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By formulating the six dimensional (0, 2) superconformal field the-

ory X[j] on a Riemann surface decorated with certain codimension two de-

fects, a multitude of four dimensional N = 2 supersymmetric field theories

can be constructed. In this dissertation, various aspects of this construc-

tion are investigated in detail for j = A,D,E. This includes, in partic-

ular, an exposition of the various partial descriptions of the codimension

two defects that become available under dimensional reductions and the

relationships between them. Also investigated is a particular observable of

this class of four dimensional theories, namely the partition function on the

four sphere and its relationship to correlation functions in a class of two di-

mensional non-rational conformal field theories called Toda theories. It is

pointed out that the scale factor that captures the Euler anomaly of the four

dimensional theory has an interpretation in the two dimensional language,

thereby adding one of the basic observables of the 4d theory to the 4d/2d

dictionary.
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Outline

Chapters 1-2 are introductory and are primarily a review of existing

knowledge in this field. The selection of results reviewed in these Chapters

is idiosyncratic to the needs of the following chapters. Chapters 3-5 detail

results from my original research. A more elaborate outline of Chapters 3-5

is also provided at the end of Chapter 2.

A large part of the material in Chapters 3-5 has appeared in the fol-

lowing two papers,

• Aswin Balasubramanian, “Describing codimension two defects”, JHEP07(2014)095

[14]

• Aswin Balasubramanian, “The Euler anomaly and scale factors in Li-

ouville/Toda CFTs”, JHEP04(2014)127 [15]

Parts of the work will also appear in

• Aswin Balasubramanian, “Codimension two defects and the repre-

sentation theory of Weyl groups (in preparation)”, Contribution to pro-

ceedings of String-Math 2014.

In addition to this, the dissertation also includes some previously unpub-

lished material.

1



Chapter 1

Four dimensional N = 2 theories

1.1 Introduction

One of the major motivations to study supersymmetric field theo-

ries in four dimensions is the possibility that many observables in these

theories can be computed exactly. Such a luxury is not available for the

non supersymmetric quantum field theories, atleast with our current un-

derstanding. Essential to any such exact result is the ability to transcend

the traditional perturbative frameworks in which QFTs are usually defined.

A result that remains valid outside the domain of validity of the perturba-

tive schemes is termed ‘non-perturbative’. Certain phenomenon are termed

‘non-perturbative’ and this reflects the fact they are not visible in any pertur-

bative formalism. Electric-Magnetic duality of the kind that is considered

here is one such phenomenon.

The fact certain observables in supersymmetric field theories can be

computed to all orders in perturbation theory indicates the somewhat spe-

cial ‘simplicity’ that comes with supersymmetry. This simplicity exists al-

ready with the minimal amount of supersymmetry in four dimensions cor-

responding to N = 1 theories where, for example, the superpotential obeys

2



non-renormalization theorems (see [169] for a modern treatment). With

more supersymmetry, stronger statements become possible. On some occa-

sions, such as in theories with more than four supercharges, non-perturbative

statements become possible. The maximally supersymmetric theory in four

dimensions is N = 4 SYM and this theory is, in many ways, the simplest

QFT. This is the four dimensional QFT that is most amenable to exact anal-

ysis. The subject matter of this dissertation involves theories with eight

supercharges and N = 2 supersymmetry in four dimensions. Certain three

dimensional theories with eight supercharges will also play an important

role. The theories with eight supercharges allow for richer variation in non-

perturbative behaviour (when compared to the theories with sixteen super-

charges) while still being amenable to a substantial amount of exact anal-

ysis. Other important motivations for the study of supersymmetry have

been, historically, the potential relevance of low energy supersymmetry as

a phenomenological tool and the fact that supersymmetric quantum field

theories arise from limits of string/M theory.

A general strategy to describe the low energy behaviour of N = 2

theories was provided in [167, 166]. This involves the specification of an al-

gebraic curve that has come to be called the Seiberg-Witten curve, together

with a differential called the Seiberg-Witten differential. The algebraic curve

and the differential encode much information about the infrared physics of

N = 2 and the combined data is referred to as the ‘Seiberg-Witten solu-

tion’ of N = 2 theories. In recent years, the class of N = 2 theories for

3



which the Seiberg-Witten strategy can be realized has grown substantially.

This has led to new insights into the dynamics of N = 2 theories in four

dimensions. The new insights have been possible thanks to two major ad-

vancements. The first is an improved understanding of defect operators in

supersymmetric quantum field theories of various dimensions. The second

is the unraveling of a web of connections between aspects of N = 2 theo-

ries and myriad ideas in modern mathematics. These mathematical ideas

happen to serve, quite well, the needs of a N = 2 field theorist. A part of

this interaction between physical and mathematical ideas involves geomet-

ric approaches to representation theory and this figures prominently in this

dissertation.

The remainder of this introductory chapter (the first of two) reviews

basic elements of four dimensionalN = 2 theories. In addition, the Seiberg-

Witten solution of some elementary examples in this class of theories is dis-

cussed. In the following chapter, an introduction to the recent advances in

the study of a large class ofN = 2 theories is provided. The six dimensional

(0, 2) SCFT plays an important role in many of these considerations. Hence,

the second introductory chapter is focused more directly on the construc-

tion of four dimensional theories starting from six dimensions.

To end this Introduction, here are a few references where Seiberg-

Witten theory is discussed in greater detail. For some textbook treatments

of Seiberg-Witten theory, see [196, 56] and for other useful reviews of the

subject, see [106, 132, 126, 159, 24]. For a review of Seiberg-Witten theory

4



from a more modern perspective, see [186]. For some overviews of recent

developments in this field, the interested reader is referred to [148, 149, 147,

184, 185].

1.2 N = 2 theories in four dimensions

The N = 2 algebra in four dimensions has the following form,

{QI
α, Q

†J
β̇
} = δIJPµσ

µ

αβ̇
, (1.1)

{QI
α, Q

J
β} = εIJεαβZ, (1.2)

where Z is a complex number called the central charge of the algebra since

it commutes with all the generators. Theories withN = 2 symmetry in four

dimensional include both Lagrangian and non-Lagrangian field theories 1.

But, to orient oneself about the physics of N = 2 theories, it is helpful to

look at the Lagrangian theories in the family. Recall the N = 1 superfield

formalism. Let Φ be a chiral superfield, V a vector superfield and Wα the

field strength defined as,

Wα =
1

4
D̄2e−VDαe

V (1.3)

Expanding Φ,Wα in components,

Φ = φ+ ψαΘα + FΘαΘα (1.4)

Wα = λα + F(αβ)Θ
αβ +DΘα + . . . . (1.5)

1In general, the quip that a field theory is ‘non-Lagrangian’ should be taken to imply
that there is no known Lagrangian description.
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The simplest gauge theory with N = 2 supersymmetry is the pure

YM theory build out of a singleN = 1 vector multiplet (Aµ, λα) and a single

N = 1 chiral multiplet (φ, λ̃α) that transforms in the adjoint of the gauge

group G. In terms of N = 1 superfields, the Lagrangian for this theory can

be written as

Lvector =
=(τ)

4π

∫
d4ΘTrΦ†e[V,.]Φ +

∫
d2Θ
−i
8π
τTrWαW

α + cc, (1.6)

where τ is the complexified coupling constant

τ =
θ

2π
+

4πi

g2
. (1.7)

This theory possesses a SU(2)R symmetry. This acts by rotations on

λα, λ̃α.

In order to add matter to the pure N = 2 YM theory, one can add

copies of the N = 2 hypermultiplet. This contains two copies of the N = 1

chiral multiplet, Q = (ψ, φ), Q̃† = (ψ̃†, φ̃†) in conjugate representations of

the gauge group G. Let us pick G = SU(N) and take Nf hypers in the

fundamental representation. The Lagrangian for the hypermultiplets is of

the form (with gauge indices supressed)

Lhyper =

∫
d4Θ(Q†eVQi + Q̃ie−V Q̃†i ) +

(∫
d2ΘQ̃iΦQi + cc

)
(1.8)

+

(∑
i

∫
d2ΘmiQ̃

iQi + cc
)
.

The hypermultiplet Lagrangian above also has a manifest SU(2)R symme-

try that acts by rotations on Q, Q̃†. The full Lagrangian for the theory with
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gauge fields and matter (in some representation of the gauge group) is of

the form,

Lgauge−theory = Lvector + Lhyper (1.9)

1.2.1 Vacuum moduli spaces

To become oriented about the vacuum structure of N = 2 theories,

it is useful to consider (again) the gauge theories in the family. The La-

grangian is as in (1.9). The classical vacuum moduli spaces are determined

by the zeros of the potential,

V =
1

2
(D)2 + F i†Fi, (1.10)

where Fi = ∂W/∂φi and Da = φ†i (T
a)ijφ

j . Since the potential is a sum of

squares, one can analyze the equations obtained by setting the individual

terms to zero. Setting the D-term to zero yields,

[Φ†,Φ] = 0 (1.11)

| QjQ
†j − Q̃†jQ̃j |trace−free = ν.

Setting the F-term to zero yields,

| QjQ̃j |trace−free = ρ (1.12)

Qj
aµ

i
j + Φb

aQ
i
b = 0

Q̃a
jµ

j
i + Q̃b

iΦ
a
b = 0.

The space of solutions obtained by setting Q, Q̃ = 0 and keeping

Φ 6= 0 is called the Coulomb branch of vacua B. Geometrically, the Coulomb
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branch is a (rigid) special Kahler manifold [76, 45]. The classical Coulomb

branch has a special point where Φ = 0 and the full non-abelian symmetry

is restored. This description of the Coulomb branch remains valid in the

high energy regime of the quantum theory (UV). As one goes to lower ener-

gies (IR), the metric on the Coulomb branch receives quantum corrections.

The full quantum Coulomb branch could, in general, also have singular-

ity structure that is quite different from the one for the classical Coulomb

branch.

The other extreme alternative of setting Φ = 0, µij = 0 and allowing

Q, Q̃ 6= 0 yields what is known as the Higgs branch H. In a theory with

fundamental hypers, the Higgs branch carries no residual gauge symmetry.

The defining equations of a Higgs branch (from 1.13) define a hyper-kahler

manifold by way of a hyper-kahler quotient construction. Classically, the

Higgs branch intersects the Coulomb branch when Q, Q̃ = 0.

In more general cases, there may not be a true Higgs branch but only

a ‘maximally’ Higgsed branch, where some residual U(1)k gauge symmetry

might remain. Such a branch is sometimes referred to as a ‘Kibble branch’

in the literature. To simplify terminology, the term Higgs branch will hence-

forth be used to encompass these cases as well. This more general notion is

more convenient in the context of generalized S-duality and Gaiotto gluing.

When the masses µij are non-zero, some of the directions in the Higgs

branch will get lifted. For arbitrary values of µij , the entire Higgs branch will

be lifted. More generally, one can consider cases where both Φ and Q, Q̃
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are non-zero (say, with masses turned to zero). These would parameterize

‘mixed’ branches Kα. The most general structure can then be schematically

described as,

Mvac = B ∪ (∪αKα) ∪H. (1.13)

The patterns of intersection between the different branches can be

quite intricate in general and can be subject to change under quantum cor-

rections. See [8, 9] for a study of Higgs branches in several N = 2 gauge

theories.

Coulomb branch of the quantum theory

One of the important features of this theory is that moduli spaces of

vacua persist in the quantum theory. For the Coulomb branch, this can be

seen from the Lagrangian in (1.6) that no potential term can be generated

for φ. At an arbitrary point of the Coulomb branch, the scalar field in the

vector multiplet takes a non-zero expectation value. At such a point, the

gauge group is broken to U(1)rank(G). The effective action for the low energy

theory at a generic point on the Coulomb branch is then constrained by the

fact that it has to one for a N = 2 theory of rank(G) U(1) vector multiplets.

The Lagrangian for such a theory is of the form,

1

8π

∫
d4ΘK(āi, aj) +

∫
d2Θ
−i
8π
τ ij(a)Wα,iW

α
j + cc, (1.14)
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with the quantities K(ā, a) and τ(a) being related through a locally holo-

morphic function F (a) in the following fashion,

τ ij =
∂2F

∂ai∂aj
(1.15)

aiD =
∂F

∂ai
(1.16)

K = i(āiDai − āiaiD). (1.17)

The undetermined function F is called the prepotential and (a, aD)

constitute special co-ordinates for the Coulomb branch. The Kahler poten-

tial has a simple expression in terms of these special co-ordinates. Deter-

mining F (a) for a given UV theory amounts to providing the solution to

the problem of describing the IR behaviour of the theory on the Coulomb

branch. Seiberg & Witten provided a general strategy for writing down the

effective action for U(1) gauge fields. An important insight here involves

the electric-magnetic duality for the U(1) theory and the description of a

special set of co-ordinates on the Coulomb branch. This data is captured

most succinctly by an algebraic curve together with a differential whose pe-

riods give the special co-ordinates at various points of moduli space. The

form of this solution will be explored in more detail in the rest of the section.

Higgs branch of the quantum theory

The determination of the Higgs branch is somewhat simplified by the

fact that the geometry of a classical Higgs branch is not corrected quantum

mechanically. However, this simple picture is complicated by the possibil-
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ities of purely ‘quantum’ Higgs branches and the fact that in the case of a

non-Lagrangian theory, there exists no general prescription that determines

the geometry of the Higgs branch.

1.2.2 Beta function

The running of the complex coupling constant in a generic N = 2

gauge theory is conveniently expressed in a renormalization scheme where

the superpotential remains a holomorphic function of the chiral superfields.

Consider a theory with gauge groupG and with hypermultiplets in the rep-

resentation R. The running of τ is then of the form,

τ(Λ) = τUV −
K

2πi
log

Λ

ΛUV

+ . . . , (1.18)

where K = 2C(Ad)− C(R), with C(r) for any rep denoting defined by,

tr(T a)r(T b)r = C(r)δab. (1.19)

The correction to τUV in (1.18) is a one-loop effect. An n loop con-

tribution to (1.18) would be of the form Im(τ)(1−n). But, such a term is

holomorphic in τ only for n = 1. So, the requirement of homolomorphy

renders the beta function in (1.18) one loop exact. Therefore, any further

terms appearing in the (. . .) should be of non-perturbative origin. Includ-

ing the general form of these non-perturbative corrections, one can write

τ(Λ) = τUV −
K

2πi
log

Λ

ΛUV

+
∑
i

αie
− 8πi
g2 (1.20)
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Using the relationship between the τ (close to the UV ) and Λ, the non-

perturbative terms can be written as an expansion in Λ4,

τ(Λ) = τUV −
K

2πi
log

Λ

ΛUV

+
∑
i

α̃i

(
Λ4

ΛUV

)i
(1.21)

From the above consideration, it is clear that for the perturbative beta

function to be zero in Lagrangian theories, one needs K = 0. Let the field

content correspond to that of a vector multiplet in the adjoint of G and hy-

pers in the representations R and R̄. Then the following condition should

be obeyed, ∑
α∈weights(Ad)

(α.aE)2 =
∑

w∈weights(R)

(w.aE)2.

Theories in which such a condition is obeyed are superconformal. A

particular example of such a theory is the SU(2) theory with Nf = 4. This

theory is a helpful prototype for the considerations of the next chapter. But,

we proceed first to the Seiberg-Witten solution for the Coulomb branch of

the pure SU(2) theory and then proceed to describe the case of the SCFT.

These are the simplest Lagrangian theories for which the Seiberg-Witten

solution is known. It should be noted here that in subsequent chapters, sev-

eral non-Lagrangian theories will also figure prominently. The fundamental

ideas behind describing a Seiberg-Witten solution extend to these cases as

well.
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1.3 Seiberg-Witten solution for the pure SU(2) theory

In the original work of [166], the solution to the pure SU(2) is de-

scribed in terms of the following curve,

y2 = x3 − 2ux2 + Λ4x, (1.22)

with the SW differential being given by dx/y. The SW curve above is a

family of elliptic curves parameterized by the Coulomb branch parameter

u. On the Coulomb branch B of this theory, three points exist where the

curve is singular. Denote these special points by u = (+Λ2,−Λ2,∞). Denote

the two kinds of cycles on the elliptic curve as A cycles and B cycles. When

u is varied in a loop around one of the singular points, one gets back the

same torus but with a different basis of cycles that can be denoted as (A′, B′)

cycles. The matrix that implements this base chance is a monodromy matrix

M , (
B
A

)
= M

(
B′

A′

)
,M ∈ SL(2,Z) (1.23)

The monodromy matrix M is different at the three special values for

u. Denote these monodromy matrices by M∞,M+Λ2 ,M−Λ2 . They, however,

obey the following obvious constraint,

M+Λ2 = M∞M−Λ2 . (1.24)

In the case of the pure SU(2) theory, the monodromy matrices can be de-
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duced from (1.22) to be

M∞ =

(
−1 4
0 −1

)
(1.25)

M+Λ2 =

(
1 0
−1 1

)
M−Λ2 =

(
3 −4
1 −1

)
It can be checked that (1.24) is obeyed in this case. The strategy em-

ployed in [166] was to start with the knowledge of M∞ and then work to-

wards a curve that gave a consistent picture with the known S-duality of

the N = 2 U(1) theory and the behaviour of particles which saturate the

BPS bound,

M ≥| Z | (1.26)

Particles which saturate the above bound form short multiplets of the cen-

trally extended N = 2 algebra. Since the number of degrees of freedom

contained in such a multiplet can not change abruptly, the formulas deter-

mining their masses are guaranteed to hold non-perturbatively. The special

coordinates (a, aD) that entered the description of the low-energy effective

action are determined by the following period integrals,

a =

∫
A

dx

y
, (1.27)

aD =

∫
B

dx

y
. (1.28)

The co-ordinates a, aD enter the formula for the mass of BPS particles in the

following way,

M =| ma+ naD |, (1.29)
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where (m,n) are electric and magnetic charges. As emphasized earlier, the

above formula for the mass of a BPS particle holds even in the quantum

regime. The functions a(u) and aD(u) vary such that (1.29) is always obeyed.

Around a singular point on the Coulomb branch where particles of charge

(m,n) are massless, the local monodromy can be written as,

Mm,n =

(
1 +mn −m2

n2 1−mn

)
. (1.30)

Now, comparing with (1.26), one observes that the particles becoming mass-

less at u = +Λ2,−Λ2 are, respectively those with charges (0, 1), (2, 1). Ap-

propriately, the former is called the ‘monopole’ point while the latter is

called the ‘dyon’ point.

The singular points on the quantum Coulomb branch are indicated

in an accompanying figure (Fig 1.2). Also included is the classical picture of

the Coulomb branch (Fig 1.1).

1.3.1 Rewriting the SW solution : a first take

An alternative way to write the Seiberg-Witten curve is as a branched

cover of a ‘UV curve’ [87]. This alternative form already appears, for many

examples in [142, 58]. It also appears in [200]. It is suitable to call this a

‘branched curve’ form of the Seiberg-Witten curve. Let us illustrate this by

writing the SW curve for the pure SU(2) theory as,

Λ2z +
Λ2

z
= −x2 − u, (1.31)
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u

u = 0

Figure 1.1: The classical Coulomb branch of the pure SU(2) theory

while the SW differential is λ = xdz/z. The space parameterized by z is

called the ‘UV curve’. It turns out that a slight variant of the ‘branched

curve’ form is most convenient to make explicit the connection to certain

integrable systems. In this sense, the branched curve form serves as a useful

intermediate step.

1.3.2 Rewriting the SW solution : a second take

With a slight redefinition of the variables, one can bring the ‘branched

curve’ form of the Seiberg-Witten curve to a canonical form that makes it

convenient to see the connection to an associated integrable system called
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u

u = −Λ2 u = Λ2

Figure 1.2: The quantum Coulomb branch of the pure SU(2) theory

the Hitchin system. The Seiberg-Witten curve is the spectral curve of the as-

sociated Hitchin integrable system. In the particular case of the pure SU(2)

theory, this redefinition is quite elementary. For the theories with hypermul-

tiplets, where masses can enter the picture, the redefinition offers a more

visible increase in clarity. Following [87, 86], one can rewrite the SW curve

for the pure SU(2) in the following canonical form [87],

λ2 − φ2(z) = 0, φ2(z) =

(
Λ2

z
+ u+ Λ2z

)
dz2

z2
, (1.32)

with the SW differential given by λ = ydz. Here, (y, z) are co-ordinates in

T ?C, whereC is the UV curve. The convenience of the canonical form is that
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it can readily be seen to be of the form det(λ − Φ) = 0. Thus, it is tempting

to also call this the ‘spectral curve form’ of the SW curve. The connection

between the Seiberg-Witten solution and an associated Hitchin system has

numerous consequences and will be a dominant underlying theme in many

of the considerations that follow. This connection is discussed briefly in this

chapter (see the definition of theories of class S below). A more detailed

discussion follows in the next chapter.

1.4 Seiberg-Witten solution of the SU(2), Nf = 4 theory

Having studied the pure SU(2) theory, we now turn to the SU(2)

theory with Nf = 4. As seen earlier, this theory is conformal. When the

hypermultiplet masses are set to non zero values µi, the SW curve for this

theory is given by (in the ‘branched curve’ form),

(x− µ1)(x− µ2)

z
+ f(x− µ3)(x− µ4)z = x2 − u. (1.33)

To see the connection to an underlying integrable system of Hitchin type,

it is convenient to rewrite the above curve in the canonical form (related to

above one by a variable transformation),

λ2 − φ2(z) = 0, (1.34)

where

φ2(z) =
P (z)

(z − 1)2(z − q)2

dz2

z2
, (1.35)
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where P (z) is a polynomial that contains the dependence on the µi. A

schematic of the quantum Coulomb branch is given in Fig 1.3 (with masses

non-zero) and Fig 1.4 (with zero masses).

u

u = −Λ2 u = +Λ2

u = µ1 u = µ2

u = µ3 u = µ4

Figure 1.3: The quantum Coulomb branch of the pure SU(2) theory with
masses µi 6= 0

1.4.1 Mass deformations and the flavor symmetry

The flavor symmetry F of the theory acts on the Higgs branch. When

an arbitrary mass deformation is allowed, the Higgs branch is lifted. A

remnant of the action of the Flavor symmetry is seen in action of the Weyl

group of the flavor symmetry group on the mass parameters. In effect, the
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u

u = 0

Figure 1.4: The quantum Coulomb branch of the pure SU(2) theory with
masses µi = 0.

groupW (F ) acts on the space of deformations of a geometry, in this case the

special Kahler geometry of the Coulomb branch of a 4d N = 2 field theory.

1.4.2 Retrieving the asymptotically free theories

Once the mass deformed version of the Seiberg-Witten solution is

known for a N = 2 SCFT, one can take some of the mass parameters to

be infinite to obtain the asymptotically free theories. This can also be seen

clearly from the schematic of the u plane for the SU(2) theory with Nf = 4

(in the limit where µi →∞).
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1.4.3 Breaking to N = 1

When aN = 2 theory (say with a dynamical scale Λ) is deformed by a

soft breaking termWtree = m
2

tr(ΦaΦa) form < Λ, the moduli spaces of vacua

are lifted and one gets a N = 1 theory with a finite number of vacua. These

vacua can be identified with the singular points on the Coulomb branch of

the original N = 2 theory. At these vacua, N = 1 theories experience con-

finement due to the forming of a condensate of magnetically charged par-

ticles. This realizes, in a concrete manner, ‘t-Hooft’s picture of confinement

as a magnetic version of the Higgs mechanism in many N = 1 theories.

The analysis of the dynamics of N = 1 theories obtained by a soft

breaking of the N = 2 theory with a known Seiberg-Witten solution goes

back to [166]. As a sample of the new insights into the construction and

dynamics ofN = 1 theories in light of recent developments, see [12, 95, 84].

1.5 Seiberg-Witten solution, the Hitchin system and class S

The somewhat special nature of the Hitchin system and the tech-

niques, not all of which are part of the traditional toolkit of a quantum field

theorist, that become available when a particularN = 2 theory is associated

to Hitchin system(s) have motivated the following definition of a subset of

four dimensional N = 2 theories called theories of class S.

Definition 1. Theories of class S : These are four dimensional N = 2 field

theories that possesses a Coulomb branch that can be described using a
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Hitchin system associated to a Riemann surface Cg,n, together with data

that specifies the behaviour of the fields of the Hitchin system at the n sin-

gularities. The Seiberg-Witten curve of such a theory is the spectral curve

associated to the Hitchin system and the Seiberg-Witten differentials are the

conserved Hamiltonians of the integrable system.

The connections between the Seiberg-Witten solution and integrable

systems were first observed in [98, 142, 58]. The language of Hitchin sys-

tems appears first in [58] in the form of certain special cases. The connection

between the more general Hitchin system and a vast class ofN = 2 theories

appears in [87].

A few closely related themes of research are worth mentioning at this

point. Firstly, it is not true that the Seiberg-Witten solution for an arbitrary

N = 2 theory has a relationship to the Hitchin system. There is, however,

still an ‘integrable system’ hovering around the (rigid) special Kahler geom-

etry of the Coulomb branch of manyN = 2 theories. A second theme that is

common across both classes of theories is that the associated integrable sys-

tems admit a two-parameter deformation that is sometimes referred to as a

‘doubly quantum’ integrable system. Physically, this roughly corresponds to

formulating2 the four dimensional theory on an Ωε1,ε2 background. The con-

jecture of Alday-Gaiotto-Tachikawa (which is discussed further in the sec-

tion below and in Chapter 4) can be understood to be a special case of this

2Note that this is not a very precise notion since it is far from clear as to what formulat-
ing one of the non-Lagrangian theories on an Omega background (Ωε1,ε2 ) means.
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general theme. A specialization of this two parameter deformation arises

in the works of Nekrasov-Shatashvili [157], Nekrasov-Pestun [156] and this

includes cases where the associated ‘quantum’ integrable system is not of

Hitchin type. It is notable that quantized versions of the Hitchin integrable

system also play a role in certain approaches to the Geometric Langlands

Program. This connection is outlined further in the next chapter.

1.6 Under the hood

In the rest of the current chapter, certain questions relevant to the

physics of N = 2 theories that are either constrained/determined by the

Seiberg-Witten solution are discussed. One of the remarkable features of

the SW solution is that it encodes in an efficient way atleast a part of the

answers to these questions.

1.6.1 The BPS particle spectrum

Recall that in the maximally supersymmetric N = 4 case, the ability

to understand the spectrum of BPS particles and the fact that the spectrum

was in conjunction with the expectations of Montonen-Olive S-duality con-

stituted major evidence in favor of the S-duality proposal [172, 171]. Sen’s

constructions in these papers were also central to the resurgence of inter-

est in dualities in the study of non-perturbative aspects of four dimensional

quantum field theories.

In the context of N = 2 theories and their description by Seiberg-
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Witten theory, a corresponding question to ask is how the spectrum of one

particle BPS states varies as one moves to different points on the Coulomb

branch. The monodromy data that is part of the SW solution demands a

certain behaviour of this spectrum near the singular points of the Coulomb

branch. A useful way to analyze the behaviour of this spectrum is to calcu-

late the following index (the second helicity super-trace)

Ω(γ;u) ≡ −1

2
TrHBPS(−1)2J3(2J3)2, (1.36)

where γ is the charge of the BPS state, u parameterizes the Coulomb branch

and J3 is a rotation generator in SO(3), the little group associated to massive

particles in four dimensions. The index defined above is piecewise constant

as one varies u and jumps across walls of marginal stability. The jumps ∆Ω

across such walls are now understood to be described by Wall Crossing For-

mulas (WCF) that originally appeared in the study of Donaldson-Thomas

invariants attached to certain Calabi-Yau three folds. A physical interpre-

tation of this formula can be obtained by considering the four dimensional

theory formulated on R3 × S1
R. The low energy theory is described by a 3d

sigma model with a hyper-Kahler target space. When the four dimensional

Coulomb branch is described as the base of a Hitchin system, the target

space of the 3d sigma model obtained upon compactification is the total

space of the Hitchin system. The smoothness of this metric (calculated at

finite R) determines the wall crossing behaviour in the 4d Coulomb branch

[88].

24



1.6.2 Seiberg-Witten solution and the instanton expansion

Recall from an earlier discussion that the complex coupling constant

has the following expansion in an N = 2 theory,

τ(Λ) = τUV −
K

2πi
log

Λ

ΛUV

+
∑
i

αie
− 8πi
g2 . (1.37)

An expansion similar to the above one exists for the prepotential

F (a) as well (recall that τ = ∂2F/∂a2). The non-perturbative terms in the

expansion are determined by the Seiberg-Witten solution in a somewhat

indirect but calculable manner (see [143] for the original work and an ap-

pendix of [186] for a review). It is an interesting question as to whether

such non-perturbative data can be calculated directly from the non-abelian

UV theory by direct instanton calculations. In several cases, this is actually

possible along the lines of [114]. More generally, a technique of formulat-

ing the four dimensional theory on a rigid supergravity background called

the Ωε,−ε background allowed Nekrasov-Okounkov to arrive at the Seiberg-

Witten solution for several N = 2 theories [155].
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A version of the Omega background (more precisely, it is Ωε,ε) of

Nekrasov et al also appears in Pestun’s computation of the full non-perturbative

partition function for several Lagrangian N = 2 theories formulated on the

four sphere via localization techniques [160]. This is also the setting for the

AGT conjecture and forms the subject matter of Chapter 4 where a more

detailed discussion is provided.
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Chapter 2

The view from six dimensions

A central theme that will be exploited in the rest of this dissertation is

the fact that several four dimensional N = 2 theories admit a construction

starting from six dimensions. The starting point in six dimensions is one

of the interacting N = (0, 2) supersymmetric SCFT(s). Such SCFTS have

an A,D,E classification. The construction of the corresponding superconfor-

mal algebra goes back to [152]. The actual construction of such theories is

much more recent [198, 183]. The constructions proceed by considering var-

ious limits in String/M theory where the gravitational degrees of freedom

are decoupled and a local quantum field theory1 describes the remaining

degrees of freedom[170].

In this Chapter, several results about the six dimensional theory and

its behaviour under dimensional reductions are recalled. This class of the-

ories has been called X[j] in recent literature and this nomenclature will be

adopted in what follows. It is sometimes convenient to just talk of ‘the the-

ory X[j]’ but such usage should be understood to always refer to the entire

family.

1In should be noted that there exist limits in String/M theory that yield non-
gravitational theories that are non-local. An example of this is little string theory.
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This theory is superconformal and has osp(6, 2|4) as its superconfor-

mal algebra. This algebra has the following form,

{Qi
α, Q

j
β} = ηij(γm)αβPm. (2.1)

There is a centrally extended version of the above algebra [115],

{Qi
α, Q

j
β} = ηij(γm)αβPm + (γm)αβZ

[ij]
m + (γmnp)αβZ

(ij)
mnp (2.2)

This form of the algebra is important to understand the presence of 1/2

BPS defect operators in the theory. The first type of central term allows for

the existence of 1/2 BPS strings (with a two dimensional world volume)

while the second kind of central terms allows for the existence of 1/2 BPS

codimension two defects (with a four dimensional world volume) [50]. The

latter objects will play a significant role in the discussions that follow.

The basic representation associated to the above algebra is the ten-

sor multiplet. Such a multiplet consists of self-dual, closed three-form Hµνρ

(µ, ν, ρ = 0 . . . 5), five scalars Xk (k = 1 . . . 5) and sixteen fermions ψiα (i =

1 . . . 4, α = 1 . . . 4). The field H is the curvature associated to the two-form

B which has an abelian gauge symmetry,

B′µν = Bµν + (∂µχν − ∂νχµ). (2.3)

One can construct free and interacting theories in six dimensions us-

ing the abelian tensor multiplets. On the other hand, Theory X[j] is, heuris-

tically, a ‘non-abelian’ version of such theories. But, no known construction

of this theory using such a non-abelian version of the tensor multiplet exists

in the literature.
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2.1 Constructions of theory X[j]

The only known constructions of this theory arise as limits of string/M

theory. For j classical, the theory can be viewed as the theory on a stack of

M5 branes. In this picture, M2 branes ending on the M5 branes (placed in

R5 for j = An and in R5/Z2 for j = Dn) become light as the M5 coincide

and provide the light degrees of freedom that live on the brane[183]. An

alternative construction using type II string theory on an ADE singularity

allows one to obtain the cases for exceptional j as well [197]. Neither of these

constructions provide a conventional description of the theory in terms of

Lagrangians and Action principles. In fact, the behaviour of the theory un-

der dimensional reductions gives reason to believe that such a description

can not exist. One can consider various dimensional reduction schemes to

study this six dimensional theory. But, certain simple schemes outline the

surprising properties of this theory in an obvious way. For example,

• Compactification on a circle S1
R of radius R yields 5d maximally su-

persymmetric Yang-Mills theory with gauge group G with a gauge

coupling that grows with the radius R. This can be understood from

the fact that M theory on a R1,9×S1
R reduces to Type IIA string theory

on R1,9 for small values of the radiusR. M5 branes that wrap the circle

are identified with D4 branes in the type IIA theory. The world vol-

ume theory on the stack ofD4 branes is 5d maximally supersymmetric

Yang-Mills with gauge group G.
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• Compactification on a torus T2 yields 4d maximally supersymmet-

ric Yang-Mills theory with gauge group G and with coupling τ that

equals the complex structure of the torus. This can be seen by extend-

ing the above discussion to the case with an additional circle S̃1 and

using the T-duality between type IIA and type IIB when both theo-

ries are compactified on S̃1. The D4 brane compactified on S̃1 is iden-

tified with the D3 brane of type IIB string theory. The world volume

theory on a stack of D3 branes is N = 4 SYM.

Among the other peculiar properties of this theory is the fact that in

the classical cases, the number of degrees of freedom in the large rank limit

behaves as rank(j)3 (see [107] for an argument for type A and [204] for type

D) as opposed to rank(j)2 in conventional Lagrangian theories based on a

gauge group.

Now, a few of the other attempts at constructing the six dimensional

theory and some of their successes will be noted briefly without attempting

a more complete discussion. In the cases where j = An, Dn, there exists an

alternative approach to understanding the six dimensional theory using the

AdS/CFT correspondence. For example, in the case of slN , the AdS dual

description is via M-theory on AdS7 × S4. The rank(j)3 growth of number

the degrees of freedom has been derived using this realization [110]. An ap-

proach using a discrete light cone gauge formulation of the six dimensional

theory has been used in [3] to obtain a realization of the chiral primaries as

certain special co-ordinates in an associated moduli-space.
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2.1.1 Moduli space of vacua

These theories have a moduli space of vacua (called a “Coulomb

branch” by a slight extension of the usual notion of a Coulomb branch)

where the theory is described by interacting abelian tensor multiplets. The

space of vacua is parameterized by the vevs of the scalars in the abelian ten-

sor multiplet. There are 5 × rank(j) of them and the vacuum moduli space

has the following structure,

Mvac = R5 ⊗ h[j]/W [j]. (2.4)

2.2 Theory X[j] as a relative field theory

Unlike quantum gauge theories that genuinely depend on a gauge

group G, the theory X[j] is dependent only on the choice of a lie algebra

j. Further, the theory defined on a six manifold does not have a partition

function, but instead has a partition vector [202, 199]. In all of these re-

spects, the six dimensional theory exhibits some unusual properties. When

considering the dimensional reduction of such a theory to one lower di-

mension, a more conventional dependence on a gauge group G emerges

[77]. If the compactification involves a twist by an outer automorphism of

the Dynkin diagram associated to j, then G is the compact group associated

to the ‘folded’ Dynkin diagram. If the twist is trivial, the G is identical to J ,

the compact lie group associated to j.

This state of affairs is somewhat reminiscent of the dependence of
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the chiral WZW model in 2d on a lie algebra. Much like the six dimensional

theory, the chiral WZW model also lacks a partition function. Both of these

theories can be understood as being ‘relative field theories’ (see [77]). In

the case of the 2d WZW model, a dependence on a group G emerges in

the WZW/Chern-Simons connection where the 2d theory is realized as the

theory on the boundary of a three manifold on which Chern Simons theory

with gauge group G is defined. The analogy between the six dimensional

theory and the WZW model can be used in other contexts as well. Say, for

example, in the study of defect operators of the six dimensional theory (See

discussion in the next section).

2.3 Supersymmetric defect operators

From the supersymmetry algebra, it is clear that the six dimensional

theory has BPS strings and BPS three-brane defects. The latter defects are

alternatively called codimension two defects, reflecting the fact that they are

four dimensional defects in an ambient six dimensional theory. This latter

name has been more common in the recent literature and will be adopted

here. The codimension two defect operators of the six dimensional theory

play a crucial role in the construction of N = 2 theories in four dimensions.

The four dimensional world volume of these defects is expected to support

a 4d N = 2 theory. One would like to know how these degrees of freedom
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on the defect 2 can be coupled to the bulk degrees of freedom. Since the six

dimensional theory lacks a description in terms of Lagrangians and classical

fields, there has been no realization of the above goal.

An alternate strategy to study these defect operators is to consider

the six dimensional theory together with a single defect operator under var-

ious dimensional reduction schemes. This allows one to relate the existence

of the defect operators in six dimensions to the existence of defect operators

in certain lower dimensional field theories. The latter scenario often allows

for more detailed analysis. For example, reducing to four dimensional af-

fords a link with the defect operators of N = 4 SYM with gauge group G.

The modern viewpoint on classifying defect operators in such Lagrangian

field theories is to proceed by describing the behaviour of the bulk fields

near the world volume of the defect [121] together with some additional

data describing the coupling of the bulk fields to the degrees of freedom

that live on the defect. This point of view has allowed detailed investiga-

tions of defects of various dimensions in N = 4 SYM (For example, see

[99, 201, 92]).

Codimension two defects and the Weyl group W [g]

One can also try and understand some properties of these defects by

extending the analogy between the six dimensional theory and the 2d WZW

2When the word ‘defect’ is used without further clarification, it can be assumed to cor-
respond to the codimension two defect of the six dimensional theory or some dimensional
reduced form of it.
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model. In the discussion that follows, it is best to think of the case of chiral

non-compact WZW models based on the lie algebra of a complex group GC.

The codimension two defects of the six dimensional theory are somewhat

analogous to the primaries of the chiral WZW model. The traditional way

of classifying primaries in the WZW model is to look for operators whose

classical limit is of the form Vj = e2(j,φ) where j ∈ h∗. There is a ĝ Verma

module associated to this primary. The most general such primary corre-

sponds to the case of a principal series representation of GC and in this case,

there are no null vectors in the associated Verma module.

For special values of j, such null vectors can appear. Now, it is im-

portant to note that specifying the value of j is a highly redundant way to

tag a primary. This is due to the fact that any Weyl reflection of j would

correspond to the same primary. So, it would be more convenient to have

certain properties associated to the primary Vj which do not change under

Weyl reflections. Luckily, such quantities do exist. These are given by the

values of the quadratic Casimir and other higher Casimir 3 operators (of de-

grees equal ei + 1, where ei are the exponents of g). Let us denote these by

Ik where I2 is the quadratic Casimir. For the most general WZW primary,

these quantities are all independent. However, once null vector relations

appear in the Verma module, the invariants then obey certain relations. The

3By a theorem that is independently due to Chevalley and Harish-Chandra, these Weyl
invariant functions generate the center of the universal enveloping algebra U(g).
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following map,

null vectors↔ relations between Ik (2.5)

can be quite complicated to describe in general. But, it is clear that such a

map exists. A priori, the above discussion may have nothing to say about

the problem of having to describe codimension two defects of the six dimen-

sional theory. The latter are four dimensional objects and their description

is expected to mimic the complexities of a 4d N = 2 field theory. This is

significantly more data than what accompanies a zero dimensional object

like a primary in a WZW model. But, it turns out that there is atleast a pat-

tern that persists between the two examples. As will be shown in the next

chapter, there is a map analogous to the one above,

4d Higgs branch ↔ 4d Coulomb branch (2.6)

that behaves in a very similar way to (2.5). In the above map, the 4d Higgs

branch and the 4d Coulomb branch are to be understood as data that are

strictly local to a single codimension two defect. This analogy with null vec-

tors/invariants can actually be made precise by understanding the AGT pri-

mary map where a primary in a Toda theory is assigned to a given codimen-

sion two defect. The largest such primary corresponds to a ‘self-dual prin-

cipal series’ representation and corresponds to the defect with the largest

Higgs and Coulomb branches.

This primary does not contain any null vectors in the corresponding

W algebra Verma module. Smaller primaries, on the other hand, obey cer-
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tain null vector relations. The data that specifies the null vector relations is

most directly related to the Higgs branch attached to the defect. The Higgs

branch is a hyper-kahler space that can be described as a Slodowy slice in

the nilpotent cone Ng. On the other hand, attached to the primary are cer-

tain invariants ∆k. The pattern of relations among ∆k controls the contri-

bution of the primary to the bootstrap problem (equivalently, to the space

of conformal blocks in this non-rational CFT). By the AGT dictionary, this is

related to the local contribution to the Coulomb branch. Such data is, most

naturally, associated to certain nilpotent orbits in g∨. A detailed picture re-

lating these descriptions is the main subject of Chapter 3 (see the beginning

of Chapter 5 for a summary of the results of Chapter 3). The discussion

above using the WZW model should be seen as an analogy. One way to

make it more precise would be through an understanding of the map be-

tween primaries in gauged WZW models and Toda models. A discussion

of this map for type A appears in Chapter 4.

2.4 Compactification on Cg,n

Now, we discuss the general construction of theories of class S. One

begins with the six dimensional theory with a collection of n codimension

two defects {Di}. Now, formulate the theory on R1,3 × Cg,n together with

a partial twist so that eight of the original sixteen supersymmetries can be

preserved under compactification [86]. The codimension two defects are

taken to span all of R1,3 and live at the punctures on the Riemann surface.
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In a limit where the area of the Riemann surface is taken to zero, this yields a

four dimensional theory with N = 2 supersymmetry. The Riemann surface

C is identified with the ‘UV curve’ from the previous Chapter.

The Seiberg-Witten curve that describes the Coulomb branch of this

theory is the spectral curve of the Hitchin system associated to Cg,n. For

a complete specification of this data, one needs to specify the singularity

structure of the fields in the associated Hitchin system at the punctures. The

nature of the defect Di determines the singularity structure for the Hitchin

fields. The connection to the Hitchin system can be best understood upon

a further compactification of the four dimensional theory on S1 and then

by interchanging4 the order of compactifications [87]. The class of defects

can be classified by the nature of the singularity in the associated Hitchin

system. A deeper investigation into the properties of each defect turns out

to involve simultaneous descriptions that also use Nahm boundary condi-

tions (or a dual Hitchin system) and Toda primary operators. These aspects

are taken up in greater detail in the next chapter. But, we note here the

following taxonomy of defect operators.

• Tame (regular) defects : There are the codimension two defects for

which the associated Hitchin singularity is a simple pole.

• Wild (irregular) defects : These are the codimension two defects for

which the associated Hitchin singularity is a pole of higher order.

4In any such operation, one is using a QFT analog of Fubini’s theorem.
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2.4.1 Flavor symmetries and defects

An important insight in Gaiotto’s construction is the idea that sub-

groups of the flavor symmetries of the four dimensional theory obtained by

compactification from six dimensions can be viewed as being attached to a

particular codimension two defect operator. For example, the SU(2), Nf = 4

theory can be obtained from six dimensions using the A1 theory and com-

pactifying it on a two sphere with four defect insertions. The global symme-

try of this theory is SO(8). In the six dimensional construction, one views

each defect insertion as carrying a SU(2) subgroup of the SO(8) flavor sym-

metry group. So, the construction makes manifest a SU(2)×SU(2)×SU(2)×

SU(2) subgroup of the full SO(8) flavor symmetry. In the most general cases

outside of j = A1, the defect operators can be classified using the structure

theory of nilpotent orbits of a complex semi-simple lie algebra. For a large

class of such regular defects, the flavor symmetry group can also be identi-

fied using this theory (see chapter 3 for more on this). If Di are the defects

and F (Di) are the associated flavor symmetries. Then, the four dimensional

theory obtained on compactifying on a Riemann surface Cg,n with the de-

fects Di has a global symmetry that is atleast
∏

i F (Di). In certain special

cases, the global symmetry is enhanced to a larger group (as in the SO(8)

case above).
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2.4.2 Gaiotto Gluing and generalized S-duality

The six dimensional construction also affords a beautiful geometri-

cal picture of the generalized S-duality that the N = 2 SCFTs obey. Spe-

cific instances of this duality were constructed by Seiberg-Witten[167] and

Argyres-Seiberg[10]. Gaiotto’s construction from six dimensions allows a

vast expansion of the available examples where the nature of this general-

ized S-duality can be analyzed.

Recall that N = 2 SCFTs have a set of marginal coupling constants.

This space is identified with the compactified moduli space of the punc-

tured Riemann surface M g,n. Different factorization limits of the punctured

Riemann surface (alternatively, different boundary point of M g,n) corre-

spond to different limits (potentially Lagrangian) of the same underlying

quantum field theory. In each such limit, a weakly coupled gauge group

appears. But, the ‘matter’ multiplets to which it is coupled may not be con-

ventionalN = 2 matter which admits a description in terms of Lagrangians.

The gauge coupling constant τ of the gauge group that appears in such a

limit is related to the plumbing fixture parameter q of the long cylinder con-

necting the two factorized halves of the Riemann surface,

q = e2πiτ (2.7)

This is schematically expressed in Fig (2.1). In the figure, q = e2πiτ , q′ =

e2πiτ ′ and the groups G and G′ are different in the most general cases. Even

in the cases where G = G′, the weakly coupled gauge fields in one limit of
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the UV curve are not the same as the weakly coupled gauge fields in another

limit of the UV curve. The association of a weakly coupled gauge group G

with gluing data is sometimes called the Gaiotto gluing conjecture.

D1

D2
D3

Dn−2

Dn−1

Dn

{Di}′′ {Di} {Di}′ {Di}′′′G G′

τ τ ′

Figure 2.1: A schematic of generalized S-duality for theories of class S.

2.4.3 Examples

S-duality of N = 2, Nf = 4 theory

The N = 2, Nf = 4 theory is obtained from six dimensions using the

A1 theory and four defect insertions on the four punctured sphere C0,4. The

generalized S-duality of this theory can be understood using different fac-

torizing limits of the four puncture sphere (depicted in Fig below). Denote
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the flavor groups attached to the defect by SU(2)a, SU(2)b, SU(2)c, SU(2)d.

The flavor symmetry groups get permuted under the S-duality transfor-

mations. This reflects the action of the SL(2,Z) symmetry by triality on

the three eight dimensional representations of the flavor symmetry group

SO(8) (See Fig 2.2).

Figure 2.2: S-duality of SU(2), Nf = 4 theory realized as different limits of
the UV curve C0,4
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Argyres-Seiberg duality

The case of Argyres-Seiberg duality corresponds to a construction

using the A2 theory together with a couple (each) of the regular and sub-

regular (in this case, it is the same as minimal) defects taken on a four punc-

tured sphere C0,{2,2}. The associated global symmetries are SU(3) for the

regular defects and U(1) for the minimal defects. This gives a net Flavor

symmetry group of SU(3) × U(1) × SU(3) × U(1). This corresponds well

with the fact that two of the degenerating limits in the UV curve of this the-

ory admit a description in terms of conventional Lagrangians. This is the

direct higher rank generalization of the SCFT of the previous section : the

SU(3) theory with Nf = 6. The third limit, however, does not have such

a Lagrangian description. It turns out to be a SU(2) gauge theory coupled

to a fundamental hyper and a SU(2) gauging of the E6 SCFT of Minahan-

Nemeschansky [146]. This pattern of generalized S-duality is depicted in

Fig 2.3.

This example clearly demonstrates that the answer to the question

“What is the non-perturbative physics of a gauge theory ?” is not even nec-

essarily in the form of another gauge theory. For the class ofN = 2 theories

that arise from six dimensions, this is the generic situation. The cases where

there is a Lagrangian description in every corner of the coupling constant

moduli space correspond to special situations.
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Figure 2.3: Argyres-Seiberg duality realized as different limits of the UV
curve C0,{,2,2}

The list ofN = 2 theories that can be obtained by constructions from

six dimensions is quite vast and this includes infinitely many Lagrangian

field theories and infinitely many non-Lagrangian field theories. A classi-

fication program has been carried out for low rank j in a series of works

[37, 38, 40, 42, 41].

However, there exist many N = 2 theories for which a six dimen-

sional construction is not available. The Seiberg-Witten geometry for some

of these theories can still be obtained by other techniques (See [156] and

[124] for a window into several such cases). For certain other theories, the

solution remains unknown (see [23] for such a list).
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2.5 The Hitchin system

In the rest of the chapter, some useful properties of Hitchin systems

will be recalled. As discussed earlier, the relationship between Hitchin sys-

tems and N = 2 theories is a crucial part of several considerations in Chap-

ters 3-5. The G - Hitchin system on a Riemann surface C is governed by the

following Yang-Mills-Higgs type equations [112],

FA + [φ, φ∗] = 0, (2.8)

∂̄Aφ = 0. (2.9)

where FA is the curvature of a connection A in a G bundle and φ is a Higgs

field in the adjoint representation ofG. The above equations form an elliptic

system and they can be understood as the dimensional reduced version of

the self-dual Yang-Mills equations in four dimensional Euclidean space.

The space of solutions to the above equation is denoted byMH(C,G).

This is a hyper-kahler manifold. In one of its complex structures (usually

denoted by I), the moduli space can be described as the space of Higgs

bundles (the above description). In the other complex structures J , K, the

natural description of this moduli space is quite different (see below).

The hyper-kahler nature of the Hitchin moduli spaces affords the fol-

lowing three viewpoints (see [108, 28] for recent surveys),

• Dolbeaut viewpoint (MH
∼=Mdol) : In complex structure I , the Hitchin

moduli space is the moduli space of Higgs bundles. In other words,
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this is the space of pairs (A, φ) where A, φ are the usual fields of the

Hitchin system.

• de-Rham viewpoint (MH
∼=MDR) : In complex structure J , the Hitchin

moduli space is the moduli space of flat connections on a holomor-

phic vector bundle. This can be seen by building a connection A =

A + φ/ζ + φ̄ζ , ζ ∈ C∗. The Hitchin equations reduce to a flatness con-

straint for ∂ +A.

• Betti viewpoint (MH
∼= MB) : In complex structure K, the moduli

space is the space of conjugacy classes of representations of the fun-

damental group, Hom(π1(C), G)/G. This realization is also termed a

character variety. MB is isomorphic to MDR (in a complex analytic

sense) by the Riemann-Hilbert correspondence which is the relation-

ship between systems of partial differential equations with specified

singularity structure and the possible monodromy data for their solu-

tions.

The Hitchin map takes a Hitchin pair (A, φ) to the characteristic poly-

nomials det(λ− Φ),

fH : (A, φ)→ det(λ− Φ). (2.10)

The Hitchin map is a natural generalization (a spectral curve version)

of the Chevalley restriction map that takes an element of the lie algebra to
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its characteristic polynomial (equivalently, the unordered set of its eigenval-

ues),

fC : g→ h/W. (2.11)

The Hitchin moduli space can be viewed as the following fibration,

MH →fH B, (2.12)

where B is an affine space called the Hitchin base. The fiber f−1
H (u) for a

generic u ∈ B is an abelian variety. This presentation makes it obvious that

the Hitchin system has the further feature of being an algebraic integrable

system.

The Hitchin system associated to C has a spectral curve5 Σ ⊂ T ∗C

defined by det(λ − φ) = 0, where φ is a one form built out of the Casimirs

Tr(φ)k. For theories of class S, this spectral curve is identified with the

Seiberg-Witten curve of the associated N = 2 theory. Let (y, z) be co-

ordinates for T ∗C with z parameterizing C. The canonical differential λ =

ydz on T ∗C restricted to Σ is the SW differential. Further, the Casimirs pa-

rameterize the base B of the Hitchin system. B is identified with the four

dimensional Coulomb branch.

5Mathematically, for Hitchin systems outside of type A, it is sometimes convenient to
think of a ‘cameral cover’ instead of a spectral cover. But, this finer point is ignored here.
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2.5.1 Singularities of the Hitchin system and defects

The construction of solutions to (2.9) can be generalized to the setting

of a Riemann surface with punctures Cg,n. Allowing for this generalization

is crucial in the physical context for this allows one to retrieve some of the

basic examples of N = 2 theories from six dimensions. At the n punctures,

the fields of the Hitchin system (A, φ) have singularities.

The relationship between singularities of Hitchin systems and codi-

mension two defects is best observed by considering a class S construction

(as discussed earlier in this chapter) and further reducing the four dimen-

sional theory on a circle S1 to reduce to three dimensions. Now, invert the

order of reductions from six dimensions. That is, reduce first on S1 (a lon-

gitudinal circle for the defect) and then on C. The reduction on S1 gives

5d SYM with gauge group G along with a codimension two defect of this

theory. Focusing on the behaviour close to a single defect insertion, and

considering the compactification of the 5d theory on C \ {·}, one obtains

the Hitchin equations formulated on C with certain specified singularity

conditions at the defect insertion {·} [87].

In the mathematical literature, the cases with simple pole singulari-

ties are called tame singularities and the ones with higher pole singularities

are called wild singularities. In physical language, this corresponds to two

different classes of codimension two defects,

• Regular defects corresponding to the case of tame singularities (simple
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poles).

• Irregular defects corresponding to the case of wild singularities (higher

poles).

The examples in the previous section correspond to cases where only reg-

ular defects were considered. The regular defects have associated flavor

symmetries (as discussed earlier in the section) and correspondingly, cer-

tain mass deformation parameters. These mass parameters are eigenvalues

of the matrix valued residues at the simple pole for the field φ. When these

mass parameters are set to zero, the theories constructed using the regular

codimension two defects yield certain SCFTs of class S. The SU(2), Nf = 4

theory is a particular example of such an SCFT. The most general such SCFT,

however, is of non-Lagrangian type. By turning on mass deformation pa-

rameters and taking the limit where some/all of the mass parameters are

taken to be infinite, one can obtain the asymptotically free theories of class

S. In this limit, the regular singularities collide and become wilder singu-

larities. Incorporating the case of wild defects is also essential in obtaining

the Argyres-Douglas class of SCFTs and their higher rank generalizations.

For some mathematical background on the moduli spaces of Hitchin

systems with regular singularities (treated as parabolic Higgs bundles), see

[175, 27]. For constructions of the Hyper-kahler structure on such moduli

spaces, see [129, 154]. For the corresponding theory in the case of wild sin-

gularities, see [26]. In the physical context, consequences in the case of wild
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singularities have been explored in [201, 87].

The above results suffice for the purposes of Chapters 3-5. However,

some further themes regarding Hitchin systems are explored in the rest of

the section in the hope that they serve as useful additional background and

possibly as motivation for future work extending Chapters 3-5.

2.5.2 Reduction of the Hitchin system to Nahm equations

A construction of Gukov-Witten (Section 3.8 of [99]) shows that Hitchin

equations (formulated on a space of two real dimensions) reduce to Nahm

equations (on a one dimensional space) under an S1 invariance condition.

Consequently, solutions of Hitchin equations with singularities descend to

solutions of the resulting Nahm equations with pole boundary conditions.

This fact can be useful in extending several results in this dissertation. Here,

a brief explanation of how this extension can be achieved is given.

In subsequent chapters, a Nahm system associated to a complex lie

algebra g and a Hitchin system associated to its Langlands dual g∨ will play

important roles. One way to understand this Nahm system is as part of the

specification of a boundary condition for 5d SYM with gauge group G (see

Section 3.2.3 for example). Viewed from six dimensions, this scenario arises

when the theory X[j] together with a single defect is taken on R2,1 ×H × S1,

where H is a half-cigar 6. Denote the circle of the half-cigar by S̃1. The

6Here, the term half-cigar denotes a circle fibered over R+ such that the fiber shrinks
to zero size at the origin. This geometry is referred to as a ‘cigar’ in most of the physics
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codimension two defect is taken to wrap R1,2 × S̃1 and is placed at the tip

of H . Upon compactifying on the transverse circle S1, one obtains the five

dimensional scenario outlined above.

Now, consider replacing the R1,2 ×H × S1 by R1,1 × Ŝ1 ×H × S1 and

reduce to two dimensions by starting again in six dimensions and reducing

first on Ŝ1 and then on R1,1× S̃1. Note that in this setup, the defect continues

to wrap the first three co-ordinates and the S̃1 of the half-cigar H . So, the

two circles being reduced on are ones which the defect wraps.

Local to the defect, one now obtains the Hitchin equations for g, now

formulated on R+ × S1. Note that both of these are directions transverse to

the original defect in six dimensions. The defect is now described by sin-

gularities for this set of Hitchin equations. Requiring that this construction

of the defect lifts to the 6d construction imposes an S1 invariance condition.

Equivalently, compactify further on S1 (transverse to the defect) and require

that the order of reductions does not matter. So, such defects are, on the

one hand, identified with the pure Nahm boundary conditions (5d view-

point) and as circle invariant singularities in a Hitchin system (2d view-

point). These Nahm and Hitchin systems are now for the same lie algebra

g. The existence of such a common description for the S1 invariant defects

is not surprising given the construction of Gukov-Witten recalled above.

Employing this connection, one could translate the statements made in the

literature even though the second end of a cigar is nowhere to be seen.
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Nahm[g] : Hitchin[g∨] setting to ones in a Hitchin[g] : Hitchin[g∨] setting.

2.5.3 Connections to the Geometric Langlands Program

It turns out that a quantized version of the Hitchin system plays an

important role in an approach to the geometric Langlands program (GLP)

initiated by Beilinson-Drinfeld [17]. In recent years, yet another approach

to the GLP has been initiated by Kapustin-Witten [123] and this takes as its

starting point the S-duality of N = 4 SYM. The two approaches are, heuris-

tically, expected to be related by differing dimensional reductions from the

six dimensional theory with the AGT correspondence playing a mediating

role. In order to clarify this, consider an arbitrary theory of class S and com-

pactify this theory further by formulating it on T2 = S1 × S̃1. The resulting

two dimensional theory is a 2d sigma model with (4, 4) supersymmetry.

Viewed from the vantage point of the six dimensional theory, this amounts

to a net compactification scheme of taking X[j] (together with some defects)

onCg,n×T 2. Now, consider changing the order of compactifications. That is,

compactify first on T 2 to go from six to four dimensions. This yields N = 4

SYM potentially with some defect(s). To get to two dimensions, one further

compactifies the N = 4 theory on Cg,n. This is precisely the setup consid-

ered by Witten & collaborators in the gauge theory approach to the GLP

[123, 99, 81, 91, 79]. In this approach, dual (G and G∨) Hitchin fibrations

over a common base B and the mirror symmetry between the two fibrations

plays a central role. While the subsequent chapters in this dissertation do
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not make a direct connection with either of the approaches to the GLP in

their full glory, unmistakable elements of the Langlands philosophy thread

through the various considerations.

2.5.4 Motivic properties

A feature of the Hitchin system that captures the physics of N = 2

theories under discussion is that many of its properties are of ’motivic’ ori-

gin. This means that the corresponding properties speak to aspects of the

underlying polynomial equations and are independent of the field of defi-

nition of such equations. In other words, if one is interested in a property of

the Hitchin system that can be expressed in terms of purely algebraic data,

one can seek an answer for such a question in a setting very different from

the world of Riemann surfaces (corresponding to the field of definition be-

ing C). For example, one can define a Hitchin fibration for curves over finite

fields. This sets up the possibility of a back and forth of ideas between the

different settings. Problems and tools originally developed in one setting

often allow an extension to others. For an example of such a transfer of

techniques from the geometric to the arithmetic side, see [151] and for a

work that uses arithmetic methods to achieve geometric ends, see [109].
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2.6 Outline for Chapters 3-5

With the preliminaries in place, the motivation and the results of the

subsequent chapters can be outlined in greater detail. As seen earlier, an un-

derstanding of the properties of certain codimension two defect operators

of the six dimensional theory is crucial to understanding the constructions

of 4d N = 2 field theories. The various available descriptions of such de-

fects and the maps between these are the subject matter of Section 3. The

overall picture emerging from these descriptions is summarized with the

help of several detailed tables in Section 5. The focus of Section 4 is on the

partition function of the four dimensional theories on a four sphere. In par-

ticular, the role of the scale factor in the dictionary relating such partition

functions to correlation functions in certain two dimensional non-rational

CFTs is explained. The existence of such a dictionary is part of a large pro-

gram that has come to be called the ‘Alday-Gaiotto-Tachikawa’ conjecture.

Chapters 3 and 4 additionally contain more detailed introductions to their

respective subject material.
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Chapter 3

Describing codimension two defects

3.1 Introduction

The study of defect operators in quantum field theories has a long

history and has received closer attention in recent years. Apart from expos-

ing deep connections to representation theory, such studies turn out to be

useful in the understanding of various non-perturbative dualities. The six

dimensional SCFT X[j] has played a special role in some of the recent devel-

opments along this theme. As discussed earlier chapters, the theory lacks

an intrinsic description in terms of classical fields, Lagrangians and action

principles and thus precludes much direct investigation. Yet, under various

dimensional reductions, this theory can be better understood. The specific

objects that would be the focus of this chapter are certain 1/2 BPS codimen-

sion two defects of theory X[j]. More generally, the objects of interest are

certain four dimensional N = 2 SCFTs (and their massive deformations)

that can be built out of the codimension two defects1. For a large class of

regular (twisted or untwisted) codimension two defect of X[j], we have (fol-

lowing [39] and the general lesson from [120]),

1Henceforth, any invocation of the term ‘codimension two defect’ should be taken to
mean ‘codimension two defects of theory X[j]’.
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• An associated nilpotent orbit in g called the Nahm orbit (ON ). This

arises as a Nahm type boundary condition in 4d N = 4 SYM with

gauge group 2 G on a half space (or equivalently a boundary condition

for 5d SYM with gauge group G on a half space times a circle S),

• An associated nilpotent orbit in Langlands/GNO dual g∨ called the

Hitchin orbit (OH) with some further discrete data that can be cap-

tured by specifying a subgroup of A(OH), where A(OH) is Lusztig’s

quotient of the component group of the centralizer of the correspond-

ing nilpotent element (identified upto g∨- conjugacy). This arises as

a codimension two defect for 5d SYM with gauge group G∨ on a half

space times a circle S̃,

• A semi-degenerate primary of the Toda[g] theory that is given by the

specification of a set of null vectors in the corresponding W-algebra

Verma module.

Here, g is an arbitrary simple lie algebra. For the untwisted defects,

the lie algebra g isomorphic to j and thus simply laced. For the twisted

sector defects, g is the lie algebra corresponding to the folded Dynkin dia-

gram 3. In particular, the twisted sector defects require the cases where g is

2The gauge groupG is compact. But it turns out that the defects of concern are classified
by nilpotent orbits in the complexified lie algebra gC, which will still denote by g to simplify
notation.

3The naming of lie algebras j and g is consistent with how they appear in [39].
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non-simply laced. This set of regular defects will be called the CDT class of

defects in the rest of the Chapter.

The availability of these multiple descriptions is convenient since dif-

ferent aspects of the defects become manifest when expressed in each of

these terms. However, one would expect that each one of these constitute

a partial description of a given codimension two defect. This chapter con-

cerns the relationship between these three descriptions. A dictionary be-

tween the Hitchin data and the Nahm data has already been provided in

[39] for arbitrary g and the discussion here hopes to complement the one

provided in [39]. Further, the relationship of this data to that of a Toda

semi-degenerate primary is explained for a particular subset of defects that

correspond to the Nahm data being a nilpotent orbit of principal Levi type.

The relevant set of Toda operators were obtained in the work of [120] for

type A. In type A, all non-zero nilpotent orbits are principal Levi type. So,

the setup here covers all of them. Outside of type A, there are nontrivial

orbits that occur as non-principal orbits in Levi subalgebras. Extending the

Toda part of the dictionary to such Nahm orbits would be an interesting

problem.

The task that is accomplished here is modest if viewed in the larger

scheme of things and the results only point to a need for more detailed in-

vestigations into the connections between geometric representation theory

and the construction of class S theories. It should be mentioned here that

almost all of the mathematical considerations in this chapter arise from well
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known results and can be found in the existing literature. The one excep-

tion is a certain property that is discussed in Section 5 that places the ‘Higgs

branch Springer invariant’ on a different footing from what one may call a

‘Coulomb branch Springer invariant’. Further, it is hoped that the presentation

of the known mathematical results is in a language that is friendly to physi-

cists. The placing of these results in a physical framework yields some new

insights into the physics and is also likely to motivate future investigations.

The plan of the Chapter is as follows. Section 3.2 offers a review

of some dimensional reduction schemes used in the study of codimension

two defects. Section 3.3 reviews the set of boundary conditions studied by

Gaiotto-Witten and action of S-duality on certain classes of these boundary

conditions. Section 3.4 collects results from the mathematical literature on

order reversing duality maps and the closely related representation theory

of Weyl groups. In Section 3.5, a way to relate the Hitchin and Nahm de-

scriptions is provided using properties of the Higgs branch associated to

the defect. This reproduces the setup of [39] and provides a physical frame-

work for some defining properties of the order reversing duality used in

[39]. Equivalently, this provides the S-duality map for the subset of bound-

ary conditions in N = 4 SYM that correspond to the CDT class of codimen-

sion two defects. In Section 3.7, a map is constructed between the set of

codimension two defects and the set of semi-degenerate primary operators

in Toda theory for the cases where the Nahm orbit is of principal Levi type.
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In Chapter 5, the results in Section 3.5 and Section 3.7 are combined

and the complete setup relating Toda, Nahm and Hitchin data is presented.

Numerous realizations of this setup are collected in the tables in Section

5.2. Sections 3.5,3.7 form the core of the Chapter. It is worth emphasizing

that much of the tight representation theoretic structures become obvious

only with the compiling of detailed tables for various cases. Such tables

are contained in Chapter 5. The arguments in Sections 3.5,3.7 apply for all

simple g. So, the tables include data for the non-simply laced g as well.

These are relevant for local properties of the twisted defects of the theory

X[j], j ∈ A,D,E and for S-duality of boundary conditions between N = 4

SYM with non-simply laced gauge groups G and G∨, where g is the lie al-

gebra corresponding to the folded Dynkin diagram [39]. However, there is

a feature of the setup in the non-simply laced cases that raises some puz-

zles about the case for arbitrary g. This is discussed in Section 3.5.4 of this

chapter and in Chapter 5.

Displaying information in the tables in a succinct way requires the in-

troduction of some notation for nilpotent orbits and irreducible representa-

tions of Weyl groups. This is introduced in Appendices A, B. Also included

are two appendices that provide a short summary of the Borel-de Seiben-

thal method (Appendix C) to find all possible centralizers of semi-simple

elements and the Macdonald-Lusztig-Spaltenstein induction method (Ap-

pendix D).
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3.2 Codimension two defects under dimensional reductions

Let us take the theory X[j] on various six manifolds M6 with the re-

quired partial twists to preserve some of the supersymmetries. For the cur-

rent purposes, it is helpful to recall a small subset of the various reduction

schemes that are helpful while studying the supersymmetric defect opera-

tors in this theory. Each scheme will be summarized by a dot (·) and dash

(↔) table. Unless specified otherwise, the co-ordinate labels in such tables

are in the obvious order implied by the notation for the manifold M6.

3.2.1 R3,1 × Cg,n

Consider the theory X[j] formulated on R3,1 × Cg,n where Cg,n is a

Riemann surface of genus g in the presence of n codimension two defects

Oi. When the area of the Riemann surface tends to zero, an effectively four

dimensional N = 2 field theory is obtained [200, 86].

1 2 3 4 5 6

Oi ↔ ↔ ↔ ↔ · ·

The coupling constant moduli space of such theories is the moduli

space of the Riemann surface with punctures. The low energy effective ac-

tion ofN = 2 theories in four dimensions is captured by the Seiberg-Witten

solution. For these theories obtained from six dimensions, the SW solution

is identified with an algebraic complex integrable system associated to the

Riemann surface Cg,n called the Hitchin system. In particular, the SW curve
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is identified with the spectral curve of the Hitchin system and the SW dif-

ferentials are the conserved “Hamiltonians” of the same.

3.2.2 R2,1 × S1 × Cg,n

Following [87], one can seek a description of the codimension two

defect in terms of a Hitchin system using a compactification on R2,1 × S1 ×

Cg,n, with a codimension two defect wrapping the circle S1.

1 2 3 4 5 6

O1 ↔ ↔ ↔ ↔ · ·

The nature of the defect is captured by the singularity structure of the Higgs

fields near the location of the defect onC. When the Higgs field has a simple

pole,

φ(z) =
ρ

z
+ . . . , (3.1)

it corresponds to the tamely ramified case and corresponding defects are

called regular defects. For regular defects with no mass deformations, the

residue at the simple pole (ρ) is a nilpotent element of the lie algebra j. The

nature of the defect depends only the nilpotent orbit to which element ρ

belongs. While prescribing the behaviour in (3.1) is sufficient to identify a

defect (upto perhaps some additional discrete data), we will momentarily

see that pairs of nilpotent orbits are in some ways a more efficient descrip-

tion of a given codimension two defect. When the poles for the Higgs field

occur at higher orders, it corresponds to the case of wild ramification and

the corresponding defects are called irregular defects [201, 87].
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3.2.3 R2,1 ×H × S1

To see that a pair of nilpotent orbits are relevant for the description

of a single codimension two defect, follow [39] and formulate X[j] on R2,1 ×

H × S1. Here, H is a half-cigar which can be thought of as a circle (S̃1)

fibered over a semi-infinite line. Here again, consider the reduction with a

single defectO1 (along with, maybe, a twist that allows for non-simple laced

gauge groups to appear in five and four dimensions). The fifth co-ordinate

refers to the co-ordinate along S̃1.

1 2 3 4 5 6

O1 ↔ ↔ ↔ · ↔ ·

Upon dimensional reduction in the fifth and six dimensions, this setup re-

duces to the one considered by Gaiotto-Witten [92] in their analysis of super-

symmetric boundary conditions inN = 4 SYM on a half-space. Performing

a reduction first on S1 gives us 5d SYM with gauge group G and a codimen-

sion one defect. Further reducing on S̃1 gives 4d SYM with gauge group G

on a half-space and 1/2 BPS boundary condition that is labeled by a triple

(O, H,B), where O is a nilpotent orbit, H is a subgroup of the centralizer

of the sl2 triple associated to the nilpotent orbit O and B is a three dimen-

sional boundary SCFT. Interchanging the order of dimensional reductions,

one gets 4d SYM with gauge group G∨ on a half space with a dual bound-

ary condition (O′, H ′,B′). In the case of g = AN−1, nilpotent orbits have a

convenient characterization in terms of partitions of N . An order reversing

duality on nilpotent orbits plays an important role in the description of the
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S-duality of boundary conditions. This duality acts as an involution only in

the case of An−1 and fails to be an involution in the other cases. This fail-

ure to be an involution leads to a much richer and complex structure than

the case for type A. This more general order reversing duality will hover

around much of the considerations in the rest of the Chapter and will be

discussed in greater detail in subsequent sections.

3.2.4 R1,1 × R2 × T2

1 2 3 4 5 6

O1 · · ↔ ↔ ↔ ↔

Here, let us consider the reduction with a single defect O1 on R1,1 ×

R2×T2 such that the defect wraps the T2 [39] (again, possibly with a twist).

The theory in four dimensions is now N = 4 SYM with gauge group G and

a surface operator inserted along a surface R2 ⊂ R1,3. This is the kind of

setup considered in [99]. The S-dual configuration is then a surface operator

in N = 4 SYM with gauge group G∨.

3.2.5 Associating invariants to a defect

Under various duality operations, it may turn out that the most ob-

vious description of a given codimension two defect is quite different. So,

it is helpful to associate certain invariants to a given defect which can be

calculated independently in the various descriptions. If the defect comes

associated with non-trivial moduli spaces of vacua, then a basic invariant
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is the dimension of these moduli spaces. For the codimension two defects

in question, one can associate, in general, a Higgs branch dimension and a

graded Coulomb branch dimension. These will correspond to the local con-

tributions to the Higgs and Coulomb branch dimensions of a general class

S theory built out of these defects.

In the work of [39], the graded coulomb branch dimension played an

important role in the interpretation of the role played by an order reversing

duality that related the two descriptions of these four dimensional defects

in their realizations as boundary conditions for N=4 SYM. Here, a comple-

mentary discussion that relies crucially on properties of the Higgs branch

will be provided. To this end, associate an invariant to the defect that will

be called the Higgs branch Springer invariant. This will be an irreducible

representation of the Weyl group W [g](' W [g∨]) and can be calculated on

both sides of the S-duality for boundary conditions in N = 4 SYM. This

will turn out to be a more refined invariant than just the dimension of the

Higgs branch. The discussion will also have the added advantage that it

provides a physical setting for certain defining properties of the order re-

versing duality map as formulated in [179] (and used in [39]). Associated to

this invariant is a number that will be called the Sommers invariant b̃ high-

lighting the fact it plays a crucial role in [179]. Its numerical value equals

the quaternionic Higgs branch dimension.
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3.2.6 An invariant via the Springer correspondence

This invariant is attached to the defect by considering the Springer

resolution of either the nilpotent cone N ∨ or N (depending on which side

of the duality the invariant is being calculated). The discussion in this sec-

tion will be somewhat generic and is meant to give an introduction to the

Springer correspondence. The calculation of the invariant is deferred to a

later section. For some expositions of the theory behind the Springer res-

olution, see [116, 43, 52]. The explicit description of what is known as the

Springer correspondence can be found in [35].

Now, consider the nilpotent varietyN and how the closures of other

nilpotent orbits sit inside the nilpotent variety N . This leads to a pattern

of intricate singularities. For example, in the case of closure of the subreg-

ular orbit Osr inside N [g] for g ∈ A,D,E, we get the Kleinien singularities

C2/Γ where Γ is a finite subgroup of SU(2). Such finite subgroups also

have a similar A,D,E classification. A well known fact is that these singu-

larities admit canonical resolutions. For types Bn, Cn, G2, F4, one can still

obtain a very explicit description of these singularities by considering the

A2n−1, Dn+1, D4, E6 singularities with some additional twist data [177]. The

deeper singularities of the nilpotent variety, however, do not have such a di-

rect presentation. There is however a general construction due to Springer

which is a simultaneous resolution of all the singularities of the Nilpotent

variety. It enjoys many interesting properties and plays a crucial role in the

study of the representation theory of GC. It is constructed in the following
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way. Consider pairs (e, b) where e is a nilpotent element and b is a Borel

subalgebra containing e. This space of pairs is called the Springer variety

Ñ . It is also canonically isomorphic to T ∗B, the co-tangent bundle to the

Borel variety. The Borel variety B is the space of all Borel subalgebras in g

and is also called the flag manifold since elements of the Borel variety stabi-

lize certain sequences of vector spaces of increasing dimension (‘flags’). The

condition that a non-zero nilpotent element e should belong to b leads to a

smaller set of Borel subalgebras that will be denoted by Be. This is a subva-

riety of the full Borel variety. The subvariety so obtained depends only on

the orbit to which e belong. So, a more convenient notation is BO, where O

is a nilpotent orbit containing e. Now, consider the map that just projects to

one of the factors in the pair µ : (e, b) → e. When e to allowed take values

in arbitrary nilpotent orbits, the map µ : Ñ → N provides a simultane-

ous resolution of the singularities of N . For e being the zero element, the

fiber over e, µ−1(0) is the full Borel variety. And, dim(B) = 1
2
dim(N ). For

more general nilpotent elements, this dimension formula is modified to (see

[181, 35])

dim(BO) =
1

2
(dim(N )− dim(O)). (3.2)

Resolutions in which the fibers obey the above relationship belong to

a class of maps called semi-small resolutions. In other words, the Springer

resolution of the nilpotent cone is a semi-small resolution [32]. Apart from

constructing the resolution, Springer also showed that the Weyl group acts

on the cohomology ring of the fiber BO. This action commutes with the
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action of the component group A(O) which acts just by permuting the irre-

ducible components of BO. In particular, the top dimensional cohomology

H2k(BO,C) (with k = dimC(BO)) decomposes in the following way as a

W [g]× A(O) module,

H2k(BO,C) =
⊕

χ∈Irr(A(O))

VO,χ ⊗ χ (3.3)

where χ is an irreducible representation of the A(O) and VO,χ is an irre-

ducible representation of the Weyl group. The component group A(O) is

defined as CG(e)/CG(e)0, where CG(e) is the centralizer of the e in group

GC and CG(e)0 is its connected component. The groups A(O) are known

for any nilpotent orbit O and can be obtained from the mathematical lit-

erature [44, 178]. When the decomposition in (3.3) involves nontrivial χ,

there are non-trivial local systems associated to the nilpotent orbit and VO,χ

corresponds to one of these local systems. In the classical cases, A(O) is

either trivial or the abelian group (S2)n for some n. In type A, the com-

ponent group is always trivial. In the exceptional cases, A(O) belongs to

the list S2, S3, S4, S5. While S2, S3 occur as component groups for numerous

orbits in the exceptional cases, the groups S4 and S5 correspond to unique

nilpotent orbits in F4 and E8 respectively.

In most cases, all irreducible representations of A(O) appear in the

above direct sum (3.3). In cases where this does not occur, the number of

missing representations is always one and the pair (O, χ) is called a cuspidal

pair. Such cuspidal pairs are classified and a generalization due to Lusztig
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incorporates these pairs as well into what is called the generalized Springer

correspondence (see [174] for a review). One can further show that all irreps

ofW [g] occur as part of the summands like (3.3) for some unique pair (O, χ).

The irreps of W [g] which occur with the trivial representation of A(O) (in

other words, those that correspond to some pair (O, 1)) are sometimes called

the Orbit representations of W [g] 4.

Let Irr(W ) be the set of all irreducible representation of W [g] and

let [O] be the set of all nilpotent orbits in g and [Õ] be the set of all pairs

(O, χ), where χ is an irreducible representation of A(O). The nature of the

decomposition in (3.3) defines an injective map,

Sp[g] : Irr(W )→ [Õ]. (3.4)

This injective map is called the Springer correspondence. A specific instance

of this map will be denoted by Sp[g, r] : r 7→ (O, χ) for a unique pair (O, χ) ∈

[Õ].

When the inverse exists, it will be denoted by Sp−1[g, (O, χ)] or (when

χ = 1) Sp−1[g,O]. The following two instances of the Springer map hold for

all g. Let Opr and O0 denote the principal orbit and the zero orbit respec-

tively. Then,

Sp−1[g,Opr] = Id (3.5)

Sp−1[g,O0] = ε, (3.6)

4This terminology however is not uniformly adopted. The name Springer representa-
tion is also used sometimes as an alternative.
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where Id, ε refer (respectively) to the trivial and the sign representations of

W [g]. This is the Springer correspondence in Lusztig’s normalization. In

[35], the Springer correspondence is described in this normalization. Many

geometric notions that one may associate with the theory of nilpotent orbits

like partial orders, induction methods, duality transformations, special or-

bits, special pieces etc. have algebraic analogues in the world of Weyl group

representations. The two worlds interact via the Springer correspondence.

In the context of understanding properties of codimension two de-

fects, an interest in the Springer correspondence can be justified in the fol-

lowing way. For the class of defects under discussion, there is an associated

Higgs branch moduli space which admits at least two different descriptions.

One of them is as the space of solutions to Nahm equations with a certain

boundary condition. This involves a nilpotent orbit in g that will be called

the Nahm orbit ON . The second realization is obtained as the Higgs branch

of theory T ρ[G]. In either case, an invariant to the defect can be assigned

using the Springer correspondence. In the former case, the association is

somewhat direct once the Nahm orbit ON is known. In the latter case, this

invariant will satisfy a non-trivial compatibility condition with properties of

the Springer fiber over another nilpotent orbit OH (the Hitchin orbit in g∨)

that goes into the description of the Coulomb branch of T ρ[G]. Requiring

that this consistency condition hold for all defects will turn out to deter-

mine the pairs (ON ,OH) that can occur in the description of the defect. The

ability to do so is completely independent of the availability of brane con-
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structions and this allows one to understand the exceptional cases as well.

Explaining how this can be done would be the main burden of the following

two sections.

This ends the somewhat brief introduction to classical Springer the-

ory. Here, it is interesting to note that the relationship between the classical

Springer theory discussed above (and its generalizations) and Hitchin sys-

tems have been explored recently in the context of the geometric Langlands

program [99, 150, 18].

3.2.7 An invariant via the Kazhdan-Lusztig Map

An alternative to using the Springer correspondence to define an in-

variant for a co-dimension two defect would be to consider the Kazhdan-

Lusztig map which provides an injection from the set of nilpotent orbits

in g to the set of conjugacy classes in W [g]. This is, in a sense, a dual in-

variant to the one provided by considering the Springer correspondence.

In the context of the four dimensional defects of the theory X[j], one could

consider the compactification scheme of Section 3.2.4. The resulting four

dimensional picture would involve N = 4 SYM with a surface operator,

similar to the setup considered in [100]. There, it was necessary to match

the local behaviour of polar polynomials formed out of the Higgs field in an

associated Hitchin system on the G & G∨ sides for the determination of the

S-duality map. It was argued in [100] that the KL map offered a compact

way to implement this check. Here, this invariant will not play a central
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role. But, it will feature in a discussion of a possible extension of the setup

provided in Chapter 5.

3.3 S-duality of Gaiotto-Witten boundary conditions

Recall that Gaiotto-Witten constructed a vast set of 1/2 BPS bound-

ary conditions forN = 4 SYM on a half space [92]. The most general bound-

ary condition in this set can be described by a triple (O, H,B). Here, O is

a nilpotent orbit. By the Jacobson-Morozov theorem, to every nilpotent or-

bit O is an associated sl2 embedding ρO : sl2 → g. H is a subgroup of the

centralizer of sl2 triple associated to O and B is a three dimensional SCFT

living on the boundary that has a H symmetry. This data is translated to a

boundary condition as below,

• Impose a Nahm pole boundary condition that is of type ρO,

• At the boundary, impose Neumann boundary conditions for gauge

fields valued in the subalgebra h of g,

• Gauge the H symmetry of three dimensional boundary B and couple

it to the corresponding four dimensional vector multiplets.

In talking about these boundary conditions, it is very helpful to al-

ways think of some special cases. Take {O0,Om,Osr,Opr} to refer respec-

tively to {the zero orbit, the minimal orbit, the sub-regular orbit,the prin-

cipal orbit }. The principal orbit is sometimes called the regular orbit in
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the literature but in the discussions here, only the former name will appear.

For the subgroup H , take {Id} to denote the case where the gauge group is

completely Higgsed at the boundary and {G} to be case where it is not Hig-

gsed. For the boundary field theory5 B, the value ∅ corresponds to the case

where there is no boundary field theory that is coupled to the bulk vector

multiplets. A class of boundary theories named T ρ[G] played an important

role in the discussion of S-dualities in [91] and cases where B = T ρ[G] will

turn out to be important in the current discussion as well.

The Higgs and Coulomb branches of these theories are certain sub-

spaces 6 inside the Nilpotent cones N and N ∨. For much of what follows,

various notions associated with the structure theory of nilpotent orbits in

complex semi-simple Lie algebras will be routinely invoked. Accessible in-

troductions to these aspects can be found in [44, 145].

With these preliminaries established, one can now look at how S-

dualities act on some of the simplest boundary conditions. For example,

consider the triple (O0, Id,∅) that corresponds to the Dirichlet boundary

conditions for the gauge fields and (O0, G,∅) corresponds to Neumann

boundary conditions for the gauge fields. One of the important features

of the GW set of boundary conditions is that it is closed under S-duality. But,

the simple minded boundary conditions recounted above get mapped to

5Elsewhere in the dissertation, the symbol B has been used to also refer to the four
dimensional Coulomb branch. This clash in notation is regretted but it should be clear
from the context as to what B refers to.

6 strata would, technically, be a more accurate term.

71



non-trivial boundary conditions. The S-dual of (O0, Id,∅) in a theory with

gauge group G is the boundary condition (O0, G∨, T [G]) in a theory with

gauge group G∨. On the other hand, the dual of (O0, G,∅) is (Opr, Id,∅).

One strong evidence in favor of the identification of S-duality between these

boundary conditions is the fact that dimensions of the vacuum moduli space

of N = 4 SYM with these boundary conditions happen to match on both

sides. In the two cases considered above, the moduli space is the nilpotent

coneN in the first case and a point in the second case. These occurrences of

the S-duality map 7 are listed in table 3.1.

Table 3.1: S-duality of boundary conditions in N = 4 SYM

G−N = 4 SYM G∨ −N = 4 SYM Vacuum moduli space

(O0, G,∅) (Opr, Id,∅) ·
(O0, Id,∅) (O0, G∨, T [G]) N
(Oρ, Id,∅) (O0, G∨, T ρ[G]) Sρ ∩N

We will not be needing the constructions of Gaiotto-Witten in their

full generality. The cases that will be of direct relevance to discussions here

correspond to the ones with a pure Nahm pole boundary condition and its

S-dual case of a Neumann boundary condition along with a coupling to a

three dimensional theory T ρ[G] and certain deformations thereof. In the rest

7We are concerned here just with the Z2 subgroup of the full S-duality group that acts
on the coupling constant as τ∨ = −1/nrτ , where nr is the ratio of lengths of the longest
root to the shortest root.
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of the section, we will look closely at duality between (Oρ, Id,∅) in the the-

ory with gauge groupG and (O0, G∨, T ρ[G]) in the theory with gauge group

G∨. An important point to note here is that the specification of the boundary

condition on the G∨ is incomplete without a description of how the theory

T ρ[G] is coupled to boundary multiplets. In the adopted conventions, the

Higgs branch of T [G] will have a G global symmetry, while the Coulomb

branch has a G∨ global symmetry. So, the natural way to couple T ρ[G]

would be to gauge the global symmetry on the Coulomb branch8 and cou-

ple it to the boundary vector multiplets of the G∨ theory. The Higgs branch

of T ρ[G] is now understood to be the vacuum moduli space of the full four

dimensional theory with this boundary condition. As one may guess, un-

derstanding this instance of the duality map requires a careful study of the

moduli spaces of Nahm equations under different pole boundary condi-

tions and the theories T ρ[G] and their vacuum moduli spaces. Some of the

main elements of such a study are outlined in the rest of the Section.

3.3.1 Moduli spaces of Nahm equations

Various aspects of Nahm equations and their moduli space of solu-

tions are reviewed in [92]. For some other useful works which elucidate

Nahm equation from different points of view, see [55, 11].

8The symmetries on the Coulomb branch are not obvious in any Lagrangian description
of T ρ[G]. So, a more practical way to describe this coupling is to use the description of
this branch as the Higgs branch of the mirror theory Tρ∨ [G]. But, to simplify things, all
statements here are made with the theories T ρ[G].
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In the setting of boundary conditions of N = 4 SYM [92], Nahm

boundary conditions arise as a generalization of the usual Dirichlet bound-

ary conditions. Recall that there are six real scalar fields in this theory. Let
−→
X be the triplet for which Nahm type boundary conditions conditions are

imposed. Formulate the theory on R3 × R+ and let y be a co-ordinate along

R+ with y = 0 being the boundary. Let ρ be a sl2 embedding, ρ : sl2 → g.

Then, the boundary conditions are of the form

dX i

dy
= εijk[X

i, Xj] (3.7)

X i =
ti

y
, y → 0 (i = 1, 2, 3). (3.8)

with ti being a sl2 triple associated to ρ(e, f, h), (e, f, h) being the standard

triple. The first part is the usual Nahm equation while the second part of

the boundary condition modifies it to a Nahm pole boundary condition.

When ρ is the zero embedding, this reduces to the case of a pure Dirichlet

boundary condition. Following the works of Kronheimer [131], it is known

that solutions to (3.8) is a hyper-kahler manifold. Denote this byMρ(
−→
X∞),

where
−→
X∞ are the values of

−→
X at y → ∞. When

−→
X∞ = 0, Mρ(

−→
X∞) is a

singular space. Some special cases are

• ρ is the zero embedding. Here,Mρ(0) is the nilpotent variety N of G.

• ρ is the sub-regular embedding. In this case,Mρ(0) is a singularity of

the form C2/Γ.

• For ρ being the principal embedding,Mρ(0) is just a point.
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In the more general cases,
−→
X∞ is a non-zero semi-simple element

and one obtains a resolution/deformation of the singular space. In this

more general case,
−→
X∞ ∈ t3/W , where W is the Weyl group. Specializ-

ing to
−→
X∞ = (iτ, 0, 0), one gets a resolution of the moduli space of solutions

in one of the complex structures. It turns out that many of the ideas in the

setup just reviewed play an important role in geometric representation the-

ory. From a purely complex point of view, these moduli spaces have been

studied in the works of Grothendieck-Brieskorn-Slodowy [177, 176]. The

general solution to Nahm pole boundary conditions is in fact best described

as the intersection Sρ ∩ N where Sρ is the Slodowy slice that is transverse

(in g) to the nilpotent orbit ρ. The realization of these spaces as solutions to

Nahm equations gives a new hyper-kahler perspective.

3.3.2 Springer resolution of Slodowy slices

Consider the Springer resolution µ discussed in Section 3.2.6. As

already noted, this resolution is semi-small. Now, consider the preimage

of S = Sρ ∩ N under µ, given by S̃ = µ−1(S). It can be shown that

dim(S̃) = dim(N )− dim(ON) (all dimensions are complex dimensions un-

less stated otherwise). The Springer fiber BN = µ−1(e), where e is a repre-

sentative of ON is a space of dimension dim(BN) = 1
2
(dim(N )− dim(ON)).

Further, BN is a Lagrangian sub-manifold of S̃ and can be obtained as a

homotopy retract of S̃ [43, 96]. In particular, H∗(S̃) = H∗(BN). Slodowy’s

construction naturally endows an action of the Weyl group on H∗(S̃) as
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the monodromy representation. This then endows a Weyl group action on

H∗(BN). It is known that this action matches with the one from Springer’s

construction [176] (in Lusztig’s normalization). In particular, H top(BN) is a

W [g]×A(ON) module. In light of the fact that the moduli space of solutions

is actually a hyper-Kahler manifold, it is natural to associate to it a quater-

nionic dimension. Let dimH(Sρ ∩ N ) be the quaternionic dimension. Then,

the dimension formulas immediately imply

dimH(Sρ ∩N ) = dimC(BN). (3.9)

It is convenient to note the above relation since dimC(BN) is often readily

available in the mathematical literature on Springer resolutions.

3.3.3 Vacuum moduli spaces of T ρ[G]

The T ρ[G] theories are certain 3d N = 4 SCFTs that play an impor-

tant role in the description of S-duality of boundary conditions for N = 4

SYM. ForG classical, Gaiotto-Witten provide brane constructions in type IIB

string theory (following the setup of [104]) to describe the boundary condi-

tions. In particular, their setup provides a brane construction of many of the

three dimensional theories T ρ[G]. An example of such a brane construction

for G = SU(N) is given in Fig 3.1. For G exceptional, the theories T ρ[G] ex-

ist although brane constructions are no longer available. There are however

some general features that are expected to be shared by all T ρ[G]. Most no-

table among this is the fact that the vacuum moduli spaces of these theories

arise as certain subspaces of N ×N ∨, where N is the nilpotent cone for the
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Figure 3.1: Brane realization of T [SU(3)]. The D5 linking numbers are li =

(2, 2, 2) and the NS5 linking numbers are l̃i = (1, 1, 1)

lie algebra g whileN ∨ is the nilpotent cone associated to the dual lie algebra

g∨. More concretely [91, 39] let (ON ,OH) denote a pair of nilpotent orbits

in g, g∨. The Higgs branch of T ρ[G] is a hyper-kahler manifold of complex

dimension dim(N )−dim(ON) and the Coulomb branch of T ρ[G] is another

hyper-kahler manifold of dimension dim(OH). It follows that for the cor-

responding four dimensional theory9 on the co-dimension two defect, the

dimensions of the Higgs branch and the Coulomb branch dimension are

dim(N )− dim(ON) and 1
2
(dim(OH)) respectively.

3.3.4 Resolution of the Higgs branch

Recall that under the conventions adopted, the theory T ρ[G] appears

on the side of the duality with 4d SYM for gauge groupG∨ and its Coulomb

branch is a nilpotent orbit in g∨. Upon coupling to the boundary gauge

fields, the Higgs branch of the theory is identified as the vacuum mod-

uli space of the 4d theory with a boundary. The equivalence between this

9Recall T ρ[G] is obtained by compactifying the four dimensional N = 2 codimension
two defect theory on a circle and hence has a Higgs branch of the same dimension and a
Coulomb branch that is twice the dimension of the 4d Coulomb branch.
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Higgs branch and the presentation of the space as Sρ ∩ N is a highly non

trivial assertion but one that can not be checked directly since an indepen-

dent prescription for the Higgs branch does not exist for arbitrary T ρ[G]. In

the discussion here, it will be taken for granted that the S-dual boundary

condition for a Nahm pole boundary condition should indeed involve one

of the theories T ρ[G]. Under this assumption, it will be possible to deter-

mine which of the T ρ[G] arise as part of the dual boundary condition to a

particular Nahm boundary condition. Now, associated to the theory T ρ[G]

are certain Fayet - Iliopoulos (FI) parameters
−→
ζ . The Springer resolution of

the Higgs branch of T ρ[G] can be understood to arise from giving particu-

lar non-zero values to some of the FI parameters [91]. Although an explicit

description of this geometry is not available, one expects this to match the g

description where the resolution parameters entered the Nahm description

as
−→
X∞. The upshot of the argument here is that it makes sense to attach

a Springer invariant to the resolved Higgs branch of T ρ[G]. In Section 3.5,

it will be seen that requiring that the Springer invariant obtained from the

g and g∨ descriptions match is a strong constraint on the relationship be-

tween OH and ON . The next section sets the ground by introducing several

mathematical notions that are critical for Section 3.5.
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3.4 Duality maps and Representations of Weyl groups

3.4.1 Various duality maps

Order reversing duality maps turn out to play an important role in

understanding the physics of T ρ[G] theories and hence of the associated

co-dimension two defects. But, there are different order reversing duality

maps in the mathematical literature and it is helpful to know certain defin-

ing features of these maps to understand the nature of their relevance to

the physical questions. To this end, here is a quick review of the available

duality maps. Let us define the following. The set of all nilpotent orbits

in g will be denoted by [O]. The set of all nilpotent orbits in g∨ will be de-

noted by [O∨]. The special orbits within these two sets will be denoted by

[Osp], [O∨sp]. The notation [O] refers to all pairs (O, C) where O ∈ [O] and

C is an conjugacy class of the group Ā(O). This group Ā(O) is a quotient

(defined by Lusztig) of the component group A(O) of the nilpotent orbit O.

The following order reversing duality maps have been constructed in the

mathematical literature.

The duality map Its action

Lusztig-Spaltenstein dLS : [O]→ [Osp]
Barbasch-Vogan dBV : [O]→ [O∨sp]
Sommers dS : [O]→ [O∨sp]
Achar dA : [O]→ [O∨]

Each of these maps invert the partial order on the set of nilpotent

orbits. For example, the principal orbit is always mapped to the zero orbit
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and the zero orbit is always mapped to the principal orbit. The name ‘order-

reversing duality’ is meant to highlight this fact. The Lusztig-Spaltenstein

map is explicitly detailed in [181] and is the only order-reversing duality

map that strictly stays within g and does not pass to the dual lie algebra. In

this sense, it occupies a different position from the other three maps. The

order reversing map of Sommers [179] (further elaborated upon in [1] and

extended by Achar in [2]) is defined 10 by combining the duality construc-

tion due to Lusztig-Spaltenstein [181] and a map constructed by Lusztig

in [139]. The duality map of Barbasch-Vogan [16] arises from the study of

primitive ideals in universal enveloping algebras (equivalently of Harish-

Chandra modules) and can be thought of as a special case of the duality

maps due to Sommers and Achar.

Everytime an order reversing duality map is used, it will be explic-

itly one of the maps summarized in the table above. The order reversing

duality that is used in [39] is the Sommers duality map dS . If one forgets

the additional discrete data associated to the special orbit that arises on the

g∨ side, this reduces to the duality map of Barbasch-Vogan, dBV . In [39], the

name Spaltenstein dual is used for describing a duality map that passes to

the dual lie algebra. This terminology is potentially confusing if one wants

to compare with the mathematical literature and will not be adopted here.

All of these maps are easiest to describe when their domain is restricted to

10One could equivalently view the Sommers map as being defined in the opposite direc-
tion, dS : [O∨

sp]→ [O]. The way it is written here is the direction in which it is invoked in
[39].
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just the special orbits. It is an important property of the maps that they act

as involutions on the special orbits. Considering the case of special orbits in

g = so8, g∨ = so8. In this case, all the above maps coincide and their action

is best seen as the unique order reversing involution acting on the closure

diagram for special orbits.

[7, 1]

[5, 3]

[5, 13][42]′ [42]′′

[32, 12]

[24]′ [24]′′[3, 15]

[22, 14]

[18]

Figure 3.2: Hasse diagram describing the closure ordering for special nilpo-
tent orbits in so8.

As one further remark, let us note here a particular subtlety. Even in

scenarios where dLS and dBV have identical domain and image, they could

disagree. For example, in the case of g = F4, g∨ = F4. So, the domain and

the image for dLS are identical to that for dBV . But, dLS and dBV disagree for

certain nilpotent orbits (see the Hasse diagram for F4 in [39]).

An important feature of all the duality maps is their close interaction

with the Springer correspondence and consequently with the representa-
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tion theory of Weyl groups. In fact, some of the maps are defined using the

Springer correspondence. So, any attempt to gain a deeper understanding

of how the duality maps work is aided greatly by a study of the representa-

tion theory of Weyl groups. In the rest of the section, some of the elements

of this theory are recounted.

3.4.2 Families, Special representations and Special orbits

Let Irr(W ) denote the set of irreducible representation of the Weyl

group W . There is a distinguished subset of Irr(W ) called special repre-

sentations that are well behaved under a procedure known as truncated

induction (or j induction, see Appendix D) and duality. To explain this,

denote the set of special representations by SW . Now, let sp be a special

representation of a parabolic subgroup Wp. Requiring that the identity rep-

resentation be special and considering all parabolic subgroups of a Weyl

group and proceeding inductively, define s to be special if s = jWWp
(sp) for

some parabolic subgroupWp and additionally s′ = i(s) is also special. Here,

i(s) refers to Lusztig’s duality which in almost all cases acts as tensoring by

the sign representation. The exceptions are certain cases in E7 and E8 which

will be discussed at a later point (See Section 5.2.7). Proceeding in this fash-

ion, Lusztig determined the set of all special representations in an arbitrary

Weyl group in [137].

Another important notion that is defined inductively is that of a cell
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module11. This is a not-necessarily irreducible module of W that, again, has

some very nice properties under induction and duality. The trivial repre-

sentation Id is defined to be a cell module by itself. One arrives at the other

cell modules in the following way. Let c be a cell module of Irr(W ) and cp

be a cell module of a parabolic subgroupWp ofW . Consider their behaviour

under two operations for arbitrary subgroups Wp,

c′ = ε⊗ c, (3.10)

c′′ = IndWWp
(cp), (3.11)

where Ind is the usual induction (in the sense of Frobenius) from a parabolic

subgroup. Requiring that the above two operations always yield another

cell module determines all the cell modules in W [g] for every g. The struc-

ture of these cell modules has what may seem like a surprising property.

Each cell module has a unique special representation as one of its irreducible

summands. Additionally, the representations that occur as part of a cell

module that contains a special representation s occur only in the cell mod-

ules that contain s as the special representation. This structure suggests a

certain partitioning of Irr(W ) [138]. It is of the following form 12,

Irr(W ) =
∐
s

fs (3.12)

11An equivalent term is that of a ‘constructible representation’ but the term cell module
will be preferred.

12There is an equivalent partitioning of Weyl group representations using the idea of a
two-cell of the finite Weyl group. Henceforth, the term family will be used uniformly.
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where s is a special representation. An irrep r occurs in the family fs if

and only if it occurs in a cell module along with the special representation

s. In type A, all representations are special and hence the above partition-

ing reduces to the statement that each irreducible representation of W (An)

belongs to a separate family in which it is the only constituent. This sim-

ple structure however does not hold for Weyl groups outside of type A.

The general case includes non-special representations which occur as con-

stituents of some of the families fs. So, a typical family contains a unique

special representation (which can be used to index the family as in 3.12) and

a few non-special representations. Associated to each family are the cell

modules in which the representation s occurs as the special summand. As

an example of a family with more than one constituent, consider the unique

non-trivial family in D4 (see Appendix B.1.3 for the notation adopted),

f([2,1],[1]) = {([2, 1], [1]), ([22],−), ([2], [12])}. (3.13)

The special representation in this family is given by ([2, 1], [1]) and the cell

modules that belong to this family are

c1 = ([2, 1], [1])⊕ ([22],−), (3.14)

c2 = ([2, 1], [1])⊕ ([2], [12]). (3.15)

To every irreducible representation of a Weyl group, Lusztig assigns a cer-

tain invariant such that it is constant within a family and unique to it. Its

value is equal to the dimension of the Springer fiber associated to the special
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element in a given family. For the family in the example discussed above,

the a value is 3 and it is the unique family in W (D4) that has a = 3. Here,

it is appropriate to also note that one of the earliest characterizations of spe-

cial orbits was via the Springer correspondence. A nilpotent orbit O in g

is special if and only if Sp−1[g,O] is a special representation of the Weyl

group. Alternatively, a non-special orbit O is the one for which Sp−1[g,O]

yields a non-special irrep ofW . Note that some irreps correspond under the

Springer correspondence to non-trivial local systems on O. So, not every

non-special representation is associated to a non-special orbit. For example,

in D4,

Sp[D4, ([2
2],−)] = ([3, 22, 1], 1) (3.16)

Sp[D4, ([2], [12])] = ([32, 12], ψ2), (3.17)

where ψ2 is the sign representation of S2, the component group of [32, 12].

In the first case above, the Springer correspondence assigns a non-special

representation to a non-special orbit while in the second case, it assigns a

non-special representation a non-trivial local system on a special orbit. The

structure of the cell modules can now be seen as

c1 = special orbit rep⊕ non-special orbit rep (3.18)

c2 = special orbit rep⊕ non-orbit rep.

For all families with three irreducible representations, the cell structure fol-

lows an identical pattern to the one just discussed. The special orbit together
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with all the non-special orbits to which the Springer correspondence assigns

(when the orbits are taken with the trivial representation of the component

groups) Weyl group irreps that are in the same family as that of the special

representation (assigned to the special orbit by Sp−1) form what is called a

special piece [135]. Geometrically, it is the set of all orbits which are contained

in the closure of the special orbit O but are not contained in the closure of

any other special orbit O′ that obeys O′ < O in the closure ordering on spe-

cial orbits. Note that in the example above, there is a cell module which con-

tains all the Orbit representations corresponding to the special piece. The

tables in Chapter 5 show, explicitly, that this pattern persists for every spe-

cial piece in low rank classical cases and all the exceptional cases. That this

pattern actually persists for every special piece can be shown using certain

results in [139] (the summary of results at the end of pg. xiii and the be-

ginning of pg. xv are most pertinent here)13. Further, the relevant results in

[139] also imply that the number of orbits in the special piece is equal to the

number of irreducible representations of the finite group Ā(O∨) for some

special orbit O∨ in the dual lie algebra. A weaker statement that the Orbit

representations of a special piece belong to the same family is available in

[135].

For larger families, the overall structure of cell modules is substan-

tially more complicated than (3.19). For example, consider the family in

W (E8) that contains the special representation φ4480,16 [35],

13 I thank G. Lusztig for correspondence on these matters.
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fφ4480,16 = {φ4480,16, φ7168,17, φ3150,18, φ4200,18, φ4536,18, φ5670,18,

φ1344,19, φ2016,19, φ5600,19, φ2688,20, φ420,20, φ1134,20,

φ1400,20, φ1680,22, φ168,24, φ448,25, φ70,32}.

This family has a = 16 and has a total of 17 irreps which organize themselves into the following seven

cell modules,

c1 = φ4480,16 ⊕ φ7168,17 ⊕ φ3150,18 ⊕ φ4200,18 ⊕ φ1344,19 ⊕ φ2016,19 ⊕ φ420,20 (3.19)

c2 = φ4480,16 ⊕ φ7168,17 ⊕ φ3150,18 ⊕ φ4200,18 ⊕ φ5670,18 ⊕ φ1344,19 ⊕ φ5600,19 ⊕ φ1134,20

c3 = φ4480,16 ⊕ φ7168,17 ⊕ 2φ4200,18 ⊕ φ4536,18 ⊕ φ5670,18 ⊕ φ1344,19 ⊕ φ5600,19 ⊕ φ1400,20 ⊕ φ168,24

c4 = φ4480,16 ⊕ φ7168,17 ⊕ φ3150,18 ⊕ φ4536,18 ⊕ 2φ5670,18 ⊕ 2φ5600,19 ⊕ φ1134,20 ⊕ φ1680,22 ⊕ φ448,25

c5 = φ4480,16 ⊕ φ7168,17 ⊕ 3φ4536,18 ⊕ 3φ5670,18 ⊕ 2φ5600,19 ⊕ 2φ1400,20 ⊕ 3φ1680,22 ⊕ φ448,25 ⊕ φ70,32

c6 = φ4480,16 ⊕ 2φ7168,17 ⊕ φ3150,18 ⊕ φ4200,18 ⊕ φ4536,18 ⊕ φ5670,18 ⊕ φ2016,19 ⊕ φ5600,19 ⊕ φ2688,20

c7 = φ4480,16 ⊕ 2φ7168,17 ⊕ φ4200,18 ⊕ 2φ4536,18 ⊕ 2φ5670,18 ⊕ 2φ5600,19 ⊕ φ2688,20 ⊕ φ1400,20 ⊕ φ1680,22.
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Here again, c1 is the collection of all Orbit representations in the fam-

ily and the corresponding orbits form a special piece (see the table for E8 in

Section 5.8 ). The patterns in the other cell modules for this family are not

very obvious.

In the following sections, the various notions introduced in this sec-

tion will play an important role. For a more detailed exposition of the theory

of Weyl group representations, see [139, 35].

3.5 Physical implications of duality maps
3.5.1 CDT class of defects via matching of the Springer invariant

Recall from the discussion of S-duality of 1/2 BPS boundary condi-

tions in N = 4 SYM that the vacuum moduli space of the theory on a half

space has two different realizations. One is its realization in the G descrip-

tion and the other is its realization in the G∨ description. For the examples

considered, the former was as a solution to Nahm equations with certain

pole boundary conditions. The solution is in general of the form Sρ ∩ N ,

where ρ is a nilpotent orbit in g. On the G∨ side, this space is realized as

the Higgs branch of theory T ρ[G]. Recall that the Higgs branch is a (singu-

lar) hyper-kahler space. So, the above statement in particular means that

the metric on the moduli space is the same in both realizations. There is, at

present, no known way to check this equality for arbitrary cases. However,

there is strong evidence that the above identification holds for all Oρ in any

simple g.
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The S-duality map however would be incomplete if one could not

say something about what the Coulomb branch of T ρ[G] should be. It is

the Coulomb branch of T ρ[G] that is gauged and coupled to the boundary

gauge fields on the G∨ side. In [91], in the case of type An, it is shown

that the Coulomb branch of T ρ[G] is given by a nilpotent orbit in g∨ = An

whose partition type is P T , the transpose of the partition type P of the or-

bit ρ. Geometrically, transposition on the partition type acts as an order

reversing duality on the set of nilpotent orbits taken with the partial order

provided by their closure ordering[44]. So, in the more general cases, one

can guess that something similar to the case of An prevails and descrip-

tion of the Coulomb branch of T ρ[G] will involve an order reversing duality

between the data on the g and the g∨ sides. Before the more general case

is discussed, consider the case of g = su(N) and a hypothetical scenario

where one did not know that the right S-duality map between boundary

conditions picks out the T ρ[SU(N)] that has a Coulomb branch given by a

dual nilpotent orbit as the correct theory to couple at the boundary in the

description of the S-dual of Nahm pole boundary condition of type partition

type P . If, however, one is convinced that the boundary condition on theG∨

side should involve one of the T ρ[G] theories, then there is a unique theory

whose Higgs branch matches the dimension of Sρ ∩ N . This theory would

be the obvious candidate for the boundary theory on the G∨ side. And this

theory has as its Coulomb branch the nilpotent orbit P T . One could call

this argument dimension matching, for merely requiring that the dimensions
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of the moduli space in its two realizations match turns out to completely

specify the duality map. Outside of type A, the above argument can’t be

carried out directly for there are different T ρ[G] that have Higgs branches of

the same dimension.

Additionally, for certain G in the classical types, the quivers that de-

scribe T ρ[G] turn out to be ‘bad’ in the sense of [91]. This complicates the

description of the IR limit of the associated brane configurations. More-

over, when G is of exceptional type, a quiver description of the three di-

mensional theory is no longer available. In this context, it is convenient to

use a more refined invariant which will be called the Higgs branch Springer

invariant. It has the advantage of being calculable for all G and can distin-

guish T ρ[G] that have Higgs branches of the same dimension. The point of

view pursued here is that once the interaction between the representation

theory and the vacuum moduli spaces of T ρ[G] is understood forG classical

(where brane constructions are available), then the available results from

representation theory can be used to understand cases for which there is no

brane construction available. Such a point of view is additionally supported

by the fact that the corresponding representation theoretic results are highly

constrained and enjoy a degree of uniqueness. This is also the point of view

adopted in [39] whose setup is what we are seeking to arrive at, albeit by a

different route.

Let us now proceed to associate a Higgs branch Springer invariant

on both sides of the S-duality map and require that they match. The irrep
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that occurs in this matching will be called r̄. It seems suitable to call this

check for the S-duality map as Higgs branch Springer invariant matching, or

r̄-matching for short. This invariant r̄ is calculated on the g in a straightfor-

ward manner,

r̄ = Sp−1[slN ,ON ]. (3.20)

From the brane constructions, we know that nilpotent orbits that enter the

description of the Higgs and Coulomb branches of T ρ[SU(N)] are related

by an order reversing duality between the nilpotent orbits. The analogue

of an order reversing duality at the level of Weyl group representations is

tensoring by the sign representation ε. And, indeed, one sees that the r̄

obtained as in (3.20) above obeys

r̄ = ε⊗ Sp−1[slN ,OH ]. (3.21)

Alternatively, one can require that

Sp−1[slN ,ON ] = ε⊗ Sp−1[slN ,OH ] (3.22)

and this, in turn, determines ON for a given OH .

Now, it is natural to try and generalize this for other g. For arbitrary

g, the Springer correspondences in g∨ and g would give irreps of W [g∨] and

W [g]. Since there is a canonical isomorphism between the two, it is natural

to parameterize the irreps of the two Weyl groups in a common fashion (see

Appendix B and [35]). This would also allow one to formulate a ‘matching’

argument along the lines of 3.22. This does turn out to be hugely helpful as

91



this simple-minded generalization specifies the duality map in numerous

cases. Let us for a moment consider case where Hitchin data is (OH , 1).

Merely requiring that

Sp−1[g,ON ] = ε⊗ Sp−1[g∨,OH ], (3.23)

one can obtain the order reversing duality map for all ON special except for

the cases discussed in Section 5.2.7. One can handle all the cases uniformly

by replacing the RHS in (3.23) with the unique special representation in the

family of ε⊗ Sp−1[g∨,OH ]. This version of the duality operation that imple-

ments a fix for the ‘exceptional’ (in the sense of Section 5.2.7 ) cases is due to

Lusztig. In the discussion below, the duality operation will continue to the

represented as tensoring by sign with the understanding that, if needed, the

above fix can always be applied to the definition.

Now, consider the following equivalent formulation of Eq (3.23),

Sp−1[g,ON ] = Sp−1[g, dLS(OH)] , (3.24)

where dLS is the Lusztig-Spaltenstein order reversing duality map

that stays within the lie algebra g. The equivalence of the above formulation

to Eq (3.23) follows from a property of the map dLS when acting on special

orbits,

Sp−1[g, dLS(O)] = ε⊗ Sp−1[g,O]. (3.25)

From (3.24), we get the order reversing duality for the cases where

ON is special. For the other cases, one has to formulate a more sophisticated
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argument. Before we get to that, let us try to understand how the Springer

invariant can be calculated when we allow for a particular symmetry break-

ing deformation in the bulk on the g∨ side.

The boundary condition on the g∨ side involves N = 4 SYM on a

half space with a coupling to a three dimensional theory T ρ[G] that lives on

the boundary. Now, deform this boundary condition by giving a vev to the

adjoint scalars of the bulk theory. Let this vev be some semi-simple element

m ∈ T∨. Now, in the m → ∞ limit, the bulk symmetry is broken from G∨

to L∨, where l∨ is a subalgebra that arises as the centralizer Zg∨(m). Pick

m such that a representative e∨ of the Coulomb branch orbit OH is a distin-

guished nilpotent element in l∨. Taking the m → ∞ limit gives a boundary

condition inN = 4 SYM with gauge group L∨ with the theory at the bound-

ary being T ρ̃[L], where ρ̃ refers to a nilpotent orbit Oρ̃ in l, the Langlands

dual of l∨. Let us call such a deformation of the boundary condition on the

G∨ side a distinguished symmetry breaking (d.s.b),

(O0, G∨, T ρ[G]) −→d.s.b (O0, L∨, T ρ̃[L]). (3.26)

The above deformation can be done for any boundary condition of the form

(O0, G∨, T ρ[G]) inN = 4 SYM. When l∨ is a Levi subalgebra, this procedure,

in a sense, reproduces the Bala-Carter classification of nilpotent orbits in g∨

(see Appendix A and [35]). Let us briefly restrict to the case where l∨ is

indeed a Levi subalgebra. In what follow, it is helpful to note that every

distinguished orbit is special and dLS always acts as an involution on special
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orbits. Now, associate an irrep of W [l∨] to the Coulomb branch of T ρ̃[L] in

the following way,

s = Sp−1[l∨, dLS(Ol∨

H )], (3.27)

where dLS is the duality map that stays within l∨. Now, it turns out that the

following is always true,

r̄ = j
W [g∨]
W [l∨] (s), (3.28)

where r̄ is Higgs branch Springer invariant defined earlier and the opera-

tion j
W [g∨]
W [l∨] refers to Macdonald-Lusztig-Spaltenstein induction from irreps

of the Weyl subgroup W [l∨] to the parent Weyl group W [g∨] (See Appendix

D). The j induction procedure is sometimes also called truncated induction.

It plays a critical role in the interaction of Springer theory with induction

within the Weyl group and especially in isolating how the W [g∨] module

structure of H top(B) can be induced from a W [l∨] module structure. More

generally, the cohomology in lower degrees also obey certain induction the-

orems (see, for example [136, 193]). For the current purposes (associating

a Springer invariant to the defect), only the structure of H top(B) is relevant

and hence (3.28) is sufficient.

Now, (3.28) allows us to rewrite the matching condition (3.24) as

s = Sp−1[l∨, dLS(Ol∨

H )]

Sp−1[g,ON ] = j
W [g∨]
W [l∨] (s)

(3.29a)

(3.29b)

The above matching condition determines the pairs ON ,OH for ON

being a special orbit. Different ON arise on the g side when the various

94



non-conjugate Levi subalgebras l∨ are considered on the g∨ side. The nilpo-

tent orbit Oρ̃ that appears in (3.26) can now be identified by the condition

Sp−1[l,Oρ̃] = s.

Apart from this highly constraining structure, the matching condi-

tion (3.29) additionally enjoys the following beautiful feature. In order to

extend the domain of the duality map to include cases where ON is non-

special, all that one has to do is to allow for l∨ to be an arbitrary centralizer

and not just a Levi subalgebra. These more general centralizers are what are

called pseudo-Levi subalgebras in [179]. These are classified by the Borel-

de Seibenthal procedure which proceeds by enumerating the non-conjugate

subsets of the set of extended roots associated to g∨ (See Appendix C).

So, by allowing l∨ to be a pseudo-Levi subalgebra in which a repre-

sentative e∨ of the Hitchin orbit OH is distinguished, one obtains an order

reversing duality map that recovers the entire CDT class of defects. Here, it

is worth noting that a combinatorial shadow of the cohomological matching

condition (3.29) is the fact that there is a bijection between the set of Som-

mers pairs (e∨, l∨), where e∨ is a representative of a special orbit in g∨ and

the set of all nilpotent orbits in g. This pattern reappears in many non-trivial

relationships that tie representation theoretic constructions associated to g

and g∨ under the broader Langlands philosophy [134].

Now, by Sommers’ extension of the Bala-Carter theorem [178], this

more refined data on the Hitchin side is actually equivalent to specifying

(OH , C) where C is a conjugacy class in Ā(OH). Ā(OH) is always a Coxeter
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group. Within this Coxeter group, there is a well defined way to translate

data of the form (OH , C) to something of the form (OH , C) [1], where C is

the Sommers-Achar subgroup of Ā(OH) (in the notation and terminology of

[39]). For non-special Nahm orbits, this subgroup C enters the description

of the Coulomb branch data in a crucial way as explained in [39]. One also

observes that the map between Hitchin and Nahm data offers the following

distinction between special and non-special Nahm orbits in the language of

boundary conditions forN = 4 SYM. WhenON is special, the distinguished

symmetry breaking deformation on the G∨ side produces a theory on the

boundary whose Coulomb branch is a distinguished orbit in a Levi sub-

algebra l∨. On the other hand, when ON is non-special, the distinguished

symmetry breaking deformation on the G∨ side produces a theory on the

boundary whose Coulomb branch is a distinguished orbit in a pseudo-Levi

subalgebra l∨ that is not a Levi subalgebra. The description given here is

the exact definition of the map in [179] 14. Here, the definition is placed in a

physical context.

3.5.2 Local data

Once the dictionary between the Nahm/Hitchin data is established,

one has the following immediate consequences for some of the local prop-

14To avoid confusion, it is useful to note that in the notation adopted here, nontrivial
local systems appear on the g∨ side, while they appear on the g side in Sommers’ notation.
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erties of the codimension two defects [39],

dimH(Higgs branch ) =
1

2

(
dim(N )− dim(ON)

)
, (3.30)

dimC(Coulomb branch) =
1

2
dim(OH). (3.31)

Further, the contributions to the trace anomalies a, c and the flavor central

charge k can also be determined as outlined nicely in [39]. Before turning to

the Toda description, here are some further comments which future work

can presumably clarify.

3.5.3 Novel nature of the matching conditions

In the discussion in the early part of this Section, a particular sym-

metry breaking deformation is applied to the four dimensional theory that

was called distinguished symmetry breaking. In fact, outside of type A, this

was an essential part of the matching constraint on the duality map if one

seeks solutions with ON being non-special. It is worthwhile to highlight

that one is able to retrieve the Springer invariant for the undeformed theory

(UV) from the Springer invariant for the deformed theory (IR) by using the

truncated induction procedure.

This structure of the matching conditions suggests that one should

think of the family of defect theories T ρ[G] (or alternatively, the boundary

conditions of the 4d N = 4 SYM) ‘inductively’. In other words, to under-

stand T ρ[G], one first understands T ρ̃[L] for L∨ being certain subgroups of

G∨ and then proceed by induction on semi-simple rank of G to cover all the
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cases. The procedure to find all solutions to the matching condition pro-

ceeds exactly in this fashion.

To further this point of view, it would be interesting to explore the

relationship between other calculable observables of these theories under

operations that are analogues of truncated induction. In this direction, it is

notable that there have been recent advances in the understanding of the

Hilbert Series and S3 partition functions of 3d N = 4 theories (see, for ex-

ample [122, 103, 47, 54, 46] ).

3.5.4 The appearance of endoscopic data

Let the connected component of the centralizer in the group G∨ of

the semi-simple element m∨ be L∨. The complex lie algebra associated to

this group is the pseudo-Levi subalgebra l∨. Now, upon taking Langlands

duals, one observes that l is not necessarily a subalgebra of g. Data of this

form occurs for specific choices of the semi-simple element m∨. Such cases

are termed15 ‘elliptic endoscopic’. The general method to compute all cases

of ‘elliptic endoscopy’ is using the Borel-de Siebenthal algorithm (See Ap-

pendix C ). Here is a simple example of such an occurrence.

15More concretely, the corresponding group LC would be an elliptic endoscopic group
for GC. Such scenarios play an important role in the framework of geometric endoscopy
explored in [81].
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An example of elliptic endoscopic data

Take G∨ = SO(2n + 1). The connected component of the centralizer

of a semi-simple element M = m diag(1,−1,−1, . . . ,−1) ∈ G∨ is the group

L∨ = SO(2n). Its lie algebra is l∨ = so(2n) and this is an example of a

pseudo-Levi subalgebra that is not a Levi-subalgebra. Taking Langlands

duals at the level of lie algebras, g = sp(2n), l = so(2n). so(2n) is not a

subalgebra of sp(2n).

The general pattern here suggests that there is a relationship between

the Slodowy slices Sρ ∩ Ng and S ρ̃ ∩ Nl (understood to be Higgs branches

of T ρ[G] and T ρ̃[L] or Coulomb branches of their corresponding 3d mirror

theories) even when the geometry of nilpotent orbits in g is wildly differ-

ent from that in l. This relationship should, in a sense, be a ‘dual’ of the

relationship offered by distinguished symmetry breaking on the g∨ side.

3.6 Mass deformations for regular defects

Here, the general picture for understanding mass deformation is out-

lined. Denote by F the flavor symmetry group associated to a regular de-

fect. This is a connected, reductive group. It arises as the centralizer of the

sl2 triple (e, f, h) ∈ g that is associated to the Nahm orbit ON . Consider the

maximal torus of the flavor symmetry group, T(F ). Let µ ∈ h(F ) be a semi-

simple element. It follows that [µ, e] = 0. Now, denote the dual element in

h? as µ∨. One expects that µ∨ acts as a mass deformation. In other words,
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there is a semisimple orbit in g∨ (denoted by ρ(µ∨)) such that in the µ∨ → 0

limit, one obtains the nilpotent orbit corresponding to e∨. In other words,

the Higgs field in the Hitchin singularity for the undeformed defect has the

following behaviour,

φ =
ρ(e∨)

z
+ . . . , (3.32)

where ρe∨ is a representative of the nilpotent orbit associated to e∨. The

mass deformed defect is then given by,

φ =
ρ(µ∨)

z
+ . . . (3.33)

where ρ(µ∨) is a representative of the semi-simple orbit associated to µ∨ and

further, limµ∨→0(ρ(µ∨)) = ρ(e∨).

A scenario where the above setup can be realized, atleast in principle,

is when orbit OH is an induced orbit (in the sense of Lusztig-Spaltenstein

induction [140]). But, there exist special orbits which are not induced. There

are called rigid special orbits. Their existence suggests that one should look

at an ‘affine analogue’ of orbit induction for a setup of the above form to be

realized. Of particular interest would be cases where the special orbit that is

part of the Hitchin data has a non-trivial special piece associated to it. This

is left for future work.

3.7 The part about Toda

In light of the observations of AGT-W [6, 203], it is expected that the

sphere partition function of a theory of class S (built using codimension two
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defects of X[j] as in 3.2.1) can be expressed as a correlator in a two dimen-

sional Toda CFT of type g. Let us briefly recall some facts about Toda CFTs.

They are described by the following Lagrangian on a disc with a curvature

insertion at infinity,

ST =
1

2π

∫ √
ĝd2z

(
1

2
ĝab∂aφ∂bφ+

rank(g)∑
i=1

2πΛe2b(ei,φ)

)
+

1

π

∫
(Q, φ)dθ + (. . .),

(3.34)

where ei ∈ h∗ are the simple roots of the root system associated to g, φ ∈ h

is the Toda field and Q = b+ b−1. A special case of Toda[g] is Liouville CFT.

It corresponds to the case g = A1. Recall that the chiral algebra of Liouville

CFT is the Virasoro algebra. The chiral algebra of the more general Toda[g]

theories are certain affine W algebras. These theories have conserved cur-

rentsWk(z) of integer spins k. The spectrum of values {k − 1} in a partic-

ular Toda[g] theory is equal to the set of exponents of the lie algebra g. The

unique spin 2 conserved current in this set is the stress tensorW2(z) = T (z).

TheW-algebras that arise in such theories have the additional prop-

erty that they can be obtained by a Hamiltonian reduction procedure from

affine Lie algebras which arise as the chiral algebras of non-compact WZW

models. This procedure admits a generalization for every σ : sl2 → g and

this allows one construct other W algebras. When σ is taken to be principal,

then one obtains the usual Toda[g] theories. It is only the Toda[g] theories

that will concern us in what follows since this is the setting for the direct

generalizations of [6, 203] to arbitrary theories of class S. While Toda theo-

ries exist for both simply laced and non-simply laced g, the discussion that
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follows will be confined to the case g(∼= j) ∈ A,D,E. If one were to consider

the twisted defects and seek a Toda interpretation for them, an adaptation of

much of the arguments below for g ∈ B,C, F4, G2 would likely be relevant.

When trying to build an understanding of the AGT conjecture for an

arbitrary theory of class S, a good starting point is to have the following

local-global setup in mind,

• Local aspects of the AGT conjecture : This is the claim that the regular

codimension two defects of the X[g] admit a description in terms of

certain primary operators of the principal Toda theory of type g. Let

us call this part of the AGT dictionary the primary map ℘. This map is

a bijection from the set of defects to the set of semi-degenerate states

(borrowing terminology from [120]) in the Toda theory and concerns

data that is local to the codimension two defect insertion on the Rie-

mann surface Cg,n and does not involve the Riemann surface in any

way.

• Global aspects of the AGT conjecture : If the description of the four di-

mensional theory involves compactification of X[g] on Cg,n, then the

sphere partition function (including non-perturbative contributions)

of this theory is obtained by a Toda correlator on Cg,n with insertions

of the corresponding primary operators of Toda theory at the n punc-

tures. The identification of the corresponding Toda primary is done

according to the map ℘. The identification of the conformal block with
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the instanton partition function is a crucial ingredient in the global

AGT conjecture. Checks of the conjecture for the sphere partition func-

tion in cases of arbitrary g are available in specific corners of the cou-

pling constant moduli space where Lagrangian descriptions become

available for the four dimensional theories[6, 203].

In the discussion above, a choice was made to restrict to four dimen-

sional SCFTs obtained by the compactification from six dimensions involv-

ing just the regular defects. But, it is interesting to note that the formalism

associated to the AGT conjecture can also be extended to the cases where

SCFTs are built out of irregular defects16 as in [29, 90, 118] and certain as-

pects extend to the case of asymptotically free theories (See, for example

[85, 125]). There exist generalizations which involve partition functions in

the presence of supersymmetric loop and surface operators of the 4d the-

ory (See, for example [5, 63, 62] and [7]). Some of the mathematical im-

plications that follow from the observations of AGT have been explored in

[33, 153, 165, 144]. For a more complete review of the literature, consult

[184].

The global AGT conjecture suggests that the OPE of codimension

two defects of the six dimensional theory is controlled by the W-algebra

symmetry of the Toda theory. While this is powerful as an organizing idea,

it is particularly hard to proceed in practice as the non-linear nature of W

16The terminology of regular and irregular defects is from [201, 87].
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algebras complicates their representation theory. In the discussion that fol-

lows, the goal is only to establish the primary map for as many defects as

possible in arbitrary g. In particular, global aspects of the AGT conjecture

or any of its generalizations are not analyzed (except for a discussion about

scale factors).

3.7.1 The primary map ℘

In the original work of AGT, this map was obtained for the case ofA1.

There is just a single nontrivial codimension two defect 17 in this case. So,

the map is particularly straightforward to describe. After setting the radius

of the four sphere to be unity (see Chapter 4 for how the radius dependence

on the overall partition function can be analyzed), this map can be described

as

℘ : [12]N → e2αφ | α = Q/2 + im, (3.35)

where φ is the Liouville field. In the map above, the Nahm orbit is used

to identify the defect operator. The defect could have alternatively been

identified by the Hitchin orbit associated to it, namely the orbit [2]H . But, it

will turn out that the Nahm orbit is the one that is convenient for obtaining

the generalization of this for arbitrary g. So, it is convenient to use it to tag

a particular codimension two defect. Two important aspects of the above

map are

17The trivial defect (the defect corresponding to the principal Nahm pole) is always
mapped to the identity operator on the 2d CFT side.
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• A precise identification of <(α)

• An identification of =(α) with im where m is a mass deformation pa-

rameter.

An identification similar to the one above for the mass parameter m

exists for the Coulomb branch modulus a. In both of these cases, a distin-

guished real subspace of the N = 2 theory’s parameters is picked out in

writing the map to the corresponding Liouville primary.

To extend these argument to higher rank cases, a natural thing to try

and obtain is a generalization of the primary map ℘ that is in the same form.

Say,

℘ : ON → e(α,φ) | α = <(α) + =(α), (3.36)

with some prescribed conditions on <(α) and =(α) that depend on ON .

Here, φ ∈ h is the Toda field and it is a r-dimensional vector of scalar fields

where r is the rank of g and α ∈ h∗ is the Toda momentum. The relevant

primaries for the case of An were identified in [120] (a precise formulation

in terms of the Nahm orbit data is provided below). The general picture is

that ℘ maps the zero Nahm orbit to the maximal puncture while the other

Nahm orbits are mapped to certain semi-degenerate primary operators in

the corresponding Toda theory. The principal Nahm orbit is mapped to

the identity operator. The semi-degenerate primaries of [120] contain null

vectors at level-1 with the exact number and nature of these null vectors

depending on the associated Nahm orbit. Combinatorially, specifying the
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level-1 null vectors amounts to specifying a certain subset of the simple

roots in the root system associated to An. One gets the relationship to the

Nahm orbit by noticing a very natural connection between subsets of sim-

ple roots and nilpotent orbits in An. This connection is offered by the Bala-

Carter classification of nilpotent orbits in g. For a quick summary of the

work of Bala-Carter, see Appendix A and for a more detailed18 account, see

[44, 35, 25]. For the current purposes, the important fact will be that the

Bala-Carter classification amounts to specifying a pair (a, e) where a is the

semi-simple part of Levi subalgebra of g and e is a distinguished nilpotent

element in that subalgebra.19

Levi subalgebra are naturally classified by non-conjugate subsets of

the set of simple roots. When e is principal nilpotent in a Levi subalgebra,

the corresponding orbit is called principal Levi type 20. It turns out that

all the non-zero orbits in type A are principal Levi type. In particular, the

combinatorial data associated to a Nahm orbit by the Bala-Carter theory is

precisely the subset of simple roots corresponding to the subalgebra a. Once

the combinatorial data is placed in the setting of nilpotent orbits, a reason-

able generalization would be to consider all principal Levi type orbits in

18I thank Birne Binegar for correspondence and for sharing some related unpublished
work.

19The Levi subalgebra occurring in this discussion should not be confused with the Levi
subalgebra l∨. The former is a subalgebra of g and arises as part of the Nahm data while
the latter is a subalgebra of g∨ and is part of the Hitchin data.

20Interestingly, certain finite W algebras associated to nilpotent orbits of principal Levi
type also play an important role in the mathematical approach to a variant of the original
setup of AGT [33], extended to arbitrary g.
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arbitrary g. The combinatorial data assigned to such orbits is always a sub-

set of the simple roots of the root system associated to g. Additionally, let F

denote the reductive part of the centralizer of the triple (e, f, h) associated to

the Nahm orbit. This is the global symmetry associated to the Higgs branch

of the codimension two defect, or equivalently of T ρ[G] [39]. Now, the mass

deformation parameters of T ρ[G] (and hence of the defect) are valued in a

Cartan subalgebra of f. In particular, the number of such linearly indepen-

dent parameters is equal to rank(f). For any non-zero orbit of principal Levi

type, this quantity is necessarily non-zero. It is a general property that

rank(f) = rank(g)− rank(a). (3.37)

Now, consider a Toda primary with momentum α ∈ Λ+ that obeys

(<(α), ei) = 0, (3.38)

0 ≤ <(α) ≤ Qρ,

=(α) = 0,

where ei is any simple root in the root system corresponding to the subalge-

bra a and ρ is the Weyl vector of g and the relation ≤ is in the partial order

on the set of dominant weights Λ+. Imposing the above conditions would

also mean, in particular, that (α, ρa) = 0, where ρa is the Weyl vector of the

subalgebra a. When the Nahm orbit associated to codimension two defect

is principal Levi type, I argue that (3.38) provides the right Toda primary in

the massless limit. A piece of evidence that supports such a statement is the
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following. Let us write <(α) as a combination of the fundamental weights

of g

<(α) = aiωi, (3.39)

where ai 6= 0 and {ωi} is some subset of the fundamental weights. Now,

deform the Toda momentum such that it acquires an imaginary part given

by

=(α) = miωi, (3.40)

so that (α, ei) = 0 holds for all ei being simple roots of a. The mi introduced

above are the mass parameters that one would associate with the codimen-

sion two defect. And the total number of such linearly independent param-

eters will equal the number of fundamental weights occurring in (3.39) and

this is equal to precisely rank(f), as expected. For type A, the above proce-

dure reproduces the semi-degenerate primaries considered in [120] 21. For

non-zero orbits that are not principal Levi type, one natural guess is that

the level-1 null vectors that are imposed are still given by the set of simple

roots that one associates to the Bala-Carter Levi. In these cases, a nilpotent

representative will correspond to a non-principal distinguished nilpotent

orbit in a. This corresponds to picking a further subset of the simple roots

of a. This additional combinatorial data may presumably be translated to

null vector conditions at higher level, but this needs to be made precise.

The case of non-principal Levi type orbits for which rank(f) is zero would

21This point was made in [15] using the Dynkin weight h of the Nahm orbit.
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be particularly interesting since the mere existence of such cases challenges

the wisdom that =(α) should give rise to an associated mass deformation.

In g = E8, for example, all orbits that are distinguished in a = E8 have

rank(f) = 0. To give some idea about how many of the nilpotent orbits in g

tend to be of principal Levi type, the data for certain low rank g is displayed

in Table 3.2.

It should be mentioned here that one can device some local checks

of the map ℘ that are sensitive to the Coulomb branch data. In [120], it

was checked that the behaviour of the Seiberg-Witten curve near the punc-

tures is reproduced in a ‘semi-classical’ limit of the Toda correlators together

with insertions of the currents Wk(z). This is really a direct check on the

local contribution to the Coulomb branch from a Toda perspective. Here,

the map between the Nahm and Hitchin data obtained in the previous sec-

tion already provides a candidate for the local contribution to the Coulomb

branch from a Toda primary whose Nahm orbit is principal Levi type. But,

a direct check of this assertion would be more pleasing.

3.7.2 Local contributions to Higgs and Coulomb branch dimensions

As just discussed, once the relation between the Nahm data and the

Toda primary is known, one can use the dictionary between the Nahm/Hitchin

data to associate a Hitchin orbit to a Toda primary. With this, the effective

contribution to the local Higgs branch and the local Coulomb branch from

a particular Toda primary can be inferred. From the tinkertoy constructions
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Table 3.2: Nilpotent orbits of principal Levi type in certain Lie algebras

g # of Nilpotent orbits # of principal Levi orbits

A4 7 7
B4 13 12
C4 14 12
D4 12 11
E6 21 17
E7 45 32
E8 70 41
F4 16 12
G2 5 4

[39], the following expressions are known for nh−nv (the total quaternionic

Higgs branch dimension) and d (the total Coulomb branch dimension) in

terms of the Nahm and Hitchin orbit data for each defect (OiH ,OiN),

(nh − nv) =
∑

(nh − nv)i + (nh − nv)global (3.41)

d =
∑
i

di + dglobal (3.42)

with

(nh − nv)i =
1

2

(
dim(N )− dim(OiN)

)
= dim(BiN) (3.43)

di =
1

2
dim(OiH) (3.44)

and

(nh − nv)global = (1− g)rank(g) (3.45)

dglobal = (g − 1)dim(g) (3.46)
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3.7.3 Local and Global contributions to Scale factors in Toda theories

As a simple illustration of the local-global interplay, one can consider

how the scale factor in the sphere partition function that captures the Euler

anomaly of the four dimensional theory is calculated. From a purely four

dimensional perspective, the Euler anomaly is very well understood in the

tinkertoy constructions. In following chapter, the radius dependent factor

in the sphere partition function is made explicit and the relation to a corre-

sponding scale factor in the two dimensional CFT is pointed out.
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Chapter 4

Euler anomaly and scale factors in Liouville/Toda
theories

4.1 Introduction

In several investigations of the dynamics of theories of class S (in-

troduced in Chapter 1), it has become increasingly clear that various ob-

servables of this class of theories admit an efficient description using the

language of two dimensional physics. A particular example of such an ob-

servable is the partition function of the four dimensional theory defined on

a sphere (ZS4). Following Pestun’s evaluation of the partition function for a

subset of class S theories theories via localization [160] and the construction

of these theories using the (0, 2) six dimensional theory SCFT X[j] [86, 87],

AGT noticed the remarkable fact that the partition functions in type1 g = A1

coincide with certain correlators in a particular Liouville conformal field

theory [6]. They further conjectured (see also [203] in this regard) that an

analogous relationship exists for partition functions of various higher rank

theories and corresponding Toda correlators. Many checks of this proposal

are available in specific corners of the moduli space where the four dimen-

1The lie algebras j, g have the same interpretation as in the earlier chapters.
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sional theories admit a Lagrangian description as a weakly coupled gauge

theory along with conventional matter multiplets. At other corners of the

moduli space (which happen to be the vast majority), one runs into the fol-

lowing predicament. On the four dimensional side, the localization tech-

niques do not extend as there is no known Lagrangian description. On

the two dimensional side, a complete analytical understanding of the cor-

responding Toda correlators is missing. One of the initial motivations for

the work in this chapter was to partly alleviate this situation by pointing

out that the AGT dictionary can very easily be expanded to include an ob-

servable that is much better understood, namely the Euler anomaly of the

four dimensional SCFT. Borrowing ideas from the tinkertoy constructions,

I propose a framework for calculating this dependence. This framework is

of independent interest and can potentially shine light on certain aspects

of the tinkertoy constructions. While the Chapter is confined to theories of

type An, the results from the previous chapter can be used to extend it to

arbitrary type.

4.2 Partition function on S4 and the Euler anomaly

For any four dimensional theory that is defined on a four sphere, it is

expected that the logarithm of the sphere partition function has a divergent

piece that is proportional to the Euler anomaly a [34]. This is an important

observable for any CFT since it is a measure of the massless degrees of free-

dom in the CFT. In [34], it was also conjectured that such a measure exists
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at all points along a renormalization group flow and that its value strictly

decreases as more degrees of freedom are integrated out. A version of this

conjecture has recently been proved in [128]. The goal here is to focus on

the class S SCFTs and make the dependence on the Euler anomaly manifest

in their sphere partition functions. We will begin by considering the case

of conformal class S theories with Lagrangian descriptions. A definition of

these theories on the round four sphere and a localization scheme to eval-

uate the partition function of the theory so defined2 was described by Pes-

tun [160]. This construction was recently extended to the case of the more

general case of an ellipsoid S4
b [102]. In much of the literature on the AGT

conjecture, the dependence of the partition function on the Euler anomaly

is not made explicit3. In the original work of [160], this was not necessary

as the corresponding factors in the partition function cancel in the calcula-

tion of expectation values of BPS Wilson and ’t-Hooft loop operators4. For

the purposes of this work, it would be important to make this dependence

explicit. The considerations in this Chapter will be restricted to analyzing

the case of a round sphere.

While the focus here is solely on the physical N = 2 theories, it is in-

teresting to note that the dependence made explicit here has a cousin in the

world of topological QFTs obtained from twisting the Lagrangian N = 2

theories. In the evaluation of their partition functions on a general four

2See also [74] and [66] on the question of defining such theories on curved manifolds.
3For considerations of similar issues in three dimensions, see [117].
4I thank V.Pestun for a discussion.
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manifold (with non-zero Euler characteristic χ and signature σ), the mea-

sure in the path integral has an explicit dependence on the anomaly param-

eters a, c [173].

4.2.1 Localization on the four sphere

For a general superconformal N = 2 theory with matter in repre-

sentation W of the gauge group G taken on a sphere S4 of radius R0, the

one loop functional determinant around the locus of classical solutions on

which the theory localizes was evaluated in [160]. It takes the following

form,

ZW
1−loop =

∏
α∈weights(Ad)

∏∞
n=1((α.aE)2 + µ2n2)n∏

w∈weights(W)

∏∞
n=1((w.aE)2 + µ2n2)n

.

The hypermultiplet masses have been set to zero and µ = R−1
0 . Let us focus

our attention on a prototypical infinite product that occurs in these determi-

nants and go through with the steps of regularizing it. We choose the one

in the numerator of the example just studied and rewrite it as

∞∏
n=1

((α.aE)2 + µ2n2)n =
∞∏
n=1

(i(α.aE) + µn)n(−i(α.aE) + µn)n.

Each factor can further be rewritten as

∞∏
n=1

(i(α.aE) + µn)n =

∏
n,m∈N2(i(α.aE) + µm+ µn)∏

n∈N(i(α.aE) + nµ)
, (4.1)

where N2 is the set of all (m,n) such that m,n ∈ N = 0, 1, 2, . . .. The form

of the infinite product in the numerator is very suggestive of a regularizing

scheme using the Barnes double zeta function ζB2 . For the denominator, the
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Hurwitz zeta function seems like the appropriate choice. Let us recall the

sum representation for ζB2 ,

ζB2 (s, x; a, b) =

m=∞,n=∞∑
m=0,n=0

(x+ am+ bn)−s.

ζB2 (s, x) can be analytically continued to a meromorphic function which has

poles when x = −n1a − n2b. We can use ζB2 to regulate infinite products

using the following (formal) identity

∏
n,m∈N0

(x+ma+ nb) = e−ζ
B′
2 (0,x;a,b).

Before the products in this problem are regularized, it is helpful to note

that under a scaling transformation that takes (x, a, b) → (kx, ka, kb), the

new regularized product is related to old product in the following way (the

additional steps are reviewed in Appendix E.1)

∞∏
n,m=0

(k(x+ma+ nb)) = kζ
B
2 (0,x;a,b)e−ζ

B′
2 (0,x;a,b).

Similar equations hold for the Hurwitz zeta function. Now, using x =

i(α.aE), k = µ, a = 1, b = 1, (4.1) is regularized to∏
n,m∈N2(i(α.aE) + µm+ µn)∏

n∈N(i(α.aE) + nµ)
= µζ

B
2 (0,i(α.aE);1,1)−ζH(0,i(α.aE))e−ζ

B′
2 (0,i(α.aE);1,1)+ζH

′
(0,i(α.aE)).

Further noting that

ζB2 (0, x; 1, 1) =
5

12
− x+

x2

2
,

ζH(0, x) =
1

2
− x,
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and

e−ζ
B′
2 (0,x;1,1)+ζH

′
(0,x;1,1) = G(1 + x),

where G(z) is the Barnes G function, 5 the regularized product becomes

µ−
1
12

+
α.a2E

2 G(1 +
iα.aE
µ

).

Thus the total contribution from each root in (4.2.1) is

µ−
1
6

+(α.a2E)2G(1 +
iα.aE
µ

)G(1− iα.aE
µ

).

Regulating each piece in a similar way and definingH(z) = G(1+z)G(1−z),

ZW
1−loop =

∏
α∈weights(Ad) µ

−1/6H( iα.aE
µ

)∏
w∈weights(W) µ

−1/6H( iw.aE
µ

)
.

In the above step, the expression has been simplified using the condition for

vanishing beta function

∑
α∈weights(Ad)

(α.aE)2 =
∑

w∈weights(W)

(w.aE)2.

Let us specialize to the case of G = SU(N) and Nf = 2N . This gives,

Z
Nf=2N

1−loop,SU(N) = µ
1
6

(N2+1)

∏
α∈weights(Ad) H( iα.aE

µ
)∏

w∈weights(W) H( iw.aE
µ

)
. (4.2)

The µ dependent factor in front of the product of H functions in (4.2) will

play an important role in the identification of the Euler anomaly in the next

section.

5For a summary of properties of the Barnes function and other special functions that
appear in this Chapter, see Appendix E.2.
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4.2.2 The Euler anomaly

All the necessary tools required bring out the dependence of the

sphere partition function on the Euler anomaly are now assembled. From

[160], the general form of the partition function (including non-perturbative

contributions) is

ZS4 =

∫
a∈g

dae−Scl(a,µ)Z1−loop(a, µ)|Zinst(a, µ)|2,

where Scl = 8π(a,a)
g2µ2

and Z1−loop is given by (4.2). Zinst is the Nekrasov parti-

tion function defined on a Ωε1,ε2− background with ε1 = ε2 = µ. This can be

reduced to an integral over the Cartan subalgebra h ⊂ g

ZS4 =

∫
a∈h

daV(a)e−Scl(a,µ)Z1−loop(a, µ)|Zinst(a, µ)|2, (4.3)

where V(a) is the Vandermonde determinant. It is now convenient to change

variable from a to ã = a/µ. Note here that the form of Scl and Zinst are such

that they are independent of µwhen expressed in terms of ã. So, the integral

in the new variables is

ZS4 = µ(N2−1)+ 1
6

(N2+1)

∫
ã∈h

dãV(ã)e−Scl(ã)Z1−loop(ã)|Zinst(ã)|2. (4.4)

The exponent of µ in the above expression can be identified as 4a where a

is the Euler anomaly of the theory. This factor should be proportional to

χa where χ is the Euler characteristic of the curved manifold on which the

theory is defined. To fix conventions concretely, one can follow [65] and set

Z−1µ
∂Z

∂µ
= −

∫
dx4〈T jj 〉 = 2χa. (4.5)
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In a theory with NS real scalars, NF Dirac fermions and NV vector fields, a

(as normalized above) is given by

a =
1

360
(NS + 11NF + 62NV ). (4.6)

Recall that a N = 2 vector multiplet is the equivalent of a vector field, two

real scalars and a single Dirac fermion and that a N = 2 hypermultiplet is

the equivalent of four real scalars and one Dirac fermion. So, for a N = 2

theory with nv vector multiplets and nh hyper multiplets,

4a = nv +
nh − nv

6
. (4.7)

From (4.4), calculate

Z−1µ
∂Z

∂µ
= (N2 − 1) +

N2 + 1

6
. (4.8)

and note that the result equals 4a for the theory. Noting that χ(S4) = 2, this

indeed matches with (4.5). For Lagrangian theories (like the ones consid-

ered so far), parameterizing a by nv, nh is the most obvious choice for these

correspond to the number of vector multiplets and the number of hyper-

multiplets. Often, this is used for arbitrary theories with the understanding

that it is just a convenient parameterization of the trace anomalies. It is then

appropriate to call nh and nv the effective number of hypermultiplets and

vector multiplets. The formula for the other trace anomaly c is given by

c =
nv
4

+
nh − nv

12
. (4.9)
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For a general class S theory obtained by taking theory X[g] on Cg,n, the

quantities nv and nh − nv are related to the dimensions of vacuum mod-

uli spaces in a simple fashion. Let dk denote the graded Coulomb branch

dimension, that is the number of Coulomb branch operators of degree k. nv

is given by

nv =
∑
k

(2k − 1)dk. (4.10)

(nh − nv) on the other hand is equal to the quaternionic Higgs branch di-

mension when there is such a branch. For theories without a true Higgs

branch, one can still associate a maximally Higgsed branch whose quater-

nionic dimension is nh − nv upto some abelian vector multiplets[89],

dimQ(H) = nh − nv + g rank(g). (4.11)

The total nh and nv for any theory is computed as in [39],

nh =
∑
i

nih + nglobalh , (4.12)

nv =
∑
i

niv + nglobalv , (4.13)

where the global contributions 6 are given by [19, 4]

nglobalh =
4

3
(g − 1)ĥ(dimG),

nglobalv = (g − 1)(
4

3
ĥdimG+ rankG), (4.14)

6The central charge of the Toda CFT of type g also has a similar presentation owing to
the fact that it too can be obtained from the anomaly polynomial in six dimensions[30, 4].
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where ĥ is the dual Coxeter number and nih, n
i
v are the local contributions

from a codimension two defect. In the rest of the Chapter, the goal will be to

understand how the Euler anomaly (4.8) is encoded in the Liouville/Toda

correlators assigned to a general class S theory of type g = An.

4.3 Scale factors in Liouville correlators

In this section, the prefactor that encodes the Euler central charge is

shown to have a natural role in Liouville theory. It will be identified with the

scale factor for the stripped correlator. A plausible path integral argument

for how this scale factor arises is provided for the simplest case of a three

point function and will be used to get some intuition for the appearance

of such a factor. For higher point functions, such a luxury does not exist

and one would have to resort to calculating them directly from the scaling

behaviour of the Υ functions that occur in the DOZZ formula.

Recall that Liouville field theory on a Riemann surface C is defined

by the following action (written with an unconventional normalization, φ =

φ̂/6 where φ̂ is the Liouville field in the usual normalization),

SL =
1

72π

∫ √
ĝd2z

(
1

2
ĝab∂aφ∂bφ+ 3QR̂φ+ 2πΛe2bφ

)
, (4.15)

where z is a complex co-ordinate on the C. This theory is conformal upto a

c− number anomaly. While the observables of the theory depend only on

the conformal class of the metric g on C, it is often convenient to perform

calculations by choosing a particular reference metric ĝ in the same confor-
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mal class as g. The action above is written in terms of this reference metric.

The physical metric is given by gab = e
2φ̂
Q ĝab. The stress energy tensor for

this theory is a shifted version of that for a free theory :

T (z) = −(∂φ̂)2 +Q∂2φ̂ (4.16)

and the central charge is given by

c = 1 + 6Q2. (4.17)

Let us now formulate this theory on the Euclidean two sphere. Here, g

is taken to be the usual round metric and ĝ as a flat metric. Calculations

with the reference metric are to be done with the understanding that there

is an operator insertion at infinity that encodes the curvature of the physical

metric. A way to demand this is through a boundary condition for the field

φ

φ = −2Q log(R/R0) +O(1), (4.18)

where R (=
√
zz̄) is the distance measured in the flat reference metric. The

parameter R0 is introduced here for purely dimensional reasons. Its role in

the overall scheme of things will become more transparent as we proceed.

Now, a way to restrict to an integration over only fields that obey (4.18) is to

write the Liouville action on a disc of radius R along with boundary term

that implements the curvature boundary condition and a field independent
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term that keeps the action finite in the R→∞ limit7.

SL,disc =
1

72π

∫
D

√
ĝd2z

(
1

2
ĝab∂aφ∂bφ+2πΛe2bφ

)
+
Q

12π

∫
∂D

φdθ+
1

3
Q2 log(R/R0).

(4.19)

The above action is invariant under a conformal transformation of the met-

ric combined with a corresponding shift in the Liouville field,

z′ = w(z),

φ′(z) = φ(z)− Q

2
log

(
∂w

∂z

)2

.

Note that last term plays an important role in ensuring invariance under

this transformation and further, it also guarantees that the action is finite

[105, 206].

According to the AGT correspondence, the partition function of a

A1 class S theory on the round sphere is identified with a corresponding

n−point correlator in the c = 25 Liouville CFT (upto some factors). Recall

that these theories are obtained by compactifying theory X[g] on a Riemann

surface Cg,n of genus g in the presence of n codimension two defects whose

locations on C are given by n punctures. The AGT correspondence assigns

to this theory a Liouville correlator 〈O1 . . .On〉 where Oi = e2αiφ. The Li-

ouville momenta are related to the mass deformation parameters of the 4d

theory as αi = Q/2 + imi. One of the simplest examples of this 4d-2d dic-

tionary is illustrated by the case of a sphere with three punctures. This

7Henceforth, such a limit will be assumed whenever Liouville/Toda actions on the disc
are considered.
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Figure 4.1: A1 theory on a sphere with three punctures

corresponds to a theory of four free hypermultiplets. On the Liouville side,

the correlator is known to take the following form,

V [sl2]0,([12],[12],[12]) = C(α1, α2, α3)|z12|−2(∆1+∆2−∆3)|z13|−2(∆1+∆3−∆2)|z23|−2(∆2+∆3−∆1).

where C(α1, α2, α3) is given by,

C(α1, α2, α3) =

[
πΛγ(b2)b2−2b2

](Q−
∑
i αi)/b

×

Υ(b)Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)
.

The notation introduced here for the correlator is done with a view

towards the higher rank cases. The sl2 refers to the fact that Liouville CFT

can be obtained from the SL(2,R) WZW model under a gauging labeled by

the principal embedding of sl2 → sl2 and the [12] refers to the partition of

2 = 1 + 1 that corresponds to the only non-trivial regular puncture coming

from a codimension two defect of the A1 theory8. The Λ dependent factors

8Going forward, the notation V [g]g,[...] will be used to denote a correlator in the Toda
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that occur in the above formula follow from an analysis of scaling properties

of Liouville correlators [127, 57, 49]. The complete formula was proposed in

[60, 206] along with some evidence for why this is true. It was then derived

by Teschner using a recursion relation [191]. Now, introduce a quantity that

will be called the stripped correlator,

V̂ [sl2]0,([12],[12],[12]) =
V [sl2]0,([12],[12],[12])

Υ(b)Υ(2α1)Υ(2α2)Υ(2α3)
(4.20)

It is the quantity V̂ [sl2]0,([12],[12],[12]) that seems most appropriate to

identify as the partition function of four hypermultiplets. One expects that

this quantity should posses an anomalous scaling term just like the one cal-

culated in the previous section. And it indeed does have such an anomaly

term and it matches exactly with that for a theory of four hypermultiplets

(nh = 4, nv = 0). This can be seen by noting the scaling behaviour of the Υ

function (See Appendix B),

Υ(µx;µε1, µε2) = µ2ζB2 (0,x;ε1,ε2)Υ(x; ε1, ε2). (4.21)

There are a total of Υ(x) factors in the denominator of V̂ [sl2]0,([12],[12],[12])

whose arguments take the value x = 1 in the mi → 0 limit of b = 1 Liouville

theory. From Appendix B, note that 2ζB2 (0, 1; 1, 1) = −1/6. This implies (in

the mi → 0 limit),

V̂ [sl2]0,([12],[12],[12]) = µ4/6V̂ [sl2]
R0=1
0,([12],[12],[12]). (4.22)

theory labeled by a principal embedding of sl2 → g on a genus g surface with punctures
which are labeled by some representation theoretic data contained in the [. . .].
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The factor µ4/6 matches with µ4a for this theory and is thus in keep-

ing with expectations. The dependence on the parameter µ = R−1
0 is usually

suppressed when the Liouville correlators are analyzed. It had been addi-

tionally brought out here for it serves the useful purpose of encoding the

Euler anomaly of the associated 4d SCFT which in this case is a trivial the-

ory of four free hypermultiplets. For an exception on this matter, see [59]

where additional dimensionful parameters appear in the expression for the

Liouville correlator V [sl2]0,([12],[12],[12]). However, note that the exponent of

the additional dimensionful parameter in [59] is independent of the oper-

ator insertions. This wont be the true in what follows. The exponent of µ

will have an important (and very subtle) dependence on the number and

type of operator insertions. It turns out that for the case of the three point

function, there is a plausible argument where the path integral description

can be used to obtain the dependence on µ. Consider,

V [sl2]0,([12],[12],[12]) := 〈O1O2O3〉 =

∫
d[φ]e−SL,disc

3∏
i=1

e2αiφ. (4.23)

Let us restrict ourselves to the case that corresponds to setting all the hy-

permultiplet masses mi to zero. Note that a primary operator e2αiφ modifies

the boundary condition close to the insertion to φ = 2<(α) log(ri/R0). To

keep the action finite, one needs to introduce additional terms that are local
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to the punctures,

SL,disc =
1

72π

∫
D

√
ĝd2z

(
1

2
ĝab∂aφ∂bφ + 2πΛe2bφ

)
+

Q

12π

∫
∂D

φdθ +
1

3
Q2 log(R/R0)

+
3∑
i=1

(
− <(α)

6π

∫
∂ci

φdθ − 2

3
<(α)2 log(R/R0)

)
.

For a translationally invariant measure d[φ], the R0 contributions arise di-

rectly from the integrand. The global contribution is from the boundary

term in Scl that is associated to the curvature insertion and is given by

(R0)+Q2/3. For the punctures, <(αi) = Q/2. So, each such operator inser-

tion contributes (R0)−Q
2/6. Collecting these gives,

V [sl2]0,([12],[12],[12]) = µQ
2/6V [sl2]

R0=1
0,([12],[12],[12]). (4.24)

For the case of a round sphere, we have Q = 2 and this implies Q2/6 = 2/3.

This is identified with the quantity 4a(= nh/6) for a theory of four free hy-

permultiplets while R0 is identified with the radius of the four sphere that

was used as background for defining the partition function of the theory.

Here, a comment on the unconventional normalization in SL,disc is required.

The normalization of φ was chosen such that the dependence of µ for the

three point function agrees with the corresponding value for 4a. Equiva-

lently, one could have picked the this factor such that the nh value for a

single full puncture equals 4. But, once it has been fixed, there are no free

parameters. There will be similar choice of normalization later when the

local contributions to these scale factors from are considered from a WZW

point of view.

127



The calculation above reproduces the scale factor in (4.22). When

the scale factor is calculated from the Υ functions, the exact origin of the

µ parameter is somewhat obscured by the regularization that is implicit in

final form the DOZZ result. The path integral sheds some light on how the

scale factor enters into the picture via regularization. But, this is still incom-

plete since no such argument seems to be available readily for higher point

functions. From (4.21), it is also clear that the overall scale factor is sensi-

tive to the analytical structure of the correlator. This relationship is most

straightforward when a correlator that corresponds to a free 4d theory is

considered. In this case, the scale factor is purely from the nh contributions.

The number of polar divisors in the correlation function is equal to nh. In

the example just considered, the number of polar divisors for the DOZZ

three point function is 4 and this indeed matches with the nh for a theory of

four hypermultiplets.

A point worth emphasizing here is that the AGT primary map, namely

the relation αi = Q/2 + mi, is written after a dimensionful scale (the radius

of the four sphere) is set to be unity. The goal of making the Euler anomaly

explicit can alternatively be stated as that of making the dependence on this

scale explicit in the correlators.

4.3.1 Higher point functions

Once the three point function is known, the higher point functions

for Liouville can be obtained by the bootstrap procedure. This entails pick-
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ing a factorization limit for the higher point function and writing the n−point

function as an integral/sum over states in the 3g− 3 + n factorization chan-

nels with the integrand being built out of the 2g−2+n three point functions

and appropriate conformal blocks. Confirming that the analytical structure

of the resulting n−point functions is in keeping with the a priori expecta-

tions (say, from a path integral point of view) involves a delicate interplay

between the DOZZ three point function, the conformal block and the rep-

resentation theory of the Virasoro algebra [188] (See Appendix F for a short

review). When there are enough punctures on both sides of the channel, the

channel state is a primary with a momentum of the form α = Q/2 + iR+

[161, 168]. The correlation functions built in the above fashion are also re-

quired to obey the generalized crossing relations. This imposes a highly

nontrivial constraint on the three point function. For the case of Liouville,

it has been checked that the DOZZ proposal does satisfy these constraints

[162, 101]. Let us proceed now by looking at some examples of how the

scale factor can be calculated for these higher point functions.

4.3.1.1 V [sl2]0,([12],[12],[12],[12])

This is the correlator corresponding toN = 2 SYM with gauge group

SU(2) and Nf = 4. The flavor symmetry for this theory is SO(8). The

theory has four mass deformation parameters which can each be assigned

to a SU(2) flavor subgroup of SO(8). These mass parameters will be related

129



Figure 4.2: A1 theory on a sphere with four punctures in a degenerating
limit.

to the Liouville momenta in the following fashion

αi =
Q

2
+mi.

The eigenvalues of the mass matrix are m1 + m2, m1 − m2, m3 + m4 and

m3 −m4.

To write down the four point function in Liouville theory, αi, α are

initially taken to lie on the physical line. That is, αi = Q/2 + is+
i , α = Q/2 +

is+ for s+
i , s

+ ∈ R+. The four point function can then be written as

ZS4 = V [sl2]0,([12],[12],[12],[12])(α1, α2, α3, α4) =∫
α∈Q

2
+is+

dαC(α1, α2, α)C(Q− α, α3, α4)F34
12 (c,∆α, zi)F34

12 (c,∆Q−α, z̄i).

In writing this, the fact that when α ∈ Q
2

+ is, ᾱ = Q − α has been used.

Now, using the symmetry of the entire integrand under the Weyl reflection
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α→ Q− α, one can unfold the integral to one over R. This gives

V [sl2]0,([12],[12],[12],[12]) (α1, α2, α3, α4) =

1

2

∫
α∈Q

2
+is

dαC(α1, α2, α)C(Q− α, α3, α4)F34
12 (c,∆α, zi)F34

12 (c,∆Q−α, z̄i),

where s ∈ R. As with the three point function, let us defined the stripped

four point function,

V̂ [sl2]0,([12],[12],[12],[12]) =
V [sl2]0,([12],[12],[12],[12])

Υ(b)Υ(2α1)Υ(2α2)Υ(2α3)Υ(2α4)
(4.25)

To calculate the overallR0 dependence, the anomalous terms from the Υ fac-

tors should be collected. A simple variable change collects the extra factors

from the integration over channel momenta and the conformal blocks. The

contribution from the eight polar divisors in the integrand is also straight-

forward to calculate and is equivalent to the contribution from the denomi-

nator in (4.2.1). As for the term Υ(2α)Υ(2Q−2α), this can be rewritten terms

of the H function in order to make the Vandermonde factor explicit (as in

[6]). Let us note here the steps involved,

Υ(2α)Υ(2Q− 2α) = Υ(Q+ 2ia)Υ(Q− 2ia) (4.26)

=
1

Γ2(Q+ 2ia)Γ2(−2ia)

1

Γ2(Q− 2ia)Γ2(2ia)
(4.27)

Recalling the following property (Appendix B) of the digamma function,

[Γ2(x+ ε1 + ε2)Γ2(x)]−1 = x[Γ2(x+ ε1)Γ2(x+ ε2)] (4.28)

and applying it to case of ε1 = b, ε2 = 1/b,

Υ(2α)Υ(2Q− 2α) = (2ia)2[Γ2(b+ 2ia)Γ2(b−1 + 2ia)]−1[Γ2(b− 2ia)Γ2(b−1 − 2ia)]

= −4a2H(2ia)H(−2ia). (4.29)
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Figure 4.3: A1 theory on a torus with one puncture

The above factor taken together with the single Υ(b) that remains in V̂ [sl2]0,([12],[12],[12],[12])

provide the numerator in the expression for Z1−loop (4.2.1) together with

Vandermonde factor. The calculation of the scale factor is thus reduced the

calculation that we already performed. So, we have

V̂ [sl2]0,([12],[12],[12],[12]) = µ23/6V̂ [sl2]
R0=1
0,([12],[12],[12],[12]). (4.30)

The exponent of R0 can be interpreted as 4a and this indeed matches (4.8)

for N = 2.

4.3.1.2 V [sl2]1,([12])

For an arbitrary mass deformation, this theory corresponds to N =

2∗ SYM with SU(2) gauge group with a hypermultiplet in the adjoint and

one free hypermultiplet. The corresponding Liouville correlator can be ex-

pressed in terms of the one point conformal block for the torus.

V [sl2]1,([12])(α1) =

∫
α∈Q/2+s

dαC(Q− α, α1, α)Fα1(∆α, q)Fα1(∆Q−α, q̄).
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The stripped correlator in the g = 1 case is defined as

V̂ [sl2]1,([12])(α1) =
V [sl2]1,([12])(α1)

Υ(2α1)
. (4.31)

Calculating the R0 dependence as in the case of the four point function,

V̂ [sl2]1,([12]) = µ19/6V̂ [sl2]
R0=1
1,([12]). (4.32)

Ignoring the contribution of a decoupled hypermultiplet(with 4a = 1/6)

gives the expected answer that 4a = 3 for the N = 2∗ theory.

For higher point functions on arbitrary surfaces, one proceeds in a

similar manner by defining the stripped correlator as

V̂g,[...](α1, α2 . . . αn) =
Vg,[...](α1, α2 . . . αn)Υ(b)g−1∏

i Υ(2αi)
, (4.33)

where Vg,[...](α1, α2 . . . αn) is the Liouville correlator built out of (2g − 2 + n)

DOZZ three point functions and (3g− 3 +n) factorizing channels. Calculat-

ing the contributions to the scale factor directly from (4.33),

4a = (2g − 2 + n)

(
3

5

6
− 1

6
+ 4

1

6

)
+ (3g − 3 + n)− 5

6
n− 1

6
(g − 1)

=
53

6
(g − 1) +

19n

6
. (4.34)

From (4.13), nh = 8(g − 1) + 4n, nv = 9(g − 1) + 3n and one sees

immediately that 4a calculated above satisfies

4a = nv +
nh − nv

6
. (4.35)
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4.3.2 Liouville theory from a gauged WZW perspective

Before proceeding to discuss the higher rank generalizations, it is

useful to recast the scale factor calculations in an alternate language. It is

well known that classical Liouville theory can be obtained via a Hamilto-

nian reduction starting from the SL(2,R) WZW model. A quantum version

of this reduction, which has been the subject of a rich variety of studies

from various different points of view (for instance, see [73], [61, 83] and

[164, 111, 163, 97]) is then expected to yield Liouville conformal field theory.

This point of view is powerful since it permits an easy generalization to

higher rank cases where a non rational CFT with W-symmetry is obtained

for every inequivalent (upto g conjugacy) σ : sl2 → slN . In the g = sl2

case considered here, the only non-trivial embedding is the principal em-

bedding and this corresponds to Liouville CFT. With this in mind, let us

look at how the spectrum of primaries in Liouville can be related to a set of

WZW primaries. In its Wakimoto realization, this model is realized in terms

of a scalar field φ and bosonic ghosts β, γ with the following bosonization

rules

J+ = −β(z)γ(z)2 + αγ(z)∂φ(z) + k∂γ(z), (4.36)

J3(z) = β(z)γ(z)− α

2
∂φ(z), (4.37)

J−(z) = β(z). (4.38)

with α2 = 2k−4. Now, consider the primary field P (j) whose free field real-

ization is γ−jγ−je(j+1)φ. This operator is identified with a Liouville primary
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of the form eαφ (upto a scale that will be fixed momentarily) where α = −jb

. Naively, the conformal dimensions of the primaries match. That is,

∆α = ∆j − j, (4.39)

where ∆α = α(Q − α) and ∆j = − j(j+1)
k−2

with the identification b2 = k − 2.

In early investigations of these gauged WZW models, it was shown that the

two and three point functions of Liouville can be obtained exactly under the

above identification of primaries along with (4.39) holding [61, 83].

One of the advantages of the WZW prescription is that the classical

solutions are perfectly regular. In the WZW language, there is no singularity

in the local solution near the insertion of the puncture and consequently,

there are no regularizing terms in the classical action. So, where does the

dependence of R0 arise ? I argue that it arises from carefully considering

the dimensionful factors that enter in the relationship between the Liouville

and WZW primaries. First, in the gauged WZW model, one works with an

’improved’ stress energy tensor

T̂ (z) = T (z)WZW − ∂J3(z), (4.40)

so that the constraint J− = 1 can be imposed without breaking conformal

invariance. Under the improved stress energy tensor, the primary P (j) has

a shifted dimension ∆̂ = ∆j − j − j . To keep the map between primaries

intact along with relation ∆α = ∆j − j, a scale factor that offsets the shift in

dimension of P (j) should be included

eαφ ≡ (R/R0)+jγ−jγ−je(j+1)φ. (4.41)
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A further redefinition of φ is needed in order to match the normalization

used in the previous section. It is chosen such that j = −2(= −4(ρ, ρ))

corresponds to the full puncture for a b = 1 theory with nh/6 = −2/3. In

this normalization,

eαφ̃ ≡ (R/R0)+j/3γ−j/3γ−j/3e(j+1)φ̃. (4.42)

4.4 Scale factors in Toda correlators I : Primaries and free
theories

In the Toda case, the WZW approach is much more convenient to

capture the local nh contributions to the scale factor since a Toda action

with appropriate boundary terms is not readily available for an arbitrary

codimension two defect. However, the global nh contribution will always

be computed using the curvature insertion in the Toda action. This asym-

metric treatment is purely one of convenience. A complete understanding

of boundary actions in Toda theory might be a way to obtain a more uni-

form treatment [71].

The most general Toda theory of type A can be obtained by a gaug-

ing of the SL(n,R) WZW model. Unlike the case of A1, the higher rank

cases offer more than one ways of gauging the SL(n,R)L × SL(n,R)R sym-

metry such that conformal invariance in preserved[22, 21]. An optimal

way to index inequivalent Toda theories is by associating a sl2 embedding

σ : sl2 → slN for every such gauging [72, 51]. Each of the theories obtained

by a nontrivial embedding σ has a W− symmetry whose chiral algebra is
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called aW− algebra. This algebra is a non-linear extension of the Virasoro

symmetry by currents {Wi(z)} of spin i(> 2). The unique spin 2 current in

the chiral algebra is the stress energy tensor T(z) ≡W2(z).

As with Sl(2,R), consider the Wakimoto realization of the SL(n,R)

model with the required number of β, γ, φ fields. The following constraints

are imposed [72]

J(x) = Ke+ j(x), (4.43)

J̃(x) = −Kf + j̃(x). (4.44)

where e, f, h are the images of the standard sl2 generators and j(x) ∈ g≥0

and j̃ ∈ g≤0
9.

When the grading is even, the system of constraints is first class.

When the grading has odd pieces, then at first sight, the system is not first

class. One can introduce auxiliary fields (as in [21]) or consider a grading

by a different element M such that [M,h] = 0, [M, e] = 2e, [M, f ] = −2f [72].

In the latter case, it is possible to define a new set of constraints (now first

class) equivalent to the original.

In this Chapter, only the theories obtained by the principal embed-

ding will be considered. It has the following action on the disc (written

in the same unconventional normalization that was used for the Liouville

9K is a potentially dimensionful constant.
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case),

ST,disc =
1

72π

∫
D

√
ĝd2z

(
1

2
ĝab∂aφ∂bφ +

n−1∑
i=1

2πΛe2b(ei,φ)

)
(4.45)

+
1

6π

∫
∂D

(Q, φ)dθ +
2

3
(Q,Q) log(R/R0).

The conformal transformations that leave the above action invariant (clas-

sically) are

z′ = w(z),

φ′ = φ−Qρ log

(
∂w

∂z

)2

,

and the field φ obeys the following boundary condition at the boundary of

the disc

φ = −Qρ log(R/R0) +O(1). (4.46)

The chiral algebra for this theory is generated by the currents {Wi(z)} of

spin i = 2 . . . n − 1. The spins of the currents are identified with the ex-

ponents of the group SL(n,R). The global nh contribution arises from the

boundary term due to the curvature insertion (specializing to Q = 2 and

generalizing the relevant boundary term for a surface of arbitrary genus),

we get the nh dependent contribution to 4aglobal,

(4a)globalnh
=

8

3
(g − 1)(ρ, ρ). (4.47)

Now, using (4a)globalnh
= nh/6), it follows that

nglobalh = 16(g − 1)(ρ, ρ). (4.48)
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This matches with (4.14) once we use the Freudenthal-de Vries formula for

(ρ, ρ). We will now proceed to analyze an interesting family of primary op-

erators also indexed by inequivalent embeddings of ρ : sl2 → g. In type

A, the identification of these primaries has been done in [120]. Following

[120], these states are referred to as semi-degenerate primaries. They will

be related to certain primaries in the WZW model. To go beyond just calcu-

lating the nh contributions, it will also be useful to associate an irreducible

representation of the Weyl group to each of those operators.

4.4.1 Toda primaries from a gauged WZW perspective

The set of semi-degenerate primaries relevant for the AGT corre-

spondence was constructed in [120] by applying the screening operators

S(±)
i to Toda primary whose momentum satisfies certain conditions. The

screening operators have the following form

S(±)
i =

∫
dz

2πi
e(βei·φ), (4.49)

where ei are the simple co-roots of slN . Requiring that these operators have

∆ = 1 forces β to be either β+ = −b or β− = −1/b. The screening oper-

ators have the special property that they commute with the generators of

the W algebra. That is [W k
l , S

±
i ] = 0. Now, the state (S±)n

±|α − n±β±ei >

either vanishes identically or has a null state at level n+n−. For the latter to

happen, the α have to satisfy

(α, ei) = (1− n+
j )α+ + (1− n−j )α−, (4.50)
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for some j. If the null vectors are taken to appear at level one, the above

condition is simplified to

(α, ei) = 0, (4.51)

for ei being some subset of simple co-roots. Having recalled the construc-

tion in [120], we proceed to obtain these primaries in the gauged WZW

setting. The proposed map is the following

e(α,φ) ≡ (R/R0)8(ρ,ρ)−4(ρ,h)+ 1
2

dimgh1
∏
i

γi
∏
k

γ̄k × e(j+2ρ,φ), (4.52)

for some specific choices of α (and consequently of j). The different semi-

degenerate states are obtained for the choices of α outlined in [120]. For the

case b = 1, the set in [120] can be obtained by setting α = 2ρ − λ where

λ is twice the Weyl vector of a subalgebra of slN . The spin j in the WZW

primary is obtained using j = −α. The justification for the scale factor in the

above map is similar in spirit to the one encountered in the case of Liouville

(see Section 4.3.2 ) but the details are complicated by the wider variety of

semi-degenerate state that are available in the higher rank Toda theories.

This requires the introduction of some representation theoretic notions.

First, note that considerations of scaling in Toda theory involve more

possibilities in that one has to first pick a weight vector and consider scaling

in the direction of that weight vector. The maximal puncture is the one that

is not invariant under a scaling along any weight vector. In other words, for

a maximal puncture, there is no λ ∈ Λ such that (α, λ) = 0. For other smaller

punctures, there always exists such a λ and the ’smallness’ of the puncture
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is related to how ’big’ the λ is. The scare quotes are included to highlight

that this notion of small/big is not rigorous since two sets (the set of regular

punctures and the set of weight vectors) admit only a poset structure and

it may turn out that certain pairs do not have an order relationship. The h

in the above formula is obtained in the following way. Take the subalgebra

l of slN for which λ is twice the Weyl vector (2ρl). Let ei be a set of simple

co-roots for this subalgebra. Impose the null vector conditions (4.51) for

this set. Now, consider orbit of λ under W [slN ]. There is a unique element

h = wλ for w ∈ W [slN ] and h ∈ Λ+, the set of dominant weights of g. This

dominant weight is the Dynkin element (See Appendix for explanation of

this terminology) of a nilpotent orbit in slN . Such orbits are classified by

partitions of N . One can translate between the different quantities in the

following way. Given a partition [n1n2 . . . nk] such that
∑
ni = N , write λ

as (−n1 + 1,−n1 + 3, . . . n1 − 1,−n2 + 1, . . . n2 − 1 · · · − nk + 1, . . . nk − 1).

Reordering the elements of λ such that they are non-decreasing gives us h,

the Dynkin element.

The element h occurs as the semi simple element in the sl2 triple

{e, f, h} associated to the corresponding embedding. The lie algebra g has a

natural grading defined by the h eigenvalue

g = ⊕jgi = ⊕j<0gi + g0 +⊕i>0gi. (4.53)

We can now turn to the interpretation of the scale factor in (4.52).

Consider the special case : j such that h is trivial (λ = 0). This corresponds
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to a ’maximal’ puncture. As with the case of Liouville, the necessity of us-

ing a modified stress tensor T̂ ρ(z) (ρ denotes the fact that this is the stress

tensor for the principal Toda theory) introduces extra contributions to the

scaling dimension. To avoid spoiling the relationship ∆α = ∆j − (j, 2ρ),

there is a need to introduce a scale factor of the form (R/R0)4(ρ,ρ). When h

is non trivial, there are some scalings for which the primary is invariant (as

opposed to transforming by a scale factor). Local to the primary insertion,

associate a sl2 embedding with Dynkin element h and consider the spec-

trum of γ fields associated to this grading. Their dimensions are given by

how they behave under a scaling defined by T̂ h(z). If the embedding is

even (dimg±i = 0 for i odd), one would like to remove the contribution to

the scaling dimension from the corresponding set of γ fields. When the em-

bedding is not even, this procedure will work if a grading under a different

element M is considered. This M is such that it provides an even grading

while obeying [e,M ] = 2e, [f,M ] = −2f, [h,M ] = 0 [72]. Under the new

grading, the dimension of g≥2 increases by 1
2
dimg1. So, a full accounting of

the dimensional factors produces the exponent of R/R0 in (4.52). As with

the Liouville case, φ needs to be normalized such that h = 0 produces the

correct nh contribution from a full puncture. In this normalization,

e(α,φ) ≡ (R/R0)
8(ρ,ρ)−4(ρ,h)+ 1

2 dimg1
6

∏
i

γi
∏
k

γ̄k × e(j+2ρ,φ). (4.54)

The exponent of R0 is recognized as the local contribution to nh/6
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from CDT [39]10. One would like to believe that the other local proper-

ties ascribed to this class of codimension two defects of the six dimensional

theories should also have a description in terms of properties of the corre-

sponding semi-degenerate operators in Toda theory. In order for this dictio-

nary to be built further, it is important to associate to every semi-degenerate

primary a unique irrep of the Weyl group.

4.4.2 Toda primaries and representations of Weyl groups

In this section, a representation of the Weyl group W [slN ] = SN will

be associated to every semi-degenerate primary in anAn Toda theory. Recall

from the previous section that the momentum of a general semi-degenerate

primary obeys (α, ei) = 0 for i = 1 . . . k. The ei are a subset of the set of

simple co-roots Π. In the current case, they form a subsystem11. Denote this

set by SN . Denote by S+
N , the set of positive root of this subsystem. Let Λ+

be the set of positive roots for g. Note here that when h is zero, S+
N is empty

and when h is the Dynkin element of the principal nilpotent orbit, S+ is Λ+

.

Using this data, one can obtain a unique irreducible representation

of the Weyl group by a construction due to MacDonald [141] 12. The co-

root system lives naturally in h. Each co-root can be thought of as a linear

10A clarification regarding the notation is in order. What is called dimg1 here is the same
as dimg1/2 of [39]. The difference in notation arises from the choice of normalization of h.

11More accurately, a conjugacy class of subsystems.
12See the text [35] for an elaborate discussion of this construction and its generalization

due to Lusztig and Lusztig-Spaltenstein.
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functional on h∗. Now, construct the following rational polynomial on h∗,

π =
∏

eα∈S+
N

eα. (4.55)

Using this, construct a subalgebra of the symmetric algebra(S) on h∗ by

considering all polynomials P = wπ. This subalgebra is a W−module and

in fact, furnishes an irreducible representation of the Weyl group.

It turns out that all irreps for Weyl groups of types A,B,C can be

obtained by considering the various inequivalent subsystems.

The contribution to the total Coulomb branch dimension of the four

dimensional theory from a primary that is labeled by a Nahm orbit ON is

actually related to the dimension of a dual orbit [39]. This formula can be

rewritten in terms of the cardinality of the set S+
n in the following way

d = |∆+| − |∆+
SN
| = 1

2
dimOP t . (4.56)

where P is the partition type associated to the Nahm orbit ON and P t is the

transpose partition. Let φi be the generators of the full symmetric algebra.

Let us additionally note here the formula

nv =
∑
i

[2deg(φi)−1]−
∑
h>0

[2h−1] = 2(2ρ, 2ρ−h)+
1

2
(rankg−dimgh0). (4.57)

This quantity is called nv since it will turn out to be the contribution of

the codimension two defect to the effective number of vector multiplets. To

give a flavor for the values nh, nv in the various cases, the properties of Toda

semi-degenerate states for the A2, A3 theories in are collected in Tables 4.4.2
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h Nahm Orbit Hitchin Orbit Toda momentum(α) nh nv
(0, 0, 0) [13] [3] 2(ω1 + ω2) 16 13

(1, 0,−1) [2, 1] [2, 1] 3ω1 9 8
(2, 0,−2) [3] [13] 0 0 0

Table 4.1: Semi-degenerate states in A2 Toda theory.

h Nahm Orbit Hitchin Orbit Toda momentum(α) nh nv
(0, 0, 0, 0) [14] [4] 2(ω1 + ω2 + ω3) 40 34

(1, 0, 0,−1) [2, 12] [3, 1] 3ω2 + 2ω1 30 27
(1, 1,−1,−1) [2, 2] [2, 2] 4ω2 24 22
(2, 0, 0,−1) [3, 1] [2, 12] 4ω1 16 15

(3, 1,−1,−3) [4] [14] 0 0 0

Table 4.2: Semi-degenerate states in A3 Toda theory.

and 4.4.2. In the tables, the fundamental weights are denoted by ωi and the

nomenclature of a ’Nahm Orbit’ and a ’Hitchin Orbit’ is in continuation of

Chapter 3.

4.4.3 Toda, Nahm and Hitchin descriptions

Recall that in the CDT description [39] of this class of regular codi-

mension two defects, a pair of nilpotent orbits (ON ,OH) play a central role13

in the description of a single defect. In denoting ON as the ’Nahm data’ and

OH as the ’Hitchin data’, I have continued to use the terminology of the pre-

vious Chapter. In what follows, only the case of type A will be considered,

with the understanding the it can be extended to other cases when the asso-

13In cases outside of type A, there is also a discrete group.
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ciated Nahm data is a principal Levi orbit. The map from the Nahm data to

the corresponding Toda primary was called the AGT primary in Chapter 3,

P : ON → e2(α,φ) (4.58)

In the setup here, the h from the previous sections is associated to the

’Nahm Data’. The relationship of the Nahm datum to the Hitchin datum is

explained in Chapter 3 using an invariant constructed using the Springer

correspondence. A composition of the AGT primary map together with

map between the Nahm and Hitchin data provides a relationship between

the Toda primary and the associated Hitchin singularity.

Recall from the previous Chapter that the quantities nh−nv and a(r)

also have a direct interpretation in Springer theory,

nh − nv = dimC(BN), (4.59)

a(r) = dimC(BH), (4.60)

where BN and BH are Springer fibers associated to the Nahm orbit (denoted

by a ON ) in g and Hitchin orbit (denoted by OH) in g∨ respectively.

4.4.4 Examples of free theories : A2 tinkertoys

The overall scale factor calculation from a Toda perspective is much

simplified when the corresponding 4d theory is just a free theory of hyper-

multiplets. These are the theories for which the total nv is zero. Recall that
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this quantity is defined as

nv =
∑
i

niv + nglobal
v , (4.61)

where nglobalv is defined as

nglobalv = (1− g)(
4

3
ĥdim(G) + rank(G)), (4.62)

and niv is given by 4.57. In the tinkertoy terminology, these are called free

fixtures [36]. Let us consider one of the free fixtures that occur in the A2 the-

ory and understand how the nh contribution to the scale factor is encoded

in the corresponding Toda correlator. Specializing the Toda action on a disc

to this case,

ST,disc =
1

72π

∫
D

√
ĝd2z

(
1

2
ĝab∂aφ∂bφ +

i=2∑
i=1

2πΛe2b(ei,φ)

)
(4.63)

+
1

6π

∫
∂D

(Q, φ)dθ +
2

3
(Q,Q) log(R/R0).

There are two regular punctures to consider when dealing with the A2 fam-

ily of theories of class S. The root space is two dimensional and is spanned

by the simple roots ~e1, ~e2. The roots are normalized so that the the entries in

scalar product matrix Ki,j = (~ei, ~ej) are given by Kii = 2, K12 = K21 = −1.

The set of positive roots is ~e > 0 = {~e1, ~e2, ~e3}where ~e3 = ~e1 + ~e2. The funda-

mental weights are ~ω1, ~ω2 and they obey (~~ωi, ~ej) = δij . As usual, ~ρ is half the

sum of positive roots and hi (the weights of the fundamental representation)

147



are given by

h1 = ~ω1, (4.64)

h2 = h1 − e1, (4.65)

h3 = h2 − e2. (4.66)

The maximal puncture corresponds to a Toda primary Omax~p = exp (~p. ~φ)

where ~p is valued in the dual of the lie algebra. Writing ~p = α1 ~ω1 +α2 ~ω2, it is

seen that a general Toda primary has two complex numbers as parameters.

In the A2 Toda case, there is yet another puncture which corresponds to

Omin~p = exp(~p.~φ) where ~p in constrained to ~p = χ~ω2 (or equivalently χω1).

4.4.4.1 V [sl3]0,([2,1],[13],[13])

Figure 4.4: A2 theory on a sphere with one minimal and two maximal punc-
tures

The three point function with one argument taking a semi-degenerate
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value was obtained in [69]. It is given by

V [sl3]0,([2,1],[13],[13]) = C(α1, α2, α3)|z12|−2(∆1+∆2−∆3)|z13|−2(∆1+∆3−∆2)|z23|−2(∆2+∆3−∆1),

where

C(χ ~ω2, ~p1, ~p2) =

[
πΛγ(b2)b2−2b2

](Q−
∑
i αi)/b

×

Υ(b)n−1Υ(χ)
∏
~e>0 Υ(( ~Q− ~p1).~e)Υ(( ~Q− ~p2).~e)∏i=3,j=3

i=1,j=1 Υ

(
ρ
2

+ (~p1 − ~Q).~hi + (~p2 − ~Q). ~hj

) .

As was the case with the three punctured sphere in the Liouville case, the

poles comes from the Υ functions in the denominator and these correspond

to the screening conditions. For the A2 case, there are two primitive screen-

ing conditions

(ρ~ω2 + ~p2 + ~p3).~ω1 = Ωm,n, (4.67)

(ρ~ω2 + ~p2 + ~p3).~ω2 = Ωm.n, (4.68)

and the rest are obtained by applying the two Weyl relations and identifying

screening conditions that differ only by an overall Weyl reflection. The two

reflections act by

σ1 : ~p→ ((2 ~Q− ~p).~e1)~e1, (4.69)

σ2 : ~p→ ((2 ~Q− ~p).~e2)~e2. (4.70)

where ~Q = Q~ρ and Q = b + b−1 as before. The number of distinct screen-

ing conditions agrees with the assignment nh = 9 for this fixture. As with
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Liouville correlators, we define a stripped version,

V̂ [sl3]0,([2,1],[13],[13]) =
V [sl3]0,([2,1],[13],[13])

Υ(b)n−1Υ(χ)
∏
~e>0 Υ(( ~Q− ~p1).~e)Υ(( ~Q− ~p2).~e)

. (4.71)

The scale factor for the stripped correlator comes from combining

the anomalous scaling of the nine Υ functions that enforce the screening

conditions. This gives,

V̂ [sl3]0,([2,1],[13],[13]) = µ9/6V̂ [sl3]
R0=1
0,([2,1],[13],[13]) (4.72)

The argument can also be inverted in the sense that the knowledge of

the scale factor for the stripped correlator corresponding to a free theory can

be used to predict the analytical structure (=number of polar divisors) of the

corresponding Toda three point function. Two such families are discussed

below as examples. It is worth emphasizing that this is by no means an

exhaustive list.

4.4.5 Families of free fixtures and corresponding Toda correlators

In the literature on Toda theories, the only correlation functions for

which the analytical structure is explicitly known is the Fateev-Litvinov

family [69]. These correspond to the family of free fixtures that will be called

fN . They correspond to N2 free hypermultiplets transforming in the (N, N̄)

representation of the flavor symmetry group. This data is reflected in the

fact that the FL family of Toda correlators have N2 polar divisors with the

exact same representation structure. That this should be the case could have
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been inferred from knowing the scale factor assigned to this correlator and

deducing the value of nh from that. Recall that for a free theory, nh = 24a.

The conjecture is that nh is the number of polar divisors for the correspond-

ing Toda correlator. For the Toda correlators corresponding to other families

of free fixtures, corresponding results do not seem to be available in the lit-

erature. But, knowing the corresponding scale factor values along with the

representation data [36] , the analytical form of these correlators can be con-

jectured. This can be done for any family of free fixtures using the following

formula

nh =
∑
i

nih − 16(ρ, ρ), (4.73)

where nih is the contribution from each primary insertion and can be de-

duced from the scale factor in (4.54). The last term is the global contribution

from the sphere with ρ denoting the Weyl vector. Let us now look at a cou-

ple of examples to understand what is meant by families of free theories.
4.4.5.1 fn

This is the Fateev-Litvinov family corresponding to N2 polar divi-

sors. This does correspond to the nh value associated to this free fixture. In

the uniform notation used for Toda correlators, this would correspond to

V [slN ]0,([2,1N−1],[2,1N−1],[N ]).
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[2, 1N−1]

[2, 1N−1]

[N ]

Figure 4.5: The fN family of free fixtures corresponding to the Fateev-
Litvinov family of Toda three point functions.

4.4.5.2 gn

This is a new family V [slN ]0,([22,1N−2],[3,2,1N−2],[N ]) of three point func-

tions for which the analytical structure can be conjectured based on the Tin-

kertoy constructions. This family has nh = 1
6
N3 − 3

2
N2 + 28

3
N − 10 and this

number should equal the number of polar divisors (built out of Υ functions

as in the case of fN ). From a purely Toda perspective, requiring that the

poles arise only from the screening conditions (and its Weyl reflections) for

this correlator should lead to the same result.

152



[22, 1N−2]

[3, 2, 1N−2]

[N ]

Figure 4.6: The gN family of free fixtures corresponding to a family of Toda
three point functions.

4.5 Scale factors in Toda correlators II : Interacting theories

4.5.1 Factorization in Toda theories

Apart from observing that ZS4 matches with the Liouville correlators,

AGT also noted that the identities satisfied by CFT correlators with single

T (z) insertions can be understood as a deformed version of the Seiberg-

Witten curve. For example, T(z) insertions in Liouville correlators on the

sphere obey the following identity,

〈T(z)
∏
i

Oi(zi)〉 =
∑
i

(
∆i

(z − zi)2
+
L−1

z − zi

)
〈
∏
i

Oi(zi)〉.

These are what are called the conformal Ward identities. An immediate

consequence of this is that correlation functions of descendants (defined

to be states obtained by acting on Oi by modes of T (z) or T̄ (z̄)) are fully

determined in terms of the correlation functions of the primaries.
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Let us now define the following quadratic differential,

φ2(z)dz2 = −〈T(z)
∏

iOi(zi)〉
〈
∏

iOi(zi)〉
.

In a suitable limit, the conjecture [6] is that

φ2(z)dz2 → φSW2 .

In the general Toda case, the full chiral algebra has more such identities that

arise from insertions of the higher spin tensors Wn(z), n > 2. However, the

W-Ward identities fail to determine the correlation functions with descen-

dants completely in terms of the correlators of primaries. One can define a

number that quantifies the nature of this failure. This number turns out to

be related to the total Coulomb branch dimension. As an example, consider

the three point in A2 Toda theory together with all its descendants.

D(V0,{0,3}) = 〈
3∏
i=1

DiO~p(zi)〉,

where Di is a product of the modes of the operators T (z) and W3(z). The

primaries obey

T(z)O(w) =
∆O(w)

(z − w)2
+
∂O(w)

(z − w)
+ non-singular

W3(z)O(w) =
∆(3)O(w)

(z − w)3
+
W

(3)
−1O(w)

(z − w)2
+
W

(3)
−2O(w)

(z − w)
+ non-singular.

Observe that D(V0,{0,3}) obeys a set of local ward identities. These can be

obtained by inserting
∫
∞ fkWk(z) = 0 into the correlator where fs is a mero-

morphic function with poles at z = zi. Using the local ward identities,
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all correlators in the family can be written in terms of those of the form

D0(V0,{0,3}) where D0 = {L−1,W−1,W−2}. The total number of linearly

independent correlators in the set D0(V0,{0,3}) is nine (three D0s for each

primary). Imposing the global ward identities further constrains this set

of correlators. The total number of global ward identities is 8 in the W3

case. This shows that W -symmetry fails to determine the correlators of de-

scendants completely in terms of that of the primaries. A representative of

the set of correlation functions than cannot be linearly related to V0,{,0,3} is

〈W k
−1O1O2O3〉. Let us assign Coulomb branch dimension as d = 9 − 8 = 1

to this family. It is easy to see that when one of the primaries is semi-

degenerate, the total Coulomb branch dimension is zero. This is because

the null vector takes the following form

(L−1 −
3

2
W−1)|O1〉 = 0.

This can be used to turn the W−1 to a L−1. So, the family D0(V0,{1,2}) actu-

ally has no Coulomb branch (Coulomb branch dimension is zero). Using

the spectrum of semi-degenerate operators in Toda theory and null vector

conditions that they obey, this dimension can be calculated for any such

family. This matches the corresponding 4d field theory’s Coulomb branch

dimension. For a similar count of equations, see [71] and [130]. One can

also define a finer quantity, namely the graded Coulomb branch dk. This is

related to the quantity called nv by the following formula

nv =
∑
k

(2k − 1)dk. (4.74)
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Recall here the definition of nglobalv ,

nglobalv = (1− g)(
4

3
ĥdim(G) + rank(G)), (4.75)

where ĥ is the dual Coxeter number and G = SU(N) for all cases consid-

ered here. Some practice with the appearance of smaller gauge groups in

the various limits of the corresponding 4d theories leads us to propose the

following criteria for a full factorization in Toda theory. This corresponds

to the appearance of an SU(N) gauge group in the four dimensional the-

ory. Take the degeneration limit where punctures αi appear one side of the

channel and punctures βj appear on the other side. Construct the following

quantities,

Xα ≡
∑
i

nαiv + nmaxv + nglobal,g=0
v , (4.76)

Xβ ≡
∑
i

nβiv + nmaxv + nglobal,g=0
v . (4.77)

If and only if Xα, Xβ ≥ 0, there is full factorization for the Toda14 correlator.

Exactly which subgroup appears as the gauge group in a channel where one

of the quantities Xα, Xβ become negative requires more detailed analysis

involving the exact Toda correlators. This seems possible to carry out only

in a limited number of cases (see example below). On the four dimensional

side, this data has been determined in [36] using constraints that come from

requiring Coulomb branch diagnostics like the graded dk to match in all

14For the case of Liouville, this reduces to the familiar condition for a macroscopic state
to occur in the factorization channel[161, 168].
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factorization limits. A physical interpretation of this phenomenon using

the properties of the Higgs branch has been given in [89].

4.5.1.1 A conjecture

With the experience of examples worked out so far and based on the

general physical expectation that the Euler anomaly should be encoded as a

scale factor in the sphere partition function of any conformal class S theory,

one can formulate the following conjecture.

Conjecture 1. Let V̂ [g]g,({OiN}) be the stripped Toda correlator corresponding to

the sphere partition function of class S SCFT (with mass deformation parameters

mi) obtained by taking theory X[g] on Riemann surface of genus g with n punc-

tures along with n codimension two defects (with Nahm labels {OiN}, i = 1 . . . n)

placed at the punctures. Let the Euler anomaly of the SCFT be a and the in-

verse radius of the four sphere on which the SCFT is formulated be µ. Then,

V̂ [g]g,({OiN})=µ
4a(V̂ [g]g,({OiN )})R0=1 in the mi → 0 limit, irrespective of the fac-

torization limit in which the scale factor is calculated.

The stripped correlator V̂ in the general case is defined to be

V̂ [g]g,({OiN}) =
V [g]g,({OiN})Υ(b)rank(g)(g−1)∏

iD
0
i

, (4.78)

where
∏

iD
0
i is the collection of all factors in the correlator V [g]g,({OiN}) that

become identically zero in the mi → 0 limit. In certain familiar cases, the

factors D0
i have an expression in terms of Υ functions. In the more gen-

eral cases, the inverse of the stripped correlator may be best viewed as an
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iterated residue 15,

V̂ [g]−1
g,({OiN})

=

IRes
(
V [g]−1

g,({OiN})

)
mi→0

Υ(b)rank(g)(g−1)
. (4.79)

Following the intuition from the path integral argument for the three

point function in the Liouville case, one expects that the parameter µ can be

understood to be the dimensionful parameter that enters in the definition

of the regularized correlator. When the correlator is such that every factor-

ization limit involves a channel with Xα, Xβ ≥ 0, it is immediate that the

scale factor is independent of the limit in which it is evaluated. When this

is not the case, the above statement is a non-trivial constraint on the nature

of the state appearing in the factorization channel (For such an example, see

Section 4.5.3.1 below). The above conjecture is stated for arbitrary g since

it is expected to hold in all the cases. This Chapter provides a list of con-

crete examples in the case g = An. The setup outlined in Chapter 3 and

summarized in Chapter 5 allows an extension of this conjecture to the cases

outside of type A when all the defects used in the class S construction are

of principal Levi type.

4.5.2 Examples : Theories with a known Lagrangian

4.5.2.1 V [sl3]0,([2,1],[2,1],[13],[13]) in its symmetric limit

Since the most general three point function is not known in closed

form, this four point function is written in the factoring limit that allows

15IRes(. . .)mi→0 = Res(Res(. . .)m1→0)m2→0 and so on.
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Figure 4.7: The A2 theory on a sphere with two minimal and two maximal
in the symmetric limit.

us to express it in terms of the fN family of three point functions in the

following way

V [sl3]0,([2,1],[2,1],[13],[13])(ρ ~ω2, σ ~ω2, ~p1, ~p2)

=

∫
~p∈ ~Q+i(s+1 ~ω1+s+2 ~ω2)

d~pC(ρ ~ω2, ~p1, ~p)C( ~Q− ~p, ~p2, σ ~ω2)

Fsl3

[
~p1 ~p2

χ ~ω2 σ ~ω2

]
(~α, zi)Fsl3

[
~p1 ~p2

χ ~ω2 σ ~ω2

]
( ~Q− ~α, z̄i),

where the three point function belong to the Fateev-Litvinov family fN . The

dependence of the conformal blocks on the momenta is through the dimen-

sions ∆~p,∆
(3)
~p . These are given by

∆~p =
(2 ~Q− ~p).~p

2
, (4.80)

∆
(3)
~p = i

√
48

22 + 5c
(~p− ~Q, h1)(~p− ~Q, h2)(~p− ~Q, h3). (4.81)
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Figure 4.8: A2 theory on a torus with one minimal puncture

Proceeding as in the case of the four point function for Liouville, one can

rewrite Υ functions in the numerator in terms of theH functions making the

Vandermonde explicit. This gives an integration of the form
∫
da1da2(a2

1 +

a2
2)(a4

1 + a4
2) implying nv = 8 (as expected for a gauge theory with gauge

group SU(3)). Defining V̂ [sl3]0,([2,1],[2,1],[13],[13]) as in (4.78) and collecting the

anomalous scaling factors,

V̂ [sl3]0,([2,1],[2,1],[13],[13]) = µ29/3(V̂ [sl3]0,([2,1],[2,1],[13],[13]))R0=1. (4.82)

The value of 4a is correctly reproduced.

4.5.2.2 V [sl3]1,([2,1])

This is the correlator that pertains ZS4 of SU(3) gauge group with an

adjoint hypermultiplet and a free hyper. It has the following expression,

V [sl3]1,([2,1])(χ ~ω2) =

∫
d~p

Υ(b)n−1Υ(ρ)
∏
~e>0 Υ(( ~Q− ~p).~e)Υ(( ~Q+ ~p).~e)∏i=3,j=3

i=1,j=1 Υ

(
ρ
2

+ (~p− ~Q).~hi + ( ~Q− ~p). ~hj
) Fg=1

sl3
[χω2, ~p].
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Again, defining V̂ [sl3]1,([2,1]) following (4.78) and collecting anomalous scale

factors,

V̂ [sl3]1,([2,1]) = µ49/6(V̂ [sl3]1,([2,1]))R0=1. (4.83)

Ignoring the contribution from the decoupled abelian vector multiplets re-

produces the expected value for 4a.

4.5.3 Examples : Theories with no known Lagrangian description

4.5.3.1 V [sl3]0,([2,1],[2,1],[13],[13]) in its asymmetric limit

Let us now consider this correlator in the limit where two minimal

punctures are on one side and the two maximal punctures are on the other

side of the factorization channel. The duality between the corresponding

four dimensional theories (that arise in the two limits) was discovered by

Argyres-Seiberg [10].

In this limit, Xα < 0, Xβ > 0. So, the condition for a full factorization

is not satisfied. In its other limit, we have already seen that this theory has

nh = 18, nv = 8 (with the corresponding implications for the three point

functions appearing in the symmetric limit). To understand the asymmetric

limit, let us write the four point function in the following form
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• • •

Figure 4.9: The A2 theory on a sphere with two minimal and two maximal
in the asymmetric limit.

V [sl3]0,([2,1],[2,1],[13],[13])(ρ ~ω2, σ ~ω2, ~p1, ~p2)

=

∫
~p∈ ~Q+i(s+1 ~ω1+s+2 ~ω2)

d~pC(ρ ~ω2, σ ~ω2, ~p)C( ~Q− ~p, ~p2, ~p1)

W2

[
~p1 ~p2

χ ~ω2 σ ~ω2

]
(~α, zi)W2

[
~p1 ~p2

χ ~ω2 σ ~ω2

]
( ~Q− ~α, z̄i).

Here, the three point function C(ρ ~ω2, σ ~ω2, ~p) can be understood as a

limit of the Fateev Litvinov family fN where one of the maximal punctures

is made minimal. When this is done, the three point function becomes iden-

tically zero except when the following condition is obeyed [119, 64],

w − w1 + w2 +
3

2

(
w1

∆1

− w2

∆2

)
(∆−∆1 −∆2) = 0. (4.84)

In the above equation the cubic invariant is referred to asw instead of ∆(3) to
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avoid confusion with the subscripts. The above condition restricts the chan-

nel momentum to a one dimensional subspace of the most general macro-

scopic Toda state. This corresponds to the choice of a SU(2) subgroup. After

canceling factors between the numerator and the denominator of the fN cor-

relator (specialized to N = 3) and using the properties of the Υ functions,

the measure for the channel integral is seen to be of the form a2da. One

would like to account for the scale factor in this limit. The nh contribution is

easy to account for since this arises only from the local contributions of the

punctures and the global contribution of the sphere. nv on the other hand

is non-trivial. From the factorization channel, we get nv = 3 (as opposed

to nv = 8 from the factorization channel in the symmetric limit). This im-

plies that the stripped three point function corresponding to three maximal

punctures has a scale factor that corresponds to nh = 16, nv = 5.

This discussion aims to be nothing more than a poor substitute for

an analysis of the factorization problem in Toda theories. It was included to

provide an example of how the accounting for the scale factor could be dif-

ferent in the various factorization limits. It is examples like this that make

the conjecture in Section 4.5.1.1 a non-trivial constraint on Toda factoriza-

tion.

4.5.3.2 V [sl3]0,([13],[13],[13])

Not much is known in closed form for this correlator (Fig 4.5.3.2). In-

tegral expressions for this correlator are available under some special limits.
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Figure 4.10: A2 theory on a sphere with three maximal punctures

See [69, 70] for the state of the art on Toda computations. Note that this is

the correlator corresponding to the partition function on S4 of the T3 theory.

This correlator arises in a ’decoupling limit’ of the previous example where

two minimal punctures are collided and replaced with a maximal puncture.

As discussed, the scale factor for the stripped correlator in this case should

correspond to nh = 16, nv = 5.

4.6 Summary

In this Chapter, it is argued that the Euler anomaly of a 4d SCFT

belonging to class S is encoded in the scale factors of the corresponding

stripped Liouville/Toda correlators. This factor is always of the form µ4a

where a is the Euler anomaly and the quantity µ can be identified with the

inverse radius of the four sphere on which the theory is formulated. The

quantity a has a parameterization in terms of quantities nh, nv (given in 4.8).
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The parameterization of a by nh and nv is convenient since the two types of

contributions to a arise differently in the Liouville/Toda context16,

• The local nh contribution arises from the scale factors in the relation-

ship between the Toda and WZW primaries while the global nh factor

arises from the boundary term associated to the curvature insertion in

the Toda action on the disc,

• The nv contributions arise from every factorization channel (when there

is one) and from the ’strongly coupled’ SCFTs. The contribution from

the former is straightforward to pin down while the latter is known

by requiring consistency with crossing symmetries (S-dualities in the

four dimensional context).

The above setup should be contrasted with how these quantities are

calculated in the four dimensional context in (4.13). Requiring that they

agree is then a non-trivial constraint on Toda factorization and a conjecture

was outlined to this effect in Section 4.5.1.1. When the total nv contribution

is zero, the corresponding four dimensional theory is a free theory with nh

hypermultiplets. The relationship between the scale factor in such theories

and the analytical structure of the Toda correlator allows one to make pre-

dictions for the number of polar divisors in certain Toda correlators. Some

examples of this were outlined in Section 4.4.5.

16This is obviously so in the 4d theories with Lagrangian description. So, it is perhaps
not a surprising feature.
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As briefly alluded to in the Introduction to this Chapter, the 4d/2d

relationship for the class of theories studied here has attracted attention re-

cently from various different points of view. It is natural to consider the

connections of those with the setup of this Chapter. The conjecture that is

provided for the scale factor should follow automatically if crossing sym-

metry for Toda theories is proved. In the case of Liouville CFT, this was

done in [162] using the theory of infinite dimensional representations of

the quantum group Uq[sl2]. So, one would expect that the theory of infinite

dimensional representations of more general quantum groups, especially

those that correspond to representations of the modular double (see [82] for

some recent mathematical developments) would be relevant for the study

of quantum Toda field theory. A closely related point of view would be the

one from quantum Teichmuller theory for Liouville [189, 195] and gener-

alizations thereof, namely that of higher Teichmuller theories [113, 27, 75].

The partition functions analyzed here have also been described from the

point of view of topological strings [194]. Yet another connection to explore

in detail would be that between the setup considered here and the geomet-

ric Langlands program with tame ramification [17, 123, 80, 99, 78, 190, 187].

But, these are left for future considerations.
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Notation

All of the notation that is relevant for Chapter 5 is collected here.

[ON ] Set of nilpotent orbits in g.
[OH ] Set of special nilpotent orbits in g∨.
[Ol∨

H ] Set of special nilpotent orbits in l∨ ⊂ g∨.
l∨ A pseudo-Levi subalgebra of g∨

l Langlands dual of l∨. May not be a subalgebra of g.
a Semi-simple part of the Levi subalgebra (of g) that is part of BC label for ON .
A(OH) Component group of the Hitchin nilpotent orbit.
Ā(OH) Lusztig’s quotient of the component group.
ψH Irrep of Ā(OH).
CH Sommers-Achar subgroup of Ā(OH). It is such that jĀ(OH)

CH
(sign) = ψH .

Irr(W ) Set of irreducible representations of the Weyl group W of g.
Irr(W∨) Set of irreducible representations of the Weyl group W∨ of g∨.
r̄ An irreducible representation of the Weyl group W [g].
r The irrep r̄ tensored with the sign representation.
fr The family to which the irrep r belongs.
Sp[g] Springer’s injection from Irr(W ) to pairs (O, ψ),

where O is a nilpotent orbit in g and ψ is a representation of its component group A(O).
Sp−1[g] Inverse of Springer’s injection. This maps acts only on the subset of (O, ψ)

which occurs in the image of Sp[g].
jWW ′(rW ′) The truncated induction procedure of MacDonald-Lusztig-Spaltenstein.
nh Contribution to effective number of hypermultiplets.
nv Contribution to effective number of vector multiplets.
d Contribution to the total Coulomb branch dimension.
BN Springer fiber associated to the Nahm orbit.
BH Springer fiber associated to the Hitchin orbit.
a(fr) Lusztig’s invariant. Its value is the same for any irrep in a given family.

This equals dimC(BH).
b̃(r̄) Sommers’ invariant. This equals dimC(BN).
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Chapter 5

The setup relating Toda/Nahm/Hitchin
descriptions

r̄ ∈ Irr(W )↔ Irr(W∨)ON ∈ [ON ] rL∨

Simple roots of a, {ei} Ol∨
H ∈ [Ol∨

H ]

jW
∨

WL∨
(rL∨)Sp[g, r̄]

Bala-Carter Levi Sp−1[l∨, dLS(Ol∨H )]

Figure 5.1: The setup

5.1 Introduction

In this Chapter, the constructions of Chapter 3 are summarized. The

set of maps relating the Toda/Nahm/Hitchin descriptions is summarized

in Fig 5. Some of the interesting physical quantities can be obtained from
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the above figure in the following way,

simple roots for a, {ei} =⇒ {level 1 null vectors for a Toda primary},

(nh − nv) =
1

2

(
dim(N )− dim(ON)

)
= b̃(r̄),

d =
1

2
dim(OH) =| Λ+ | −a(fr). (5.1)

The identification of the Toda primary is taken to be for just the cases where

ON is principal Levi type. These quantities enter the description of the four

dimensional theory (obtained via the class S constructions) and its partition

function on a four sphere.

Note the asymmetric nature of the setup. The asymmetry arises from

the fact that in the CDT description of these defects, in cases outside type A,

the Hitchin side involves only special orbits in g∨ with an additional datum

involving subgroups of their component groups while the Nahm side in-

volves all possible nilpotent orbits in g along with the trivial representation

of their component groups1.

The two relations in (5.1) giving the local contributions to the Higgs

and Coulomb branch dimension hold for all cases. Also included in the ta-

bles is the representation r obtained by tensoring r̄ with the sign represen-

tation and the value of Lusztig’s invariant a(fr) for the family containing

the irrep r. For the defects whose Nahm data is a special orbit, the irrep

1An expanded set of regular defects might allow one to think about the g and g∨ de-
scriptions of the defect in a more symmetric way. However, that possibility is not explored
here.

169



r is the Orbit representation associated to the corresponding Hitchin orbit.

For defects with non-special orbits as Nahm data, the irrep Sp−1[(OH , ψH ]

(when it exists) turns out to be a different non-special irrep belonging to the

same family as r. It is notable that in these cases, the irrep r is not one of the

Springer reps associated to non-trivial local systems on the Hitchin orbit.

The general pattern (observed by calculations in classical lie algebras of low

rank and all exceptional cases) is that there exist a cell module c′1(= ε⊗c1) be-

longing to the family that contains r and the unique special representation

in the family together with other such r (= ε × r̄) arising from all the non-

special orbits in the same special piece 2. The representations associated to

the non-trivial local systems onOH occur as summands in cell modules that

are strictly different from c′1. It isn’t clear if this is a known result. In any

case, it is clear that a r matching argument using a Springer invariant seems

out of reach for the Coulomb branch data. However, intuitively, one ex-

pects that the Coulomb branch considerations in [39] and the Higgs branch

r̄ matching argument provided here should be part of one unified setup. In

this context, associating certain other invariants like the conjugacy class of

the Weyl group to the Coulomb branch data might be helpful. Achieving

this would also seem relevant to developing a direct Coulomb branch check

for the Toda primary for arbitrary g.

The part of the setup that provides the dictionary between Hitchin/Nahm

2It is interesting that in recent work [133], finite W-algebra methods are used to study
certain properties of cell modules in a given family/two-cell.
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descriptions can be extended in a straightforward way to the case where g

and g∨ are non simply laced (with relevance for the twisted defects of the

six dimensional theory and for S-duality of boundary conditions in N = 4

SYM with non-simply laced gauge groups). But, there is a new feature in

these cases. The Langlands dual of the pseudo-Levi subalgebra l∨ which

is denoted by l is no longer guaranteed to be a subalgebra of g. The gen-

eral procedure to find all possible centralizers of semi-simple elements in

a complex lie algebra is to follow the Borel-de Seibenthal algorithm. Fol-

lowing this algorithm, one immediately recognizes the inevitability of the

situation where l * g (See Appendix C).

5.2 Tables

These detailed tables are included so that the reader can get some

appreciation for the details of how the order reversing duality map works.

The reader is especially encouraged to check these tables by following the

map from one side to the other for a few scattered examples from the simply

laced and non-simply laced cases.

Some of the calculations involved in compiling the tables were done

using the CHEVIE package for the GAP system [93]. Consulting the stan-

dard tables in Carter’s book is also essential. The partitioning of the Weyl

group representations into families is provided in Carter [35]. The Cartan

type of the pseudo-Levi subalgebra l∨ that arises on the g∨ side is included

as part of the tables for some simple cases. For the exceptional cases, it
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can be obtained from [179]. The data collected in the tables is available in

the mathematical literature often very explicitly or perhaps implicitly. It is

hoped that the details help those who are not familiar with this literature.

What is new is the physical interpretation of some defining features of the

order reversing duality map.

In the tables for F4, E6, E7, E8, the duality map for special orbits is

detailed first and then separate tables are devoted for the non-trivial special

pieces. The special orbits that are part of non-trivial special pieces thus

occur in both tables.

In the non-simply laced cases, the number d corresponds to a part

of the local contribution to the Coulomb branch dimension. There is an

additional contribution that comes from the fact that the nilpotent orbits

for G non-simply laced arise actually from the twisted defects of the six

dimensional theory [39].

The tables themselves were generated in the following way. The data

for the columnsON , b̃, r̄, (OH , CH) follows directly from the data that is used

in the description of the r̄-matching. The irrep r is obtained by tensoring r̄

by the sign representation. The column a(fr) is Lusztig’s invariant attached

to the family to which the representation r belongs. It is equal to the dimen-

sion of the Springer fiber associated to the Hitchin orbit.
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5.2.1 Simply laced cases

5.2.2 A3

| Λ+ |= 6

Table 5.1: Order reversing duality for A3 = su(4)

(ON ) b̃ r̄ r a(fr) d (OH , CH) l∨

[14] 6 [14] [4] 0 6 [4] A3

[2, 12] 3 [2, 12] [3, 1] 1 5 [3, 1] A2

[2, 2] 2 [2, 2] [2, 2] 2 4 [2, 2] A1 + A1

[3, 1] 1 [3, 1] [2, 12] 3 3 [2, 12] A1

[4] 0 [4] [14] 6 0 [14] ∅

Families with multiple irreps

None
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5.2.3 D4

| Λ+ |= 12

Table 5.2: Order reversing duality for D4 = so8

(ON ) b̃ r̄ r a(fr) d (OH , CH) l∨

[18] 12 [14].− [4].− 0 12 [7, 1] D4

[22, 14] 7 [13].[1] [3].[1] 1 11 [5, 3] D4

[24]I 6 ([12].[12])′ ([2].[2])′ 2 10 [42]I A3

[24]II 6 ([12].[12])′′ ([2].[2])′′ 2 10 [42]II A3

[3, 15] 6 [2, 12].− ([3, 1].−) 2 10 [5, 13] A3

[3, 22, 1]? 4 [22].− [22].− 3 9 [32, 12], S2 4A1

[32, 12] 3 [2, 1].[1] [2, 1].[1] 3 9 [32, 12] A2

[5, 13] 2 [3, 1].− [2, 12].− 6 6 [3, 15] 2A1

[42]I 2 ([2].[2])′ ([12].[12])′ 6 6 [24]I 2A1

[42]II 2 ([2].[2])′′ ([12].[12])′′ 6 6 [24]II 2A1

[5, 3] 1 [3].[1] [13].[1] 7 5 [22, 14] A1

[7, 1] 0 [4].− [14].− 12 0 [18] ∅

The Nahm orbits [3, 22, 1] and [32, 12] are part of the only non-trivial

special piece for D4.

Families with multiple irreps

Family f a(f)

{([2, 1], [1]), ([22],−), ([2], [12])} 3
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5.2.4 E6

| Λ+ |= 36

Table 5.3: Order reversing duality for special orbits in E6

(ON) b̃ r̄ r a(fr) d (OH)

0 36 φ1,36 φ1,0 0 36 E6

A1 25 φ6,25 φ6,1 1 35 E6(a1)
2A1 20 φ20,20 φ20,2 2 34 D5

A2 15 φ30,15 φ30,3 3 33 E6(a3)
A2 + A1 13 φ64,13 φ64,4 4 32 D5(a1)
A2 + 2A1 11 φ60,11 φ60,5 5 31 A4 +A1

2A2 12 φ24,12 φ24,6 6 30 D4

A3 10 φ81,10 φ81,6 6 30 A4

D4(a1) 7 φ80,7 φ80,7 7 29 D4(a1)
A4 6 φ81,6 φ81,10 10 24 A3

D4 6 φ24,6 φ24,12 12 26 2A2

A4 + A1 5 φ60,5 φ60,11 11 25 A2 +
2A1

D5(a1) 4 φ64,4 φ64,13 13 23 A2 +A1

E6(a3) 3 φ30,3 φ30,15 15 21 A2

D5 2 φ20,2 φ20,20 20 16 2A1

E6(a1) 1 φ6,1 φ6,25 25 11 A1

E6 0 φ1,0 φ1,36 36 0 0
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Table 5.4: Order reversing duality for nontrivial special pieces in E6

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

3A1 16 φ15,16 φ15,4 3 33 E6(a3), S2

A2 15 φ30,15 φ13,3 3 33 E6(a3)

2A2 + A1 9 φ10,9 φ10,9 7 29 D4(a1), S3

A3 + A1 8 φ60,8 φ60,8 7 29 D4(a1), S2

D4(a1) 7 φ80,7 φ80,7 7 29 D4(a1)

A5 4 φ15,4 φ15,16 15 21 A2, S2

E6(a3) 3 φ30,3 φ30,15 15 21 A2

Families with multiple irreps

Family f a(f)

{φ30,3, φ15,4, φ15,5} 15
{φ80,7, φ60,8, φ90,8, φ10,9, φ20,10} 7
{φ30,15, φ15,16, φ15,17} 3
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5.2.5 E7

| Λ+ |= 63

Table 5.5: Order reversing duality for special orbits in E7

(ON) b̃ r̄ r a(fr) d (OH)

0 63 φ1,63 φ1,0 0 63 E7

A1 46 φ7,46 φ7,1 1 62 E7(a1)
2A1 37 φ27,37 φ27,2 2 61 E7(a2)
A2 30 φ56,30 φ56,3 3 60 E7(a3)

(3A1)′′ 36 φ21,36 φ21,3 3 60 E6

A2 + A1 25 φ120,25 φ120,4 4 59 E6(a1)
A2 + 2A1 22 φ189,22 φ189,5 5 58 E7(a4)
A2 + 3A1 21 φ105,21 φ105,6 6 57 A6

A3 21 φ210,21 φ210,6 6 57 D6(a1)
2A2 21 φ168,21 φ168,6 6 57 D5 +A1

D4(a1) 16 φ315,16 φ315,7 7 56 E7(a5)
(A3 + A1)′′ 20 φ189,20 φ189,7 7 56 D5

D4(a1) + A1 15 φ405,15 φ405,8 8 51 E6(a3)
A3 + A2 14 φ378,14 φ378,9 9 54 D5(a1)+

A1

D4 15 φ105,15 φ105,12 12 51 A′′5
A3 + A2 + A1 13 φ210,13 φ210,10 10 53 A4 +A2

A4 13 φ420,13 φ420,10 10 53 D5(a1)
♠ A4 + A1 11 φ510,11 φ510,12 12 51 A4 +A1

D5(a1) 10 φ420,10 φ420,13 13 50 A4

A4 + A2 10 φ210,10 φ210,13 13 50 A3 +
A2 +A1

(..contd)
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(Table 5.5 continued)

A′′5 12 φ105,12 φ105,15 15 48 D4

D5(a1) + A1 9 φ378,9 φ378,14 14 49 A3 + A2

E6(a3) 8 φ405,8 φ405,15 15 48 D4(a1) + A1

D5 7 φ189,7 φ189,20 20 43 (A3 + A1)′′

E7(a5) 7 φ315,7 φ315,16 16 47 D4(a1)
D5 + A1 6 φ168,6 φ168,21 21 42 2A2

D6(a1) 6 φ210,6 φ210,21 21 42 A3

A6 6 φ105,6 φ105,21 21 42 A2 + 3A1

E7(a4) 5 φ189,5 φ189,22 22 41 A2 + 2A1

E6(a1) 4 φ120,4 φ120,25 25 38 A2 + A1

E6 3 φ21,3 φ21,36 36 27 (3A1)′′

E7(a3) 3 φ56,3 φ56,30 30 33 A2

E7(a2) 2 φ27,2 φ27,37 37 26 2A1

E7(a1) 1 φ7,1 φ7,46 46 17 A1

E7 0 φ1,0 φ1,63 63 0 0
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Table 5.6: Order reversing duality for nontrivial special pieces in E7

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

3A′1 31 φ35,31 φ35,4 3 60 E7(a3), S2

A2 30 φ56,30 φ56,3 3 60 E7(a3)

4A1 28 φ15,28 φ15,7 4 59 E6(a1), S2

A2 + A1 25 φ120,25 φ120,4 4 59 E6(a1)

A3 + 2A1 16 φ216,16 φ216,9 8 55 E6(a3), S2

D4(a1) + A1 15 φ405,15 φ405,8 8 55 E6(a3)

D4 + A1 12 φ84,12 φ84,15 13 50 A4, S2

D5(a1) 10 φ420,10 φ420,13 13 50 A4

(A5)′ 9 φ216,9 φ216,19 15 48 D4(a1) +
A1, S2

E6(a3) 8 φ405,8 φ405,15 15 48 D4(a1) + A1

D6 4 φ35,4 φ35,31 30 33 A2, S2

E7(a3) 3 φ56,3 φ56,30 30 33 A2

(..contd)
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(Table 5.6 continued)

2A2 + A1 18 φ70,18 φ70,9 7 56 E7(a5), S3

(A3 + A1)′ 17 φ280,17 φ280,8 7 56 E7(a5), S2

D4(a1) 16 φ315,16 φ315,7 7 56 E7(a5)

A5 + A1 9 φ70,9 φ70,18 16 47 D4(a1), S3

D6(a2) 8 φ280,8 φ280,17 16 47 D4(a1), S2

E7(a5) 7 φ315,7 φ315,16 16 47 D4(a1)

Families with multiple irreps

Family f a(f)

{φ56,3, φ35,4, φ21,6} 3
{φ120,4, φ105,5, φ15,7} 4
{φ405,8, φ216,9, φ189,10} 8
{φ420,10, φ336,11, φ84,12} 10
♠{φ512,11, φ512,12} 11
{φ420,13, φ336,14, φ84,15} 13
{φ405,15, φ216,16, φ189,17} 15
{φ120,25, φ105,26, φ15,28} 25
{φ56,30, φ35,31, φ21,33} 30
{φ315,7, φ280,8, φ70,9, φ280,9, φ35,13} 7
{φ315,16, φ280,17, φ70,18, φ280,18, φ35,22} 16
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5.2.6 E8

| Λ+ |= 120

Table 5.7: Order reversing duality for special orbits in E8

ON b̃ r̄ r a(fr) d OH
0 120 φ1,120 φ1,0 0 120 E8

A1 91 φ8,91 φ8,1 1 119 E8(a1)
2A1 74 φ35,74 φ35,2 2 118 E8(a2)
A2 63 φ112,63 φ112,3 3 117 E8(a3)
A2 + A1 52 φ210,52 φ210,4 4 116 E8(a4)
A2 + 2A1 47 φ560,47 φ560,5 5 115 E8(b4)
A3 46 φ567,46 φ567,6 6 114 E7(a1)
2A2 42 φ700,42 φ700,6 6 114 E8(a5)
D4(a1) 37 φ1400,37 φ1400,7 7 113 E8(b5)
D4(a1) + A1 32 φ1400,32 φ1400,8 8 112 E8(a6)
A3 + A2 31 φ3240,31 φ3240,9 9 111 D7(a1)
D4(a1) + A2 28 φ2240,28 φ2240,10 10 110 E8(b6)
A4 30 φ2268,30 φ2268,10 10 110 E7(a3)
D4 36 φ525,36 φ525,12 12 108 E6
♠A4 + A1 26 φ4096,26 φ4096,12 11 109 E6(a1)+

A1

A4 + 2A1 24 φ4200,24 φ4200,12 12 108 D7(a2)
A4 + A2 23 φ4536,23 φ4536,13 13 107 D5 +A2

D5(a1) 25 φ2800,25 φ2800,13 13 107 E6(a1)
A4 + A2 + A1 22 φ2835,22 φ2835,14 14 106 A6 +A1

D4 + A2 21 φ4200,21 φ4200,15 15 105 A6

D5(a1) + A1 22 φ6075,22 φ6075,14 14 106 E7(a4)

(..contd)
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(Table 5.7 continued)

E6(a3) 21 φ5600,21 φ5600,15 15 105 D6(a1)
D5 20 φ2100,20 φ2100,20 20 100 D5

E8(a7) 16 φ4480,16 φ4480,16 16 104 E8(a7)
D6(a1) 15 φ5600,15 φ5600,21 21 99 E6(a3)
E7(a4) 14 φ6075,14 φ6075,22 22 98 D5(a1) + A1

A6 15 φ4200,15 φ4200,21 21 99 D4 + A2

A6 + A1 14 φ2835,14 φ2835,22 22 98 A4 +A2 +A1

E6(a1) 13 φ2800,13 φ2800,25 25 95 D5(a1)
D5 + A2 13 φ4536,13 φ4536,23 23 97 A4 + A2

D7(a2) 12 φ4200,12 φ4200,24 24 96 A4 + 2A1
♠E6(a1) + A1 11 φ4096,11 φ4096,27 26 94 A4 + A1

E6 12 φ525,12 φ525,36 36 84 D4

E7(a3) 10 φ2268,10 φ2268,30 30 90 A4

E8(b6) 10 φ2240,10 φ2240,28 28 92 D4(a1) + A2

D7(a1) 9 φ3240,9 φ3240,31 31 89 A3 + A2

E8(a6) 8 φ1400,8 φ1400,32 32 88 D4(a1) + A1

E8(b5) 7 φ1400,7 φ1400,37 37 83 D4(a1)
E8(a5) 6 φ700,6 φ700,42 42 78 2A2

E7(a1) 6 φ567,6 φ567,46 46 74 A3

E8(b4) 5 φ560,5 φ560,47 47 73 A2 + 2A1

E8(a4) 4 φ210,4 φ210,52 52 68 A2 + A1

E8(a3) 3 φ112,3 φ112,63 63 57 A2

E8(a2) 2 φ35,2 φ35,74 74 46 2A1

E8(a1) 1 φ8,1 φ8,91 91 29 A1

E8 0 φ1,0 φ1,120 120 0 0
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Table 5.8: Order reversing duality for nontrivial special pieces in E8

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

3A1 64 φ84,64 φ84,4 3 117 E8(a3), S2

A2 63 φ112,63 φ112,3 3 117 E8(a3)

4A1 56 φ50,56 φ50,8 4 116 E8(a4), S2

A2 + A1 52 φ210,52 φ210,4 4 116 E8(a4)

A2 + 3A1 43 φ400,43 φ400,7 6 114 E8(a5), S2

2A2 42 φ700,42 φ700,6 6 114 E8(a5)

D4 + A1 28 φ700,28 φ700,16 13 107 E6(a1), S2

D5(a1) 25 φ2800,25 φ2800,13 13 107 E6(a1)

2A3 26 φ840,26 φ840,14 12 108 D7(a2), S2

A4 + 2A1 24 φ4200,24 φ4200,12 12 108 D7(a2)

A5 22 φ3200,22 φ3200,16 15 105 D6(a1), S2

E6(a3) 21 φ5600,21 φ5600,15 15 105 D6(a1)

D5 + A1 16 φ3200,16 φ3200,22 25 95 E6(a3), S2

D6(a1) 15 φ5600,15 φ5600,21 25 95 E6(a3)

(..contd)
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(Table 5.8 continued)

D6 12 φ972,12 φ972,32 30 90 A4, S2

E7(a3) 10 φ2268,10 φ2268,30 30 90 A4

A7 11 φ1400,11 φ1400,29 28 92 D4(a1) +
A2, S2

E8(b6) 10 φ2240,10 φ2240,28 28 92 D4(a1) + A2

D7 7 φ400,7 φ400,43 42 78 E8(a5), S2

E8(a5) 6 φ700,6 φ700,42 42 78 E8(a5)

E7 4 φ84,4 φ84,64 63 57 A2, S2

E8(a3) 3 φ112,3 φ112,63 63 57 A2

A3 +A2 +A1 29 φ1400,29 φ1400,11 10 110 E8(b6), S2

D4(a1) + A2 28 φ2240,28 φ2240,10 10 100 E8(b6)

2A2 + A1 39 φ448,39 φ448,9 7 113 E8(b5), S3

A3 + 2A1 38 φ1344,38 φ1344,38 7 113 E8(b5), S2

D4(a1) 37 φ1400,37 φ1400,8 7 113 E8(b5)

2A2 + 2A1 36 φ175,36 φ175,12 8 112 E8(a6), S3

A3 + 2A1 34 φ1050,34 φ1050,10 8 112 E8(a6), S2

D4(a1) + A1 32 φ1400,32 φ1400,8 8 112 E8(a6)

E6 + A1 9 φ448,9 φ448,39 37 83 D4(a1), S3

E7(a2) 8 φ1344,8 φ1344,38 37 83 D4(a1), S2

E8(b5) 7 φ1400,7 φ1400,37 37 83 D4(a1)

(..contd)
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(Table 5.8 continued)
A4 + A3 20 φ420,20 φ420,20 16 104 E8(a7), S5

D5(a1) + A2 19 φ1344,19 φ1344,19 16 104 E8(a7), S4

A5 + A1 19 φ2016,19 φ2016,19 16 104 E8(a7), S3 ×
S2

E6(a3) + A1 18 φ3150,18 φ3150,18 16 104 E8(a7), S3

D6(a2) 18 φ4200,18 φ4200,18 16 104 E8(a7), S2 ×
S2

E7(a5) 17 φ7168,17 φ7168,17 16 104 E8(a7), S2

E8(a7) 16 φ4480,16 φ4480,16 16 104 E8(a7)
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Families with multiple irreps

Family f a(f)

{φ112,3, φ84,4, φ28,8} 3
{φ210,4, φ160,7, φ50,8} 4
{φ700,8, φ400,7, φ300,8} 8
{φ2268,10, φ972,12, φ1296,13} 10
{φ2240,10, φ1400,11, φ840,13} 10
♠{φ4096,11, φ4096,12} 11
{φ4200,12, φ3360,13, φ840,14} 13
{φ2800,13, φ700,16, φ2100,16} 16
{φ5600,15, φ3200,16, φ2400,17} 16
{φ5600,21, φ3200,22, φ2400,23} 22
{φ4200,24, φ3360,25, φ840,31} 25
{φ2800,25, φ700,28, φ2100,28} 28
♠{φ4096,26, φ4096,27} 26
{φ2240,28, φ1400,29, φ840,31} 29
{φ2268,30, φ972,32, φ1296,33} 32
{φ700,42, φ400,43, φ300,44} 43
{φ210,52, φ160,55, φ50,56} 55
{φ112,63, φ84,64, φ28,68} 64
{φ1400,7, φ1344,8, φ448,9, φ1008,9, φ56,19} 7
{φ1400,8, φ1050,10, φ1575,10, φ175,12, φ350,14} 8
{φ1400,32, φ1050,34, φ1575,34, φ175,36, φ350,38} 32
{φ1400,37, φ1344,38, φ448,39, φ1008,39, φ56,49} 37
{φ4480,16, φ7168,17, φ3150,18, φ4200,18, φ4536,18, φ5670,18,
φ1344,19, φ2016,19, φ5600,19, φ2688,20, φ420,20, φ1134,20,
φ1400,20, φ1680,22, φ168,24, φ448,25, φ70,32} 16
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5.2.7 A comment on exceptional orbits

The families marked with a ♠ are the only families with just two ir-

reps. There is one such family in E7 and two such families in E8. The orbits

for whom the associated Orbit representation is one of these are referred to

as exceptional orbits. They are known to have somewhat peculiar proper-

ties among all nilpotent orbits (See Carter[35] Prop 11.3.5 and [20, 48]). The

special representations that occur in these families are the only ones which

do not give another special representation when tensored with the sign rep-

resentation. They are also known to posses some special properties from

the point of view of the representation theory of Hecke algebras. These are

the only cases among where ON is a special orbit and Sp[r] 6= OH . Another

way to view this anomalous situation would be to say that the natural par-

tial ordering on special representations 3 of the Weyl group is reversed by

a tensoring with sign in all cases except these. There is a version of this

inversion map due to Lusztig (denoted earlier in Chapter 3 by i(r)), which

remedies these anomalous cases by assigning the special representation in

the family of ε⊗ r to be i(r).

In this context, it is important to note that there are subtler partial

orders that are defined by Achar [2] and Sommers [180] which when trans-

ferred to Irr(W) may enable the treatment of these cases on a more equal

footing with every other instance of duality. From a physical standpoint, it

3This can be obtained by transferring the closure ordering on the set of Special orbits to
the set of Special representation.
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would be interesting to know if these subtler partial orders are related to the

partial order implied by the possible Higgsing patterns of the correspond-

ing three dimensional T [G].

5.2.8 Non-simply laced cases

5.2.9 g = B3, g∨ = C3 and g = C3, g∨ = B3

| Λ+ |= 9

Table 5.9: Order reversing duality for g = B3, g∨ = C3

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

[17] 9 −.[13] [3].− 0 9 [6]
[22, 13] 5 −.[2, 1] [2, 1].− 1 8 [4, 2],S2

[3, 14] 4 [1].[12] [2].[1] 1 8 [4, 2]
[3, 22] 3 [12].[1] [1].[2] 2 6 [32]
[32, 1] 2 −.[3] [13].− 4 5 [22, 12], S2

[5, 12] 1 [2].[1] [1].[12] 4 5 [22, 12]
[7] 0 [3].− −.[13] 9 0 [16]

Families with multiple irreps

Family f a(f)

[2].[1],−.[3], [2, 1].− 1
[1].[12], [13].−,−.[2, 1] 4
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Table 5.10: Order reversing duality for g = C3, g∨ = B3

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

[16] 9 −.[13] [3].− 0 9 [7]
[2, 14] 6 [13].− −.[3] 1 8 [5, 12], S2

[22, 12] 4 [1].[12] [2].[1] 1 8 [5, 12]
[23] 3 [12].[1] [1].[2] 2 7 [32, 1]
[32] 2 [1].[2] [12].[1] 3 6 [3, 22]
[4, 12] 2 [2, 1].− −.[2, 1] 4 5 [3, 14], S2

[4, 2] 1 [2].[1] [1].[12] 4 5 [3, 14]
[6] 0 [3].− −.[13] 9 0 [17]

5.2.10 G2

| Λ+ |= 6

Table 5.11: Order reversing duality for g2

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

1 6 φ1,6 φ1,0 0 6 G2

A1 3 φ′′1,3 φ′′1,3 1 5 (G2(a1), S3)

Ã1 2 φ2,2 φ2,2 1 5 (G2(a1), S2)
G2(a1) 1 φ2,1 φ2,1 1 5 (G2(a1), 1)
G2 0 φ1,0 φ1,6 6 0 1

Families with multiple irreps

Family f a(f)

{φ2,1, φ2,2, φ
′
1,3, φ

′′
1,3} 1
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5.2.11 F4

| Λ+ |= 24

Table 5.12: Order reversing duality for special orbits in F4

(ON) b̃ r̄ r a(fr) d (OH)

0 24 φ1,24 φ1,0 0 24 F4

Ã1 13 φ4,13 φ4,1 1 23 F4(a1)

A1 + Ã1 10 φ9,10 φ′9,2 2 22 F4(a2)
4 ?A2 9 φ′′8,9 φ′′8,3 3 21 B3

?Ã2 9 φ′8,9 φ′8,3 3 21 C3

F4(a3) 4 φ12,4 φ12,4 4 20 F4(a3)
?B3 3 φ′′8,3 φ′′8,9 9 15 A2

?C3 3 φ′8,3 φ′8,9 9 15 Ã2

F4(a2) 2 φ9,2 φ9,10 10 14 A1 + Ã1

F4(a1) 1 φ4,1 φ4,13 13 11 Ã1

F4 0 φ1,0 φ1,24 24 0 0

Families with multiple irreps

Family f a(f)

{φ4,1, φ
′
2,4, φ2,4} 1

{φ4,13, φ
′
2,16, φ

′′
2,16} 13

{φ12,4, φ16,5, φ
′
6,6, φ

′′
6,6, φ

′
9,6, φ

′′
9,6, φ

′
4,7, φ

′′
4,7, φ4,8, φ

′
1,12, φ

′′
1,12} 4

4These instances (marked with a ?) of the duality map are a bit subtle. Although the
Weyl group of the dual is isomorphic in a canonical way to the original, there is an exchange
of the long root and the short root. The notation for r̄ incorporates this exchange.
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Table 5.13: Order reversing duality for non trivial special pieces in F4

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

A1 16 φ′′2,16 φ′2,4 1 23 (F4(a1), S2)
Ã1 13 φ4,13 φ4,1 1 23 F4(a1)

A2 + Ã1 7 φ′′4,7 φ′′4,7 4 20 (F4(a3), S4)

A1 + Ã2 6 φ′6,6 φ′6,6 4 20 (F4(a3), S3)
B2 6 φ′′9,6 φ′′9,6 4 20 (F4(a3), S2 × S2)
C3(a1) 5 φ16,5 φ16,5 4 20 (F4(a3), S2)
F4(a3) 4 φ12,4 φ12,4 4 20 F4(a3)
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Appendix A

Nilpotent orbits in complex lie algebras

Summarize the parameterization of nilpotent orbits in type A, B, C,

D. The dimension of such an orbit that corresponds to a partition (of a suit-

able type) of N that is given by [ni]. Let its transpose partition be [si]. Let rk

be the number of times the number k appears in the partition [ni]. Such an

orbit will be denoted by Oni . Its dimension is given by [44],

dim(Oni) = dim(g)−
(∑

i

s2
i − 1

)
for g = An

dim(Oni) = dim(g)− 1

2

(∑
i

s2
i −

∑
i∈odd

ri

)
for g = Bn, Dn

dim(Oni) = dim(g)− 1

2

(∑
i

s2
i +

∑
i∈odd

ri

)
for g = Cn

In the exceptional cases, the dimensions of the orbits can be obtained from

the tables in [35, 44] (also reproduced in [39]). The closure ordering on the

nilpotent orbits plays an important role in many considerations and this is

often described by a Hasse diagram. It is often to instructive to look at the

Hasse diagrams for just the special nilpotent orbits for the order reversing

dualities act as an involution on this subset of orbits. In the exceptional

cases, such diagrams are available in the Appendices of [39]. There were

originally determined by Spaltenstein in [181].
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Bala-Carter theory

A efficient classification system for nilpotent orbits was provided by

the classification theorem of Bala-Carter. Their fundamental insight was to

look for distinguished nilpotent orbits in the semi-simple part of a Levi sub-

algebra l of a complex lie algebra g. Since the semi-simple parts characterize

the Levi subalgebras, the BC classification is sometimes just described by a

pair (e, l) where e is a representative of a nilpotent orbit in g and l is a Levi

subalgebra of g. A classification of all such pairs amounts to a classifica-

tion of the set of all nilpotent orbits in g. Levi subalgebras themselves are

classified by subsets of the set of simple roots. By providing a classifica-

tion of all distinguished nilpotent elements in all Levi subalgebras, Bala-

Carter effectively provided a classification scheme for all nilpotent orbits.

This complements the classification by partition labels in the classical cases

and is somewhat indispensable in the exceptional cases for which there is

no partition type classification. When Bala-Carter labels are specified for a

nilpotent orbit, the capitalized part of the label identifies a parabolic sub-

algebra p whose Levi part is Levi subalgebra l. If there is a further Cartan

type label enclosed within parenthesis, this denotes a non-principal nilpo-

tent orbit in that Levi subalgebra. If there is no further label attached, then

it is a principal nilpotent orbit in the Levi subalgebra l. For example, E6(a1)

and D5 are the BC labels for two different nilpotent orbits in E6. The former

is not principal Levi type while the latter is.

While it is not absolutely necessary, it is sometimes instructive to
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assign BC labels to nilpotent orbits in the classical cases as well. So, it is

useful to summarize it here (see [13, 158] for more in this regard). Let [ni]

be the partition describing a classical nilpotent orbit ρ and let l be the Bala-

Carter Levi 1

• type A : For the orbit corresponding to the partition [ni], l is of Cartan

type An1−1 + An2−1 + . . .

• type B,D : If ni are all distinct and odd, then ρ is distinguished in

l = BnorDn, where 2n+ 1 =
∑

i ni or 2n =
∑

i ni . For every pair of ni

that are equal (say to n), add a factor of An−1 to l and form a reduced

partition with the repeating pair removed. Proceed inductively, till

the reduced partition is empty. If the final partition is a [3], then add a

factor Ã1. It follows that the principal Levi type orbits have BC labels

of the form Ai1 + Ai2 + . . .+ Ã1 or Ai1 + Ai2 + . . .+Bn/Dn.

• typeC : If ni are all distinct and even, then ρ is distinguished in l = Cn,

where 2n =
∑

i ni. For every pair of ni that are equal (to n, say), add

a factor of Ãn−1 to l and form a reduced partition with the repeating

pair removed. Proceed inductively, till the reduced partition is empty.

If the final partition is a [2], then add a factor of A1. This implies

1No relationship is implied here to any of the subalgebras in the main body of the dis-
sertation. Bala-Carter theory will be used on both g and g∨ sides and the corresponding
notation is introduced therein.
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the principal Levi type orbits have BC labels Ãi1 + Ãi2 + . . . + A1 or

Ãi1 + Ãi2 + . . .+ Cn.

In the exceptional cases, the nilpotent orbits that are principal Levi

type are immediately identifiable for they are always written in terms of

their BC labels.
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Appendix B

Representation theory of Weyl groups

B.1 Irreducible representations of Weyl groups

Here, the notation that is used in [35] to describe irreducible repre-

sentations of Weyl groups is summarized. In the classical cases, there are

certain combinatorial criteria for an irrep to be a special representation and

for a set of representation to fall in the same family. These are also reviewed

briefly. A general feature obeyed by all Weyl groups is that the trivial repre-

sentation and the sign representation are special and consequently, they fall

into their own families.

B.1.1 type An−1

The irreducible representation of W [An] = Sn are given by partitions

of n. The convention is that [n] corresponds to the trivial representation

while [1n] corresponds to the sign representation. All irreducible represen-

tations are special and they occur in separate families.

B.1.2 type Bn & Cn

The irreducible representations are classified by two partitions [α].[β]

where [α] and [β] are each partitions of p, q such that p+ q = n. To each such
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pair of partitions [α].[β], associate a symbol in the following way.

• For each ordered pair [α].[β], enlarge α or β by adding trailing zeros if

necessary such α has one part more than β.

• Then consider the following array :

(
α1 α2 + 1 . . . αm+1 +m

β1 β2 + 1 . . . βm + (m− 1)

)
• Apply an equivalence relation on such arrays in the following fashion :

(
0 λ1 + 1 . . . λm + 1

0 µ1 + 1 . . . µm + 1

)
∼
(

0 λ1 . . . λm
0 µ1 . . . µm

)
• Each pair [α].[β] then provides a unique equivalence class of arrays.

Let a representative for such an array be(
0 λ1 . . . λm

0 µ1 . . . µm

)
• This is the symbol for the corresponding irreducible representation.

Two irreps [α].[β] and [α′].[β′] fall in the same family if and only if

their symbols are such that their symbols contains the same {λi, µi} (treated

as unordered sets). Within the set of all irreps that fall in a family, there is

a unique irrep whose for which the associated symbol satisfies an ordering

property :

λ1 ≤ µ1 ≤ λ2 ≤ µ2 . . . µm ≤ λm+1. (B.1)

This unique representation within the family is the special representation.
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B.1.3 type Dn

The irreducible representations are classified again by pairs of parti-

tions [α][β], with α, β being partitions of p, q such that p+q = n but with one

additional caveat. If α = β, then there are two irreducible representations

corresponding to this pair ([α].[α])′ and ([α].[α])′′. Now, associate a symbol

to this irrep by the following steps

• Write α = (α1, α2, . . .), β = (β1, β2, . . .) as non-decreasing strings of in-

tegers. Add a few leading zeros if needed such that α, β have the same

number of parts. Now, consider the array
(
α1 α2 + 1 . . . αm +m− 1
β1 β2 + 1 . . . βm +m− 1

)
• Impose the following equivalence relation on such arrays

(
0 λ1 + 1 λ2 + 1 . . . λm + 1
0 µ1 + 1 µ2 + 1 . . . µm + 1

)
∼
(
λ1 λ2 . . . λm
µ1 µ2 . . . µm

)
• Each [α].[β] now determines a unique equivalence class of such arrays.

A representative of that equivalence class is the symbol of the irrep.

Two irreps [α].[β] and [α′].[β′] (α 6= β, α′ 6= β′) fall in the same family if

their symbols are such that the λi, µi occurring in them are identical (when

treated as unordered sets). Within such a family, there is a unique irrep

whose symbol satisfies the following ordering property,

λ1 ≤ µ1 ≤ λ2 ≤ µ2 . . . λm ≤ µm or µ1 ≤ λ1 ≤ µ2 ≤ λ2 . . . µm ≤ λm.

(B.2)
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This unique irrep would be the special representations in that family. Irreps

corresponding to labels of type ([α].[α])′ and ([α].[α])′′ are always special

and hence occur in their own families.

As an example of the application of the method of symbols, the irreps

of D4 and their corresponding symbols are noted in a table.

Table B.1: Symbols for irreducible representations of W (D4)

[α].[β] Symbol

[4].[−]

(
4
0

)
[3, 1].[−]

(
1 4
0 1

)
[2, 2].[−]

(
2 3
0 1

)
[2, 12].[−]

(
1 2 4
0 1 2

)
[14].[−]

(
1 2 3 4
0 1 2 3

)
[3].[1]

(
3
1

)
[2, 1].[1]

(
1 3
0 2

)
[13].[1]

(
1 2 3
0 1 3

)
[2].[2]

(
2
2

)
[2].[12]

(
0 3
1 2

)
[12].[12]

(
1 2
1 2

)
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Table B.2: Character table for W (D4)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

[−].[14] 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1
([11].[11])′ 3 -1 3 -1 1 -1 3 -1 -1 0 0 -1 -1
([11].[11])′′ 3 -1 3 -1 1 -1 -1 3 -1 0 0 1 -1

[1].[13] 4 0 -4 -2 0 2 0 0 0 1 -1 0 0
[12].[2] 6 -2 6 0 0 0 -2 -2 2 0 0 0 0
[1].[21] 8 0 -8 0 0 0 0 0 0 -1 1 0 0

[−].[2, 12] 3 3 3 -1 -1 -1 -1 -1 -1 0 0 1 1
[2].[2] 3 -1 3 1 -1 1 3 -1 -1 0 0 1 -1
[2].[2] 3 -1 3 1 -1 1 -1 3 -1 0 0 -1 -1

[−].[22] 2 2 2 0 0 0 2 2 2 -1 -1 0 0
[1].[3] 4 0 -4 2 0 -2 0 0 0 1 -1 0 0

[−].[1, 3] 3 3 3 1 1 1 -1 -1 -1 0 0 -1 -1
[−].[4] 1 1 1 1 1 1 1 1 1 1 1 1 1

As can be seen from the symbols, the only non-trivial family in the

case of D4 is {([2, 1], [1]), ([22],−), ([2], [12])}.

It is also useful to have the character table of W (D4) (see Table B.2)

since it be used to compute tensor products with the sign representation.
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where the conjugacy classes ci are

c1 = 14.−

c2 = 11.11

c3 = −.14

c4 = 212.−

c5 = 1.21

c6 = 2.12

c7 = (22.−)′

c8 = (22,−)′′

c9 = (−.22)

c10 = 31.−

c11 = −.31

c12 = (4.−)′

c13 = (4.−)′′

B.1.4 Exceptional cases

The irreps will be denoted by φi,j , where i is the degree and j is the

b value of the irreducible representation. In the non-simply laced cases of

G2 and F4, there might be more than one representation with same degree

and b value. When this occurs, the two representations are distinguished by

denoting them as φ′i,j and φ′′i,j respectively. For example, G2 has φ′1,3 and φ′′1,3.
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Here, note that these two labels will be interchanged if we were to exchange

the long root and the short root ofG2. The sign and the trivial representation

can be identified in this notation as being the ones with the largest b value

and zero b value respectively. To give a flavor for this notation in action, here

is the character table for W [G2]. The special representation are φ1,0, φ2,1, φ1,6.

Every other representation (together with φ2,1) is a member of the only non-

trivial family in W [G2].

Table B.3: Character table for W (G2)

1 Ã1 A1 G2 A2 A1 + Ã1

φ1,0 1 1 1 1 1 1
φ1,6 1 -1 -1 1 1 1
φ′1,3 1 1 -1 -1 1 -1
φ′′1,3 1 -1 1 -1 1 -1
φ2,1 2 0 0 1 -1 -2
φ2,2 2 0 0 -1 -1 2

There is an interesting duality operation on the set of irreducible rep-

resentations of the Weyl group. For the most part, this acts as tensoring by

the sign representation. An important property of the special representa-

tions of a Weyl group is that they are closed under this duality operation.

This can be readily seen to be true by looking at the character tables.
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Appendix C

The method of Borel-de Siebenthal

The Borel-de Seibenthal algorithm [31] can be used to obtain all pos-

sible subalgebras that arise as the connected, reductive parts of centraliz-

ers of semi-simple elements in Lie algebras (See [178, 179] and references

therein). The algorithm comes down to finding non-conjugate subsystems

of the set of extended roots of the Lie algebra. Let π denote the set of simple

roots and Π the corresponding Dynkin diagram. Now, adjoin the lowest

root to π and form π̃, the set of extended roots. Associated to this is the

extended Dynkin diagram Π̃. The extended Dynkin diagrams formed by

this procedure are collected in Fig C.2. Now, form a sub diagram (possibly

disconnected) by removing a node of Π̃ and all the lines connecting it. The

resulting diagram corresponds to a centralizer. One can proceed by remov-

ing more nodes and lines to get all possible centralizers. There is a subset

of them whose diagrams can also be obtained by considering just sub dia-

grams of Π. These corresponds to the centralizers of semi-simple elements

that are also Levi. The more general centralizers are called pseudo-Levi in

Chapter 3 (following [179]). There, pseudo-Levi subalgebras of g∨ play an

important role and these are denoted by l∨. Among the pseudo-Levi subal-

gebras l∨ that fail to be Levi subalgebras, a particularly interesting class are
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the ones for which their Langlands dual l fails to be a subalgebra of g (the

Langlands dual of g∨). It follows immediately from the Borel-de Seibenthal

procedure that such a scenario can occur only for g being non-simply laced.

Some examples of these more interesting occurrences are collected here.

C.1 Centralizer that is not a Levi

Consider the extended Dynkin diagram forD4 and denote it by Π̃(D4).

There is a sub diagram which is of Cartan type 4A1 that does not arise as a

sub diagram of Π(D4). This corresponds to a pseudo-Levi subalgebra that

is not a Levi subalgebra.

C.2 Pseudo-Levi l∨ such that Langlands dual l * g

Consider the extended Dynkin diagram for g∨ = Bn+1 given by Π̃(Bn+1).

There is a sub diagram which corresponds to a centralizer l∨ of Cartan type

Dn. Taking Langlands duals, one gets g = Cn+1 and l = Dn. But, Dn is not a

subalgebra of Bn+1.
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Ân

B̂n

Ĉn

D̂n

Ê6

Ê7

Ê8

Ĝ2

F̂4

Figure C.1: Extended Dynkin diagrams
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Appendix D

MacDonald-Lusztig-Spaltenstein (j-) induction

This is a general procedure that can be used to generate irreducible

representations of a Weyl group W [g] from irreducible representations of

parabolic subgroups Wp. One can use this method to generate a large num-

ber of the irreducible representations of W [g]. In types A,B,C, one can ac-

tually generate all of them by j-induction. In other types, there is often

quite a few irreducible representations that can’t be obtained by j induc-

tion. A special case of this method that involves induction only from the

sign representation of the parabolic subgroup Wp was developed originally

by MacDonald[141].

D.1 MacDonald induction

Let Wp be a parabolic subgroup of the Weyl group W [g]. This is

equivalent to saying that Wp is the Weyl group of a Levi subalgebra of g.

Then, consider the positive root eα in the root system corresponding to Wp.

The positive roots are linear functionals on h. Form the following rational

polynomial,

P =
∏
eα>0

eα. (D.1)
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Let w be an element of the Weyl group W [g]. Consider the algebra formed

by all polynomials of the form w(P ). This is a subalgebra of the symmetric

algebra and is naturally a W [g] module. In fact, it furnishes an irreducible

representation of the Weyl group W [g]. By choosing different subgroups

Wp, one obtains different irreps of W [g]. This is a special case of j induction

where one uses the sign representation of the smaller Weyl group to induce

from. Within the notation of the more general j-induction, the MacDonald

method would correspond to jWWp
(sign).

D.2 MacDonald-Lusztig-Spaltenstein induction

The generalization of the MacDonald method to what is called j in-

duction was provided by Lusztig- Spaltenstein in [140]. What follows is a

very brief review. See [35, 94] for more detailed expositions.

Let V be a vector space on whichW [g] acts by reflections. LetWr now

be any reflection subgroup of W [g]. Let V Wr be the subspace of V fixed by

reflections inWr. There is a decomposition V = V̄ ⊕V Wr . Consider the space

of homogeneous polynomial functions on V̄ of some degree d and denote

it by Pd(V̄ ). Let r′ be any univalent irrep of Wr. This means that r′ occurs

with multiplicity one in Pd(V̄ ) for some d. The W [g] module generated by r′

is irreducible and univalent and it denoted by jWWr
(r′). When, r′ is the sign

representation and Wr is the Weyl group of Levi subalgebra (= a parabolic

subgroup), this reduces to the MacDonald method.
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The action of j induction is most transparent in type A. For types

B,C,D, it can still be described by suitable combinatorics. However, in

practice, it is most convenient to use packages like CHEVIE to calculate j

induction. Below, some sample cases are recorded.

D.2.1 j-induction in type A

In type A, one can get all irreducible representations using j induc-

tion of the sign representation from various parabolic subgroups. The var-

ious Levi subalgebras in type A have a natural partition type classification

and consequently, so do their Weyl group. Let WP be a parabolic subgroup

of partition type P . Let, P T be the transpose partition. Then, jWWP
= P T ,

where P T is the partition label for the irreducible representations of Sn.

D.2.2 Example : j-induction in A3

Here is a detailed example of j induction in action for type A. Intro-

duce the following subgroups of the Weyl group S4 by their Deodhar-Dyer

labels (which are used in CHEVIE to index reflection subgroups). The label

is of the form [r1, r2 . . .] and corresponds to a subset of the set of positive

roots (in the ordering used by CHEVIE). By a theorem of Deodhar & Dyer

[53, 67], this is a characterization of non-conjugate reflection subgroups.
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Subgroup Deodhar-Dyer label Cartan type of assoc. subalgebra
W[4] [r1, r2, r3] A3

W[3,1] [r1, r2] A2

W[2,2] [r1, r3] A1 + A1

W[2,12] [r1] A1

W[14] [∅] ∅

Denote the irreducible representation of W = S4 by the usual partition la-

bels ([14] is the sign representation while [4] is the identity representation).

Applying j-induction using the sign representation in each of the subgroups

above, one gets

jWW1,2,3
(sign) = [14]

jWW1,2
(sign) = [2, 12]

jWW1,3
(sign) = [2, 2]

jWW1
(sign) = [3, 1]

jWW∅(sign) = [4]

D.2.3 Example : j-induction in D4

Introduce the following subgroups of W (D4) using Deodhar-Dyer

labels,
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Subgroup Deodhar-Dyer label Cartan type
W1,2,3,4 [r1, r2, r3, r4] D4

W2,3,4 [r1, r3, r4] A3

W1,3,4 [r2, r3, r4] A3

W1,2,3 [r1, r2, r3] A3

W1,2,4,12 [r1, r2, r4, r12] 4A1

W1,3 [r1, r3] A2

W3,10 [r3, r10] 2A1

W1,12 [r1, r12] 2A1

W1,2 [r1, r2] 2A1

W1 r1 A1

W∅ [∅] ∅

One obtains the following results useful for j-induction,

jWW1,2,3,4
(sign) = [14].−

jWW1,2,3,4
([13].[1]) = [13].[1]

jWW2,3,4
(sign) = ([12].[12])′

jWW1,3,4
(sign) = ([12].[12])′′

jWW1,2,3
(sign) = ([2].[12])′′

jWW1,2,4,12
(sign) = [22].−

jWW1,3
(sign) = [2, 1].[1]

jWW1,2
(sign) = [3, 1].−

jWW3,10
(sign) = ([2].[2])′

jWW1,4
(sign) = ([2].[2])′′

jWW1
(sign) = [3].[1]

jWW∅(sign) = [4].−
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The choice of the subgroups and the resulting irreps is no accident.

The irreducible representations obtained here by j induction are precisely

the Orbit representations for D4 and they occur as r̄ in Table 5.2.

D.2.4 Example : j-induction in G2

As a final example of j induction, here are some results forG2 that are

relevant for the compiling of Table 5.11. Introduce the following subgroups

of W (G2).

Subgroup Deodhar-Dyer label Cartan type
W1,2 [r1, r2] G2

W2,3 [r2, r3] A2

W2,6 [r2, r6] A1 × A1

W1 [r1] A1

W∅ [∅] ∅

With this, one can note the following instances of j induction,

jWW1,2
(sign) = φ1,6

jWW2,3
(sign) = φ′′1,3

jWW2,6
(sign) = φ2,2

jWW1
(sign) = φ2,1

jWW∅(sign) = φ1,0

The instances of j induction were again chosen such that the result is

an Orbit representation of G2. An important observation due to Lusztig is
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that for any arbitrary Weyl group, the Orbit representations can always be

obtained by j induction.
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Appendix E

Functional determinants and Special functions

E.1 Behaviour of functional determinants under scaling

Zeta function regularization is often used in the determination of

functional determinants. The general strategy is the following. Let A be

the operator of interest. Forming a zeta function using the eigenvalues A :

ζA(s) =
∑
n

(λn)−s.

This is typically convergent for s > σ for some σ ∈ R. In many cases, this

function can be analytically continued to arbitrary values of s upto some

poles that are away from s = 0. This allows us to write the product of

eigenvalues (formally) as

ζA
′
(0) = − log(

∏
n

λn).

Inverting this identity give us the regularized value for det(A)

det(A) =
∏
n

λn = e−ζ
A′ (0).

Such regularizations often find use in problems that involve evaluating Gaus-

sian path integrals on curved manifolds. In such cases, A is typically an el-

liptic or a transversally elliptic operator that occurs in the quadratic part of

the action.
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Let us now consider a scale transformation that changes the metric

as g̃ = k−1g and leads to a change in the eigenvalues as λ̃n = kλn. The zeta

function built out of λ̃n is related to the original one by

ζAk(s) = k−sζA(s).

Writing a regularized form of det(Ak) in terms of the original zeta function

now requires an additional (=anomalous) term in the analogue of (E.1),

ζA
′
(0)− (log k)ζA(0) = − log(

∏
n

λ̃n).

Inverting this,

det(Ã) =
∏
n

λ̃n = kζ
A(0)e−ζ

A′ (0).

Factors of the form kζ
A(0) play an important role in Chapter 4.

E.2 Special function redux

Some properties of the special functions that are used in Chapter 4

are collected here. For a more detailed treatment of the analytical proper-

ties of these functions and a summary of the identities they obey, see [182].

The Barnes double zeta function and the Hurwitz zeta function have the

following sum representations

ζB2 (s; a, b, x) =
∑
m,n=0

(am+ bn+ x)−s, (E.1)

ζH(s, x) =
∑
m=0

(n+ x)−s. (E.2)
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The derivatives at s = 0 of these zeta functions are related to Γ2(x) and Γ(x)

in the following way,

ζ ′B2 (0; a, b, x) = log(Γ2(x; a, b)) + const, (E.3)

ζ ′H(0, x) = log(Γ(x)) + const. (E.4)

The Υ function that is often used in Liouville/Toda theory is defined as

Υ(x; b, b−1) =
1

Γ2(x; b, b−1)Γ2(Q− x; b, b−1)
, (E.5)

where Q = b + b−1. The derivative of the Υ function at x = 0 also plays an

important role in the DOZZ/FL correlators. It is given by,

Υ0 =
dΥ(x)

dx
|x=0 = Υ(b), (E.6)

where the final equality follows from the asymptotic properties of Υ(x) [192,

68]. Under a scaling transformation, Υ(x) has the following behaviour (this

follows from the discussion in Section 2) ,

Υ(µx;µε1, µε2) = µ2ζB2 (0,x;ε1,ε2)Υ(x; ε1, ε2), (E.7)

with

ζB2 (0, x; ε1, ε2) =
1

4
+

1

12

(
ε1
ε2

)
− x

2

(
1

ε1
+

1

ε2

)
+

x2

2ε1ε2
. (E.8)

As a shorthand, let us summarize the above scaling behaviour by saying

that the scale factor for Υ(x, ε1, ε2) (denoted by µ[Υ(x, ε1, ε2)]) is 2ζB2 (0, x; ε1, ε2).

The Barnes G function (for b = 1) can be related to the double gamma func-

tion defined above using (see Prop 8.5 in [182] )

G(1 + x) =
Γ(x)

Γ2(x; 1, 1)
(E.9)
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Rewriting the above relationship in terms of derivatives of the Barnes dou-

ble zeta and the Hurwitz zeta functions,

e−ζ
B′
2 (0,x;1,1)+ζH

′
(0,x;1,1) = G(1 + x).

Noting that,

Υ(
Q

2
+ ix) =

1

Γ2(Q
2

+ ix)Γ2(Q
2
− ix)

(E.10)

The H function and the Υ function are related to the Barnes G function by

H(x) = G(1 + x)G(1− x), (E.11)

Υb=1(x) =
G(1 + x)G(3− x)

Γ(x)Γ(2− x)
(E.12)

Υb=1(Q/2 + ix) =
G(2 + ix)G(2− ix)

Γ(1 + ix)Γ(1− ix)
(E.13)

From Section 2, the scale factor for theH function (specialized to ε1 = ε2 = 1)

is given by,

µ[H(x)] = 2ζB2 (0, x; 1, 1)− 2ζH(0, x) = −1

6
+ x2, (E.14)

while the scale factor for the Υ function (again specialized to ε1 = ε2 = 1) is

µ[Υ(x)] = 2ζB2 (0, x; 1, 1) =
5

6
− 2x+ x2 = −1

6
+ (1− x)2. (E.15)
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Appendix F

Conformal Bootstrap

It is useful to recall how the conformal bootstrap procedure proceeds

for Liouville theory. The basic idea is the procedure put forward in BPZ (for

a detailed review, see [205] ). For a modern understanding of the analytical

bootstrap procedure as it is applies to the case of Liouville CFT, see [188].

Let us start with the two point function on the sphere. Conformal

invariance constrains this to be of the form

V0,2 = 〈OαOβ〉 =
δαβ

|z1 − z2|∆

The three point function is similarly constrained but not completely

determined by requirements of conformal invariance.

V0,3 = C(α1, α2, α3)|z12|−2(∆1+∆2−∆3)|z13|−2(∆1+∆3−∆2)|z23|−2(∆2+∆3−∆1)

The dynamics of the theory is encoded in C(α1, α2, α3). The proce-

dure of conformal bootstrap outlined in BPZ, [205] starts with the writing

of the general four point function in terms of the three point functions and

a special function known as the conformal block.
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Let us start with a generic four point function and insert a complete

set of states in between the four operators.

〈Oα1Oα2Oα3Oα4〉 =
∑
[α]

or
∫

[α]

〈Oα1Oα2O[α]〉〈O[α]
∗Oα1Oα2〉 (F.1)

where [α] denotes the conformal family associated to a primary Oα. Note

that the members of the conformal family can be obtained by acting with

the operators L−m (m > 0). Both symbols
∑

or
∫

are included to highlight

the the fact that in arbitrary cases, there may be a continuous integral and a

discrete sum involved. However, it is the integral sign that is employed in

Chapter 5. This is done to simplify notation.

Now, one can proceed by using the OPE between the first two oper-

ators to write the first term in the following way

Oα1Oα2 =

∫
dαC(α1, α2, α)z∆α−∆α1−∆α2 z̄∆̄α−∆̄α1−∆̄α2O[α]

where,

O[α] = Oα + Ωα,1
12 zL−1Oα + Ω̄α,1

12 z̄L̄−1Oα + Ω
α,{1,1}
12 z2L2

−1Oα + . . . .

The dynamics of the theory is encoded in the coefficients Ω
α,{...}
12 and Ω̄

α,{...}
12

that appear in the above expansion. These constants obey a recursive set of

linear equations which can be solved level by level. The final solution for

Ω
α,{...}
12 at some low levels have the following form

Ω
α,{1}
12 =

∆α −∆α1 −∆α2

2∆α

,

Ω
α,{1,1}
12 =

(∆α −∆α1 −∆α2)(∆α −∆α1 −∆α2 + 1)

4∆α(2∆α + 1)
− 3

2(∆α + 1)
Ω
α,{1}
12 .
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As a simple example, consider the three point function in Liouville

CFT.

F.1 V(0,3) = V [sl2]0,([12],[12],[12])

In the AGT correspondence, this is the correlator assigned to a theory

of four free hypermultiplets. By DOZZ, we have

V [sl2]0,([12],[12],[12]) = C(α1, α2, α3)|z12|−2(∆1+∆2−∆3)|z13|−2(∆1+∆3−∆2)|z23|−2(∆2+∆3−∆1),

where C(α1, α2, α3) is given by

C(α1, α2, α3) =

[
πµγ(b2)b2−2b2

](Q−
∑
i αi)/b

×

Υ(b)Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)

Note that Υ(x) is an entire function except for zeros at x = −mb−nb−1

or x = Q+m′b+n′b−1 for m,n,m′, n′ ∈ Z≥0. The DOZZ three point function

then has a pole when any one of the following conditions is satisfied,

α1 + α2 + α3 −Q = Ωm,n,

α1 + α2 − α3 = Ωm,n,

α2 + α3 − α1 = Ωm,n,

α3 + α1 − α2 = Ωm,n,

where Ωm,n is used to denote the string of points −mb− nb−1 and Q+m′b+

n′b−1. The set of poles matches with the screening conditions that arise from
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doing the path integral of the Liouville zero modes. Let us recall the general

form of a screening condition for future purposes.

∑
i

αi + (g − 1)Q = Ωm,n,

where g is the genus and the sum is over all punctures. Starting with any

one of the conditions, the other three can be obtained by single Weyl re-

flections Wi : αi → Q − αi. Observe that overall Weyl reflections do not

give a new screening condition. For example, starting with the condition∑
α−Q = Ωm,n and reflecting using W :

∑
α→ Q−

∑
α leads to the same

screening condition. This implies that the total number of screening condi-

tions is four and not eight. Now, using the AGT primary map, the screening

conditions can be rewritten in terms of the mass deformations

Q

2
+m1 +m2 +m3 = Ωm,n, (F.2)

Q

2
+m1 +m2 −m3 = Ωm,n, (F.3)

Q

2
+m2 +m3 −m1 = Ωm,n, (F.4)

Q

2
+m3 +m1 −m2 = Ωm,n. (F.5)

Observe that when any one of the hypermultiplet masses is set to zero, there

is no pole since the point Q/2 does not belong to the string of poles Ωm,n un-

less Q = 0. Q = 0 is possible only if b = ±i. One can not naively continue

the result to pure imaginary values of b since that is outside the region of

analyticity of the DOZZ three point function [207, 105]. Since flat direc-

tions in the moduli space are opening up when such relations are satisfied,
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one would naively expect ZS4 to diverge. But, such a direct interpretation

for the pattern of divergences does not seem to be possible. The mass re-

lations are instead encoded in the polar divisors of the integrand for ZS4

in a Q-deformed manner. It is not immediately clear as to what physical

meaning should be attributed to the lattice of poles. But, there is still some-

thing useful that one can learn from this simple example of a three point

function. Namely, the number of hypermultiplets is nothing but the total

number of screening conditions . This simple relation between number of

screening conditions and nh holds for all the free theories. The bootstrap

program entails using insertions of complete states as in (F.1) and obtaining

all higher point functions starting from the three point function. Requiring

that the resulting higher point functions (on arbitrary genus surfaces) obey

the crossing relations and its generalizations ends up being a very strong

constraint on the three point function that it determines its analytical struc-

ture. One can work in the opposite direction as well. This would imply

starting with the DOZZ three point function and then checking that the

higher point functions have the required pole structure and obey crossing

relations. In the example below, we will see how bootstrap produces the

required pole structure as the result of an intricate interplay of various dif-

ferent factors. One could, ultimately, hope to understand Toda bootstrap at

this level of detail.

222



F.2 V(0,4) = V [sl2]0,([12],[12],[12],[12])

This is the correlator corresponding toN = 2 SYM with gauge group

SU(2) and Nf = 4. The flavor symmetry for this theory is SO(8). The

theory has four mass deformation parameters which can each be assigned

to a SU(2) flavor subgroup of SO(8). These mass parameters will be related

to the Liouville momenta in the following fashion

αi =
Q

2
+mi

The eigenvalues of the mass matrix are m1 + m2, m1 − m2, m3 + m4 and

m3 − m4. To write down the four point function in Liouville theory, one

usually takes αi, α to lie on the physical line. That is, αi = Q/2 + is+
i , α =

Q/2 + is+ for s+
i , s

+ ∈ R+. The four point function can then be written as

ZS4 = V0,4(α1, α2, α3, α4) =∫
α∈Q

2
+is+

dαC(α1, α2, α)C(Q− α, α3, α4)F34
12 (c,∆α, zi)F34

12 (c,∆Q−α, z̄i)

The fact that α ∈ Q
2

+ is implies ᾱ = Q − α has been used in the above

equation. Now, using the symmetry of the entire integrand under the Weyl

reflection α→ Q−α, the integral can be unfolded to one over R. This gives

V0,4(α1, α2, α3, α4) =
1

2

∫
α∈Q

2
+is

dαC(α1, α2, α)C(Q−α, α3, α4)F34
12 (c,∆α, zi)F34

12 (c,∆Q−α, z̄i)

where s ∈ R. Now, observe that the integrand depends just on α and not on

ᾱ. This allows us to analytically continue the integrand to arbitrary values

of α and then interpret (F.6) as a contour integral. Let us now study the
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analytical structure of the four point function by looking at different parts

of the integrand (see [188]).

1. Although the Vir conformal blocks are completely constrained by sym-

metry, no closed form expression is known. But, its analytical proper-

ties wrt α are deduced by observing that the conformal blocks can be

written as

F(c,∆i,∆α, zi) = z
−2(∆1+∆2+∆3−∆4)
13 z

−2(∆1+∆4−∆2−∆3)
14 z−4∆2

24 z
−2(∆3+∆4−∆1−∆2)
34 F (c,∆i,∆α, q)

where q = z12z34/z13z24. F (c,∆i,∆α, q) has the following series expan-

sion

F (c,∆i,∆α, q) = q∆α−∆1−∆2

∞∑
i=0

Fi(c,∆α,∆i)q
i

Each term in the expansion can in turn be written as a ratio of two

polynomials.

Fi =
Pi(c,∆,∆i)

Qi(c,∆)

The denominator Q(c,∆α) is nothing but the divisor of the Kac deter-

minant at level i. It is zero when when α takes values corresponding

to degenerate representations

α = −(m+ 1)b

2
− (n+ 1)b−1

2
.

When this condition is satisfied, there is a null vector in the Verma

module at level (m+ 1)(n+ 1). The zero of Q(x,∆α) leads to a pole for

F(z). A similar sequence of arguments show that at exactly the same
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values of α, F(z̄) also picks up a pole. This is because ∆α = ∆Q−α and

the dependence of the chiral and the anti-chiral conformal blocks on α

is only through their dependence on ∆α. So, F(z) and F(z̄) combine

to give a double pole. However, the factor Υ(2α)Υ(2(Q − α)) has a

double zero exactly at these values. So, they cancel.

2. The Υ functions in the denominator (from both two C(. . .) factors

combined) have simple poles when any one of the following condi-

tions are satisfied

α1 + α2 + α = Q− Ωm,n α1 + α2 + α = 2Q+ Ωm,n

α1 + α2 − α = −Ωm,n α1 + α2 − α = Q+ Ωm,n

α1 + α− α2 = −Ωm,n α1 + α− α2 = Q+ Ωm,n

α2 + α− α1 = −Ωm,n α2 + α− α1 = Q+ Ωm,n

α3 + α4 − α = −Ωm,n α3 + α4 − α = Q+ Ωm,n

α3 + α4 + α = Q− Ωm,n α3 + α4 + α = 2Q+ Ωm,n

α3 − α− α4 = −Q− Ωm,n α3 − α− α4 = Ωm,n

α4 − α− α3 = −Q− Ωm,n α4 − α− α3 = Ωm,n

Let us fix <(αi) = Q/2. As we will momentarily see, the integral is

well defined for arbitrary values of =(αi). One can also continue to

arbitrary values of <(αi) except when they end up satisfying a screen-

ing condition. In those cases, poles emerge because the contour gets
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pinched. To see these aspects, it is better to change variables. Set

αi = Q/2 + isi where si ∈ R The above set of equations then imply

strings of poles at the following values in the α-plane.

α = −Ωm,n − i(s1 + s2) α = Q+ Ωm,n − i(s1 + s2)

α = Q+ Ωm,n + i(s1 + s2) α = −Ωm,n + i(s1 + s2)

α = −Ωm,n + i(s2 − s1) α = Q+ Ωm,n + i(s2 − s1)

α = −Ωm,n + i(s1 − s2) α = Q+ Ωm,n − i(s1 − s2)

α = Q+ Ωm,n + i(s3 + s4) α = −Ωm,n + i(s3 + s4)

α = −Ωm,n − i(s3 + s4) α = Q+ Ωm,n − i(s3 + s4)

α = Q+ Ωm,n + i(s3 − s4) α = −Ωm,n + i(s3 − s4)

α = Q+ Ωm,n + i(s4 − s3) α = −Ωm,n + i(s4 − s3)

Notice that every Υ function leads one string of left-poles (poles strictly

in the region to the left of the contour) and another string of right-poles

(pole strictly in the region right of the contour). It is useful to plot the

poles in the α plane (See Fig F.1). The blue line indicates the position of

the contour while the green lines indicate that of the poles. Note that

for irrational b, all poles occur at distinct points along the line. The

green lines are drawn as continuous lines just for convenience. The

point on the green lines that is closest to the contour is the location of

the first pole.
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ReHΑL=
Q

2

ImHΑL=s1+s2

ImHΑL=-s1+s2

ImHΑL=s1-s2

ImHΑL=-s1-s2

ImHΑL=s3+s4

ImHΑL=-s3+s4

ImHΑL=s3-s4

ImHΑL=-s3-s4

Figure F.1: Analytical structure of the integrand for V0,4

It is useful to define an object called the set of all polar divisors of the

integrand,

Di ≡ {=(α) = k|k ∈ {s1+s2,−s1−s2, s1−s2, s2−s1, s3+s4,−s3−s4, s3−s4, s4−s3}}.

To define the continuation to arbitrary values of αi, it is important to

note that the poles are away from the contour as long as the following
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conditions are satisfied,

|<(α1 − α2)| < Q/2, (F.6)

|<(Q− α1 − α2)| < Q/2, (F.7)

|<(α3 − α4)| < Q/2, (F.8)

|<(Q− α3 − α4)| < Q/2. (F.9)

When going outside the range allowed by these inequalities, one should

watch for poles to cross the contour and indent the contour corre-

spondingly. This new contour can be rewritten as the original contour

plus a finite number of circles around the poles that crossed. There are

a finite number of extra terms corresponding to the residues at these

poles. This prescription suffices as long as all the polar divisors Di

are distinct. When some of them align, the contour can get pinched

when αi takes arbitrary values. Let us called the divisors that align as

D1&D2. The pinching happens when the left poles in D1 have moved

a distance ≥ Q/2 to the right while simultaneously, the right poles of

D2 have moved by a distance ≥ Q/2 to the left. If there are no new

zeros emerging, such pinching leads to poles in the integral. In some

cases, new zeros do emerge. The poles that arise when conditions of

the form si+si = si−sj , where (i, j) is either (1, 2) or (2, 3), are satisfied

are canceled by the zeros of Υ(2α1),Υ(2α2),Υ(2α3),Υ(2α4). But, oth-

ers (say, those that follow from s1 +s2 = s3 +s4) will remain as poles of

the integral. These are exactly the cases for which the screening condi-

228



tion is satisfied. As expected, the four point function has simple poles

only at these values.
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