of 1995. It would be replaced by a AIX cluster of 4 very large 590 RS/6000
mid 1994. When the project team was acquainted with the news immediate action was taken. In contrast with the SQL/DS
version installed DB2/6000 (AIX) supports full C/S. For several reasons the project team decided to develop in parallel a second,
REXX-based C/S environment using the ATX host as Server. This new’ C/S environment - referred to as the AIX C/S environment -
went in operation last January 1995. As the 'old' VM C/S environment was primarily based on REXX, porting the applications
to a'new' AIX C/S environment was relatively simple. Both VM C/S and AIX C/S environments are now fully operational
and perform as was planned for, having many similar as well as distinguishing characteristics. The portfolio management Simulation
(VUPOS) for the VM C/S environment is written in CSP, and is already used by hundreds of students. Since the AIX C/S
does support full C/S the project team was able to develop VUPOS in VX-REXX. Recently the development of this version
of VUPOS has entered its final stage. Other applications in VX-REXX, APL/2, VisualGen and VisualA ge under construction,
range from an import/export facilities to fundamental and techmical analysis, and are primarily developed for the AIX C/S
environment. The first quarter of 1995 will be used for large scale tests of the system.

This paper presents the design, development, and implementation of these C/S systems from both developer and user views
and from both technical and non-technical points of view.

1 General introduction
_ 1.1 Students, portfolio management and TRANSPAS

'Formany years now the Faculty of Economic Sciences, Business Administration and Economics (FEWEC) of the Vrije Universiteit
_in Amsterdam (The Netherlands) propagates to impart students of economics scientific ‘real market' skills and experience in,
for example, portfolio management. Aside from the risk neither FEWEC nor most of the students have sufficient means to
practice in portfolio management. In the early 1980s the idea evolved at FEWEC to develop and use a portfolio management
simulation. The Amsterdam Stock Exchange (ASE) granted FEWEC in 1981 a free of charge data link with its administrative
clearing information system. The data link provided FEWEC with real-time data including stocks traded (time, price and volume),
exchange news, stock splits and many more. At the time the technology used was relatively simple: the data link consisted
-.of a 1200 bps modem connection using the X-modem protocol to receive data. The received data were put in flat files and
were in turn read by a small, written in C, in-house developed portfolio management simulation system named TRANSPAS.

1.2 Developments at the Amsterdam Stock Exchange

Early in the 90s it became inevitable for ASE to acquire amodern trading system as more and more trade leaked to more sophisticated
foreign exchanges (I.ondon, Paris, and Frankfurt). ASE developed a new trade system, entailing major operational and technical
changes. In September 1994 a new, fully automated, trade system became operational for complete administration of all ASE
transactions (to be) made. Nowadays at the ASE tens of millions of stocks, bonds, futures change hands every day.

-

294

The major changes were twofold. First the trade itself was re-engineered by ASE, however this is not discussed in this paper.
Secondly, a tremendous change at the technology level was unavoidable. ASE moved from simple analogue asynschronous
communication to X.25-based digital synchronous communication (SDLC), anticipating on the need for both much more capacity
as data streams increase (re-engineering!) and for full reliable data link monitoring. Therefore, FEWEC was faced with the
fact that TRANSPAS as well as its data link became outdated, and implied that the whole system had to be rebuilt.

1.3 Rebuilding TRANSPAS: a project plan

In 1993 the first author of this paper headed the project team, a composition of colleagues (rescarchers, graduates, automation
staff) and enthusiastic undergraduates, to rebuild TRANSPAS and its ASE data link. The first step the project team took, before
setting up several projects, was re-examining FEWECs goal. After thorough research, two goals were aimed at. First, the basis
of the integrated environment should be based on state-of-the-art relational database technology (the database project was
named after the database to be developed: BeursBase) in which all the raw ASE data received would be stored real-time/on-line
for a long period of time, preferably three years or more. Secondly, the project team distinguished three major application
areas for the database: research, education and public relations. For each of these areas a specific range of application programs
must be developed. Obviously, one of the core application programs is the portfolio management simulation system TRANSPAS,
which was renamed into Vrije Universiteit POrtfolio Simulation, in short VUPOS. It became clear that VUPOS could be used
in all three areas defined.

The VUPOS/BeursBase project defined the following phases:

1° Provide a strategy plan, including a re-examination of FEWECs goal(s);

2° Evaluate possible solutions, alternatives for the new system,

3° Design a new organizational setting;

4° Design several subprojects in which the system should be developed and implemented;

5° Provide a maintenance structure based on the strategy plan, including a costs/benefits analysis.

" Phases 1° 2° and 5° lie beyond the scope of this paper, except for a re-examination of FEWECs goal (phase 1° partially) these

phases are not discussed. This paragraph elaborates on the subprojects defined (phase 3°). Phase 4°, the design of several subprojects
is discussed in the next paragraph. Before continuing with the subsequent section it has to be said that the focal point of this
 paper is an exemplification and a discussion of the implementation and usage aspects of the REXX-based Client/Server environment
developed at FEWEC.

1.4 The strategy plan: a re-examination of FEWECs goal

. In the early 1980s TRANSPAS was set up as a kind of ‘test’ or 'toy' system primarily by students, two lecturers and a system
administrator. At the time focus was purely on practice: how can we implement a portfolio simulation system for usage in
education? A re-examination of this simple FEWEC goal is shown in figure 1.

At best stock data provided by Beursdata should be stored in a underlying relational database (BeursBase). Then three user
application areas can be distinguished: research, education and public relations. The research and education user applications
areas seem more likely than the public relations application area. True, an university position stems from the quality of research
and education. The public relations more or less benefit from these facts. At this moment universities in the Netherlands are
faced with a significantly declining number of students, partially because of the aging population and partly because of a declining

-

295

willingness to study, and therefore competition is high. This is where the public relations part plays a role: FEWEC needs ways

to attract potential students. The public relations user application area is distinguished for this goal. FEWEC members, lecturers,
researchers and student can aid in application development for this purpose. Other public relations activities are for example
finance , i.e. stock and bond investment competitions, school lectures, educational seminars, and media publicity.

(BeursBase)

Disciplines User areas %’Zﬁ":ﬁfim
: E area

Finance E E

Financial Accounting E Research Education Public E

Econometrics . Relations '

Information Systems . l__% l_+_‘ Lﬁ—
: Application
H and systems
: control
: Relational database 4
H Applications

'Figure 1 The application areas for real-time stock data in a scientific environment.

The fourth application area is the one for system and maintenance. In this area users, programs and database control rather

than stock data are the issue of concern. Finally, each of the user application areas distinguished can be viewed from a variety

of economic disciplines. The most relevant disciplines are among Finance, Information Systems and Information Technology,
_.Econometrics, Financial Accounting and Operations Research or Management Science.

The information above can be concentrated into a general purpose framework, a matrix structure in which the user application
areas are defined as column and the economic disciplines as rows. For each matrix cell one or more specific users application
programs can be developed. Or, if application programs are already available abundantly and are easily adapted in current
environment, they should be used instead Furthermore, some application programs if generally developed can be used in more
than one area distinguished, and/or in more than one discipline. In that case one can look for or develop application programs
for more widespread usage. In table 1, some examples are provided.

2496

The fourth application area forms an exception to the framework. This is primary the area of the Information Systems and
Computer Science disciplines and involves more fundamental research on information systems, decision support systems,
databases, (tele)communication and networking.

Finance - Portfolio management and theory, - Portfolio management simulation; - Financial investment competitions;
- Theory on market efficiency, - Data analysis; - Demonstrations,
- International stock markets; - Application of IS and DSS; - Financial workshops;
- Develop of perf indi - Practical classes; - Finanoial seminars,
- Analysis of stock market and financial investment - Workshops; - Bank and stock market sponsoring;
data - Seminars; - Mediz (financial and newspapers),
- Application of IS and DSS
Information Systems - Design DSS, ES, KNN systems - Data analysis, - Financial investment competitions;
- Database conoepts and theory - Application of IS and DSS; - IS demonstrations,
- System and application develop - Practical classes, - IS workshops,
(Client/Server, Object Orientation) - Workshops; - IS seminars;
- Application of IS and DSS - Seminars; - Media (IS and newspapers),
- Human computer interface
Econometrics - Statistical (exploratory) data analyses - Data analysis; - Financial investment competitions;
- Longitudinal and time series analysis - Application of IS and DSS; - Demonstrations,
- Application of IS and DSS - Practical classes; - Workshops,
- Design of simulation models - Workshops; - Seminars;
- Seminars, - Media,
Financial accounting - Analysis of performance indicators - Data analysis, - Financial investment competitions;
- Analysis of stock and equity issues - Application of IS and DSS; - Demonstrations;
- Application of IS and DSS - Practical classes; - Workshops,
- Workshops, - Seminars,
h - Seminars; - Media;
Monetary economics - General market theories - Data analysis; - Financial investment competitions;
- Impact stock market on economy - Application of IS and DSS; - Demonstrations
- Application of IS and DSS - Practical classes; - Workshops;
- Workshops, - Seminars;
- Seminars, - Media.
"~ Table'l Framework for application program development.
1.5 Criteria for the C/S environment development: in search for processing power
The requirements for a BeursBase and VUPOS platform needed
to be specified. Several criteria were defined to determine
the amount of processing and database power necessary for
BeursBase, VUPOS and other application usage. The project
team came up with the following criteria:
ASE Vrije I SARA
(] Number of users in every area distinguished; -
[J Number of applications in every area; N Ewec wev || Largo sysiems
L] Type of database processing; .
. . Appe & Davnbave Snk
L. In-house experience with systems; ‘
| Ares of interext
] Costs/benefits,
[l Designing for flexible systems in terms of portability,
efficiency and effectiveness;

Figure 2 The organizations involved.

297

Having limited resources available, added to the fact that use of SARAs, the academic computer center of the two universities
in Amsterdam, was already paid for up to 1996, the choice was simple. As the department of Information Systems was already
using SARASs facilities, the cooperation was intensified. The organizational setting is shown in figure 2. Beursdata, ASEs data
vendor provides FEWEC since 1981 with real-time stock exchange data. In 1993 the communication link was upgraded to
a X 25 structure. FEWEC, with approximately 3100 students the largest of 15 faculties of the Vrije Universiteit, transforms
the real-time ASE data into SQL data-format and puts it into BeursBase (SARA). Ideally, FEWEC members, lectures, researchers,
assistants and students should be able to use the data for many different purposes. Data should be available both directly by
extracting it (by query) and indirectly by using application programs.

1.6 SARA the computer services center

Since 1987 SARA supports an $/370 facility. During the years it was first expanded from a 3090-150 to a 3090-180 and
in 1990 it was replaced by a huge 3090-600VF. The 6 processors were used to run VM, MVS and AIX concurrently. The
project team selected the Virtual Machine (VM) operating system to become the BeursBase database server because it came
with SQL/Data System installed. The MVS operating system did have DB2 installed, though this facility was not supported
for general usage. During the development of the REXX-based Client/Server environment it was found that the SQL/DS installed
did not support a server mode. SARA didn't want to invest in a higher SQL/DS kevel, as it had other plans. But first, the project
teamn decided to develop itself the necessary Client/Server programs, as will be discussed in paragraph 2. Without a ‘true’ Client/Server
environment the project team also decided to develop the first user applications on the VM host (with the IBM development
environment Cross Systems Product).

The first signs of strategic movements were already disclosed in 1992 as the 3090-600VF (S/370) was replaced by a 9021-720
(S/390). Developments accelerated in the fall of 1993 when SARA announced it would stop its VM service at the end of
1995. First it reduced the 9021 to a 580 when it stopped the AIX service on this machine. SARA decided that the future role
of ATX would become more important, therefore it adopted a new facility, a one of IBMs new developments: a AIX cluster
of RS/6000 computers. The cluster installed consists of four 590s and three 980s each equipped with 1 Gb RAM and 6 to 10

"~ Gb disk space. The reason why SARA adopted the new hardware is because it is relatively simple to add processing power

to the cluster. One simply adds one or more RS/6000s. Another reason is that an AIX cluster supports ‘farming’, or distributed
processing, which was highly necessary for the high performance computing services offered to the more technical faculties

" Chemistry and Physics.

Though already in the final stage of development of the VM C/S environment, the project team decided not to wait for more
developments to come, but to test the REXX-based C/S environments' flexibility immediately. Because the new AIX facility
was provided with IBMs latest version of the DB2 database management system, DB2/6000, now a real C/S environment became

.anoption. The project team decided to develop in parallel to the VM C/S environment an AIX C/S environment in which DB2/6000

would operate as a real database server. It was hoped for that REXXs flexibility would minimize the redevelopment effort.
1.7 Keeping focus

Irrorder to avoid problems in discussing the REXX-based C/S environments, the following commentary is necessary. First,
not one but two REXX-based C/S environments were developed. The VM C/S environment is referred to as the 'old' C/S
environment, the AIX C/S environment is referred to as the ‘new' C/S environment. Secondly, the C/S environments have two
levels: a X.25 data link level (ASE-FEWEC) and a database level FEWEC-SARA). The C/S implementations have a common,

-

ie. fixed, X 25 data link (receiving ASE data). With respect to implementation, the area of interest in this paper is primarily
the database level (see figure 2). The difference in implementation of the C/S environments stems from the fact that DB2/6000
(the ALIX RDBMS) is and SQL/DS (version 2.2 of the VM RDBMS used) is not a database server. Thus to establish a VM
C/S environment we needed to develop our own C/S environment. From an application and database perspective the VM C/S
environment is not a genuine C/S environment because both applications, e.g. VUPOS, and database, i.c. BeursBase, reside
at the host. This is in contrast with the AIX C/S environment which fully supports client applications. Thirdly, both systems
are fully operational and perform well. Fourthly, with respect to design, development, and implementation issues both VM
C/S and AIX C/S implementations are discussed from developer and user views and from both technical and non-technical
points of view. Fifth, after VUPOS was implemented further application development for the VM C/S environment was stopped.
Thus a discussion about future plans and strategy in this paper, refers to the AIX C/S environment.

2 The design for a real-time Stock Exchange client/server environment
2.1 Moving to a client/server environment: the first level

Figure 3 shows the ideal setup of the organizations involved

and their systems. The ARTEMIS system of Beursdata is fed
AEB Vrije SARA on a real-time basis by ASEs trading system TSA. FEWEC
Universiteit has to develop X.25- based communications, a local real-time
data link, including a subsystem for temporary data storage.
Renrdaca pe | o5 || Depermemt Also FEWEC has to adapt a C/S environment for data and
information. Data received should be inserted in a database
server (BeursBase); information should be retrieved by client
y L applications from the host database. The C/S environment should
TSA m :gz Server apps be developed using open communication standards.
For manageability reasons the REXX-based Stock Exchange
ARTEMES X258 Vser appe + C/S environment project is divided into the following sub-
m i projects, sce table 2.

Figure 3 The organizations involved and their systems.

3 Client/Server environments
3.1 The Client/Server concept

Since its introduction, the concept of Client/Server has been discussed among a broad range of disciplines by a large number
of people. Scientists, business professionals and many others have been vividly discussing of what one should and should
not include in the C/S concepts. As there are so many distinguishable perspectives as opinions, no full-proof C/S definition
has been formulated, so far. This paragraph elaborates on our ideas of C/S, hereby avoiding great difficultics and long discussions
in placing our C/S environments into general C/S frameworks.

2199

3.2 The five Client/Server levels

C/S can be viewed from both technical and non-technical perspectives. The C/S concept is limited to four aspects, namely,
data, database, application programs and users. These four areas include both technical and non-technical perspectives. In
general one can distinguish five C/S levels which are exemplified in figure 4. Every higher C/S level inherits lower level

functionality.

In the next paragraph first the general levels of C/S are discussed. Then table 2 is further explained by schemes of the architectures
of the two C/S environments.

e

A) The X 25 data link

-
oG
-
e

X 25 data link monitor

The X.25 data link is logically divided into two parts. The first part receives data packets through a number of logical
circuits. These data packets are numbered sequentially per logical circuit. The second part validates received data packets
on consistency and sequence number. If one or more data packets are missing or corrupted, this part of the X 25 data Imk
does a retransmission request.

In order to have control of the X.25 data link and to be able to automate this part of the C/S envirenment, it is highly
recommended to have a GUI-based monitor. This monitor has to show the status of y active icati
programs, the logical circuits and information about the amount of dats and data packets received, retransmitted and the
retransmit status. If one or more hardware, software, X.25 or file errors occur, the GUI-based monitor should be able to
Testart system components, or the system itself.

(B) The relational
database
BeursBase

m

Relational database model

DBA manipulation, monitoring
and authorization programs

The data received from the Stock Exchange has to be formatted appropriately without losing any information for later data
manipulation. In compliance with the ARTEMIS data dictionary a relational data model was developed. This data model is
logically divided in two parts. At the one hand all X.25 data received is stored into a submodel. On the other hand

jon and system programs store their own specific data.

Though application programs for database, not data, ipulation, database monitoring and authorization are necessary,
the are out of the scope of this paper. At the moment these applications are under development and will be REXX-based.

{C) Ctlient/Server envi-
ronment

data-SQL converter

C/S monitoring program

Before the data received can be stored into BeursBase, one has to remodel the data to the relational model defined. The
function of this program is to create SQL DML statements out of the data received.

An application which provides the data and session link layers from the PS/2 to the database (BeursBase) for SQL DML
statements execution. In the VM C/S this function is partially implemented by a REXX FTP-based program. In the AIX
C/8 environment this program is replaced by a C/S software package named Client Application Enabler/2 (CAE/2).

This application program executes the SQL DML staty ts into B , in both C/S envi In the 'old' VM
C/S the application runs at the VM host, in the ‘new’ C/S envirorunent it runs at the pe.

Like the X.25 Monitor the Client/Server Monitor information about the C/S and BeursBase status is necessary. Like the
X25 envi the C/S envi ghould run conti ly and aut ly. For the 'old’ VM C/S environment the
monitor is slightly different than for the 'new’ AIX C/S environment.

b
Table 2 An overview of

the projects and components of the REXX-based C/S environments.

(A) A Client/Server data link.

~1f the database as well as user application programs reside on one computer system, one cannot speak of C/S. In our C/S
environments, the database residing on this computer system, is fed remotely with data. Therefore we argue that, from a data
perspective, this is the most simple form of C/S. In general, if one looks at the user, database or application program perspectives
this is considered not to be C/S. The reader should keep in mind that all subsequent C/S levels discussed use this 'C/S level'.
As will be shown later, it is this data C/S level which distinguished the two C/S environments developed.

(B) Application program clients - application program/database server level
In the second C/S level simple computers of end-users are the clients populated by several relatively small application programs.
These application program make use of a computer system acting as a database server. In addition, the remote host system

-

B

is reachable by the end-user too, for larger applications programs, as the local computer system lacks performance and/or the
communication line capacity is too small for large scale database I/O. Then, in that case the end-user computer system is used
as a dumb terminal as both processing and database 1/Os are executed at the remote server.

(C) Application program clients - remote database server level

The next higher level of C/S is when all applications are executed at the clients and the host purely acts as a database server.
Thus advanced and complex processing is done at the client level. Three requirements have to be fulfilled. First, faster and
more complex client computers. Secondly, a sophisticated communication infrastructure is necessary to cope with large scale

database I/O and processing. Thirdly, the application programs developed are by far more complex than in the case of C/S
level B.

Host Host Host
(Apps and Database Server) (Database Server)
it 1 mmmy
it it 1
L2
'®
[o)
PCasa client
(with lecal apps)

PC 28 a client
(with apps and local databese)

Figure 4 Five levels of Client/Server environments.

(D) The distributed database level
An evenmore advanced C/S levelis established when database processing is distributed and fully integrated in the C/S environment.
In this case one has remote as well as local database servers co-operating in a C/S environment. The client computers system
can be such a local database server as well. Thus it is not important where the data is stored and where the processing is done.
At this level data is stored where it should, for example user specific data is stored as close as possible to the user. In addition,
for performance reasons, the distributed database environment decides where to store application specific data. For performance
reasons this can be as close as possible to end-users, to some extend introducing data redundancy, or as central as possible
at aremote database server. Thus the distributed database environment decides where database processes can be handled at
best. At this level client computers can act as application clients as well as local database servers simultancously. At this C/S

a

3ol

level due to limited client computer system performance (as high performance computing applications programs need) end-users
are still able to use application programs directly at some host system, which acts as both database and application server.

(E) The distributed application level

The most sophisticated level of C/S is established when, aside from the distributed database environment, the application programs
too are distributed among several clients and servers. Thus the C/S environment decides where to handle data as well as application
program processing. For example /O intensive database operations are executed at a specific database server , CPU intensive
calculations are executed on a specific application programs server, small database operations are run on a local server (client)
and the remainder of the application programs are executed on another client. In research nor in the business environment
has the fifth C/S level been implemented yet.

In summary, the FEWEC-SARA data link in both VM (SQL/DS) and AIX (DB2/6000) C/S environments is purely C/S level
A. The AIX C/S environment from an end-user and application programs perspective, is of C/S level B. Before discussing
in greater detail the future plans and strategy with respect to the directions the AIX C/S environment will move, the developments
of the C/S environments so far, are further discussed.

Layer

Figure 5 The VM/CMS Client/Server environment.

10

Bt in

3.3 The VYM-C/S environment

Figure 5 shows the architecture of the VM C/S environment. The data flows distinguished are explained briefly. The X.25
data packets are received by X2SREAD (arrows up) and written to a file (arrow down to 08/2). X25CONTROL checks this
file on validity (packets complete?), consistency (right sequence?) and completeness (all packets received so far?). If not the
case retransmission of one or a range of data packets is requested (arrow down) and, when received (arrow up), written to
a temporary file (arrow down). The temporary file appended to the first file, is written to a complete data packets file by
X25CONTROL (arrows up and down). Reading the complete data packets file (arrow up), Cook decides which lines read
have to be converted to BeursBase data model formats (SQL). Lines containing only a synchronizing timestamp, are not used
directly as we will see later. Each SQL statement generated is put in a separate file (arrow down), preceded by the parsed acbfcode,
timestamp created and some C/S control parameters. Next, Upload sends new files (arrow up) to the host (arrow down) through
aFTP comection (TCP/IP). At the host, the SQL statements executor, Sec, sequentially reads received files (arrow up) and
first creates a SQL statement based on the parameters (the acbfcode plus timestamp) found at the first line. The result of execution
of this SQL DML (table SELECT) statement (our unique fcode) is combined with the SQL statement, containing the actual
SQL DML operation (table INSERT, UPDATE or DELETE), found in the file. This SQL statement is subsequently executed
into BeursBase (arrow down).

For a continuous autonomous environment, VM file management is quite different compared with other operating systems
like UNIX, OS/2 and MS-DOS, a VM file limitation had to be overcome. In contrast with a hierarchical file structure used
by most of the operating systems, VM uses a flat file structure. Files are stored with the format <filename, 1 to 8 characters>
<file type, 1 to 8 characters> <file mode, 1 character plus 1 digit between 1 and 6> on a so-called virtual minidisk. Minidisks
are mapped onto physical storage devices (DASDs). To be used by a program a virtual minidisk has to be linked physically
(by a CP LINK command) and has to be logically attached (by a CMS ACCESS command). VM allows multiple links, both
in exclusive or shared read and/or write modes. Because links to minidisks are static links, file operations by one program
are not 'seen’ by another program. Thus, to establish a real-time VM C/S environment, Sec has to refresh its link with the minidisk
where Upload writes the SQL DML data files to. This is done every time Sec does not find the next file in sequence (file type
" =number). To avoid the probability that Sec updates the link to the Upload minidisk continuously, Sec pauses a few seconds
when after relinking no new files are found.

Every program mentioned writes a status file to be read by one of the two monitor programs, X.25 monitor and VM C/S monitor.
' To establish a C/S environment, the VM C/S monitor needs information about Sec. Since it cannot read directly the Sec status
file, it has to be frequently downloaded by Upload. In addition , Upload reads the Sec status file frequently too, in order to
determine successful execution of SQL statements, and to delete corresponding files by issuing remote (FTP) deletes accordingly.

3.4 The AIX-C/S environment

At afirst sight the architecture of the AIX C/S environment shown in figure 6 is almost identical to its VM C/S counterpart.
However, what seem 'minor’ differences in design, with respect to the VM C/S environment, results in tremendous improvements.
First, because a standardized C/S interface (Client Application Enabler/2) is applied, Upload is dropped. In addition, because
Sec executes the SQL DML statements from the PS/2 (client), no special file operations (minidisk link refresh) are needed.
Thus, this C/S environment gives advantages from both control and integration perspectives.

Atthe one hand, better control (effectiveness) because all status (file) information is directly available to the C/S monitor program,
without necessary tricks. On the other hand, integration of functions is enhanced (efficiency) because programs involved run
concurrently on one computer.

-

11

303

In the next paragraph we discuss the C/S architectures in greater detail, especially with respect to REXX and its interfaces used
in the C/S environment.

User
Program

Layer

System
Program
Layer

Commu
nication
Layer

X5

System

Figure 6 The AIX Client/Server environment.

4 REXX and the interfaces used in the VM and AIX C/S environments

4.1 Introduction

The basis of this paper is to elaborate on the impressive role REXX performed in development and implementation of the VM
and AIX C/S environments. In particular, programming techniques, tips and tricks applied form the main subject for this paragraph.

-

12

3oy

Basically, the answer on the question why REXX forms the core
in the development of the VM and AIX C/S environment, is

visualized in figure 7. This figure shows that REXX, compared Graphicat

to other programming languages and development environments, o Tnterfuces

is exceptional with regard to supported interfaces. True, REXX m son) 1 Cliewt/Server
is not the exclusive language having so many different interfaces, /

in this respect for example is C of equal quality, though it's the ease

of us which makes REXX unique. In addition, the fact that REXX
programs cab be both interpreted and compiled, makes REXX / \
special. [Tceap

other code (F1ID)

For each interface shown in figure 7 some general and REXX be C va DLLs)
programming concepts applied are discussed. Flle and Message Handiing

Unfortunately, to avoid lengthy discussions, only some glimpses

are provided. Figure 7 REXX interfaces.

4.2 REXX flexibility in C/S environments: designing for both performance and portability

Our experience is that REXX can be used very effectively in C/S development. One should be aware of the programming power
which comes with REXX. Like any language one can benefit tremendously if one is cautious about performance and flexibility.
First, develop REXX programs as universal, i.e. system-independent as possible for portability reasons. Secondly, do not make
use of operating system specific functions, unless there is no alternative available. Thirdly, code well-documented, though
as compact as possible. This is especially true if one does not use compiled code. Fourthly, when necessary and if possible,
test programs on different hardware as soon as one can. Don't wait until there's no way back.

4.3 REXX and embedded SQL: the REXX-SQL interface

" Aside from some exceptions, most of the administrative information systems in the economics discipline, especially in the
business environment, are characterized by only a few fundamental functions. These comprise data storage, data manipulation

and information retrieval and presentation. Since its introduction as a general purpose query language, its popularity is growing.
4 Nowadays use of SQL, an acronym for Structured Query Language, is widespread. For years now, SQL has a solid place
in the FEWEC IS curriculum. Its adoption in the C/S development was inevitable.

The REXX-SQL programming interface is available for all IBM database management systems (SQL/DS, and several DB2
versions). Despite some minor differences the REXX SQL programming interface is implemented uniformly for all database
. management systems. The usage of the REXX-SQL programming interface in the C/S environment is explained by the following
example. The example shows how SQL database manipulation language (DML) statements are generated by an data-SQL
converter, which we called Cook, and how the are interpreted by Sec.

Each line from the checked data packets file is examined by Cook. If Cook finds relevant data, it 'cooks’ the corresponding
SQL DML statement, based on the specified action on the data line. Lines not of interest should not be converted into SQL
DML statements, though there is one exception: Cook does not use lines containing control data consisting of synchronizing
timestarp for the X.25 connection. However, lines containing ASE trade volumes data do not have a timestamp. In that specific
case Cook uses the timestamp found in previous line processed, which sometimes contain such control data.

-

13

1 1B87ANFAIE0SBNLOODO3 60584 8104811 NLG2 4040 55500

3. 864A0FC22311NLC000223113 220000 2 -

1 1888A0FCI77SONLOQOO3 77505 19655 15

2. 783BNFALO20BNLON00C02087 8l04824 NLG2 10040

1 1L889ANFA00321RLO000009215 53104826 NLG2 6000 245136
1.1890ANFAI4948NLO000342488 30104826 NLG2 1680 975360

8 1665AQFLI4948NLODO0349488 104828 NLG2 1680 19800 1e90 103800

Example 1a Small portion of the checked data file.

The body of Cook is a huge four-level select, which corresponds with four alphanumeric characters found on positions 8 to
11 of the parsed data line. The parse command, like select another powerful REXX feature, has been applied in Cook many
times. This increase flexibility and maintainability significantly, in contrast with direct (static) usage of the BeursBase data
definitions. The last line of example 1a shows the code 'ANFA', which stands for 'ASE', ‘Price’, 'Stock’, New", meaning that
at the Amsterdam Stock Exchange a new price for a stock transaction has been established. Based on the ARTEMIS data
dictionary Cook builds a SQL DML INSERT statement for the NOTERINGEN table (example 1b).

1995-02-20-16.39:13 O 00173 0
INSERT INTO V6TCVPOS NOTERINGEN VALUES (feode, '1995-02-20-16.39.13,; +5, 'K, '0, 99.9, 'H, *

Example 1b SQL DML: INSERT statement generated by Cook preceded by timestamp, C/S control parameter 1, ASE fcode
and C/S control parameter 2.

The SQL DML statement is preceded by the ASE timestamp, a C/S control parameter, the ASE stock code (acbfcode), and

a seoond C/S control parameter. Only the ASE parameters were found in the raw data file line, the other two parameters were

added by Cook. In the SQL DML statement the host variable :fcode is put in place of the ASE stock code, because the ASE

stock code is not unique over time. First Sec parses the SQL DML statement from the file which is preceded by the creation

" timestamp, a C/S control parameter, the ASE stock code (acbfcode), and a second C/S control parameter found in the raw data

file. Then Sec generates a SQL. DML statement to retrieve the unique FEWEC stock code using the ASE stock code and the
creation timestamp (example 1c).

command = "SELECT fcode FROM" InstrumentenTabel,
"WHERE acbfcode = :oldfcode”,
"AND) fs_intro <= timestamp",
"ANDts_extro IS NULL"

SQLS = SQLGETOLLY

CALL PreparcS

. Example 1¢ SQL DML: SELECT statement generated by Sec to search for the unique FEWEC fcode.

The characters preceding the SQL DML code are stripped away and the found FEWEC stock code is put in place of the host
variable :fcode. Now this SQL DML statement is executed by Sec.

Stocks are characterized by both a moment of introduction and a moment of extroduction. The majority of stocks once introduced
exist permanently, however, there is always a possibility that a stock may be extroduced. Stocks can be extroduced for many
reasons. In case of a management buy-out, a stock split or a bankruptcy of the firm, trade is ended, and sometimes a new stock
will be introduced. In contrast with stocks, bonds are always extroduced. ASEs policy is that after stock extroduction the stock
code comes free and is re-usable. If one intends to store all stock prices ever listed, like in BeursBase, one has to introduce

-

14

B¢k

command = "SELECT MAX(feode) FROM"™ Instrumenten Tabel
SQLS = 'SQLGETNEW
CALL PrepureS -

Example 1d SQL DML: SQL DML statement to retrieve the maximum FEWEC fcode.

instead a unique stock code. Thus every time ASE introduces a new stock accompanied with their ‘unique’ ASE stock code
(acbfcode), we have to map this stock code to a time-independent one. A simple solution is to use the maximum FEWEC stock
code found in the stock table, plus one (figure Ic). For identification purposes and to keep track of all stocks, one needs to
store both stock codes as well as both dates of introduction and extroduction. If stocks are still tradable their extroduction
remains empty, in SQL we set the data value to NULL.The generated unique foode is subsequently used in a SQL DML INSERT
statement to add the stock introduced to the INSTRUMENTEN table (example 1¢). Identical to the SQL DML insert statements
update and delete SQL DML statements are generated, except for the INSTRUMENTEN (securities) table from which a delete
is not allowed.

Many additional remarks can be made, however, three essential are discussed. First, it is never the case that a stock price precedes
stock announcements. Thus the introduction of a new stock (or a renewed stock, for example, due to a stock split) happens
always before new stock prices arrive and therefore there exists always a unique FEWEC stock code (the SQL statement generated
is an INSERT into the stocks table). Secondly, official stock prices send can be modified or even withdrawn. Thirdly, if the
X.25 connection is closed in the evening, a final file is generated. In contrast with the other files uploaded, this file does not
contain a SQL DML statement but an 'End-Of Day' message. This way Sec is notified that no more files will be send that day.

Example 1e SQL DML

-

~

SQLL= "INSERT INTO" InstrumentenTabel *VALUES (",
"feode,"”, /* FCODE * FEWEC 'unijue' stock code
“"fondsnaam™,"; * FNAAM * ASE security name
- M fondstype™,”, M FIYPE * FEWEC security type (bond, stock, warrant, et cefera)
"timestamp™,”, /* 18 INTRO * ASE introduction date
"NULL., 218 EXTRO ¥ ASE exfrodiction date
“Misincode®, ", /* ISINCODE * Official Infernational Standard Identification Number
fondscode+0™,", /* AEBFCODE */ ASE stock code
renteperc”,”, /% RENTE * Interest (bonds)
“'marktcode™,”, /* MARKT CODE */ Market code (official market, non-official market, et cefera)
“noteringswijze™,", /€ NOTERING * Current price
*valnotering™,", * VAL NOTERING # Valuta traded
"valafrekening™,”, * VAL AFREKENING * Valuta paid
"W air™,”, /*FONDS SW AIF */ ASE
““omzetcode™, ", /* OMZET CODE */ Amount traded code
“*edatum1”,”; [+ CDATUMI * Coupon date. 1 (bonds)
edatim?2™,”, * CDATUM2 * Coupon date 2 (bonds)
eenheid",", /* EENHEID */ Number traded
"0,% /* NOMINAAL * Nominal valie :
“rfondstype2™,”, * FONDSTYPE */ ASE security type (bond, sfack, warrant, et cetera)
"mswvoorlope™,”, 1 ¥ Definition 1 in official ASE trade newspaper
“gwdefope™,”, & * Diefinition 2 in official ASE trade newspaper
“eymbol™,", * */ Symbol
"kleinstecoupure™;”; % * Smallest number of instrument available
"“"coupondate™”, % * Dummy coupon date
interestfrequentic”,”, Al * Interest frequency
““intereststart™, * */ Inferest start
')W
: INSERT statement from Cook regenerated by Sec with the unique FEWEC fcode.

15

4.4 REXX and GUIs

REXX on IBM platforms doesn't come with a sophisticated GUI. One reason one can think of lies in the diversity of systems,
in terms of hardware and software o be supported. The GUT is the most hardware and software, i.e. operating system, dependent
of all software components. For example, mainframes support primarily text-based character terminals. Personal computers
work with the 0S/2 GUI known as the Presentation Manager. AIX based RS/6000s use the widely accepted UNIX GUI Xwindows
extended with OS/F Motif. Then making it even more complex some GU]Is are supported on multiple operating systems for
instance Xwindows is supported at the PS/2, the RS/6000, the S/390 and SP families. Finally other hardware manufacturers
have adopted REXX onto their systems like SUN (Sparc), Hewlett Packard (HP xxxx) and Commodore (Amiga), for instance.
IBMs strategy not to support a platforms wide REXX GUI is the only choice.

Thus for software (especially programming and development tools) manufacturers specializing merely one or two platforms
REXX-supported GUIs can be profitable market. For PS/2s there are two REXX-based GUIs available. At the one hand there
is VX-REXX marketed by Watcom, and VisPro REXX marketed by VisPro. The first REXX GUI FEWEC acquainted with,
VX-REXX, was bought. Not to undervalue VisPro-REXX, FEWECs choice was not a poor one.

4.5 REXX and TCP/IP: REXX FTP API

In the VM C/S environment the REXX-FTP interface plays an vital role. Without this interface the quasi C/S environment
could not be established with REXX. The REXX-FTP interface, written by several IBM employees, became available as freeware,
add-on product of TCP/IP for OS/2, in 1993. The first author of this paper was first acquainted with this product in June 1994.
Affer solving installation and operation problems, we acknowledgement several persons in the REXX and TCP/IP community,
as the REXX-FTP interface now works excellent. As an ¢laboration on section 3.3, our utilization of the REXX-FTP interface
is discussed next.
At the PS/2 Cook reads the file containing the X.25 received data packets. Other lines with data packets with synchronizing
timestamps for the X.25 connection, are only processed for these timestamps. Cook converts each relevant line into a SQL
DML statement and subsequently writes it to a 0S/2 HPFS file with a naming convention of <yyyymmdd.#>, where # stands
" for a sequence number. When started Upload starts an FTP session with the VM host via the REXX-FTP interface with the
ftpuser function. The core of Upload is a loop in which several actions are programmed. Upload pauses until new files have
been 'cooked' (Cook), then uploads them individually to the host using the ftpput function. If successful uploaded, Upload
 deletes the local file. Another action within the Upload loop is the frequently download of the Sec status file using the fipget
function (table 3). The download frequency is set based on a fixed number of uploads. Every day the FTP connection is closed
using the fipclose function and Upload is ended. Early next day Upload is started again by the VM C/S Monitor. Cook (packets
processed) pauses when the Upload (packets uploaded) delay exceeds a certain threshold (200 files). This is necessary because
the number of files in a local directory is negatively correlated to Uploads speed. Analogous to local file deletion, Upload frequently
erases remote files, successfully executed by Sec, using the fipdelete function. For the VM C/S Monitor, Upload frequently
writes its operational status to a local file (table 3).)

16

308

Cook™

Upload™

(VM C/St)

PVC.status

HERTRANS tmp

yyyymmdd CHECKED

Cook status

yyyymmdd Upload Status

Sec.Status a status file containing information about Sec to be displayed in the C/S monitor
Sec VM: yyyymmdd.Log every SQL DML statement file read and executed (SQLCA) is written to this file.

AIX: yyyymmdd.Sec.Log

VM: yyyymmdd.Status all information needed for the C/S monitor is written to this file.

AIX.yyyymmdd.Sec Statns

a status file containing information about the PVCs. This information is displayed in the X.25 monitor,

a buffer for the retransmitted data packets;

a status file including information about the PVCs (number of retransmissions, total number per PVC) and the CHECKED.raw file offset
which happens to be the same as its filesize). This information too is displayed in the X.25 monitor.

at 11.00pm the CHECKED.raw file is renamed with the current date at the beginning of the filename.

a status file containing information about Cook to be displayed in the C/S monitor,

Dependent on the loglevel chosen, every relevant operation (reading CHECKED.raw, creating a SQL DML, filing the SQL DML) is
logged into this file.

all information needed for the C/S monitor is written to this file.

a status file containing information about Upload to be displayed in the C/S monitor

all information needed for the C/S monitor is written to this file.

Table 3 Some filenames used by the X.25 data link programs.

"

,""and """ mean that the files referred to are used as input for the particular program.

4.6 REXX and X.25

Although it was not used in the development of the C/S environments, the X.25 interface to the 0S/2 Communications Manager
(CM?22) is a good example of the importance of REXX in communications. The CM./2 X.25 interface is provided for a variety

of programming languages such as C, COBOL, FORTRAN, Assembler and REXX. The main reason not to use REXX for
X.25 based communications is in order to control the X.25 data link in terms of priority scheduling and multithreading and
to secure application performance, one would be better of with C. As will be discussed later in this paper, action is taken to
take a more detailed look to port the C-based X.25 programs to REXX.

4771 REXX and file handling

From maintainability and flexibility perspectives it is wise to develop REXX programs using High Performance File System
(HPFS). HPFS, which comes standard with OS/2, should be preferred over the 8.3 character limitation of the DOS File Allocation
Table file system (FAT). In our REXX-based programs we benefitted from the HPF'S features which allows using long filenames

17

which can be as 255 characters long. In table 3 the most important filenames used in the X 25 data link are shown. In the development
of the C/S environments several advantages of using HPFS over FAT were exploited.

First, if a system crash occurs HPFS file are almost always recovered. Secondly, it is preferable to use semantically sound
filenames. With the 8.3 character FAT limitation it is impossible to name files appropriately.

4.8 REXX and C programming

In the development of the C/S environments, like REXX, C plays an important role too. As discussed earlier, C was used to
develop the specific X.25 programs. In addition, some general unctions , implemented with C, were developed for C/S simulation
and to overcome some REXX limitations. One of these general C-functions, xread, was to overcome the REXX file-sharing
limitation. REXX programs have to find external functions in a so-called Dynamic Link Library, or DLL. Such a DLL has
to be developed and compiled by C.
This paragraph is concluded with table 4 listing the major hardware and software components used in the development of
the C/S environments. In summary, at the one hand REXX was partially used to develop some of the components required
for a C/S environment (Cook, Upload, Sec). On the other hand, for those components not developed with REXX (X25READ,
X25CONTROL, external functions), REXX was the 'glue’ to integrate these components (X.25 and C/S Monitors) with the
REXX-based components. This paragraph focussed on more technical aspects of the C/S environments developed, especially
the role of REXX within the C/S environment.
-

Computer system Ps/2 RS/6000 Cluster (4 x 590) ES/9021-580

Operating System 08/2 AIX VM CMS

RDBMS DB2/2 (small tests) SQL/DS

Client/Server application CAE2
CAE/DOS (MS-Windows)

Client/Server programming REXX, C Set/++, WorkFrame REXX REXX

" Communication TCP/IP TCP/IP TCP/IP
CM/2 (X.25)

API C-X.25 API (CM/2) REXX SQL API REXX SQL API (RXSQL)
CAE/2 and CAE/DOS REXXFTP API (TCP/IP)
C-REXX API C-REXX API

Application programming: Server (AIX): CSP/370
- APL2/6000 QMF/370
- QueryManager/ 6000 VX-REXXC/S
Client:(PS/2s):
- Watcom VX-REXX C/S
- APL2/2 (special)
- VisualGen (4 GL)
- VisualAge(OO)
- DB2/2 QueryManager
- Any ODBC Windows pack-age

Table 4 The software packages used for design of the C/S environments.

Once established a C/S environment, one can develop a broad range of user and system application programs using BeursBase.
The next paragraph, using section 4.4 (REXX and GUIs) as a starting point, discusses the value of REXX for application
development. We will elaborate on important aspects of information visualization, templates and object-orientation using
REXX. The following applications are discussed: system applications (the X.25, VM C/S and AIX C/S monitors) and user
area applications like the AIX version of VUPOS.

18

30

5 REXX User programs for the C/S environments
5.1 Database connectivity

In the AIX C/S environment, C/S$ concepts used are much more sophisticated. For instance, applications at the client, preferably
GUI-based, are able to show more information about the C/S environment. In this way a user can be more actively involved.
Figure 8a shows an object with user and database information. Depending on the authorization level a user is or is not allowed
to modify the information displayed. The object in figure 8a is retrieved through object 8b, by a click on the 'Wijz' pushbutton.
If the user is not allowed to do so, the pushbutton is set to not-clickable and its color is changed. If the information displayed
is correct or modified, the user can click on pushbutton 'Con.’ to establish a connection. In the case of a simple end-user an
auto-connect is pursued. Status information about the necessary REXX DLLs as well as status information about the database
connection.

5.2 Object Orientation and REXX

Figures 9a thru 9c exemplify a way how to define and use objects in VX-REXX. Figure 9a shows the complex object which
consists of a listbox and four entry ficlds. The object used to display tabular or graphical information is showed after activating
the 'Genereer grafick’ pushbutton in figure 8b. At first the object is shown as in figure 8a. Then, based on the user selection
from the listbox., one or more properties are changed by message passing. If the user selects Real-time', no additional information
is necessary to show the tabular of graphical information requested, because the system date can be used. In contrast, if Meerdere
dagen’ (= more than one day) is selected, begin and end date are required. Also if 'Meerdere dagdelen' is sclected begin and
end time s required too. Using a GUI this way keeps the user's eye focussed onto the display and does not provide the user
irrelevant information.

MEES 0B-DIV FNDS
POSTBANK AANDELENFDS
V3B AANDELEN FONDS
INT NEDERLANDEN

Elektronica
Handel
Multinationals
Telecommunicatie

Figure 8a Database connect infor-
mation. Figure 8b Object with database connect/status information.

19

3

realtime

meerdere dagen meerdere dagen
meerdere dagdelen meardere dagdelen meerdere dagdelen
dagdeel 1 dagueel 1 dagdeel

dag 1 dag 1 dag

Figure 9a Object with hidden entry Figure 9b Object with all entry fields Figure 9¢ Object with some entry fields
fields. shown. shown.

5.3 Developing general parts and templates

A sophisticated way of programming is the use of objects in
the form of templates. Object orientation facilitates the use of
general parts or templates. An example of a general part is shown
in figure 10. This object is especially useful for debugging.
Every SQL statement parsed is checked on its SQLCA. If the
SQLCA is not equal to 0 (success) or 100 (no more rows
certified the conditions specified), further program execution
stops and the SQLCA object is displayed.

* An earlier example of a general part was already discussed.
Figure 8a, the object for displaying database information, is
used in every application developed so far.

5.4 GUI design and usage: monitoring

The X.25 monitor
A monitor should be kept simple and should give direct i-
nformation. The X.25 monitor, developed for control of the

X.25 data link displays all the information necessary. Informa-

tion includes the # of packets received, retransmitted, and f) lgure :0 Object for presentation of SQL Communication Area
escriptor.
the # of retransmissions per logical circuit (PVC group). P

20

In addition vital program information is provided. Finally the
sizes of the mput (unchecked) and output (checked) files, where
the raw data (packets) are stored, is displayed.

Several features are added to the monitor. First, to be certain
the screen update process does not consume too much time, a
timer event updates the screen periodically. The time period can
be set between 10 and 60 seconds in steps of 10 seconds. If an
immediate screen update is required, one simply clicks the update
pushbutton.

The AIX C/S monitor

Like the X.25 monitor the AIX C/S monitor provides direct
information about the underlying C/S processes. As the AIX C/S
environment supports full C/S, all the processing and programs
can be run at the client. Information about the various stages of
processing and programs is displayed. In contrast with the user
applications the database information is integrated in the monitor
window. The reason is to have all the information displayed in
just one screen.

Figure 11 The X .25 data link monitor.

The X.25 and C/S monitors are design to be displayed simultaneously.
* The information of two monitors, X.25 and AIX C/S are integrated
as follows: the difference between the number of received data packets
(X.25) and the packets cooked (AIX C/S) is the first packets delay.
" The packetscooked means the number of SQL DML statements created.
The difference between this number and the packets executed (AIX
C/8) gives the second delay.

The VM C/S monitor
_.Notice that the VM C/S monitor is very different from its AIX C/S
counterpart. Since the VM C/S environment is user written, information:
about the underlying program (upload) is displayed. The information
of two monitors, X.25 and VM C/S are integrated as follows: the
difference between the number of received data packets (X.25) and
the packets cooked (VM C/S) is the first packets delay. The packets
cooked means the amount of SQL DML statements (files) created.
The difference between this number and the packets uploaded (VM
C/S) results in the second delay.

Figure 12 The AIX C/S monitor.

-

21

33

7- ‘Figure 13 A full screen display of both the X.25 monitor (left) and the VM C/S monitor (right).

Finally, the difference between the packets uploaded (VM C/S) and packets executed (VM C/S) gives the third delay. In figure
13 both the X.25 monitor and VM C/S monitor are displayed.

5.5 Other graphical user-interface features

One of the issues that was ignored for a relatively long time, because the development of the C/S environments did have so
~.many interesting research, design, implementation and usage issues that the project team almost forgot about a neat menu structure.
Application of the menu structure is simple because much of the preparation for it has already been done. First, the framework
for application development was designed long before. Secondly, database control and maintenance can be well-defined. Thirdly,
every application program is characterized by some general functions which can easily be specified. Fourthly, the information
generated can be visualized in a limited number of formats: on the computer display, on paper and on magnetic and optical
media. The general menu structure to be designed should be a shell in which every application developed can have a place.
Then based on user and program authorization, users can or cannot select the specific application program. The general purpose
menu structure is shown in figure 14.

22

347

5.6 YX-REXX specific objects
Of the many special objects, the timer object is a very convenient one, especially if one designs and implements autonomous
monitors. For control purposes, one has to have feedback frequently, and if necessary one has to maintain the C/S environment

dynamically. Using timer objects one can frequently poll the environment (exception management) and retrieve information

(status files) to be displayed.

6 Future strategy of the C/S environments

6.1 Extending the matrix framework with (REXX) application programs

VURTAS BATCHER News

VUSTAT Other

Figure 14 The BeursBase application program shell or the general menu structure of the BeursBase application programs.

VUPOS itself being ported from the mainframe to the personal computer. In contrast with the Cross Systems Product mainframe
version, the personal computer version, implemented in VX-REXX is provided with a graphical interface. Compared with
mainframe graphicsusing GDDM(CSP-ADMCHART interface), the VX-REXX graphical user interface ismuch more sophisticated.
Though the most important advantage using a GUI painter is the significant reduction of development time. Especially for
students it is very convenient to be able to generate usable output in a short time. In figure 15 an example of a simple XY -chart
is shown. This XY -chart displays stock price development on December the first 1994 of the largest multinational of the Netherlands
at the Amsterdam Stock Exchange known as 'Koninklijke Nederlandse Petroleum Maatschappij’ or 'Royal Dutch'. To the general

-

23

35

public the multinational is known as Shell. A minimum of additional information is provided, like ASEs trading period ((9.30am
to 4.30pm), the number of transactions found (159), and both maximum (188.60) and minimum (190.70) prices of the day.
It still is an art and a science area to build good information displays. It is simple to expand the above example to a chart which
shows, for example, the development of the portfolio of a user over a longer period of time.

KON NED PETR MY

|
1
]
|
]
'

g g S N N
oy QSOOI U U S

13
Tijd (in uren)

Figure 15 Example of a VUPOS screen.

6.2 Designing user (DBA) programs for database monitoring and control

As the number of users is increasing rapidly as well as the set of user application programs, the need for control and maintenance
structures emerges. Though kept in mind this was set at a low priority. The following kinds of control are desired:

Authorization control: users and application programs

There are several possibilities of how to deal with multiple users and multiple programs. First, in C/S environments authorization
can be placed at the user level. In this case every user obtains a userid. For maintenance purposes not very attractive, since
it entails much administration (users) and a lot of authorization (programs). Secondly, as an alternative authorization can be
placed at the program level. In that case every program is provided with a userid, or better, program id. Now administration

-

24

3 /e

" separate PTT Telecom (the national

is reduced and authorization is simplified tremendously. It should be clear that in this situation program users do not have
direct acoess to the database directly. In practice, a combination of userids and program ids is used. This requires sophisticated
control. Up to now this has been done manually. An appropriate tool is under development.

Database control: database performance and tuning

BeursBase grows on a real-time basis. At the one hand Exchange data is inserted continuously, and at the other hand users
and user programs add data as well. The largest tables in BeursBase contain hunderds of thousands of tuples and will rapidly
grow up to tens of millions. It is not the physical size of the data that limits database operations, the gigabytes range will not
be reached for years, but the performance and optimization issues. Reorganizing dbspaces, tables and indexes form a burden
on database operations and database efficiency. This makes BeursBase so interesting for IS research. Therefore developments
for several applications for performance measurement and database tuning have been taken.

Database maintenance

Usually database management systems are not provided with user friendly maintenance programs. Especially for BeursBase,
database maintenance issues are of vital importance. Though there are lots of ideas on this topic, the have not yet been implemented
in practice.

6.3 Improving the X.25 data link

PIT Tdecom
A point of weakness in the BeursBase Node: Amsieriam-West

project remains the X.25 data link, /Q
because only one single communication Amotordam Stock Exchange

is in use. In order to minimize the risk
of data loss a secondary X.25 data link

is necessary. Figure 16 shows the ideal =
implementation. Because ASE has two L

telecom operator) nodes. Therefore ASE : SARA
FEWEC can be provided with two \CD/ Atadomic Computer Conter
4 separate X.25 links. Although the Node: Amsterdan-Svath
SARA link is implemented with a single FIT Telacom
line, no data will be lost when this

communication line is goes down. For
almost 100 percent reliable X.25 data Figure 16 Two independent X.25 environments.
. link with the ASE, the following ac-

tions have to be taken.

(] Configuration of a shadow or backup X.25 connection, consisting of:
00 asecond PS/2 with an X.25 Coprocessor expansion card;
Ul asecond ASE communication link, physically independent from the first one. This means that this X.25 link uses
different nodes. At the ASE multiple independent nodes are available (Figure 16);
(] between FEWEC and the ASE, a second 19.2 Kbps PTT leased line;
(] An uninterruptable power supply (UPS) for the two X.25 PS/2s;

25

[] AREXX-based control structure, as applied on FEWEC servers will be installed on both X.25 PS/2. This intelligent mechanism,
atwo PS/2s based monitoring system, should take appropriate action if one or more connections are lost;

[0 A hardware mechanism will be constructed to be able to cold-boot the PS/2 remotely. If the responsible system operator
is not at FEWEC s/he should be able to reboot the system by a remote connection. (If one cannot telnet to the PS/2, it should
be possible by connection via one of the FEWEC servers). Using a cold-boot procedure suffices, as the systems can start
necessary processes automatically.

In the first half year of 1995 these investments are planned. In addition, several application programs are needed to create
autonomous control between X.25 PS/2s and the FEWEC LAN servers. Two identical REXX-based programs, running at
both X.25 PS/2s, have to check each other operations (file sizes and contents of the status files). If needed the C/S data link
to BeursBase has to be changed, from one PS/2 to the other, without any delay and appropriate action has to be taken to get
both PS/2s in operation again. Another program, residing at the FEWEC LAN server to check frequently if both X.25 PS/2
are running. Again, if some exception is found, appropriate action has to be taken. If, for some reason , one or more systems
do not response, say within 15 minutes or so, FEWECs computer support staff is notified by email or screen messages.

6.4 Moving to the third and higher Client/Server levels

Eventually the AIX C/S environment has to move to the third, fourth and even fifth C/S level. Why? During the development
processes of our C/S environments we encountered many performance problems. The larger tables where used by many programs
and even more users concurrently. At the same time these tables arc maintained (inserted, updated, deleted) on a real-time
basis, resulting in many (dead) lock situations.

Looking over and over at the data, it was decided to split them
into several time categories, based on their anticipated usage
(figure 17). The first category, real-time (today's) data, is stored
in a separate table, as this data has the highest priority. The | ! L

" second category, this years data, is accumulated into a second b]

table. This data too is used very frequently (its size spans

obviously maximally a year). The third category contains data
from yesterday to a year before. The fourth and last category
is historical data and is actualized to the end of last year. For
performance reasons the last two tables are stored in dbspaces

without leaving space free and records are stored by stock by
timestamp. The first two tables are stored in dbspaces with small ~ Figure 17 Data separated into time categories.
. data and index buffers. Every night except for the weekend,

the following batch processing is done: the today table is emptied in this year's table, also, at the end of December the last year
table is emptied into the history table. A more intelligent solution would be a dynamically calculated optimal database performance
with a minimum of data redundancy. Such an system area application program will be developed this year.

Moving to the third Client/Server level

Now for the C/S aspects one can imagine that the small real-time data table (today) used at a local database server would be
significantly faster than a host database. So the next phase in the development of the AIX C/S environment is to establish a
local database server for real-time data (IBMs DB2/2 for 0S/27). This will increase both application and database performance

-

26

3/E

for user applications like VUPOS tremendously. In addition, a local database server is more suitably equipped to support batch
processing with the large database server as remote host.

Moving further to the fourth and fifth Client/Server levels

The third C/S level is relatively simple to reach, though should thoughtfully be implemented. User applications which need
data for processing which is not available at the local server have to send requests to the remote database server. At least two
problems, i.e. bottie necks are obvious: first if the amount of data is relatively large, database 1/O is heavy and all data requested
has to be send over the communicatjon line which consumes much time. Secondly, local client processing is, compared to
an AIX or VM host, though cheaper relatively slow. To overcome these bottlenecks, for some user applications it would be
interesting to split up applications in several modules. Then these modules can be distributed across several systems, based
on the CPU and database performance required. For example the portfolio simulation VUPOS or a technical analysis application
has an econometrics/statistical feature which calculates several stock performance indicators over a certain time period (from
actual real-time to historical data). Partially, the indicators requested are calculated at the client using the local database server
(real-time) data, partially the indicators are calculated at the host using the host database server (historical) data. Finally the
client program uses some algorithm to glue the partial outcomes into meaningful information. Even if the host requires real-time
data (which is stored at the local database server) in total the results are generated much faster compared to the alternative in
which the client does all the processing. Clearly this is another interesting arca for research and education. The fourth and fifth
C/S levels are within reach, though it will take at least two years before users can benefit from these ideas.

6.5 Speeding up REXX programs More extensive utilization of REXX compilers

Much can be written on the subject of REXX in terms of interpretation versus compilation. For the most part in the development
of the C/S environments REXX is used by interpretation, except for some application programs which have been written in
VX-REXX. At the point where speed is of primal importance, up to this moment the choice has been for programming in C.
Using C as programming language implies using compiled programs. The main reasons for this choice are the flexibility of
C, the clear X.25-C interface as well as the robustness and performance of C programs once they are compiled into executable

" code. An advantage in C too is the easiness with which multithreaded high priority programs can be developed. In addition

there was no experience with the combination of X.25 and REXX or with REXX compilers which can generate fast executable
code.

" For manageability and maintenance reasons it would be wise to move from C to REXX. Currently research is conducted to

take this step forward. Moving from C to REXX is necessary because the experience with C programming is and should be

limited at FEWEC. The higher the programming, or more appropriate development, level the better. Thus one of the major

concerns is to make more extensively use of REXX under the constraints that X.25 support, priority scheduling and compiling

are supported and easy to implement.

6.6 Sophisticated application programs: a World Wide Web future?

Though a detailed discussion about user applications should not be included in this paper, one serious idea is worth mentioning,
namely a portfolio simulation accessible through World Wide Web. As already discussed, the VUPOS portfolio simulation
is being redesigned for the AIX C/S environment. This application will be used for all the user areas defined by several of
the identified disciplines. For several reasons is the usage of VUPOS restricted to FEWEC members and students. First the
application is relatively complex and one has to have detailed knowledge of the underlying processes. For students of economics
and FEWEC members this should be no problem. If FEWEC intends to use VUPOS as a public relations tool and make it

-

27

3/9

available to others, for example high schools or other interesting populations, this will cause several difficulties. First, as said
VUPOS is acomplex program. Secondly, it takes several screens to manage ones portfolio. Thirdly, processing is done interactively
which makes very large to huge scale application very costly and performance dramatically slow. Fourthly, a high-end OS/2
computer is highly recommended. Such systems are not so widespread in use. N

Based on the rapid adoption of Internet, granted by the development of global information systems like World Wide Web,
it is realistic to conclude that high schools and other interesting populations are able to connect to Internet without having to
pay insurmountable costs. Thus a realistic alternative would be a stripped version of VUPOS, reduced to three to five screens,
supporting batch processing once or twice every day. This simplified or stripped version of VUPOS should be provided with
a World Wide Web interface. Installed at the FEWEC WWW server anyone, or if FEWEC so wishes, a selected audience will
be able to use the program in, for example, a large stock investment competition. The investment results of the competition
as well as the system usage itself can be input for research and education.

Anyway FEWEC is currently developing in cooperation with the ASE a WWW service which includes a real-time graphical
display of the AEX, the index of both Exchanges in The Netherlands. We consider this as a first step towards an Internet based
simulation, because this WWW facility will be used to research several interfaces, forms and displays for such a simulation.

6.7 Comparative application development

Once one has an AIX C/S environment as described in this paper, it is very interesting to examine and compare various development
environments are available for C/S application development. Today numerous development environments available. This year
we will use for example AP1L.2/2 and VisualAge (both IBM), and CASE environments like ADW from KnowledgeWare and
IEF from Texas Instruments/James Martin. Probably programming languages like C, C++, Smalltalk (via VisualAge) and
COBOL will be tested too with respect to the trade-off (compared to the 4GL development environments) between an increased
development time and run-time performance.

"7 General conclusions and recommendations

~ 7.1 Advantages of using REXX in a Client/Server environment

The project team of FEWEC concludes, based on the experiences so far, that the REXX programming language is, in particular
in combination with the interfaces discussed in this paper, suited to develop not only C/S programs but a C/S environment
itself too. Even without having much experience in developing C/S environments, implementing a REXX-based C/S was relatively
simple. The project team benefitted from REXXSs flexibility and portability as an AIX C/S environment was easily developed
. using code from the VM C/S environment.

Especially in the design and implementation stages it is advantageous to have an interpreted langua-ge in stead of having to
compile code every time changes have been made to it. Finally, it has been proved that REXX user application programs can
be gorgeous from the outside, efficient from within, and effectively fast in general without being to complex. This can hardly
be said of programs developed in for example C or C++. Therefore in the IS curriculum of FEWEC REXX is preferred over
Cor C++.

28

7.2 Problems using REXX in a Client/Server environment

To temper the over enthusiastic mood of the project team, some problems or vague issues have to be dealt with too. Most of
the problems encountered are probably heard before, but one cannot overemphasize their importance. Some REXX interfaces
lack sufficient documentation, examples and example code. In the view of the project team every time the interface is used,
the wheel is re-invented. Though there are for example many good REXX books available, most of them don't go beyond
the introductory level. Also, voluminous manuals are not necessarily of high quality. Especially the REXX FTP, REXX SQL
and REXX X.25 interfaces can gain popularity when documentation is extended.

Secondly, problems occur when one needs to share files between REXX programs in 0S/2. Files in OS/2 REXX are used
exclusively thus they cannot be shared among application programs. A solution was found in developing a C-based DLL function,
as we found that it was possible to share the file this way. Using the C-function, OS/2 still results in DOS read errors, although
it works fine. If one lacks the specific experience of writing DLLs, it is a burden to find out how things are being done. Ideally,
aREXX compiler should be equipped with a tool enabling developer (student), without low-level programming, to put functions
to be shared in a DLL.

Thirdly, more effort should be put in REXX benchmarking and tool evaluation. The project team encountered difficulties in
choosing the 'right' REXX development tool and interface. Not usage of a REXX development was the problem, but which
environment should be used. Fortunately, talking in hindsight acceptable choices were made. Fourthly, sharing information
using status files is not the most sophisticated way of communication. However, no neat alternative was available. Especially
the issue of file corruption and system crashes makes the nsage of files in interprogram communication volatile.

7.3 Overall conclusions

During the last two years development of the VM and AIX C/S environments was successful. Both systems are operational
and future plans and strategy promise to gencrate a massively used AIX C/S environment, high quality applications and a sound
" scientific environment for research, educational and public relation purposes. Though the power of REXX has already been

proved in the current environment, as the ATX C/S environment moves further towards higher levels of C/S, REXXs position
_as an advanced C/S development language and environment shall be indisputable.

7.4 Recommendations

Finally, based on the REXX experiences, the project team comes with afew practical recommendations for developers, manufacturers
and users as well. First, everyone wants better application performance. Though some other issues are of equal importance.
.One of the severe limitations of 0S/2 REXX is that files cannot be shared among application programs. Working around the
problem is not the preferred solution. In an advanced enviromment as OS/2, file sharing between 0S/2 REXX application programs
cannot be missed. Secondly, REXX still lacks some sophisticated interface toolboxes, especially for general and C/S specific
monitoring. Thirdly, however fully accepted in CASE development, REXX code re-usability, re-engineering and a central
repository, are far from reality. This definitely has to change if REXX is to be used in large scale application development.
Fourthly, the basis for REXX-based GUIs has been set a few years ago, REXX development tools can be extended with more
specific and more appropriate GUI features. Finally, as a fifth recommendation one should develop more detailed REXX
programming handbooks with realistic examples.

29

8 References

[ASE94] Amsterdam Stock Exchange (1994), Amsterdarmn Real-Time Market Information System (ARTEMIS): user manual,
version 3.0 (in Dutch), Beursdata B.V., Amsterdam. o
[Buys93] Buys, E.O (1992), TRANSPAS: Tthe Next Generation (in dutch), Graduation project, Free Univeristy, Amsterdam.
[Cow1B4] Cowlishaw, M. (1984), The design of the REXX Language, IBM Systems Journal, vol. 23, no. 4, pp. 326-335,
IBM, New Jersey.
[Cowl90] Cowlishaw, M. (1990), The REXX Language, 2nd edition, Prentice Hall International, Englewood Cliffs, New
Jersey.
[Date92] Date, C.J.(1992), An introduction to Database Systems, volume 1, 6th edition, Addison-Wesley Publishing Company,
Reading, Massachusetts.
[Davi85] Davis G.B., MH. Olsen (1985), Management Information Systems, McGraw-Hill Book Company, New York.
[Deit90] Deitel, H. (1990), Operating Systems, 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts.
[Deit92] Deitel, H., M.S. Kogan (1992), The design of 08/2, Addison-Wesley Publishing Company, Reading, Massachusetts.
[Enge95] Engel,J.P.(1995), ARTEMIS: the Amsterdam Stock Exchange and electronic informationservices (in dutch), Graduation
project, Vrije Universiteit, Amsterdam.
[Germ94] H. German (1994), The REXX handbook: BASICS, APPLICATIONS and TIPS, Van Nostrand Reinhold, New
York.
[Giise95] Giise, L.W M. (1995), BeursBase project: operation's manual (in dutch, in preparation), Free University, Amsterdam.
[Horn90] Home, J.C. Van (1990), Financial Management and Policy, 8th edition, Prentice Hall International, Englewood
Cliffs, New Jersey.
[IBM92] IBM (1992), VM/System Product Interpreter SQL/Data System Interface, program description/operations manual,
New York.
[IBM93] IBM (1993), 082 REXX : From Bark to Byte, IBM International Technical Support Centers, Boca Raton Center.
(IBM94] IBM (1994), Client Application Enabler/2, User's Guide version 1.2, IBM Canada Ltd. Laboratory: Information
Development, North York, Ontario.
*[Miss94a] Misseyer, M.P. (1994), From Stockdata to real-time Exchange Information, in: Landelijk BIK blad, vol. 1, no.
1, pp. 25-27, Amsterdam.
[Miss95] Misseyer, M.P. et. al. (1995), TRANSPAS is death: Long live VUPOS and BeursBase, Project proposal of VUPOS
) and BeursBase, Vrije Universiteit, Amsterdam.
[Mors94] Morsink, A.W. (1994), Receiving, transforming, converting and adding real-time Amsterdam Stock Exchange data
to BeursBase (in dutch), Graduation project, Vrije Universiteit, Amsterdam.
[Orfa93] Orfali, R, D. Harkey (1993), Client/Server programming with 0S/2 2.1, 3rd edition, Van Nostrand reinhold, New
York.
fRudd94] Rudd, A.S. (1994), Application Development using OS/2 REXX, Wiley-QED.
[Stal90] Stallings, W. (1990), Business Data Communications, MacMillan Publishing Company, New York.
[Tops94] Tops,1.(1994), The DesignandImplementationofa Real-Time Stock Exchange Simulation and Performance Monitoring
System (in dutch), Graduation project, Vrije Universiteit, Amsterdam.
[Turb95] Turban,E.F.(1995), Decision Support Systems and Expert Systems, 4th edition, Prentice-Hall International, Englewood
. Cliffs, New Jersey.

30

222

Rexx/370 Compiler and Library 1995

Pages 324-358

Proceedings of the 6th International Rexx Symposium 324

32y

Rexx/370 Compiler and Library
rexxcomp@vnet.ibm.com

1995

12¥ Rexx/370 Compiler and Library

1995

1995 May 1..3

Rexx Symposium
Stanford, California

IBM Rexx/370 Compiler and Library
Service and Development

rexxcomp@vnet.ibm.com

1995 May 1..3

Rexx Symposium Stanford, California

T=2= Rexx/370 Compiler and Library 1995
===72 rexxcomp@vnet.ibm.com , Disclaimer

Disclaimer

The information contained in this document has not been submitted to any formal IBM test and is
distributed on an “As Is” basis without any warranty either expressed or implied. The use of this
information or the implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the customer’s operational
environment. While each item may have been reviewed by IBM for accuracy in a specific situ-
ation, there is no guarantee that the same or similar results will be obtained elsewhere. Cus-

tomers attempting to adapt these techniques to their own environments do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or
imply that only IBM’s licensed program may be used; any functionally equivalent program may
be used instead.

" Any performance data contained in this document was determined in a controlled environment, =

and therefore the results which may be obtained in other operating environments may vary sig-
nificantly. Users of this document should verify the applicable data for their specific environ-
ment.

It is possible that this material may contain references to, or information about IBM products
(machines and programs), programming or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming or services in your country.

Permission is granted to the Rexx Symposium for Developers and Users to publish this presenta-
tion paper in the Proceedings of the Rexx Symposium for Developers and Users.

1995 May 1..3 Rexx Symposium Stanford, Californie11

226

TEES Rexx/370 Compiler and Library

1995
==272 rexxcomp@vnet.ibm.com

Products

l

N Products |

e Compiler:

— IBM Compiler for SAA Rexx/370, Release 3

— Program number 5695-013
~— ComplD 569501301 FMID HWKO0130 (MVS)
— ComplD 569501302 FESN 0463773 (VM)

e |ibrary:

— IBM Library for SAA Rexx/370, Release 3

— Program number 5695-014
— ComplD 569501401 FMID HWJ9130 (MVS)
— ComplD 569501402 FESN 0463776 (VM)

— Rexx/VSE Library, Release 2
in Rexx/VSE, Version 1 Release 1

— Program number 5686-058
— ComplD 568605802

— Rexx/VSE Library, Release 2

in VSE Central Functions, Version 6 Release 1
in VSE/ESA, Version 2 Release 1

— Program number 5686-066
— ComplD 568606612

1995 May 1..3 Rexx Symposium Stanford, California

2

327

exx/370 Compiler and Library] 1995
rexxcomp@vnet.ibm.com ~ Operating Systems

. | Operating Systems

e MVS

— TSO/E V2R3M1 or later on MVS/ESA SP V4R1 or later
— TSO/E V2R4 or later on MVS/ESA SP V3R1
~ — _ NetView V2R2 or_later_with above .

e VM/CMS

— VM/ESA V1R1 or later
— VM/XA SP R2 or later
— VM/SP R5 or later

— VM/HPO RS or later

e VSE (Library only)
— Rexx/VSE V1R1 or later on VSE/ESA V1IR3 or later

— VSE/ESA V2R1 or later
(Rexx/VSE integrated into base)

1995 May 1..3 Rexx Symposium Stanford, Californig

Rexx/370 Compiler and Library
rexxcomp(@vnet.ibm.com

1995
Language Levels
Language Levels

The Rexx language level accepted is:

®* 4.00 on VM/ESA V1R2.1 and later
including stream |/OR3

e 3.48 everywhere else

including Trace® and Interpret®

With Release 3, the Rexx Compiler and Library now supports
the entire classic Rexx language

1995 May 1..3

Rexx Symposium Stanford, California
324

4

§ Rexx/370 Compiler and Library
= rexxcomp@vnet.ibm.com

1995
Compiler and Library Publications
Compiler and Library Publications

IBM Compiler and Library for SAA Rexx/370, Release 3

Licensed Program Specifications (GH19-8161-02)

Introducing the Next Step in Rexx Programmmg
(G511-1430-02)

User’s Guide and Reference (SH19-8160-03)
[d i

User’s Guide and Reference (Japanese) (SH88-7187-03)
Diagnosis Guide (SH19-8179-01)

User’s Guide and Reference and Diagnosis Guide
(SK2T-1410-00)

included in IBM Online Library Omnibus Editions
— MVS Collection (SK2T-0710-10)

VM Collection (SK2T-2067-06)

VSE Collection (SK2T-0060-05)

1995 May 1..3

Rexx Symposium Stanford, California
33e

5

Rexx/370 Compiler and Library 1995
£Z572 rexxcomp@vnet.ibm.com

Program Directories

. Program Directories

MVS Compiler: PRGDDIR820P, October 1994

MVS Library: PRGDDIR817P, October 1994
e VM Compiler: PRGDDIR83F2, March 1995

(replaces PRGDIR822P, October 1994y

VM Library: PRGDDIR82F2, March 1995
(replaces PRGDIR818P, October 1994)

1995 May 1..3

Rexx Symposium Stanford, Californig

331

exx/370 Compiler and Library] 1995
rexxcomp@vnet.ibm.com Other Pubs About Using The Compiler

—— Other Pubs About Using The Compiler

e TSO Extensions Version 2

— Rexx/MVS Reference (SC28-1883-06)

— Rexx/MVS User’s Guide (SC28-1882-04)
— Customization (SC28-1872-07)

Nl N loa Nud

e VSE/ESA V2R1

— Rexx/VSE Reference (SC33-6642-00)

— Rexx/VSE User’s Guide (SC33-6641-00) T

— Rexx/VSE Diagnosis Reference (LY33-9189-00)
(available August 1995)

e Rexx/VSE V1R1

— Reference (SC33-6529-00)

— User’s Guide (SC33-6528-00)

— Diagnosis Reference (LY33-9144-00)
— Getting Started (G(G24-4192-00)

e Book

— The Rexx Handbook
Gabriel Goldberg, Philip H. Smith 1l
1992, McGraw Hill (SB20-0020-00)

1995 May 1..3 Rexx Symposium Stanford, California

7

A3

T=25 Rexx/370 Compiler and Library ~ 1995
===72 rexxcomp@vnet.ibm.com . Communicating

. | Communicating

e Service: USREXX,182 or WTREXX,182

— 569501301 R130 MVS Compiler

— 569501302 R130 VM Compiler

— 569501401 R130 MVS Library .
— 569501402 R130 VM Library

® FElectronic

— IBM TalkLink: RexxComp CForum

— VMSHARE: Memo RexxComp

— VMSHARE: Prob RexxComp

— VMSHARE: Note RexxComp

— ListServ: RexxComp@pbitnic.cren.net
— EMail: RexxComp@vnet.ibom.com

e Readers’ Comment Form

— Internet: pubrcf@vnet.ibm.com
- — IBMLink: GDLVME(PubRCF)

— IBM Mail: USIB2L8Z@I|BMMail

— Fax: USA 607-752-2327

1995 May 1..3 Rexx Symposium Stanford, Californig

233

Rexx/370 Compiler and Library

rexxcomp(@vnet.ibm.com ~ Release Hi;t%?'s
—_— Release History
Short Name Program | Rel | First End of
Number Avail. Service
CMS Comp & Libr 5664-390 1 |1 89Jun30 | 95Sep22
CMS Library 5684-124 1 89Nov17 | 9581epy22« 7777777777 7
Rexx/370 Compiler 5695-013 1 | 91Aug30 | 93Nov28
"1 Rexx/370 Library | 5695-014 1 | 91Aug30 | 93Nov28
Rexx/370 Compiler 5695-013 2 | 93May28 | 95May07
Rexx/370 Library 5695-014 2 | 93May28 | 95May07
Rexx/VSE V1R1 Libr | 5686-058 2 | 93Sep17
Rexx/370 Compiler 5695-013+| 2 | 93Nov04 | 95MayQ7
+ Alternate Library | PN48006(MVS) BN43015(VM)
Rexx/370 Compiler 5695-013 3 | 94Nov07
Rexx/370 Library 5695-014 3 | 94Nov07
Rexx/VSE V2R1 Libr | 5686-066 2 | 95Apr21 -
Rexx/VSE V2R1 Libr | 5686-066+| 3 | 950ct27
1995 May 1.3

339

Rexx Symposium Stanford, California

9

T==5 Rexx/370 Compiler and Library
£==27= rexxcomp@vnet.ibm.com

1995

Determining Levels

Determining Levels

e Compiler

— From program listing: Release, PTF

® Library

Offset from beginning of first EAGRTLIB in file

Release
PTF
Date
Time

+9..+13
+19..+25
+37..+44
+46..+ 50

e Compiled program

Field

CExec file

- - e

Object file

Release

Compilation Date
Compilation Time

Compilation System

Language Level
Compiler Date
Compiler PTF

rec 1 cols 36..40
rec 1 cols 43..54
rec 1 cols 56..63

rec 1 cols 65..67
rec 1 cols 78..81
rec 1 cols 83..93

rec 1 cols 99..105

rec 2 cols 52..56
rec 2 cols 60..70
rec 2 cols 72+

rec 3 cols 17..23
rec 3 cols 25..27
rec 3 cols 38..41
rec 3 cols 43..53
rec 3 cols 59..65

1995 May 1.3

Rexx Symposium Stanford, California

335

10

=== Rexx/370 Compiler and Library
= rexxcomp@vnet.ibm.com

1995
Compilation

— Compilation
Compiler Options Source Program
— Compiler -
CEXEC file Object file
v v
Terminal ¢ Dump
Listing

— Run—Time System D

Note: No compiler work files, everything kept in virtual storage

1995 May 1..3

33¢€

Rexx Symposium

Stanford, California

11

T===5 Rexx/370 Compiler and Library i 1995
=Z=272 rexxcomp@vnet.ibm.com Compiled Rexx Files

o Compiled Rexx Files

CExec and Obiject files contain the same information, except
for one bit indicating what kind of file it is, but are formatted
differently

~— .CExecs are used the same way Execsareused

— Obiject files are used the same way other high-level
language compiler outputs are used (link-edit)

~ e Contain
— Executable S/370 instructions
— Invocations of Library routines
— Symbol treé, with names and descriptors
— Control blocks
e Are reentrant, relocatable, and XA (31-bit) capable
e Are execution operating system independent

e (Can use any Library at a release level at |least as great as
the Compiler

e Don’t contain the program source
(unless compiled with SLine option)

1995 May 1..3 Rexx Symposium Stanford, Californ1ig

337

Rexx/370 Compiler and Library
rexxcomp@vnet.ibm.com

1995

Rexx Is Hard To Compile

Rexx Is Hard To Compile

® Dynamic program structure

No conventional block structure

Start a procedure by executing Procedure instruction

End a procedure by executing Return instruction

e Signal can transfer control most anywhere

e \Variables

Are not declared
Can change attributes dynamically
Come and go dynamically

Can be shared with external programs

Names can be computed

Size limited only by storage

Arithmetic precision can be set dynamically

® Program text can be created dynamically

No data types but some operations content dependent

1995 May 1..3

338%

Rexx Symposium Stanford, California

13

=== Rexx/370 Compiler and Library _ 1995
===272 rexxcomp@vnet.ibm.comssumptions That Make Compiling Worthwhile

—Assumptions That Make Compiling Worthwhile

e Assignments appear often

@ Simple arithmetic appears often
e (Control constructs appear often

¢ Do loops appear often R
e |[nterpret not used often

e Storage management is expensive

1995 May 1..3 Rexx Symposium Stanford, Californ1i.;=11

T==5 Rexx/370 Compiler and Library
=Z==27= rexxcomp@vnet.ibm.com

1995

Performance

PR Performance

Compiled programs that include many

Run this much
faster

Arithmetic operations 6 to 10 times
| String and word processing 6 to 10 times
Constants and variables 4 to 6 times
References to procedures and built-in 4 to 6 times

functions
Changes to values of variables 4 to 6 times
Assignments 2 to 4 times

Reused compound variables

2 to 4 times

Host commands

Minimal improve-
ment

1995 May 1..3

30

Rexx Symposium Stanford, California

15

Rexx/370 Compiler and Library . 1995
rexxcomp@vnet.ibm.com ~ Optimizations

o | Optimizations

® No tokenizing/parsing at run-time
e Address simple variables and stems directly

e Compiler optimizations

— Common subexpressions

— Constant folding

— Value propagation

— Less general code generation with knowledge about”
state of variables, Numeric Digits setting, and types of
operands

— Not load addresses already in register

e Fast linkage to library routines

e Optimized storage management for several kinds of use

® Binary arithmetic

e String arithmetic optimized for large numbers

® Avoid string movements, reuse string storage

e | ookup for compound variable access not always from top
e (Cache compound variable addresses

e Optimized for compound variable integer tails

1995 May 1..3 , Rexx Symposium Stanford, Californ1izé

3/

=% Rexx/370 Compiler and Library

1995
=Z=372 rexxcomp@vnet.ibm.com 4 Optimization stoppers

Optimization stoppers

® |Interpret instruction

@ Trace compiler option
e Numeric Digits < 9 suppresses binary arithmetic

¢ Numeric Digits unknown suppresses binary arithmetic

e [ntegers coded in exponential notation, with decimal points,

or in strings with non-digit characters suppress binary arith-
metic (10, 1., 17, 71" vs "1/, 1)

e | abels stop compound variable access optimizations

e Referenced labels may stop other optimizations

Labels within loops require run-time checks for jumps into
loop

e More than three numeric tails suppresses numeric tail opti-
“mizations

Note: A program compiled with the Trace® option is fully inter-

preted by the run-time Library and will perform better than
when interpreted by the system interpreters

1995 May 1..3 Rexx Symposium Stanford, Californ1ig

342

Rexx/370 Compiler and Library
rexxcomp@vnet.ibm.com

1995
Optimizing programs

Optimizing programs

Quoted strings perform better than variable names
e

Assignment of quoted strings perform best

e TestHalt slows down loops (especially on MVS)
L

Compiled assignment is faster than Parse

e Assignment preserves binary value

~ o Simple variables are faster than compound variables
o

Exposing stem is faster than exposing compound variable
L

Binary representation can be forced (a+0)

® Preallocating strings faster than extending strings
e

DLinked modules perform best
e

Object compiler output can be used in function packages
-(which can be DLinked)

1995 May 1..3

Rexx Symposium Stanford, California

18
343

T==5 Rexx/370 Compiler and Library
==372 rexxcomp@vnet.ibm.com

1995

Extensive Error Reporting

S Extensive Error Reporting

e 232 compile-time message numbers

Detailed static syntax analysis of entire program

Marks probable cause of error in listing

Cross-reference can be used to

find misspelled and similarly spelled names

find variables never assigned a value T

Can flag non-SAA language elements

® 182 run-time message numbers

Issues standard Rexx error messages

Plus more detailed messages for each error

e Messages can be translated to other national languages

- (Japanese available)
e Both compiler and library have internal diagnostic facilities
to help isolate internal errors

1995 May 1..3 Rexx Symposium Stanford, Californ1i

344

-
9

T=T=5 Rexx/370 Compiler and Library 1995
=Z=27= rexxcomp@vnet.ibm.com 4 Program Listing

. Program Listing

* On every page

— program identifier

— compiler release and PTF level
— compilation date and time
e Compilation summary

— Compilations status
(number of messages, severity code)r?

— Each compilation option with specified or default value
— If ETMode in effect?
® Source listing (optional)
— Nesting levels for If, Do, Select
. — Program line numbers and record and file numbers®®

— Messages interspersed with markers to probable cause
on line

1995 May 1..3 Rexx Symposium Stanford, Californzig

39S

Rexx/370 Compiler and Library 1995
rexxcomp@vnet.ibm.com A Program Listing

o Cross-references (optional)
— Grouped by

— Labels, built-in functions, external routines
— Constants (optional)
— Simple variables

— Stems and compound variables —
— Include

— The item
— Attributes
— Line references

— Where set and for labels: valid definition, reference
to undefined, duplicate

— Hbst commands in source® (optional)
e Compilation statistics®?

— Number of source lines

— Size of compiled program

— Message statistics

— Flagged source line numbers

— Included files namesR3

1995 May 1..3 Rexx Symposium Stanford, CaIiforn2ie11

36

Rexx/370 Compiler and Library . 1995
rexxcomp(@vnet.ibm.com Alternate Library e

— Alternate Library (R2+PTF)

Run compiled execs without the Library product
Can be distributed freely, without charge

Can be packaged with compiled Rexx applications

Uses interpreter so no performance advantage
Alternate and SLine compiler options required
Condense option may be used

Can be used for either CExec or Object files -

Compiled execs can use actual Library if available

1995 May 1..3 Rexx Symposium Stanford, California

22

347

T=T==5 Rexx/370 Compiler and Library 1995
=272 rexxcomp@vnet.ibm.com _ Condense «

o Condense (r1)

Compiled programs larger than source

® Condensed programs usually smaller than source, even
when source lines included

e Expansion occurs when "p’rogram invoked
® Advantages

— Less disk space

— Less I/O when read into storage

— After expansion at start-up, no performance degrada-
tion

— Source scrambled, including host commands and con-
stants, even when source lines included

e Disadvantages

— More storage when running (both condensed and
expanded versions remain in storage)

— More processor time to expand when invoked

— Can’t use DLink option

1995 May 1..3 Rexx Symposium Stanford, Californ?i?3

348

Rexx/370 Compiler and Library
rexxcomp@vnet.ibm.com

1995
‘ Condense
e—se Condense when

— 1/O is the bottleneck and storage isn’t

Program resides on disk or non-shared storage
Program is large

= Program is long-running =~

Program is seldomly invoked

Source or constants need protection

DLink not required

1995 May 1..3

Rexx Symposium Stanford, California

24
349

Rexx/370 Compiler and Library
rexxcomp@vnet.ibm.com

1995
7 copyright (R2+PTF)
Copyright r2+rr)

Control directive — /*%Copyright ... */
L

Inserts notice as visible text in compiled file

Inserted notice is the concatenation of all Copyright direc-
tives in a program

® Treated as a comment by Rexx interpreters

1995 May 1..3

Rexx Symposium Stanford, California

25

T=%= Rexx/370 Compiler and Library 1995
=£==27% rexxcomp@vnet.ibm.com ‘ Margins «s

. Margins (rs)

Can specify left and right text bounds of source files

@ Only text within margins is compiled 7
Compiler listing contains complete record

e SLine and IExec output E:é’htaih”only text within margins
e On MVS, file sequence numbers detected and removed
before margins applied

1995 May 1..3 Rexx Symposium Stanford, Californzig

351

T=== Rexx/370 Compiler and Library | 1995
£Z=272 rexxcomp@vnet.ibm.com _ Include Files

o Include Files 3

* No longer necessary to have entire program in 1 source file
® Control directive — /*%Include file_id */

— Inserts included file immediately following the */

— Includes may be nested

— Included files may be members of libraries

— Treated as a comment by Rexx interpreters — but ...
® |Exec compiler option

— Generates a single file with all program source,
% Included or otherwise

— Contains only text within specified margins

— Can be used to interpret programs composed of
include files or with non-Rexx text outside of margins

1995 May 1..3 Rexx Symposium Stanford, Californ?ig

352

=== Rexx/370 Compiler and Library 1995
£==7= rexxcomp@vnet.ibm.com » Object

N | Object

e Use Rexx program as would other high-level language pro-
grams

— Build modules

— Command or program search order

— Use various MVS/VSE parameter passing conventions

— TSO/E command

— Rexx external routine

— Either TSO/E or Rexx external routine
— MVS program

— VSE program

— TSO/E Called command

e Build function packages
e Combine with routines written in other languages
e Same file content as CExec, just different format

o (et external symbol and relocation information with DLink
option

1995 May 1..3 Rexx Symposium Stanford, California |

28

353

T=TS Rexx/370 Compiler and Library 1995
=27z rexxcomp@vnet.ibm.com _ DLink

—_— | DLink (1)

e (Combine external functions and subroutines into 1 execut-
able module

‘& Direct linking instead of searching
- — Can be very significant performance improvement
e (Can create self-contained modules
® No name clashes with user’s environment
e No behavioral changes due to changes to external routines

e Select which routines are included — doesn’t have to be all
routines (generates weak external references)

1995 May 1..3 A Rexx Symposium Stanford, Californ?ig

359

exx/370 Compiler and Library | 1995
rexxcomp@vnet.ibm.com ‘ Possibilities?

|
|

Possibilities?

Object Rexx
® More, better optimizations

e Better error reporting by recognizing bifs and operand
~ types at compile tme

e ANSI flag option — flag non-ANSI syntax

.. ® NoExecComm option — assume no ExecComm interface,
means better optimization possible

e WDB/WDBLang debugger support — generate needed side
files

e AutoSLine option — include source only if SourceLine bif
used

e Sline option ranges — include only selected source
® . Scramble imbedded source — improve security

e Compiler dump range option — reduce dump volume
® Page width option — support wider lines

® |ndicate minimum runtime level required on listing and via
utility and function

1995 May 1..3 Rexx Symposium Stanford, Californég

355

Rexx/370 Compiler and Library
£==7= rexxcomp@vnet.ibm.com

1995
Possibilities?

e—FError number cross reference option

Print DCB parameters in options list

e Support alternate DD names

e Add column numbers to messages and list of flagged lines

¢ Include invalid hex and binary strings in cross reference
listing
o

Print hex and binary strings as they appear in source
e

Spilt source lines at more sensible places in listing
o

More dump data — unsorted symbol table, environment
interface, lister

User specified placement of TestHalt hooks
L

Ability to build single executable that doesn’t require
runtime library

e (OS/2 syntax checker, lister

Source reformatter — indent by nesting level, efc.

1995 May 1..3

Rexx Symposium Stanford, California

31

356

T=325 Rexx/370 Compiler and Library 1995
=272 rexxcomp@vnet.ibm.com _ Possibilities?

o—Classic Rexx compilrer and library for

— 0S/2, WARP
— Intel

- — PowerPC
— AIX, UNIX
— WindowsNT, Windows85
— AS/400 |
— CICS/MVS (library only, both)
— VSE (compiler)
— PC DOS
— Other

1995 May 1..3 Rexx Symposium Stanford, Californ3ig

357

exx/370 mpiler and Library

99
rexxcomp vn t.iom.com Possibilit}esg

+——Classic Rexx compiler and library for

0S/2, WARP

— Intel

— PowerPC

AIX, UNIX

WindowsNT, Windows95
AS/400

CICS/MVS (library only, both)
VSE (compiler)

PC DOS

Other

1995 May 1..3 Rexx Symposium Stanford, Californé%

How Rexx Helped Me Hit the Ground Running in
UNIX

Lois White
Stanford Linear Accelerator Center

Pages 360-362

Proceedings of the 6th International Rexx Symposium 360

How REXX Helped Me Hit the Ground Running in UNIX

or

How I Stopped Worrying & Learned to Love Typing in Significant Mixed Case

Lois White
SLAC Computing Services
Stanford Linear Accelerator Center, Stanford, California

6th International REXX Symposium
Stanford Linear Accelerator Center, Stanford, California
May 3, 1995

Since the early 80’s, REXX has been my language of choice in VM/CMS for a system of execs
and SAS programs which manipulate and store data and produce daily, month-to-date, and
month-end reports on resource utilization and performance. Actually, I created and still maintain
three VM service machines which keep track of utilization and some performance statistics for
VM/CMS, a VAX cluster, and SLAC’s telephone system.

About three years ago, it was announced that UNIX would be the future direction for physics
computing at SLAC. In order to prepare for the coming of UNIX, I took an introductory course
and was appalled...shell scripts??...no REXX??? I looked at bourne, korn, and ¢ shell scripting
and said to myself “I thought we had progressed beyond EXEC and EXEC2”. Then someone
mentioned that perl was the scripting language to use in UNIX. When Ilooked at perl I found it
to be powerful and concise, but nearly impossible to decipher without comments on each line! I
-was looking at a steep learning curve here!

As the new RS6000 machines began arriving, it quickly became evident that I would need to start
accounting for resource utilization on them and get an idea of how much they were being used
and by whom. The accounting software included with the RS6000 Base Operating System was
minimal, but it produced most of the information we needed. However, it didn’t store data in a
form that is readily used for reporting purposes. It also didn’t clean up after itself very well,
allowing directories to grow indefinitely. A great deal of manual intervention was required in
order to save data and produce reports on a regular basis and to keep directories from filling up. It
was clear that I needed to have more than just crontab entries and SAS software and I needed it
soon!

Writing perl or shell scripts would have accomplished the task but I estimated that it would take
some time, perhaps months, to become proficient enough to do what was needed in a lot less time.
In early 1993, I learned that The Workstation Group’s uni-REXX had arrived at SLAC and I felt
as if I'd been saved. All subsequent references to REXX in UNIX in this paper refer specifically
to the use of The Workstation Group’s uni-REXX.

In the VM/CMS world I had already developed techniques for data storage, data manipulation,

BES

and report production which I could now use in the UNIX world with the arrival of REXX.
Close to ten years of experience using VM/CMS REXX meant that I wouldn’t have to spend three
to six months achieving the skills I needed before I could start managing data and producing
reports for the rapidly multiplying UNIX machines. Furthermore, the uni-REXX manuals were
written for users making the transition from VM/CMS to UNIX. With all this encouragement, I
jumped in and wrote my first REXX script in UNIX which copies AIX disk accounting data from
the file where it gets replaced each time disk accounting runs to another directory where it is
saved and used later to analyze disk usage on a long term basis.

Since then I have developed a system of crontab entries and REXX and SAS programs which
store and manipulate UNIX accounting and performance data and produce daily, month-to-date,
and monthly UNIX resource utilization and performance reports. On each of the (now) sixty-
four RS6000s where we collect accounting data, a REXX program executes daily which copies
the locally stored data to a generally accessible directory where accounting data for all sixty-four
machines is stored. After that, another crontab entry on one machine executes a REXX program
which initiates the daily data processing and subsequent analysis reports by executing SAS and
additional REXX programs. This daily program’s decisions on which processes to start are based
on the current date, day of the week, and other criteria. There are several other cron-initiated
REXX programs which take care of data copying, directory cleanup, and daily checking of all
automatic processes. In addition, there are several REXX programs which are executed manu-
ally to rerun processes which failed and to perform tasks such as large scale data backup.

Outside of the accounting and performance area, I have used the same techniques to develop a
system of crontab entries and REXX and SAS programs to produce regular reports and graphs
analyzing network performance data for our UNIX systems.

In conclusion, REXX enabled me to “hit the ground running in UNIX” because it has:

Familiarity:
I'had many years of experience writing REXX code.

Portability:

I was able to transfer several large pieces of REXX code from VM/CMS to UNIX and use them,
often without modifications. These included useful algorithms for cleaning up old files, finding
dates, creating file names, etc. to use as parameters for execs and SAS programs.

Communication with UNIX:

It is possible to issue UNIX commands from REXX programs. By using the POPEN instruction
or function, it is possible to read output from UNIX commands and to test return codes. Some-
times I’ve found that using a UNIX command is more efficient than doing the same task with
REXX code, e.g. file editing using the sed utility instead of REXX s linein/linout functions.

Readability:

REXX code is relatively easy to understand and usually doesn’t require adding comments on
every line in prder to remember “Why did I do that?!”

362

	slac-r-464-Frontmatter
	rexx95-001
	rexx95-002
	rexx95-003
	rexx95-004
	rexx95-005
	rexx95-006
	rexx95-007
	rexx95-008
	rexx95-009
	rexx95-010
	rexx95-011
	rexx95-012
	rexx95-013
	rexx95-014
	rexx95-015
	rexx95-016
	rexx95-017
	rexx95-018
	rexx95-019

