
SLAC-R-95-464
CONF-9505 19% -

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May l-3, 1995
Stanford, California

Convened by
STANFORDLJNEARACCELERATORCENTER

STANFORDUNNERSITY,STANFORD, CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM

Pam Taylor of The Workstation Group
James Weissman

Prepared for the Department of Energy
under Contract number DE-AC03-76SFOO5 15

Printed in the United States of America. Available from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

Proceedings of the 6th International REXX Symposium

Table of Contents

Program*... 1

REXX 1995 - The Growth of a Language . 8

The Future of REXX*... 34

Problems and Issues Writing REXX Compilers 50

Writing CGI Scripts for W W W Using REXX 68

Object REXX: Up Close and Personal ..*............ 100

Object REXX: OpenDoc Support . 138

Report from the X3J18 Committee . 144

Centerpiece and Object Oriented REXX . 150

REXX, Distributed Systgems and Objects . 174

Getting Ready for Object REXX ... 194

SOM - Present and Future .. 220

Rexinda ... 236

REXX for CICS/ESA .. 252

REXX Changes in OS/2 Warp . 274

S/REXX by BENAROYA . 284

A RExx-based Stock Exchange Real-time Client/Server Environment for Re-
search, Educational and Public Relations Purposes: Implementation and Usage
Issues . 292

R~xx/370 Compiler and Library 1995*........*................. 324

How REXX Helped Me Hit the Ground Running in UNIX . 360

Proceedings of the 6th International Rexx Symposium i

6th International REXX Symposium

Program

Pages 1-6

Proceedings of the 6th International Rexx Symposium 1

Mondav. I Mav 1995

8:45

9:oo

lo:oo

10: 15

1l:lS

12:15

1:30

2:30 Break

2~45 The Future of REXX
Tim Browne, IBM

3:45

-. 4:15

Welcome and Announcements
Cathie Dager, Stanford Linear Accelerator Center

Introduction to REXX Tutorial
Chip Davis, Aresti Systems

Break

Intermediate Programming in REXX Tutorial
Chip Davis, Aresti Systems

Advanced REXX Programming Tutorial
Chip Davis, Aresti Systems

Lunch

Keynote Address: REXX 1995 - The Growth of a Language
M. F. Cowlishaw, IBM Fellow

Much of the character of REXX today was determined during the first year of its development. In
this talk, Mike will take highlights from that first year, and show how the design decisions and
user feedback of 1979 have let to steady growth since then and the world-wide use that we see
today.

This presentation discusses IBM’s plans for Object REXX including making REXX more pervasive
in the industry and aligning with key industry standards. Includes an opportunity for Q&A with
the IBM REXX Product Manager.

REXX in PC/DOS 7.0
Dave Gomberg, Experimenta

Another operating system acquired a built-in REXX when IBM shipped DOS 7.0. Although DOS
is no longer a cutting edge OS, it now has the latest and greatest shell language available at no ex-
tra cost. And legacy users can take advantage of REXX as a shell and prototyping language. This
new offering will enhance REXX’S claim to be the universal language.

Issues and Problems W riting REXX Compilers
Markus Pelt-Layman, Pelt Industries

This session will cover issues and problems writing REXX compilers.

3

Tuesdav. 2 Mav 1995

9:oo

9:45

10:45

ll:oo

11:45

12:15

1:15

2:lS

_ 2:30

3:30

Les Cottrell & Bebo White, Stanford Linear Accelerator Center
The Common Gateway Interface (CGI) is an interface for running external programs, or gateways,
under an information server such as the World Wide Web (WWW). Gateway programs, or CC1
Scripts, are executable programs designed to enhance the functionality of a server by providing
non-native services. Les and Bebo will describe the operation of CGI and demonstrate how CGI
scripts may be written in REXX. In addition, they will point out some of the “gotchas” that SLAC
has encountered when using REXX with WWW. This talk will primarily focus on the use of REXX
in a Unix environment with the CERN and NCSA W W W servers. Some mention will be made of
the VM W W W server written in REXX by Rick Troth.

Rick McGuire, IBM
A demonstration of the latest features in Object REXX, including support for the Workplace Shell,
persistent objects, shared objects, and more. See how Object REXX can be used to enhance your
OS/2 desktop.

Break

Tom Brawn, IBM

The first REXX symposium produced enthusiasm for the idea of a REXX language standard, and of-
fers to participate in the development. The effort started in 1991 and fifteen committee meetings
later there is now a proposal for what the standard should say. It is being reviewed by the public.
This presentation will cover: choices, corrections, and extensions made by the committee; what is
new, what is not, and why; what happens to the proposal next; how you can get a copy; how to un-
derstand its more formal parts; what you can do about flaws you detect or perceive in the proposal.

Lunch

Centerpiece - An Object-Oriented REXX Development and Runtime

Centerpiece is a modern, graphical, object-oriented, programmable, distributed, multi-platform,
multi-user, interpretive, interactive environment. Centerpiece is suitable for both rapid develop-
ment and delivery of complex, multi-user, pseudo-realtime applications. Centerpiece was built to
be the foundation for developing all types of monitoring and control applications. Mantissa’s spe-
cific area of interest is in datacenter management solutions. This talk will explore Centerpiece
specifically focusing on the object-oriented REXX aspects of Centerpiece.

Break

John Tibbetts, Kinexis

Rick McGuire, IBM
1

- .

4

4:30 SOM: Present and Future
Simon Nash, IBM

IBM’s System Object Model (SOM) was introduced in 1992 and is now in its third release, run-
ning on eight platforms. A major component of IBM’s object strategy, SOM provides a language-
neutral object model that allows class libraries to be developed and used in a number of object-
oriented and procedural languages (both compiled and interpreted). SOM defines interfaces that
allow class libraries to be distributed in binary form and used from other languages than the imple-
mentation language, thus enhancing their reusability. Other SOM features include CORBA-
compliant object distribution (allowing remote location of objects, transparent to client code) and
release-to-release compatibility (allowing new versions of class libraries to be used by unmodi-
fied and unrecompiled client code). This talk gives an overview of SOM today, and looks at possi-
ble future directions, particularly relating to support for Object REXX and similar dynamic (non-
compiled) languages.

-

4

8:30

9:30

10:15

10:30

11:15

12:15

1:15

2:oo Break

The Linda@ parallel programming model was conceived by David Gelernter at Yale University in
the 1980’s to simplify programming parallel applications. Melinda extends a language with four ba-
sic functions and two variations on them. These functions put data into and get data from a
global, content-addressable data area (“tuple space”). User functions can access that global data
and execute in parallel, via multitasking or multicomputing. Since the tuple space and REXX’S
compound variables are associative, a REXX user may be “comfortable with” Linda, REXX makes
it easier to prototype and experiment with hot topics such as data mining and software agents,
which can exploit Linda. This presentation will describe Linda and Rexinda in more detail,
briefly show how to parallelize a program, elaborate on a simple example and comment on future
directions.

Break

Dick Goran, C F S Nevada, Inc.

S/Rexx is an implementation of REXX 4.00 for Unix systems with some extensions developed by
Robert Benaroya. The presentation discusses the design objectives and gives examples of the
benefits. S/Rexx is completely integrated with a Unix Xedit-like editor SEDIT. The principle
characteristics are: an interpreter free from size or shape limitations; support for dynamic loading
of external procedures which can share global variables with the main procedure; enhanced debug-
ging facilities including a more detailed trace output as well as a Motif based debugger; simpli-
fied interface to the Unix platform via a number of additional built-in functions; new ADDRESS
environments; extended syntax on a number of instructions.

Lunch

A RExx-based Stock Exchange Realtime Client-Server Environment for

Martin Misseyer, Free University of Amsterdam
This paper presents the design, development, and implementation of C/S systems from both devel-
oper and user views and from both technical and non-technical points of view. Questions ad-
dressed include: the difference between quasi-C/S and full C/S; how to develop quasi or full C/S
environments in REXX using APIs; REXX portability in C/S environments (designing applications
for portability); which REXX programming techniques should be used developing a full C/S envi-
ronment; which performance and programming techniques should be used in a full C/S environ-
ment having large scale database operations and I/O (designing applications for performance);
how to create C/S GUIs (specific applications as well as monitors) in REXX.

- .

.

b

2:15
Rick McGuire, IBM

What can the IBM REXX/370 Compiler and Library do for you? What’s new with Release 3?
This presentation covers performance, other advantages, compatibility, enhancements, supported
systems, and tips.

2:45
Lois White, Stanford Linear Accelerator Center

Possible subtitles for this talk might be something like “uni-REXX, Rx for Making the Transition
from VMKMS to Unix a Little Less Painful” or “How I Learned to Stop Worrying and Love to
Type in Significant Mixed Case”. Using REXX in Unix really did make it possible for me to move
to and, dare I say, “thrive” in the Unix environment. This presentation will show how I use REXX
in Unix and how being able to use it there made it possible for me to hit the round running instead
of barely crawling.

- .

3:15
Cathie Dager, Stanford Linear Accelerator Center

** Session replaced by a general session. Presentation included in the Proceedings.

-.

.

REXX 1995 - The Growth of a Language

M. F. Cowlishaw
IBM Fellow

Pages 8-32

Proceedings of the 6th International Rexx Symposium 8

8

Rexx 1995
The Growth of a Language

Mike Cowlishaw
IBM UK Laboratories

Hursley, England

0 IBM Corporation 1995

, .b -

O u tlin e

+ T h e first year

- B a ckg r o u n d a n d con tex t
- In itia l spec ifica tio n , re fin e m e n t, a n d evo lut ion
- R e trospec tive

+ 1 9 8 0 - 1 9 9 5

R e fe rence :

T h e E a rly H isto ry o f R e xx, M ike C o w lish a w
IE E E A n n a ls o f th e H isto ry o f C o m p u tin g ,
V o l 1 6 , N o . 4 , 1 9 9 4

0 IB M C o r p o r a tio n 1 9 9 5 - l-

,
.+ . 1

Whence Rexx?
Rexx grew from two concepts:

.

.

1. A sing/e macro language for many applications (first
expounded by Stephenson in 1973)

2. A language designed for the benefit of the user
(programmer), not the language implementer

0 IBM Corporation 1995 Mike Cowlishaw

I

Traditional macro lanauaaes e a--

Macro languages assumed that most of the content of a
program would be literal data:
&IF &NODE&J l= &LOCAL &USER = &S’I’RING OF
&USER&J AT &NODE&J

By 1979, programs existed where more than 50% of the
tokens began with YK

The solution:
if node.jl= local then user=user.j 'AT',
node.j

0 IBM Corporation 1995 -3- Mike Cowlishaw

.

March 20-29, 1979
Discussion with EXEC 2 people [March 221

‘I. I’m thinking of implementing an experimental EXEC
processor to handle a more . . . PUI-like language. . . .
This is of course the dual of the EXECEXEC 2
languages, in that literals are identified, rather than
variables/control words, but . . . EXECs nowadays often
seem as complex as programs . . . and that therefore
literals are often a very small percent of the tokens in
an EXEC”.

c+ first specification for REX [March 291

0 IBM Corporation 1995 4- Mike Cowlishaw

First specification (1)

+ 5 pages of introduction and rationale
+ 1 O-page language description
+ 4 pages of examples
+ Eleven instructions (IF, DO WHILE/UNTIL, SELECT,

QUEUE, PUSH, PULL, SAY, EXIT, RETURN,
TRACE ON/ERROR, ERROR)-plus a proposal for
REX (INTERPRET)

+ 8 special variables (BLANKS, DATE, N, NL, Q, f?C,
RETCODE, TIME); DATE, Queued, and TIME 1
became functions.

0 IBM Corporation 1995 -5- Mike Cowlishaw

.n

First specification (2)

+ There were three example programs (including bugs
For example:
/* Send file to a local user */
Pull name fn ft fm;
CP SPOOL PUN name CLASS A;
if rcl= 0 then do; /* check it worked */

say name is not a valid userid;
exit 102; end;

PUNCH Fn Ft Fm;
CP SPOOL PUN * CLASS A;

etc .

.

0 IBM Corporation 1995 -6- Mike Cowlishaw

Refinement

+ Hundreds of pieces of mail refined the initial
specification

+ Arguments such as DO...END versus IF...ENDIF
+ Version 0.01 to Les Koehler and Ray Mansell [May

211
+ Initial specification had evolved to 30-page reference

manual [by June]
+ Rapid growth of features, following suggestions ’

(better tracing, hex strings, nested comments, et&)

0 IBM Corporation 1995 -7- Mike Cowlishaw

n

Key features

+ Control structures
+ Parsing-PULL and decompose into words
+ Fluidity of symbols (multiple uses)
+ Concatenation with blank
+ Alternative quotes for literals
+ Lack of “boilerplate”
+ Case-insensitive comparisons (later removed)
+ Case-preservation for literals (later removed)
+ Tracing

0 IBM Corporation 1995 -a- Mike Cowlishaw

Performance

-.

.

+ Comparisons with EXEC, EXEC 2, and PUI
+ Test loop: 3.31 seconds (on S/370 model 155):

i=O
do 2000

i=i+2
end

1995:

+ 0.19s on a 486/33MHz PC

0 IBM Corporation 1995 Mike Cowlishaw

. -

A typical week- the first of 1980 ’

+ Requests for a more PUI-like DO instruction, with the
ability to step a control variable

+ Requests for subscripts (rejected because, among
other things, ‘I... the obvious syntax, using square
brackets, is not practical because so few people have
brackets on their keyboards”)

+ A user contributed a draft quick-reference card 3
+ Positive feedback:

“REX is getting some really good press around here.
People really sit up and take notice, but wonder why
someone didn’t do it 30 years ago”

0 IBM Corporation 1995 -lO- Mike Cowlishaw

N
0,

Development and usage report
“The value of this communication with other
programmers and users cannot be underestimated.
W ithout the communications provided by the network,
REX would never have been developed.”

+ 10,000 lines of assembler, 5,000 of documentation
+ 27 man-weeks (1000 hours)
+ Only evenings and weekends-when response ti’me

was good and interruptions were few.

0 IBM Corporation 1995 Mike Cowlishaw

Y

CPUS t

Growth chart

0 IBM Corporation 1995 -12- Mike Cowlishaw

Retrospective-design errors

+ Comparison should have been case-insensitive
+ DO should have been split into DO...END and

LOOP...END
+ Too much emphasis in the External Data Queue
+ Parsing is something of a compromise

0 IBM Corporation 1995 Mike Cowlishaw

Retrospective-successes

+ Deliberate minimizing of “boilerplate” and punctuation,
and notations in general

+ Hardware independence and robustness
+ Upgradeable language (keywords only reserved in

context)
+ String support (especially “blank operator”)
+ Associative arrays (stems)
+ Decimal arithmetic
+ Use of the electronic network for rapid design

evolution
0 IBM Corporation 1995 Mike Cowlishaw

1980-l 984

+ 30 internal releases
+ Customers, led by SLAC, ask for REX
+ Name changed to REXX
+ VM/SP 3, with REXX, announced and shipped world-

wide (1983)

0 IBM Corporation 1995 -15- Mike Cowlishaw

II

Help!

There are some omissions in the following.

Please let me know of them (and any corrections)-I’ll
incorporate in a WWW page soon.

0 IBM Corporation 1995 Mike Cowlishaw

19854 988

+ First non-IBM implementation (Charles Daney, 1985)
+ The Rexx Language published (1985)
+ First Unix implementation (Andy Pierce, IBM, 1985)
+ Experimental OS/2 implementation (1986)
+ Rexx for VMS VAX (Charles Daney, 1986?)
+ IBM SAA has Rexx as “Procedures Language” (1,987)
+ Amiga Rexx (AREXX, Bill Hawes, 1987)
+ Rexx in MVS and TSO/E (1988)
+ T-REXX for Tandem (Keith Watts, 1988?)

0 IBM Corporation 1995 -17- Mike Cowlishaw

19894 990

+ IBM and Microsoft agree Rexx is the best scripting
language for OS/2 (1989)

+ Rexx compiler for VM (IBM Haifa and Vienna, 1989)
+ uni-Rexx (The Workstation Group, 1989)
+ Rexx 4.00 published (1990)
+ First Rexx Symposium (SLAC, 1990)
+ Rexx in AS/400 (1990)
+ Rexx in OS/2 (1990) I

0 IBM Corporation 1995 -18- Mike Cowlishaw

+ Work on ANSI standard for Rexx starts (1991)
+ Rexx/imc (Ian Collier, 1992)
+ Regina Rexx (Anders Christensen, 1993)
+ Rexx for VSE (1993)
+ Rexx for AK/6000 (1993)
+ Rexx Language Association formed (1994) 8

+ Rexx for Novell NetWare (1994)
+ Simware Rexx; Windows, Macintosh, NetWare (li994)
+ Rexx for CICS/ESA (1994)

Mike Cowlishaw

: 4

., -

+ Rexx in PC-DOS 7, as the “programming language of
choice”

+ World-Wide Web pages for Rexx; start at:
*http://rexx.hursley.ibm.com/rexx/

+ Object Rexx public beta
+ . ..and more...

0 IBM Corporation 1995 Mike Cowlishaw

I

.:

. . ;

I

REXX Language Products Available ’

A
Products

25 9

2om

15=

I
b

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 Year

0 IBM Corporation 1995 -2l- Mike Cowlishaw

REXX Books and Manuals

A
Books

7oa

60=

IOm

I
O- b

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 Year

0 IBM Corporation 1995 -22- Mike Cowlishaw

‘I

Sum m ary

+ Rexx is a carefully designed, purpose-built scripting
language

+ Steady growth over 15 years, especially rapid in last
2-3 years

+ Rexx is installed on 15-25 m illion users’ machines

+ Well over 2 m illion Rexx program m ers

+ It wouldn’t have been possible without people.]

0 IBM Corporation 1995 M ike Cowlishaw

I

The Future of REXX

Tim S. Browne
IBM Endicott

.
Pages 34-49

Proceedings of the 6th International Rexx Symposium 34

The Future of REXX

“Classic”
REXX

T. S. Browne

Internet

Networked
computing Object

Oriented
REXX

Agents

Evolution of REXX

5/l I95 IBM Endicott

m Continue to support users of “Classic” REXX
products

. Continue to evolve “Classic” REXX into Object
REXX

I m Make Object REXX pervasive across platforms and
1, L
i..

1. . i applications
. Align Object REXX with key technologies and

standards
m Facilitate the creation of software agents and the

environment they operate in
m Get’others to exploit, build, and use our software

agent technology

Open Scripting Products

1994 Accomplishments
4/94 OS/2 Beta

1 O/94 AIX Alpha
11/94 AIX Beta
11/94 OS/2 Developer’s Connection
11/94 Windows Alpha

l Classic REXX 3/94 Netware GA
7/94 CICS GA
7194 DOS GA
12/‘94 OS/400 GA

Requirement&# I Descriotion , - ,. Current Status New Status
souI291007, REXX for AIX AtX/6OOO: Rejected AtX%OOO: Available as
SALANG90203 AIX PS/2 Future objective PRPQ#
SAtANG90206 Remove 500 char. limit on statement Available on OS/2 onh Future Available on all IBM REXX

1 length 1 objective on other systems 1 imptentations
SQMVSE93027 1 IBM should provide a richer suite of 1 Under study

._~~
.! ” l--%&e Qbiecf :ive debugging toot- I-- ~~“” I . ‘_ I .

SAREXX902fO Pull instruction should not type a “?” Accepted 1. -:__ : : Available - OS/2 2-O GA 3/92 :i
SAREXX90211 Document PARSE rules expticity &---qt~ : : ,._‘I, : _; ,‘, Available :jj

and formally “” : ,‘:_ ‘_ :, ::
SOCMSX89023 REXX file l/QQN Implement CMS Accept& Available 1 ” ,;j

REXX
:$I;; ’ .I;; ;,:I,
,, __ ‘,

SALANG89205 Extend DATE fw@tion
SAlAma

) that wilt
sequentially and randomly

\--- -
l-4, Allow expressions in Compound 1 Long Raw Considsi

SAtAN 1 Share variables between exkrkt 1 Long Range Cot&k

! Obiect Oriented Extensions
SAREXX91OOt I Call through expre&ions

--.. ---- - ------- _._._.__
1 Long Range Considwat@$,’ : .,.

: i 1 Traverse Stem variables f Lana Ranae Consider @&&; ,i;: Accepted w-Cv*-.-C-.“rX-.

-, * e-X “‘-1201’ I Improve Error Messages
SOCMSX89OOt , 5 I Passino Stems to Subroutines
SAHWLAY
!
SAAREXX 1 Generic Bindings
GWCME91003 , I Date processina in I _ REXX

I ----J ----u- --------I+wtwsI. ,,

1 Long Range&n&k _ ..’ ratimi:.: .. Accepted
f Lana Ranoe Consider &&$:;, ;_:;y . -- .s --- v- - - - -7” Accepted
1 Long Range ConsW~ri;~ ,: :,, Accepted

Long Range &&j&&j&~, j:iii’ Accepted

Pervasiveness

Platforms

OS/2
PPC
MVS
AIX
VM
Windows
LINUX
NetWare
DOS
ctcs
AS/400
VSE

Classic
X

Complier/RTL

X
X
X

X

X

X
X
X
X
X X (RTL only)

00
1995
1995
1995
1995
1996
1995
1995

OEM Platforms
PC DOS
NetWare
Amiga
Windows
DCEIVAX

Future Considerations
PDAs

Object REXX Exploits 00
Technologies

n Object Oriented Programming
- Encapsulation, Inheritance, Polymorphism

l Object REXX supports IBM’s SOM
- Object Oriented Documents

l Embedded, Composite documents
l Documents as a new programming model

- Object REXX is the OPENDOC scripting language
- Object Oriented Visual Programming

l Programming via direct manipulation of icons
- Object REXX support of VisualAge

z . .

Object REXX Programming
Environment

Visual Tools/Builder

FORM

Generates

AI%

SOM

OPEN 1 OBJECT

DOC REXX

NM1 1

OBJECT REXX SCRIPT
VOBJ = .IWPJDOWS - NEW (. . .>
VOBJ -. SHOW ()
VOBJ - SIZE (: . . .)
VOBJ - SETBACKGROUND COLOR (..)

Functional Requirements - Importance
Ratings - Planned Availability

OpenDoc 1.0
Debugger 1.4
Class Browser 1.5
Visual Programming 1.7
Visual Builder 1.8
Export Classes to SOM 2.0
OLE Support for Windows Version 2.8

Shift Towzwds Network Centric

Standalone Local and wide area

\
private networks

Location A

\

I
I File Server

I

Network-centric

\

j
Computinp I

t

File Server

complexity, heterogenity, mobility Environment Shift

Making “The Customer” Centric
in Network Centric Computing

n Agent Services...
- Personalized Information Retrieval

l News Services
l Mail Filtering
l Internet Surfing

- Travel Information
- Medical Information
- etc.

- Personalized Event Notification
l Network Mangement
l Reservation Alerts
l Personal Scheduler

- Personal Transaction Services
l Banking
l Business Services

- Food Services
- Retail Stores
- etc.

n Agent “Meeting Places”...
- Store Fronts
- Information Databases
- Trading Floors

A Model for Agents and Agent
” Meeting Places ” 1 I

Demonstration

WWW Explorer

Auction is Good Test of Agent Technology

l Agent working on Users behalf

l Agents have guilclelines ($100 maximum bid)

l Agent interaction at meeting place (bidding
process)

l Value of a moderator (auctioneer)

Auctioneer
Demonstrates

l Agent Technology

- Mobile Agents ‘,
,;,

l Meeting Place / : I I
- Cooperative Processing

REXX Business

Agent
integration

Technology/Services
- PreFabMated Agent
w integration Bervice ,:: i/

t

-i .

Revenue Source

OS/2
II

OS/2
(Intel) PW r% SCO-UNIX

Ported by IBM Ported by Interested Parties

Summary

9 REXX has a bright future:

- Substantial progress made against existing
requirements

- REXX language is being extended to other
platforms

- REXX is evolving it’s application development role
for network centric computing

Problems ” the Shift” Creates

. Access to needed information is:
- Diffkult due to complexity of the environment

l numerous network services with a multitude of online services
l mobility in work force increasing

- Not always timely and/or relevant
l information overload
l insufficient technology

- Labor and effort intensive
l manual

Our Approach to the Problem

m Provide “Agent Technology” where agents act on
behalf of end users

n Turn data sources into “Meeting Places” where
agents go to perform assigned tasks

m Turn end-users into information consumers rather
than information seekers

Problems and Issues Writing REXX Compilers

Markus Pelt-Layman
Pelt Industries

Pages 50-66

Proceedings of the 6th International Rexx Symposium 50

Pelt Industries

Problems and Issues writing,
REXX Compilers

0 Copyright 1994 Pelt Industries. All Rights Reserved.

Pelt Industries
History

/ \
* 1976 TEACH language interpreter (Honeywell)
* 1979 DPS command language (JES2 look-alike)
- 1985 Intercept aka AF/Operator command language

(TSO CLIST language look-alike for operations automation)
* 1986 OPS/MVS REXX interpreter contract

(ADDRESS ISPEXEC, automation rules, cma%response API) l
- 1987 Windows Net*Edit and Elan Workstation contracts
* 1989 OPS/MVS REXX External Product Interface ’
- 1992 OS/2 Smalltalk GUI front-end (REXXEHLLAPI) 1
* 1994 UmAMNE full-time

0 Copyright 1994 Pelt Industries. All Rights Reserved.
I

-

I

- I iove REXX’s simplicity and power
* Serious development requires a compiler
* I need

+ Speed
+ Portability
+ High-level GUI framework

0 Copyright 1994 Pelt Industries. All Rights Reserved.

.

/

’ I LANGUAGE DEFINITION
TRL/ANSI REmObject REm

9 II DEVELOPMENT ENVIRONMENT %
Portable interpreter/compiler, IDE

III RUNTIME ENVIRONMENT
Portable run-time lib (built-in functions)
Portable ADDRESS environments (cmdresponse)

IV OBJECT CLASS HIERARCHY
Portable base class library, GUI class library

0 Copyright 1994 Pelt Industries. All Rights Reserved.

’ * shorten development through portability
(no new learning on new platform)

+ Cross-platform compiler
+ Cross-platform IDE
+ Cross-platform run-time library
+ Cross-platform base class library
+ Cross-platform GUI class library

* Shorten execution time
through compilation and optimization

0 Copyright 1994 Pelt Industries. All Rights Reserved.
I

/ \

- Runtime licensing (INTERPRET)
* Run “interpreted” during development,

compiled in production
* GUI portability versus platforms’ native

look and features (synthesis problem)

0 Copyright 1994 Pelt Industries. All Rights Reserved.

Version 1 Version 2

C

0 Copyright 1994 Pelt Industries. All Rights Reserved.
I

New phases
added

8

:

REXXJNNE Izi Compiler

0 Copyright 1994 Pelt Industries. All Rights Reserved. 9

; ss PROLOG
; Generated bg RexxAma compiler
; _______-__----________________

include pr0log.i
- $$ START

KTEXTosegrnent bgte public WDI?
; assums w:RY,TEXT

-RWGM proc far
i-h bp ; save cder bp
mw bp,sp - bad caller’s stack pdntsr
mw a%qJ I adjust s-p
cdl JdlX ; for lntermedlate
mw spm resdts
Cdl -rxini ; htidization

; ======== Line 1 ========

string

MS errrors - MS warnings

0 Copyright 1994 Pelt Industries. All Rights Reserved. I
10

. ._

&-Layman. Ai Rights Reserved.

0 Copyright 1994 P 11

.

\.

* We are WAY behind schedule
+ under-staffed
+ under-capitalized
+ too ambitious a vision ?

* Lack of user interest/support in REXX ;

0 Copyright 1994 Pelt Industries. All Rights Reserved. 12

out work
+ Lenny Koff - online tutorial & dot
+ John Kastner - OS/2 IDE
+ Billy Jack - runtime library
+ Find Windows/Windows NT/Windows 95 guru

* Cut down on vision

0 Copyright 1994 Pelt Industries. All Rights Reserved. 13

. ..-.....-..- __I --_______- __- /

* Generate revenue
INTER REXX subscriptions
InfoREXX sales
Enterprise REXX sales
Miscellaneous REXX product sales

+ Beta sales (free upgrade)

* Look for business partners
* Look for capital

0 Copyright 1994 Pelt Industries. All Rights Reserved. 14

/

* Generate interest in REXX language
+ INTER REXX newsletter
+ Get articles published in other magazines
+ Prod IBM and others to better marketing

)- Publish information on RFSX
+ InfoREXX multimedia help file
+ Novice tutorial

* Generate interest in REXXidNNE
+ comp.lang.rexx newsgroup participation
+ MSJ advertisements

-

0 Copyright 1994 Pelt Industries. All Rights Reserved. 15

/

* Cktinue REXX evangelism
* Release “early bird” version (free upgrade)
* Share development of new features

with other vendors (IDE, APIs)
* Get users involved in development j
* Continue long-term commitment to REXX

0 Copyright 1994 Pelt Industries. All Rights Reserved. 16

I

Writing CGI Scripts for WWW Using REXX

Les Cottrell
Bebo White

Stanford Linear Accelerator Center

Pages 68-99

Proceedings of the 6th International Rexx Symposium 68

Writing CGI Scripts For

Using

Les Cottrell and Bebo White, SLAC
6th International REXX Symposium
May 2,1995

start

I

Writing WWW CGI Scripts in REXX

This presentation may be found at:

http://www.slac.stanford.edu/-bebo/rexx/title.html

Next

.

70

I

What is WWW?

The largest service on the Internet
- .

l The Internet is like the road system
l WWW is like the parcel delivery service

l 27,000 current WWW sites
l Number now doubling every 53 days
l 5 million documents stored in WWW sites

Source:Quotd in BusinessWeek, February 27,1995

INextl

-.

Log (Byte Count) by Service

- .

StatEmcsprovidedb~MedtNICSrvkesmach&
Graph by Jamea E. Pit&w, pitkov@x~techxtlu

INextl

-..

72

charxter+wond Larg& --c
interactive

service P

1 OOODml
WWW traffic an
NSF backbone A novel

800000

1400ll00

1200000

600000

400000

200000

0 I I I

1993 1994

-.

“Over the past three years the traffic on the NSF backbone has increased from 1
TB per month to 18 TB, with a good portion attributable to WWW services.” -
Vinton Ce$

INextl

-73

Integration of earlier Internet systems

l Gopher, NEWS, Archie, WAIS, ftp, . . . are-all seamlessly
available

Clients

: iophar

3erver5

P NC+WS ‘TP

INextl

-..

Format independent

a HTML is not a format but a way of structuring documents
l Formatted documents are available through their native

applications
- .

Multiple Media

a Images
a Sound
l Movies
l Launching of sessions (video, telnet, conferencing, . . .

INextl

-..

75

Some Neglected Uses of WWW

By the provider:

. CWIS
l Search engines
l Data Base interfaces
l Collaborative work
0 Special formats

By the user:

l Home pages
0 Structuring of own local information
l Participation (delurking?)

INextl

-..

76

What is CGI?

The Common Gateway Interface, or CGI, is a standard for
external gateway programs to interface with information
servers such as HTTP servers.

Gateways are programs (called CGI scripts) that serve data
which is not directly readable by a client program, such as a
database of high energy physics preprints or personnel
information, and convert it to an acceptable form, such as an
HTML page, a PostScript file, some images, or a combination
of these.

Familiar examples of Web applications which use CGI scripts
are fill-out forms, interactive graphics (e.g., banners, maps,
and menubars, etc.) and search engines (e.g., Yahoo, Lycos).

INextl

77

How Do Gateways Operate?

Gateways can be run by themselves, but are designed to be
run by the HTTP server. The server sets up an environment
which is

l secure (to prevent willful damage by users)
l informative (to allow communication between httpd

server and gateway)
l contained - so all output is sent by the server back to the

client

An example of a database query

Another example of a database query

Communication between client, server, and CGI gateway

This is a searchable index. Enter search keywords:

SLAC SPIRES: HEP Preprint database search
Send corrections to: LIBRARY@SLAC.STANFORD.EDU . Use QSPIRES search language (see
examples below). Note that there is no possibility for iterative search (yet) in WWW. Therefore, when

- needed, combine several criteria in a single request. Need more help ?
Examples:

show indexes
find author perl, m and title tau and date before 1980
find title prefix supercollid and date 1994
find t so2n+l [finds title S0(2n+l)!]
find bulletin-bd hepex and date-added 9/94
find cn mark-iii and date after march 1991
browse coden physics letters
find c phlta, 70b, 487 [finds citations of a paper!]
find a abe and date 1988 (using wwwcite [shows citations!]
find author gross, david and journal phys rev
browse affiliation caltech
find af cal tech and date 1994 (result
browse topic higgs
find topic higgs boson or title higgs and date l-95 (using wwwbrief
browse last ppf
find ppf 9442 (seq rs

To learn more about authors, institutions, or acronyms, try WHOIS, WHEREIS, or WHATIS:

whois ginsparg
whereis tern
whatis sld

See also other SPIRES databases, or SPIRES News, or the SLAC home page.

19 April 1995

SLAC Phone Directory: Search Form
SLAC 13 Apr 1995
This fill-out form can be used to search the SLAC phone directory (previously called BINLIST). Fill in
the entries you know, leave others blank. Family name, First name and E-mail ID will support truncated
searches, using an asterisk (eg: john*).

-.
Familyname:

First name:

E-mail ID:

Work Extension:

HELP

The original of this form was created by Evelyn Aviles-Hernandez.

Diana Gregory

Communication Between Client, Server, and CGI Script

-4 http server

CGI environment

- .

Next

.

Design of a CGI Script

1. Design the CGI script interface:
o Use of the <ISINDEX> or <ISMAP> in an HTML page; _
o Design of a fill-out form using HTML;
o Specify the format of a CGI script-compliant URL which can

be used as a link in an HTML page.

2. Design and code a CGI script which performs the following:
o Argument decoding;
o Argument validation;
o Processing (including error handling);
o Output and cleanup;

INextl

CGI Scripts In REXX

0 Written entirely in REXX;
o Supports CGI scripting in REXX;
0 Information at

http://ualvm.ua.edu/-troth/software/cmshttpd.html

l Today’s discussion is limited to use with Unix-based servers;

INextl

63

Providing Input to a CGI Script

l The QUERY-STRING environmental variable

0

0

0

0

QUERY-STRING is defined as anything following the first “?” in
the script-invoking URL;

Generated automatically by the HTML tag <ISINDEX> or a
fill-out form (with method=GET);

Encoded to include URL information with spaces converted
to “+I’ and special characters according to their hex encoding;

Example of QUERY STRING use. -

INextl

.

Providing Input to a CGI Script

l The PATH INFO environmental variable

o CGI allows additional context-specific information to be
embedded in a URL;

o This additional information is contained in the PATH-INFO
environmental variable;

o The information in PATH-INFO is not encoded;

o Example of PATH INFO use. -

INextl

Providing Input to a CGI Script

l Standard Input (stdin)

o Used with fill-out forms using method=POST;

o The environmental variable CONTENT-LENGTH contains the
amount of data to be read from standard input;

o Example of CONTENT LENGTH use. -

INextl

,. . . _ : ,$$@.&. i
;$P &p&
it -y~ 2;
~&&Guide to Writing CGI Scripts in REXX or 5.. z???. .^. .:

Per1
9 Apr, 1995

[SLAC Brochure I SLAC Home I Net Search]

Contents
l Introduction
0 Getting Input to the Script
0 Decoding Forms Input
0 Sending Document Back to the Client
0 Reporting Errors
0 My First REXX CGI Script

Introduction
This Guide is aimed at people who wish to write their own WWW executable scripts using WWW’s
Common Gateway Interface (CGI). Since there are security and other risks associated with executing
user scripts in a WWW server, the reader may wish to first view a document providing information on a
SLAC Security Wrapper for users’ CGI scripts. Besides improving security, this wrapper also simplifies

_ the task of writing a CGI script for a beginner.

The CGI is an interface for running external programs, or gateways, under an information server.
Currently, the supported information servers are HTTP (the Transport Protocol used by WWW) servers.

Gateway programs are executable programs (e.g. UNIX scripts) which can be run by themselves (but
you wouldn’t want to except for debugging purposes). They have been made executable to allow them
to run under various (possibly very different) information servers interchangeably. Gateway programs
conforming to this specification can be written in any language, including REXX or Perl, which -. .
produces an executable file

Getting the Input to the Script
The input may be sent to the script in several ways depending on the client’s Uniform Resource Locator
(URL) or an HyperText Markup Language (HTML) Form:

0 QUERY STRING Environment Variable -

QUERY-STRING is defined as anything which follows the first ? in the URL used to access your
gateway. This information could be added by an HTML ISINDEX document, or by an HTML
Form (with the GET action). It could also be manually embedded in an HTML hypertext link, or
anchor, which references your gateway. This string will usually be an information query, e.g. what
the user wants to search for in databases, or perhaps the encoded results of your feedback Form. It
canbeaccessedinREXXbyusing S~~~~~=GETENV('QUERY-~?RING')
or in Per1 by using
$string=$ENV('QUERY-STRING');

- .

This string is encoded in the standard URL format which changes spaces to +, and encoding
special characters with %xx hexadecimal encoding. You will need to decode it in order to use it.
You can review the REXX or Per1 code fragments giving an example of how to decode the special
characters.

If your server is not decoding results from a Form, you will also get the query string decoded for
you onto the command line. This means that the query string will be available in REXX via the
PARSE ARG command, or in the Per1 SARGV [n I array.

Forexample,ifyouhaveaURLhttp://www.slac.stanford.edu/cg~-bin/foo?hello+world
and you use the REXX command PARSE ARG Argl Arg2 then Argl will contain "hello" and
Arg2 will contain "world" (i.e. the + sign is replaced with a space).
In Per1 SARGV [1 I contains "hello" and SARGV [2 I contains "world". If you choose to use the
command line to access the input, you need to do less processing on the data before using it.

l PATH INFO Environment Variable

Much of the time, you will want to send data to your gateways which the client shouldn’t muck
with. Such information could be the name of the Form which generated the results they are
sending.

CGI allows for extra information to be embedded in the URL for your gateway which can be used
to transmit extra context-specific information to the scripts. This information is usually made
available as “extra” information after the path of your gateway in the URL. This information is not
encoded by the server in any way. It can be accessed in REXX by using
String=GETENV('PATH - INFO’),orinPerlbyusing $string=$ENV('PATH INFO'); -

-. .

To illustrate this, let’s say I have a CGI script which is accessible to my server with the name foe.
When I access foo from a particular document, I want to tell foo that I’m currently in the English
language directory, not the Pig Latin directory. In this case, I could access my script in an HTML
document as:

foo

When the server executes foo, it will give me PATH.-INFO of /language=english, and my
program can decode this and act accordingly.

The PATH-INFO and the QUERY-STRING may be combined. For example, the URL:
http://www/cgi-bin/htimage/usr/www/img/map?404,451
will cause.the server to run the script called ht image. It would pass remaining path information

"/usr/www/img/map" to htimage in the PATH-INFO environment variable, and pass "405,451"
in the QUERY-STRING variable. In this case, htimage is a script for implementing active maps
supplied with the CERN HTTPD.

l Standard Input

If your Form has METHOD=“POST” in its FORM tag, your CGI program will receive the
- encoded Form input on standard input (s tdin in Unix). The server will NOT send you an EOF on

the end of the data, instead you should use the environment variable CONTENT-LENGTH to
determine how much data you should read from stdin. You can accomplish this in REXX by using
In=CHARIN(,l,GETENV('CONTENT LENGTH')),Or inPerlby Using
read(STDIN,$in,$ENV{'CONTENTILENGTH'});

You can review the REXX Code Fragment giving an example of how to read the various form of input
into your script.

Decoding Forms Input
When you write a Form, each of your input items has a NAME tag. When the user places data in these
items in the Form, that information is encoded into the Form data. The value each of the input items is
given by the user is called the value.

Form data is a stream of name=value pairs separated by the & character. Each name=value pair is URL
encoded, i.e. spaces are changed into plusses and some characters are encoded into hexadecimal.

You can review the REXX or the Per1 code fragment giving examples of decoding the Form input.

Sending Document Back to Client
- CGI programs can return a myriad of document types. They can send back an image to the client, an

HTML document, a plaintext document, a Postscript documents or perhaps even an audio clip of your
bodily functions. They can also return references to other documents (to save space we will ignore this
latter case here, more information may be found in NCSA’s CGI Primer). The client must know what
kind of document you’re sending it so it can present it accordingly. In order for the client to know this,
your CGI program must tell the server what type of document it is returning.

In order to tell the server what kind of document you are sending back, CGI requires you to place a short
- . header on your output. This header is ASCII text, consisting of lines separated by either linefeeds or

carriage returns followed by linefeeds. Your script must output at least two such lines before its data will
be sent directly back to the client. These lines are used to indicate the MIME type of the following
document

Some common MIME types relevant to WWW are:

0 A I’ text II Content-Type which is used to represent textual information in a number of character
sets and formatted text description languages in a standardised manner. The two most likely
subtypes are:

0 text/plain: text with no special formatting requirements.

s9

0 text /html: text with embedded HTML commands
0 An ffapplicationfF Content-Type, which is used to transmit application data or binary data. Two

frequently used subtypes are:
0 application/postscript: The data is in PostScript, and should be fed to a PostScript

interptreter.
0 application/binary: the data is in some unknown binary format, such as the results of a

file transfer.
0 An "image" Content-Type for transmitting still image (picture) data. There are many possible

subtypes, but the ones most often used on WWW are:
0 image/gif: an image in the GIF format.
0 image/xbm: an image in the X Bitmap format.
0 image/ jpeg: an image in the JPEG format.

- .

In order to tell the server your output’s content type, the first line of your output should read:
Content-type: type/subtype
where type/subtype is the MIME type and subtype for your output.

Next, you have to send the second line. With the current specification, THE SECOND LINE SHOULD
BE BLANK. This means that it should have nothing on it except a linefeed. Once the server retrieves
this line, it knows that you’re finished telling the server about your output and will now begin the actual
output. If you skip this line, the server will attempt to parse your output trying to find further
information about your request and you will become very unhappy.

You can review a REXX Code Fragment giving an example of handling the Content-type information.

After these two lines have been outputted, any output to stdout (e.g. a REXX SAY command) will be
included in the document sent to the client.

Diagnostics and Reporting Errors
Since stdout is included in the document sent to the, diagnostics diagnostics outputted with the SAY
command will appear in the document. This output will need to be consistent with the Content-type :
type/subtype mentioned above.

You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, too many arguments
-.. specified, requested an invalid command to be executed, invalid syntax in the REXX exec) the script

should provide detailed information on what is wrong etc. It may be very useful to provide information
on the settings of various WWW Environment Variables that are set.

You can review a REXX Code Fragment giving an example of error reporting and Typical Output
Generated from such a code fragment.

My First REXX CGI Script
To get your Web server to execute a CGI script you must: .

0 Write the script and save it somewhere. For example let’s say we write a trivial REXX script
called cgil . rxx and save it in our home bin directory (e.g. in /u/sf/cottrell/bin/cgil . rxx).

0 Make the script executable by your Web server. On Unix this is done using the chmod command,
e.g.

0 chmod o+x /u/sf/cottrell/bin/cgil.rxx - .
0 Get your Web-Muster to add a rule to the Web server’s rules file to allow the Web server to

execute your script. You can look at SLAC WWW Rules to see how SLAC URLs currently map
to the UNIX file system.

-

The Web-Master will want to insure that Security Aspects of your script have been addressed before
adding your script to the Rules file.

Acknowledgements
Much of the text on the Common Gateway Interface and Forms comes from NCSA documents. Useful
information and text was also obtained from The World-Wide Web: How Servers Work, by Mark
Handley and John Crowcroft, published in ConneXions, February 1995.

Les Cottrell15 Jan 1995
[Top I Suggestion Box I Disclaimer]

-..

.

/* **~~~~~~**~~~~~~*~~~~~~~~~~~~~~~ */
/* Some browsers insert ASCII codes (preceded by a %) for some characters */
/* such as space or +. We replace them by the appropriate character
/* N.B. the encodings maybe in upper or lower case (e.g. %2F=/ or %2f=/ 1;
/* ***f*X********************************X*~~~~~~~~~~~~~~~~~~**~~~~~~~~~~ */
Hex='%2b=+&%20=+&%2f=/&%3f=+&'
/* %2b=+ %20= %2f=/ %3f=? */
Hex=Hexl ITRANSLATE(Hex) /*Allow for upper case*/
IF POS('%',Str)/=O THEN DO/*Any %s in input*/

DO UNTIL Hex="/*Check for hex codes*/
PARSE VAR Hex Code'='Char'&'Hex; Out="
PARSE VAR Str Pre (Code) Str
DO WHILE (Str /== "1

Out=OutllPrellChar
PARSE VAR Str Pre (Code) Str

END /*DO*/
Str=Outl IPre
END /*DO*/

END /*IF*/

-..

Reading HTML Forms Input in REXX

PARSEARGParms
StdinFile='/tmp/wrap-stdin' GETPID()/* Get unique name*/
Script=GETENV('SCRIPT-NAME'7
. . .
/* *** */

_ /* Read the input from the various possible sources */
/* Note that we preserve or save all
/* input in case we need to send it to another connnand.

*/
*/

/* If so we can restore the stdin for the called command */
/* by calling it using the REXX command: */
/* ADDRESS UNIX script '<' StdinFile */ /* *** */
IF GETENV('REQUEST METHOD')="POST" THEN DO

IF LINES()=O THEN,
CALL Exit 400, Script': null input from POST method!
'

Line.O=O
DO L=l BY 1 WHILE LINES()>O

Line.L=LINEIN(); Line.O=Line.O+l
IF L>l THEN Fail=LINEOUT(StdinFile,Line.L)
ELSE Fail=LINEOUT(StdinFile,Line.L,l)
IF Fail=0 THEN LEAVE L

END L
Fail=LINEOUT(StdinFile) /* Close the file*/

END
Path info=GETENV('PATH
IF P%th info/=" THEN,-

INFO')/*Insert path info in front*/

Cmd=!%JBSTR(Path info,2) Cmd/*Remove leading / from path*/
Temp=GETENV('QUERY-STRING')
IF Temp=" THEN Te&=Parms
IF Temp/=" THEN Cmd=Cmd Temp /* Insert query info at end*/

. IF Cmd=" THEN,
CALL Exit 402, Script': no input provided!
'

. . .

-..

Y3

I

Example of Decoding HTML Forms input in REXX

/* ************************************* */
/* Input from a form comes in the form: */
/* namel=valuelhname2=value2 */
/* Here we decode the input into an */

_ /* array of names and values. */
/* ************************************* */
DO I=1 BY 1 UNTIL Input="

PARSE VAR Input Name.I'='Value.I'&'Input
END I

-..

Handling Content-type Info in REXX

/* **+**7
/* Code fragment to set the Contentype subtype based */
/* on the file type (as determined by the characters*/
/* following the last period in the filename). */
/* ***************t*********************************** /

.html' _ FileName='/u/sf/cottrell/public-html/cgi
. . .
L=LASTPOS('.',Filename); Type="
IF L>O THEN DO

IF LENGTH(FileName)>L THEN
Type=TRANSLATE(SUBSTR(FileName,L+l) 1

END

SELECT
WHEN Type='HTM' I Type='HTML' THEN

SAY 'Content-type: type/htxnl'
WHEN Type='PS' THEN

SAY 'Content-type: application/postscript'
WHEN FIND('TXT RXX PL FOR C',Type)/=O 1 Type=" THEN

SAY 'Content-type: type/text*
. . .
OTHERWISE DO

SAY 'Content-type: type/html'; SAY "
CALL Exit 409, 'Unknown Content-type="'Type'".

END
END
SAY "
. . .

Reporting CGI Diagnostics in REXX

/* ************************************** */
/* Code fragment for reporting CGI Script */
/* diagnostic */
/* ************************************** */

- PARSE SOURCE $ArchName $Efn $Fn .
. . .
Debug=1
SAY "Content-type: text/html"; SAY
. . .
IF Debug>0 THEN SAY,

$Efn': PATH INFO="' GETENV('PATH-INFO')'".
'

-..

Reporting CGI Errors in REXX

/** */
/*Code Fragment for REXX CGI Error Reporting*/
/** */

ADDRESS 'COMMAND'; SIGNAL ON SYNTAX
PARSEArg Parms
. . .
IF QueryInput=" THEN,

CALL Exit 490,'No input given!
'
. . .

/***/
/*Rex will jump to this error exit if a */
/*syntax error occurs. It returns the user */
/*ito the line in the exec with the error. */
/***/
Syntax:

PARSE SOURCE Arch . $Fn .
CALL Exit 499, 'Syntax error on line',

SIGL 'of' $Fn'. Line="'SOURCELINE(SIGL)'"
. . .

Exit: PROCEDURE EXPOSE Debug Parms
/* **************************************
1 Exit - Assumes Content-type: text/html
I ************************************* */
PARSE ARG Code, Msg
SAY '<title>'GETENV('SCRIPT-NAME')' error' Code'</title>'
SAY '<h2>Error Code' Code 'reported by'
SAY GETENV('SCRIPT-NAME')'.</h2> The WWW utility on'
SAY '<tt>'GETENV('SERVER_NAME')
SAY ' :'GETENV('SERVER-PORT')'</tt>that you are using'
. . .

. SAY 'which reports the following error:'
_ IF Msg/=" THEN SAY '<hr><hl><code>'Msg'</code></hl>'

IF Debug>0 THEN DO
SAY '<hr>The complete environment follows:<p><pre>'
ADDRESS Unix "tcsh -c printenv"
SAY 'a3r>ATgument~="'Parms'~~.
SAY '</pre>'

END
SAY '<hr>['
SAY 'SLAC Home Page I'
SAY 'Suggestion Box 1'
SAY '<address>Zaphod</address>'

-. IF Code=0 THEN RETURN
EXIT /*Code*/

Y7

Error Code 490 reported by cgi-wrap

TheWWWutilityOnwwwl.slac.stanford.edu:8Othatyouareusingfromyour
WWW browser (Mozillafl .l bl (Xl 1; international; AIX 2 000003643500)) on
ATLAS. SLAC. Stanford. EDU called (using the GET method) a Common Gateway
Interface (revision CGI / 1. I) script command wrapper, which reports the following error: _ .

No input given!

[SLAC Home Page I Suggestion Box]
Les Cottrell

Sample Dangerous CGI Script in REXX

#!/usr/local/bin/rxx
;z %Tpg$ngerous CGI Script written in */

. */

_ SAY "Content-type: text/plain"; SAY

Query=TRANSLATE(GETENV('QUERY-STRING'),' ','t')

Valid=' abcdefghijklxnnopqrstuvwxyz'
Valid=ValidI I'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
Valid=ValidI 1'0123456789~-/.@'
V=VERIFY(Query,Valid)
IF V/=0 THEN DO

SAY 'Invalid Character('SUBSTR(Query,V,l),
')in:"'Query"'.'

EXIT 99
END

ADDRESS UNIX Query

EXIT RC

-..

--
_ -

Object REXX: Up Close and Personal

Rick McGuire
IBM Endicott

Pages loo-136

Proceedings of the 6th International Rexx Symposium 100

Object
up Cl0

VEDemo-1

Rick McGuire
Object REXX Development

Endicott, NY

v Background ~~

VEDemo-2

v Why Object REXX?

m Remove limitations of current REXX language
@& $$;g#Qg$ I~~~~~~~~~- t n Bring the power of 00 programming to REXX ,r~~~~~.:~~Di3iS,hi “..*&t,i -’ Le. ,!i q ;i ,,& I/, 8, yR$‘,;i, n ,:‘;,q;i”,: :,““i’;,, li ,,., &.‘$ /) ~,“$i”,,;# .:; j: : ;,a,. ,s’,::f,;,,‘: -:. Bring the usability of REXX to 00 programming : 1: ,‘(:11: ;. -ii, 4,; -, ;, i.: ,::v (; ,:(‘(,, n Extend REXX usage 3,: 1,

- windowing, object manipulation, concurrency, etc.
I Build on large base of existing REXX programs

- fully upward compatible
m Interact with emerging new technologies such as SOM land

OpenDoc

VEDemo-3

:.

v What’s New in Object REXX?

- Everything that happens in Object REXX is caused by a
message

VEDemo-4

v What is an Object?

n Everything in Object REXX!

- Code outside object has no direct access to object data
- Responds to messages by running methods

n Primitive (e.g. string, directory) or programmed
n Automatically reclaimed (garbage collection)

VEDemo-5

withdraw(l56.23)

deposit(

v What is a Method?

l Everything that happens in Object REXX!
:.j>c b&* >).i,< a qf y+# ; s:,- it: T. I,=,?.> ~<Z,~~~&c&~,.& --B *. ?,q+$Y.$). &@;&;,L n Bits of code that operate on object data ai. ~,*.2.,;> ,-; 3ij .i-,.“*-i ‘;: :> _ ~,:p~~~~,,‘~ ~-~~$Q.p+~~^‘~ ~.l, -i_ ,ii - ‘56; “:I+>.- i:r ,,- ; .: ‘, n Similar to subroutines/functions / -1’ .,‘,. i - Optionally return results

- All variables local unless explicitly exposed
= May be private or public

- Like internal vs. external subroutines/functions
= Defined on object-by-object basis

- Different objects may have same names for different.
methods
b “Polymorphism ” I

VEDemo-6

VEDemo-7

_ -

v What is a Message? I
1

m What causes everything to happen in Object REXX!
m Something “sent” to an object causing the object to run a

method
n Message name = method name
n Sender waits for reply

- Reply may contain returned data

deposit(1457. I I)
savings-depoSit(1457.11)

1458.11

v M essages

n New syntax:

- receiver- message
n May appear as term, instruction, or assignment target
n All REXX operators become messages

- Can use either syntax

VEDemo-8

:.

v Polymorphism

Definition: The ability to send the same message to different
objects, which may have very different underlying
characteristics.
Powerful feature of. object-oriented programming
- Sender does not need to know internals of receiver

b Example: “+ ” method
- Allows common usage of common words to improve

readability and maintainability
b Example: PRINT method

VEDemo-9

VEDemo-IO

v Variables

= All variables are references to objects
- Strings are just one type of object

n Method variables (a.k.a. “local”) exist only
running

n Object variables last as long as the object does

BALANCE
;.: 2 :?

INTEREST
$;j :z- ‘T ”

ACCOUNT #
; !*; ------.-----.-----------.--------------

‘crest
$ f fq zi $ *; p <f

expose balance interest i
amount = balance * interest l
balance = balance + amount i ., :-
return balance ..: ,; .;: -f

while method is

v EXPOSE Instruction

n Used to expose and create object variables within methods
~~~~~~~~~~ ,, ~~~~~~~~~~~~ n Used for sharing between methods, or just for allowing A$!‘& ;p;; TJ! :, :$ ‘“:&~~;*.l’~~~ ,a..: ” ,, < ‘:i;!#-:& ‘@y 3 j-r L’l’$!<,“’ ;+.‘;:‘;’ “i,‘,i’, ,,7:::,, ::, ,i ,.- ,,,, i.;,,. n,*, /, persistence between invocations of same method ,+a “#1. ‘,,$‘. ‘.F,” ‘~,.,-i’,,:. ‘, .A I’ ,: ,:j, .;,,:, :’ 

n Subsidiary lists also supported ‘, : 
n Dynamically adds to list of object variables 
n Must be the first instruction in a method 

VEDemo-11 



: ,, 
v P assing Arguments 

n Arg and Parse Arg work only with strings 
.$q@;; ;* ‘# / Qci ..s$:.h: “:... - “&, p’ .., i! i&q,’ &Jr?+.@ :;&k;&*:@~&: All arguments are converted to strings via STRING ;;:.&&&$ +@ ,‘., :d i.i,g., :&,;+ ‘~,~,E:;~~“-~~~~i,,~,,~ ~:~~wp~ !;:$a@: : , ::~~“i,~,,;‘,!;s,~~..~ method ,:c^,<‘~r,:’ fi,,,: 7, y ,; .y;, +r 2 :+. (, A! ,, +‘. :‘n,., ,‘,,,. <.,‘.,, ,:t’ .- n New instruction: USE ARG name[,name...] ,’ : ,: 

- Assigns each name to the corresponding object 
b Does not make a copy of the object referred to, only 

assigns a reference to the variable 
- This allows a kind of call-by-reference 

b If object can be directly modified (such as stems) 

VEDemo-12 



,, 

v New Condition Handling 

n Significantly enhanced over existing REXX 
n New conditions for object oriented needs: 

- NOMETHOD - object cannot find requested method 
- NOSTRING - object with no string value used where 

string value required 
1 New ANY condition name for CALL/SIGNAL ON 

- Allows handling of any error not handled by more specific 
handler 

- Example: NOVALUE raised, no NOVALUE handler ==> 
ANY trap is invoked 

VEDemo-13 



-. 

v New Condition Handling... 

n New user condition support allows users to define own 

b SYNTAX number 
b USER usercondition 

- “expression” is returned to handler by CONDITION(‘l?‘) 
- RAISE PROPAGATE passes conditions up to the next 

call level I 

VEDemo-14 



,. 
‘I Classes 

VEDemo-15 

n Need for many objects with same behavior (i.e. methods) 
n Use class object to define shared behavior 
n Class object is an “object factory” 

- Creates new “instances” with same methods but separate 
object data 
b e.g. Rick’s savings account, Pam’s savings account 

n Once created, instances not dependent on classes 
- Methods can be added or replaced per instar 
- Sometimes called “enhanced” objects 



n 

v Inheritance 

Classes maintained in a 
hierarchy 
Subclass acquires 
behavior of superclass and 
modifies it 
Variables scoped by class 
Allows easy reuse of code 
- programming by 

differences 
Major benefit of 
object-oriented 
programming 

Bank Account 

/‘\ 
Loan Checking Savings 

Unsecured ; CD 

VEDemo-16 



. . . . . 

v Directives 

n Purpose: to allow more complex program structures to be 
contained within a single source file 
- Provides way to identify program entities that previously 

required separate files 
n Object REXX programs can package classes, methods, and 

routines 
- Routines similar to external functions 

n Packages can make objects public 
n Programs can identify other programs/packages that they 

require 

VEDemo-17 



v Directives 

= New packaging directives: 
..: . ,( &: i&.p*@&+$.~ ~*&-qmT~ :~~*~~~~~~~ ~Z,&&&L:$~~ - ::CLASS classname options -- creates a new class to be :~%$gg&r$-;l:~, $j&$?&$j :; ~‘;Qgp~~‘,~- y~%J;~~‘:):?+ used by your program ,: : ‘Xf.- f$“;. ;, -.* _) . .,- .: ,’ -St .,,_ :‘._ ,: ..:‘..-- .,. ,.-_’ - ::METHOD methodname options -- creates methods that ,. . . i are associated with classes 

- IROUTINE routinename -- creates functions or 
subroutines 

- ::REQUIRES programname -- brings in public ::CLASS 
and ::ROUTINE definitions from another source file 

VEDemo-18 0 RetXX bject 



Environment Symbols 

Environment 

-_ ..n 

n A look-up table (directory) that is shared among all objects 
&&@j ~sQ@g” :b 9% 9 ‘i”!# “I’.$ **1’ ~~~~~~~~ i&$p&~~ r .i@pqg $p”.rs: n Entries created with a name and a value. $:l’:a9~&$~ ,~,~-,~~‘:liR,~~~?:“;‘: “‘$ :s’f!~j@#~ 8;‘: ,:‘I :1;$ L / .!i 14 ,‘.;.A ,$,;f;“,:$ #,.:“,,: ‘1 ii2 :i’/ 1 ~‘~!.q ,,,a, ,‘.#?L-L$‘& - Essentially a global variable pool 
; ,,;.‘:$y: ; ,:.I, : :; ; -.I ,i” _* :q; :* j;, ;i.,-,.il: I!,,‘, A ,, ,“‘O : ,,,( 1, ; n Available via “dot-variables” : ,i. 

- .array, .true, .false 
n Preloaded with Object REXX classes and public objects 

- Public objects include Jnput, -Output, and .Environment 



VIE .I nvironment Symbols 

. n Symbols with initial period 
+&=g@&~+<~* 4 *Ap;Jk~g-&$; .; &g&&*gsr; q n Searches a hierarchy of locations to find a value --is i i:; : ;*“. E ‘. : ‘T F<$, =*- $.&rf; z,=:-::” _; .’ ;;- ;--.z i --; c- -.=<-. ,_- ,I, ;:.y i -: : - Classes defined within a program :.-;. ,,. 

- PUBLIC classes accessed via a ::REQUIRES directory 
- The process local directory 
- The global environment directory 

n User can explicitly insert entries into environment 
- value(name,object,“) 
- .environment-setentry(name,object) 
- .environment[name] = object 

VEDerno-20 



. 
N 
. 

VEDemo-21 

v Object-based Concurrency 

Objects are the units of concurrency 
All objects can execute concurrently 
Most object awaiting either a message or a reply 
Actual concurrency achieved via: 
- REPLY instruction 
- START message 



~*. 

v Sequential Execution 

VEDemo-22 



c 

123 



agent 

. . . 

v Explicit Concurrency 

= account-start(‘deposit’, 1.98) 
1 

Send a message I 
/ 

Return the agent 

Processing continues : 

balance = agent-result 

Request the result 

VEDemo-24 Return the result 

Agent 

account-deposit(l.98) 
/ 

Send a messaie 
/ expose balance 
I use arg amount I 
j balance = balk-tee + amo 

Receiver 

I return balance I / 
Return a result 



v Playing Around with Object REX? 
/ 

n SOCKET: an OS/2 sockets encapsulation 
- Goal: Clients, Servers without knowing TCP 
- “Server” contains concurrent TCP Objects 

:‘.: 1. ‘.!. . . . : .,I. ‘: 1s b “Known Port” socket for service requests 
b “Client Sessions” created for each client 

- “Client” Object(s) request service via TCP 

VEDemo-25 



v Playing Around, continued 

n Socket ‘Mirror’ TCP C/S Applet: 
6 i-1 ziq.~@&~ gii “~&‘gp-*~~ i ~~~~~ - “Framework” classes: 165 lines 
i ,, >r*- .,! .::i _ _ *l” L.“. -7 ,( r r-“, -.- d $“,~.gp. “:;>a,:,< it. -A. ): . . ,“‘;:. ” ,- r: $.‘Q 2 ; ;b,--. - Client Script: 15 lines ,*z -. ,I; ~* -;I - Server Script: 27 lines 

n Second applet -- ‘Toss server’: 
- Inherit Socket framework 
- Client Script: 2 changed lines 
- Server Script: 15 new/changed lines 

VEDemo-26 



-. 

Communications Modes for 
- 

v “Mobile Computing” I 
1 

VEDemo-27 



v “Mobile Computing”: 
Modes of Communications 

Local Application/Server 
- My word processor 
Local Agent cl2 :~%-~ 3 “,q 
- My mai1 filtering program “‘*! ’ ,t “‘br1&~*“-.T$ ‘7 

js t ‘7 & 
Remote Server 
- My database server R 7 C & & 
Remote Server with Agents ,g 
I My Stock Brokerage Auto-Alert ,& +1-- “~Q+f~~~* 

i$ .;f& 
Remote Interactive Agents 
- Brokers, buyers and sellers 
Wandering Agents 
- Information Scavengers 

-<. 

VEDemo-28 



E 0 L 
n x x u cl- 
a 

CL) 
0 

I- %
 

I- O
 

.- I- =rs 
cd 
a, 



..- 

v Adding Interaction to the Game 

“Viewer” object 
- Same methods as “Players” 
- Manages user interface 

The Game is now interactive. 

00 Jargon: ‘polymorphism’ 

VEDemo-30 



v A TicTacToe Agency 

VEDemo-31 



. 

v Messaging with Proxies 

“Proxy Objects” 
- capture messages intended for a target object 
- relay message to and response from target 
- transparent to sending and receiving objects 
- useful for debugging and message tracing and... 

VEDemo-32 



v Communications Proxies 

When proxies relay messages over a network 
connection, the objects appear to be local to each 

VEDemo-33 



t 
Y  

Remote Messaging via Proxies 

‘Send’ a commun iCations proxy for a  Player, and 
objects on two systems interact around the task of 

- Same ‘Player’ ob jects 

VEDemo-34 



v Remote Interaction via Proxies 

Send a communications proxy for a ‘Viewer’ object, 
and users and objects on three systems interact 

- Same Game objects 
- Same Player objects 
- Same Viewer objects 

VEDemo-35 



v What You’ve Seen 

VEDemo-36 



I 

Object REXX: OpenDoc Support . 

Tom Brawn 
IBM Endicott 

Pages 138-142 
. 

Proceedings of the 6th International Rexx Symposium 138 



I 

Object Rexx ~- Object Rexx ~- 

Thomas Brawn Thomas Brawn 
IBM Corporation IBM Corporation 
tombrawn@vnet.ibm.com tombrawn@vnet.ibm.com 

. Compound . Multi-platform 1 :_ 
Document - Apple 
Architecture - IBM 

. Key technologies v OS/2 

- Parts and Part . AIX 
handlers ) PPC 

- Bento - Wordperfect 
- SOM b Windows 

* 

Copyright IBM Corporation 1995 - T.Brawn 



OpenDoc 
Open Scripting Architecture 
I _ ‘ ,.’ 

. OSA Framework classes 
- Component class 
- Scripting Component class 
- Terminology class 

. OSA Event Manager 
m Component Manager 

Object Rexx 
OSA Language Support 

. ScriptableApp class (scriptable 
application proxy) 

- Connect method 
. Object Specifiers 

- Identify target within application 
. Send OSA Events to scriptable 

applications 

-. 

Copyright IBM Corporation 1995 - T.Brawn 



I 

Object Rexx 
ScriptableApp Example 

. . 
Lotus1 23 = . ScriptableApp-connect(‘lotus123’) 

FirstCell = table[ l] cell[ l] 

Lotus 123 FirstCell-setdata( 100) 
. . 

- 

-. 

Object Rexx 
OSA Scripting Component 

9 SOM Class i- . . ,_,_ 
i’ - Subclass of OSA Scripting Component 

class 
- Accessed through Component Manager 

-. . Required functions 
- Execute 
- Load, Store 
- Display, Dispose, GetScriptInfo, 

SetScriptInfo, ScriptError 

. 
- 

- 

-I 
Copyright IBM Corporation 1995 - T.Brawn 



Object Rexx 
Scripting Component... 

9 Compile functions 
.,” _’ 

- Compile 
- CopyID, ScriptingComponentName 

9 GetSource 
- GetSource 

n Recording 
- StartRecording, StopRecording 

- 

-. 

Object Rexx 
OpenDoc Support - Summary 1 _, 

n Language Support L 
- ScriptableApp class, Object Specifiers 
- OSA Events 

n Scripting Component functions 
-. - Required 

- Compile 
- GetSource 

i 
4 

Copyright IBM Corporation 1995 - T.Brawn 



Report from the X3J18 Committee 

Brian Marks 
Formcroft Ltd. 

Pages 144-149 

Proceedings of the 6th International Rexx Symposium 144 



Historv & Status 

Enthusiasm at first Rexx 

First committee meeting 

Fifteenth meeting 1995. 

J 

Symposium. 

1991. 

First public review completes May 3rd 1995. 

Expected approval as ANSI standard, 1995. 

Already an influence on implementations. 

Committee continues for maintenance and further versions. 



Proposal Document 

167 pages including the informal parts. 

Has been circulated. 

Available commercially. 

On the World Wide Web. http://rexx.hursley.ibm.com/rexx/ 

Available at this symposium. 



Method 

Backus-Naur Form describes syntax. -- 

Prose describes facilities provided by the “configuration”. 

Complicated Rexx described in terms of simpler Rexx. 

Some “pseudo-Rexx” to glue parts of the definition together. 

:. 
. . 



Content 
“The scope of the standard will be the second edition df the CowlishaW book, plus 
consideration of implementation experience. The scope may be altered as necessary 
to promote portability, reliability, maintainability and efficient execution of REXX 
programs on a variety of computing systems. Both compiling and interpreting 
REXX programs will be considered.” 

Not “Design a Rexx for the nineties”. 
Although Date conversion, error subcodes, command I/O . . . . 

Not “The union of every existing implementation”. 
Although alternatives for negation and blank characters. 

Not “Better wrong than changed” 
For example D2C(O), DATATYPE( ‘ ‘,‘B’), 1.0000000003 non- 
integer. 



You can help: 
_ - 

Correct the document. 

Talk to your supplier of Rexx about the Standard. 

Join the committee for the next version of the standard. 



I 

Centerpiece and Object Oriented REXX 

- . 

Sandy Syx 
Mantissa Corporation 

Pages 150-173 

Proceedings of the 6th International Rexx Symposium 150 



‘I Mantissa Corporation 
AA \ ‘/ ,-” ” *,. \ 

Centerpiece and Object 
Oriented REXX 

Sandy Syx - ssyx@mantissa.com 
205-945-8930 

1 

A\ Introduction 
p/Mantissa Corporation’, 
> Data Center Automation software jkducts 

since 1981. 

p RMS “The Report Management System” 
> OPS “Operations Productivity System” ; - 
p FYI “Windows/LAN-based Document/&age 

Management and more” 

2 



I 

&\ Agenda ” -_ &\ Agenda ” -_ 
k Centerpiece Architectural Overview k Centerpiece Architectural Overview 
k Centerpiece Built-in Classes k Centerpiece Built-in Classes 
& Centerpiece Object-Oriented REXX & Centerpiece Object-Oriented REXX 
I@ REXX Improvements for Complex Problems I@ REXX Improvements for Complex Problems 
p Developing Centerpiece Classes p Developing Centerpiece Classes 

Centerpiece 
Architectural 

Overview 



A\ What is Centerpiece? ,. (> ” 
k Cen terPiece is a Distributed, Multi-platform, 

Object-Oriented, Interpretive, Development 
and Runtime Environment. 

g Two main Executables: 
+The Engine - a ,multi-threaded interpreter that 

serves objects to multiple simultaneous clients in 
psuedo realtime. 

*The User Interface - A graphical application that 
allows one to view and manipulate objects that 
exist in an “engine”. 

5 

Centerpiece Architecture Centerpiece Architecture 
ects are stored here. ects are stored here. 

Objects exist here. Objects exist here. 
ALL program interpretation occurs here. ALL program interpretation occurs here. 



v 
AA \ Centerpiece is Multi-platform 

Object files are 
platfo 

Engine supports multiple concurrent connections to user interfaces. 
Engine can run on multiple platforms. 

7 

A\ The Engine Is... 
P The heart of the system. 
PAn object server. 
>A multi-threaded object oriented REXX 

executor. 
P Basically event driven. 
k Responsible for reading and writing object ’ 

files. 
k Not visual. 

8 



A\ The User Interface. 
> Graphical User Interface 
> Runs on multiple platforms and window 

systems (X-MO tif, OS/2 Presentation ~,L ’ 
Manager, Ms Windows) 

& Supports multiple look-and-feels (Mot% & Supports multiple look-and-feels (Mot% 
CUA, Windows) CUA, Windows) 

> Very interactive allowing direct > Very interactive allowing direct 
manipulation (object menus and drag-and- manipulation (object menus and drag-and- 
drop). drop). 

9 

Centerpiece Built%n 
Classes 

, ,- 

10 



I 

v AA \ Fundamental Built-in Classes 
9 Workspace 

2112 Dimensional Visual Container 
of WorkspaceObjects. 

9 WorkspaceObject 
Gives objects the ability to be on 
a workspace. (Name,X, Y,Layer, 
Icon, Workspace, etc...) 

9 Class 
Allows one to create new classes. _- 

7 ~4 \ Programmer’s Helper Classes 
9 Program 

Allow interpretation and execution 
of REXX logic. 

9 Thread _ 
Instance of executing program. 

9 List - Ordered collection of items. 
9Dictionary - Unordered c&&ion of - 

key/data pairs. 
9 Semaphore - Resource Arbiter 
9 Queue - Object version of REXX queues 

J S6 



I 

A\ Simple Visual ObJects 

Floating text. dfont, ,color, angle) 
P Line ‘,> 

Line segments. (x2, Y2,width,colo$ ,’ ,‘,(; ~. 
> Rectangle 

Hollow or filled rectangles (width, 
h eigh t,jZlcolor) 

P Image 
20 color images. Can be large and deep. 

13 

A\ Dialog Objects 
Mutton - Action button that runs a 

“Click” method when pressed. 
> Checkbox - State selector runs a ‘C&k” 

method when pressed. 
> TextEntry - Text~entryfleld, allows _, _ 

multi-line, scrollbars, et& Runs a ““” ~’ e 
“Changed” method when the text is I .~;, ‘: 
entered. ‘..~ 

14 



A\ More Dialog Objects 
P ListBox - Combination of a List and a 

List View. Visual list, allows images and 
text. Items can be draggedfrom the list. 

XYlider - Allows a value to be selected within 
some range. Runs a ‘Slide” method when 
the slider is slid. 

& RadioGroup - Mutually exclusive group. 
Runs a YYlick” method when the selection 
changes. 

Hpinner - Allows spinning or typing in a 
number from a specified range of values. 1s 

A\ Communicaition Cl&ges 

> MTAServer 
Message Transport Agent - allows one 
to create a ‘server” that will listen for 
connections from “‘clients” at any number 
of access points (tranport,port). Allows 
telneting into the server if tcp is used; 

> MTAClient If ‘~ 
Allows one to connect to ~a server to 
exchange messages. 

16 



A\ Object Storage toDisk 
> ObjectFile j_: 

Saves all owned objects to a disk&. 

‘$ 
:’ 

17 

A\ Application Delivery 
k UserProfile - This class allows one tq secure 

access to a Centerpiece engine by defining 
exactly who can connect, and how they 
connect. Users can be “Developers”, 
“EndUsers” or both. An WndUser”-&as a 
“Connect” method that qun. be ovei@ddee 
to show the appropriat&pp&cation : : 
dialogs for the user o$&.&~~&n t$&~~,~;-:‘~~ 
engine. 

3, _,‘__,_’ “$ “_ :,“;:,., ?*‘. ;’ ; ,,$ .Z‘ “%^ y; ” ,,, *_ 
18 



v 
Al \ . ..q_ 

Centerpiece -- 
Object-Orientek 

Extensions to REXX 

19 

A\ Objects A\ Objects ‘;':iti~ I' ‘;':iti~ I' ‘",@, ‘",@, 

> Objects are instances of some Class, > Objects are instances of some Class, 
P Objects have any number of attributes. P Objects have any number of attributes. .~ .~ 
k Objects are globally visible. k Objects are globally visible. ~~ __ ~~ __ 
> Everv object has a universullv unique > Everv object has a universullv unique 

immutable identifier. immutable identifier. 
P Any object can be made persistent. P Any object can be made persistent. - - ,. ,> ,. ,> _’ _’ 

20 20 



A\ Object Ownership. 
P Objects can own any number of other 

objects. 
PAn object can have at most one owner. :~~ 
> When an object is destroyed, all of &&wned 

objects are also ,destroyed. ‘_ 
‘) 

P When an object,& saved, afl of its owned 
objects are suve‘d ‘*\’ ~, ,, ‘.__ :. 

21 

A\ Attributes 
P Attributes act much like REKX variables. 
P They can be simple or compound. 
P Object attributes must be defined in some 

superior class. 
P Attributes names -rzre case and space 1 

preserving, but cuse and space insensitiv& :~ ‘Z., .’ IT,;. _ 
L ., ,,,_ ” 
I_ ;-’ ,L ” ,_ ,,I _” : _’ 

22 



-. . 

A\ Referencing ‘Objhzts 
P Objects have global visibility. ” 
k Each object is unique not because of its 

name, class, nor attribute values, but 
because of its universally unique immutable 
identifier (UUID). These are normally just 
called object identifiers or obiect-ids..- 

k Objects are referenced by REXX variables 
that have an object-id as their value. 

23 

A\ Attribute Access ~ 
Object Attributes are selected with a double-dot 0.). :. 

(,, 

object identifier or, 
classname 

The symbol to the left,of the doubledot is translated, 
into a value. The translated value must be an object-id or a 
class name. . 

The symbol to the right (up to the next double-dot) 
is treated exactly like a variable symbo1 and must 
reference an object or class member. 

24 



-. . 

7 u \ Attribute Access Examples 
Simple Attribute Access 

b..Name = "Press Me" 
b..BackgroundColor = 

Multiple Indirections 

Assume b is an object of the Button class. Assume b is an object of the Button class. 

"maroon" "maroon" 

Assume that b is a Button, and assume that the.button Assume that b is a Button, and assume that the.button 
has an attribute “Workspace” that references an object has an attribute “Workspace” that references an object 
of the Workspace claq that the button is on. The name of the Workspace claq that the button is on. The name 
of the workspace could be acce?kl by: of the workspace could be acce?kl by: 

. . ‘.* ‘.* .:b: .:b: ,@. ,@. I__ I__ 

25 25 

v 
\ 

I 
AA Object Creation/Destruction 

Accomplished with two new REXX built-in functions: 

object-id = ObjectCreate( <classname> ) 

rc = ObjectDestroy( <object-id> ) 

For Example, 
aLine = ObjectCreate( #Line I 

aLine..x,= 100 
aLine..y::+ 100 
aLine..x% = 200 
aLine ..y2 = 200 "'1 ,,:: 

call ObjectDestroy aLine 

. 



~” _’ ~” _’ (I,::,, :.is (I,::,, :.is .” .” 
: : 9 9 

& Classes define attributes that each instance & Classes define attributes that each instance 
of the class will have. of the class will have. 

> Centerpiece allows multiple inheritance.’ > Centerpiece allows multiple inheritance.’ 
> Classes are objects and are .instances.of the > Classes are objects and are .instances.of the 

“Class” class. L “Class” class. L 
p Classes are @pica&y used by their name. p Classes are @pica&y used by their name. “’ “’ 

27 

A\ Inheritance ModeL _ _) : 
&Attributes are inherited dynamica&” 
>A class can be modified ‘on the fly’:’ with , existing instances. ‘; 

. 
> Attribute lookup precedence: L 

1. Local Object Override ‘_ 
2. Object’s Class 
3. Primary Superclass->Root Class -~ 
4.Secondary Superclassi+Root Class _ 
In other words: ‘A Depth first, breadth next 
search up the class hierarchy”. 

28 

. 



A\ Dropping Attributes 
The REXX - DROP instruction can be used to cause an 
attribute to revert to its class default. 

For example, assume that a class “Author” exists which 
has an attribute named “Name” that has a class default has an attribute named “Name” that has a class default 
value of “anonymous”. value of “anonymous”. 

anAuthor = ObjectCreate( "Author" ) anAuthor = ObjectCreate( "Author" ) - - 
anAuthor..Name =, "Fred Brgpks" anAuthor..Name =, "Fred Brgpks" ' ̂ ' ' ̂ ' 
say say anAuthor..Name- anAuthor..Name- => would hrin t “Fred kook@ => would hrin t “Fred kook@ 
drop anAuthor..Name ,.‘)* drop anAuthor..Name ,.‘)* ', ', 

say say anAuthor..Name anAuthor..Name ---p would print LLanonylflo$j~, ---p would print LLanonylflo$j~, 

29 

AA \ 
Object Related 
Built-in Functions 

9 ObjectCreate h ObjectOpen 
9 ObjectDestroy 9 ObjectOpenAsDialog 
9 ObjectClone 9 ObjectClose 
9 ObjectFindOfClass 9 ObjectGoto 

9 ObjectGetOwner 
9 IsObject 9 ObjectSetOwner _ 
9 IsObjectOfClass 
9 ClassOfObject 9 ObjectFileOpen : ,__ 

objectF&&a~e i ,I ~*: j‘ 9 ClassIsSubclassOf 9 . . j,~ 

9 ClassIsDirectSubclassOf 9 ObjectFileClose” ! ‘_ 1’ ; 3. 



repetitor conditional 

;~;~<qmeI;d 

.- _, ,- 

repetitor (extensions): 

-E 

FOR EVERY class loopvariable 
FOR EVERY class loopvariable ON workspace 
FOR EVERY class hopvariable OWNED BY object 

31 

A\ Object Iteration Example (-:. 
Iteratinp Over All Obiectmf a G iven CIlrss 

num-employees = 0 .- 
,~- I 

t ; ',*\ 
._, ,:j ~,, : 

DO FOR EVERY Employee e 
SAY e ..Name 
num-employees = num-employees++ 2, 



A\ Object Member Iteration 
DO 

repetitor conditional 1 ;~BEM)L,,,.J;+ 

repetitor (extensions): 

FoR EvERy&J 
MEMBER membervarl~~pr.firlOl object 

,, 
:. 

‘_ 

33 

?A\ Composite ObjectS, 
V ‘An object by itself is intensely 

uninteresting”. - Grady Booth 
V Object Identifiers behave much like pointers 

to structures in ‘C’ or U-3-‘. 
VAny object attribute can contain an object 

identifier of another object. 
V Composite objects can be made in which 

one object references and owns any number 
of other objects. 

34 

. 



A\ Embeddid’Objec$s,~~~ 

> It is possible to embed,objects within other 
objects. 

.‘̂  : < : : ‘,,, _. ._ 
P This must be done by adding a classy member 

that references an object of a specified~class. 
P The embedded object will be cloned for each 

instance of the class. 
P The embedded object may not be destroyed 

independently of its owner. 

35 

A\ Methods 
H&Methods are simply objects of the Program 

class that are referenced by some attribute of 
an object. 

> Method invocation is no different than 
calling any other REXXfunction or’ 
subroutine. T& &ethod is ~&&ess&&,;s. ‘Tf_ 
like any others object attribute, except that it 
is used where a function or~subroutine names 
would normally be used. 

36 



A\ Self Reference In Methods 
The double-dot with no prefix is an object selfreferenee 
inside an object method. 

For example, imagine a user interface Button method that 
runs when the button is clicked. 

/* begin Button..Click */ 
..Name = fiHello" 

return 0 

In this example the double-dot with no prefix mews 
“this” button. _’ 

37 



A\ Multi-Threaded REX 
> An additional built-irfunction, S&@& 

provided to allow one thread to start akther. 
I+ Each thread executes concurrently. ‘;~ -___ :: d -i{~ ‘,, 
k Threads are re-dispatched, basically, ,af)ler 

each source instruction. <’ 

39 

J 
\ 

Unwinding the stack-on a 
Raised Condition 

Normal REXX, strangely, doesn’t unwind ., 
the call stack when a condition (exception) is raise+‘ 

,: i) : 
We extended the CALL ON and SIGNAL ON ‘~‘f%$:. 

instruction to allow them to be prefixed with ; _’ 
the keyword UNWINI$ _ :,“a- 

‘,_, <‘& , ,,,~~P~& 
Form, ,_ . 

^_ ._, ;> ;; ,-X,‘- 
.: ? ; _’ ‘.’ : __ ,, 

UNWIND CALL Oksyn[ax NAME mysyhx@zp 
. . . I 
mysynlaxtrup: ~ -, 

.: i 
say ” Ta rfu ” 

relurn 

40 



“ 
-_ 

.oping CenterPiece _’ ̂, 
Classes 

~\ Modularity’ ,.i~~. ~\ Modularity’ ,.i~~. 

P Instances do not have to be saved in.?&? P Instances do not have to be saved in.?&? 
same ObjectFile as their classes. same ObjectFile as their classes. __ __ 

k Classes do not have to be saved in the same k Classes do not have to be saved in the same 
ObjectFile as their superclasses. ObjectFile as their superclasses. : : 

42 



I 

A\ Constructors/Destructors 
> Any class can have a 4cCreate” method 

Simply add an attribute named Create and 
make it a sub-object that is of the Program 
class. class. 

> The method will automatically be ri 
an instance of the class is created 

p Ditto for 4bDestroy’Y and $Load” wh 
be run when the object is destroyed 
from an object file, respectively. 

> The method will automatically be run -when 
an instance of the class is cegted 

PDitto for 4bDestroy’Y and $Load” which w@- 
be run when the object is destroyed or loaded 
from an object file, respectively. 

43 

A\ User Events 
PiMany classes have methods that are run in 

response to user actions. 
> These methods are optional, and if not 

provided, a default built-in action occurs in 
response to the user event. k .,_, 

Home examples are: _ 
WorkspaceObject*iDrop or DroppedUpon r‘ __ 
Button.. Click 

,. ‘-3, .~bX ,< 
TextEntry..Changed 

44 



A\ User Events i Co&&&d ‘.:/ :’ 
P The first argument to a user event k@@d is 

always a Dictionary object that cont&as 
entries that indicate what happened, ~~. 

> The attributes present in the context 
dictionary depend on the event. 
For example, a Drop event would have the 
new X and Y locations of the object dropped 

45 

I 73 



REXX, Distributed Systems and Objects 

John Tibbetts 
Kinexis 

Pages 174-193 

Proceedings of the 6th International Rexx Symposium 174 



Rexx, Distributed Systems 
and Objects 

John Tibbetts 
Kinexis 

(415) 558-9277 
email: john@kinexis.com 

Rexx Symposium 
May 2,1995 

Copyright Kinexis 1999-1993. All rights reserved. 



Rexx, Distributed Systems and Objects 

Rexx + Client/Server Database 
l Simple architecture for simple C/S apps 

ORexx + SOM 
l Beginning of strong client/server platform 

Current technology (ORexx) 
l Functions as SOM requester 
l Adequate for client-side activity 

Coming technology 
l Exporting OREXX classes as SOM classes 
a Scripting language for OpenDoc 
l Suitable as server platform 

2 

Copyright Kinds 1988-1993. All rights reserved. 



:. 

Our approach... 

H Discuss paradigm  issues 
l Evolution of distributed architectures in Four Phases 

n Discuss transaction issues 
l Agenda of TP 

w Exam ine Rexx C/S implementation strategies 

3 

Copyright Kinexis 19881993. All rights resewed. 



Computing Architecture Phases 

1. Centralized 

2. Clients to Database Server 

3. Clients to Function Server 

4. Objects 

4 

Copyright Kinexis 19881993. All rights reserved. 



Phase 1. Centralized Computing 

@Strong control & manageability 

l Good security 

l Weak user empowerment 

l Weak on distributed computing 

l Limits business “reach” 

5 

, 
Copyright Kinexis 1988-1993. All rights reserved. 



- 

Phase 2. Clients to Database Server 

l Power to the user 

l Power to the user interface 

l Uneven performance and 
integrity 

l Weak 3-tier architecture 

l Trust problems 

6 

Copyright Kinexis 1988-1993. All rights resewed. 



Phase 3. Clients to Function Server 

l Improved performance 
and integrity 

l Stronger 3-tier architecture 

l Trust tuning 

l But significant software complexity 

7 

Copyrtght Kinexts 1988-1993. All rights reserved. 



Phase 4. And Then There Are Objects... 

l Inately partitioned 

l Semantic continuity 

l Limited transactional awareness 

An Object is Data 
surrounded by a protective layer of Code 

8 

Copyright Kinexis 1988-1993. All rights resewed. 



. 
E 

Transaction = “The Deal” 

n In clay 
l Baked invoices at Ebla (3rd millenium BC) 

n On paper 
l Sales orders and invoices 
l Double-entry ledgers 
l Contracts and deeds 

n Online 
l Reservations for travel, hotels, cars, etc 
l Banking & stock trading documents 
l Order entry, inventory planning, accounting 
l Telephone call setup and billing, email 

9 

Copyright Kinexis 198&1993. All rights reserved. 



ACID Test for Transactions (And All Deals) 

Atomicity 
l Transactions are “all or nothing” (integrity principle) 
l Wedding vows (two-phase commit) 

Consistency 
l Transactions are a correct transformation of state 
l Debits = credits 

Isolation 
l Concurrent transactions behave as if executed serially 
l Transactions don’t see other transactions partial results 

Durability 
l Once committed, transactions are not forgotten 
l Bound to honor COMMITments 

1 Transactions are the computer equivalent of contract law 1 10 

Copyright Kinexis 19881993. All rights reserved. 



The Transactional Discipline 

Non-transactional: state changes continuously 

Problem 
State 

Transactional: orderly, coordinated, audited state change 

Problem 
State 

Solution State , 

11 

Copyrighl Kinexis 19881993. All rights reserved. 



How TP Monitors are organized 

4 RM: Storage :::::z ;:::y;:g 

lVlUl1 mgr 

RM = resource manager 

Remote 
Transaction 

Manager 

IRM: Queue 1 

12 

Copyright Kinexis 198&1993. All rights reserved. 



. 
cn 
li 

Full-Fledged TP: X/Open DTP Model 

: . :< 
: ;g 
: : : : :  0 

f  

::v Comm 
Trans Mgr (TM) --) 

$j ::z: ::::: ::>. ::::: 
$ m+ 

Manager ::::: :::s s ::::: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . < . . . . . . .A..‘. . . . . ..~.~.........:.:.:.:.:~.:.:.:.:.:.:.:.:~...:.:.:.:.:.:.:.:.:.:.:.:.:.:.;:...~.:.:.:.:.:.:.~ ..,..................,.,.... -, . . . . . . . . . . . . . . . . . . . . . . . . . . < . . . . . . . . . . . . . . . . . . . . . ~.:.:.:.:.:.:~.:~:::::::~~ (CM) . . . . . : :.:.:.:< . . . . . . . . . . . A.. . . . . . f A.. A.. ..A :.:.:.:x...>: . . . . . . . . ..A............... :...>..>.< . . . . 4.. . . c.. . . . . . . . . . . . . . . . ‘ . . ,. ., . . . . .,,..,. , 

13 

Copyright Kinexis 1999-1993. All rights reserved. 



TP-Lite: Transactions Inside Database 

n Today’s client/server databases bundle TM and 
DM together 

Oracle/Sybaseletc. 

H TM should be unbundZed for open systems 
l Coordinate multi-vendor DBMS 
l Coordinate user-written function 
l Coordinate other resources 

14 

Copyright Kinexis 1988-1993. All rights resewed. 



Imagine Transactional Objects 

Customer 

n Objects distributed about network 

n Send messages to 
Debit savings acct object 
Credit load account 

H Commit changes all object states 

H Simultaneous to multiple consumers ’ 

Objects are microscopic Resource Managers: 
:c:s f :j:: iLS ::::: 

Subsystem driven by a formal API that has state. /j! .:>. ‘(5 
15 

Copyright Kinexis 198&1993. All rights resewed. 



OMG Transactional Object 

D 
e 
m 
a 
r 
C 
a 
! 
1 

0 
n 

I- 

1 I 
Transactional Client I I Transactional Object I I Recoverable Object 1 

J I 

Propagation 

I I 

Propagation 
Transactional Operation Transactional Operation 

Transaction 
Service 

Registration 
) Transaction l 

Service 

16 

, 
Copyright Kinexis 1988-1993. All rights reserved. 



Mapping Paradigm & Transactional@ 

Non- 
TP 

TP 

Phase 2 

Monolithic 
program 

hY 
client/server 

DBMS 

RPC 
Msg Queue 

Sockets 

CORBA, 
DSOM, 
COM, 
DOE 

Monolithic hY 
program client/server 

under TP: DBMS 
CICS, IMS, with 
Guardian, RUOW or 

ACMS DUOW 

Dist TP: CORBA ’ 
TRPC, (w/OTS), 

TMQ, 
DSOM, ’ 

LU6.2 (COM) v 
I 

17 

, 
Copyright Kinexis 1988-1993. All rights resened. 



. r 

Steps to Distributed, then Transactional, Objects 

. 
9 
N 

1. Compatibility among differing 
object models in same machine 

l CORE3A (coarse-grain) 
l SOM (fine-grain) 

2. Distributed homogeneous objects 
. CORBA 
. DSOM 

3. Distributed heterogeneous objects 
. CORBA2.0 
. DSOM 

4. Distributed transactional objects 
. CORE3A w/OTS 

-g# 
. . . . . . . . ,... :::::::: _ c3 . . . . . . . . . . . . . . . . . . . . . . . . 

Copyright Kinexis 19881993. All rights rewved. 



Rexx implementation strategies 

n Rexx or ORexx Client to Client/Server database 
l Phase 2 or Phase 4/2 hybrid 

w Rexx or ORexx Client to Function server 
l Phase 3 or Phase 4/3 hybrid (non-transactional) 

n Rexx or ORexx Client to TP Monitor (eg. CICS ECI) 
l Phase 3 or Phase 4/3 hybird (transactional) 

n ORexx Client to DSOM 
l Phase 4 (non-transactional) 

n ORexx modifying Server behavior 
l Phase 4 (non-transactional) 

H ORexx Client or Server with ORB transaction services 
l Phase 4 (transactional) 

19 

Copyright Kinexis 1999-1993. All rights reserved. 



I 

Getting Ready for Object REXX 
-. 

Rick McGuire 
IBM Endicott 

-. 

Pages 194-218 

. 

Proceedings of the 6th International Rexx Symposium 194 



Getting 

Rick McGuire 
Object REXX Development !” 

IBM Endicott ’ 



v iinswers 10 bwesrrons vvmou~ ’ m v : Answers 

. I A major goal of Object REXX is removing limitations of the 
existing REXX language. 
Many of the limitations are seen in some of the most 
frequently asked (and frequently unanswered) questions on 
bulletin boards. 



v f Let’s, Practice 

. I Question: How do I convert dates from on e REXX format 
to another? 
Current Answer: Well, you don’t.... 
Object REXX Answer: Just specify the input date as the 
second argument to the Date0 function. A third option 
argument tells Date0 what input format you are using: 
- Date(‘b’, ‘28 Feb 1995’) ;2<. : ,, &Q!& * *a 
- Date(‘n’, ‘02/28/i 995, ‘U’) 

__1 _ ~;:a .,:i - 1, ‘_ ~:, * I -‘ 
,,g+ I ;;p ,p’ 

. . : 6 : ;# -i y 



l 

v !P  ass ing  S te m s 

Q u e stio n : H o w  d o  I p a ss 
ste m  to  a  fu n ctio n  o r 
s u b r o u tin e  
A n swer : Jus t spec i fy th e  
ste m  in  th e  a r g u m e n t list 
a n d  access  th e  a r g u m e n t 
w ith  th e  U S E  A R G  
ins truc tio n . 

a  cal l  S te m S o rt ste m ., c o u n t 
. 

. 

S te m S o rt: p r o c e d u r e  
u s e  a rg  x., c o u n t 
. 
. 

. 

re tu rn  



v f Returning Multiple Values 

Question: How do I return 
more than just a single 
string value from a 
function? 
Answer: Just return a 
stem or other “composite” 
obiect 

lines. = ReadFile(filename) 
. 
. 

ReadFile: procedure 
parse arg filename 
count = 0 
do while lines(filenam, 

count = count k&:1”“” : 
x.count = lin&(filei7ame) g‘ 

end & -* q’ 
x.0 = count! __‘i 
return x. ;” 

- 



n 
. 

v f Expressions in Compound Tails 

Question: How do I 
specify that A.i = A.i+l? 
Answer: Specify the 
variable part of the tail 
within square brackets 

II II ( [I ) 

lines. = ReadFile(filename) 
. 

. 

ReadFile: procedure 
parse arg filename 
x.0 = 0 ‘, u ;, - ‘-2:&e* *:l$$;&&~~ :,, ‘j 
do while lines(filenag _ 

x.0 = x.0 + 1 *$f 
x.[x.O] = linejK(filentime) & 

end 
; _ 

return x. _’ 



y J- raversing Stems 

n Question: How do I Do tail over stem. . 
traverse all of the tails say stem.tail 
currently assigned to a end 
stem? 

n Answer: Use the DO 
OVER instruction 



F 
a) 

........ 
s 

.- 
.- 

. 
2 

2 
Lrn9 

l 
L 

. . 
. . 

. . 
. . 

- Q
 

n m
 

- 
: 

- =I 

. 
. 

. 
. 

. 
. 

. 
. 

. 
. 

3 0 
z 

- . 



c 0 S s 3’ 
S 0 
m

 - . 

i 0 
.- : s g 
.- 5 

. 
. . 
. . 

-. 

5 
. 

. 
. 

2 . . 
. . 

I 

. 



v f Sharing. Variables Between Programs 

n Question: How can I share .environment-setentry(, 
“alobal variables” between 
kltiple 

‘MY.PROGRAM’,, 
programs? .directory”new 

n Answer: Access the 
variables as a REXX 
“environment” variable 

.my.program”name = “xyz” 



v !The ‘!Procedure Expose” Dilemma 

. n Question: How can I share 
variables between related 
subroutines without doing 
a PROCEDURE EXPOSE 
for every variable through 
all of the caller’s levels? 
Answer: Structure the 
related routines as an 
object and share the 
variables with the EXPOSE 
instruction 

::class data - manager 
::method x 
expose name time type 

. 

. 

::method y ,:~ @; “.qy@,$ I 
expose time type attributes 

::method z$ a*’ 
expose &ibutes 

. 

. 



. 

v f Computed CALL instructions 

n Question: How do I make 
a call to a routine whose 
name is contained in a 
variable? 

n Answer: Use an indirect 
CALL instruction, placing 
the routine variable name 
in parentheses 

parse arg name, argument 
call (name) argument 



. 

v f Replacing Common Idioms 

Some common REXX idioms can be made easier using 
features of Object REXX or by replacing stems with other 
REXX objects. 



. 

v iSt em,s vs. Arrays 

n A REXX array may be the 
more appropriate choice 
- Variable size 
- Automatically tracks the 

size 
- DO OVER traverses in 

order 

lines = ReadFile(filename) 
. 
. 

ReadFile: procedure 
parse arg filename 
output = .queuenew p-y&. ” & ,,, y 
do while lines(filenam@ ‘& 0 tx: 

output-add(linQw@lename)) 
end ,\@>S ,\ 

.& 
return outputiakearray 

“‘, # \\# : 



v St, .. ems vs. Directories 

n Compound variables can 
be “vulnerable” to other 
variable usage in a 
program 

employee.name 

Can fail if name is used as a 
variable, but 

employee = .directorynew 
employee-name = “Rick” 



‘, 

Stems vs. Directories 

n Using compound variables 
as both “collections” and 
“structures” simultaneously 
can be awkward 

employees.i.name = “Rick” 
employees.i.salary = “???” 

vs. 



. 

v ,Consid,er Building You Own Objects 

n While many problems can be adequately solved by stems, 
arrays, directory, etc., consider building your own objects: 
- Hide the processing logic 
- Can be placed in a REQUIRES file for better reuse. 



. 

v AC ommon Problem e 

n Customer wants to process a group of records contained in 
a flat file, with the data fields organized in columns. 
- Records must be easily accessed, updated, and written 

out to a new file in the same format. 
- Record formats are subject to change, so updates must 

be easily performed. 
- Multiple programs will be written to perform updates .>~‘~,r~$\~;~*;i 

against the same files. 
$g!” ,! ‘, ) .a\ I:L‘ .,.,, ,,y,.>*: \ * 

4 &: 



v !A Soluti!on 

. 

’ , 

::class employee 
::method init 
expose name id address salary manager 
parse arg name 25 id 32 address 100 salary , 

106 manager 131 

::method name attribute 
::method id attribute 
::method address attribute ,V?\ ‘“*, “‘” :~“T ,+\** \:x, “‘\ ,*>*:. ,., 
::method salary attribute &p 
::method manager attribute ,&$p 

**& 
a_., i 

::method string 
return left(name, 25) II left(id, 7) II left(address, 68) II , 

right(salary, 6) I I left(manager, 25) 



v !A Soluti.on (continued) 

I* Give everybody a raise! *I 
parse arg oldFile newfile 

do while lines(oldFile) <> 0 
employee = .employeenew(linein(oldFile)) 
employee-salary = employee*alary + , 

employeecsalary * .I 0 ,, I, 3 ,!\/:g&< 
call lineout newfile, employee 

‘,$i’ I I ,,.~~~~ *-~_ @f& *@$$P 
end :,, :c, *& .c ,+ (,, ,, “ ,, :’ i _‘_ ,, .I *p 
::requires employ /* include the emp@yee records */ 

.~ z ;&y :& 



v !Buildin.g New Idioms - 

. 
n Over the years, many common REXX idioms have been 

developed 
n These idioms are still valid, but... 

- New Object REXX idioms may replace some existing 
ones 

- New Object REXX programming idioms will be added to 
existing ones . . . ““,; ‘_, __, ?&+:&,:A *. ::/: ‘: &a -8’” &,@ g 

,$@ 2 _’ ,\\I, ” :‘ _ 4, : .:<,‘ _’ i 



v f For Your Consideration... q 

. n A new Object REXX programming idiom, the “caching 
directory” 
- Keep a cache of items read from a disk file 
- Caching is done on first reference to an item 
- Subsequent requests pull the item from the cache 



v ,The Caching Directory 1 

. /* Create an employee file caching directory */ 
cache = .directory-new /* get a directory */ 

I* add an unknown handler 
cache-setmethod(‘UNKNOWN’, .methods[‘UNKNOWN’]) 
return cache I* set up is done! *I 

::method unknown ,, $ ” 1 
expose dataFile ,,,&@&..~ ** ,&$d.. el___ 7, ~gr ,, parse arg employeeld 
if \var(dataFile) then dataFile = .stream- (‘emp.rec’) 
record = dataFile”linein(Employeeld%l 
record = .employee-new(record) ,A,’ 3 
self[employeeld] = record _, 
return record ;: 

::requires employ 



SOM - Present and Future 

Simon Nash 
IBM Austin 

Pages 220-235 

Proceedings of the 6th International Rexx Symposium 220 



- 

SOM - Present and Future 

Simon C. Nash 

IBM Corporation 
Austin, TX 

nash@austin.ibm.com 



What is SOM? 
- 

* System Object Model 

A Part of the OS 

* Language-neutral 

* Language bindings (toolkit) 

* Compiler support (DTS) 

* Distributed objects (DSOM, CORBA) 

2 May 95 



Why SOM? 
---. -_ ~~_~~ 

A 00 language interoperability 

A Binary format for objects 

A Release-to-release binary compatibility 

A Procedural language access 

A Support for distribution 

-- 

SCN 2 May 95 



Platforms 
-_ - 

- 

Available: 

OSQ, AIX, W indows, Macintosh 

Announced: 

MVS, AS/400 

Other ports in progress 

SCN 2 May 95 



Languages 
--.- ___- 

- 

Available: 

C, C+ +, Smalltalk 

Beta: 

Object REXX 

Announced: 

00 COBOL 

SCN 2 May 95 



-- - 
SOM Releases 

_ - 

1992: SOM 1 .O 

(C, OS/2 WPS) 

1993: SOMobjects 2.0 

(C+ +, IDL, CORBA, DSOM) 

1994: SOMobjects 2.1 

(Warp, DTS C+ +) 

1995: ??? . . 

__-.- 

SCN 2 May 95 



SOM Components 
_ - . 

* kernel 

* tool kit: 

- SOM compiler, language bindings 

A class libraries: 

- collections 

k frameworks: 

- persistence, replication, events, 
metaclass, IR, emitter 

* distribution 

- DSOM (workstation and Workgroup) 

227 



A SOM Example: stack.idl 

#include <somobj.idl> 

interface Stack: SOMObject 

{ 
void push (in SOMObject element); 

SOMObject pop 0; 

long size 0; 

implementation 

SOMObject contents[lOO]; 
long top; 
somDefaul tInit: override; 

SCN 2 May 95 



A SOM Example: stacks 
-- ~~ ____- _ - 

#include "stack.ih" 

SOM Scope void SOMLINK push(Stack *somSelf, - 
Environment *ev, SOMObject* element) 

{ 
StackData *somThis = StackGetData(somSelf); 
StackMethodDebug("Stack","push"); 

-contents[-top++] = element; 

SOM Scope - SOMObject* SOMLINK pop(Stack *somSelf, 
Environment *ev) 

1 
StackData *somThis = StackGetData(somSelf); 
StackMethodDebug("Stack","pop"); 

return -contents[---top]; 



A SOM Example: stack.c 
- _ - . 

SOM Scope long SOMLINK size(Stack *somSelf, - 
Environment *ev) 

1 
iiackData *somThis = StackGetData(somSelf); 
StackMethodDebug("Stack","size"); 

return -top; 

SOM - Scope void SOMLINK somDefau1 tInit(Stack *somSelf, 
somIni tCtrl* ctrl) 

1 
StackData *somThis; /* set in BeginInitializer */ 
somInitCtr1 globalctrl; 
somBooleanVector myMask; 
StackMethodDebug("Stack","somDefaul tInit"); 
Stack BeginInitializer somDefau1 tInit; 
Stack-Init SOMObject s&DefaultTnit(sor~,Self, - - - ctrl); 

-top = 0; 

1 

SCN 2 May 95 



--.- 
A SOM Example: test.c 

. - 

#include <stdio.h> 
#include <som.h> 
#include "stack.h" 

void main (void) 

{ 
Stack *stackl, *stackZ; 
Environment *ev; 
SOMObject *objl; 

stack1 = StackNew(); 
stack2 = StackNew(); 
ev = AomGetGlobalEnvironment(); 

- push(stackl,ev,stackZ); 
printf("stack1 size is %li\n", 
objl = -pop(stackl,ev); - 

size(stackl,ev)); 

printf("stack2 size is %li\n", - size(objl,ev)); 
somFree(stack1); 

-somFree(stackZ); - 
I 

SCN 2 May 95 

231 



A SOM Example: testexe 
--~ ~. -___ _ - . 

SC -SC stack.idl 

/* code the method implementations */ 

SC -sh;ih stack.idl 

ice test.c stack.c som.lib 

test 

I * output is: 
stack1 size is 1 
stack2 size is 0 

* I 

___-__ .-. ---.-- -- 

SCN 2 May 95 



A SOM Example: stackdll 
-- - __- _ - . 

SC -SC stack.idl 

/* code the method implementations "/ 

SC -sh;ih;def stack.idl 

ice /Ge- stack.c som.lib stack.def 

implib stack.lib stack.def 

ice test.c stack.lib som.lib 

test 

I * output is: 
stack1 size 
stack'2 size 

-* I 

is 1 
is 0 

-__ -- 

SCN 2 May 95 



SOM Features 

* static compile/link time binding 

- for high performance 

A name lookup, programmable dispatch 

- for flexibility, dynamic languages 

* class and metaclass objects 

* multiple inheritance 

k transparent proxies 

SCN 2 May 95 



SOM Challenges 
--- --.-. ----__--..------ - -..._. --..-- -.-. ---. ..~...__...~~ . . . ~-.--..- 

* scaleability: many fine-grained ob, . 1 ects 

* performance: approaching native C+ + 

* shared objects: multi-process 

or run-time footprint: class metadata 

* local/remote transparency 

* OMG services, CORBA 2 

* dynamic language support 

SCN 2 May 95 



Rexinda 

Stephen Rondeau 
AugmenTek 

Pages 236-251 

Proceedings of the 6th International Rexx Symposium 236 

‘2 30 



-- - 
- . 

StephenRondeau 
AugmenTek 

3606 s. 180th St. c-22 
SeaTac, WA 98188 

Phone: 206-246-6077 
augmen~@acm.org 

Rexinda is a trademark of AugmenTek. 

-237 



Copyright 1995 AugmenTek. All Rights Reserved. 

Agenda 

I I  

-- 

-I 

Rexinda 

Applications 

Future 

Ifenough time... 

-- Availability 

-- Parallelization 

Linda is a registered trademark of Scientific Computing Associates, Inc. 

Page 2 of 15 



Copyright 1995 AugmenTek. All Rights Reserved. 

Linda: Background --~- _ - . . 
-- David Gelemter, early 1980s dissertation 

-- Parallel programming model 

> coordinate execution and data sharing 
to solve common problem 

> simple to use 
> shared memory model 
> “tuple space” (global data area) managed 

_ by a server 

-- C and FORTRAN implementations 

-- Several companies 

> Scientific Computing Associates, Inc. 
> Torque Systems, Inc. 
> Others 

- 

Page 3 of 15 



I 
Copyright 1995 AugmenTek. All Rights Reserved. 

Linda: Terminology --~ ~. * - . 
-- Tuple: like a database record 

(field& field2, field.3, . ..) 

> Examples: (“ball”, “color”, “red”) 
(“list”, { 2,4,6,8,10}) 

-- Twle Space: unordered collection of tuples, 
possibly distributed over many 
processors 

> Example: 

(“ball”, “color”, “red”) (“box”, “size”, 10) 
(“list”, { 2,4,6,8,10}) (“ball”, “color”, “green”) 
(27) (4989,67,828763) (“box”, “size”, 10) - 

-- Matching: uses number of fields, data types, 
field order, and user values 

Page 4 of 15 



I 
Copyright 1995 AugmenTek. All Rights Reserved. 

Linda: Functions 
_ - 

-- Six functions: out(), rd(), in(), eval(), 
r&a @O 

> Examples use Rexinda’s syntax 

-- out(): put tuple into tuple space 

Call out “ball”, “color”, “red” 
> (“ball”, “color”, “red”) 

Do . 

l=l to 5 
number.i = i*2 

End 
number.0 = 5 

Call out “list”, “@S number.” 
> (“list”, { 2,4,6,8,10}) 

Page 5 of 15 



Copyright 1995 AugmenTek. All Rights Reserved. 

Linda: Functions (continued) 
* - 

get values from tuple 
space by matching 

1 rd() -- wait for match, copy vtiues 
in() -- wait, copy values, remove tuple 
rdp() -- match not found, return 0; else rd() 
inp() -- match not found, return 0; else in() 

> Examples given later 

-- evaI@ start a new process 

> Example: 
Call eval “sort result”, “C:\$ORTRXI” - 

> (“sort result”, 0) after completion - 

Page 6 of 15 



I 
Copyright 1995 AugmenTek. All Rights Reserved. 

Link Matching Examples --. * - 
-’ Given the tuple space (TS): 

(“ball”, “color”, “red”) (“box”, “size”, 10) 
(“list”, { 2,4,6,8,10}) (“ball”, “color”, “green”) 
(27) (4989,67,828763) (“box”, “size”, 10) 

In order of execution: 

Call rd “ball”, “color”, “? color” 
> color=“green” -- or “red”, TS unchanged 

call in “.c”, “Size”, 10 
> One of (“box “, “size”, 10) is removed 

If rdp(“box”, “size”, “?N size”) = 0 
then Call out “box”, “size”, 20 
else Say “size= “size /* 10 in this case */ - 

Call rd “ball”, “size”, “?N size” 
> waits for matching tuple to appear 

Page 7 of 15 



I 
Copyright 1995 AugmenTek. All Rights Reserved. 

Rexindaz Rationale 
. - 

-- Popularize parallel programming 

> models world 
> requires modularity 
> allows recoverability 
> offers scalability 

- Follows REXX ftily well 

> functions are easy to remember 
> associativity similar to stems 
> tuple space is global, like default scope 

-- Leverage REXX’s fast prototyping 

-- Extend REXX to handle user-defined 
events (data appearing in tuple space) 

- 

Page 8 of 15 



I 
Copyright 1995 AugmenTek. All Rights Reserved. 

Rexindaz Goals 

-- Goals 

> C Linda-like (conversion, reference) 
> 

> 

> 

> 

> 

Avoid preprocessing source code 
Extendable 
Automatic datatyping with overrides 
Progressive disclosure philosophy 
Handle errors 

-- Basic method: pref= string argument with 
“markers” 

Page 9 of 15 



Copyright 1995 AugmenTek. All Rights Reserved. 

Rexindaz SyntaxMakers -- ~ * - 
-- Needed on out0 only to force data type 

> “@d” string 
where data type d is: 

-- “C” or missing for character 
II “N” for a valid REXX number 
-- “S” for a stem 

-- Input functions really need it: 

>“?d vamame” 
get value of type d and put it in vamame 

> “.d” 
ignore field that has data type d 

> “@d” string 
force data type d for this string 

Page 10 of 15 



Copyright 1995 AugmenTek. All Rights Reserved. 

Applications: Simple Email 

Email: 

My program: 
Parse arg name message 
Call out “mailto”, name,, 

” fkom”, “Stephen”, , 
message 

Everyone is running this program: 
Parse arg my name . 
Do Forever - 

Call in “mailto”, my name, 9 
” fi-om” , “? sender” ,, 
“? message” 

Say “Mail fkom” sender”:” message 
End 

Page 11 of 15 

aY7 



Copyright 1995 AugmenTek. All Rights Reserved. 

-- Applications: Simple Print Spooler 
* - 

-- Print spooler client: 
Parse arg file name 
If rdp(“spool&“) = 0 
then Call eval “C:bPOOLER” 

Call in “id”, “?N id” 
Call out “id”, id+ 1 

Call out “print”, id, file name 
- Call in “done”, id 

Say “Job” id “has printed.” 

-- Print spooler (“C:\$POOLER”): 
Call out “spooler” 
id= 1 
Call out “id”, id 

Do while rdp(“spooler”, “quit”) = 0 
Select 
When inp(“print”, id, “? file-name”) then do 

Address CMD “@COPY” file name “/I5 LPTl” 
- Call out “done”, id 

id = id+1 
end 

Otherwise Call Delay 1 /* Every inactive second */ 
End 

End 
Page 12 of 15 



Copyright 1995 AugmenTek. All Rights Reserved. 

Future: Enhancements -- _ - 
-- Matching: 

> Aggregates: match and return values for 
more than one tuple per call (1 .O) 

> Counting: count number of matches (1 .O) 
> Inequalities: allow matches based on 

<, >, \=, <=, >= a value 
> Patterns: allow matches within a field to 

cause match of tuple 

-- Persistence 

-- security 
-- Recoverability 

-- Transparent data/object access 

Page 13 of 15 

%44 



Copyright 1995 AugmenTek. All Rights Reserved. 

Availability -- ~. 

-- Rexinda Base (version 0.1): Now 
> Source code 
> No user support 
> Inconvenient and slow 
> Cannot distribute server source code 
> US$20. plus $3. S&H, US Destinations 

(WA residents add 8.2% tax) 
-- Price subject to change without notice 

-- Rexinda 1 .O: if sufficient interest 
> Function library (DLL) and fast server 
> No source code, compatible with Base 
> Some enhancements (TBD) 

-- Rexinda n.0, n > 1: success of vl .O 

-- Rexinda Net 1 .O: if sufficient interest 
> Network (TCP/IP) version 
> Some enhancements for networking 

Page 14 of 15 



I 
Copyright 1995 AugmenTek. All Rights Reserved. 

Parallel&ion -- _ - 
-- Carrier0 and Gelernter: 

How to Write Parallel Programs, MlT Press, 
1991, ISBNO-262-03171-X 

-- Three approaches: 

> Result -- the shape of the problem 

Example: SQRT(elements of matrix A) 

> Specialist -- the makeup of the workforce 

Example: send requests to servers 

> Agenda -- the tasks to do 

Example: many capable workers, list of 
tasks 

Page 15 of 15 



REXX for CICWESA 

Bob Vogel 
IBM Dallas 

Pages 252-272 

Proceedings of the 6th International Rexx Symposium 252 

252 



REXX Symposium 
REXX for CICS 

Bob Vogel 

May 3, 1995 

-. 

(C) Copyright IBM Corporation 1993, 1995 



Contents 

Introduction ............................................................... 1 
What is “REXX for CICS/ESA” ................................................. 2 
The REXX Language ........................................................ 3 
Trends toward REXX popularity ....................... m: ......................... 4 
Shift to very high level languages .............................................. 5 
Background ............................................................... 6 -. 
Project history ............................................................. 7 
Background ............................................................... 8 
FunctionOverview .......................................................... 9 
Function Overview (continued) ............................................... 10 
Need ................................................................... 11 
REXX File System (RFS) .................................................... 12 
REXX/CICS Text Editor ..................................................... 13 
Security ................................................................. 14 
Performance ............................................................. 15 
EXEC CICS commands not supported .......................................... 16 
Summary ................................................................ 17 
Questions ............................................................... 18 

- . 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 i 



Introduction 

l Copyright 

(C) Copyright IBM Corporation 1993, 1995 

l Trademarks 

The following terms used in this paper are trademarks or 
service marks of IBM Corporation in the United States or 
other countries: 

- 

CICWESA, IBM, MVS/ESA, OfficeVision, OS/2 

. 

---. -.-. .~ -.-- 
May 3,1995 (C) Copyright IBM Corporation 1993, 1995 1 



I 

What is “REXX for CICS/ESA” 

P 

l Two products (GA 7129194) 

- REXX Development System for CICS/ESA (5655-086) -I 

- REXX Runtime Facility for CICWESA (5655,087) 

l REXX language support for CICWESA 

e EXEC CICS Command support from REXX 

l CEDA and CEMT REXX interfaces 

l REXX-DB2 Interface 

e Native CICS application environment 

- REXX Panel Facility 

- High-level file system & filelist utility 

- Text Editor 

- Interactive shell 
- 

- Open Application Integration facilities 

l _ High-level Client/Server support 

l And More 
. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 2 

z 5-6 



The REXX Language 

e Created by Mike Cowlishaw, at IBM Hursley 
-. 

l In ANSI X3J18 committee since 1991, target for standard is 
1995 

0 Strengths of REXX 

- 

- 

- 

- 

- 

- 

- 

- . 
- 

- 

- 

Natural I high-level 

Avoids unnecessary detail 

Typeless 

Strong parsing 

Command and function support 

Source level interactive tracing 

Complete set of modern programming constructs 

Fairly small language, easy to learn 

Rich set of functions 

Can be interpreted or compiled 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 3 



I I 

Trends toward REXX popularity EC= = % L--- - II zeslr --- - 

l 

0 

* 

l 

e 

e 

l 

l 

-. 

Widespread use of REXX under OS/2--- 

- Now in PC DOS 7.0 

REXX moving aggressively to new platforms 

Shift to very high level languages / devp systems 

Macro support taking off industry wide 

ANSI REXX effort progressing well 

REXX compilers 

Dramatic increases in computing power (improves REXX 
performance) 

Shift to new system architectures, where REXX is a natural 

- Client/Server computing 

- Workstation GUI to Enterprise data/appls (Visual REXX) 

- Object Oriented (00 REXX) 

- Messaging and Queueing (Workflow Scripts) 

. 

_-..~.---. ~.~ ~ -- -~ 
May 3,1995 (C) Copyright IBM Corporation 1993, 1995 4 



Shift to very high level languages === = 3 L- i-z p=zya --- - 

0 Highly competitive times demand higher productivity 

l Large numbers of non-DP pros coming on board 

l Alignment of programming with business organization 

More complex systems difficult to develop 81 maintain 

Prototyping Development Methodology has come of age 

Building block approach and code reuse popular 

REXX and BASIC beefed up for serious programming 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 5 



Background =a= = i s E&.. ===7= --- - 

1 What were design goals forREXX/CICS 1 

l Deliver a strong productivity tool 

e Create a serious REXX-based application environment 

e Make REXX work with CICS languages and facilities 

l Provide a native prototyping, development and 
customization environment 

l Common REXX support across CICS platforms 

l - . Provide high-level Client/Server interfaces 

l _ Utilize the power of REXX in an open application integration 
platform 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 6 



Project history 

a REXX prototype to IBM Program Product 

- From Assembler to PL/X for portability 

- FROM TSO/E REXX base to direct use of REXX kernel 

- - From 1 person research project to formal development 
team 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 7 



Background 

0 Growing exposure to REXX and its power 

l Growing emphasis on productivity 

0 Product requirements for REXX under CICS 

*‘- Opportunity to improve a very important environment 

l Enhance customers’ large mainframe investment 
-. 

- REXX for CICS actually introduces some of the concepts 
of personal computing into the MVS/CICS environment. 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 8 



Function Overview =a= = ==-- - - EL? ==x-;= --- - 

l 

e 

0 

l 

l 

0 

l 

-. 

l 

Full REXX 3.48 language support ‘under CICS 

Dynamic EXEC CICS command level support 

REXX interface to CEDA, CEMT 

DB2 Interface (SQL statements & DB2 commands) 

CICS native text editor for REXX execs and data 

High-level VSAM-based REXX file system (RFS) 

Execs may also be run from MVS Partitioned Datasets 

High-level Panel l/O facility 

- - Also supports BMS 

. 

May 3,1995 (C) Copyright IBM Corporation 1993,1995 9 



Function Overview (continued) =a= = = G zc= - - --- rz=sz --- _ 

l Support for REXX Subcommands (themselves written in 
REXX) -. 

0 Pseudo-conversational support (conventional and auto) 

l System and user profile exec support 

l Shared execs in storage (via EXECLOAD & EXECDROP) 

l High-level Client/Server interfaces 

l Online help and softcopy REXXICICS manuals 

l . Improved run-away REXX task management 

l Concurrent international language support (English + 6) 
-. 

- German, Spanish, French, Canadian French 

_ - Japanese Kanji, Simplified Chinese 

. 

May 3,1995 (C) Copyright IBM Corporation 1993,1995 10 



I 

Need L--C = v-w-- :: = =s= r==sr --- - 

Need for REXXKICS & 

As a tool to streamline support staff activities 
- CICS Systems Programmers and Administrators 
- DB2 Analysts 
- CICS and DB2 testers, other support staff 

More productive CICS application development 
- Native CICS development (simpler) 
- Enjoy the strengths of REXX under CICS 

More flexible, powerful product customization & extension 
(macros) 

Quick prototyping and procedural language functions 

Preserve REXX investments in migrations 

Needed for products with REXX requirements 

As a script language to automate/streamline development 
sequences 

Help enable enterprise-wide Client/Server computing 

Better enable CICS end-user computing 

CICS Application Integration 
- Glue language to tie the pieces together 
- Building block support . 

-~~ 
May 3,1995 (C) Copyright IBM Corporation 1993, 1995 

265 

11 



REXX File System (RFS) === = EL-e= - - --- z=s:r --- - 

e Hierarchical Directory structure (like OSl2, AIX) 

l VSAM based 

l No need to register most new users 

l No need to register individual EXECs 

l Import/Export from/to MVS Partitioned Datasets 

l Management functions for members (COPY, DELETE, 
RENAME) 

l FLST file directory interface utility 

l An EXECIO-like I/O utility (RFS) 

l VSAM datasets can be added to a Filepool dynamically 

0 Number of filepools only limited by DASD 

( REXX File System (RFS) -Features ( 
-- 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 12 



REXXKICS Text Editor 

e 

l 

1 Editor features --I 

Two personalities 

- XEDIT 

- ISPF 

RFS and PDS file support 

6 Terminal models 2, 3, 4 & 5 supported 

l Customizable 

-. 

l REXX macro support 

l Execs can be run without leaving editor 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 13 



Security 

1 Security features 1 

l CICS security facilities (via ESM) to control access 

l REXXICICS Authorized Command support 

l REXXICICS Authorized Library support 

l - REXXICICS Authorized User support 

l Security exits 

l RFS AUTH command for directory sharing 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 14 



Performance --- - -TX z = I e -‘- ZSZ?L --- - 

l REXXICICS interpreter uses sophisticated performance 
techniques 

-. 

l Majority of execution time usually not in language 
processing 

e Shared and Reentrant code I execs 

l Performance numbers, courtesy of Steve Ware, University - 
of Florida on WWW (see last page for Web address) 

-. 

l REXXICICS run-time support for compiled REXXICICS execs 
a possibility 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 15 



EXEC CICS commands not supported z=s-’ g gg g++z= 

e HANDLE ABEND 

l HANDLE AID 

e HANDLE CONDITION 

l IGNORE CONDITION 

0 PUSH HANDLE 

-. 

l - POP HANDLE 

. 

May 3,1995 (C) Copyright IBM Corporation 1993, 1995 16 

3-7c 



I 

Summary xx= = 3 a.= == - --- PEST= --- - 

l REXX Development System for ClCSlESA much more than 
another language 

0 

l 

l 

l 

l 

l 

e- 

REXXKICS introduces significant new capability 

REXXKICS provides new approaches to CICS computing 

REXXKICS opens CICS to a broader range of uses 

REXXKICS is a strong productivity tool for devp and support 

REXXKICS is a good application integration platform 

REXXKICS is useful for serious programming 

REXXKICS is natural for Client/Server computing 

l REXXICICS is in step with industry trends (application 
server) 

l CICS and REXX are very synergistic 

REXXKICS Summ&y 
, 

-I * 

-. 
- REXX = ease of use, high productivity, native devp env. 

- CICS = production computing and common support 

. 

May 3,1995 (C) Copyright IBM Corporation 1993,1995 17 



Questions 

l 

l 

1 Questions and Wrapup 1 

Future direction 

- Runtime Lite 

- Compiler Support 

- TCP/IP Sockets 

How to get more information on REXX or REXXKICS 

- http://rexx.hursley.ibm.com/rexx/ 

-. - dshriver@vnet.ibm.com 

l 

- http://sfware.nerdc.ufl.edu/rexxcics/rxkixhom.html 

Questions 

. 

May 3,1995 (C) Copyright IBM Corporation 1993,1995 18 



I 

REXX Changes in OS/2 Warp 

Dick Goran 
CFS Nevada, Inc. 

- . 

Pages 274-282 

. 

Proceedings of the 6th International Rexx Symposium 274 



Changes in OS/2 
Warp 

REXX Symposium 
May l-3, 1995 

Palo Alto, California 

-.. 

Dick Goran 
C F S Nevada, Inc. 
953 E. Sahara Avenue, Suite 9B 
Las Vegas, Nevada 891043012 
Voice: 702-732-9616 
FAX: 702-732-3847 
Email: 7ll54.2002@CompuServe.com 

- . 



Warp and REXX 

-. 

U w arp, or OS/2 Warp Version 3.0 as 
it is officially named, has added 
5 new functions to the 

REXXUTIL application programming 
interface, or API as IBM likes to call it. 
Figures 1 through 5 contain a description 
of these new functions as they appear in 
the REXX Reference Summary Handbook. 
Unfortunately, IBM did not do a very good 
job in documenting these new functions. 

While copying, moving, or creating 
shadows of workplace shell objects (WPS) 
is somewhat intuitive, saving and opening 
WPS objects with the new functions is not. 

SysCopyObject(), SysMoveObject(), and 
SysCreateShadow() are fairly 
straightforward in their purpose. These 
functions permit a simple means of 
copying, moving, or creating a shadow of 
WPS objects from within a REXX program. 
However, there are some points of special 
interest when using these three functions. 

When an object is copied, no object ID is 
provided for in the copy. Whether the 
original object has an object ID or not, the 
copy will not have an object ID. The only 
currently available mechanism for 
assigning an object ID to the copy is with 
a third-party utility such as DeskA&@. 
When a shadow is created, the shadow ID 
of the newly created object will have the 
same value as the object ID of the original 
object. 

The purpose of the SysSaveObject() 
function is to force OS/2 to flush the file 

h:\os2-ren\course\repsyml 

system objects properties (stored as 
extended attributes) and the Workplace 
Shell abstract objects properties (stored in 
the OS2.INI and OS2SYS.INI files) to disk. - 1 

The SysOpenObject() function is just as 
obscurely documented in the online 
REXX.INF file that comes with Warp. As 
with many of the other WPS functions 
contained in REXXUTIL, the IBM-supplied 
documentation refers to WPS and program 
manger C++ language functions that the 
average OS/2 user would not have access 
to without owning the toolkits made for 
OS/2. The information shown in Figure 1 
was compiled from a combination of “bit- 
digging” research along with some 
assistance from IBM’s Glendale 
Laboratories - the group responsible for 
REXX development. The numeric values 
shown in Figure 1, and used to tell the 
SysOpen() function which view is to be 
opened, may not be complete. It will take 
some trial-and-error testing along with 
independent research to determine what 
other values may be used. I suggest that 
users who want to keep up with the latest 
information, as it becomes available, stay 
current with the material in the various 
REXX related fora on CompuServe 
(OS2DF1, Section 6), IBM’s IBMLink and 
TALKLink (OS2REXX CFORUM), 
cornp.lang.rexxon the Internet along with 
your favorite local BBS. 

Development Technologies and Greg Czaja 
have released version 1.51 of DeskMan/2 
with updated REXX functionality as well 
as interfacing with the WPS functions for 

2 0 1995 by C F S Nevada, Inc. 



Warp. C F S Nevada, Inc. has released the 
third edition of the REXX Reference 
Summary Hundbook (ISBN O-9639854-2-6 / 
IBM SRL & PUBORDER S246-0078-01) with 
the Warp additions. 

One of the other major changes in Warp 
that is directly related to REXX is the 
ability to both create and change printer 
objects (WPPrinter class) and the new 
Launchpad (WPLaunchPad) with the 
REXXUTIL functions. Figure 11 is an 
example of a REXX program used to 
replace an existing Launchpad with one 
configured within the program. 

SysSaveObject( object-name. timing-flag ) 
Returns 1 if the WPS object objectname was 
successfully saved; otherwise, returns 0. Fiie system 
objects (WPFileSystem) are saved in the file system’s 
extended attributes and abstract objects are saved in the 
OSZJNI (user) fde. Transient objects (WPTransient) 
cannot be saved. 

Object-name can be a WPS object ID (the unique string 
preceded with a ‘<’ and terminated with a ‘>‘) assigned 
to the object when it was created (e.g. 
<WF’DFSKTOP>) or a fully qualified file name. 

Timing&g can be 0 (Boolean false - object is to be 
saved synchronously) or 1 (Boolean true - object is to 
saved asynchronously). 

- . 

Figure 1 - SysSaveObject() function 

SysMoveObject( object-name. - 
SysCreateShadow( object-name. - 

- object-destination ) 
Returns 1 if a shadow of object-name was successfully 
created at the specified location, object-destination; 
otherwise, returns 0. 

- object-destination ) 
Returns 1 ifobject~~~me was successfully moved to 
object-destinntion; otherwise, returns 0. Ifthe object 
already exists in the destination location, it is not moved 
and a 0 is returned. 

Both object-nnme and object-destination can be a WPS Both object-name and object-destination can be a WPS 
object ID (the unique string preceded with a ‘<’ and object ID (the unique string preceded with a ‘<’ and 
terminated with a ‘a’) assigned to the object when it terminated with a 3’) assigned to the object when it 
was created (e.g. <WPJXSKTOP>) or a fully qualified 
file name. 

was created (e.g. <WPJXSKTOP>) or a fully qualified 
file name. 

Figure 2 - SysCreateShadow() function 

SysOpenObject( object-name. view, flag ) 
Returns 1 if the WPS object object-name was 
successfully opened on the Desktop; otherwise, returns 
0. 

Object-name can be a WPS object ID (the unique string 
preceded-with a ‘<’ and terminated with a 3’) assigned 
to the object when it was created (e.g. 
<WF’JXSKTOP>) or a fully qualified file name. 

View specilies the view to be opened and can contain 
either a numeric value or the equivalent string. The 
function will pass all numeric values to the underlying 
wpOpen() or wpViewObject() function without testing 
the value for validity. 

0 - DEFAULT 
1 - ICON 
2 - SETTINGS 
3-HELP 
4-RUNNING 
5 - PROhXPTDLG 

121 -PALETTE 

Flag can contain a 1 indicating that an existing view of 
an object can be opened on top of the Desktop 
(resurfaced) by calling the wpViewObject method or a 
0 indicating that the view specified in view is to be 
opened using the wpOpen method. The following 
comment originated in the description of the wpOpen 
method: 

“Zn general, wpViewObject should be used instead of 
the wpOpen method. This is because wpViewObject 
takes into consideration the setting in the Object Open 
Behaviorfield on the Windowpage of the Settings 
notebookfor the object. If a view of the object is 
already open, wpViewObject will depending on the 
setting of the Object Open Behaviorfield, either display 
the existing window for the object or create a new 
object. ” 

“In contrast, wpOpen always opens c1 new view of the 
object. Under certain circumstances this might be 
called for, but, under most circumstances, 
wpViewObject should be called instead. ” 

Figure 3 - SysOpenObject() function 

Figure 4 - SysMoveObject() function 

3 0 1995 by C F S Nevada, Inc. 



SysCopyObject( object-name, - 

- object-destination ) 
Returns 1 if object-name was successfully copied to 
object-destination; otherwise, returns 0. If the object 
already exists in the destination location, it is not copied 
and a 0 is returned. 

Both object-name and object-destination can be a WPS 
object ID (the unique string preceded with a ‘<’ and 
terminated with a 5’) assigned to the object when it 
was created (e.g. <WPJESKTOP>) or a fully qualified 
file name. 

Note 01: The copied object will not have an 
OBJECTID whether the original object 
had one assigned or not. 

Note 02: Some ofthe object’s otherproperties are 
not copied along with the object. 
Specifically, ASSOCTYPE= belonging to 
the original object does not appear OR the 
copy. This is consistent with what occurs 
when using drag & drop to copy an 
object. 

Figure 5 - SysCopyObject() function 

Tips on Using REXX 
and the Workplace Shell 

Any changes which are made to an open 
Settings notebook via SysSetObjectDataO 
are not necessarily reflected in that 
notebook until it is closed and reopened. 

If the same key name is specified more 
than once within a setup string, it 
generally appears as though the first key 
name-value pair is the one which prevails; 
however, that is not always the case. 

Where a numeric value of 0 or 1 is used to 
-.. represent NO or YES respectively; it 

appears that any numeric value other than 
0 will be used as if the value had been 1. 

Some of the alphabetic values of the key 
- name=value pairs have been found to be 

case sensitive with uppercase being 
required; therefore, all alphabetic values 

4 0 1995 by C F S Nevada, Inc. 

should be created in uppercase. 

A new line character, ‘OA’x, may be used to 
cause a value such as Title to occupy more 
than one line. Also, it appears that the 
occurrence of the escape character, ,,, 
causes a new line to be created; however, 
2nd and subsequent escape characters 
used for this purpose appear to be ignored. 

- 

If both ICONFILE and ICONRESOURCE are 
specified in the same setup string, 
ICONFILE prevails. 

An OBJECTID should not be assigned to an 
object defined as a template since this 
would lead to multiple objects with the 
same OBJECTID. 

The object pointer or handle can only be 
retrieved via the wpclsQueryObject 
method or the WinQueryObject function, 
respectively (neither of which are 
currently available via REXX). 

Prior to Warp, there was no method for 
altering the background characteristics for 
a folder other than the bitmap image 
name (e.g. image vs. color; normal, scaled 
or tiled image; etc.) using either 
SysCreateObject() or SysSetObjectData(). 
Warp allows all of the characteristics of 
the Desktop background to be specified. 

Prior to Warp, there was no method for 
altering “Always maintain sort order” 
using either SysCreateObject() or 
SysSetObjectData(). Warp introduced the 
“ALWAYSSORT=YES;” setup string 
parameter. 

If OPEN=SETTINGS is specified, the 

278 



program object’s notebook is opened; 
however, if OPEN=DEFAULT is specified, 
the program object is launched (its icon is 
cross-hatched) and the program appears in 
the task list but it does not come to the 
foreground without either a second call to 
SysSetObjectData() or manual 
intervention. 

wfwI= 
Mystery Failures 

There has been a “fix” in Warp Version 3 
implemented by IBM that is subtly causing 
REXX programs, that ran with prior 
versions of OS/2, to fail. The culprit is the 
lack of file handles in the OS/2 session 
where the REXX program is running. 

The default number of file handles, a 
resource required for each open file, is, 
and has been, twenty. Of the twenty, 
fifteen are available for user programs 
with five being reserved for system-related 
files. Prior to Warp Version 3.0, when 
multimedia support was installed it 
changed the default for the number of file 
handles from twenty to eighty. 
Apparently, this was being done without 
the knowledge of the kernel developers 

and they deemed it necessary to “correct” 
this problem. 

The end result is that if you have a REXX 
program that inadvertently references file 
with any of the input/output (I/O) 
functions: CI-IARINO, CHAROUT(), CHARSO, 
LINEIN(), LINEOUTO, or LINES0 or uses any 
library functions that do not close all of 
their files (for example - the 
SysGetMessage() function); these programs 
may begin to fail. The only way to prevent 
this from happening is to increase the 
number of file handles available in the 
particular session where the program is 
running. This can be done with the 
GrowHandles C function. Quercus 
Systems has implemented this capability 
in their latest version of REXXLIB, a 
commercial product that is available in a 
fully functional “demo” form from your 
favorite OS/2 BBS or repository. With the 
addition of REXXLIB.DLL, you can call the 
DOSFILEHANDLESO function and specify 
the number of file handles you want to be 
available for that session. Once the 
number of file handles has been increased, 
the larger number of file handles remain 
available to that session until the session 
is closed. 

- 1 

-. 

I* 9506LS07.CMD (RXLSOS.CMD) - Build your own Launchpad */ 
/* 0002 *I 

LaunchPadID = '<WP-LAUNCHPAD>' /* 0003 */ 
location = '<WP~OS2SYS>' /* 0004 */ 
title = 'Launchpad' /* 0005 */ 
class = 'WPLaunchPad' I* 0006 *I 

I” 0007 */ 
I*------------------------*\ /* 0008 */ 
1 Setup Launchpad string 1 /* 0009 */ 
\*------------------------*I I* 0010 “I 
parameters =, /* 0011 */ 

'CCVIEW=NO;' I I ' I” 0012 */ 

h:\os2-refl\course\rezpyml 5 0 1995 by C F S Nevada, Inc. 

274 



'HELPPANEL=32253:' 
' ICONRESOURCE= PMWP.DLL;' 
'LPACTIONSTYLE=OFF;' 
'LPCLOSEDRAWER=YES;' 
'LPDRAWERTEXT=YES;' 
'LPFLOAT=NO;' 
'LPHIDECTLS=YES;' 
'LPSMALLICONS=YES;' 
'LPTEXT=YES;' 
'LPVERTICAL=YES;' 
'NOPRINT=YES;' 
'FPOBJECTS=' 

'<WP-DRIVES>,' /* 01 */ 
'<WPPO-HPLaserJ>,' /* 02 "I 
'<Corel-Draw!>,' I" 03 */ 
'<WP_MEGASCAN^3>,' /* 04 */ 
'<WP_OS2WIN>,' /* 05 */ 
'<TAPCIS>,' I* 06 *I 
'<WordPerfect-for-Windows>,' I* 07 *I 
'<WP-GAMES>,' i* 08 *i 

'OBJECTID=' I( LaunchPadID 11 ';' 

call SysCreateObject class,, 
title,, 
location,, 
parameters,, 
'R' 

if RESULT <> 1 then 
do 

say ' Error creating launchpad' 
exit 

end 

I*--.-------..----------*\ 

I Setup drawer strings 1 
\*-----------..---------*I 

drawer-01 =, 
'DRAWEROBJECTS=Ol,' 

'<BackMaster>,' 
'L:\WWW,' 
' . ' 

- 
drawer-02 =, 

'DRAWEROBJECTS=02,' 
'<WPPO-FxPrint>,' 
' . ' 

drawer-03 =, 
'DRAWEROBJECTS=03,' 

'c:\os2addon\pmcamera.exe,' 
' . ' 

h:\os2-refl\course\re.msyml 6 

/* 0013 */ 
/* 0014 */ 
/* 0015 */ 
I* 0016 *I 
/* 0017 */ 
i* 0018 *I 
/* 0019 */ 
/* 0020 */ 
I" 0021 */ 
/* 0022 */ 
I* 0023 *I 
I* 0024 "I 
I* 0025 *I 
I* 0026 *I 
I* 0027 *I 
i* 0028 *i 
I* 0029 *I 
/* 0030 */ 
/* 0031 "I 
I* 0032 *I 
/* 0033 */ 
/* 0034 */ 
/* 0035 */ 
I" 0036 *I 
/* 0037 */ 
i* 0038 *I 
I* 0039 */ 
/* 0040 */ 
/* 0041 */ 
I* 0042 *I 
/* 0043 *I 
/* 0044 *I 
/* 0045 *I 
/* 0046 *I 
/* 0047 */ 
I* 0048 *I 
/* 0049 */ 
/* 0050 */ 
/* 0051 */ 
I* 0052 "I 
/* 0053 */ 
/* 0054 */ 
/* 0055 */ 
I* 0056 *I 
/* 0057 */ 
i* 0058 *i 
/* 0059 "I 
I* 0060 *I 
I* 0061 *I 
I" 0062 *I 
1" 0063 *I 
/* 0064 *I 

0 1995 by C F S Nevada, Inc. 



I* 0065 *I 
drawer-05 =, I" 0066 */ 

'DRAWEROBJECTS=05,' I" 0067 *I 
'<WP-WINFS>,' I* 0068 */ 
'<WP_WIN2WIN>,' I* 0069 *I 
'<WP-DOSFS>,' /* 0070 */ 
'<WP-DOSWIN>,' I* 0071 */ 
'<WP-OSZFS>,' I* 0072 *I 
' . ' /* 0073 */ 

/* 0074 */ 
drawer-06 =, /* 0075 *I 

'DRAWEROBJECTS=06,' I" 0076 *I 
'<IAK-SLIPPM>,' /* 0077 */ 
'<AD'/-DIALER>,' I* 0078 *i 
'<WP_OSl2_CIM->,' /* 0079 */ 
'<WP-INTERNET"C>,' i* 0080 *I 
'<WP-XTALK-^MK->,' i* 0081 *I 
' . ' i* 0082 *I 

I* 0083 *I 
drawer-07 =, i* 0084 *I 

'DRAWEROBJECTS=07,' I* 0085 *I 
'<WP-WP-5.1>,' /* 0086 */ 
'<WP-REXX-^HAND>,' I* 0087 *i 
' . ' i* 0088 *I 

I* 0089 *i 
l*-----------------------------------------------*~ /* 0090 */ 
1 Add drawers to Launchpad & open it on Desktop I I* 0091 *I 
\*--------....------...------.-------------------*l I* 0092 *I 
call SysSetObjectData LaunchpadID, drawer-01 /* 0093 */ 
call SysSetObjectData LaunchpadID, drawer-02 /* 0094 */ 
call SysSetObjectData LaunchpadID, drawer-03 /* 0095 *I 
call SysSetObjectData LaunchpadID, drawer-05 I* 0096 *I 
call SysSetObjectData LaunchpadID, drawer-06 I* 0097 "I 
call SysSetObjectData LaunchpadID, drawer-07 I* 0098 *I 

/* 0099 */ 
call SysOpenObject LaunchpadID, 0, 1 /* 0100 */ 
exit /* 0101 */ 

h:\osZ-refl\course\repsyml 0 1995 by C F S Nevada. Inc. 



Referenced Resources 
REXXLIB - OS/2 REXX API ($20.00 to $50.00) 

Quercus Systems 
14500 Big Basin Way, Suite E 
Saratoga, CA 95070 
800-440-5944 orders 
408-867-7399 voice 
408-867-7489 FAX 
408-867-7488 BBS 
CompuServe, PCVENA, Set 11 (GO CIS:QUERCUS - Charles Daney 75300,245O) 

REXX Reference Summary Handbook ($27.95) by Dick Goran 
C F S Nevada, Inc. 
953 E. Sahara Ave, Suite 9B 
Las Vegas, Nevada 89104-3012 
800-739-9672 orders 
702-732-9616 voice 
702-732-3847 FAX 

Biographical info - Dick Goran: 

A veteran of the computer industry for 34 years, Goran is a contributing editor and 
monthly columnist for OS/Z Magazine and serves as one of IBM’s OS/2 Advisors on 
CompuServe. Considered one of the leading authorities on OS/2 REXX, Goran 
authored the best-selling, award-winning REXX Reference Summary Handbook. 

His company, C F S Nevada, Inc. located in Las Vegas, offers the OS/2 REXX class 
to the public as well as publishing the REXX Reference Summary Handbook. Goran 
speaks to OS/2 User Groups and other industry associations throughout the country 
on both OS/2 and the REXX programming language. 

-. 

Goran returned to the software business in 1991 after having sold his IBM mainframe 
systems software development business in 1987, retiring, and relocating to Las Vegas 
from Boston. While in Las Vegas, Goran began hosting an evening radio talk show 
and has since appeared in several movies. 

Goran is highly visible in the OS/2 forums on CompuServe and can be reached via e- 
mail at 77754.20028CotnpuServe.corn. He also maintains an FTP directory at 
ffp.netcom.com:/pub/dg/dgoran where many of his OS/2 REXX utilities are available 
to the public at no charge. 

h:\os2-refl\course\relptsyml 0 1995 by C F S Nevada, Inc. 



SIREXX by BEiARoYi - 

David Salthouse 
Open Direct 

Pages 284-290 

Proceedings of the 6th International Rexx Symposium 284 



WREXX by BENAROYA 

David Salthouse Open Direct 
david.saIthouse@utopia.fnet.fr 



History 

1989 SEDIT 

1991 SIREXX 

1994 WREXX DEBUGGER 

Platforms 

AIX 
HPUIX 
SUNOS 
SOLARIS 
IRIS 
ULTRIX 
LINUX 



SIREXX VERSION 4 REXX 
-----NO LIMITS ON:- _ - 

Procedure Size 
Expression complexity 
Nesting of Parenthesis 
Variables number and content 
Recursive function Depth 
Argument number and size 

LANGUAGE EXTENSIONS:- 

Full Function EXECIO 
Dynamic Loading of Routines 
Multiple Procedure Expose 
LEAVE or ITERATE within an INTERPRET 
CD 
DO name IN expr; . . . . . . . End; 
OPTION case, setenv, load 
LOWERJJPPER 
PARSE EXTERNAL and PARSE NUMERIC 
{} DO; END 
[] SUBSTR 



WREXX VERSION 4 BUILT-IN FUNCTIONS 
_ - 

Dialog Management Openlook orMotif:- 
buttons 
labels 
input fields 
toggles 

Other BUILT IN FUNCTIONS:- - 
‘. 

ARCH0 
CHDIR(),MKDIR(),RM() 
LINEIN(),LINEOUT() 
UNIX(cmd,stem) 
STATUS0 
date(date(‘b’)+7) 

Programming Interface 
add user supplied builtin functions 
embed S/REXX into C applications 

ZPP 



I I 

TEST DRIVE SEDIT, WREXX AND RXD 
_ - 

download from 

http://www.sedit.com/sedit 

http://www.portal.com/-sedit 



, 

1. 



A I&xx-based Stock Exchange Real-time 
Client/Server Environment for--Research, Educa- 
tional and Public Relations Purposes: Implemen- 

tation and Usage Issues 

Martin P. Misseyer 
Lou W. M. Guse 

Armoud W. Morsink 
Vrije Universiteit Amsterdam 

Pages 292-322 

. 

Proceedings of the 6th International Rexx Symposium 292 



A REXX-based Stock Exchange Real-time Client/Server 
Environment for Research, Educational and Public Relations Purposes: 

Implementation and Usage issues 

Martin P. Misseyer, LLNI W.M. Giise, Arnoud W. Morsink 

Vrije Universiteit 
Faculty of Economic Sciences, Business Administration and Econometrics 

Department of Information Systems 

Amsterdam, April 1995 

Abstract 

For many years now the Faculty of Economic Sciences, Business Administration and Economics of the Vrije Universiteit in 
Amsterdam propagates to impart students of economics scientific ‘real market’ skills aud experience in, for example, portfolio 
management. Aside from the risk neither the faculty nor most of the students have sufficient means to practice in portfolio 
mauagement. In the early 1980s the idea evolved at the faculty to develop and use a portfolio management simulation. The 
Am&&am Stock Exchange (ASE) granted the faculty in 1983 a free of charge data link with its admin&rative clearing information 
system. The data link provided the faculty with real-time data including stocks traded (time, price and volume), exchange news, 
stock splits and many more. At the time the technology used was relatively simple: the data link consisted of a 1200 bps modem 
connection using the X-modem protocol to receive data. The received data were put in flat files and were in turn read by a 

. small, written in C, in-house developed portfolio management simulation system named TRANSPAS. 

In 1990s it became inevitable for ASE to acquire a modern trading system as more and more trade leaked to more sophisticated 
foreign exchanges (London, Paris, and Frankfurt). ASE developed a new trade system, entailing major operational and technical 
changes. In September 1994 a new, fully automated, trade system became operational for complete administration of ah ASE 
transactions (to be) made. Nowadays at the ASE tens of millions of stocks, bonds, futures change hands every day. 
The major changes were twofold. First the trade itself was re-engineered by ASE, however this is not discussed in this paper. 
Secondly, a tremendous change at the technology level was unavoidable. ASE moved from simple analogue asynschronous 
communication to X.25based digital synchronous communication (SDLC), anticipating on the need for both much more capacity - 
as data streams increase (re-engineering!) and for full reliable data-link monitoring. Therefore, the faculty was faced with the 
fact that TRANSPAS as well as its data link became outdated, and implied that the whole system had to be rebuilt. 

In 1993 the first author of this paper headed the project team, a composition of colleagues (researchers, graduates, automation 
staff) and enthusiastic undergr&ates, to rebuild TRANSPAS and its ASE data link. The fnst step the project team took, before 
setting up several projects, was re-ex amining the faculty goal. After thorough research, two goals were aimed at. First, the 
basis of the integrated environment should be based on state-of-the-art relational database technology (the database project 
was named after the database to be developed: Bet&&se) in which all the raw ASE data received would be stored real-time/on-line 
for a long period of time, preferably three years or more. Secondly, the project team distinguished three major application 
areas for the database: ’ research, education and public relations. For each of these areas a specific range of application programs 

2$3 



must be developed. Obviously, one of the core application programs is the portfolio management simulation system TRANSPAS, 
which was renamed into: VUPOS. It became clear that VUPOS could be used in all three areas defmed. 

Concurrently with the ASE new trade system, the faculty-built REXX-based Client/Server (C/S) became operational. Though 
already halfway implementation the faculty was informed by the Computer Services Center about its new strategy: the IBM - . 
S/390 host facility, the VM Server in the REXX C/S environment (and the basis for both BeursBase and several applications 
in&ding WPOS) would be stopped at the end of 1995. It would be replaced by a AIX cluster of 4 very large 590 RS/6000 

- mid 1994. When the project team was acquainted with the news immediate action was taken. In contrast with the SQL/DS 
version installed DB2/6000 (AIX) supports full C/S. For several reasons the project team decided to develop in parallel a second, 
REXX-based C/S enviromnent using the AlX host as Server. This ‘new’ C/S enviromnent - referred to as the AIX C/S environment - 
went in operation last January 1995. As the ‘old VM C/S environment was primarily based on REXX, porting the applications 
to anew’ AIX C/S environment was relatively simple. Both VM C/S and AIX C/S enviromnems are now fully operational 
and perform as was planned for, having many similar as well as diiguishmg characteristics. The portfolio management Simulation 
(VUPOS) for the VM C/S environment is written in CSP, aud is already used by hundreds of students. Since the AIX C/S 
does support full C/S the project team was able to develop VUPOS in VX-REXX. Recently the development of this version 
of VUPOS has entered its fmal stage. Qther applications in VX-REXX, APL/2, VisualGen and VisualAge under construction, 
range from an import/export facilities to fundamental and technical analysis, and are primarily developed for the ALX C/S 
environment. The first quarter of 1995 will be used for large scale tests of the system. 

This paper presents the design, development, and implementation of these C/S systems from both developer and user views 
and from both technical and non-technical points of view. 

1 General introduction 

1.1 Students, portfolio management and TRANSPAS 

For many years now the Faculty of Economic Sciences, Business Adminisbation aud Economics (FEWEC) of the Vrije Universiteit 
in Amsterdam (The Netherlands) propagates to impart students of economics scientific ‘real market’ skills and experience in, 
for example, portfolio management. Aside from the risk neither FEWEC nor most of the students have sufficient means to 
practice in portfolio management. In the early 1980s the idea evolved at FEWEC to develop and use a portfolio management 
simulation. The Amsterdam Stock Exchange (ASE) granted FEWEC in 1981 a free of charge data link with its administrative 
clearing information system. The data link provided FEWEC with real-time data in&ding stocks traded (time, price aud volume), 
exchange news, stock splits aud many more. At the time the technology used was relatively simple: the data link consisted 

- ..of a 1200 bps modem connection using the X-modem protocol to receive data. The received data were put in flat files and 
were in turn mad by a small written in C, in-house developed portfolio management simulation system named TRANSPAS. 

1.2 Developments at the Amsterdam Stock Exchange 

Early in the 90s it became inevitable for ASE to acquire a modem trading system as more and more trade leaked to more sophisticated 
foreign exchanges (London, Paris, and Frankfurt). ASE developed a new trade system, entailing major operational and technical 
changes. In September 1994 a new, fully automated, trade system became operational for complete administration of all ASE 
transactions (to be) made. Nowadays at the ASE tens of millions of stocks, bonds, futures change hands every day. 

. 

2 



The major changes were twofold. First the trade itself was re-engineered by ASE, however this is not discussed in this paper. 
Secondly, a tremendous change at the technology level was unavoidable. ASE moved from simple analogue asynschronous 
communication to X.25-based digital synchronous communication (SDLC), anticipating on the need for both much more capacity 
as data streams increase (re-engineering!) and for full reliable data link monitoring. aerefore, FEWEC was faced with the 
fact that TRANSPAS as well as its data link became outdated, and implied that the whole system had to be rebuilt. 

1.3 Rebuilding TRANSPAS: a project plan 

In 1993 the first author of this paper headed the project team, a composition of colleagues (researchers, graduates, automation 
staff) and enthusiastic undergraduates, to rebuild TRANSPAS and its ASE data link. ‘Ihe first step the project team took, before 
setting up several projects, was re-examining FEWECs goal. After thorough research, two goals were aimed at. First, the basis 
of the integrated environment should be based on state-of-the-art relational database technology (the database project was 
named alter the database to be developed: BeursBase) in which all the raw ASE data received would be stored real-time/on-line 
for a long period of time, preferably three years or more. Secondly, the project team distinguished three major application 
areas for the database: research education and public relations, For each of these areas a specific range of application programs 
must be developed. Obviously, one of the core application programs is the portfolio mauagement simulation system TRANSPAS, 
which was renamed into Vrije Universiteit Portfolio Simulation, in short VUPOS. It became clear that WPOS could be used 
in all three areas defined. 

The VUPOSlBeursBase project defined the following phases: 
lo Provide a strategy plan, including a re-examination of FEWECs goal(s); 
2” Evaluate possible solutions, alternatives for the new system; 
3” Design a new organizational setting; 
4” Design several subprojects in which the system should be developed aud implemented; 
5” Provide a maintenance structure based on the strategy plan, including a costs/benefits analysis. 

Phases l”, 2” and 5” lie beyond the scope of this paper, except for a reexamination of FEWECs goal (phase lo partially) these 
phases are not discussed. This paragraph elaborates on the subprojects defmed (phase 3’). Phase 4”, the design of several subprojects 
is diiussed in the next paragraph. Before continuing with the subsequent section it has to be said that the focal point of this 
paper is an exemplification and a discussion of the implementation and usage aspects of the REXX-based Client/Server environment 
developed at FEWEC. 

1.4 The strategy plan: a re-examination of FEWECs goal 

-. In the early 1980s TRANSPAS was set up as a kind of ‘test’ or ‘toy’ system primarily by students, two lecturers and a system 
administrator. At the time focus was purely on practice: how can we implement a portfolio simulation system for usage in 
education? A re-examination of this simple FEWEC goal is shown in figure 1. 

At best stock data provided by Beursdata should be stored in a underlying relational database (BeursBase). Then three user 
application amas can be diied: research, education and public relations. The research and education user applications 
areas seem more likely than the public relations application area. True, an university position sterns from the quality of research 
and education. The public relations more or less benefit from these facts. At this moment universities in the Netherlands are 
faced with a signilicantly declining number of students, partially because of the aging population and partly because of a de&ring 

. 

3 



willingness to study, and therefore competition is high. This is where the public relations part plays a role: FEWEC needs ways 
to attract potential students. The public relations user application area is diiguished for this goal. FEWEC members, lecturers, 

researchers and student can aid in application development for this purpose. Other public relations activities are for example 
finance , i.e. stock and bond investment competitions, school lectures, educational seminars, and media publicity. 

D&Cipht?S . User areas 

igure 1 The application areas for real-time stock data in a scientific environment. 

The fourth application area is the one for system and maintenance. In this area users, programs and database control rather 
than stock data are the issue of concern. Finally, each of the user application areas distiuguished can be viewed from a variety 
of economic disciilines. The most relevant disciilines are among Finance, Information Systems and Information Technology, 

_ .,Econometrics, Financial Accounting and Operations Research or Management Science. 

The information above can be concentrated into a general purpose framework, a matrix structure in which the user application 
areas are defined as column and the economic disciilines as rows. For each matrix cell one or more specific users application 
programs can be developed. Or, if application programs are already available abundantly and are easily adapted in current 
enviromnent, they should be used instead Fmthermore, some application programs if generally developed can be used in more 
than one area distinguished, and/or in more thau one discipline. In that case one can look for or develop application programs 
for more widespread usage. In table 1, some examples are provided. 

. 

4 



The fourth application area forms an exception to the framework. This is primary the area of the Information Systems and 
Computer Science disciplines and involves more fundamental research on information systems, decision support systems, 
databases, (tele)communication and networking. 

EconomeIncs 

Financial accounting 

I applica 

- Portfolm management and theory, 
- Theory on market effi&ncy, 
- International stock markets; 
- Development ofperformance indicators 

Analysis of stock market and tinancial mvesbnent 
data 

Appl~tion of IS and DSS 

-Design DSS, ES, KNN systems 
Database oonoepta and theory 
System and applicatio,, development oonceptp- 

(ClimffSaver, Object Orientation) 
Appbcatmn of IS and DSS 
Human computer interface 

Statitioal (exploratory) data analyses 
Longitudinal and time wows analysis 
Application of IS and DSS 
Design of smmbation models 

Analym of perfofnance indicators 
- Am&.ls of stock and equity issues 
- Application of IS and DSS 

- Gemml market theones 
- Impact stock market on economy 
- Application of IS and DSS 

km program development. 

Pmtf‘Alo man.agement shnulation; 
Data analysis; 
AppIicahon of IS and DSS, 
Pra,3ical classes; 
worknhops; 

-seminars; 

- Data analysis, 
- Applioahon of IS and DSS, 
- Pmctlcd chsm, 
-work&hops, 

- Daba analysis; 
- AppIication of IS and DSS, 
- Practical classes; 
-workshops; 

swmulan; 

IMa malyals, 
Application of IS and DSS, 
FTwtical clssses; 

-Workshops; 
semmars; 

Data analysis; 
Applioahon oflS and DSS; 
Plaotical cIasses, 
work&ops, 

-seminars. 

1.5 Criteria for the C/S environment development: in search for processing power 

TherequirementsforaBeursBaseandVUPOSplatformneeded 
to be specified. Several criteria were defined to determine 
the amount of processing and database power necessary for 
BeursBase, VUPOS and other application usage. The project 
team came up with the following criteria: -. 

0 Number of users in every area distinguished; 
0 Number of applications in every area; 
0 Type of database processing; 
0. In-house experience with systems; 
El Costs/benefits; 
0 Designing for flexible systems in terms of portability, 

efficiency and effectiveness; 

. Figure 2 The organizations involved. 

5 

z--9 7 



Having limited resources available, added to the fact that use of SARAs, the academic computer center of the two universities 
in Amsterdam, was aheady paid for up to 1996, the choice was simple. As the department of Information Systems was already 
using SARAs fa&ies, the cooperation was intensified. ‘Ihe organizational setting is shown in figure 2. Beursdata, ASEs data 
vendor provides FEWEC since 198 1 with real-time stock exchange data. In 1993 the &mmunication link was upgraded to 
a X.25 structure. FEWEC, with approximately 3 100 students the largest of 15 faculties of the Vrije Universiteit, transforms 
the real-time ASE data into SQL data-format aud puts it into BeursBase (SARA). Ideally, FEWEC members, lectures, researchers, 
ass&ants and students should be able to use the data for many different purposes. Data should be available both directly by 

- extracting it (by query) and indirectly by using application programs. 

1.6 SARA the computer services center 

Since 1987 SARA supports au S/370 facility. During the years it was first expanded from a 3090-150 to a 3090-180 and 
in 1990 it was replaced by a huge 3090-600VF. The 6 processors were used to run VM, MVS and AIX concurrently. The 
project team selected the Virtual Machine (VM) operating system to become the BeursBase database server because it came 
with SQL/Data System installed. The MVS operating system did have DB2 installed, though this facility was not supported 
for general usage. During the development of the REXX-based Client/Server enviromnent it was found that the SQLiDS installed 
did not support a server mode. SARA didn’t want to invest in a higher SQL/DS level, as it had other plans. But first, the project 
teamdecidedtod~elop~~~necessmyClient/serverpro~~, aswillbediscussediuparagraph2. Withouta’true’Client/Server 
enviromnent the project team also decided to develop the first user applications on the VM host (with the IBM development 
environment Cross Systems Product). 

The fnstsigns of strategic movements were already disclosed in 1992 as the 30904OOVF (S/370) was replaced by a 9021-720 
(S/390). Developments accelerated in the fall of 1993 when SARA afl~lounced it would stop its VM service at the end of 
1995. First it reduced the 9021 to a 580 when it stopped the AIX service on this machine. SARA decided that the future role 
of AlX woukl become more important, therefore it adopted a new facility, a one of IBMs new developments: a AIX cluster 
of R!%OOO computers. ‘Ihe cluster installed consists of four 590s and three 980s each equipped with 1 Gb RAM and 6 to 10 

- Gb disk space. The reason why SARA adopted the new hardware is because it is relatively simple to add processing power 
- to the chrster. Qne simply adds one or more R!%OOOs. Another reason is that au AIX cluster supports ‘farming’, or distributed 

processing, which was highly necessary for the high performance computing services offered to the more technical faculties 
Chemistry and Physics. 

Though already in the final stage of development of the VM C/S enviromnent, the project team decided not to wait for more 
developments to come, but to test the REXX-based C/S environments’ flexibility immediately. Because the new AIX facility 
was provided with IBMs latest version of the DB2 database management system, DB2/6000, now a real C/S environment became 

_ .,an option. The project team decided to develop in parallel to the VM C/S envimmnent au AIX C/S environment in which DB2/6000 
would operate as a real database server. It was hoped for that REXXs flexibility would minimize the redevelopment effort. 

1.7 Keeping focus 

hrorder to avoid problems in diiussing the REXX-based C/S environments, the following commentary is necessary. First, 
not one but hvo REXX-based C/S enviromnents were developed. The VM C/S enviromnent is referred to as the ‘old’ C/S 
enviromnent, the AIX C/S enviromnent is referred to as the ‘new’ C/S environment. Secondly, the C/S enviromnents have two 
levels: a X.25 data link level (ASE-FEWEC) and a database level (F’EWEC-SARA). The C/S implementations have a common, 

. 

6 



i.e. fixed, X.25 data link (receiving ASE data). With respect to implementation, the area of interest in this paper is primarily 
the database level (see figure 2). The difference in implementation of the C/S enviromnents stems from the fact that DB2/6000 
(the AIX RDBMS) & and SQL/DS (version 2.2 of the VM RDBMS used) i& not a database server. Thus to establish a VM 
C/S enviromnent we needed to develop our own C/S enviromnent. From an application -and database perspective the VM C/S 
environment is not a genuine C/S environment because both applications, e.g. VUPOS, and database, i.e. BeursBase, reside 
at the host. This is in contrast with the AIX C/S enviromnent which fully supports client applications. Thirdly, both systems 
ate fully operational and perform well. Fourthly, with respect to design, development, and implementation issues both VM 

- C/S and AIX C/S implementations are discussed from developer and user views and from both technical and non-technical 
points of view. Fii after WPOS was implemented further application development for the VM C/S envhonment was stopped. 
Thus a discussion about future plans and strategy in this paper, refers to the AIX C/S environment. 

2 The design for a real-time Stock Exchange client/server environment 

2.1 Moving to a client/server environment: the first level 

Figure 3 The organizations involved and their systems. 

3 Client/Server environments 

- ~ 3.1 The Client/Server concept 

Figure 3 shows the ideal setup of the organizations involved 
and their systems. The ARTEMIS system of Beursdata is fed 
on a real-time basis by ASEs trading system TSA. FEWEC 

has to develop X.25- based communications, a local real-time 
data link, including a subsystem for temporary data storage. 
Also FEWEC has to adapt a C/S environment for data and 
information. Data received should be inserted in a database 
server (BeursBase); information should be retrieved by client 
applicationsfromthe host database. The C/S environment should 
be developed using open communication standards. 
For manageability reasons the REXX-based Stock Exchange 
C/S environment project is divided into the following sub- 
projects, see table 2. 

Since its introdt~$on, the concept of Client/Server has been discussed among a broad range of disciplines by a large number 
of people. Scientists, business professionals and many others have been vividly diiussing of what one should and should 
not include in the C/S concepts. As there are so many distinguishable perspectives as opinions, no full-proof C/S definition 
has been formulated, so far. This paragraph elaborates on our ideas of C/S, hereby avoiding great difficulties and long discussions 
in placing our C/S enviromnents into general C/S frameworks. 

. 

7 



3.2 The five Client/Server levels 

C/S can be viewed from both technical and non-technical perspectives. The C/S concept is limited to four aspects, namely, 
data, database, application programs and users. These four areas include both technical and non-technical perspectives. In 
general one can distinguish five C/S levels which are exemplified in figure 4. Every higher C/S level inherits lower level 
functionality. 
In the next paragraph fuS the general levels of C/S are discussed. Then table 2 is further explained by schemes of the architectures 

. of the two C/S enviromnents 

A) The X25 dabs link 

nble 2 An overview c 

(1) Relational database model 

(2) DBA manipulatmn, monitonng 
and authorization programs 

(1) data-SQL converter 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(2) BeumBaselink 

,........................................ 

(3) SQL statements exscuti 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(4) c/s monitormg program 

he projects and canponents of t he REXX-based C/S environments. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~......................................................................... 

‘Ilough applicatmn programs for database, not data, manipulation, database monitoring and authorization are necessary, 
the are out of the scope of tbu paper At the mmnent these applications are under develqnnwt and will be REX&b&. 

Before the data received can be stored into BsumBase, one has to remodel the data to the relational model defined. The 
Iimction ofthis progum is to create SQL DML statementn out of the data reoewed 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

An application tich provtdes the data and session link layers from the PS/Z to the database @sumBase) for SQL DML 
statements execution. In the VM C/S this fun&m is p&i&y implemented by a REXX FfP-bwed prognm In the AK 
C/S wviromnent Uus program m replaced by a C/S aoRware package named Client application Enabler/Z (CAB/Z). 

. . .._.____.............................................................................................................. 

This applicatim program emmtw the SQL DML statements ,,,to BarsBase, in both C/S e~,timmti. In the ‘old’ “M 
C/S the application runs at the VM host, in the ‘new’ C/S envmx,,nent ,t NM at the pc. 

__________.............................................................................................................. 

Like the X25 Monitor the ClientiSener Monitor infom,atio,, about the CIS and BsumBaoe stat,,a is ,,ecewxy Like the 
X25 environment the US environments should rm, continu,,,sly and autonamowly For the ‘old’ “M C/S m,v,ro,,ment the 
monitoI is alightly dl!Terent then for the ‘nL?x# Alx c/s environment. 

(A) A Client/Server data link. 
- If the database as well as user application programs reside on one computer system, one cannot speak of C/S. In our C/S 

enviromnents, the database residing on this computer system, is fed remotely with data. Therefore we argue that, from a data 
perspeotive, this is the most simple form of C/S. In gene& if one looks at the user, database or application program perspectives 
this is considered not to be C/S. The reader should keep in mind that all subsequent C/S levels discussed use this ‘C/S level’. 
As will be shown later, it is this data C/S level which distinguished the two C/S environments developed. 

(B) Application program clients - application program/database server level 
In the second C/S level siile computers of end-users ate the clients populated by several relatively small application programs. 
These application.program make use of a computer system acting as a database server. In addition, the remote host system 

. 

8 



is reachable by the end-user too, for larger applications programs, as the local computer system lacks performance and/or the 
communication line capacity is too small for large scale database I/O. Then, in that case the end-user computer system is used 
as a dumb terminal as both processing and database I/OS are executed at the remote server. 

(C) Application program clients - remote database server level 
The next higher level of C/S is when all applications are executed at the clients and the host purely acts as a database server. 
Thus advanced and complex processing is done at the client level. Three requirements have to be fulfiied. First, faster and 

- more complex client computers. secondly, a sophisticated communication infrastructure is necessary to cope with large scale 
database I/O and processing. Thirdly, the application programs developed are by far more complex than in the case of C/S 
level B . 

5 (4 

(Apps and Database Server) 
i : ,--I 

Figure 4 Five levels of Client/Server environments. 

_ ., (D) The distributed database level 
An even moE advanced C/S level is established when database processing is distriiuted and fully integrated in the C/S environment. 
In this case one has remote as well as local database servers co-operating in a C/S environment. The client computers system 
can be such a local database server as well. Thus it is not important where the data is stored and where the processing is done. 
At this level data is stored where it should, for example user specific data is stored as close as possible to the user. In addition, 
for performance reasons, the dtibuted database environment decides where to store application specific data. For performance 
reasons this can be as close as possible to end-users, to some extend introducing data redundancy, or as central as possible 
at a remote database server. Thus the distributed database environment decides where database processes can be handled at 
best. At this level client computers can act as application clients as well as local database servers simultaneously. At this C/S 

. 

9 



level due to limited client computer system performance (as high performance computing applications programs need) end-users 
are still able to use application programs directly at some host system, which acts as both database and application server. 

(E) The distributed application level 
The most sophisticated level of C/S is established when aside from the distributed database enviromnent, the application programs _ 
too am dishibuted among several clients and servers. Thus the C/S environment decides where to handle data as well as application 
program processing. For example I/O intensive database operations are executed at a specific database server , CPU intensive 

- calculations are executed on a sped& application programs server, small database operations are run on a local server (client) 
and the remainder of the application programs are executed on another client. In research nor in the business environment 
has the fifth C/S level been implemented yet. 

l.u summary, the FEWEC-SARA data link in both VM (SQL/DS) and AIX (DB2/6000) C/S environments is purely C/S level 
A. The AK C/S environment from an end-user and application programs perspective, is of C/S level B. Before discussing 
in greater detail the future plans and strategy with respect to the directions the AIX C/S enviromnent will move, the developments 
of the C/S environments so far, are further discussed. 

VM/CMS 

Figure 3 lhe VMLMY ClientlYerver enwronment. 

. 

10 



3.3 The VM-C/S environment 

Figure 5 shows the architecture of the VM C/S environment. The data flows diitinguished are explained briefly. The X.25 
data packets am received by X25READ (arrows up) and written to a file (arrow down to OW2). X25CONTROL checks this 
f& on validity (packets complete?), consistency (right sequence?) and completeness (all packets received so far?). If not the 
case retransmission of one or a range of data packets is requested (arrow down) and, when received (arrow up), written to 
a temporary file (arrow down). The temporary file appended to the first file. is written to a complete data packets ftle by 

_ X25CONTROL (arrows up and down). Reading the complete data packets file (arrow up), Cook decides which lines read 
have to be converted to BeursBase data model formats (SQL). Lines containing only a synchronizing timestamp, are not used 
directly as we will see later. Each SQL statement generated is put in a separate file (arrow down), pmceded by the parsed aebfoode, 
timestamp created and some C/S control parameters. Next, Upload sends new files (atrow up) to the host (arrow down) through 
aFTP connection (TCPIIP). At the host, the SQL statements executor, Set, sequentially reads received files (arrow up) and 
!irstcreatesaSQL statemmt based on the parameters (the aebfcode phts -) found at the fti line. The result of execution 
of this SQL DML (table SELECT) statement (our unique fcode) is combined with the SQL statement, comaining the actual 
SQL DML operation (table INSERT, UPDATE or DELETE), found in the file. This SQL statement is subsequently executed 
into BeursBase (arrow down). 

For a continuous autonomous environment, VM file management is quite different compared with other operating systems 
like UNlX, OS/2 and MS-DOS, a VM file limitation had to be overcome. In contrast with a hierarchical file structure used 
by most of the operating systems, VM uses a flat file structure. Files are stored with the format 4ilename, 1 to 8 characters> 
4% type, 1 to 8 character+ 4ile mode, 1 character plus 1 digit between 1 and 6> on a so-called virtual minidisk. Minidiiks 
are mapped onto physical storage devices (DASDs). To be used by a program a virtual minidisk has to be linked physically 
(by a CP LINK command) and has to be logically attached (by a CMS ACCESS command). VM allows multiple links, both 
in exclusive or shared read and/or write modes. Because links to minidisks are static links, file operations by one program 
are not ‘seen’ by another pmgmm. Thus, to establish a real-time VM C/S envimnment, Set has to refresh its link with the minidisk 
where Upload writes the SQL DML data files to. This is done every time Set does not fmd the next file in sequence (file type 
= number). To avoid the pmbabii that Set updates the link to the Upload minidisk continuously, Set pauses a few seconds 
when after relinking no new files are found. 
Every program mentioned writes a status file to be read by one of the two monitor programs, X.25 monitor and VM C/S monitor. 
To establish a C/S environment, the VM C/S monitor needs information about Sec. Since it cannot read directly the Set status 
file, it has to be frequently downloaded by Upload. In addition, Upload reads the Set status fLe frequently too, in order to 
determine succe&d exe&ion of SQL statements, and to delete corresponding files by issuing remote (FTP) deletes accordingly. 

3.4 The AM-C/S environment 
- . 

At a f& sight the architecture of the AIX C/S enviromnent shown in figure 6 is almost identical to its VM C/S counterpart. 
However, what seem ‘minor’ dii?emnces in design with respect to the VM C/S envimnment, results in tmmendous improvements. 
First, because a s&da&& C/S interface (Client Application EnablerI2) is applied, Upload is dropped. In addition, because 
Set executes the SQL DML statements from the PSI2 (client), no special file operations (minidiik link refresh) are needed. 
Thus, this C/S environment gives advantages from both control and integration perspectives. 
At the one hand, better control (e&&veness) because all status (ffie) information is directly available to the C/S monitor program, 
without necessary tricks. On the other hand, integration of functions is enhanced (efficiency) because programs involved run 
concurrently on one computer. 

11 



In &e next paragraph we discuss the C/S ar&itec~ in greater detail, especially with respect to REM and its interfaces used 
iu the C/S environment. 

F igure 6 The AIX Client/Server environment. 

4 REXX and the interfaces used in the VM and AIX C/S environments 

4.i Introduction 

The basis of this paper is to elaborate on the impressive role RFXX performed in development and implementation of the VM 
andAIxc/selWiWments.Inparticular,progr amming techniques, tips and tricks applied form the main subject for this paragraph. 

. 

12 



Basically, the answer on the question why REXX forms the core 
in the development of the VM and AIX C/S environment, is 
visualized in figure 7. This figure shows that REXX, compared 
to other programmin g languages and development enviromnents, 
is exceptional with regard to supported interfaces. True, REXX 
is not the exclusive language having so many different interfaces, 
in this respect for example is C of equal quality, though it’s the ease 

- of us which makes REXX unique. hr addition, the fact that REXX 
programs cab be both interpreted and compiled, makes REXX 
special. 
For each interface shown in figure 7 some general and REXX 
programming concepts applied are discussed. 
Unfortunately, to avoid lengthy discussions, only some glimpses 
are provided. Figure 7 REXX interfaces. 

4.2 REXX flexibility in C/S environments: designing for both performance and portability 

Our expe&nce is that REXX can be used very effectively in C/S development. One shot&l be aware of the programming power 
which comes with REXX. Like any language one can benefit tremendously if one is cautious about performance and flexibility. 
First, develop REXX programs as universaL i.e. system-independent as possible for portability reasons. Secondly, do not make 
use of operating system specific functions, unless there is no alternative available. Thirdly, code well-documented, though 
as compact as possible. This is especially true if one does not use compiled code. Fourthly, when necessary and if possible, 
test programs on different hardware as soon as one can. Don’t wait until there’s no way back. 

4.3 REXX and embedded SQL: the REXX-SQL Interface 

Aside from some exceptions, most of the administrative information systems in the economics discipline, especially in the 
business em&nmen~ are charac&ized by only a few fundamental functions. These comprise data storage, data manipulation 
and information retrieval and presentation. Siice its introduction as a general purpose query language, its popularity is growing. 
Nowadays use of SQL, an acronym for Structured Query Language, is widespread. For years now, SQL has a solid place 
in the FEWEC IS curricula. Its adoption in the C/S development was inevitable. 

The REXX-SQL programmin g interface is available for all IBM database management systems (SQL/D& and several DB2 
versions). Despite some minor differences the REXX SQL programmin g interface is implemented uniformly for all database 

_ ., management systems. The usage of the REXX-SQL progratnming interface in the C/S environment is explained by the following 
example. The example shows how SQL database manipulation language ( DML) statements are generated by au data-SQL 

converter, which we called Cook, aud how the are interpreted by Sec. 

Each line from the checked data packets file is examined by Cook. If Cook finds relevant data, it ‘woks’ the corresponding 
SQL DML statement, based on the specified action on the data line. Lines not of interest should not be converted into SQL 
DML statements, though there is one exception: Cook does not use lines wntaining control data consisting of synchronizing 
timestamp for the X.25 wmrection. However, lines containing ASE trade volumes data do not have a timestamp. In that specific 
case Cook uses the timestamp found in previous line processed, which sometimes contain such control data. 

. 

13 



1 lSS7ANFA36058NMC!OO360584 8104811 NM2 4040 55500 

3 864An~C22311~0000223113 220000 2 __ _ 

1 lS88AOFC37?50NI,QQOO5775P$ 19655 15 
2 783AMFA002Q8Nt00000030~7 8104824 m2 16040 
1 1889AHFA0092lVL0000009215 53104826 NLG2 6000 245136 
1 1896ANF~494~~0P06349488 30104826 Ia&2 16SO 975360 

a 1665~FL34948~QOOO3494~~ &04%?8 aId32 3,660 lPSO0 1690 103800 

Example la Small port ion of the checked data file. 
~ - 

The body of Cook is a huge four-level select, which corresponds with four alphanumeric characters found on positions 8 to 
11 of the parsed data line. The parse command, like select another powerful REXX feature, has been applied in Cook many 
times. This increase flexibility and maintainability significantly, in contrast with direct (static) usage of the BeursBase data 
definitions. The last line of example la shows the code ‘ANFA’, which stands for ‘ASE’, ‘Price’, ‘Stock’, ‘New’, meaning that 
atdheAms&h stock Exchange a  newprice for a  stock transaction has been established. Based on the ARTEMTS data 
dictionary Cook builds a SQL DML INSERT statement for the NOTERINGEN table (example lb). 

1995-02-20-16.39.13 0  00173 0  1  
INSERT INIY) V67CVPOS.NOElUN~N VALUES (:fix@ ‘199502-20-16.39.13’, 5, K’, ‘0: 99.9, W , ’ ‘, ’ ‘) 

Example lb SQL DML,: INSERT statement generated by Cook preceded by t imestamp, C/S control parameter 1, ASE fcode 
and C/S control parameter 2. 

The SQL DML statement is preceded by the ASE timestamp, a C/S control parameter, the ASE stock code (aebfwde), and 
a sewnd C/S wntrol parameter. Only the ASE parameters were found in the raw data file line, the other two parameters were 
added by Cook. In the SQL DML &atement the host variable :fcode is put in place of the ASE stock code, because the ASE 
stock wde is not unique over time. First Set parses the SQL DML statement from the file which is preceded by the creation 
t&stamp, a C/S wntrol parameter, the ASE stock wde (aebfwde), and a second C/S control parameter found in the raw data 
file. Then See generates a SQL DML statement to retrieve the unique FEWEC stock code using the ASE stock code and the 
creation timestamp (example lc). 

-. Example lc SQL Dh4L: SELECT statement generated by Set to search for the unique FEWEC fcode. 

The characters pmceding the SQL DML code are stripped away and the found FEWEC stock code is put in place of the host 
variable :fwde. Now this SQL DML statement is executed by Sec. 
Stocks are character&d by both a moment of introduction and a moment of extroduction. The majority of stocks once introduced 
exist pern~~~tly, however, there is always a possibility that a stock may be extroduced. Stocks can be extroduced for many 
reasons. In case of a management buy-out, a stock split or a bankruptcy of the ftrm, trade is ended, and sometimes a new stock 
will be introduced. In wntrast with stocks, bonds are always extroduced. ASEs policy is that after stock extroduction the stock 
code comes free and is re-usable. If one intends to store all stock prices ever listed, like in BeursBase, one has to introduce 

. 

14 



cummand = “SELECT MAX(fbde) FROM” Ins-Tabcl 
SQL.3 * ‘SQLGETNEW 
CALL prepares -_ _ 

Example Id SQL DML: SQL DML statement to retrieve the matiurn FEWEC fcode. - . 

- instead a unique stock code. Thus every time ASE introduces a new stock accompanied with their ‘unique’ ASE stock code 
(aebfcode), we have to map this stock code to a tim&rdependent one. A simple solution is to use the maximum FEWEC stock 
code found in the stock table, plus one (figure 1 c). For identification purposes and to keep track of all stocks, one needs to 
store both stock codes as well as both dates of introduction and extroduction. If stocks are still tradable their extroduction 
remains empty, in SQL we set the datavalue to NULL.The generated unique f&e is subsequently used in a SQL DMI, INSERT 
&atementtoaddthestockintroducedtothelNSTRUMENTEN table (example le). Identical to the SQL DML iusert statements 
update and delete SQL DML shtements are generated, except for the RWI’RUMENTEN (securities) table from which a delete 
is not allowed. 

Many additional remarks can be made, however, three essential are discussed First, it is never the case that a stock price precedes 
stock announcements. Thus the introduction of a new stock (or a renewed stock, for example, due to a stock split) happens 
always before new stock prices arrive and therefore there exists always a unique FEWEC stock code (the SQL statement generated 
is an INSERT into the stocks table). Secondly, official stock prices send can be modified or even withdrawn. Thirdly, if the 
X.25 connection is closed in the evening, a fmal file is generated. In contrast with the other files uploaded, this file does not 
contain a SQL DML statemen t but an ‘End-Of Day’ message. This way Set is notified that no more files will be send that day. 

FEWEC ‘unisue’ stock code 
ASE scpauity name. 
FEWEC set* type (bond, stock wm et cetera) 
ASEintMductiondtitO 
ASE errfrodwtkm date 

/* fS@XB3E *I Oftibia INanationsl Standard Idmtificcarion Number 
/* ‘4EEmmDE *I ASE stack code 

ntepac: “9 P IaNTI? */ tit-1 
-%alarkfc5de*,*, i* h4ARKT~CODE *I 
**m*wi@e*‘,“, 

h4iUkdwde(t&ihlmark*noMIffioialmarket, etoetenr) 
P NOIERING */ ClnTcnf price 

““*-+EPZ”, /* Vti~i%Ym7wG *I Ulhft&f&6?d 
um-@aJ.-:z PVAL~AI?xEKENING * Vahuapid 
*“‘kW@,“, P F@4l2s~SW~AIF *t ASE 
““Omzetcode”: “> /* OMZET_coDE *I AlilOUtltbradGdCDdC 

**-“‘,*. /* CI3ATUMl *t coupon date 1 (bonds) 
““&fual2”,*, /* CDATUM2 *I 

- . eenheid” ” . , i* EENHEJD */ 
~w-;~‘“d”’ 

“O,*, i* NOMINAAI, *I Nomirrcll vahtc 
“*f!nayp&‘“,*, P FONDSTYPE */ 
“mkWVW~,“, 

ASE kecuiity type @cad+ stock, wrmmf, et cetera) 
/* Y 

nmkWd6f~“‘,*, 
Definition 1 in official ASE trade newspaper 

f* *J 
‘*kymbol”:$ 

Definition 2 in of&ii1 ASF, tradct ~~~wspapet 
/* *I Symbol 

““‘knee”.*“, /* */ smalieat nlltn~ ofklkmMlent availabk? 
“~coopondate”,“, /* */ 
izlema~,“, f* *I ~~~ 
.-Ytlfmfkfaf!f”“, I* *I htW%t kM 
rn 1 

1 
Example le SQL DML: INSERT statement from Cook regenerated by Set with the unique l?EWEC fcode. 

15 



4.4 REXX and GUIs 

REm on IDM platforms doesn’t come with a sophisticated GUI. One reason one can think of lies in the diversity of systems, 
in terms of hardware and software to be supported. The GUI is the most hardware and s&ware, i.e. operating system, dependent 
of all software components. For example, mainframes support primarily text-based character terminals. Personal computers 
work with the OS/2 GUI known as the Presentation Manager. AIX based RS6OOOs use the widely accepted UNIX GUI Xwindows 
extended with OS/F Motif. Then making it even more complex some GUIs are supported on multiple operating systems for 

- inmnce Xwindows is supported at the PS/2, the R!ZOOO, the S/390 and SP families. Finally other hardware manufacturers 
have adopted REXX onto their systems like SUN (Spam), Hewlett Packard (HP xxxx) and Commodore (Amiga), for instance. 
IBMs strategy not to support a platforms wide REXX GUI is the only choice. 
Thus for software (especially progr amming and development tools) manufacturers specializing merely one or two platforms 
REXX-supported GUIs can be profitable market. For PS&s there are two REXX-based GUIs available. At the one hand there 
is VX-REXX marketed by W&m, and Viiro REXX marketed by VisPro. The first REXX GUI FEWEC acquainted with, 
VX-REXX, was bought. Not to undervalue VisPro-REXX, FEWECs choice was not a poor one. 

4.5 REXX and TCP/IP: REXX FTP API 

In the VM C/S environment the REXX-FTP interface plays an vital role. Without this interface the quasi C/S enviromnent 
could not be established with REn. The REXX-FTP intetface, written by several IBM employees, became available as &ewam, 
sdd-on product of TCP/lP for OS/2, in 1993. The fnst author of this paper was first acquainted with this product in June 1994. 
After solvii in&l&ion and operation problems we acknowledgement several persons in the REXX and TCP/lP community, 
as the @XX-FTP interl&e now works excellent. As au elaboration on section 3.3, our utilization of the REXX-FTP interface 
is discussed next. 
At the PS/2 Cook reads the file containing the X.25 received data packets. Other lines with data packets with synchronizing 
t&stamps for the X.25 connection, are only processed for these timestamps. Cook converts each relevant line into a SQL 
DML &atement and subsequently writes it to a OS/2 HPFS file with a naming convention of wdd.#>, where # stands 

- for a sequence number. When started Upload starts an FTP session with the VM host via the REXX-FTP interface with the 
~Itpuserftmction.The core of Upload is a loop in which several actions are programmed. Upload pauses until new files have 

been ‘cooked’ (Cook), then uploads them individually to the host using the ftpput function. If successful uploaded, Upload 
deletes the local file. Another action within the Upload loop is the frequently download of the Set status file using the ftpget 
function (table 3). The download frequency is set based on a fIxed number of uploads. Every day the FTP come&on is closed 
using the @close function and Upload is ended. Early next day Upload is started again by the VM C/S Monitor. Cook (packets 
processed) pauses when the Upload (packets uploaded) delay exceeds a certain threshold (200 files). This is necessary because 
the number of files in a local directory is negatively correlated to Uploads speed. Analogous to local file deletion Upload frequently 

_ ., erases mmote files, successfully executed by Set, using the ftpdelete function. For the VM C/S Monitor, Upload frequently 
writes its operational status to a local file (table 3). 

16 



x PVC.raw’ all data pack& received, but not checked on con%istewy, validity OI squenoe; 
. . . . . . . . ..-....................................................................................................................................................................... 

xx HERTRANSbnp a but%. for the retxa,w,,rned da packsts; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................... 

CHECKED.raw- the complete checked set of data packets SO far, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......................................................... 

CHECKED.statw 

I 

a status fde including tiwmatia, about the PVC8 (number of retrawni&ons, total nmnber pa PVC) and the CHECKED.mw file ot%et 
wiuch happens to be the same an its tile&~). This information tm IS displayed m  the X25 monitor 

. . . . . . .._.............................. . . . . . . . . . . . . . .._._....................................................................................................................... 

yyyymmdd.CHECKED at I l .W,,m the CHECKEDraw file u renamed with the CuIIwt date at the bqii Of the t ibmame. 

ClWk” 

Cook.stahu a status file cmtab,i,,g information about Cook to be displayed in the C/S mtitoq 
.._._._______..................................................................................................................................................................... 

yyyymmdd.#” way SQL DML statement ,w&ter, to a tile startiq with the date and ended by a nequence number (#) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................... 

yyyymmdd.#S-’ ntop file 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................... 

yyyymmdd.Cook.L,,g Dependent on the loglevel chow, every relevant operation (reading CHECKED.mw, creafing a SQL DML, f&g the SQL DML) is 
logged Into thin fde. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................... 

yyyymmdd.Cook.Stahrs all infmatim needed for the C/S mautor thu file 

. . . . . . . . . . . . . . . . . . . . ..-.................................................................................................................. 

yyyymmdd.Upload.St 

VM yyyymmdd.Log 
Ax yyyymmdd.Sec.Log 

every SQL DML statement fde read and executed (SQLCA) ia mitten to this ffie 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................ 

Vhf: yyyymmdd.Statw 

‘Lnble 5 Some t~lmames used by the X.25 data lmk pmgrams. 

‘>*’ ad ‘** mean fhaf the files referred to are used as input for the particular program 

4.6 R&X and X.25 

Although it was not used in the development of the C/S environments, the X.25 interface to the OS/2 Communications Manager 
(CM.0) is a good example of the importance of REXX in communications. The CM.12 X.25 iuterface is provided for a variety 

_ .,of programming languages such as C, COBOL, FORTRAN, Assembler and REXX. The main reason not to use REXX for 
X.25 based communications is in order to control the X.25 data link in terms of priority scheduling and multithreading and 
to secure application performance, one would be better of with C. As will be discussed later in this paper, action is taken to 
take a more detailed look to port the C-based X.25 programs to REXX. 

4;7 REXX and file handling 

From maintaiuability and &&lity perspectives it is wise to develop REXX programs using High Performance File System 
(HPFS). HPFS, which comes standard with OS/2, should be preferred over the 8.3 character Jim&ion of the DOS Fii Allocation 
Table fh system @AT). In our m-based programs we benefitted from the HPFS fm which allows using long fi lenames . 

17 

34 



which can be as 255 char@ers long. In table 3 the most important f&names used in the X.25 data link are shown. In the development 
of the C/S environments several advantages of using HF’FS over FAT were exploited. 
First, if a system crash occurs IIPFS file are almost always recovered. Secondly, it is preferable to use semantically sound 
filenames. With the 8.3 character FAT limitation it is impossible to name files approlniately. 

4.8 REXX and C programming 

- In the development of the C/S environments, like REXX, C plays an important role too. As discussed earlier, C was used to 
develop the specilic X.25 programs. In addition, some general unctions, implemented with C, were developed for C/S simulation 
aud to overcome some REXX limitations. One of these general C-functions, xread. was to overcome the REXX fde-sharing 
limitation. REXX programs have to fmd external functions in a so-called Dynamic Link Library, or DLL. Such a DLL has 
to be developed and compiled by C. 
This paragraph is concluded with table 4 listhrg the major hardware and software components used in the development of 
the C/S environments. In summary, at the one hand REXX was partially used to develop some of the components required 
for a C/S enviromuent (Cook, Upload, Set), On the other hand, for those components not developed with REXX (X25READ, 
X25CONTROL, external functions), REXX was the ‘glue’ to integrate these components (X.25 and C/S Monitors) with the 
REXX-based components. This paragraph focussed on more technical aspects of the C/S environments developed, especially 
the role of REXX within the C/S environment. 

RDBMS 

climltlservsr application 

Table 4 The sofhvare packages us 

C-X25 Al’1 (CM/Z) 

- VisualGen (4 GL) 

design of the C/S environments. 

Once established a C/S environmem one can develop a broad range of user and system application programs using BeursBase. 
The next paragraph, using section 4.4 (REXX and GUIs) as a starting point, diiusses the value of REXX for application 
development, We will elaborate on important aspects of information visualization, templates and object-orientation using 
REXX. The following applications are discussed: system applications (the X.25, VM C/S and AIX C/S monitors) and user 
area applications like the AIX version of VUPOS. 

. 

18 



5 REXX User programs for the C/S environments 

5.1 Database connectivity 

In the AIX C/S enviromnent, C/S concepts used ate much more sophisticated. For instance, applications at the client, preferably - . 
GUI-based, are able to show more infotmation about the C/S environment. In this way a user can be more actively involved. 
Fii 8a shows an object with user and database information. Depemhng on the authorization level a user is or is not allowed 

_ to modify the information displayed. The object in figure 8a is retrieved through object 8b, by a click on the Wijz’ pushbutton. 
If the user is not allowed to do so, the pushbutton is set to not-clickable and its color is changed. If the information displayed 
is correct or modified, the user can click on pushbutton ‘Con.’ to establish a connection. In the case of a simple end-user an 
auto-comrect is pursued. Status inhormation about the necessary REXX DLLs as well as status information about the database 
correction. 

5.2 Object Orientation and REXX 

Figures 9a thru 9c exemplify a way how to define and use objects in VX-REXX. Figure 9a shows the complex object which 
umsists of a listbox and four entry fields. The object used to display tabular or graphical information is showed after activating 
the ‘Genereer grafiek’ pushbutton in figure 8b. At fust the object is shown as in figure 8a. Then, based on the user selection 
from the listbox., one or more properties are changed by message passing. If the user selects ‘Real-time’, no addinal information 
is neozsary to show the tabular of graphical information requested, because the system date can be used. In contrast. if ‘Meerdere 
dagen’ (= more thau one day) is selected, begin and end date are required. Also if Meerdere dagdelen’ is selected begin and 
end timeis required too. Using a GUI this way keeps the user’s eye focussed onto the display and does not provide the user 
irrelevant information. 

Figure 8a Database connect infor- 
mation. 

.,.,,,,,,,.,,,~ ___ ^,..,.,.,.,: ..,_ ^i^,;;.*^ ,..-...,.,... )_ ..,.......,....... ^..:...^^...,..A,~ ..,.,.,.......,. _  . . . . . . . . ^..^.i ,,,.,,.,...,...,.. _  . ^,_ ..,.. i  ..,.,._,,,,,,,,,...,., I.. ..- .-.. :,.-i .,.,., L-,1. ,“._,“. .,.,.. ^. .^....A ,.., ;,..;,.“r . . . . . . . . i  .,...,.,.,,,.,. 

Figure 8b Object with database connect/status information. 

. 

19 



meerbere dagen 
meerdere dagdelen . . 
1 dagdeel 
1 dag 

Figure 9a Object with hidden entry 
fields. 

1 dag 

Figure 9b Object with all entry fields Figure 9c Object with some entry fields 
shown. shown. 

5.3 Developing general parts and templates 

A sophisticated way of programming is the use of objects in 
the form of templates. Object orientation facilitates the use of 
generalpartsortemplates. Anexampleofageneralpartis shown 
in figure 10. This object is especially useful for debugging. 
Every SQL statement parsed is checked on its SQLCA. If the 
SQLCA is not equal to 0 (success) or 100 (no more rows 
certified the conditions specified), further program execution 
stops and the SQLCA object is displayed. 
An earlier example of a general part was already discussed. 
Figure 8a, the object for displaying database information, is 
used in every application developed so far. 

5.4 GUI design and usage: monitoring 

The X.25 monitor 
A monitor should be kept simple and should give direct i- 
nformation. The X.25 monitor, developed for control of the 
X.25 data link displays all the information necessary. Informa- 
tion includes the # of packets received, retransmitted, aud Figure 1U Object for presentation of SQL Communication Area 

the # of retransmissions per logical circuit (PVC group). 
Descriptor. 

. 

20 



In addition vital program information is provided. Finally the 
sizes of the input (unchecked) and output (checked) files, where 
the raw data (packets) are stored, is displayed. 
Several features are added to the monitor. First, to be certain 
the screen update process does not consume too much time, a 
timer event updates the screen periodically. The time period can 
be set between 10 and 60 seconds in steps of 10 seconds. If au 
immedii screen update is required, one simply clicks the update 
pushbutton. 

The AIX C/S monitor 
Like the X.25 monitor the AIX C/S monitor provides direct 
information about the underlying C/S processes. As the AIX C/S 
environment supports full C/S, all the processing and programs 
can be run at the client. Information about the various stages of 
processing and programs is displayed. In contrast with the user 
applications the database information is integrated in the monitor 
window. The reason is to have all the information displayed in 
just one screen. 

Figure 11 The X.25 data link monitor. 

The X.25 and C/S monitors are design to be displayed simultaneously 
- The information of two monitors, X.25 and AIX C/S are integrates 

as follows: the di&rence between the number of received data packet 
(X.25) and the packets cooked (ALX C/S) is the first packets delay 
ThepacketscookedmeansthenumberofSQLDMLstatementscreated 
The ditference between this number and the packets executed (AD 
C/S) gives the second delay. 

The VM C/S monitor 
_ ..Notice that the VM C/S monitor is very different from its AIX Cl:! 

cmnteqmrt. Since the VM C/S environment is user written, information 
about the underlying program (upload) is displayed. The information 
of two monitors, X.25 and Vh4 C/S are integrated as follows: th< 
diEerence between the number of received data packets (X.25) auc 
tie packets cooked (VM C/S) is the first packets delay. The packet 
cooked means the amount of SQL DML statements (files) created 
The difference between this number aud the packets uploaded (VIv 
C/S) results in the second delay. 

. 
Figure 12 The AIX C/S monitor. 

21 

383 



_ Figure 13 A full screen display of both the X.25 monitor (left) and the VM C/S monitor (right). 

Finally, the difference between the packets uploaded (Vh4 C/S) and packets executed (VM C/S) gives the third delay. In figure 
13 both the X.25 monitor and VM C/S monitor are displayed. 

5.5 Other graphical user-interface features 

One of the issues that was ignored for a relatively long time, because the development of the C/S environments did have so 
- many in&resting research, design, implementation and usage issues that the project team almost forgot about a neat menu structure. 

Application of the menu structure is simple because much of the preparation for it has already been done. First, the framework 
for application development was designed long before. secondly, database control and maintenance can be welldefmed Thirdly, 
every application program is chara&uized by some general fimctions which can easily be specified. Fourthly, the information 
generated can be visualized in a limited number of formats: on the computer display, on paper and on magnetic and optical 
mkdia. Ihe general menu structure to be designed should be a shell in which every application developed can have a place. 
‘l’hen based on user and program authorizauon users can or cannot select the specific application program. The general purpose 
menu structure is shown in figure 14. 

22 



5.6 VX-REXX specific objects 

Of the many special objects, the timer object is a very convenient one, especially if one designs aud implements autonomous 
monitors. For control purposes, one has to have feedback frequently, and if necessary one has to maintain the C/S environment 
dym&Aly. Using timer objects one can frequently poll the enviromnent (exception management) and retrieve information 

(status files) to be displayed. 

6 Future strategy of the C/S environments 

6.1 Extending the matrix framework with (REXX) application programs 

- ~ Figure 14 The BeursBase application program shell or the general menu structure of the BeursBase application programs. 

VUPOS itself being poti from the mair&me to the personal computer. In contrast with the Cross Systems Product mainframe 
version, the personal computer version, implemented in VX-REXX is provided with a graphical interface. Compared with 
mainframegrsphicsusingGDDM(CSP-ADMCHARTinterface)graphicaluserinterfsceismuchmoresophisticated. 
Though the most important advantage using a GUI painter is the signiticant reduction of development time. Especially for 
students it isvay conveuieut to be able to generate usable output in a shurt time. In figure 15 an example of a simple XY-chart 
ishown.ThisXYchaadisplaysstockpricedevel~ton~~~~ 1Wofthalargestm~oftheNetherlands 
at the Amstehm Stock Exchange known as ‘Konink&ke Nederhndre Pebvkum iLha&chapp~ or ‘Royal Dutch’. To the general 

. 

23 



public the mukinational is known as Shell. A minimum of additional information is provided, like ASEs trading periud ((9.3Oam 
to 4.3Opm), the number of transactions found (159) and both maximum (188.60) and minimum (190.70) prices of the day. 
It still is an art and a science area to buikl good infomration displays. It is simple to expand the above example to a chart which 
shows, for example, the development of the portfolio of a user over a longer period bf time. 

I- KON NED PETR MY 1 
I I 

I 1 I I I 1 I I I I , I I I 
t I I t , I 

191 ------------i -----------; -----_______ ;--- _______: 
t 

,-----------:------------I r-----------:------------ 
I I . . . . . . . . . . . . . . . . . . . . ' 

,/7 De grafiek wardt samengesteld i i 

190 

189 

, I I I 
9 10 Ii 12 13 14 15 16 17 

Tijd (in uren) k 

Figure 15 Example of a VLPOS screen. 

6.2 Designing user (DBA) programs for database monitoring and control 
-. 

Asthemrmberofusersis maeasing rapidly as well as the set of user application programs, the need for &u&o1 and maintenauce 
structures emerges. Though kept in mind this was set at a low priority. The following kinds of control are desired: 

Authorization control: users and application programs 
‘lhere are several possibiities of how to deal with multiple users and multiple programs. First, in C/S environments authorization 
can be placed at the user level. In this case every user obtains a userid. For maintenance purposes not very attractive, since 
it entails much administration (users) and a lot of authorization (programs). Secondly, as au alternative authotiation can be 
placed at the program level. In that case every program is provided with a userid, or better, program id. Now administration 

. 

24 



is reduced and authorization is simplified tremendously. It should be clear that in this situation program users do not have 
ditect access to the database directly. In practice, a combination of userids and program ids is used. This requires sophisticated 
control. Up to now this has been done manually. An appropriate tool is under development. 

Database control: database performance and tuning 
- BeursBase grows on a real-time basis. At the one hand Exchange data is inserted continuously, and at the other hand users 

and user programs add data as well. The largest tables in BeursBase contain hunderds of thousands of tuples and will rapidly 
- grow up to tens of millions. It is not the physical size of the data that limits database operations, the gigabytes range will not 

be reached for years, but the performance aud optimization issues. Reorganizing dbspaces, tables and indexes form a burden 
on database operations aud database efficiency. This makes BeursBase so interesting for IS research. Therefore developments 
for several applications for performance measurement and database tuning have been taken. 

Database maintenance 
Usually database management systems are not provided with user friendly maintenance programs. Especially for BeursBase, 
database maintenance issnes ate of vital importance. Though there are lots of ideas on this topic, the have not yet been implemented 
in practice. 

6.3 Improving the X.25 data link 

A point of weakness in the BeursBase 
project remains the X.25 data link, 
becaweonly one single communication 
is in use. In order to minimize the risk 
of data loss a secondary X.25 data link 
is necessary. Figure 16 shows the ideal 
implementation. Because ASE has two 

_ separate PTT Telecom (the national 
telecom operator) nodes. Therefore 
FEWEC can be provided with two 
separate X.25 links. Although the 
SARA liuk is implemented with a single 
line, no data will be lost when this 
commuui&ion line is goes down. For 
ahnost 100 percent reliable X.25 data 

-. link with the ASE, the following ac- 
tions have to be taken. 

Figure 16 Two independent X.25 environments. 

q Configuration of a shadow or backup X.25 connection, consisting of: 
0 a second PSI2 with au X.25 Coprocessor expansion card; 

- q a second ASE cxmwndn link, physically indgendent from the fust one. This means that this X.25 link uses 
different nodes. At the ASE multiple independent nodes are available (Figure 16); 

cl between FEWEC and the ASE, a second 19.2 Kbps PTT leased line; 
q An uninterruptable power supply (UPS) for the two X.25 PS/2s; 

. 

25 

317 



q AREXX-basedcontrolstnlcture,as~~onFEWEC~~willheinstalledonbothX.25PS~.Thisintelligentmechanism, 
a two PS/2s based monitoring system, should take appropriate action if one or more connections are lost; 

[7 A hardware me&msm will be constructed to be able to cold-boot the PSI2 remotely. If the responsible system operator 
is not at FEWEC she shot&l be able to reboot the system by a remote connection. (If one cannot tehret to the PS/2, it should 
be possible by connection via one of the FEWEC servers). Using a cold-boot procedure sufIices, as the systems can start 
necessary processes automatically. 

In the fast half year of 1995 these investments are planned. In addition, several application programs are needed to create 
autonomous control between X.25 PS/2s and the FEWEC LAN servers. Two identical REXX-based programs, running at 
both X.25 PS/2s, have to check each other operations (file sizes and contents of the status files). If needed the C/S data link 
to BeursBase has to be changed, from one PSI2 to the other, without any delay and appropriate action has to be taken to get 
both PSl2s in operation again. Another program, residing at the FEWEC LAN server to check frequently if both X.25 PSI2 
are running. Again, if some exception is found, appropriate action has to be taken. If, for some reason, one or more systems 
do not response, say within 15 minutes or so, FEWECs computer support staff is notitied by email or screen messages. 

6.4 Moving to the third and higher Client/Server levels 

Eventually the AIX C/S environment has to move to the third, fourth and even fifth C/S level. Why? During the development 
procems of our C/S environments we encountered mauy performauce problems. The larger tables where used by many programs 
and even more users concurrently. At the same time these tables are maintained (inserted, updated, deleted) on a real-time 
basis, resulting in many (dead) lock situations. 

h- I I I I ) 

Looking over and over at the data, it was decided to split them 
into several time categories, based on their anticipated usage 
(figure 17). The fast category, real-time (today’s) data is stored 
in a separate table, as this data has the highest priority. The 
second category, this years data, is accumulated into a second 
table. This data too is used very frequently (its size spans 
obviously maximally a year). The third category contains data 
from yesterday to a year before. The fourth and last category 
is historical data and is actualized to the end of last year. For 
performance reasons the last two tables are stored in dbspaces 
without leaving space free and records are stored by stock by 
timestamp. The first two tables are stored in dbspaces with small Figure 17 Data separated into time categories. 

_ ..data and index buffers. Every night except for the weekend, 
the following batch processing is done: the today table is emptied in this year’s table, also, at the end of December the last year 
table is emptied into the history table. A more intelligent solution would be a dynamically calculated optimal database performance 
with a minimum of data redundancy. Such an system area application program will be developed this year. 

Moving to the third Client/Server level 
Now for the C/S aspects one can imagine that the small real-time data table (today) used at a local database server would be 
significantly faster than a host database. So the next phase in the development of the AIX C/S environment is to establish a 
local database setver for real-time data @&Is DB2/2 for OS/2?). This will increase both application and database performance 

26 



for user applications like WPOS tremendously. In rukiition, a local database server is more suitably equipped to support batch 
processing with the large database server as remote host. 

Moving&Further to the fourth andjjih Client’Server levels 
The third C/S level is relatively simple to reach, though should thoughtfully be implemented. User applications which need _ 
data for processing which is not available at the local server have to send requests to the remote database server. At least two 
problems, i.e. bottle necks are obvious: first if the amount of data is relatively large, database I/O is heavy and all data requested 

- has to be send over the communication line which consumes much time. Secondly, local client processing is, compared to 
an AIX or VM host, though cheaper relatively slow. To overcome these bottlenecks, for some user applications it would be 
interestrug to split up applications in several modules. Then these modules can be distributed across several systems, based 
on the CPU and database performance nxpid. For example the portfolio simulation WPOS or a technical analysis application 
has au econometrics/su&ical feature which calculates several stock performance indicators over a certain time period (from 
actual real-time to historical data). Partial@, the indicators requested are calculated at the client using the local database server 
(real-time) data, partially the indicators are calculated at the host using the host database server (historical) data. Finally the 
client program uses some algorithm to gh~ the partial outcomes into meaningful information. Even if the host requires real-time 
data (which is stored at the local database server) in total the results are generated much faster compared to the alternative in 
which the client does all the processing. Clearly this is another interesting area for research and education. The fourth and fifth 
C/S levels are within reach, though it will take at least two years before users can benefit from these ideas. 

6.5 Speeding up REM programs More extensive utilization of REXX compilers 

Much can be written on the subject of RJ%X in terms of interpretation versus compilation. For the most part in the development 
of the C/S environments REXX is used by interpretation, except for some application programs which have been written in 
VX-REXX. At the point where speed is of primal importance, up to this moment the choice has been for programming in C. 
Using C as programming language implies using compiled programs. The main reasons for this choice are the flexibility of 
C, the clear X.25-C interface as well as the robustness and performauce of C programs once they are compiled into executable 

_ code. An advantage in C too is the easiness with which multithreaded high priority programs can be developed. In addition 
there was no experience with the combination of X.25 aud REXX or with REXX compilers which can generate fast executable 
code. 
For manageabiity and maintenance reasons it would be wise to move from C to REXX. Currently research is conducted to 
take this step forward. Moving from C to REXX is necessary because the experience with C programming is and should be 
limited at FEWEC. The higher the progr amming, or more appropriate development, level the better. Thus one of the major 
concerns is to make more extensively use of REXX under the constraints that X.25 support, priority scheduling and compiling 
are supported and easy to implement. 

-. 
6.6 Sophisticated application programs: a World Wide Web future? 

Though a detailed discussion about user applications should not be included in this paper, one serious idea is worth mentioning, 
namely a portfolio simulation accessible through World Wide Web. As already discussed, the VUPOS portfolio simulation 
is being redesigned for the AlX C/S environment. This application will be used for all the user areas defined by several of 
the identied disciplines. For several reasons is the usage of VUPOS restricted to FEWEC members and students. First the 
application is relatively complex and one has to have detailed knowledge of the underlyii pmozses. For students of economics 
and FEWEC members this should be no problem. If FEWEC intends to use VUPOS as a public relations tool and make it 

. 

27 



available to others for example high schools or other interesting populations, this will cause several difliculties. First, as said 
WPOS is a complex program. !&cond.ly, it takes several screens to manage ones portfolio. Thirdly, processing is done interactively 
which makes very large to huge scale application very costly and performance dramatically slow. Fourthly, a high-end OS/2 

~- computer is highly recommended. Such systems are not so widespread in use. 

Based on the rapid adoption of Internet, granted by the development of global information systems like World Wide Web, 
it is ma&tic to con&de that high schools and other interesting populations are able to comect to h&met without having to 

- pay iusutmountable costs. Thus a reahstic altemative would be a stripped version of WPOS, reduced to three to five screens, 
supporting batch processing once or twice every day. This simplified or stripped version of WPOS should be provided with 
a World Wiie Web in&f=. h&a&d at the FEWEC WWW server anyone, or if FEWEC so wishes, a selected audience will 
be able to use the program in, for example, a large stock investment competition. The investment results of the competition 
as well as the system usage itself can be input for research and education. 
Anyway FEWEC is currently developing in cooperation with the ASE a WWW service which includes a real-time graphical 
display of the AEX, the index of both Exchanges in The Netherlands. We consider this as a first step towards an Internet based 
simulation, because this WWW facility will be used to research several interfaces, forms and displays for such a simulation. 

6.7 Comparative application development 

Once one has an AlX C/S environment as described in this paper, it is very intemstmg to examine and compare various development 
envimnments ate available for C/S application development. Today numerous development enviromnents available. This year 
we will use for example APL2/2 and Viige (both JBM), and CASE enviromnents like ADW from KnowledgeWare and 
IEF from Texas Instruments/James Martin. Probably programmin g languages like C, C+t, Smalltalk (via VisualAge) and 
COBOL will be tested too with respect to the tradeoff (compared to the 4GL development enviromnents) between an increased 
development time and run-time performance. 

_ 7 General conclusions and recommendations 

7.1 Advantages of using REXX in a Client/Server environment 

The project team of FEWEC conchtdes3 based on the experiences so far, that the REXX programming language is, in particular 
in combination with the interfaces discussed in this paper, suited to develop not only C/S programs but a C/S environment 
itselftoo. Even without having much experience in devebping C/S environments implementing a REXX-based C/S was relatively 
simple. The project team benefitted from REXXs flexibility and portability as an AIX C/S environment was easily developed 

-. using code from the VM C/S environment. 
Especially in the design and implementation stages it is advantageous to have an interpreted language in stead of having to 
compile code every time changes have been made to it. Finally, it has been proved that REXX user application programs can 
be gorgeous from the outside, efficient from within and effectively fast in general without being to complex. This can hardly 
be said of programs developed in for example C or C+t. Therefore in the IS curricuhrm of FEWEC REXX is preferred over 
C or C-i-t. 

28 



7.2 Problems using REXX in a Client/Server environment 

To temper the over enthusiastic mood of the project team, some problems or vague issues have to be dealt with too. Most of 
the problems encountered are probably heard before, but one cannot overemphasize their importance. Some REXX interfaces 
lack sufficient documentation, examples and example code. In the view of the project team every time the interface is used, _ 
the wheel is re-invented. Though there are for example many good REXX books available, most of them don’t go beyond 
the intiuctory level. Also, voluminous manuals are not necessarily of high quality. Especially the REXX FTP, REXX SQL 

- and REXX X.25 interfaces can gain popularity when documentation is extended. 

Secondly, problems occur when one needs to share fues between REXX programs in OS/2. Files in OS/2 REXX are used 
exclusively thus they cannot be shared among application programs. A solution was found in developing a C-based DLL function, 
as we found that it was possiile to share the file this way. Using the C-function, OS/2 still results in DOS read errors, although 
it works fine. If one lacks the specific experience of writing DLLs, it is a burden to find out how things are being done. Ideally, 
a REXX compiler shot&l be equipped with a tool enabling developer (student), without low-level progmmming, to put functions 
to be shared in a DLL. 

Thirdly, more effort shot&l be put in REXX benchmarking and tool evaluation. The project team encountered difficulties in 
choosing the ‘right’ REXX development tool and interface. Not usage of a REXX development was the problem, but which 
environment should be used. Fortunately, talking in hindsight acceptable choices were made. Fourthly, sharing information 
using status files is not the most sophisticated way of communication. However, no neat alternative was available. Especially 
the issue of file corruption and system crashes makes the usage of files in interprogram communication volatile. 

7.3 Overall conclusions 

During the last two years development of the VM and AIX C/S enviromnents was successful. Both systems are operational 
and future plaus aud strategy promise to generate amassively used AIX C/S enviromnent, high quality applications and a sound 

- scientilic environment for research, educational and public relation purposes. Though the power of REXX has heady been 
proved iu the cunent environment, as the AIX C/S environment moves further towards higher levels of C/S, REXXs position 
as an advanced C/S development language and environment shall be indisputable. 

7.4 Recommendations 

Fin~,basedontheREXXexperiences,theprojectteamcomeswithafewpracticalrecommendatioasfordevelopers,manufacturers 
and users as well, First, everyone wants better application performance. Though some other issues are of equal importance. 

_ . One of the severe limitations of OS/2 REXX is that files camtot be shared among application programs. Working around the 
problem is not the preferred solution. In au advanced envitonment as 092, file sharing between OS/2 REXX application programs 
cannot be missed. Secondly, REXX still lacks some sophisticated interface toolboxes, especially for general and C/S specific 
monitoring. Thirdly, however fully accepted in CASE development, REXX code reusability, re-engineering and a central 
repository. are far from reality. This definitely has to change if REXX is to be used in large scale application development, 
Fourthly, the basis for REXX-based GUIs has been set a few years ago, REXX development tools can be extended with more 
specific and more appropriate GUI features. Finally, as a fifth recommendation one should develop more detailed REXX 
programming handbooks with realistic examples. 

29 



8 References 

[ASE94] Amsterdam Stock Exchange ( 1994)Jmsterdam Be&Time M&et Inforndon System @iRTEMIS): user mun@ 
version 3.0 (in Dutch), Beursdata B.V., Amsterdam. 

puys93] Buys, E.0 (1992), TRANSPA:Ttihe Ned Gener&n (in dutch), Graduation project, Free Univeristy, Amsterdam 
[Cowl84] Cowlishaw, M. (1984), The &sign of the REXYLunguuge, IBM Systems Journal, vol. 23, no. 4, pp. 326-335, 

IBM, New Jersey. 
I [Cowl90] Cowlishaw, M. (1990), The REXX Language, 2nd edition, Prentice Hall International, Englewood Cliffs, New 

Jersey. 
pate921 Date, C.J. (1992), An in&&c&n to Database Swims, vohune I, 6th edition, Addison-Wesley Publishing Company, 

Reading, Massachusetts. 
@%wi85] Davis G.B., M.H. Olsen (1985), Munugement Znformaikm Systems, McGraw-Hill Book Company, New York. 
peit90] Deitel H. (1990), @e&q Sj&ms, 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts. 
[Deit92] Deitel, H., MS. Kogau (1992), 27re &r&n of Os/2, Addison-Wesley Publishing Company, Reading, Massachusetts. 
[Enge95] Engel, J.P. ( 1995)JRTMS: the Amsterdam StockExchange andelectronic information services (m dutch), &&ation 

project, Vrije Universiteit, Amsterdam. 
[Germ941 H. Germau (1994). The REXhandbook: BASZCS, APPLIC4 TIONS and TIPS, Van Nostrand Reinhold, New 

York. 
[Gtise95] G&s, L.W M. (1995), BeursBuseproject: operation’s munud (m dutch, in preparation), Free University, Am&?&m. 
@om90] Home, J.C. Vau (1990), F%wu&lMiuuzgement and Policy, 8th edition, Prentice Hall International, Englewood 

Cliffs, New Jersey. 
PM921 IBM (1992), mj&rrn produd Interpreter SQUDa& Sj&m Interjii, program d&+pti&oper&ns manual, 

New York. 
PM931 IBM (1993), 092 RJZXY: From Burk to I$&, IBM International Technical Support Centers, Boca Raton Center. 
Bl3M94] IBM (1994), Ci%ntAppkdkm Enubkr/2! User’s Guide version 1.2, IBM Canada Ltd. Laboratory: Information 

Development, North York, Ontario. 
@4iss94a] Mkseyer, M.P. (1994) From Stockd& to real-time Exchunge Inform&m, in: Landelijk BIK blad, vol. 1, no. 

1, pp. 25-27, Amsterdam. 
[Miss951 Misseyer, M.P. et. al. (1995), TRANSPA is cdeabh: Long &ve WpylS andBeursB~e, Project proposal of VlJPQS 

and BeursBase, Vrije Universiteit, Amsterdam. 
mors94] Mot-sink, A. W. (1994), Receiving, tran.$onning, converting and adding real-time Amsterdam Stock Exchange data 

to BeursBase (in dutch), Graduation project, Vrije Universiteit, Amsterdam. 
[Qrfa93] Chfali, R, D. Harkey (1993), ClienYServerprogrMaring ti OS/2 2.1.3rd edition, Van Nostrand reinhold, New 

York. 
-...lRudd94] Rudd, A.S. (1994), Application Development using OS/2 REXX, Wiley-QED. 

[Stal90] Stalliugs, W. (1990), Business Data Communications, MacMillau Publishing Company, New York. 
[Tops941 TOPS, I. (1994), The Design andImplementation ofa Real-Time StockExchange Simukxtion andpetionnance Monitoring 

System (in dutch), Graduation project, Vrije Universiteit, Amsterdam. 
[Turb95] Turban,E.F. (l995),Decir~nSuppmtS’and&re&S’,4theditiorr,Prentice-Hallhttemational,Englewood 

Cliffs, New Jersey. 

30 



* - 

REXX/~~~ Compiler and Library 1995 

Pages 324-358 

Proceedings of the 6th International Rexx Symposium 324 



--- - 
y-- -s-z --- 
= n q =‘= 

Rexx/370 Compiler and Library 
---w- ---.- rexxcomp@vnet.ibm.com 

z-z a zsx &xx/370 Compiler and Library --- - 

1995 

1995 May I..3 

Rexx Symposium 
Stanford, California 

IBM Rexx/370 Compiler and Library 
Service and Development 

rexxcomp@vnet.ibm.com 

1995 May I..3 Rexx Symposium Stanford, California 
i 



=c= = 
q “== 
q x =z= ---s- ---.- 

Rexx/370 Compiler and Library 1995 
rexxcomp@vnet.ibm.com Discla-imer 

Disclaimer 

The information contained in this document has not been submitted to any formal IBM test and is 
distributed on an “As Is” basis without any warranty either expressed or implied. The use of this 
information or the implementation of any of these techniques is a customer responsibility and 
depends on the customer’s ability to evaluate and integrate them into the customer’s operational 
environment. While each item may have been reviewed by IBM for accuracy in a specific situ- 
ation, there is no guarantee that the same or similar results will be obtained elsewhere. Cus- 
tomxxypting to adapt these techniques to their own environments-do so atttheiy own risk. 

In this document, any references made to an IBM licensed program are not intended to state or 
imply that only IBM’s licensed program may be used; any functionally equivalent program may 
be used instead. 

Any performance data contained in this document was determined in a controlled environ%&, _- ” “” 
and therefore the results which may be obtained in other operating environments may vary sig- 
nificantly. Users of this document should verify the applicable data for their specific environ- 
ment. 

It is possible that this material may contain references to, or information about IBM products 
(machines and programs), programming or services that are not announced in your country. 
Such references or information must not be construed to mean that IBM intends to announce 
such IBM products, programming or services in your country. 

Permission is granted to the Rexx Symposium for Developers and Users to publish this presenta- 
tion paper in the Proceedings of the Rexx Symposium for Developers and Users. 

1995 May I..3 Rexx Symposium Stanford, California -- 
1 



I 

--- - 
z-- -B-z --- 
= x =z= ---w- ---.- 

Rexx/370 Compiler and Library 1995 
rexxcomp@vnet.i bm.com Products 

Products- _ - 

l Compiler: 

- IBM Compiler for SAA Rexx/370, Release 3 

- Program number 5695013 
-- ComplD 569501301 FMID 
- ComplD 569501302 FESkl 

HWKO130 (ME) 
0463773 

l Library: 

- IBM Library for SAA Rexx/370, Release 3 

- Program number 5695-014 
- ComplD 569501401 FMID HWJ9130 (MVS) 
- ComplD 569501402 FESN 0463776 (VM) 

- Rexx/VSE Library, Release 2 
in RexxA/SE, Version 1 Release 1 

- Program number 5686-058 
- ComplD 568605802 

- Rexx/VSE Library, Release 2 
in VSE Central Functions, Version 6 Release 1 
in VSE/ESA, Version 2 Release 1 

- Program number 5686-066 
- ComplD 568606612 

1995 May I..3 Rexx Symposium Stanford, California 
2 



--- - 
r-- -w-z --- Rexx/370 Compiler and Library 
----w = = === rexxcomp@vnet.ibm.com ---.w 

1995 
Operating Systems 

Operating Systems - 

. MVS 

- TSO/E V2R3Ml or later on MVS/ESA SP V4Rl or later 
- TSO/E V2R4 or later on MVS/ESA SP V3Rl 
~7 JJetView- V2R2- or~~laterwith~abQv_e~~ ~.-~ ---. ---.~ ~~ ~~~~~~~~~~~ 

l VM/CMS 

-- 
- VM/ESA VIRI or later 
- VM/XA SP R2 or later 
- VM/SP R5 or later 
- VM/HPO R5 or later 

l VSE (Library only) 

- RexxlVSE VIRI or later on VSE/ESA VlR3 or later 

- VSE/ESA V2Rl or later 
(RexxA/SE integrated into base) 

1995 May I..3 Rexx Symposium Stanford, California 
3 

-3 LP 



EC= = 
q z-- = - zzz= Rexx/370 Compiler and Library 
w--w- - - --- rexxcomp@vnet.ibm.com --m.- 

1995 
Language Levels- 

Language Levels 

The Rexx language 

l 4.00 on VMIESA 

evel accepted is: 

VlR2.1 and later 
including stream I/OR3 

- 
l 3.48 everywhere else 

including TraceR3 and InterpretR2 

1995 May I..3 Rexx Symposium Stanford, California 
4 



--- - 
:-- -B-z --- Rexx/370 Compiler and Library 1995 
= m  === ---w- ---.- rexxcomp@vnet. i  bm.com Compiler and Library Publications 

Compiler and L ibrary -Publications _ - 

IBM  Compile r and L ibrary for SAA Rexx/370, Release 3 : 

0 

0 

0 

0 

0 

0 

L icensed Program Specifications (GHl9-8161-02) 

Introducing the Next Step in Rexx Programming 
(G51 i-1430-02) 

-- 

User’s Gu ide and Reference (SH19-8160-03) 

User’s Gu ide and Reference (Japanese) (SH88-7187-03) 

Diagnosis Gu ide (SHl9-8179-01) 

User’s Gu ide and Reference and Diagnosis Gu ide 
(SK2T-141 O-00) 
included in IBM  On line  L ibrary Omn ibus Editions: 

- MVS Collection  (SK2T-0710-10) 

- VM Collection  (SK2T-2067-06) 

- VSE Collection  (SK2T-0060-05) 

1995 May I..3 Rexx Symposium Stanford, California 
5 

33c 



=c= = Rexx/370 Compiler and Library 1995 = ““E = = zz rexxcomp@vnet.ibm.com --m-m Program Directories 

Program Directories _ - 

l MVS Compiler: PRGDDIR820P, October 1994 

l MVS Library: PRGDDIR817P, October 1994 

l VM Compiler: PRGDDIR83F2, March 1995 (replaces PRGDIR822P,~~O~ctober1~9~~~~~~~~~~~ ~~ .-- 

l VM Library: PRGDDIR82F2, March 1995 
(replaces PRGDIR818P, October 1994) 

.-_ 

1995 May I..3 Rexx Symposium Stanford, California 
6 



EC=. = 
= xc= RexxI370 Compiler and Library 1995 
--B-B = = I== rexxcomp@vnet.ibm.com ---,m Other Pubs About Using The Com~piler 

--~- Other Pubs About Using- The Compiler _ - 

l TSO Extensions Version 2 

- Rexx/MVS Reference (SC28-1883-06) 
- Rexx/MVS User’s Guide (SC28-1882-04) 
- C~mizti4S~77fl7) 

l VSEIESA V2Rl 

- RexxNSE Reference (SC33-6642-00) 
- RexxNSE User’s Guide (SC33-6641-00) 
- RexxNSE Diagnosis Reference (LY33-9189-00) 

(available August 1995) 

-- _. -%A= 

- 

l RexxNSE VIRI 

- Reference (SC33-6529-00) 
- User’s Guide (SC33-6528-00) 
- Diagnosis Reference (LY33-9144-00) 
- Getting Started (GG24-4192-00) 

l Book 

- The Rexx Handbook 
Gabriel Goldberg, Philip H. Smith Ill 
1992, McGraw Hill (SB20-0020-00) 

1995 May I..3 Rexx Symposium Stanford, California * 
7 



--- - 
y-- -B-z --- Rexx/370 Compiler and Library 
---w- q X === rexxcomp@vnet. ibm.com ---7- 

1995 
Communicating 

Communicating 

l Service: USREXX,182 or WTREXX,182 

- 569501301 RI30 MVS Compile r 
- 569501302 RI30 VM Compile r 
- 569501401 RI30 MVS-Library ~ 
- 569501402 RI30 VM L ibrary 

l Electronic 

- IBM  Ta lkLink: RexxComp CForum 
- VMSHARE: Memo RexxComp 
- VMSHARE: Prob RexxComp 
- VMSHARE: Note RexxComp 
- L istServ: RexxComp@bitn ic.cren.net 
- EMail: RexxComp@vnet.ibm.com 

l Readers’ Comment Form 

- Internet: pubrcf@vnet.ibm.com 
- IBML ink: GDLVME(PubRCF) 
- IBM  Ma il: USIB2L8Z@lBMMa il 
- Fax: USA 607-752-2327 

1995 May I..3 Rexx Symposium Stanford, California 
8 



F:-= - - -= --- Rexx/370 Compiler and Library 
---v- = = === rexxcomp@vnet.ibm.com ---.- 

1995 
Release History 

Release History 

Program 
Number 

Rel First 
Avail. 

End of 
Service 

Short Name 

5664-390 89Jun30 95Sep22 CMS Comp & Libr 

5684-l 24 89Nov17 / 95Sep22 CMS Library 

5695-013 91Aug30 1 93Nov28 Rexx/370 Compiler 1 

1 

2 

2 

--- I Rexx/370 Library 5695-014 91Aug30 1 93Nov28 

Rexx/370 Compiler 5695-013 93May28 1 95May07 

93May28 1 95May07 Rexx/370 Library 5695-014 

RexxNSE- VI RI Libr 5686-058 2 93Sepl7 ( 

5695-013 + 93Nov04 95May07 
V48015(VM 

Rexx/370 Compiler 
+ Alternate Library 

Rexx/370 Compiler 

Rexx/370 Library 

2 
VS) F 

3 

PN48006( h, 

94Nov07 1 5695-013 

3 94Nov07 / 5695-014 

RexxNSE V2Rl Libr 5686-066 2 95Apr21 1 

5686-066 + 3 950ct27 RexxNSE V2Rl Libr 

1995 May I..3 Rexx Symposium Stanford, California 
9 



--- - y-- -s-z --- Rexx/370 Compiler and Library ““E = --- rexxcomp@vnet.ibm.com ---.- 
1995 

Determining Level? 

Determining Levels 

l Compiler 

- From program listing: Release, PTF 

l Library 
Offset from beginning of first 

Release +9..+13 
PTF +19..+25 
Date +37..+44 
Time + 46.. + 50 

l Compiled program 

EAGRTLIB in file 

Field - CExec file Object file 

Release 
Compilation 
Compilation 

Compilation 

ret 1 cols 36..40 ret 2 cols 52..56 
Date ret 1 cols 43..54 ret 2 cols 60..70 
Time ret 1 cols 56..63 ret 2 cols 72+ 

ret 3 cols 17..23 
System ret 1 cols 65..67 ret 3 cols 25..27 

Language Level 
Compiler Date 
Compiler PTF 

ret 1 cols 78..81 ret 3 cols 38..41 
ret 1 cols 83..93 ret 3 cols 43..53 
ret 1 cols 99..105 ret 3 cols 59..65 

1995 May I..3 Rexx Symposium Stanford, California .- 
10 



=c= = Rexx/370 Compiler and Library - B-w = ““= = = == rexxcomp@vnet.ibm.com ---.- 
1995 

Compilation 

Compilation 

Compiler Options Source Program 

Compiler J 

Terminal 

Object file 

Dump 

Listing 

b Run-Time System 

Note: No compiler work files, everything kept in virtual storage 

1995 May I..3 Rexx Symposium Stanford, California 
11 



y -Fe =, ,= --- 
= = === 

Rexx/370 Compiler and Library 
----m ---.- rexxcomp@vnet.i bm.com 

1995 
Compiled Rexx Files 

Compiled Rexx Files _ - 

0 

0 

0 

0 

0 

0 

CExec and Object files contain the same information, except 
for one bit indicating what kind of file it is, but are formatted 
differently 

-- CExecs ares usedPthemsame. way- Execs--are. used-- ~~ ~~~~~ 

- Object files are used the same way other high-level 
language compiler outputs are used (link-edit) 

Contain 

- Executable S/370 instructions 

- Invocations of Library routines 

- Symbol tree, with names and descriptors 

- Control blocks 

Are reentrant, relocatable, and XA (31-bit) capable 

Are execution operating system independent 

Can use any Library at a release level at least as great as 
the Compiler 

Don’t contain the program source 
(unless compiled with SLine option) 

1995 May I..3 Rexx Symposium Stanford, California 
12 

‘3 3 7 



=c= = Rexx/370 Compiler and Library 
1 E EE rexxcomp@vnet.ibm.com ----- ---.- 

1995 
Rexx Is Hard To Compile 

Rexx Is Hard To Compile 

l Dynamic program structure 

- No conventional block structure 

- Start a procedure by executing Procedure instruction 

0 

0 

0 

0 

- End a procedure by executing Return instruction 

Signal can transfer control most anywhere 

No data types but some operations content dependent =-- ~ --T 

Variables 

- Are not declared 

- Can change attributes dynamically 

- Come and go dynamically 

- Can be shared with external programs 

- Names can be computed 

- Size limited only by storage 

- Arithmetic precision can be set dynamically 

Program text can be created dvnamicallv 

1995 May I..3 Rexx Symposium Stanford, California I 
13 



--- - 
:-- -s-s --- 
= n =z’= ---w- ---.- 

Rexx/370 Compiler and Library 1995 
rexxcomp@vnet.ibm.corAssumptions That Make Compiling Worthwhile 

Assumptions That Make Compiling Worthwhile _ - 

0 Assignments appear often 

0 Simple arithmetic appears often 

0 Control constructs appear often 

0 Do loops appear often 

0 Interpret not used often 

0 Storage management is expensive 

1995 May I..3 Rexx Symposium Stanford, California 
14 



cc= = 

= - B-B Rexx/370 Compiler and Library -m-w.= = z == rexxcomp@vnet.ibm.com ---.- 
1995 

Performance 

-- - Performance 

6 to 10 times 

References to procedures and built-in 

Changes to values of variables 

1995 May I..3 Rexx Symposium Stanford, California 
15 



EC= = 
= = E rexxcomp@vnet.ibm.com 

1995 
q z-w= 

Rexx/370 Compiler and Library 
---.- Optimizations- 

-- - Optimizations 

l No tokenizing/parsing at run-time 

l Address simple variables and stems directly 

l Compiler optimizations 

0 

0 

0 

0 

0 

0 

0 

0 

- Common subexpressions 
- Constant folding 
- Value propagation 
- Less general code generation with knowledge about- -~ 

state of variables, Numeric Digits setting, and types of 
operands 

- Not load addresses already in register 

Fast linkage to library routines 

Optimized storage management for several kinds of use 

Binary arithmetic 

String arithmetic optimized for large numbers 

Avoid string movements, reuse string storage 

Lookup for compound variable access not always from top 

Cache compound variable addresses 

Optimized for compound variable integer tails 

1995 May I..3 Rexx Symposium Stanford, California - 
16 



--- - 
5’- -w-z --- 1995 = - B-B Rexx/370 Compiler and Library “‘TZ ---v- rexxcomp@vnet.ibm.com Optimization stoppers 

Optimization stoppers _ - 

l Interpret instruction 

l Trace compiler option 

l Numeric Digits < 9 suppresses binary arithmetic 

l Numeric Digits unknown suppresses binary arithmetic 

l Integers coded in exponential notation, with decimal points, 
or in strings with non-digit characters suppress binary arith- 
metic (IeO, I., ‘1 ‘, ’ 1’ vs ‘I’, 1) 

l Labels stop compound variable access optimizations 

l Referenced labels may stop other optimizations 

l Labels within loops require run-time checks for jumps into 
loop 

l More than three numeric tails suppresses numeric tail opti- 
mizations 

Note: A program compiled with the TraceR3 option is fully inter- 
preted by the run-time Library and will perform better than - 
when interpreted by the system interpreters 

1995 May I..3 Rexx Symposium Stanford, California 
17 



=c= = 

= c E rexxcomp@vnet.ibm.com 
1995 E.---y= Rexx/370 Compiler and Library 

---.- Optimizing programs 

-- .-- Optimizing programs _ - 

0 

0 

0 

0 

l 

-- 
l 

l 

l 

l 

l 

l 

Quoted strings perform better than variable names 

Assignment of quoted strings perform best 

TestHalt slows down loops (especially on MVS) 

Compiled assignment is faster than Parse 

Assignment preserves binary value 

Simple variables are faster than compound variables 

Exposing stem is faster than exposing compound variable 

Binary representation can be forced (a + 0) 

Preallocating strings faster than extending strings 

DLinked modules perform best 

Object compiler output can be used in function packages 
(which can be DLinked) 

1995 May I..3 Rexx Symposium Stanford, California 
18 



EC= = = === Rexx/370 Compiler and Library 1995 
--B-B = = === rexxcomp@vnet.ibm.com ---.- Extensive. Error Reporting 

-- -- Extensive Error Reporting 

l 232 compile-time message numbers 

- Detailed static syntax analysis of entire program 

- Marks probable cause of error in listing 

- Cross-reference can be used to 

- find m isspelled and s imilarly spelled names 

- find variables never assigned a value =-- ~ --! 

- Can flag non-SAA language elements 

l 182 run-time message numbers 

- Issues standard Rexx error messages 

- Plus more detailed messages for each error 

l Messages can be translated to other national languages 
(Japanese available) 

l Both compiler and library have 
to help isolate internal errors 

internal diagnostic fat ilities 

1995 May I..3 Rexx Symposium Stanford, California _” 
19 



I 

cc= = 
= “ZZ - B-w i-Err 

---.- 
Rexx/370 Compiler and Library 
rexxcomp@vnet.ibm.com 

1995 
Program Listing 

-- --- Program Listing 

l On every page 

- program identifier 

- compiler release and PTF level 

- compilation date and time 

l Compilation summary 

- Compilations status 
(number of messages, severity code)R2 

- Each compilation option with specified 

- If .ETMode in effectR2 

l Source listing (optional) 

- Nesting levels for If, Do, Select 

- Program line numbers and record and 

or default value 

file numbersR3 

- Messages interspersed with markers to probable cause 
on line 

1995 May I..3 Rexx Symposium Stanford, California 
20 



--- - r-- s--z --- 
q z q ‘== 

Rexx/370 Compiler and Library 
---w- ---.- rexxcomp@vnet.ibm.com 

1995 
Program Listing 

~-Cross-references (optional) 

- Grouped by 

- Labels, built-in functions, external routines 
- Constants (optional) 
- S imple variables 
- S tems and- compound-variables- 

- Include 

-w- - The item  
- A ttributes 
- Line references 
- Where set and for labels: valid definition, reference 

to undefined, duplicate 

- Host commands in sourceR3 (optional) 

l Compilation statisticsR2 

- Number of source lines 

- S ize of compiled program  

- Message statistics 

- Flagged source line numbers 

- Included files namesR3 

1995 May I..3 Rexx Symposium Stanford, California 
21 



--- - y--- -B-s --- Rexx/370 Compiler and Library 
---w- = n === rexxcomp@vnet.ibm.com -em.- 

1995 
Alternate Library !R2+PTF! 

-- --- Alternate Library (R2+PTF) 
_ - 

l Run compiled execs without the Library product 

l Can be distributed freely, without charge 

l Can be packaged with compiled Rexx applications 

0 

0 

0 

0 

0 

Uses interpreter so no performance advantage 

A ,Iternate and SLi 

Condense option 

ne compiler options required 

may be used 

Can be used for either CExec or Object files 

Compiled execs can use actual L ibrary if ava ilable 

1995 May I..3 Rexx Symposium Stanford, California - 
22 



I 

EC= = 
= cc= 
= = =z= w--w- ---.- 

Rexx/370 Compiler and Library 1995 
rexxcomp@vnet.ibm.com Condense LR1) 

Condense (RI) 

0 

0 

0 

0 

Compiled programs larger than source 

Condensed programs usually  smaller than source, even 
when source lines included 

Expansionoccurs when program invoked 

Advantages 

- Less disk space 
- Less I/O  when read into storage 
- After expansion at start-up, no performance degrada- 

tion 
- Source scrambled, including host commands and con- 

stants, even when source lines included 

0 Disadvantages 

- More storage when running (both condensed and 
expanded versions remain in storage) 

- More processor time to expand when invoked 
- Can’t use DLink option 

1995 May I..3 Rexx Symposium Stanford, California 
23 



=c= = = “== Rexx/370 Compiler and Library 1995 
q = === ---w- ---.- rexxcomp@vnet.i bm.com Condense w 

c-Use Condense when _ - 
- I/O  is the bottleneck and storage isn’t 

- Program resides on disk or non-shared storage 

- Program is large 
-I-----~--. -. - --~ Program is- long4xn~nlng 

- Program is seldomly invoked 

- Source or constants need protection 

- DLink not required 

1995 May I..3 Rexx Symposium Stanford, California 
24 



EC= = Rexx/370 Compiler and Library 
’ - FA rexxcomp@vnet.ibm.com 

1995 
---w- m-w.- Copyright !R2+PTFl 

Copyright (R~+PTF) 

i rec- 

. Control directive - /*%Copyr ight . . . */ 

l Inserts notice as v isible text in compiled file 

l Inserted notice is the concatenation of all Copyright d 
tiv& in a program 

l Treated as a comment by Rexx interpreters 

1995 May I..3 Rexx Symposium Stanford, California - 
25 

3 5-u 



--- - 
z--- -B-z --- 
= m q == 

Rexx/370 Compiler 
---w- ---.- rexxcomp@vnet.ibm.com Margins (R3) 

and Library -- _ 1995 

Margins (R3) 

0 

0 

0 

0 

Can specify left and right text bounds of source files 

Only text within margins is compiled 
Compiler listing contains complete record 

SLine and IEkec output 

On MVS, file sequence 
before margins applied 

contG -only text within mmatgins 

numbers detected and removed 

1995 May I..3 Rexx Symposium Stanford, California 
26 



=c= = 
q x== 1995 
= - B-B 

Rexx/370 Compiler and Library 
-s-y= 

---.- rexxcomp@vnet.ibm.com Include Files lR31 

--_ 

a 

--. -- Include Files-~ (R3) 

* No longer necessary to 

l Control directive - /*% I 

- Inserts included f 

- Includes may be 

‘ile 

have entire program in 1 source file 

nclude file-id */ 

imn ledi 

nested 

ately following the */ 

- Included files may be members of libraries 

- Treated as a comment by Rexx interpreters - but . . . 

l IExec compiler option 

- Generates a sing le file w ‘ith all program 
%-Included or otherwise 

source, 

- Contains only text within specified marg i ns 

- Can be used to interpret programs composed of 
include files or with non-Rexx text outside of margins 

1995 May I..3 Rexx Symposium Stanford, California 
27 



--- - 
7’- -B-z --- Rexx/370 Compiler and Library 1995 - B-m q ““= 
---.- rexxcomp@vnet. ibm.com Ob ject 

0 

-- .-- Object 

Use Rexx program as would o ther h igh-level language pro- 
g rams 

- Build  modu les 

0 

0 

0 

0 

- Command or p rogram search order 

- Use various MVSNSE parameter pass ing conventi 

- TSO/E command 
- Rexx external routine 
- Either TSO/E or Rexx external routine 
- MVS program 
- VSE program 
i TSO/E Called  command 

Build  function packages 

Combine with  routines written  in o ther languages 

Same file  content as CExec, just d iffe rent forma t 

ons 

Get external symbol and relocation information with  DLink 
op tion  

1995 May I..3 

- 

Rexx Symposium Stanford, California - 
28 

353 



EC= - = 4 Rexx/370 Compiler and Library -m--m 
z.“z=3=. ---.- rexxcomp@vnet.ibm.com 

1995 
DLink (RI) 

DLink (RI)-~ 

0 

0 

0 

0 

0 

0 

Combine external functions and subroutines into 1 execut- 
able module 

Direct linking instead of searching 

- Can be very s ignificant performance improvement 

Can create self-contained modules 

No name clashes with user’s environment 

No behavioral changes due to changes to external routines 

Select which routines are included - doesn’t have to be all 
routines (generates weak external references) 

1995 May I..3 Rexx Symposium Stanford, California 
29 



=c= = Rexx/370 Compiler and Library 
’ - EY rexxcomp@vnet.ibm.com 

1995 
---w- ---.- Possibilities? 

-- -- Possibilities? _ - 

0 

0 

0 

0 

0 --_ 

0 

0 

0 

0 

0 

0 

0 

Object Rexx 

More, better optimizations 

Better error reporting by recognizing bifs and operand types at cdmpile time -..~--..----...---.. ..-- - ~. ~..~. -..~ 

ANSI flag option - flag non-ANSI syntax 

NoExecComm option - assume no ExecComm interface, 
means better optimization possible 

WDB/WDBLang debugger support - generate needed side 
files 

AutoSi ine option - include source only if SourceL ine bif 
used 

SLine option ranges - include only selected source 

Scramble imbedded source - improve security 

Compiler dump range option - reduce dump volume 

Page width option - support wider lines 

Indicate m inimum runtime level required on listing and v ia 
utility and function 

1995 May I..3 Rexx Symposium Stanford, California 
30 



=c= = Rexx/370 Compiler and Library 
Z”-,- ’ z EZ rexxcomp@vnet.ibm.com ---.- 

1995 
Possibilities? 

c--Error number cross reference option 

0 

a 

a 

3i 

a Print hex and binary strings as they appear in source 

a 

a 

a 

a 

a 

a 

Add column numbers to messages and list of flagged lines 

Print DCB parameters in options list 

Support alternate DD names z 

binary strings in cross referent----- 
listing 

Spilt source lines at more sensible p 

More dump data - unsorted symbol 
interface, Iister 

- - -  _. &q-h+ 

aces in listing 

table, environment 

User specified placement of TestHalt hooks 

Ability to build s ingle executable that doesn’t require 
runtime library 

OS/2 syntax checker, Iister 

Source reformatter - indent by nesting leve I, etc. 

1995 May I..3 Rexx Symposium Stanford, California ’ 
31 



--- - 
y-- -B-z 1995 --- 
= n  q == 

Rexx/370 Compiler and Library 
---w- ---.- rexxcomp@vnet. ibm.com Possibilities? 

l ---Gass ic Rexx compile r and lib rary for 

- 092, WARP 
- Intel 

* - 

- PowerPC 
- AIX, UNIX 
- W indowsNT, W indows95 
- AS/400 
- CICS/MVS (lib rary on ly, bo th) 
- VSE (compile r) 
- PC DOS 
- O ther 

1995 May I..3 Rexx Symposium Stanford, California 
32 



~~5-e Rexx1370 om il r and Library 
&i:--~a rexxcomp 8) Ii% vn t.1 m.com IS3 Possibilities . 

c--Classic Rexx compiler and library for 

- 032, WARP 
- Intel 
- PowerPC 

- AIX, UNIX 
- W indowsNT, W indows95 
- AS/400 
- CICS/MVS (library only, both) 
- VSE (compiler) 
- PCDOS 
- Other 

1995 May 1..3 Rexx Symposium Stanford, California 
32 



How REXX Helped Me Hit the Ground Running in 
UNIX 

Lois White 
Stanford Linear Accelerator Center 

- . 

Pages 360-362 
. 

Proceedings of the 6th International Rexx Symposium 360 



How REXX Helped Me Hit the Ground Running in UNIX 

or 

How I Stopped Worrying & Learned to Love -ping in Significant Mixed Case 

Lois White 
- . 

SLAC Computing Services 
Stanford Linear Accelerator Center, Stanford, California 

6th International REXX Symposium 
Stanford Linear Accelerator Center, Stanford, California 

May 3,1995 

Since the early 80’s, REXX has been my language of choice in VMKMS for a system of execs 
and SAS programs which manipulate and store data and produce daily, month-to-date, and 
month-end reports on resource utilization and performance. Actually, I created and still maintain 
three VM service machines which keep track of utilization and some performance statistics for 
VMKMS, a VAX cluster, and SLAC’s telephone system. 

About three years ago, it was announced that UNIX would be the future direction for physics 
computing at SLAC. In order to prepare for the coming of UNIX, I took an introductory course 
and was appalled...shell script.07 . . . ..no REXX??? I looked at bourne, kom, and c shell scripting 
and said to myself “I thought we had progressed beyond EXEC and EXEC2”. Then someone 
mentioned that per1 was the scripting language to use in UNIX When I looked at per1 I found it 
to be powerful and concise, but nearly impossible to decipher without comments on each line! I 
was looking at a steep learning curve here! 

-. . 

As the new RS6000 machines began arriving, it quickly became evident that I would need to start 
accounting for resource utilization on them and get an idea of how much they were being used 
and by whom. The accounting software included with the RS6fKKl Base Operating System was 
minimal, but it produced most of the information we needed. However, it didn’t store data in a 
form that is readily used for reporting purposes. It also didn’t clean up after itself very well, 
allowing directories to grow indefinitely. A great deal of manual intervention was required in 
order to save data and produce reports on a regular basis and to keep directories from filling up. It 
was clear that I needed to have more than just crontab entries and SAS software and I needed it 
soon! 

Writing per1 or shell scripts would have accomplished the task but I estimated that it would take 
_ some time, perhaps months, to become proficient enough to do what was needed in a lot less time. 

In early 1993, I learned that The Workstation Group’s uni-REXX had arrived at SLAC and I felt 
as if I’d been saved. All subsequent references to REXX in UNIX in this paper refer specifically 
to the use of The Workstation Group’s uni-REXX. 

In the VM/CMS world I had already developed techniques for data storage, data manipulation, 



and report production which I could now use in the UNIX world with the arrival of REXX. 
Close to ten years of experience using VMKMS REXX meant that I wouldn’t have to spend three 
to six months achieving the skills I needed before I could start managing data and producing 
reports for the rapidly multiplying UNTX machines. Furthermore, the uni-REXX manuals were 
written for users making the transition from VM/CMS to UNIX. With all this encouragement, I 
jumped in and wrote my first REXX script in UNIX which copies AIX disk accounting data from 
the file where it gets replaced each time disk accounting runs to another directory where it is 
saved and used later to analyze disk usage on a long term basis. 

_ . 

Since then I have developed a system of crontab entries and REXX and SAS programs which 
store and manipulate UNIX accounting and performance data and produce daily, month-to-date, 
and monthly UNIX resource utilization and performance reports. On each of the (now) sixty- 
four RS6000s where we collect accounting data, a REXX program executes daily which copies 
the locally stored data to a generally accessible directory where accounting data for all sixty-four 
machines is stored. After that, another crontab entry on one machine executes a REXX program 
which initiates the daily data processing and subsequent analysis reports by executing SAS and 
additional REXX programs. This daily program’s decisions on which processes to start are based 
on the current date, day of the week, and other criteria. There are several other cron-initiated 
REXX programs which take care of data copying, directory cleanup, and daily checking of all 
automatic processes. In addition, there are several REXX programs which are executed manu- 
ally to rerun processes which failed and to perform tasks such as large scale data backup. 

@#side of the accounting and performance area, I have used the same techniques to develop a 
system of crontab entries and REXX and SAS programs to produce regular reports and graphs 
analyzing network performance data for our UNIX systems. 

In conclusion, REXX enabled me to “hit the ground running in UNIX” because it has: 

Familiarity: 
I had many years of experience writing REXX code. 

Portability: 

-. . 

I was able to transfer several large pieces of REXX code from VMKMS to UNIX and use them, 
often without modifications. These included useful algorithms for cleaning up old files, finding 
dates, creating file names, etc. to use as parameters for execs and SAS programs. 

Communication with UNIX: 
It is possible to issue UNIX commands from REXX programs. By using the POPEN instruction 
or function, it is possible to read output from UNIX commands and to test return codes. Some- 
times I’ve found that using a UNIX command is more efficient than doing the same task with 

- REXX code, e.g. file editing using the sed utility instead of REXX’s linein/linout functions. 

Readability: 
REXX code is relatively easy to understand and usually doesn’t require adding comments on 
every line in prder to remember “Why did I do that?!” 

3 6 ‘2 


	slac-r-464-Frontmatter
	rexx95-001
	rexx95-002
	rexx95-003
	rexx95-004
	rexx95-005
	rexx95-006
	rexx95-007
	rexx95-008
	rexx95-009
	rexx95-010
	rexx95-011
	rexx95-012
	rexx95-013
	rexx95-014
	rexx95-015
	rexx95-016
	rexx95-017
	rexx95-018
	rexx95-019

