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PREFACE

The workshop on Quantum Gravity and Topology was held at INS
on February 21-23, 1991. Several introductory lectures and more than
15 talks were delivered for about 100 people paticipants. The main
subjects discussed were

i) Topological quantum field theories and topological gravity

ii) Low dimensional and four dimensional gravity

iii) Topology change

iv) Superstring theories

€etc.

We wish to thank the speakers and participants for their successful
efforts to provide a stimulating and friendly atmosphere. We hope that
someone who participated in this workshop will become second
Einstein in the near future.

Ichiro Oda
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Two-dimensional Topological Gravity ™

Hirosar KUNITOMO!

Yukawa Institute for Theoretical Physics
Kyoto University, Kyoto 606, Japan

ABSTRACT

A formulation of two-dimensional topological gravity due to Verlinde and Ver-
linde is reviewed. It is equivalent to 7SO(2) gauge theory with flat gauge connec-
tions that is the topological gauge theory in two dimension. The theory reduces
conformally invariant free field theory and the equivariant cohomology can be in-

vestigated. The Feynmann rules for calculating amplitudes are also derived.

% Talk presented at the Workshop on Quantum Grevity and Topology, INS, Tokyo, Japan
(February 1991).

t Present address: Institute for Nuclear Study, University of Tokyo, Midori-cho, Tanashi,
Tokyo 188, Japan.



1. Introduction

Topological field theory"' had been originally fascinating interest from a math-
ematical stand point as a quantum field theoretical realization of the Donaldson’s
theory'” The Donaldson invariants can be obtained via the path integral formu-
lation and the Hamiltonian formulation leads naturally the Floer groups of three
manifolds. Recent results about two-dimensional topological gravity, however, give
much insight to two-dimensional quantum gravity and has been attracting much
interest from a physical view point. The aim of this talk is present a review of these

results of two-dimensional topological gravity.

The recent remarkable progress in the random matrix formulation of two-
dimensional quantum gravity“l gives us a new way of studying the non-perturbative
properties of string theory and an example of interesting phenomena come from
the summation of the space-time topology. Their generating function of correlation
functions are determined by Schwinger-Dyson equations which are written in the
form of Virasoro constraints'™ While two-dimensional topological gravity can be
considered as its continuum theory and seems to lead deeper understanding of two-
dimensional quantum gravity. This is the first example of topological field theory
which is related to the interesting physics but not mathematics. Correlation func-
tions on Riemann surface with different topology are intrinsically related and it is

governed by recursion relations which coincide with the Schwinger-Dyson equations

in the matrix modei.

We will see, in this review, how the two-dimensional topological gravity are
formulated and correlation functions are calculated. The theory reduces a free
conformal field theory and the equivariant cohomology can be investigated explic-
itly in the operator formulation language. All the physical observables except for
the puncture operator are almost BRST trivial and it can contribute amplitudes
through singularities on the boundary of the moduli space. Any correlation func-
tions can be obtained by means of conformal field theoretical technique and the

stable compactification theory of moduli space in principle.

x This is based on the work by Verlinde and Verlinde™ and I recommend reading the original
paper for detail.



2. The lagrangian of topological gravity

Two-dimensional topological gravity is a field theory which is associated with
the cohomology of the moduli space of Riemann surfaces. The moduli space M of
Riemann surfaces can be represented as the space of all zwei-beins, modulo diffeo-
morphisms, local-Lorentz and Weyl-transformations. However, here we constraint
the Weyl-transformation by restricting curvature R(z) = dw(e(z)) to a particular

value R (z) such that the moduli space M is represented as
M = {(e*,e7); dule) = R}/ Diff ®IL (2.1)

If we choose almost everywhere vanishing R, the theory will reduce a conformally
invariant free field theory. We replace the constant-curvature condition into zero-
curvature one and the delta-function singularities of curvature can be recovered by
inserting curvature creation operator in correlation functions.

The theory can be constructed by means of general procedure due to Witten'

The topological field thecry has ghost number U, which is related to the dimen-
sion of moduli space and violated by an anomaly. We start with fields of U = 0;
spin connection w and zwei-bein e both of which are one form, where we take
the first order formulation and add torsion free conditions as equations of motion.
We also introduce ghosts of U = 1, sometimes called topological ghost, which are
fermionic one forms: ¥° and ¢%. Ghost fields in U = 2 have the quantum numbers
of gauge parameters and in our case they are bosonic zero forms: 4° and 4%. These
three types of fields (w, et; ¢° ¢*; 4°, 4%) form the fundamental multiplet in
the topological field theory.

Next one introduces an anti-commuting symmetry 6 s with transformation laws
Sow=19",  b.0p = 8,7 9% + 10,43,
+ _ % + _ 0+ Ayt A +
656 - ¢ ] 6S¢“ - :l:‘)’ "b“ +a‘;7 ¢A + 7 a/\'pp’
0 +
6.7 =0, o5y =0. (2.2)

This is nilpotent up to local-Lorentz transformations and diffeomorphisms by con-

struction.



If we introduce anti-ghost multiplet (x,, x.; 7y, 7 ) and define its 6 - trans-

formation as

" A
b5Xo = T by =7 0,7,

{3
[<Y]
~—

0 A
boxy =Ty, bemy =Fymy+ 8’\7ri, (2.
the é¢-invariant action can be obtained by

S =6 /(xodw +x,Det +x_De7)

= /(wodw + 7r+De+ +7_De™ — x0d¢° - x+[)¢+ -x_Dv7), (24)

which has field equations the zero-curvature and the torsion free conditions. Here

we introduce (super) covariant derivatives for ghost fields as
Dyt = dyt FwAypt £ et Ayl (2.5)

We can start from the action (2.4) and it can be quantized by means of conventional

BRST method.

The action (2.4) has two types of symmetries. One is local-Lorentz transfor-

mations and diffeomorphisms:

bw, = 8”5’\w/\ + E’\aAw”,

6ef = :taejf + 3,,5"6? + EAaAef,
89y = 8,613 + £20,45,

spF = oyt + 0,6 yF + 620,43,

bxy = €10, x,,
‘Sxi = Fayy + E'\ani,
b7, = £29,m,,

ér, = Far, + EAaAWi. (2.6)



The other is its fermionic analogue

v = 0,603 + £20,45,

Syt = tayf + 0,8 9F + 0,97,

571'0 = é)‘a/\wo,

571':t = =F&1ri+£“(9/\7ri. (2.7)

These fermionic symmetries are the reason of being introduced bosonic ghosts v°
and v%.
These symmetries are equivalent to following “super” I1SO(2) gauge transfor-

mation when we impose the field equations.

bw = dp®,
set = +0° + Dpt,
§9° = dp®,
syt = 0% + et + Dj*,

‘SXO = ipiXiv
xy = Fr'Xy
bmy = :i:,o:tw:t + ﬁixi,
bmy = :FPO“':E ¥ ﬁOXia (2.8)
where
P=a+ w pr=¢€ e,
P=a+E w+€ 90 =€ g4 et (2.9)

We can define the BRST transformation by adding é ¢ and the part come from these
gauge symmetries. One can see the resultant BRST transformation is nilpotent off

shell but we do not give its explicit form here.



3. Topological gravity as a free conformal field theory

We will now discuss the quantization of our theory. First we choose the con-

formal gauge for fixing diffeomorphisms:

et = e¥*dz,

e~ =e®dz. {3.1)
The local-Lorentz transformations are fixed by imposing

b, =6_. (3.2)

For the gauge fixing of the local fermionic symmetries, it is convenient to take

the gauge conditions which are super-symmeiric to conformal gauge conditions:

¢+ — e¢+¢+dz,
™ = e-y_ds,
Y, =v_. (3.3)

The complete gauge fixed lagrangian can be obtained by means of conventional
BRST method™ After integrating out non-dynamical fields, the lagrangian reduces

a following free field action.

£ =nd0¢ + x80¢ + bdc + I~ + bOE + 367, (3.4)
where g = ¢ +¢_ and = ¢ +1_. Field ¢ () is the reparametrization ghost (its
fermionic partner). Ghost field for local-Lorentz transformations and its partner

are non-dynamical and determined by the equations

& = %(60 + c0¢ — ¢ + ¢d¢),

1 — — -
7° = 507+ 706 + cd¥ — 07— 396 — ). (3.5)



This free field theory has “super” conformal symmetry generated by

T, = Ondd + 9z + Ox 0,
T = cOb+ 20ch + v08 + 2045,

gh
G, = 0x0¢ + x,
Ggh = cOf + 20cp, (3.6)

where T, and Tg,l are independently satisfy the Virasoro algebra with vanishing
central charge and G, and Ggh are their “super” partner with dimension two. The

BRST charge is given by

Qz=0+Q,
Q=0Q,+Q,
Q= f(@mi+b),

Q. = Jq{ (6T, + 5T+ G, + 5G,,)) (3.7)

Q s and QG are commutative and nilpotent respectively.

4. Equivariant cohomology and observables

Observables in the topological field theory is obtained by considering equiv-

ariant cohomology of §, which means the .- cohomology in the space of gauge-

&
invariant quantities. We can construct physical observables by solving some descent
equations" In the topological gravity, however, a difficulty occur since gauge group
contains diffeomorphisms. There is no local operator which is invariant under dif-
feomorphisms. Only the top-form observable integrated over whole manifold can be
constructed in the usual sense. Nevertheless, two-dimensional topological gravity

is rather special and the non-top-form observables can be constructed as follows.

The key point for obtaining local observables is changing our moduli space to

the one of the punciured Riemann surfaces. Since diffeomorphisms map a puncture



into itself we can consider local observables on the puncture. We should only
consider 6¢- cohomology in the space of the local-Loventz invariant operators. In
this sense, we can get zero-form observable in the similar way to the topological

Yang-Mills theory:
o = 43, (4.1)

where 70 is defined by (3.5). Higher form observables can be seen from descent

equations:
650'510) =y,
da',(lo) =550'$11),
dott) =502,
dol? =0. (4.2)
One finds
Cr,(-;l) = nwﬂ_y(f]l—l'
1 n—
al?) = ndwyd~' + 5(71 - 1)y° A gg?, (4.3)
where
1 5
(wv w) = g(a(ﬁa —8(}5),
- 1 5
(%%, ¥°) = 5(8¢, —3). (4.4)

For real observables which are well worked in our theory, we must associate the
puncture operator to ¢’s, which is necessary to kill diffeomorphisms at the point

on where observables sit:

P = c8(7)6(7).

The puncture operator is invariant under the BRST transformation.



5. Description of the amplitude

We begin with a remark concerning the curvature creation operation. As was
explained in Chapter 2, we have been considering the Riemann surfaces with sin-
gular curvature. This is realized at the correlation function level as follows. We

first note that the dimension of ¢ is anomalous

s 04(w) (5.1)

(z—w)?  z-

T(z)¢(w) ~

since ¢ is not a scalar but Liouville mode. This means that in the usual conformal

gauge with constant-curvature Riemann surfaces
95 = %0, (5.2)
the action has the form
= . qb 1 -
gleov) = / VE(§" 0,708 + 57 R). (5.3)

A consequence of this is that the singular curvature is obtained by inserting curva-

ture creation operator
Vylz,) = e, (54)

or its BRST invariant version obtained by replacing = with # = = + cdx + éfx.
The strength of singularities g; are constrainad by the condition that the integrated
curvature must be equal to the Euler number

> g =29-2 (5.5)

The independence of the point where we insert the curvature creation operators is

guaranteed by
det* = ¢{Qp, dxet®}. (5.6)

Furthermore, as in ordinary string theory, the amplitudes of topological strings

can be written as integrals over the moduli space M, of Riemann surfaces. In



addition, we now have “super” moduli come from the fermionic field (¥*, ¥7). It
should be noted that this super moduli due to scalar supersymmetry 64 thus its
dimension is the same as the bosonic moduli space 6g — 6 which is different from

the well-known super Riemann surfaces.

Integration of super moduli leads insertion of “super current” as in the super-

string. The super current in this case is the dimension two current G:

o, i

% _6, ¢6,-= / d*zp (2, H)G(z), (5.7)
: >

where p_ is the Beltrami differential corresponding to m,.

Finally we get the rule for obtaining the physical amplitude as

(O, Ong """ On,) = /( (ghosts) G’G’ Heq,r(z,)H/a(Z))

3g—-3+n

/ ( (ghosts)G, G, Heq"(”) H a'(o))o, (5.8)

k=1

3y-—3

where (---), means the functional integration over all fields with fixed moduli.

Ghost insertion (ghosts) means
(ghosts) = 5;5;5(5,-)5(5,-), (5.9)

which come from the ghost path-integral as in the super string.

The recursion relations can be obtained by studying the amplitudes in detail.

We only give their result here with a comment to obtain them:

(@i L] o) —Z (2n; + 1)(0, 4n, [T o)+ (5.10)

i€S ) F3]

—Z{ Tt 1% k]._.[a"'>+ Z (ak IHU"-XUn k]._.[a"1>}

€S S=XuY ieX JjE€Y

This can be rewritten in the form of the Virasoro constraints on the generating

function of correlation functions.



The important relation to get this recursion relation is

1 -
o) = 3{Qp (=D},  forn20. (5.11)

This means that observables, except for puncture operator o, are almost BRST
trivial and it can contributes amplitudes only by picking up singularities on the
boundary of moduli space. There are two types of boundaries which contribute
amplitudes that is coincidence limit of two-operators and pinching limit of non-
trivial cycle of Riemann surfaces. Each contribution generate each term in the
[31

recursion relation (5.10), which we do not discuss here. See original paper” for

detail.

6. Discussions

It has been shown how the two-dimensional topological gravity has been con-
structed. It reduces a free conformal field theory in conformal gauge and the Feyn-
mann rules for obtaining amplitudes are led in the operator formulation as in the
string theory. The recursion relation which determine correlation functions in the
theory coincide with those of one-matrix model. This means that correlation func-
tions of topological gravity with appropriate finite perturbation reproduce the result

of one-matrix model.

This suggests that there is some topological theory can be formulated as a
conéinuum theory corresponding to the multi-matrix model also. Such a topological
field theory has been constructed recently! which is a theory of “topological
matter system” coupling with the topological gravity. It is expected that the results
of multi-matrix model can be obtained by means of topological formulation with

deeper understanding of two-dimensional quantum gravity.

The topological W-gravity is also constructed recently™ and it governed by
W-algebra. The physical properties of this type of theories should be clarified and
the geometrical meanings of W-gravity may be obtained from such investigations.
The mathematical understanding, in particular, the stable compactification theory

of this extended moduli space is needed.



The understanding of recursion relations and its geometrical meanings are still
unclear and it is remaining problem to understand them. It seems to increase the

physical importance of topological gravity in future.
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Chiral Ring and Topological Conformal Field Theory !

Hisahiro Yoshii 2

Department of Physics, Tokyo Institute of Technology,
Meguro-ku, Tokyo 152, JAPAN

We study the topological quantum field theories constructed from a twisted class of the N=3

and 4 superconformal field theories (SCFT’s) and their chiral ring structures.

1. Introduction.

Recently two and three dimensional quantum gravities are understood as the topo-
logical quantum field theories. Both theories are expanded around a topological phase
(unbroken phase) and exactly soluble. To understand the notion of the topological phase
will be much more important in studying the quantization of gravity. Since the two dimen-
sional quantum gravity naturally arise from non-critical strings, the topological conformal
field theory (CFT) will be important to study the non-critical string and the string at
unbroken phase.

Another motivation of our work is to extract some geometrical information of a con-
formal field theory. Our image of a conformal field theory is something like a nonlinear
sigma model which classically gives a mapping from two dimensional surface to a target
manifold. In supersymmetric nonlinear sigma models a relation between the extended su-
persymmetry and the target manifold is known. In N=2 and 4 supersymmetric conformal
field theories an interesting relation between the modular invariant partition function and
the Kahler geometry, e.g. K3 surface or Calabi-Yau manifold, are reported [2]. Here we
are interested in the N=3 SCFT, since we have no geometrical information on it.

Most of topological field theories are constructed from the supersymmetric system.
One will understand the role of supersymmetry in discussing the topological theory as
follows. Consider an N-supersymmetric system with supercharge algebra

Q=H, i=1,--N
QiQi +Q;Q: =0 fori#j.

! This talk is based on the work [1] .
2 JSPS fellow.

(1)




One may think of it as a quantum mechanical system or the one restricted to a zero-
momemtum subspace. Supersymmetry is unbroken iff the energy of the ground state
vanishes, which is equivalent to say that the Witten index does not vanish, Tr(—1)¥ # 0.
Hence the system with unbroken SUSY has a nontrivial topological invariant. Since the

Witten index counts the number of bosonic ground states minus fermionic ones
TH(-1)F = n=0 - B0, @)
the topological information is in the supersymmetric ground states. In N = 2 case the
ground states of the system have another topological invariant. Let us rewrite the above
algebra (1) using Q+ = @1 £iQ>
Qi=Q@2=0, QiQ-+Q-Q+=2H. (3)
It is known that the @4 cohomology exactly gives the supersymmetric ground state,
dim(Ker Q,/Im Q.)= nE=° 4+ nE=0. In topological quantum field theory the Q-
cohomology plays an important role.
A topological field theory is a general covariant theory and independent of choice of

the metric. In terms of BRST quantization this statement is equivalent to say that the
stress tensor is given by the BRST transformation of some operator
Ty ={@BrsT, Aw}. (4)
In two dimensions the above condition (4) naively implies the vanishing central charge. If
the system enjoys the conformal invariance the BRST operator will be written as a sum
of left- and right-movers:
QBrsT = QL +Qr. (5)
Throughout this article we work on the conformally invariant system and restrict ourselves
to the left-moving sector, where we will denote that Qprst = Qr-
The topological structure of the N=2 superconformal theory is studied through the
chiral ring structure [3]. The N=2 extended superconformal algebra (SCA) consists of a
stress tensor, L, two spin % currents, G*, and a spin 1 current, J. The N=2 superconformal

algebra 3 is given by
c 1
{G;F’Ga_} =2L, 4o+ (r—3s)Jry, + 5(7'2 - Z)5r+a.0 ’
[']myGri] = :*:Grir:l-i-r ) (6)

C
[Jma ']n] = §m6r+a,0 .

3 The algebra including the Virasoro operator, L,,, are understood.



This algebra has an automorphism (spectral flow)
wpLouy' = Lo +8J, + %925,,,0,
ueGEuy' = G, , (7

C
286, 0.
g e

The # € Z + § spectral flow interpolates between NS and R sectors.
One will find the algebra (3) in the R-sector of the algebra (6)

wpJpuy' = Jn +

c

{GJ:GE}=2(L0—§Z)=2H- (8)
Supersymmetry iz unbroken iff the ground state in the R sector has conformal dimension
h = 3, which is equivalent to impose the following condition on the ground states
G3|0)r =G5 |0)r =0. (9)
The # = —3 spectral flow of the above condition (9) gives the chiral state condition
G¥ylyns =0, (10)

where |¢}ns = u_%|O)R. Primary states satisfying eq. (10) form a closed ring called chiral

ring. The spectral flow of the hamiltonian operator is given by

- 1 .

u_yHuZy = Lo — 5Jo = Lo, (11)

which is the zero mode of the following operator

- 1

L=L+ 58.] . (12)
The new operator L satisfies the Virasoro algebra with vanishing central charge. Eguchi
and Yang [4] observed that the G+ coincides with one of the charge screening operators with
respect to the twisted stress tensor (12). The supercurrent G+ is a nilpotent operator and

its contour integral is interpreted as a BRST operator in Feigin-Fuks-Felder construction.

The chiral state condition (10) reads as the BRST invariant condition

Qarsrl#) = § dCG*(Q)I) = 0. (19)

From the first algebra of eq. (6), one finds that the twisted stress tensor (12) is given by
the BRST transformation of the operator, G~

b= {Qursr, G} = 5 $ dGHQG™ (). (1)

- 16—



Eguchi and Yang showed a correspondence between the twisted class of the N=2 unitary
discrete series with central charge, ¢ = 3k/k + 2 (k € Z) and the ¢ = 0 subclass of the
Aj coset models, du{2)r ® §u(2)o/$u(2)r+0. They construct BRST invariant observables,
using primary chiral * fields [3] of the N=2 models.

2. N=3.

The N = 3 SCA consists of a stress tensor T', SU(2) triplet supercurrents G* (o =
0,+,~), SU(2) currents J* (@ = 0,+,—) and a free fermion ¥, which have spins 2, 3, 1
and %, respectively. By imposing the super-Jacobi identity, a relation between the central
charge of the Virasoro algebra, ¢, and the level of the SU(2) current algebra, k, determines

to be ¢ = 2k. The associative N=3 operator algebra has a following form

kn*? 2P T (w) | 2P T(w) +ie*P 0T (w)

G*(2)G*(w) = G—wp ¥ T —w) — , (15a)
o ;ab B 1; 87

G“(Z)Jﬂ('w) — I’zﬂ_lpt(;;)z) + €,y [ném(u;)juf“ 5 Bwﬁ(w)]’ (15b)
G*(z)Pp(w) = ia—_(tf} (15¢)

af ie®8 Jv
J%(2)JP(w) = 2(:"1 o7 ";’ﬂf)w), (15d)
W) = ——, (15¢)

where

+2i%F =iety =2, 29 = €Y. (16)

Let ]

TP =T+ -8J°,

2 (17)

T = %GO + %alp,
then T2 and Tf satisfy the N=1 SCA with vanishing central charge. Here we choose
Tf and T_f . The deformation of the (super-)stress tensor (17) retains superconformal
properties of the operators, Gt = J* £ §G*, which acquire the new conformal dimension
1¥ % We should note that the bosonic operators J* acquire the half odd integral spins

1§ 3, whereas the fermionic ones G* acquire the integral spins, 2 F1. Let us assume G*

4 As we concentrate on the holomorphic part of the CFT, we use the terms chiral and
anti-chiral in the sense of N=2, 3, 4 supersymmetries.



to be a BRST current. From eqs. (15a)-(15c), one can read off the BRST transformation

properties of the N=3 generators. We summarize the result in the following diagram

G* Jt

. N N

e Tf J® ¥ (18)
G- J-

where an arrow between two operators denotes that the one at the tip of the arrow is given
by the BRST transformation of the one at the end of the arrow.

To discuss the topological structure of the N=3 conformal field theory we restrict our-
selves to the R-sector and give several features of the algebra. An irreducible representation
is labeled by the eigenvalues of the elements of the Cartan subalgebra, which are given by

(k, Lo, J3, R). The fourth element of Cartan subalgebra, R, is defined by

[R is defined so as to be a hermitean operator, R! = R, under the hermitean conju-
gation given by (La)' = Lon, (J)' = JZ,, (UD' = J2,, ($n)' = ¥, (GH)' =
GI,, (G)'=G, ]
An irreducible highest weight representation of the R-algebra is defined by
JE Ik, 1, vy = GE|h 1 vy = GT Lk, 4 vy = JT AL 7) =0,
Lolk, 8,7} = klh, 1 7Y,  JSIk,4,r)y =1k, 1,7}, Rk )y =r|hl 7).

A simple calculation shows that the eigenvalue of the operator R is only doubly generated;

ri=:t\|k(h—1%)—12. (21)

With this fact the inner product of Verma module in the R sector is hermitean iff &, k and

 are real and k(h — £) > 2.

The algebra has an automorphism (spectral flow) given by

ugLoug! = Ly, +0J° + 2025,.,0,
usGrug' = Griy, upGluy' = GY + 84y, (22)

+ -1 _ 7+ 0, -1 _ 70
ugdyug =Johe, uedpuy =Jn+

Pty = Un .



The spectral flow of the N=3 SCA never interpolates between the NS and R sectors. Hence

the situation is not as simple as the N=2 case.

At first we consider the # = L spectral flow of the highest weight state condition (20);

Jilk, 1, 7) = GElh, I, %) =0, Lol I, #) =hlh, I, 7, Jolh, I, ) =1lh, I, 7), (23)

where |B, [ 7= u§|h, I,7} and

- 1k k
h=h—-2“+ﬁ, I—I—Z.
The BRST invariant state condition is given by
F4GHQW) =G ylwy = 0. (24)

We impose this condition on the states flowed from the R-ground states by ¢ = % Then
one obtains two additional condiiions:
{G%,,GiHh, I, 7) = (4Lo — 23)Ih, I, 7) =0,
2 2

.. - 25
U5+ G Ik, 1 7 = (o — 2690k, 1, 7) =0. =)

The first equation implies a relation between two eigenvalues of the Cartan components,
k= i/2. Since R is a hermitean operator, the second equation of (25) implies that the
eigenvalue of the operator R must vanish. Hence one obtains the unique state ]g—) with

h= %~= X We conclude that the geometrical structure of the N=3 SCA is trivial.

3. N={.

To present topological natures of the N=4 SCFT’s, we should give some general prop-
erties of the N=4 SCA [5]. The algebra consists of a stress tensor T, two pairs of SU(2)
doublet supercurrents (Ga,ﬁa)a=1’2 and SU(2) currents J* (i = 1,2,3). By imposing the
super-Jacobi identity, the central charge is related to the level of the SU{2) current algebra

by ¢ = 6k. The N=4 associative operator algebra is given by

Fi(2)G () = DT, (260)
1/ ivs 730

Ji(2)C (w) = i("z)b_# (26b)

()T ) = 8™ 4o )T (w) | 26T (w) = ()usd ] (w)] (26

(z —w)? (z —w)? z—w
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where ¢*’s are Pauli matrices and the basis for the SU(2) algebra is taken so as the totally
antisymmetric structure constant being €23 = 1. In the NS sector highest weight states

are defined by
J& k1) =G |h Iy=G? Ih =0, Lok, 0) = h|R, 1Y,  J3[h, 1) = Ufh,1). (27)

which is characterized by a set of three numbers (k, 2,!). In the N=4 SCA there exists a
spectral flow which interpolates the NS and R sector. The above condition flows to the

highest weight condition for the R sector.

J(')-Iil,i>=J{*Iil,i)=G(1)|].'L,I~>=G_'g|i';.,i)=0, li" >=E|il7 )s ngh I) II ),
(28)
where [k, I} belongs to the R sector and the relations to the one of the NS sector are given
by
= k

- c
b1+ S f=i1_f 29
tor ) (29)

Hence one can restrict oneself to the NS sector. Two classes of unitary representations are

known.

(A) Massless representations.
h=1, [=0,1,13% % (30a)
(B) Massive representations.

>l 1=0,11,2,... Yk-1) (30b)

Next we introduce the chiral states for the N=4 SCFT’s. Lefi-chiral states are states

in the NS sector satisfying
G?.%|¢)=G}_%|¢>=0- (31)

Primary chiralstates are the left-chiral states satisfying the highest weight state conditions

of N=4 algebra (27). For such states, the N=4 algebra (26¢) implies that
{GY, GLi}h 1) = 2(Lo — J)Ih,1) = 0. (32)

Therefore the dimension h of a primary chiral state equals to its isospin, i.e., h = I. The
chiral state condition (31) excludes the massive representations. One can easily show that

the primary chiral states flow to the ground state of the R sector. If one replace G? (G')



with G! (G?), one obtains the anti-chiralstates. A similar calculation shows the dimension
of a primary anfi-chiral state being h = —1.

In N=4 model, since ¢ = 6k, we have two twisted stress tensors with vanishing central
charge for any k € C:

Ty =T +8J%. (33)
Let us work with T.;.. The supercurrents G* and G? acquire the new dimension 2, whereas
G? and G acquire the dimension 1. If one think of G? being the BRST current, eqs. (26a)
and (26c) give the BRST transformations of the N=4 generators. We can summarize them
in the following two diagrams:
el G2
i N N
T, J- aJ+ J3 (34)
G_'2 \ G-vl

where J* = J! £ iJ? have dimensions 1 F 1 and an arrow between two operators denotes
that the one at the tip of the arrow is the BRST descendent of the one at the end of
the arrow. The left diagram in (34) is the one for the operators with dimension 2 and
the right one is for the dimension 1 operators. In the twisted N=4 theory the original
superconformal symmetries are completely broken down °.

The condition of lefi-chiral states (31) is read as the BRST invariance of the states. As
a result of twisting the stress tensor (33}, an N=4 primary field labeled by (£, &, [) acquires
a new conformal dimension h = h — | , which vanishes for the BRST invariant observables.

Let 0(® be a primary chiral operator. If we define that
oW = 1 G0, (35)

then o(1) satisfy the descendent equation.

do'® = {Qgrst, oM},

de) = 0. (39)
From (34), one immediately finds a candidate for the physical operator:
o0 = Jt,
o) = —%G“ ‘ (37)

5 Recently, Nojiri [6] showed that a twisting class of the N=4 SCFT’s with so(4) Kac-
Moody algebra gives a topological CFT with N=2 superconformal symmetry.



There is another dimension one operator, G'. If one think of § d¢G!(£) as a BRST

operator, the above diagrams change as follows;

G! G?

. v

Ty J- aJ+ J3
Gz 7 él

(38)

Note that, the zero mode of G2 and G anti-commute to each other. If we take 7_ as the

stress tensor of the theory, G and G? become the candidates for the BRST current.

The N=4 chiral ring has been examined through a study of irreducible massless repre-
sentations of the N=4 SCA[5]. The Witten index for an irreducible representation, (k, {g),
g <0,1s =2g + 1.

Acknowledgments

We are grateful to N. Sakai for stimulating discussions. Research supported in part by

Grant-in-Aid for Scientific Research for the Ministry of Education, Science and Culture

No. 02952028.

(]
[2]
[3]
[4]
[5]
[6]

References

H. Yoshii, TIT preprint, TIT/HEP-165 (to appear in Phys. Lett. B).

T. Eguchi, et. al, Nudl. Phys. B315 (1989) 193-221.

W. Lerche, C. Vafa and N.P. Warner, Nucl. Phys. B324 (1989) 427-474.
T. Eguchi and S. K. Yang, Mod. Phys. Lett. A 5 (1990) 1693-1701.

T. Eguchi and A. Taormina, Phys. Lett. B200 (1988) 315-322.

S. Nojiri, in these Proceedings



Topological Pregauge-Pregeometry
Keiichi Akama
Department of Physics, Saitama Medical College
Kawakado, Moroyama, Saitama, 350-04, Japan
Ichiro Oda
Institute for Nuclear Study, University of Tokyo
Midori-cho, Tanashi, Tokyo 188, Japan

The pregauge-pregeometric action, i.e. the fundamental matter ac-
tion whose quantum fluctuations give rise to the Einstein-Hilbert and the
Yang-Mills actions is investigated from the viewpoint of the topological
field theory. We show that the scalar pregauge-pregeometric action is a
topological invariant for appropriate choices of the internal gauge group.
This model realizes the picture that the gravitational and internal gauge
theory at the low energy scale is induced as the quantum effects of the

topological field theory at the Planck scale.

1. Introduction In general relativity, we usually start with the Einstein-Hilbert
action written in terms of the metric or vierbein field, and describe various phys-
ical phenomena as its consequences. Pregeometry, first proposed by Sakharov, is
based on the eminent idea that the very Einstein-Hilbert action itsell may not
be a fundamental one, but rather an effective action induced by quantum fluc-

1,2

tuations of elementary matter fields in the vacuum. '® Many authors pursued
this interesting possibility.s_T For example, the pregeometric actions were writ-
ten down in terms only of the matter fields without using metric ﬁelds,4'6 and
the pregeometric phase at Planck scale was suggested.8 Prior to them, Bjorken9
proposed a composite model of the photon of the Nambu-Jona-Lasinio type.10
where the kinetic action of the gauge theory is induced through quantum fluc-
tuations of matter fields. Since then, much progress has been made on this line.

including that on the induced Yang-Mills action. We call them pregauge theories.

Recently Witten introduced the topological quanturn field theory (TQFT). H
He has shown how to use the path integral methods of field theory to construct

certain topological invariants which are of interest to mathematicians. For in-



stance, in four dimensions these topological invariants are known as Donaldson
invariants.'? At first sight, TQFT’s may seem to be physically irrelevant, since
there is no local dynamics and their observables are only topological invariants.
Nevertheless, there is some expectation that TQFT’s may describe a phase of
unbroken diffeomorphism invariance in quantum gra.vity.u'13 This is very ap-
pealing in light of arguments that the space time metric should be a derived

quantity in quantum gravit.y.14

The pregeometry and TQFT share the important feature that they realize
space-time diffeomorphism without a metric. In the pregeometric phase, however,
matters still exist, while the topological phase involves no local physical motion.
We expect that the pregeometry, in some extreme case, becomes a kind of TQFT,
and TQFT may, in the broken phase, exhibit its physical implications through
the pregeometry. In fact, recently it is shown that the above speculation really
works in the two models; scalar pregeometry where the number of the scalar
fields coincides with that of the space-time dimensions,15 and two-dimensional
spinor pregeometry with Weyl invariance.'® In this talk we will show that a

3,17-20 . . .
becomes topological under a specific choice

pregauge-pregeometric model
of the internal gauge group.21 It is an extension of the model in Ref. 15 to include
gauge symmetries. The quantum fluctuations of the present model induce not
only the Einstein-Hilbert action, but also the Yang-Mills action. Our approach
may shed light on spontaneous symmetry breakdown of the topological quantum

field theories (TQFT).

2. Pregauge-Pregeometry ~ We begin by considering the pregauge-pregeometry
with the internal local HJM=1 SO(NJ) symmetry in the d dimensional space-
time. We assume that the fundamental matter fields are real scalar fields ¢, =
(8),---, ¢.IIV’) (J=1,2,---, M), where ¢ , forms an N ,-plet of the group SO(N,)
and a singlet of the other group SO(N_) (K # J). The starting pregauge-
pregeometric action for ¢, is written by using the auxiliary metric fields g,
and the auxiliary gauge fields Af}l," (/ =1, ,M; a,b = 1,---,NJ; v =
0,---,d—1) as



594 =/dd:¢:\/———§ (%g“”Zn,(Dm, D,¢,) - 51——2 ) (1)
J

where g = detg,,,, g*” is the inverse of g,,,,, and the SO(NJ) covariant derivative

D,¢, is written in terms of Aj';‘ as
D¢, = (6, —ir, ,A%)e, (2)
with the group generator matrix

(A, )7 = i858 — 6i83). (3)
In Eq. (1) F is an arbitrary function of (¢ ,-¢ ), the inner product (X -Y') stands
for Z?L’l Xiy, 7, = £1 is a signature factor, at least one of which should be
negative. The action S94 is invariant under space-time diffeomorphism, and

internal gauge transformations.

It is known that this type of action gives rise to the Einstein-Hilbert and the

Yang-Mills actions as its quantum fluctuations.®*° In fact, the path integral

over ¢, in the partition function
Z= / [dg,,,]ldA%][dg ] exp(iS74) (4)

can be performed to yield Z = f[dg,“,][dA 1] exp(iS_¢) with the effective action

o= [ dev=g (A+16 &R Xs A,WAg;b) "

+ higher order terms in g, and A_,#,

where R is the scalar curvature written in terms of g,,,, Ag’:w is the field strength
of Aj’;‘, and the cosmological constant A, the Newtonian gravitational constant

G and the gauge coupling constants g, are given in terms of the fundamental



length scale A which serves as the ultraviolet cutoff. Their values depend on the
precise mechanism of the cutoff. For example, in four dimensions, the one-loop
approximation with the Pauli-Villars regularization gives A = NA?/8(47)? —
. 4 18
F(¢,=10), Gy =24r/NA? with N = 3" N, ,” and g, = 4r/6/InA? .
The terms explicitly written in the Eq. (5) are those which dominate in the low
energy limit.
3. Action without the Metric and Gauge Fields  To see topological structure
of the pregauge-pregeometric action we derive here the equivalent action written
without the auxiliary metric and gauge fields. The equations of motion derived

from the action S94 yield
d-2 oF

Du(V _g.qleu¢_])nJ = ——2—\/ _ga_¢_1 (6)
J
uu=sz(Dy¢J'Du¢J)F_lv (7)
J
958 9
abed Acd JurJ =0 8
P\ g, | T ®

where ’P“bc" is the projection operator
Pl = (679565 + 626365 — 810565 — 676569) /28, - 6,).  (9)

Among them, (6) is a net equation of motion for ¢,, but (7) and (8) are con-

straints determining the auxiliary fields g,, and A.",IL in terms of ¢ .

Eliminating g,, and A_‘}IL from S92 by (7) and (8), we obtain the pregauge-

pregeometric action written in terms only of ¢J as

é — d —det -D, F'Z%‘!
S /d z\[ c’ﬁ XJ:W('Duth ) x , (10)

where the covariant derivative D ¢ is written in terms only of ¢ as

. w850 ,45
Db, = (0, —ir,,wih)é, with wih= 2(; “¢JJ) (11)
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The equation of motion from the action $% in (10) reads

Truy 2=d 0 2-d
D (V-WWHD,6,F'5)y, = VW 'EEF . (12)

where W = det W,,, and W = (W) with W,, = 35,1, (Dud, - D8, )-
The equation of motion (12) coincides with (6) if we eliminate the auxiliary fields
9y and Aj‘,’;‘ by (7) and (8). It establishes effective equivalence of the actions
594 and S? at classical level.

4. Quantum Mechanical Equivalence Here we prove quantum mechani-

cal equivalence of the actions S94 and S¢. For this purpose, we first per-
form the path integral over A% in the partition function Z in (4) to get Z =

f[dgyvl[d¢JJ exp(ng) with
Sg—/ddz\/— (1/2gﬂvsz(,D 6, D,0, ) d 2 )’ (13)

where the Lee-Yang term [] |$}(4=1)Ns=1) js absorbed into the canonically
invariant measure. Notice that in 57 in (13) the covariant derivative D, is
replaced by D, defined without A_,“ in (11).

Then we show that the commutator (or Dirac bracket) algebra of 59 coincides
with that of S%. It is almost parallel to that for the scalar pregeometry in Ref.
22. The system described by the action $% has d + >_,(N; = 1) independent

first class constraints:

Tg=Z("J'"J)/’7J+F2_dg:"twmnzov (mvn=11"'7d_1) (14)
J

Tm=z(7r_]'am¢‘])z0’ (m=11"'ad'—1) (15)
J

G = (m, A4 ) = i(x5¢5 — n493) =~ 0, (16)

where 7, is the canonical conjugate variable of ¢ ;- Note that among G’j” only
(N, — 1) operators are independent. The T and T, are the generator of dif-
feomorphism, while G’ is that of SO( J) transformatlons The Hamiltonian is

given by a linear combination the constraints.



On the other hand, the system with the action S9 has d(d—l)/2+ZJ(NJ—1)
independent primary constraints p#*¥ = 0 and G'jb = 0, where p#" is the canonical
conjugate of g, and G'jb is defined in (16), and d(d—1)/2 independent secondary

constraints

(I)yu=guu ‘Z')J('D,‘¢J"DV¢J)F—I =0, (17)
J

where the time derivative 30¢J in DO¢J is written in terms of the canonical

conjugate 7, of and other variables according to
jug 7 7 8

7, =V=99"D,9, (18)

We can show that T), defined in (14) and (15) are linear combinations of @, , so
that they are again constraints here. Their Poisson bracket algebra shows that
there are 2d + ZJ(NJ — 1) independent first class constraints p® = 0, f‘,‘ = 0,
and Gjb 2 0, where

Ty(2) = Ty(=) - /ddy P (W) @n(y), Ty(2)]. (myn=1,---,d=1) (19)

The rest (d — 1)(d — 2) independent constraints p™" =~ 0 and ®,,,, = 0 (m,n =
1,---,d — 1) belong to the second class. Hamiltonian is a linear combination of

the first class constraints. Now we partially fix the gauge by the condition

XO[[ = gg“ - fp(¢J! WJ)) (20)

where f“( 1 T,) are first class operators. Using only a part of the constraints,

)
J
we define the intermediate Dirac bracket [, ]* by

[X(2), Y @) = [X(2), Y (3)] - / d42(X (2), P ()] [k (), ¥ (9)]

(21)
+ [ 45X, (), Y (1)

with x,,, = ®,, (m,n =1,---,d — 1). Then the algebra with respect to [, ]*

entirely coincides with the Poisson bracket algebra of the system with the action



S*. Accordingly the Dirac bracket algebras derived from them in each system
coincide with each other. If we adopt the same ordering prescriptions in the both
systems, the quantum commutator algebras coincide with each other, even when
some anomalies exist. This establishes the quantum mechanical equivalence of
59 and S¢%, and, hence, of $94 and S°%.

5. Topological Invariance Now we show that the pregauge-pregeonietric
action (10) is a topological invariant if the number of the gauge groups is equal
to the number of the space-time dimensions (i. e. M = d). By (11) and (3), the
covariant derivative becomes

_ ¢J(¢J'ap¢J) _ ¢J

D = et = i 2
p(bJ (¢J i ¢J) |¢JI3“|¢JI ( 2)

where |¢,| = /(¢ - ¢,). Then S? in (10) can be rewritten into the form

§%=- / ddz\/— det ijmaﬂlmlaulm x F5°, (23)

In particular for M = d, S? in (23) becomes

SHM = d) = / déadet 0,19 | (24)
R

where the integration domain R which is so far suppressed is explicitly shown.

We denote by R the image of R by the mapping 4 ;. Then we have
S*(M =d)=nS, with S = /d"|¢J|F’—3‘1, (25)
R

where n is the winding number of the mapping ¢, and S, is a definite integral on
the domain R and is not affected by changes of the mapping ¢ ;. (If the domain
R has a boundary, we fix the field ¢ ; on the boundary in variations of ¢J..)



Thus we have shown that S% with M = d is a topological invariant in the sense
that it is invariant under any continuous variations of the mapping ¢,. Then
any continuous functions ¢ ; are solutions to the equation of motion derived by
varying S¢. Furthermore, the topological phase has no physical specification such
as the number and sizes of the internal gauge groups. We expect that they are
spontaneously chosen in the course of the symmetry breakdown due to quantum

effects.

Let us see that the topological case is continuously connected with some
non-topological cases. For this purpose we explicitly break the internal gauge
symmetries by adding to the action $94 in (1) the mass terms of the gauge field
Ajl;‘ with the mass M. Then w_'}l;‘ in Eq. (8) is replaced by

a’g 4b
wih = ,%6"% : (26)
(26, 8,) + M3)
and, hence, 0,]9,10,|¢ | in (23) is replaced by
Mj Mi(8,88,¢s)
0,16,10,18,| (1 + g3tk ) + Hifeise (27)

(1+ 775

Non-vanishing M, prevents S? from being rewritten into the form like (24) even
for M = d, so that S? is not a topological invariant. The proof of classical and
quantum mechanical equivalence between S94 and S% remains valid for M, #0,
though the constraints G3* ~ 0 in (16) disappear here. Thus the topological
case (M, = 0) is connected with the non-topological case (M, # 0) by the
continuous parameters M ,. In the limit M, — 0 the action S#(M = d) restores
the topological invariance. On the other hand, the quanium effect S  in (5)
remains non-vanishing in this limit, and violates topological invariance. From the
technical point of view, it is the ultraviolet cutoff that breaks down the topological
symmetry and enables the topological system to give rise to physical effects.

It is, however, not necessarily an artifact since it is smoothly connected with
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the non-topological cases. The quantum effects by themselves can intrinsically
involve such an fundamental length scale, though we do not yet know the precise

mechanism.

In conclusion, we have shown that the scalar pregauge-pregeometry becomes
topological if the number of the internal gauge groups is equal to the number of
the spacetime dimensions. The gravitational and gauge theories at low energy
scales are induced by the quantum fluctuations from a topological action, vio-
lating the original topological symmetry. We expect that the number and sizes
of the internal gauge groups are spontaneously chosen in the course of the sym-
metry breakdown. It will be quite interesting for us to examine the dynamical
symmetry breakdown mechanism of TQFT’s in further details. If this mecha-
nism is effective, we would be able to obtain a new splendid understanding from

mathematics to physics.

The authors would like to thank Professors H. Terazawa, and A. Sugamoto

for stimulating and fruitful discussions.
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Global Strings in Five-dimensional
Supergravity!
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In this talk, we show the existence of solitonic solutions of five-
dimensional supergravity [1][2], which can be interpreted as global
cosmic strings in our universe. They possess the same mathematical
structure as the stringy cosmic strings studied by Greene, Shapere, Vafa
and Yau [3].

Dabholkar et al. [4] and Strominger [5] studied another class of
solitonic solutions in string theory and discussed supersymmetry in the
background of the topological object. We also show that supersymmetry
is partially broken in the presence of the global strings in our model.

”Strings” in our five-dimensional model belong to the same type as
studied by Greene et al. [3]. A simple model they offered in their paper

is a six-dimensional model. We examine some classical solutions of the

! Talk presented at the Workshop on Quantum Gravity and Topology, 21-23 February
1991, This talk is based on the collaboration with K. Shiraishi, ref. [0].



N=2, D=5 supergravity theory in the present talk. One of the aims of
this work is to provide the simplest and pedagogical model which realizes
similar solutions. Another aim is to discuss supersymmetry in the
presence of the string in the specified model. While the analysis is very
similar to ref. [4] and [5], only holomorphicity of “moduli” is needed in
the present analysis.

We begin with the five-dimensional N=2 supergravity theory. The
supermultiplet consists of funfbein e, A(xN), gravitino y,,2(xN) (where a
=1, 2), and the gauge field Ay,(xN). Our notation is almost the same as
ref. [2].

The supersymmetric action is

g = f dx [ - %eeXeERﬁBN- %eFMNFMN - ﬁ&MNPSLFMI\FPSAL

- Ley TMNTDN(w +0)wp- i—:gﬁ(FMN’flle\J‘l_fp 2y ™M Nys-ysTM Nppus 1.(1)

'

To construct string-like classical solution, we give the following

vacuum configurations of fields:

leg) = Leg(x4), (2a)
b

(€2 =b e, (2b)

(Ag)= A (xH), (2¢)

(all other fields) = 0, Qd)

where b means the radius of S!, the extra space.

To analyze such configurations, we look into the relevant part of the

=34 -



four-dimensional action originating from Einstein-Maxwell system in

five dimensions through dimensional reduction;

— - o —p_
Seit=2n | d'x —e[ RW+3 Z»T_V_T} , -
4 8 (T-‘T‘)z
where
T=T1+irz,whererl=A5de2=§b. @

This action resembles one discussed by Greene et al.[3], up to a
coefficient in the kinetic term of t. They took an ansatz for the

complex scalar field T (moduli of 2-torus)
t=1(x%x3), (5)
and that for the me ‘ric of the four-dimensional theory
ds? = Buydxidx” = (dx1)? - eb{(dx2)? + (dx3)? | - (dx)? 6)

where ¢ = ¢ (x2,x3). Now we adopt their assumptions (5) and (6) in
our model. The equation of motion for T takes the same form as theirs.
Any holomorphic (or anti-holomorphic) function 1 is a solution to the

eq. of motion, that is,

t=1z) (ort=1(2)) , (7)

where z=x2+ix3 and z=x2-ix3.
We concentrate on the holomorphic solution of this type here.

The solution to the Einstein equations is obtained as



¢ z2)=Int3(z,2) + nf(z) + In f(z), (8)

where f(z) is some regular function.

From observations so far, we can conclude that the string-like
solution, which is very similar to the ”stringy string” obtained in ref. [3],
can be constructed in terms of T and ¢ in five-dimensional supergravity.
The only difference is the powers of T, in eq. (8).

We should note that t+1 is equivalent to T because only local gauge
equivalence permitted in the fifth dimension is the identification
A;= Aj + 1 in the periodic dimension [6].

Let us discuss the supersymmetric structure of the string-like
configuration in five-dimensional supergravity. Infinitesimal

transformation of the supersymmetry on the gravitino field is as follows

[2]:

Ayy = Ome + }T{D\MACF ACe + :H%(F P, +4yP5%y) Ij‘er , 9)

where indices a (=1, 2) of € and y are implicit.

In the dimensionally reduced theory, we wish to concentrate our
attention on zero modes corresponding to unbroken symmetries. We
must investigate what form of ¢ satisfies the equation (Aym) = 0 as in refs.
[4] and [5].

Note that we can treat € as a complex spinor instead of two
“generalized Majorana” spinors. Hereafter we forget the label on €.

By substituting egs. (2), (4) and (6) into eq. (9) and using egs. (7)

(holomorphicity of T, i. €., Cauchy-Riemann equation on t) and (8), the

solution to the equation {Aywm) = 0 is given by a linear combination of €'
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and €

et = 12-1/4(%)*"455 , (10)

where € are constant spinors satisfying (I-T'et=0 and
(-1£ irZ)et = 0.

Now we are led to a result that the background given by the cosmic
string in our model has partially broken supersymmetry. (. e.,
supersymmetry associated with the restricted form of € (10) remains
unbroken.) This conclusion is independent of explicit functional form of
solution, since we have used only the holomorphicity of T and the
Einstein equations.

We can see this symmetry breaking from the point of view of
supersymmetry algebra. Generally speaking, extended supersymmetry
algebra has central charge which is to give rise to partial symmetry
breaking if background has non-trivial charge (see refs. [4], [5] and
references there in). If we concentrate on string-like solutions, we
should define supercharge per unit length and study the relation between
the central charge (per unit length) and supersymmetry breaking. For
the details, please see ref. [0].

In future works, we will clarify the symmetry among the Kaluza-
Klein excited modes, using a similar technique as ref. [2].

Recently we have been informed of the string solution which

involves non-zero torsion [7].

References
[0] M. Marui and K. Shiraishi, Phys. Lett. B (1991), to appear.



[1] E. Cremmer, in Superspace and Supergravity, edited by S. Hawking
and M. Rocek (Cambridge University Press, Cambridge, England,
1980), p. 267.

[2] L. Dolan, Phys. Rev. D30 (1984) 2474.

[3] B.R. Greene, A. Shapere, C. Vafa and S. -T. Yau, Nucl. Phys.
B337 (1990) 1. See also, G. W. Gibbons, M. E. Ortiz and F. Ruiz
Ruiz, Phys. Lett. B240 (1990) 50: S. Cecotti, Phys. Lett. B244
(1990) 23.

[4] A. Dabholkar, G. Gibbons, J. A. Harvey and F. Ruiz Ruiz, Nucl.
Phys. B340 (1990) 33.

[5] A. Strominger, Nucl. Phys. B343 (1990) 167.

[6] Y. Hosotani, Phys. Lett. B126 (1983) 309.

K. Shiraishi, Prog. Theor. Phys. 80 (1988) 601.
[7]1 T. T. Fujishiro, M. J. Hayashi and S. Takeshita, "The Cosmic Strings
from The Heterotic String Compactifications”, TOKAI preprint TOK-
SH-90-11, November 20, 1990, and T. Fujishiro, in this proceedings.



March 2, 1991

The Cosmic Strings as The Dislocations

Takehiko T.FUJISHIRO

Department of Physics
Tokai Universily
1117 Kitakaname, Hiratsuka,259-12
JAPAN

Mitsuo J.HAYASHI

Department of Physics
Tokai Universily
3-20-1 Orido, Shimizu {24
JAPAN

Shoji TAKESHITA

Shizuoka Prefectural Institule
of Public Heallh and Environmental Scien.e
4-27-2 Kila-ando, Shizuoka {20
JAPAN

Abstract

TOK-SH-91-1

The effective action from the heterotic string compactification is studied on the man-
ifolds with absolute parallelism. The cosmic string solutions resulting from the effective
action are discussed in analogy with the dislocations in three-dimensional crystalline solid.
The cosmic string density is concluded to be given by the torsion tensor of space-time,
which gives rise a compactification at least in one-dimensional direction in space-time. It
is shown also the contorsion tensor defines the deficit angle. We have found a stringy
solution in a six-dimensional model on M* x T? which ccincides with that of Greene et

al..



The cosmic strings which are the topological defects given rise from the symmetry
breaking on the manifold with nontrivial m;, have been extensively investigated as a can-
didate of the seeds for galaxy and large scale structure formation[1]. In this paper we will
consider the background gauge fields of the heterotic strings to search for some solutions
of the cosmic strings. In order to be able to treat the space-time symmetry and gauge
symmetry on the same footing, we will formulate the theory in terms of vielbein formalism,
though we exclusively concentrate on the solutions of the translational gauge fields.

As pointed out in ref.[2],the gauge theory of the space-time translation connects with
the absolute parallelisimi. The background geometry of the theory might be the Weitzenbock
space-time. We can see the cosmic siring as the dislocation with absolute parallelism. We
will give some interpretations on the case where a contour integral § k},dz* is nontrivial,
where hj‘ is the vielbein field. In this case the translational group is broken into some
multiply connected group. The S! (T?)is the simplest one(two)-dimensional compact
manifold with fundamental group #1(S') = Z and m;(T?) = Z ® Z where Z is integer, but
the second homotopy group x3 = 0. Such S or T? structure is obtained from the coset
group T(D)/Z? for f =1, f = 2 respectively. In these cases the following formula

fh;‘,dz" = /S(a,,hi - 8,k )dz* Ndz” = /ST;;,,dz“ Adz" =2xN,NeZ, (1)

assures the existence of cosmic strings and give their analogy with dislocations, where wa is
the field strength of translational gauge fields. We assume the vielbeins are static hereafier.
As founded by Kréner in ref.[3], T}, dz* Adz" is the closure failure which is interpreted as
the resulting (infinitesimal) Burgers vector db’ of the dislocation density flux through the
area element dz* Adae” and the dislocation density is identified with torsion tensor. Global
coordinates z* can not exist in the presence of torsion tensors,though they can still have
a local meaning with dz* (anholonomic coordinates). For an observer on this coordinate
space the contour is seen closed by the definition of the contour integral in eq.(1). But
for a observer on the orthogonal frame the closure failure is disclosed. Therefore the two
end points of the circuit must be identified, which is nothing but a compactification of the
space-time symmetry (translational group) in one dimensional direction inte S*.
The contorsion tensor defined by

ij 1
Souv = SpJ huihy; = E(me + Tuvp + Tvmt)7 (2)
with the torsion tensor
Tpuv = hpl'(auhi - al‘h:t) = hPiT;iVY (3)

is called Nye’s lattice curvature in theories of three dimensional crystalline solids. A
contour integral

fdgij = fS,,.-jdz“ = /(0‘,3,,,'1' - 0,,.5’,,.-,~)d:c“ Adz¥, (4)
S
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formally measures the "rotation” angle on the ij plane. In three dimensional space the
connection between dislocation density and contorsion is given as satisfying Nye’s law[3]

1
Sij = Tji — 3Tiadsj, (5)

where S;; and T;; are defined by
Sij = €|'le;!'[

Kl
T = eimTj .

(6)

The above relations show that dislocations and contorsions create an incompatible situation
and make possible to calculate misfit angle for some grain boundary arrangements of
dislocations. The analogy to see cosmic strings as dislocations assures us to interprete the
misfit angle as the deficit angle for a cosmic string configulation.

It has already been seen that the problem of cosmic strings reduces analogically to that
of the dislocations in three-dimensional space[3] and the space-time seems also compactified
as well as the extra dimensions. It is therefore apparent that the cosmic strings have much
similarity with the dislocations in their structures and evolutions.

The action for the heterotic string in conformal gauge is given by,

1 5 2-d)e i i fyv a9
SN=_;_ = m/dzdzdﬂe( ) {%;h, DX*h},0X" + o'(—4Ddo’)® )
+¢7[61sD + ALDX*TH 97},
where T is a generator of the gauge group, z,z label the string world sheet, and

D =0y +68, D*=0. (8)

It is easily seen that the gravity and the internal gauge interactions are treated in the same
ways, since the vielbeins and the gauge fields appear as h;;DX * and AL DX*.

When the space-‘ime has the absolute parallelism, the vielbein gauge fields k¥ of the
translational group are satisfying the covariant constant condition

D,h} =6,h} + T} b =0. (9)
Then the affine connection of this space is derived as

T2, = hi8,h% = —h*8,h7, (10)

and the curvature tensor is identically vanishing in this case.
The second order effects of quantum fluctuations £(z, z,60) of strings X* is calculated
by the standard method for the vielbein field as

S_” = /d’zdo[q;jV:‘é“Vif" + %VpTauu-Dxl‘gxaelfp]) (11)



where ) ) )
Vi = h,D+ 8,k DX, (12)
Vi =hid+6,h0X°.

Then the conformal invariance of the background vielbein fields gives a condition that
the 8 function of the renormarization group equations should be identically vanishing, and
we get the effective equations of motion for the field strength of translational gauge fields
Ti

Al

VAT, =0, (13)

where we have neglected the contributions from the dilaton field. The effective action of
the vielbein fields in D-dimensions may then be given in the fellowing form

1 .
SO = [ ahi-gri), (14)

where h = det(h ).

This type of theories have been investigated by two methods (dimensional reduction
and spontaneous compactification), whose mutual connections are observed[4]. Recently it
has been proposed for a superstring vacuum to view the noncompact Minkowski space and
the internal manifold on the same footing and to consider the more general situation of
string propagation in a nontrivial ten-dimensional space(5]. Adding to the two observations
above the four dimensional general relativity constructed on Weitzenbick geometry agrees
with all the experiments so far carried out and can have the same classical solutions as
Einstein theory[2]. It is therefore natural to start from the geometrical structure with
absolute parallelism. We will find compactified solutions by imposing a parallelizability
condition on the vielbein gauge fields.

Now we will investigate some problems derived from dimensional reduction, which
give rise to string like objects. We will concentrate on the two solutions which are con-
nected directly to the dislocations in three-dimensional crystalline solid. Bais et.al. have
reviewed the dimensional reduction procedure of pure gauge theory in ref.{4,5], to obtain
four-dimensional theories where scalar fields and a symmetry breaking potential appear
naturally In our case the gauge group is the D-dimensional translations T(D) in n+ (D —n)
dimensional manifolds whose coordinates are denoted by (z4,y). Assuming the coset
space of the group defined by T(D)/H where H is an Abelian discrete group, the vielbein
fields are redefined as ] ]

L=hi(e?), A=0...n-1

B =& (2%), a=n...D - 1.

a

(15)

Let us consider a model, for an example, which we start from the six-dimensional
effective action and which we take the internal space to be a two-dimensional torus, i.e.
M® — M* x T? [5]. The six-dimensional effective action in our model is

1 ¥ i
Sg); = ‘/.d‘izdzyh[_zfri“ T;w]' (16)



Assuming that the six-dimensional metric is block diagonal

(4)

0

G(?(z) — (QAB(Z) ) ’ (17)
g 0 g3

where A, B(a, ) index the uncompactified (compactified) directions and

Be=2(1 1) (18)

A\ |7

is the metric on the internal two-torus where 7(z) = 7, +ir;, detg(?) = 1. After dimensional
reduction, we find the following form for the four-dimensional effective action

1 . 1 , .
5%, = [ dahl- AP T + 048 4)04 (¢ikia)
1(947'(941_'

4 rzz )

1, aps (19)
=0 f d*eh|— 3 TAP Tip -

where  is the volume of the compactified space. The contribution from the compactified
space in equation (19) becomes the same form with the case that starts from the six-
dimensional Einstein-Hilbert action[5,6]. Thus the equation with respect to 7 is

20761

8 + = 0, (20)

where we have neglected the gravitational effects. Therefore the solitonic solutions are
assured to exist in this model, when we assume the moduli depend only on the two-space
coordinate (the stringy cosmic string solutions studied by Greene et al.[5]).

Finally the heterotic compactificatins on a multiply-connected six-manifold previously
investigated in ref.[7] where the symmetry breaking of the internal gauge group and the
index was calculated, may be more clarified by means of the method here partially studied.
One problem is the reason why we should start from the Weitzenbdck space. It is sure
that we can also start from more general Riemann-Cartan geometry and compactify it
into four-dimensional Weitzenbock space-time (instead of Minkowski space) times some
internal manifolds. The main observation of this letter is the cosmic strings can be derived
naturally in this formalism.
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O(2) Chern-Simons theory

Kaoru Amano and Hiroshi Shirokura
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1. A (3-dimensional pure) Chern-Simons gauge theory (CSGT) is topological.
As it is locally trivial, serious study of the theory requires a precise global for-
mulation. With the CSGT of a general gauge group G, possible contributions
from various G bundles must be considered. Not only this is necessary for logical
completeness. But also in the relationship with 2 dimensional conformal field
theory (CFT), the sectors of non-trivial G bundles are counted as an essential

part of the theory to be related to certain CFTS[2'4].

In this talk we discuss the O(2) CSGT of gauge group O(2). This provides
a simple, fully calculable example in which non-trivial bundles are relevant to
CSGT. As regard to the relationship with CFT, we will see that the consideration
of non-trivial bundles is indispensable in understanding why the O(2) CSGT
relates to rational Z; orbifold models (RZOMs).

2.  We take the space-time manifold to be M = ¥ x R, where space ¥ is an

arbitrary closed orientable surface. The O(2) CSGT is the theory of a gauge field

6 1
A. With the matrix i = as a basis for the Lie algebra of O(2), iA is

defined to represent a connection in an O(2) bundle over M. To write down the
action, we pick an arbitrary gauge field configuration Aa as a reference. Then

the CSGT action can be written in the form

S[A] = 'Zk? /M(A— Ap)dA + Sa, (1)

where Sp = S[Ap] is constant for the fixed AA.t

t Eq.(1) is valid for any bundle and for any choice of local sections. This formula can be
derived from eq.(1.5) of ref.[4].



We take the temporal gauge Ag = 0. There is no obstruction to doing so, for
the bundle cannot twist in the temporal direction. Now iA4 is a connection in
an O(2) bundle over X. The action (1) dictates the ‘flat connection constraint’

dA = 0 as well as the Poisson brackets of the (spatial) components of A.

3. Let us recall the notion of a (principal) G bundle. Let P denote a G
bundle over the base manifold . If P is ‘trivial,” it is essentially the direct
product G x X. The point u = (g,2) € G x ¥ = P is said to be ‘over’ z € I,
and the ‘canonical projection’ 7 : P — X is given by the map (g,z) — =z. The
set of points over z € X, or the inverse image 7~ 1(z) is called the fibre over
z. The structure group G operates on P on the right as follows: for h € G
and u = (g,z) € P, uh = (gh,z). There is no canonical way of identifying P
with G x X. But rather the identification is made by specifying a global section
0:X — G,mo0(z) = z. Then every point of P takes the form u = ¢(z)g, which

is identified with (g,z) € G x X.

So much for the case when P is trivial. If P is not a trivial bundle, it is
locally trivial in the following sense. P is equipped with the canonical projection
7 :P — L, and we can find an open covering of X, {Uq} such that each 7~1(U,)
is a trivial G bundle over U, with the restriction to U, of = as its canonical
projection. Thus P admits a system of local sections {¢q}, 00 : Uy — P.
The local sections define the transition functions ¥44 : Uy N Ug — G, given by
og(z) = 0a(z)Pep(z). We can think of P as |J (G x U,), where we identify
(Yap9s, £) € G x Uy with (gg,z) € G x Ug for all gg € G, z € Us NUpg. Roughly
P is a collection of trivial bundles G x U, pasted together by the transition
functions {¥4s5}.

A gauge transformation in P is a map of P onto itself that leaves fibres
invariant and satisfies f(ua) = f(u)a at any u € P for all @ € G. Given local
sections {4}, we prefer to represent the gauge transformation by a set of G valued
functions {fo}, each fq : Us — G given by the relation f(o4(z)) = da(z)folz)-

Then we can rephrase the definition: A gauge transformation f is given by a set
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of G valued functions f, that commute with the transition functions on U,NUpg

according to the rule
fa(2) Yap(z) = Yap(z) f(2) - (2)

We also represent a connection by lacal abjects dependent on the choice of local
sections. When restricted to the G =0(2) case, a connection in P is given by a
set of local real 1-forms {iA,}, defined on U, and satisfying on overlaps U, N Up

the consistency condition
iAp = Yop ™ 1Aatap + Yo dPap. 3)
A gauge transformation f = {f,} acts on the connection as follows.

iAo — i4g = fiAafo + 3 d o (4)

A ‘“flat structure’ in P, if it exists, is given by an open covering {U,} equipped
with local sections {¢4} such that all of the transition functions are constant
maps. P is said to be ‘flat’ if it admits a flat structure. Obviously trivial bundles
are flat. If {¢,} gives a flat structure in P, we can define a flat connection by
setting Aq = 0 on every U,. Thus P admits a flat connection. The converse is

also true: A G bundle is flat if and only if it admits a flat connection.

4 O(2) bundles on T can be constructed by the following operations‘:

(a) SO(2) twisting: Pick a directed simple loop on X and identify the fibres across
the loop with an SO(2) twist that winds m times in SO(2)~ S! as it goes around
the loop. That is, we use transition functions of the form 4,5 = ™ where
denotes a patch from the right side of the directed loop and 8 an overlapping

patch from the left side, and § is some angular variable around the loop.

# Our construction seems to exhaust all O(2) bundles on ¥ but we have no formal proof for
this.



() Z, twisting: Pick a simple non-contractible loop on ¥ and identify the fibres
across it with a twist by a reflection (¢ €0(2), detg = —1) that is constant along
the loop. So we use transition functions of the form .3 = ¢ where the @ and 8
denote patches overlapping from different sides.

(c) a combination of the above two: Apply (2) and (4) on non-intersecting loops.

In (a) the location of the loop is immaterial to the bundle structure. In (b)
only the homology class of the loop counts. In this, two classes that differ only
by an even multiple of a class should be identified as they give the same bundle
structure. In (c) it suffices to consider only the combinations of an SO(2) twist
(m = 1) and a Z, twist. In fact applying () an even number of times produces

no effects unobtainable from the application of (a) for any m.

Thus we obtain three types of O(2) bundles, types e, b and ¢, according to the
type of the operation involved. For type a bundles different m € Z give different
bundles and only the trivial one (m = 0) is flat. To type b belong 229 — 1 distinct
bundles and they are all flat by definition. Type ¢ also contains 229 — 1 distinct
bundles. They also turn out to be flat.

Only flat O(2) bundles can concern us here because of the flat connection
condition. In dealing with flat bundles, it is particularly convenient to work with
local sections such that the transition functions are all constants and the whole
system of local sections can be organized into a multi valued section over X. This
choice in a way ‘trivializes’ the bundle. In this trivialization the O(2) gauge field
A becomes at most double valued on X. Here we adopt the following explicit
choice of trivializations for the flat bundles. In the trivial bundle we choose
an ordinary trivialization. In the non-trivial cases (types b and ¢) we choose a
canonical homology basis {a1,---,ay, 81, - B4} on X such that ey corresponds
to the Z; twist cut. In type ¢ we draw an additional cut along ﬂg.m Discrepancies
in sections one experiences in round trips across the cuts are described by the

transition functions between adjacent sheets,

Y=p (cutay), (58)
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Yp=¢ (cutay) and ¥ =-1 (cutfy) (5¢)

for types & and c respectively. An O(2) gauge field A is single valued on X if it
is in the trivial bundle, and is double valued with the cut ay if it is in a bundle
of type b or c. This follows from eqgs.(3), (5), and the fact that g~lig = +i for
g €0(2) depending on whether detg = 1. A gauge transformation in the trivial
bundle is given by just a function on ¥ that takes values in O(2). In a non-trivial
flat bundle, a gauge transformation is given by a double valued function. It is
either an SO(2) valued function f which undergoes the change f(z) — f(z)~!
(inverse in O(2)) with respect to sheet exchange associated with the Z, twist cut

ay, or a function of the form ¢f with f a function of the previous sort.

In our representation, it looks as if there is no distinction between type & and
type ¢ bundles with a common Z twist cut in terms of gauge fields and gauge
transformations. Distinctions do emerge however, when we think of a parallel
transport in P over a closed path in ¥. Taking a trace of the holonomy around

a closed path C, we can construct observable (gauge invariant) 7¢, given by

9 = {n( et i #(C,a5) = even -
0 if #(C,ay) = odd

for type b, and T(E-c) = (—1)#C.B) Tc(.b) for type (c). For flat connections Tc(.b) is
independent of #(C, ﬂg)* but TC(,C) alters its sign depending on that intersection

number.

5 The canonical quantization of the O(2) CSGT in the temporal gauge can be
performed by applying to each flat O(2) bundle the functional coherent state
method of Bos and Nair®]

* In this case we have f A = 0, because the homology class of a lift of @, on the double
covering associated with the cut ay does not change under sheet exchange while the gauge
field acquires a minus sign.



We introduce a complex structure on X. In analytic coordinates the gauge
field decomposes into the sum A = A,dz + A;dz. We choose a representation in
which a state vector is a (‘holomorphic’) functional of A;, A; acts on states as
multiplication by A; (the z component of the classical gauge connection), and
A acts as the functional differential operator i—% Then the components of
the operator gauge field satisfy correct commutation relations corresponding to
the Poisson brackets. As for the flat connection constraint, we impose it as a
physical condition on states along with other symmetry requirements. To secure
the reality condition A, = AL we take the inner product to be given by the

functional integral
(0.9 = [Dn A ewp (-2 [ Poas) STV LAY, (1)
z

where d?z = idz Adz/2. The integral measure D(A,, A;), formally induced from
the functional inner product < A, A >= [A;A,d?z as usual, is gauge invariant
and the integrand in (7) for physical states is required to be gauge invariant. [Here
by gauge invariance we mean residual gauge invariance, i.e., invariance under time
independent gauge transformations.] Thus physical states in our scheme are given
by the functionals ¥[A;] that satisfy (i) the flat connection condition dA¥ = 0,
(i¢) gauge invariance and (iii) reparametrization invariance. A functional which
satisfies condition (¢) is invariant under small gauge transformations, z.e., those
generated by infinitesimal transformations. In condition (i¢), we further demand
that the state space be invariant under large gauge transformations. [We do not
mind if the states are shuffled so long as they stay within the state space.] By
condition (¢77), we impose invariance under the action of diffeomorphisms from X
onto itself that leave the bundle structures unchanged. In a non-trivial bundle we
exclude those which send the Z; twist cut into a non-equivalent one. [Another
tricky point is that diffeomorphism acts on the complex structure. When we
consider the action on states of a reparametrization ¢ : ¥ — X, we have to

pick a (unique) new complex structure for the target surface so that ¢ becomes



a conformal map between Riemann surfaces (with the same base manifold X).
This is necessary to keep a state functional (¥(A;)) a state functional (¥'(A4;),
with respect to the new complex structure) under the action of ¢. Thus to
impose the reparametrization invariance we have to somehow identify different
state spaces obtained by assuming different complex structures. This can be
done, successfully enough to render condition (z#) meaningful, by comparing the

action of observables on the state spaces.]

For the details of the procedure for finding the physical space see ref.[1]. Here
we just quote the results. The coefficient k in the action (1) must be integral
and even in order that X of any genus admits a physical state space. We assume
that k is a positive even integer. [For negative k we exchange the roles of A; and
A;. Then the theory is the same with that of the positive coefficient &' = —k.
We do not accept the k = 0 case as a CSGT.] The physical space ¥ for the
trivial bundle over ¥ with genus g has an orthonormal basis {¥,; r € (Zx)?} and
decomposes into two eigenspaces H4 of gauge transformations spanned by states
¥ = W, + ¥_,. Gauge transformations f act trivially on Hy: ‘f: ¥} — ¥}
while on H_ they are £1: ‘f”: ¥7 — ¥~ for detf = +1. The action of
T = 'I}‘e"ifc‘A depends only on the homology class of C' due to the flat

connection condition. For C = zg___l(mjaj + n;f;),
TC ‘1,1:.{: = eirm-n/k( ei2rr~m/k\1,’:.l:+" +e—i2rr~m/kw’:.l:‘n ) (8)

For type & bundles the results are the same except that r should run through
(Z:)*~! and that eq.(8) is valid for C = 372} (mja; +n;f;) (mod ay,26,) but
Tc(.b) = 0 for other C. The state functionals are the same for type ¢ bundles and
the action of TC(.C) can be inferred from the relation TC(,C) = (—1)#(C.F) Tc(,b) .

6. According to ref.[2] the O(2) CSGT relates to RZOMs. To see how this is
possible, we identify Z; orbifold field ¢ on ¥ as a parameter for the SO(2) valued

gauge transformations in (flat) bundles. We set

f=é¥lE (9)



with R a real constant. The condition for a gauge transformation (2), or

elva/R 1/);};ei“’°/R¢ap

: (10)
= etiva/R (detypop = 1)

is consistent with the notion that the target space of the field ¢ is the orbifold
SY/Zy;i.e., the circle ¢ = ¢ + 27 R divided by the actions of the group gener-
ated by ¢ — —¢. In fact, any SO(2) valued gauge transformation f defines a
configuration of the Zy orbifold boson field ¢ by (9), and any configuration of ¢
can be obtained by this in some bundle. This correspondence is not one-to-one,
however. By (10), ¢ does not register SO(2) twists in the bundle but only Z,
twists, and therefore cannot distinguish between type b and type ¢ bundles with
the same Z3 twisting. Type a bundles cannot be distinguished from one another
for the same reason. It is remarkable that we can cover all configuration of ¢ by

considering only flat bundles and yet the trivial bundle is not just enough.

We consider a manifestly gauge invariant partition function

Z[4] =/Dfe‘5,

(11)
s=-£ [T [6@0A. + @110 A+ GDI],
where the ‘charge’ 2¢ is some integer, & is a real constant, and the functional
measure Df is defined by that for the orbifold field ¢. The region of the functional
integration could be taken to include non-SO(2) valued gauge transformations,
but it would only double the value of Z[A], for such transformations take the
form €%/Rg and we impose the invariance of the measure under the right action
by a gauge transformation (f — fg, in particular). We do not try to keep
track of numerical factors. Nothing unconventional is involved in the functional
integral as long as we work in our trivialization scheme. What we got here is
the partition function for a Z; orbifold model coupled to external O(2) gauge
field A. The functional integral in the trivial bundle corresponds to that in the



untwisted sector in the Z, orbifold, and the functional integral in a type b (or c)

(5]

bundle to that in the twisted sector with the same Z, twist cut.”~ The partition

function (11) is well-defined and invariant under gauge transformations of the

external gauge field A.

We can obtain a concrete relationship of RZOMs with the O(2) CSGT if we
set k = 2pq, R* = qu, P, g € Z. Then we getm

k — . T
Z[A] ~ exp (—; /E dzzA,Az) > (UheasYimge + Yot Tirgs) . (12)

where the sum is over r € (Zy,)?,s € (Z3,)° for the trivial bundle (or the un-
twisted sector of the RZOM), and over r € (Z24)971,5 € (Z3,)9~" for the non-
trivial flat bundles (twisted sectors of the RZOM).
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Abstract

Aspects of the continuum Liouville field approach to two-dimensional quantum
gravity are reviewed. It is explained how to compute correlation functions of physical
operators by using an ansatz of David, Distler and Kawai. Conformal symmetry
properties, a spectrum and a state-operator correspondence of the quantum Liouville

theory are discussed.



1. Introduction

String theories in non-critical dimensions require the quantization of a metric
on two-dimensional world-surfaces. Two-dimensional quantum gravity is also useful
as a toy model to understand four-dimensional quantum gravity. There are various
approaches to two-dimensional quantum gravity. They are complementary to one
another. The random triangulation by means of matrix models [1] are successful
to investigate non-perturbative issues [2]. The continuum Liouville field approach
[3], on the other hand, is suited to see symmetries and physical observables of the
theory. Here I would like to review some aspects of the continuum Liouville field
approach to two-dimensional quantum gravity. We will use various techniques of the
critical string theories such as path integrals on Riemann surfaces and conformal field

theories (CFTs).

We consider two-dimensional matter CFTs with central charge ¢ coupled to quan-
tum gravity. Massive matters can be also treated but are more complicated. A typical
examples of such conformal models is a string theory in a D-dimensional flat space

(¢ = D), which has an action

T
Smasirls, X] = 7 / 26\/597 0. X 05 X s, (1.1)

where £ is a coordinate of a two-dimensional surface, gos a two-dimensional metric
and X*¥ a string coordinate in the D-dimensional space-time. From a two-dimensional
point of view X* are D scalar fields. Other examples are the pure gravity (¢ = 0)
and a Majorana spinor field coupled to gravity (¢ = 1). The classical actions of these
m{)dels are invariant under both of the general coordinate transformation and the
Weyl transformation. In general, the Weyl symmetry is broken by anomalies in the
quantum theory and the quantum gauge symmetry is only the general coordinate

one.

In the next section we explain an approach by David, Distler and Kawai (DDK)
[4, 5] and show how to compute correlation functions of physical operators in the

model. In this approach a consistency of the theory is examined by a free field theory



obtained by setting the cosmological constant to be zero. In sect. 3 we consider a
quantization of the Liouville theory with non-zero cosmological constant term. In
particular, its conformal properties, spectrum and state-operator correspondence are

discussed.

2. David-Distler-Kawai’s Approach

The partition function Z of a two-dimensional CFT with a central charge ¢ cou-
pled to gravity is given by a sum over topologies (genera h) and geometries {metrics
9op) of Riemann surfaces. A contribution from a genus h surface is denoted as Zj

and the whole partition function is given by [3]

0
zZ=Y 2,
h=0

DygasD. 2
2, = gih-? / Ds9epDa¥ -0 [ E6/5-Smmssrlost]

(2.1)

Vgauge

where g5, and po are the genus expansion parameter and the bare cosmological con-
stant respectively. We denote general matter fields as ¢. The functional measures
are defined by the general coordinate invariant norm on the functional spaces and

Vgauge is the volume of the group of general coordinate transformations.

The gencral coordinate symmetry can be fixed by the conformal gauge [3]

9ap(£) = ¥ gog(€;7), (2.2)

where §og(€;7) is a reference metric which depends on the moduli parameters 7 of
the Riemann surface. Introducing the Faddeev-Popov ghost fields bag, ¢®, the path
integral (2.1) becomes [3)

Zy =gy~ I(/z;)v / DybDycDysp e Isronldbd=Smuseerliovl

(2.3)
N / Dy oo FEViet RSl

where (d7) is the modular invariant Weil-Petersson measure and Vggy is the volume

of the group generated by conformal Killing vectors. We have changed the measures

- 56—



for the ghosts and matter fields from those defined by a metric g,g to those defined

by gop. This change has introduced a factor with the Liouville action

Silg, 8] = /425\/5 (%Aaﬁaaqbaﬁtﬁ + Ro + /,Le¢) . (2.9)

The functional measure for ¢ is induced from the measure for g,g and is defined by

166112 = / d%/5e*(64)". (2.5)

There are two difficult points in the quantization of ¢. First, the exponential inter-
action cannot be treated as a perturbation, since a magnitude of the parameter p
can be changed by a constant shift of ¢ and therefore cannot be regarded as small.
Secondly, the functional measure contains a factor e and it is not obvious how to
perform the integral. It is nice if one can relate it to D3¢, which has no ¢ dependent
factor. This relation is difficult to obtain in contrast to the case of the ghost and

matter fields, for which ¢ can be treated as a background field.

In refs. [4, 5] the relation between Dy¢ and Dy¢ is given as an ansatz. According
to them the difference of two measures is a factor which is an exponential of a local
functional of 3,5 and ¢. The form of this functional is assumed to be the same form
as eq. (2.4) except normalizations of each term. Using this ansatz the Liouville part

of the partition function (2.3) becomes
Z;f = /D§¢ e_seﬁmv*ﬂ’ (26)
where the new action is given by

Salind) = g [ P63 (17000050 - QR+ ame?) . (2)

The field ¢ has been rescaled such that the normalization of its kinetic term is er'

There are three parameters p;, @ and a. In refs. [4, 5] g is chosen to be zero. Then



the Liouville field is described by a free CFT with a central charge 1 + 3Q%. The
parameters () and o are fixed by requiring that the theory does not dep-nd on a
gauge choice. The theory should be independent of a choice of the reference metric
Gap and therefore should be invariant under §o(€) — e*(£)§ap(€). This requirement
leads to a condition that the total central charge of the Liouville, ghosts and matter
fields should vanish. It also leads to a condition that e*? should be a primary field

with a conformal weight one. These conditions determines the parameters as

_ 25—c

Q= 7 a=- 2\/— (V2B —cFv1-o). (2.8)

The upper sign in « is consistent with a semiclassical analysis [6]. According to a
value of ¢, the values of the parameters are classified into three cases. For ¢ < 1,
both of @ and « are real, while for ¢ > 25 they are pure ima;ginary. In the latter case
a redefinition ¢ — i¢ makes the action and the metric gog real. This redefinition
changes the sign of a kinetic term in the action. For 1 < ¢ < 25, Q is real but «
is complex. The complex « indicates an instability of the theory as we will discuss
later.

Having determined the parameters we can compute the partition function and
correlation functions of physical operators using the functional measure in eq. (2.6).
For each spinless primary field ®4(£) with a conformal weight A in the matter CFT,

there exists a physical operator

Oa = / d26+/§ B 5 e®. (2.9)

The parameter f is determined by a requirement that O, is independent of the gauge
choice gqp. This requirement is equivalent to a condition that the operator in the

integrand is a primary field with conformal weight one. It determines g as

B= \/_(\/25 cFV1—c+24A). (2.10)

The correlation functions of these operators can be factored into a matter part and



a Liouville part. The Liouville part is {7]
/ Dy o~ Senld £ [ £E/7e protta) . Prblen)

_ I(=9) .3 o= Senld B+, Bib(&:) (.‘if 2¢. /7 aé)s
o ng¢e o 4¢v/e ’

(2.11)

where s = —%—(1 —h) ——Ef;l %- In the second line we have performed the integration
of the zero mode ¢g (¢ = ¢g + ¢). We have introduced the cosmological constant
term again in order to make the ¢g integration finite. The exponent of x is consistent
with a value obtained for A = 0 in ref. [8] using the light-cone gauge. 1t is difficult
to perform the integral of the non-zero modes ¢ exactly unless s is a non-negative

integer.

The h = 1 partition function has s = 0 and was computed for a compactified one-
dimensional string (¢ = 1) [9, 10] and for the ¢ < 1 minimal CFTs [10]. The h =0
three point functions in the ¢ < 1 minimal CFTs were computed in ref. [11]. They

have fractional s in general and were computed by using an ‘analytic continuation

in 5. All of these results are consistent with those of the matrix models.

3. Quantum Liouville Theory

In the DDK approach the cosmological constant is first chosen to be zero and
¢ becomes free. Then, the gauge independence of the theory is examined in order
to determine the parameters @ and . When one computes the partition function
and the correlation functions, the cosmological constant term is again introduced.
It is not obvious whether the gauge independence is preserved in such a procedure.
Moreover, the Liouville theory with non-zero cosmological constant has properties
quite different from those of the free theory. Here we shall consider the Liouville

theory with the cosmological constant term directly.



3.1 (CANONICAL QUANTIZATION

We begin with the action (2.7) and consider its canonical quantization [12]. For
that purpose, the two-dimensional surface is chosen to have a topology of S! x R and

a flat Lorentzian metric §,g = 14,8. The canonical variables are expanded as

Blo,t) = do(t) + Y % (an(t) €57 + b () €77 ,
1 " (3.1)

Plo,t) = o—po(t) + % Y (an(t) e 4+ ba(t) €™7)
n#0

where P is the conjugate momentum of ¢. The expansion coefficients satisfy the

equal time commutation relations:
[am, an] = m6m+n,0 = [bmybn]a [¢07P0] =1 (32)

and other commutators are zero. We use a normal ordering prescription for products

of operators defined by

: po efPo = R Do e%ﬂ%, 1G_plp = Gopdy, b_pby :=b_nb,, (n>0). (3.3)

The Virasoro generators, which are Fourier transforms of the energy-momentum

tensor, are given by

0o 2
% z I Apemlm —%iQna" + ﬁ;/du’ &7 g9 + @oby 0,
0

L, =
m=—00
N ar (3.4)
Ln=1 N ibaemb —2iQnby + L [doei0 o 4 agha
n 2 ¢ Vn-~-m¥m - 2 n 47[' M . n.\Us
m=—oo 0
where ag, ap are constants to be fixed and we have introduced g = —%aQ,ul. Using

the equal time commutators (3.2), it can be shown that they satisfy the Virasoro
algebra with a central charge 1+ 3Q* if a® + @Q + 2 = 0 and ap = ap = }Q* [12).
Therefore, the gauge independence, i.e. the conformal invariance of the theory gives

the same values of @ and « as in the DDK approach.
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To construct physical operators from primary fields of the matter CFT, we need
gravitational dressing operators, which are primary fields made of the Liouville field.
In the DDK approach they have the form ¢’¢. We have to examine whether they
are primary fields in the case of non-zero cosmological constant. The commutator of

those operators with the Virasoro generators are

[Ln, :P?:] =& (nhﬂ :ef? . —%i : (8 + 0,) eP? :)

) 1.
=" (nhﬂ - 51(3, + 30)) P (3.5)
2n
_ L ina / — ) - ¥} .. Bd(a) .
i /da‘g(a‘ d):e P
0
where
ad 1 -5 1 ino inc 1 —ing 1 ino
g(o) = Z (e;“ﬂe " emwaletT | eraB et _ gmafe )e'i"”ﬁe . (3.6)
n=1

Since our normal ordering prescription depends on time, the operations of normal
ordering and time derivative do not commute. This is the origin of the last term in eq.
(3.5). Because of this term, the operator : € : does not have a correct commutation
relation as a primary field. However, it is a good approximation of a primary field
for ¢ — +o00, since the last term is exponentially small in this region. It is expected
that for each value of § there is a primary field Og which has an asymptotic form

:eP?: for ¢ — +o0.
3.2 SPECTRUM

Next we shall study the spectrum of the Hamiltonian

H=1Lo+ Lo

2 3.7
—P0+T+Z(“—"an+b—nb +—/da' e (3-7)

Due to the exponential interaction it is not easy to obtain the spectrum exactly. We



use the mini-superspace approximation [13], in which one makes a replacement
e% s e, (3.8)

A change in H caused by this replacement is of order a?. Since @ = O((—c)™!) for
¢ — —00, it is a good approximation for —¢ > 1. With the replacement (3.8) the zero
mode and the non-zero modes of ¢ are decoupled. The Hamiltonian of the non-zero
modes are quadratic in a, and b,. The eigenstates and the eigenvalues of the total

Hamiltonian are
¥(¢o) |a Fock state of a,, by), E=Eg+ N+ N, (3.9)

where 1¥(¢o) and FEy are an eigenfunction and its eigenvalue of the zero mode Hamil-

tonian, and N, N are non-negative integers.

Let us obtain the zero-mode eigenfunctions and eigenvalues. The Schrédinger

equation for the zero mode wave function is

2 2
(_6675(2, + pe“¢°) (o) = Eovb(do)- (3.10)

This equation can be solved in terms of the modified Bessel functions K,(z), I, (z).

The normalizable solutions and their energy eigenvalues are [14, 13]

blto) = ) gy, (b)) B+ 207 (>0, (D)

e® \ o]

where ¢(p) is a normalization constant. Note that there is no normalizable solution

for p = 0 and therefore there is no ground state in this system.

When we consider a state-operator correspondence later, we need to know general

solutions of eq. (3.10), which are not normalizable in general. They are given by
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]
il
[X)
5
1]
[N
Q
b
o
o

w(¢0) = C1I,,(:L') + CZI_,,(E) for Eg :,é %QZ,

1 (3.12)
¥(¢o) = c1lo(z) + caKo(z) for Ep = ZQ?.
The two modified Bessel functions are related as
K,(z) = %%f)”(—“’) (3.13)
The asymptotic behaviors of these functions are
I(z) ~ ebavdo (3.14)
for ¢o — 400 and
I,(z) ~exp (—%aqﬁo + %e%‘wo) — 00, i1s
1
K,(z) ~exp (—%aq&o - 2|:{|ﬁ e%"%) —0 G

for ¢g — —o00. We see that the general solution has a very bad behavior for ¢g — —o0

except for a particular combination K, in eq. (3.13).

The spectrum in eq. (3.11) was also obtained using the exact operator solution
of the Liouville theory [15, 13, 16]. At the classical level it is known that the general
solution of the Liouville field equation can be represented by a free fiexd. The relation
between the Liouville field and the free field is known as the Backlund transformation.
It can be generalized to the quantum theory. Some of the operators in the Liouville
theory are expressed by a free field operator [15, 16]. This free field representation
is possible only if the space of states in the free field theory is restricted to a half of

the whole space as in eq. (3.11) [13].
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3.3 STATE-OPERATOR CORRESPONDENCE

In ordinary CFTs there is a relation between states and operators. For each field
operator O(z, Z) there exists a state O(0,0) |0}, where [0) is the SL(2, C) invariant
vacuum state. In the Liouville theory there is no vacuum state as we have seen in
the previous subsection. However, we can construct a state for each field operator
using a path integral [17] in a similar way to the Hartle-Hawking wave functions [18].
A wave function corresponding to an operator O(z, Z) is given by a path integral on

adisk D = {z = "] |z| < 1} with an insertion of O at z = 0:
¥s(o) = [ ;65 90(0,0), d(zDlom = 4(0). (3.16)

Here, we have denoted the Liouville field on the disk as ¢ in order to distinguish it
from its boundary value ¢. These wave functions are eigenfunctions of the Hamilto-
nian. Eigenvalues of Ly = faD %szz can be computed by deforming the con-
tour to a small circle around z = 0 and using the operator product expansion
of T,, and 0(0,0). We obtain the eigenvalue corresponding to a primary field
Op ~ e (¢ — +00) as

E=—(ﬂ+%Q)2+iQ2+N+N, (3.17)

where N, N are non-negative integers.

In the mini-superspace approximation we can compute the asyr ptotic behavior

of these wave functions for ¢g — +co. They are given by [17]
¥(do) ~ elFtEQ)d0, (3.18)
Comparing these asymptolic form with those of the wave functions obtained by

solving the Schrodinger equation in the previous subsection, we obtain an exact form

of the wave functions within the mini-superspace approximation. In this way we



obtain a state-operator correspondence

Opl(2,5) —  H(do) =l (?F{IEM) u=§-(ﬂ+§Q). (3.19)

As we have seen in the previous subsection, the function I, has a very bad behavior
for ¢o — —oo except for a particular combination K, in eq. (3.13) [17, 19]. We will
consider only such a combination. Then, the corresponding operator is a particular
combination of €# and e~ (#+Q)¢ for 8 # —1Q, and $e~49% and e~ 1Q¢ for g = -1

According to their asymptotic behaviors, the wave functions are classified into three

cases:
i) f= —%Q £ 8 (Ref' >0), (o) ~ % +c(f)ef P,
(i) B= —%Q, ¥(do) ~ o + constant, (3.20)

(i) B=-3Q%ip (p>0), Y(do) ~ sin(pso +8(r)).

An insertion of local operators of CFTs on two-dimensional surfaces can be re-
garded as creating an infinitesimally small hole with a specific boundary condition.
In the present case of two-dimensional gravity, a hole created by the operator Oy is
small as in ordinary CFTs when it is measured in the reference metric §,5. However,
a size of a hole measured in the physical metric g,s depends on a behavior of the
wave function corresponding to the operator, since the Weyl factor of the physical
metric is an argument of the wave function. The hole can be regarded as small when
the wave function has a large value only for the limit ¢¢ — +o0, which corresponds
to a short distance limit (g, = €*®§ap — 0) [17). In this case a probability io find

a small hole 1s dominant.

Let us look at behaviors of the wave functions in eq. (3.20). The wave functions
in the case (i) diverge for ¢g — +o00. Therefore, the corresponding operators create
small holes. These states are called ‘microscopic’. On the other hand, the wave
functions in the case (iii) do not have a particularly large value for ¢g — +0co and
represent ‘macroscopic’ states. They create holes with a finite size. The case (ii) is a

critical one between (i) and (iii).



3.4 CoupPLING TO MATTER CFTs

A physical operator corresponding to a matter primary field with a conformal
weight A receives a gravitational dressing Op with 8 = —1Q £ 1/2(A — S). (See
eq. (2.9).) According to the classification of Op in eq. (3.20), a physical operator is
called [17] (i) massive for A > &%, (ii) massless for A = &L and (iii) tachyonic for
A< %. The massive operators create microscopic states, while the tachyonic ones

create macroscopic states.

The existence of tachyonic operators as a physical operator causes the following
problems [17]. First, if the action is perturbed by tachyonic operators, a typical
surface is full of large holes. They do not have an interpretation of ordinary two-
dimensional surface. Furthermore, even if the coeflicients of tachyonic operators in
the action are fine tuned to zero, they cause divergences in higher genus correlation
functions as in the critical bosonic string theory. Therefore, it is desirable to find

theories without tachyonic operators.

For the minimal CFTs with ¢ < 1 coupled to gravity, all physical operators are
massive and there is no tachyon problem. For the one-dimensional string, a matter
primary field e??X gives a massive state except that a case p = 0 gives a massless state.
For CFTs with 1 < ¢ < 25, the cosmological constant operator is tachyonic. This is
a problem which makes the analysis in the region 1 < ¢ < 25 difficult. However, the
tachyon problem is also present in general CFTs with infinite numbers of primary

fields even for ¢ < 1 [17, 20].
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In this meeting we have allready heard talks on various aspects of 2+1 dimen-
sional gravity from Professors Yahikozawa and Hosoya. In studying new theories
it is allways good to ask physical questions, and Carlip’s discussion of Quantum
scattering based on bra.idingm is a good example. In this report I want to talk
about a simpler situation: the classical scattering of particles. One purpose of
studying the classical theory is to show how the concept of braiding enters the
calculation even at that level, another is to allow us to clarify exactly what is

meant by scattering in this context.

At the simplest level, the 241 dimensional version of the Schwartzchild solu-
tion is flat everywhere except at the source, so the spatial geometry is a cone with
opening angle proportional to the mass (figure 1). We can consider the scattering
situation in which a fest particle moves on this background geometry. This is
the approximation m/M <« 1 in which we pretend that the test particle does not
affect the geometry. Scattering is shown in figure 2; but it might be argued that
this isn’t real scattering since the particle always moves along a straight line, as
is most apparent if the cut is moved, figure 3. (the position of the cut is like a
gauge choice and it can be moved at will). But this is a misleading observation,
clearly something non-trivial is happening because if two particles enter with
parallel trajectories, and pass on either side of the source, then the trajectories

will eventually cross (figure 4.).

It is worthwhile to compare this situation with the deflection of starlight by
the sun in 3+1 dimensions. As is well known, there are two equal contributions
to the deflection: one Newtonian, arising from the ggp component of the metric,
and another from the spatial curvature of geodesics. In 241 dimensions, there is
no Newtonian force, but because of global effects the other term still contributes.
The deflection angle in 3+1 dimensions can be carefully defined by comparing
trajectories with the fiducial geodesics that exist in the asymptotic Minkowski
space. There is no such “straight-through” geodesic in 241 dimensions because
space is not asymptotically Minkowski, and in fact changes as the interaction

is turned on. However, alternative definitions of scattering can be given. One



possibility is based on the observation above; if geodesics that pass on opposite
sides of the scattering centre are compared, then the angle between them is
independent of the position of the cut. This method is only simple for two
particles, for more or to define the quantum mechanical differential cross section,

a more sophisticated approach is needed.

Following this brief introduction and discussion, the general formalism for
classical scattering will be introduced and then illustrated in the two particle

i3]

case.

Formalism for N Dynamical Particles.

The basic property of 2+1 dimensional gravity with pointlike sources is that
spacetime is flat away from the sources, as follows from an identity relating R, o
to R,y, and the Einstein equation. As has been well known for many years, this
allows us to generate solutions by cutting pieces out of flat Minkowski space
and suitably identifying the edges. For example, the Schwarzchild solution for
a single spinless source that was introduced above, has the following description
in this language. We choose a surface in the full Minkowski space, starting from
the particle’s worldline, a,(r) (in this case for a particle at rest at the origin),
and stretching out to infinity. Each point, z,, on this surface is identified with

M)

a corresponding point, z;,, on the surface rotated by = e~"+", and the region

between the surfaces is removed.

(2]

This kind of cut and paste operation can be generalised to a moving particle,
where the identifications are under Poincaré transformations rather than the sim-

ple rotations of the static case. The specific transformation is:
(' —a)=LQL Yz — a) = e P (z —a). (1)

Where p is the momentum after a boost of L from rest, and 2 is a rotation by
the mass. Now it is much more difficult to draw pictures of the geometry because

they are necessarily three dimensional since the identification relates points at



different times. The position of the original surface is arbitrary and should be

considered as a gauge choice.

For a collection of such particles, besides being able to deform the surfaces,
there is also a discrete choice of what order they appear as one passes around
asymptotically. In this case it is important to work in the centre of mass frame.
This is defined to be the frame in which space is asymptotically conical, and
is the only one in which asymptotic time translations are a good symmetry so
a Hamiltonian exists. By appropriately choosing the surfaces it is possible to
combine the single particle identifications asymptotically to find the centre of

mass condition:

e Hdo = g=PnJd | emprdo-prd (2)

This consists of three equations; two restrictions on the momenta, analagous to
the requirement that the sum of the spatial momenta vanisk in the flat space

centre of mass, and a definition of the Hamiltonian.

The form of solution we have been considering is only valid for a finite time
mterval. Solutions with different orderings must be patched together to obtain
the full solution. As the particles evolve, the surfaces for adjacent particles may
approach each other. In that situation, one particle must be moved through
the excised region of the other particle. Two things result: the order on the
right hand side of (2) changes, and the transferred particle suffers a Lorentz
transformation corresponding to the identification needed for the cut. Bear in
mind that the momentum is defined with respect to the complete Minkowski
space, in the identified space there is no discontinuity. If particle 1 is transferred

anticlockwise through the cut for particle 2, then:

-pd

P’1 =€ P (3)



and the centre of mass condition becomes:

e H' o gV T | ompid gmpad

=e—-p~.J L (e—pg.Je—pl .Jep:.J) e—p:.J (4)

—e~HJ

So the Hamiltonian is conserved through this process. A similar analysis can be
performed if instead, particle 2 is transferred through the cut due to particle 1.
Which particle is in fact transferred, depends on the sign of the relative angular

momentum of the particles.

This process should be interpreted as the scattering due to gravitational
interactions. The full process starts from an initial state with widely separated
incoming particles. Classical scattering data usually consists of the momentum
and impact parameter for all particles. Here, instead of the set of continuous
impact parameters, only a discrete set of parameters are needed. For two-particle
interactions only the sign of the impact parameter, or equivalently the sign of
the relative angular momentum is needed. N-particle processes are labelled by a
braid that connects the initial and final ordering, and which tells us which particle
is transferred in each of the two-particle interactions that together reorder the

particles.

Two Particle Scattering,.

The centre of mass condition (2), with p; written as (Ej, p; cos;, pisiné;),
yields a sum form for the Hamiltonian H = H; + H,. Each H; only depends on
the ith particle data as: tan H;/2 = E;/m; tanm;/2. For weak coupling, that is,
Ex? € 1, the H{’s are simply the energies E;.

When we consider scattering in the framework discussed above, only one

particle changes its momentum. If we look at the solution with braid ( ) then



it is p; that must be changed (3), p1 — p|-

e Pd —g=p1d g=mJ 12l
=e-PzJe—p1.le—p;Jep1]esz (5)

—e—HI g=p1J H o

So p1 merely suffers a rotation by angle H, Af; = 8, — 6, = H and Af; = 0.
The energy remains the same so H] = Hj, as it must to conserve the total

Hamiltonian.

If we use the first procedure described above to define the scattering angle,

then we must also consider the solution with the other braid ( ).

e Pid —eh1Jg—p3d —p1J

(6)

—eHYog~pad ~Ho

In that case, p; is rotated by —H. The difference in change of angle for the two

trajectories is the same for each particle:

A8, —A8; =A8; —Ab, =H )

We can check that this is a sensible definition by calculating the same quantity
in the alternative gauge where we start in a state with ordering 2-1 instead of
1-2. Also note that these angles make good sense in the intuitive limit discussed
in the introduction, in which a light particle moves on the almost static geometry

generated by the heavy one.
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ABSTRACT

This is a talk aimed at an introduction to a formalism of gravity recently enlightened
by Capovilla, Dell, Jacobson, and Mason, in which the basic gravitational variable is
a self-dual 2-form rather than a tetrad 1-form. Although the gravitational theory is
usually described making use of the metric as a basic variable after Einstein or is often
described employing the tetrad and spin connection 1-forms in the Cartan formalism, it
is pointed out that the self-dual 2-form can be employed as a basic variable instead of
the tetrad 1-form. The formalism of self-dual 2-form naturally leads to the Ashtekar’s
constraints in terms of his new variables and it may play an interesting role to study
a connection between the Yang-Mills gauge theory and the theory of gravity. We also
comment on the relation between the Samuel’s ansatz for the classical solution and the

Kodama’s solution for the quantum constraints.

* Talk given at, “Workshop on Quantum Gravity and Topology”, Institute for Nuclear Study,
University of Tokyo, February 21-23, 1991.

t Fellow of the Japan Society for the Promotion of Science

* After April 1991, Department of Physics, Nagoya University, Nagoya 464-01, Japan



§1 Chiral theory of gravity

At first, let us consider the first-order Palatini action :
Sle,w] = —/d"x eetet R, (w)
which can be written as

Sle,w] = / %fabcd R®(W)A e A ed

= /'Rcd(w) AefAel

by the use of differential forms, where e® is the tetrad 1-form, w® = —w’ is the spin
connection 1-form and R%y(w) := dw?p + w* Aw® is the curvature 2-form of L

a0 is satisfied wlen the connection is

The variational equation with respect to w
equal to the usual Levi-Civita connection w®(e) composed of tetrad, then substitution
oi w(e) for w4 turns the action Sfe,w] into the one which is equal to the usual

Einstein-Hilbert action :
Sle,w(e)] = /d4m eR(w(e)) = /d4z V-9 R(g)

b

The spin connection 1-form w®’ can be decomposed into the self-dual and anti-

self-dual parts with respect to its anti-symmetric local Lorentz indices :
wab _ +wab + —wab
- )
where the (anti)-self-dual parts of w? are defined by
t(iw)ab = :i:z-:l:wab

in our convention *w® := =¢***4y ; , which can be satisfied by the combinations

BO} =

1 .
:I:wab = 5(Wab ¥ Z’Luab)
The curvature 2-form R can be also decomposed additively according to this decom-



position :

R®w) = R*(*w) + R*(w) = *R*(w) + "R*(w)

m

Accordingly S[e,w] decomposes as

Sle,w] = *S[e, %] + ~Sle, w]

£Sfe,w] = /'(iRcd(w)) AeCAeld

If we employ one of %S[e, %w]’s as an action instead of S[e,w] , we will see it is also

equal to (half) the usual Einstein-Hilbert action when the equation of motion for %w®
L)

is satisfied. As the equation of motion -EES[e,iw] =0 implies fw% = $,%(e) , by

virtue of this substitution and recalling the relation
Rab(iw) :l:Rab(w) (Rab(w) T itRab(w)) ,

we have

£5e, fw(e)] = / l[ *Rap(w(e)) F i*Rap(w(e)) [Ae® Ae

/ *Rap(w(e)) = iRap(w(e)) ] A e® A eb
2l £ i [ 3] Rasfute) et net |

= 35le,w(e)]

= 5( Einstein-Hilbert action ) ,

( " 1st Bianchi identity : R%j(w(e)) Ae = )
(Ryppag) =0)

Although the action %S (e, %] is complex, its imaginary part vanishes by use of the cyclic
Bianchi identity when the spin connection is equal to the tetrad Levi-Civita connection

using the equation of motion.



§2 Spinorial gravity
We shall use the SL(2,C) spinor notation hereafter.’)  The translation from
S0O(3,1) to SL(2,C) can be made as follows ( for example ).

S0(3,1) — SL(2,C)

2° N ‘UAA

(a=0:1:"')3)_)(A=OalaA’=011)
' ' ! 1
A
( A4 = A4, ;‘r;“=7§(l,a') )
We use the metrices 755 , €4 and €4 p for raising and lowering indices a,b,--- ,

AB,--- and A B ---:

Nab = dla'g (11 _1’ _11 —]’-l)

0 1 .y
fAB=€AB=( 1 0)=€A:B:=€AB

The detailed explanations will be found in the reference[2].

Let us consider the irreducible decomposition of anti-symmetric tensor F,;, and its
relation to the duality. An anti-symmetric tensor F,y = Faua'pp' = Faparpg: would be

decomposed as
Fppa'p = €arpr 4B + €4B darpr

where
1 ¢ 1. ¢
d4aB = ‘EFABC’ , arp = §Fc BA
$4B = $(aB) » Parm = $(arpy)

*

The dual tensor *Fy; for F,, is given by
"FABA'B' = —i €a1B) 4B + 1 €AB Pa'B'
because of the fact that the totally anti-symmetric Levi-Civita symbol is written as

€abed = (€ ACEBDEA'D'€B'C' — €ADEBCEA'C'€B'D’)

in the spinor notation.



Here we see that the duality operation * is equivalent to the operation

{ daB — —i daB

$ap — idap
and that the each term in the above corresponds to the (anti)-self-dual part :

{ “Fapap =¢€a'B ¢ap : anti-self-dual part

tFapap = €ap $aip : self-dual part

The previously mentioned chiral decomposition of the Palatini action would be re-

derived in the spinor form as follows. The Palatini action

1
S[ea w] = /'Q'Gabcd Rab(W) Aef A ed

= /"Rcd(w) AeSAel
= f Rea(w) AZ(e)

( where we define £%(e) by £%(e) := e®Ae® for convenience, )

is translated into the spinor form by means of replacing the local Lorentz indices by

pairs of spinor indices :

' ] '
et — eAA , wab —_ wAA BB

w? and therefore R* would be decomposed into chiral parts

1pt 1t
W = WAB (A'B' | A'B' AB

Rab = RAB GAIB' + RA'B' 6AB
2 = ¢3Aeb would be also decomposed as

sab _ % SABAB % SA'B AB



( v4B - eA:B:(eAAIAeBB') )
TA'B - GAB(eAAIAeBB')
We have
Sle,w] = / *Rap A L%
= —i/RAB ATAB +2'/RA'B' ATAB

as a result, then we may employ
S[eAA‘,wAB] = /RAB ATAB

as a chiral action of gravity.m ( We will omit a factor —i . )

§3 2-form action without metric

Looking at the chiral action of gravity
S[e44  wap] = /RABAEAB , (EAB =348(¢) := g (€At NeBB'), )

we may incline to treat the (anti)-self-dual 2-form D48 as a basic variable forgetting the
fact that it is composed of tetrad 1-form eAd’ B we il inquire what the condition
to recover the relation T4 = eA:B:(eAAI/\eBB') is. Although we can employ a method
of constraint by Lagrange multiplier, we would like to use less trivial constraint than
the simple equality and we also require a geometrical interpretation of the multiplier.

It is proposed that the constraint term
1
Le:= —3 ¥ 4pcp T4 AZCP

will meet the requirements, where

multiplier : Y gcp = ¥(aBcD)
constraint : L(ABARCD) = g

Solving this constraint, £-48 turns out to be written as

1 !
EAB eAA /\eBB )

= fAIBI(

3y

though We will give a proof for this relation in the next section.



Accounting this fact, the chiral action in the above would be replaced by
1
S(=A8, wap, Y apcp] = / [ RapAEAB — 7 ¥aBep SABASCD ]

making use of the constraint incorporated by the multiplier ¥ 45¢ D_[4]

§4 self-dual 2-form and tetrad 1-form
[4]

In this section we shall give a proof for the relation
NUBARCD) = 0 = 4B = ¢ g4 APP))

which is an important property used in this formalism.

The proof for the relation from right to left <= is almost evident. Ascme Z48 =

[ ! . . »
earp(e?4 AePP), which is sufficient to

$(ABAyCD) _ A'B' C'D' (C(AA'/\CBBIACCC'ACD)DI) =0

anti-symmetric in [A’B'C'D’]

because A', B',-.- have two components and anti-symmetrization of more than three

indices will turns out to be 0.
The relation from left to right = will be shown as follows.

As TMBATCD) = 0 has 5 independent components

4 EOO/\EOO =0

SPAL" =0

q ZOAZH 4+ 25%AE" =0
SUAE =0

SUATIl g ,

we can use the properties of the “simple” 2-form to solve these conditions.



The “simple” 2-form is a 2-form which is composed of a wedge product of a couple of

1-forms. The necessary and sufficient condition for a 2-form F to be simple is FAF = 0,
FAF =0 & F=aAp i (F: 2-form, a,f: 1-form)

and there remains an arbitrariness to replace o and g by

o —ax+ b3
B —ca+df |

(@b — cd = 1), which may be considered as a SL(2, C) transformation.

Observing these properties, we will solve the constraints as
TOATDO _ g o 500 = 00" pg0L

SUAS! =0 & st =2410A81" |

where we define two couples of 1-forms (6%, §01) =: 494" | (§%0 §°1') =: §°4' up to
SL(2,C) transformation with respect to A’ and we may regard it as a primed spinor

index.

To satisfy the remaining constraints

2201/\201 = —200/\211

DPAZ =0, BUARY =0

29 is required to be the form of
701 _ goo'A(ag'm‘ +b§11') +0°1'A(c{§m'+d§“') ,

with a set of arbitrary coefficients a, b, ¢, d which obeys ad — bc = 1.



Making use of the arbitrariness in the description of a simple 2-form, we may redefine

914" from §14' :
glA' = (010' 01,1')
= (e +d8), (a6 +05) )
which preserve the form of
Tl _ 9 JlO0' A g1’ _ o 910" 4 g11"
because
10 AG1Y = (ad — be) 10 AGLY = §10° AGLY

On the other hand 0! turns to be

201 = 000'/\011' _ 001'/\010'

Here we have
»00 _ o 000‘/\001'

Tl = g g10' pg11’
$O0L — 900’ Ag11' _ 401’ 5 g10’

as a result, which can be arranged into the simple form
EAB = GAIB:(HAA'/\GBBI)

AA'

At this stage, we can regard 44" as a tetrad 1-form e and then we arrive at the

result that the 2-form £4%F is composed of the tetrad 1-form :

TAB _ GAlBI(eAAl/\CBBI)



§5 2-form gravity with cosmological term : comment on Samuel ansatz

The chiral action with the cosmological term is given by

S[£48 wap, Y ancp)

A 1
= / [RAB ATAB - EEAB/\EAB - EWABCDEABAECD
The equations of motion derived from this action are

TAB...(1) Rup- %EAB —~ WapcpEP =0
wiB...(2) Dz4B =9
U apcp---(3) TABATCD) _ g

and we may solve these equation in order of (3) — (2) — (1) to see that the Einstein
equation appears and the multiplier ¥ 4gcp is determined to be equal to the anti-self-
dual part of the Weyl curvature spinor which is the spinor form of the Weyl tensor:

Cabed = Cabed + Caped

=V pcp €aBe€cp + Y aBiCciD €4BECD

It is easy to check that the ansatz

pAB _ A vas

3
[6.5]

which is proposed by Samuel presents a class of solutions for the equation of motion.
As the 2-form EA4F is not only anti-self-dual with respect to its local Lorentz indices
but also anti-self-dual in the sense of the hodge duality with the use of metric defined
by itself, g,, = (e, - e,) , this ansatz requires that the curvature 2-form RAP is
also anti-self-dual in the sense of the hodge duality. This means that the above ansatz
produces anti-self-dual Yang-Mills instantons when we consider the case of the Euclidean

signature. The consistency of the ansatz with the equation of motion requires
VYaBcp =0,

that is to say, the anti-self-dual Weyl tensor is equal to 0. This is nothing but the
condition for the self-dual gravitational instantons. It is interesting that the above

ansatz implies ar interrelation between the Yang-Mills and gravitational instantons.



It is also remarkable that the WKB wave functional for the classical solution belong-
ing to this ansatz is a solution for the quantum Ashtekar constraints. This functional
is nothing but the solution which is proposed by Kodama. 7 Although Kodama has
pointed out that the Chern-Simons functional solves the quantum Ashtekar constraints,
starting from the solution for Bianchi IX model and generalizing it, his solution will
be well understood as follows. We can evaluate the action functional for the classical

3
solution according to the ansatz by substituting TAB = KRAB , then we have
6 AB
Set = ¥ [RAB/\R ] ,
M

which is a surface integral, as is well known, and leaves

6 2
Sa = XScs = / [WABAdeA + EWAB/\WBC/\WCA ]

oM

o

The WKB wave function obtained by exponentiating this classical action is
6i
¥ = exp [XSCSJ ,

which turns out to be equivalent to the functional given by Kodama after some rear-
rengements of factors. It is also a solution for the theory without the constraint term

accompanied by ¥,4gep which is a kind of topological theories.[sl

We expect that the self-dual 2-form may play an important role and be useful to
study a connection between Yang-Mills theory and gravity. It may also be useful for an

investigation of a theory of quantum gravity.
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1. Introductlon

Canonical approach to the quantum gravity Is an excellent and
traditional method as nonperturbative approach. Based on the metric
representation of the canonical quantum gravity in 3+1 dimenslions, a
great effort has been made to solve the Wheeler-DeWitt(WDW) equation
but until now only approximated solutions (in mini-superspace
approximation) are known due to complicated structure of the WDW
equation. In Ashtekar's reformulation of General Relativity,!? based
on the self-dual representation, 1t has been shown that all constraints
become polynomial. In this formulation a class of exact solutions of
the WDW equation, which iIs related to loops iIn 3 dimensional manifold,
has been presented by T.Jacobson and L.Smolin.2? Using a new
representation, called the loop representation, C.Rovelll and L.Smoliﬁ3’
have exhibited a large class of solutions of all the constraints.
Although there are unsolved problems, e.g.the llilbert structure on the
physical states and so on, yet this approach may be powerful to study

nonperturbative structure of the quantum gravity.



In this talk, we study the 2+1 dimenslonal quantum gravity including
a splnor field following Ashtekar's formalism. There are no local
degrees of freedom of the graviton in 2+1 dimensions and only global
structure comes into question in the pure gravity. Witten4’ has shown
that 2+1 dimensional pure quantum gravity based on a Chern-Simons gauge
theory for the 1IS0(2,1) Poincare group is exactly soluble. A.llosoya and
K.Nakaogi have also solved 1t based on a metric representation along
by ADM formalism. On the other hand, Ashtekar et al.%? have carried out
it on a connection representation based on a Palatini formalism which
accords with the Ashtekar formalism in 3+1 dimensions. When matter
fields whlich have no relatlons with an extended Chern-Simons gauge group
are coupled to gravity,Ilt Is very hard to solve because of the existence
of local degrees of freedom of matter fields even in 2+1 dimensions. In
splte of the existence of graviton's local degrees of freedom the 3+1
dimensional pure gravity has a large class of solutions of full
constraints as mentioned in the above paragraph. Therefore we expect
that it is possible to solve a matter coupled gravity system in 2+1

dimenslons, at least In the same or inferior level as 3+1 dimensional

pure gravity case.

2. Actlon of 2+1 dimenslonal gravity coupled to spinor fleld

For the action, we use Lhe Palatini form as gravity part and the
minimally coupled system as spinor field part but only the forward
derivative part to avoid complexity, e.g. the appearance of second

class constralnts with resﬁect to the spinor Tields, as follows.

St = Jd3x [ Lg + La 1. Lg = $6%% exiFpri , (1.a,b)

Ln = efpy = e¥r* (3«+ Axizi)¥, (1.c)

where €27, eul, Fagl, t=-1¥" 10, 71 and Tx=ex!T; are the Levi-Civita

= 90—



antisymmetric tensor density, a dreibeln, the curvature tensor of the
spln connectlion A«!(Fua!=23 mAg!1+f1kAxiApk), a conjugate two-component
splnor field, generators of the S0(2,1) Lorentz group which satisfy
lzi.tjl=Fij*¥Tt« (fi;%k are the structure constants) and the Dirac matrices
in 2+1 dimensional curved space-time, respectively. We use the metrlc
slgnature (-,+,+) and the cecnventlon €912=+1=-g912. The Dirac matrices
1i(1=0,1,2) are given by vi=(1l03,01,02) with o;i belng the Paull matrices
which satisfy a Clifford algebra, {11,734} = 2943. To see the relation
between our actlion and the standard Einsteln-Dlrac action and whether
our action is llermite, we first take a variation of (l1.a) with respect
to Ax!. The equation of motlion for Ax! ylelds &%T Dperij=-ellr*ciy,
and therefore our theory has torsion. This 1s not surprising because we
are =2dapting the Palatinl formalism. If we introduce the torsion-free
connectlon (covariant derlvatlive) ¥ which 1Is defined by Vxegi= 0 and
deflne C as a dlfference of D and V, then one can derive Dixegl1=Ciaepg!l]
and Coi=-exi(¥V)/4-ciikexj(¥Tk¥)/2. Thus the connectlon Axi Is uniquely
determined by ex! and ¥. Substlituting C into the actlon Sy and using
the partial Integration In the kilnetlc term of the splnor field, we

obtalin the reduced actlion S7' as [lollows:

St' = Jaix [ 1e%v exifprs + de(iP¥ - WY - 1eVu(FI7U)
+ 15e(¥¥)2/16 1. (2)

llere we have used the Fierz translformation (¥11¥)2=-3(§¥¥)2, to obtaln
the last term In St'. The first two terms iu (2) correspond to the
action of a standard Einsteiln-Dirac theory because the first term is
equal to -jeR, where R 1s the scalar curvature of the thrce-metric guﬁ
=ealepinij. The third term is antl-llermitian due to our convention but
does not affect the equations of motlon for dynamical varlables since
this term is a total divergence. Thus our theory ls real, except for a

surfTace term, and corresponds to the Elnstein-Cartan theory because of



the existence of a quartic term of the splnor field owlng to the use of

the Palatinl formallism.

3. The classical canonical structure

3.1 The space-Lime decomposition

We first carry out a 2+1 decomposition of the action to pass on to
the llamiltoplan formallsm. We assume that the space-time manifold M has
a topology M = E=R with ¥ beling a compact two dimensional manifold. We
Introduce a time coordinate t on M so that M 1s follated by spacellike
two dimenslional surfaces L. each with the topology of E. One can deflne
a timelike unlt vector n%* with n*nfgyg=-1 which ls normal to Et: and a
smooth time vector fleld t* which 1s chosen such that t®PYxt=1. We then
define the spatial metric qup by Qup=gag+Nunpg ; n“Q¢F=O. the timelike
part ni of exi by ni=n®ex! and the projected part of ex! into Et by E«is
ep! (g« +nfna); N%Exi=0, qug=ExiEgipij. The time vector t* is decomposed
into the lapse and shift fields N and N¥ as t%*=Nn%+N%; n«N*=0. The Levi~
Civita density e%B¥ Is related to a density on Et, €28 by &%f¥ =3Nn(%garl,
Finally we have to define the 7e¢=I's In the curved space-time to
decompose the actlon (l1.c). To preserve the properties of Te that It
corresponds to the tlme component of T; and satislfies Te2=-1, we deflne
such that re=n*ru=nirj.

Now we can obtaln a 2+1 decomposed version of the actlion Sr. The

gravitational part Lg 1s decomposed as

Lg

3t % g R I {Eqi- nunilFgri/2 = (N*Eai)F1i + (tPFari)ETL + NFing .

EXi(LiAui) + Aot (DkE®i) + N(niFi) + NX(EaiFi) - 9« [EXiAg;]

E®1(L1Axt) + Aot (DuBEX1) + N(4g10%E* B Fagy) + NX(EF1Fpxy)

+ (surface term), (3.a)

where E®i, Api,Fi N and [¢ are a vector density on It wlith Eeis e*f Egt,



a time component of Awi with Agi=t*A«i, a space-space component (density

weight +1) of Fapl with FlEiGNFdel. a lapse with density weight -1 and
the Lie derivative by t¥%. We have used the identlty ftAai=DeAei+tPFpxl.

The spinor fleld part Ly 1Is decomposed as

Ln

El -1%t (£e8) - 19t (t-A)p + I¥PNADxy - INY' (nOT«)T®De¥ 1 (3.1)

-1E¥ (£o¥) - PE(¥Tz1¥)Ael + NX(LEVEDay) + N(21EE*1¢t 2 Dxp),

where E=det(E«!), [1¥=t¥J+¥, t-A=t*Ax!ti, and we have used the relations
Ti=-47; and n*Talf=niEfiT;Y¥j=-£; 4xniERiTk=E-1ERKY,. The canonical
conjugate momentum of the spinor (leld T which is defined by T=slLy/
8([cv)=iEv+, where &L denotes the left derivative. Using by 1 and two

dimensional indices a,b...=1,2, St is expressed as

St o= JA3x[E2i(LtAai)+Aet (DaEas)+N2(EbIFpai)+N (46t ikEa ED jFapy)

(o) -Aei (M i¥)+N2(Da¥)+N(E2tNziDa¥) 1. (3)

From the final form ol the decomposed action (3) we can directly
describe the Hamliltonian formalism. The gravitational (spinor field)
confllguration and canonical conjugate momentum variables are a spin
connection Aai and a vector denslity Eai (v and 1) on £t, respectively.
Apl, N? and g play the role of Lagrange multipliers. By the variations

of (3) wlith respect to Lagrange multipliers we obtain three kinds of

constraints
Gi = - 8S1/6Api = - [(D,E21) - (Iziy)] = o, (4.a)
Va = - 6S7/6N2 = - [(EP!Fpay) + (NDa¥)] = O, (4.b)
S = - 8S7/8N = - [igiik(Ea Ev Fapk) + 2E2i(NziDa¥)] = 0. (4.c)

The total Hamiltonian Iy can be expressed by these constraints as
fir = Jd2x [ AeiGi + N2V, + NS 1. (5)

Gi, Va and S are called the Gauss-law, vector and scalar constraints,
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respectively. They are all first class constralints and there Is no
second class const;aln. Note that they are composed of phase space
field variables on the two dimenslonal Et and manifestly polynomial in
the baslc canonlcal varlables. This polynomlial character is a feature
In the Ashtekar formallsm.

Although thls constraint structure is similar to the 3+1i dimensional
gravity,1?,7) it i1s quite different from the 2+1 pure gravity.®¢’ In the
purce 2+1 dimenslional gravity, the vector and scalar constralints are
combined Into a constraint Fi~0 which is obtained from (3.a) uslng the
relation such that Na(E,jFi)+N(njFl)=(NaE,j+Nn;)Fi=t;Fi. The Lagrange
multiplieré t1 are time components of eqi defined by ti=t%e«y. This
constraint Is the generator of the translation in the 1S0(2,1) Poincare
group. Thus one can conclude that by the Gauss-law constraint G! and
F1, the S0(2,1) gauge invarlant flat connections constitute the physical
configuration space and the theory is exactly solvable. As mentioned
above, when matter fields are included in the 2+1 dimentional gravity,

the vector and scalar constraints appear separately.

3.2 The canonlcal structure: consiraint algebra

In thls subsection we shall discuss the geometrical meaning and

algebra of constraints. The fTundamental nonvanishing Polsson brackets

are

(Eai(x),Abi(¥)) = pijaap82(x-y), (NA(x),¥e(y)} = ePps2(x-y), (6)

We define the Polsson brackets for splnor flelds such that (f,g)Ejd2z
[(6RC/8TA(7)) (6lg/6¥nlz)) - (-1)78(sRg/8lR(z)} (8 1/6¥n(z))] Tor some
functionals [ and g. We use the two component spinor notatlion with
antisymmetric metric epe defined by €12=+1 such that {P=gfByp and gfp=
efCspeg. To make expression in the calculation finite, we use the

following constraints smeared with suitable well-defind fields on E,
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Gx = fd2x NiG; = -fd2x Ni{ D,E*; - neiv 1, (7T.a)
VR = Jd2x Nav, = -Jd2x Na[ €v1Fy,y + TIDaV 1, (7.b)
sy = fdzx NS = -]dzx NI iEleE‘iEbJFabk + 2Fai(MziDa¥) 1. (7.c)

where Ni,N2 and N are the smearing fields.

Now we dlscuss the Infiniteslmal canonical transformation propertles
of the fundamental phase space variables generated by (7.a,b,c) and the
constraint algebra. The infTinitesimal transformations of the field
variables generated by the Gauss-law constralint (7.a) are (Gy,Aafl}=DaNi,
(Gn,Eat)=-11 (NIFax, (Gu.¥a)=-Ni(zi¥)a and {Gn,MP}=N1(llz¢)R, whlch
are precisely the infiniteslimal S0(2,1) Lorentz transformations. The
Polsson brackets of the constralnts with the Gauss-law constralint become
{GN.GK} = Ggn,Hu1, (GN,VHK! = 0 and {Gn,5y} = 0 with [N,M]i=f1! j«NIMK,

The vector constralnt i1s related to the Infinitesimal coordinate
transformation In the two dimenslional space It but does not exactly
generate it. The transformation of Az! by VW generates an extra term
other than the coordinate transformation of A,i, l.e. {VW,Aai}= NbFp,
=(LnyAai)-Ds(NPA,i)., The vector constraint Vi corresponds to the Lie
derivative In the gauge with N2A;1=0 which Is achleved by the 1local
Lorentz transformation. Therefore we can construct the constralnt DN¥,
called the diffeomorphism constraint which generates the Infinltesimal
coordinate transformatlion, as DN = Vi + Gu.p =fd2x[E2t(LnAai)-TTR(Lx¥A)
-(surface term)]. By thls constraint, the phase space varlables are
satisfactorily transformed as {D®,Aai}=fnAatl, (DW,Eaiy=yE2i, (D%, ¥n)
={n¥a and {DW,NP}=[NIP. For the Poisson brackets between VW% or Dy and
other constralnts, we have ({VWN,V&}=-V8-Ga, (VR,Sy}=-S(LxM)-GL, (Gwn,D¥}
=G(LuN), {(DW,D#)=-D3 and {DWN,Sy?=-S(LnM) with aEQﬂELNMﬂ=Nb3bM°—Mb3bN°.
Q!=NaMPFan!, [NM=N23aM-M3aN? and L‘EMNB(GIJkEbJFabk + 2[lz1Da¥). Note
that the smearing fields Q! and L' In the Gauss-law constralnts appearcd

in the right hand side of the algebra are structure functions depending



on the gravitational and spinor flelds.

The remaining contralnt S5y generates "tlme evolution" and It iIs also

called the hamlltonlan constralnt. The transformatlions of Tundamental
fields by Sﬁ and the Poisson bracket of itsell become {SH.A31}=
ﬁ(e‘Jkﬁbijak-ZﬂtaDav). (Sﬂ.ﬁa‘}=‘Db(5‘JkEEbJEak)‘E[S‘JkEaJ("fkv)“
sEai(My) ], (Sn.¥al=2N(E2Da¥)n, {(Sy.NMA)=29a[N(NE2)A]-2N(TF2A4) " and
{Sy.Sy} = -V = -D¥X + Gyx.a with the structure functions K=Ka=

(N9 sM-M3 sN) EatEb = (N3 sM-MIsN)§2® and (K-A)!=KaAs!. Flnally we finish
thls sectlon by enumerating the constraint algebra related to the Gauss-

law Gy, diffeomorphlism Dy and scalar constraints Syi

{GN.GK)} = Gin,Hl, {Gn,Sp} = 0, {Gn.DHY = G(LyN), (8.a,b,c)
(DR, DR} = - D3, {DH,Sp) = - S(LxM), (8.d,e)
{Sy.Sy} = - V& = - DX + Gk.n. (8.1)

Note that the structure functions ( K2 and K2Aal) appear only in the
right hand side of the Polsson bracket between the scalar constralnts
itsell and only depend on the gravitational phase space variable Aa; and
Fai, This situation ls simllar to the 3+1 pure!’ and matter coupled?”’

gravity theories.

4. The classical obscrvable

A physical obsevable at the classical level is a functlon on the
phase space which commutes with all constraints in the theory. In the

2+1 pure gravity there are known classical physlcal observables,$’ for

example,

TO[u]= TrP[exp($dud 2 (u)Asi(a(u))zs)]= Tri(s,s+1}=l(s,s+1)aR, (9)

Ti{a)= fdsda(s)eanT )= §dsit(s)eanTriFa(u(s))i(s,s+1)],  (10)

llere a(s) Is a loop In ¥ with a basepoint at an arbltrary point p=u(s)
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of ¥, whlich can be obtained {from any smooth mapping of S! into ¥ ( s is
a parameter defined such that s€[0,1] and e(s)=a(s+1)). ¢ds denotes a
loop integral. H(s,s+1)aB 1s a holonomy with respect to the connection
AapB.

Although we are treating the 2+1 dimensional theory, the observables
such as T® and T! are no longer the physical one in the matter coupled
theory. The canonical structure of our theory 1is similar to the 3+1
dimensional one in which T® and T!2 commute with the Gauss-law
constraint but not with other constraints.?®’ At present, the physical
observables are unknown for the case of the spacelike compact % in the
pure 3+1 general relatlvity. Therefore we have to study based on the
program which has been used on the 3+1 dimensional pure gravity by
Rovelll and Smolin.3) The program in ref.3) is as follows, 1) construct
the phase space by means of the objJects which commute with the Gauss-law
constraint, which hereafter we call the Gauss observables, 2) organize
the algebra, if exists, and represent all constrailnts in terms of the
Gauss observables, 3) seek out exact solutions (wave function) for the
remaining constraints. The process of 2) and 3) has been done iIn the
new representation so called the loop representation. In this talk we
only treat the program 1) in this section.

The Gauss observables of the gravity part are same as in 3+1 pure
case,that is, T® and Tt!a, llere we do not discuss the problem of whethcr
these observables completely cover the gauge Invariant phase space ofl
the gravity part. Thus we Investligate the matter and gravity mixed
parts of the Gauss observables and simply describe the result here.

There are many Gauss observables which are S50(2,1) gauge 1nvar1anf.
For local Lype we have already known gauge invarlant objects In the
gauge [ield theory such as VA(x)¥a(x), ¥Da¥=43:(¥R¥n), yEaD.¥,...for
the matter conflguration part and T0P¥a, TDaV, nkay, HEBDaW....for

the momentum part where we used the property that (zi)assS(Ti)na%ece Is
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symmetric in Its indices. Based on the above local type, one can obtaln
the llne type which Is obtalned putting H(s,t)a® with o(s)ie(t) betwecen
spluor flelds as ¥(a(s))U(s,t)¥(u(t)), ¥il(s,t)Da¥, ¥H(s,u)E3(u)i(u,t)y,
M(s,t)¥, NMHDaV, nuﬁunv and so on, where we used the transformation
property of ll(u,t)aB;*t {Gu,l(u,t)aBl=[l(u,t)N(t)-N(u)l(u,t)]ab.
Although these observables are naturally considered as the extension of
the minimal coupling between the spin connection and spinor fields, we
have to abandon those as a candidate of the physical observable since
these are not manifestly invariant under the diffeomorphism.

There are more Interesting and nontrivial gravity coupled Gauss
observables, that Is, the loop typc which is obtalned by connecting two
end polnts a(s)=a(t) in the above line type. At present, it is not
certain for us whether physical observables exlist in this loop type.

So we are studing hard on this problem, with a hope that i1t may be
solvable by passing from the connectlon representaion to the loop
representation. In the 3+1 pure gravity (and also in our theory),
Te[e] and T!2a[e] are not physical observables, but they are very useful
for finding the quantum states and the physical observables in the roop
representation.3?.8) 0On the other hand, they have transformation
properties under the diffeomorphism very simllar to the loop type Gauss
observables of splnor [ields. For example, T?[a] and ¥(x(s))l¥{(a(s+1))

transform as follows,

{DX,T®} = {Dy,H(s,s+1)aP} = Nb(w(s))3plll(s,s+1)pf]}

~§dud 2 ()N® (2 (u)) (s, u)Fab (e (u))I(u,s+1) ]af, (11.a)
and
{DN.¥lo(s)Il(s,s+1)¥[a(s+1) ]} = No(e(s))dul¥li(s,s+1)7]
~$dud @ (uIN® (@ (u)) [¥1(s, u)Fab(a(u))il(u,s+1)¥],  (11.b)
where 3b=9/3ub(s). Therelfore, we use these loop type Gauss obsecrvables
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as the gauge invarlant phase space varliables instead of ¥a5 and TIR.
Finally we note that there exlsts a trivial but physical observable,

that Is, the fermion number jdzxﬂﬁ(x)ﬂn(x). which commutes with all the

constraints. Because we are treating the theory on the spatially
compact ¥ and the Hamiltonlian Is a linear combination ol constraints,
the physical observable must be a constant of motion. Therelore it is

understandable that the global quantities of the system like the fermlion

number become physical.

5. The gquantum coeonstraint (ordering) and the quantum state

To carry out the Dirac constralned quantization, we have to declde
the order of operators In the quantum constraints. We set the ordering
of the quantum constraints such that the Gauss-law and diffeomorphism
(vector) constraints generate respectively the gauge and coordinate
(coordinate in the gauge N3A,1=0) transformations. For the scalar
constraint we decide It such that the algebra of quantum constralnts be
consistent. llere we report only the results for the quantum constraints

and the worrylng constralnt algebra,

A A A A

Gy = szxN‘an = —jdsz‘[(DaE°1)+("E1‘F)nﬂ“}. (12.a)
N A A

D = Ja2xNeD, = Jd2x[(LnAai)B2is(Lava)lIf], (12.D)
A A A (AN .
Vi = Jd2xNaV, = [d2xNa[F,piEbi+(Da¥)all"], (12.b")
A A A A AN A

Sy = szxms = JdZXN[‘iE‘JkFabkE‘1Ebj+2(Z1DaU)nﬂREa‘]. (12.c)

A AN
[gﬁ.gn] = 15VE = -15[d2xV,Ke (13)

where ﬁﬂi(x)s—ihé/éAai(x). ﬁ”(x)E—lhé/évn(x)'and ﬁﬂE(EQbM—mabg)ﬁbiEﬂi;
Note the order of Q, and the structure functional Qﬂ In the right hand
slide of the constraint algebra (13).

Now we discuss the guantum states (wavefunction) $(A,¥) that satlsfly

A
the WDW equation S¢(A,¥)=0 and brlieflly report the results obtalned up to
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the present. We have to seek the solutions from the gauge Invariant
configuration variables (configuration Gauss observables). Note that
the 2+1 dimenslonal verslons of the solutlons obtalned in the 3+1 purec
gravily are also exact solutlons in the 2+1 matter coupled gravity. If
any functlional, which purely consists of the connecctions Aal, Is
annihlilated by the pure gravity part of the scalar constralnt opcrator
(12.c), then 1t becomes an exact solution of (12.c) since it is also
annihilated by the remaining matter part.

As one of the nontrivial exact solutlons, we can obtain the T®f[q]=
Trlif(s,s+1) where IIf(s,s+1) is the smeared holonomy with the one-
dimenslonal smearing density [(¢) which approaches the delta function.
See ref.2) for the detalled definitlon. Although this quantity only
conslists of A,! and the gravitational local degrees of freedom are not
exlst In 2+1 dlmensions, note that Aa! ls determined by the matter
fields through the constraints. There Is a matter dependent but trivial
solution as ¥A(x)Va(x). This solution corresponds to the eigenfunction
for the trivial physical observable deXWn(x)ﬁ“(x) described in sec.4.

As nontrivial matter dedendent solutions, we can consider the
VA(e(s))lIf(s,s+1YaByp(e(s+1)) but unfortunately thls quantity does not

satisly the quantum scalar constraint equation as follows,

gﬁl?“(u(s))H(s,s+1)n“?s(u(s+l))]=g5(matter part) vyl
=(3/2)J-1(s)f(s)N(s)@2(s)[(3a¥P)II(s,s+1)aP¥p-TPlI(s,5+1)aB(3aVs)
~TR{A (2 (s))I(s,s+1) 1 paBUp-YR{lI(s,s+1)Aa(0(S+1))}ab¥n]}

¥ 0, (14)

where J(s) is the Jacobian when one changes the coordinates w(S,og) to.
the coordinates (s,0) and 3.=3/3w2(S). Therefore, we must find the
solutions from the more comlicated configuration Gauss observables
presented in sec.4. Note that above solutions satlsfy the WDW equatlon

but are not physical states slnce both solutions are not Invariant with
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respect to the diffeomorphism. We hope that one can solve thls problem

by passing from the connection representation to the loop representation

such as In the 3+1 pure gravity case.?®?

6. Discusslon

In this talk we have dlscussed the 2+1 dlmenslonal quantum gravity
coupled with spinor flelds in the Palatinl formalism. We have shown
that the canonical structure of the theory, which is equivalent to the
Einstein-Cartan theory in 2+1 dimensions, 1s similar to the case of the
pure!’ and spinor coupled?’ gravlty systems in 3+1 dimensions.

We have presented the Gauss observables which can be used as the
gauge Ilnvariant phase space variables of the theory,instead of the
fundamental phase space variables of the gravitational and spinor
flelds. We have alsc presented a trivial but physical observable which
corresponds to the fermion number on the two dimensional compact space.

We have discussed the solutions of the gquantum Gauss-law constrainu
and WDW equation. The trace of holonomy of the spin connection is also
a nontrivial exact solution in our theory as has already been shown to
be the case for the pure gravity in 2+1¢) and 3+12’ dimensions. Up 1>
the present, we have not found nontrivial solutlions with respect to the
splnor fields but presented a trivial solutlon that corresponds to the
eigenfunction of the physical observable (fermlon number).

Finally we comment on the Iimmediate tasks. First we would like to
find the nontrivial, fundamental solutions of the WDW equiation from the
loop type matter dependent configuration Gauss observables. Second we
have to invesiigc.< “hose algebrafc relations to see whether they become
the solutlions or not for the WDW equation. Then we want to Investligate

the quantum theory by passing frcm the connectlon representation to the

loop representation. We note that the obtainable results in our theory



are almost appllcable to the spinor coupled system in 3+1 dimenslions.
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Wormhole-induced Vertex Operators |

Toru Goto
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1 Introduction

In the Euclidean path integral formulation of the quantum gravity, one of the most
important issues is to include topovlogy changing processes and to clarify physical effects
of these processes. A wormhole is a Euclidean spacetime configuration which has two
asymptotically flat regions connected by a narrow tube[2,3], and one of the simplest
examples of topology changing processes. Recent development on the wormhole effects[4,5]
shows that this topology-changing processes in quantum gravity may give dramatic effects
on low energy physics.

Most of discussions on effects of wormholes, including a vanishing cosmological con-
stant mechanism and the Big Fix, are based on the argument that the effects of microscopic
wormholes are represented by insertions of bilocal operators at the low energy scale[5].
A form of the wormhole-induced bilocal operators is simply assumed in the previous
works[4,5,6]. However, it is necessary for detailed discussions on the effects of wormholes
to calculate explicitly what kinds of operators are induced in a given model[6].

We perform an explicit calculation of wormhole-induced bilocal operators, taking a
massless scalar field coupled to the Einstein gravity. As explained below, it is sufficient for
our present purpose to calculate the asymptotic behavior of a scalar field Green’s function
on the wormhole background. In the conformal coupling case|[7] the Green’s function has
been analytically obtained by using a conformal transformation. However, for general

massless scalar field, especially the minimally coupled case, the analytic solution is not

This work is done with Yasuhiro Okada (Tohoku University) [1].
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found. In such a case, we evaluate the Green’s function numerically by reducing to the
one-dimensional potential barrier problem in quantum mechanics, and show that the long

distance effect of the wormhole can be represented by the bilocal operators.

2 Wormhole Solution and Background Operator

As a preliminary to our calculation, we introduce the axionic wormhole solution and
give a general procedure to obtain the wormhole-induced operators. Qur calculations are
based on the Euclidean path integral formulation of quantum gravity and the validity of
the semiclassical approximation is assumed. Thus, the path integral is supposed to be
dominated by wormhole solutions which satisfy the classical Euclidean Einstein equation.

We use the axionic wormhole solution[3] which is found in a model of a U(1) Nambu-

Goldstone boson field coupled to gravity. The Euclidean action is given as

Sp = /d“xf{——R + VRV 0} +i0(6e — 81), (1)

where @ is a U(1) charge. The last term of (1) is derived from the treatment of global
charge conservation law which is described in Ref. [8], and the boundary condition for
the equations of motion is obtained from this term. When we put a spherically symmetric

Ansatz on the metric and 8 as
ds® = dr* + a*(r )dﬂw), 0 = 6(t), (2)

where dQ(za) is a line element on a unit three sphere, the field equation of # and its boundary

conditions become

2 (@) = o

212a%9 = 27%d%9

T=T——o00 T=TFp—00

and the (00)-component of the Einstein equation is

4

&(r)=1- gg al = 167GQ?. (4)
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The solution of these equations is obtained analytically:

|7] 1 1a 1 1@ 1 N\ a al

oo L) - o j+4501- % 5

= \/§F cos™ —, 7 V2E | cos o \/§) + " pre (5)
_ iQ ., 4 - f

G(T) - 47r2a(2, Sin az(T) - 0(7), (6)

where F' and E are elliptic integrals of the first and second kinds, respectively, and aq is a
radius of the wormhole neck. Asymptotic forms of a(7) and 6(7) for 7 — %00 are written

wd

a(7) ||

~ —+K+o(ﬁ93), (7)
(17} Qg
B(r) ~ —2’7%;1;+0(“—°6). (8)

where K = \/iE(%, 71-5) - VI'EF(%’ 715) 2 0.59907 - - - is a numerical constant.
To obtain wormhole-induced operators, we follow the general procedure described in
Ref. [7]. First, we take a wormhole solution as a fixed background metric, and calculate

an expectation value of local operators inserted in asymptotically flat regions:

(O(z1) -~ O(za) O(z1) - - O(z7))w» (9)
where O is a local operator, z,,--+,x, are coordinates of the points in one asymptotic
region, zi,---,z,, are those in another asymptotic region, and (---)w means that the

expectation value is calculated on the wormhole background. Next, we obtain a bilocal
operator C7®;(z,)®;(zh) which reproduces the expectation value (9) as a product (or

a sum of products) of expectation values on two flat backgrounds, i.e. C*®;(x)®;(zg)

satisfies

(O(z1) - O(za) O(x1) - -~ Oz, ))w

~ e SWCHO(x1) - O(2)Bilwo)) r(®5(35) O(a)) -+ Ola)) (10)

m

where (- --)r stands for an expectation value on the flat background, z¢ and z{, are the

coordinates of the wormhole ends in two flat spaces and Sw is the action of the wormhole
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solution. We then identify the bilocal operator e=5w C'®;(zo)®;(x)) as the operator

induced by the wormbhole solution.

Since the background value f(7) is aot vanishing, the expectation values of a product

of §’s on the wormhole background is written as

(0(z1) -+ 0(za)0(z1) - - O, Ny w 2 €57 B(z1) -+ O(a)8(3}) - -~ O(z,), (11)

m

in the semiclassical approximation. This expectation value for any n and m is reproduced
by the bilocal operator e~5weiQ¥(z0)e=i@8(=0) a5 described in Ref. {7):
(0(z1) - 0(za)0(2y) - - - 8(27))w
N €W (1) 0(2a)e’ D) p(0(a)) - B(zy, )T £, (12)
When other matter fields are included, whole induced operator is written in a form as
e_SwC'ijeiQe(:°)Q;(zo)eniqo(zé)(bj(:z:()). (13)

Here, the bilocal operator C*®;(z4)®;(z}) is determined by expectation values which do

not include the Nambu-Goldstone boson field §. We calculate this operator for a massless

scalar field.

3 Green’s Function of a Minimally Coupled Scalar
Field

Now, let us consider matter fields other than the Nambu-Goldstone boson field 6.

Here, we consider a massless scalar field. The Euclidean action of a massless scalar ¢ is

given as

1
Smau.er = E / d4$\/§ (V“(PVI’,,QP - TIR‘PZ) ) (14)
where 5 = % corresponds to the conformal coupling and 7 = 0 to the minimal coupling.
We will calculate the Green’s function of ¢ on the wormhole background. To obtain the

Green’s function G(z,z') = (p(z)e(z'))w, we have to solve the equation

(VV, +1R) Gla, ') = -—1\5 (2,4"). (15)
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In the conformal coupling case, the calculation of the Green’s function is reduced to that
on the flat background by the conformal transformation[7]. However, if 7 # & we cannot

use this technique. Therefore we need a more general procedure to obtain the Green's

function, which is described below.

If we obtain a complete set of eigenfunctions ¢§c°)(z) which satisfies the eigenvalue

equation
(V*V, + 7R) ¢)(z) = —k?¢{ (), (16)

where k? is the eigenvalue and o represents other quantum numbers collectively, and the

completeness condition

[ g @i @) = d(a.a), )

the Green’s function is written in terms of cpff)(z) as

-3 [ Hae @), (18)
We solve the equation (16) first, and then calculate the Green’s function using the formula
(18).
In our wormhole background, the equation (16) is written as

9 3ad Vi 6nad o o
{5;+;g+%+—as—°}¢; () = —Fo{ (o), (19)

where V%a) is a Laplacian on a unit three sphere. The angular part of the eigenfunction

is separated by the spherical harmonics Y: Vi) Vim,m, () = —1(1 + 2)Vim,my (R), |maof <

m; <1=0,1,2,---, and we define the radial eigenfunction x as

o 1
N CR OBl Co) e (0)) (20)

xfc,)( ) satisfies the equation

T A e )
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V(1) ag

T/a,

0. 1. 2. 3.

Figure 1: The potential barrier V(r) for { = 0 in the minimal coupling case.

and the Green’s function is written as

Iy odk 1l _ _ ,
G(T,Q;T,Q) = Z Z ‘/n Eﬁa 3/2(T)a 3/2(T)

o lmy,mz
X X4 ()X (7 Wiy (@) Yoy (2)- (22)
The equation (21) has the same structure as the Schrodinger equation in one dimension,

with the potential Vi(7) which is shown in Fig. 1. Consequently the problem is reduced
to a one-dimensional potential barrier problem in quantum mechanics.

Since the relative angles between the angular coordinates in one asymptotic region
and those in the other asymptotic region have no physical meaning, we have to average

over the relative angles. In the present case we integrate over )’ with {2 fixed in equation

(22). The averaged Green’s function G becomes
ey = [ 0G0
odkl _ _ o o
= Z‘/; g;-ﬁa S/Z(T)a 3/‘2(T )X}co)(T)ng )(TI)' (23)

Notice that the contributions from I # 0 terms all vanish under this averaging, and this

is the reason why the induced operator becomes rotationary invariant. In the following
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discussion we solve the equation (21) for { = 0 only.
Equation (21) has two independent solutions xgl)('r) which has an asymptotic form

(R)(T) -~ { e*" 4 r(k)e™*"  for T — —oo, (24)

Xk t(k)e'*r for T — oo,

and x\M(r) = x®(=7). We are interested in the asymptotic behavior of the Green’s

function G(r, ') for 7 — 0o and 7' — —oo. It turns out that the asymptotic form (24)
is not enough since we need xiR'L)(T) in a wider range of k for a fixed 7, and (24) is not
applicable for k|7| 1. The asymptotic form of xim(r) for |r| 3> ap which is a better

approximation for any k is

k(|| + Kap)

Xk (7) 5 {H{? (k(ir| + Kao)) + #(k)H}” (k(I7| + Kao))}

for 7 — —o0,

R K90) g4y (1 + K o)) for 700, (%)

where Hl(l) and Hl(z) are the Hankel function of the first and second kind, respectively.

This asymptotic form is equivalent to (24) for £|7| 3> 1 and the relations between r(k),
t(k) and #(k), i(k) are

Fk) = —ie~ ka0 (k) (k) = —je P k0y(k), (26)
Substituting (25) into the formula (23), we obtain the asymptotic form of the Green’s

function G(7,7’) for T — 00 and T/ — ~o0 as

G(T,TI) ~ 1 wﬁﬂ' ZZ'

41323228312 J, 2

x {E(k)H (k2) B (k2') + (k) HP (k2) HE (k2")
+ [Ek)7 (k) + 7(R)E (k)] HO (k2) HP (k2" }
T — 00, T — —00, (27)
where z = 7 + Kag and 2/ = —7' + Kao. The last term in (27) vanishes because of the

symmetric property of the potential V(—7) = V(7). Therefore, if {(k) (or equivalently,

t(k)) for 0 < k < oo is given, we can calculate the Green’s function G(r, 7').
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Figure 2: The numerical values of ¢(k); (a) absolute value; (b) argument.
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Figure 3: The numerical values of 47%a®(7)G(7,—7) in the minimal coupling case and
their curve fit by powers of 7; (a) 771; (b) 772%; (c) 3.

We evaluate t(k) by a numerical method, and the results are given in Fig. 2. We see
that #(k) approaches to 1 for large k. For small k, {(k) is proportional to k% with a pure
imaginary coefficient, and this factor suppresses the contributions from k S O(1/]7|) re-
gion in (27). This can be understood physically: a fluctuation mode with large wavelength
cannot go through a small wormhole.

Using the numerical values of #(k) (or i(k)), we calculate the Green’s function
G(r,7') for T — oo and 7' — —oo. Fig. 3 represents the numerical values of the Green’s
function G(7, —7) for large T and their curve fits. We see from the result that the Green’s
function G(r,—7) is proportional to a3/|7|*, i.e.

2
g

G(T, T') ~ Cminimalmle_'Iz fOI‘ ' y (28)

[T 9
i'r—+—oo

and the coefficient cpinimal s approximately 1/130.

This 7-dependence is reproduced by a bilocal operator ~ ¢(z¢)¢(z;) where z¢ and

g are the coordinates of the wormhole ends in two flat spaces:

G(r,7') ~ (p(x)p(z0)) Flp(z")p(20)) F, (29)
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Figure 4: The numerical values of 47%e®(7)G(7, —7) in the conformal coupling case and
their curve fit by powers of 7; (a) 77%; (b) 772 (c) 7732

since the scalar propagator on the flat background is written as

1 1

{p(z)p(zo))F = ‘W_—m ~ R

(30)

for 7 — oo.

As a check of our calculation, we apply the method described above to the conformal

coupling case. In this case, the Green’s function is obtained analytically[7], and the

asymptotic form is
1 a2
—, 31
8x2 |7|2|7)? (31)

Our numerical calculation in this case is the same as before except that 7 is now set to
1/6 in the eigenvalue equation (21). The numerical values of the Green's function are
shown in Fig. 4. We see that the asymptotic form of the Green’s function is

2
1 a;

~ ———___’
81 |7|?|r|?

(32)

which is a good approximation of the analytic result (31).
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4 Summary

We have evaluated a Green's function of a minimally coupled scalar field on a worm-
hole background. The Green’s function is written in terms of the eigenfunctions and
eigenvalues of the Laplacian operator with a spherical symmetry, thus the problem being
reduced to a one-dimensional potential barrier problem in quantum mechanics, and is
finally solved by a numerical calculation. We have shown that the asymptotic form of
the Green’s function connected by a wormhole has the r-dependence ~ 1/|r|?|7'|%. This
r-dependence is interpreted as an appearance of a pair of local operators in the wormhole
ends, ~ (o) p(ch).

The procedure we used in this paper may be extended to calculate a Green’s func-
tion of a field with higher spin, in which case the angular variables are separated with
appropriate (spinor, vector, tensor, - --) harmonics and the eigenvalue equation is reduced
to one-dimensional potential barrier problem just as the calculation of the scalar Green’s

function. Averaging over the relative angles between the two asymptotic regions is rather

complicated, however.
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Foreword

In part 1 of this lecture, I have given an elementary introduction to the recent de-
velopments of the matrix-model approach to the theories of strings and 2D gravity. In
part 2, my own attempt toward a unified description of the structure of the continuum
non-perturbative theory of 2D gravity using a simple action principle has been presented.
Since a fuller account of the content of part 2 has already been given in my recent preprint
(Preprint, UT-Komaba 90-8, “Toward a Canonical Formalism of Non-Perturbative
Two-Dimensional Gravity”), [ shall only give a brief summary of the part 1 of the
lecture in this report. Section 1.3 presents a discussion on the action principle in the

matrix model before taking the scaling limit, which has not been published elsewhere.

1 Introduction to the matrix model approach to 2D
gravity

1.1 Historical background

Historically, the motivation for studying the large N limit of matrix field theories came
from t'Hooft’s observation [1] in 1974 that the Feynman diagrams in QCD are dominated
by the planar graphs in the limit in which the number of colors increases indefinitely. The
dominance of the planar diagrams conforms to, at least qualitatively, the properties of
hadronic interactions. especially, with its string picture with confined quarks. In fact, it
is formally possible to rewrite QCD entirely as a sort of string field theory[2]. However,
unlike the case of & models (or spin models in statistical mechanics), QCD is not solvable
in this limit. This led Brezin et. al. [3] to study in detail the toy models in ‘zero’ and one
dimensional spacetimes, i. e., defined on a point and a line, respectively. Among many
interesting results derived by them, a crucial observation is that in general the matrix
models exhibit critical behaviors which are analogous to the critical behaviors known in
statistical models in the thermodynamic limit.

Let us therefore consider qualitatively how such a critical behavior arises in the sim-
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plest case of the one-matrix model. The model is given by the following integral

Z = /dN’M exp —AU (M) (1.1)
N N

a /HJMHMFJQ%w—ﬂZUMm (1.2)
=1 1<y 1=1

where U(M) = Tr(M? + g4M* + ---). The prefactor in front of the exponential comes
from the Jacobian in the change of the integration variables from the components of the
matrix M to its eigenvaues {};} Including this Jacobian factor in the action, we have a
system with the following effective action,
S = UM - =TI A = Ayl (1.3)
B (£
In the limit of large S, this system can be approximated as a classical system of N
particles, interacting with a repulsive 2-body potential —f~'In|A, — A,|, in an external
potential U(A). The two contributions are of equal order of magnitude provided that
N ~ 3. The average distance between adjacent particles is of the order $7!, and hence
the distribution of particles in the large N limit becomes continuous and of finite range.
However, depending on the form of the potentials, there can occur one or more gaps in
the particle distributions. As an example, suppose that the external potential U()) has
several wells. When 7! N is sufficiently small, there is a stable configuration in which
all of the particles reside within one of the wells. But as /7! increases, the range of the
distribution increases and at some critical point # ~ N, the particles suddenly spill over
the ridge. Hence we expect a singular behavior of the distribution function at this point.
The nature of the singularities does not depend on the detailed form of the potential
except at the vicinity of the top of the ridge, and the singularity types may be classified
into universal classes.
Let us now consider the meaning of the above qualitative property in terms of Feynman

diagrams. To be specific, we consider the model with only a quartic term in the interaction
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potential. Then the partition function Z has the expansion,
Inz= ) BV (—g) Y NE (1.4)
connected Feynman diagrams
where P,V,and L are the numbers of, respectively, propagators, vertices, and index loops
and satisfy 2P = 4V, y (Eulernumber) = V ~ P + L. Here the Euler number is the one

with respect to the closed surfaces consisting of the surface elements corresponding ihe

index loops. Thus,

InzZ= Y%, N"(—%g4)v. (1.5)

surfaces

This expression ca:. be regarded as a discretized version of the partition function of two-

dimensional gravity

S ewl-A [ vaPe+ o [ RygEY (1)
dualsurfaces <

where the ‘bare’ cosmological constant A is equal to —a’zln(—%g4) with a® being the
area of the dual surface element corresponding to the M* vertices. This interpretation
of the Feynman diagram expansion in terms of 2D gravity or random surface was first
proposed by David and Kazakov [4]. Note that g < 0 is required for this interpretation.
We have seen that the matrix model can be regarded as a regularization of 2D gravity.
Furthermore, it is easy to see that, if the matrix field is assumed to live in a nontrivial
target space, the model can be regarded as a regularization of string theories. Then we
come to a natural question about the meaning of the critical behaviors. We know that a
continuum limit of a regulalized field theory on a spacetime lattice can only be defined
at the vicinity of critical points of second or higher orders. Is it possible to define the
continuum limit of 2D gravity or continuum string theories using the above critical points
of the matrix models? If this is the case, the matrix models could be a good candidate for
defining string theories in a nonperturbative way. Non-perturbative formulation of string
theories has been one of the major unsolved problems in unified theories of fundamental

interactions including quantum gravity and also in QCD. The recent development is that

—120—



the above possibility was shown to be indeed partiaily realized, at least, in the case of the
linear matrix chains. In the following we will briefly summarize the basic reasoning [5] in

the simplest case of the one-matrix model.

1.2 Essentials of the “double” scaling limit

1 Behavior of Z near the critical point

Let us consider the free energy of the one-matrix model.

N

Fu(B)( = mZ)= 3 NX(—E.m)", (1.7)
sur faces
= ZNXan,V(—%g4)V (1.8)
X v

where n, v is the number of nonequivalent surfaces with given x and N. We expect that

ny,v behaves for large V as
ny v ~ VY30V (0> 1) (1.9)
with ¥(x) and « being numerical constants. The exponent +(x) is called the string

susceptibility exponent. Choosing the normalization of the coupling constant 3 such that

agy = —1, we see that the contribution, Fy(f), of the surfaces with a given fixed genus

X to the free energy behaves, in the limit % —1—, as

NY N
FY = zV: VV(X)'*‘F ~(1- -E)“"’(") + regular terms. {1.10)

This singularity is interpreted as the one expected from the qualitative discussion of the

previous section.
2 The double scaling limit

Thus, we have, at the vicinity of the critical point,
Fn(B) = Y NYFX(A), (1.11)
X

N, I
~ Y NY(1- —/'q—)‘_’(‘) + regular contribution (1.12)
. :



This shows that if we can tune N and g such that

N
i X(1 — 2-v(x) — fini
N*LLI'I[}_.N NX(1 5 ) finite, (1.13)

we can extract a finite nontrivial result from the critical point of the model. In fact, the
result from the continuum Liouville field theory [6] suggests v(x) — 2 = (v(2) — 2)x/2
which indicates that in this limit the contributions come from all genus. Defining the

finite renormalized cosmological constant = by

m=a'2(7€——-1), (1.14)

the genus = 0 free energy is proportional to z>~"?), This is a desired continuum limit,
since by choosing N to behave a~(>=7(2))| the number of the surfaces elements V increases
as a~? as a — 0. The remaining regular terms can be shown to contribute only to zero
area surfaces in the continuum limit.
3 Differential equations for free energy

One of the important results in the recent development is that we can write down a
class of exact differential equations governing the free energy in the double scaling limit
as a function of the renormalized cosmological constant z. Let us next briefly review its
derivation.

The measure factor in the partition function of the matrix model is the square of the

so-called Vandelmonde determinant,

1 R |
M A o Ay
Ay Ay Ay) = : : : ) (1.19)
’\{V—l ’\".ZN_I . )\j!\{'—l

which is rewritten, using an arbitrary set of polynomials {P;(A) : P(\) = X' +...}, as

Pi(A1) Pi(Xg) oo Py(An)
A g, Ax) = P’“’(:Al) Pz(:%) P’“’(:A”) . (1.16)
Pn(A1) Pn(X3) -+ Pn(An)
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Thus the partition function of the matrix model is the norm of the Slater determinant
of an N fermion system with the single-particle wave functions P,(A) with respect to the

measure exp —3U (A). Choose the polynomials to be mutually orthogonal with respect

/dxe-ﬂu(,\m(,\)g(.\) = hié,,. (1.17)

Then,

N
Z=N'[]h. (1.18)

=1

We see that correspondingly to the semi-classical picture in the large N limit, the finite N
partition function has a one-to- one correspondence with a ground state of an N-fermion
system with the orthogonal polynomial wave functions. The basic equation determining
the partition function can be formulated in terms of a ‘matrix mechanics’.

Let {B} be the orthonormal set of polynomials corresponding to {P,}, and define

infinite dimensional matrices

Q, = [e™PAB, (1.19)
- d -
P, = /e-ﬂ”P,(;TP,. (1.20)

By partial integration, it is easy to see that

P = BU'(Q)+ (1.21)

where the suffix + indicates the strictly upper triangular part of the matrix. Substituting
this relation to the canonical commutation relation [P, Q] = 1, we obtain the equation for

determining the infinite dimensional matrix Q,

[BU'(Q)+.Q] = 1. (1.22)
Summing the diagonal elements up to (n + 1)-th terms, this leads to

U,(Q)n,n+lQn+l,n = n; 1 i (123)
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Let us first examine the possibility of the double scaling limit in the sphere limit.
Using
Qi = VRS 11+ VRS, (1.24)

with R, = h;/h,_; and (1.14), (1.23) is rewritten in the following form in this limit,
dZ 1771 2 ‘
7(—,z U'z+R/z) = 1 — a°=. (1.25)
2me

Then, by defining a scaling function u(z) by R, — 1 = au(z) as a — 0, we see that a well

defined double scaling limit exist if the polynomial potential U is tuned such that

fdz Wz R =1—-(1- R, (k=1,2,..) (1.26)

2m

and the exponent ¢ is equal to 2/k. Since the free energy Fy = F(X) =~ ¥ ilog R, =

— [* dz(X — z)u(z) is finite if y(= x(2)) = —o, the genus= 0 susceptibility exponent

defined by (1.12) is given as
1

=——, 1.27

Yo & ( )

Next we shall briefly explain how we can obtain exact differential equations governing
the two-point function (‘specific heat’) u(z). In terms of the renormalized cosmological

constant z, the matrix @Q is written as a differential operator,

VR(z —a=w)e™ "= 4\ [R(z 4 a=2w)e 44 (1.28)

= 2+ a " (u+ d*/dz®) + higher orders. (1.29)

Q

The existence of the scaling limit guarantees that the matrix P also reduces to a differential
operator of the form (const.+a?" (differentialoperator) + higher orders) such that [P, Q] =

1. Redefining the operator @ = d*/dz? + u, the most general form of such a differential

operator can be shown to be

P= Z e(QPFDI2), (oh = constant). (1.30)
k=1

Y ra



Here we used the notation of pseudo-differential calculus [7]. In particular, [(Q¥/?)4,Q] =
1 is equivalent with the Painlevé I equation z = u® — u"/3. The general equation which
describes the continuum theories with arbitrary number of the coupling constants c,
[T cr(QF12), @] = 1 [8] is called the ‘string equation’. The critical theories which
correspond to 2D gravity coupled with massless matter systems are represented by the
condition that only one of the infinite number of the coupling constants ¢, apart from
the cosmological constant z, is nonzero. Otherwise the continuum theory contains dimen-
sionfull parameters other than the 2D cosmological constant.

Let us finally summarize the properties of the solutions. For the simplest nontrivial
case k = 2 (critical case with ¢y # 0), it is known that a real solution for the partition
function always exhibits an infinite number of zeros on the real axis z which accumulate to
minus infinity. The perturbative expansion with respect to genus is not Borel summable,
and there are in general nonperturbative contributions of the form exp —4v/2z%/*/5, asso-
ciated with parameters which are not determined by the boundary condition for large z (i.
e., the sphere limit). It is remarkable that the nonperturbative effect is of the form e~!/¢
with respect to the loop expansion parameter g2, instead of the familiar e!/¢" in local
field theories. However, David [9] has argued that if one notes that the critical potential
corresponding to k = 2 is unbounded from below, a more nalural choice of the solutions is
to take complex solutions which are inevitable when one deforms the integration contours
such that the integral of the partition function is well defined. A similar structure can
be seen much more explicitly in a simpler “1D gravity” which can be derived by taking
the double scaling limit of O(N) vector models [10]. Since these properties are not visible
in the spherical limit ( = the naive large N limit), the lesson we have to learn is the

importance of the nonperturbative effects in 2D gravity or string theory.
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1.3 Formal structure of the matrix model: action principle

In the second part of this lecture, [ have presented a unified treatment of the differen-
tial equations and the Schwinger-Dyson equations on the partition function for the local
observables of the continuum non-perturbative 2D gravity. There are two remarkable
properties in the mathematical structure of the theory, namely, that (1) the flow property
of the theory under the change of the coupling constants is described by the I{P hierarchy,
and that (2) the Schwinger-Dyson equations [11] exhibit a W, algebraic structure. These
properties are neatly summarized in an extremely simple action principle [12]. Actually,
the action principle has a precursor already in the finite N matrix model which itself is a
completely integrable system [13] and exhibits the W, algebraic structure.

Consider the partition function

N N
Z=/Hd,\,A(,\l,---,/\N)zexp—BZU(,\,-). (1.31)
1=1 =1
Introduce an arbitrary set, {¢(0) Al =1,2,---}, of polynomial basis. Then,
A(Ay, -, Ay) = det ¢!P(X,). (1.32)

Define the ‘bare’ coordinate and momentum matrices by

M0(A) = (Qugli(N), (1.33)
d (o) _
-8 = (P, (1.34)

A convenient basis for the one-matrix case is the one in which Qoy; = biy41 + 6u41,. The
whole dynamical information is then contained in the transformation matrix K which

sends the bare basis {¢/®} to the orthonormal basis {¢} satisfying

/¢ ¢] -EU(/\ - 51]; (135)

¢, = (K¢, (1.36)
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By choosing the ordering of the basis polynomials appropriately, we can always assume
that the strictly upper triangular part of A is zero, K’y = 0. Clearly, the partition function

for finite N is then given as
Z = (det K)3® = exp—2Try log K, (1.37)

where (--+)y indicates N-dimensional operations. (Namely, the trace is taken for the
first N x N small matrix of K. Note that K" itself is an infinite dimensional matrix.)

Corresponding to (1.33) and (1.34), it is convenient to define the ‘dressed’ coordinate and

momentum by

A = Q¢ (1.38)
d -
—5 = Pg. (1.39)

We have [13, Q]=1=[Py,Qo), and Q = KQuk~!, P = K P,K~'. Also, we have P = P_
(i. e., strictly lower triangular), @ = @*. Note that @ is a Jacobi matrix for the above

choice of the bare coordinate (namely, Q,, = 0,|i— j| > 2) provided the symmetric nature
of @ is imposed.

The action is then assumed to be

A=Ti(PKQyK™ +log i), (1.40)

where a new matrix which is antisymmetric, P = —P*, is a lagrange multiplier imposing

the symmetric nature of the dressed coordinate Q. Variational equations are

Q = @, (1.41)
[P, Q]

1. (1.42)

Let us consider the general solution to the variational equations. Since [150, Qo] = 1, the

most general form of P satisfies

K™'PK = Py + f(Qo) (1.43)
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for some function f, which leads to P = P_ + f(Q). From this we obtain

Py = f(Q)+ (1.44)

and hence
P = f(Q)+— f(Q)- (1.45)

Substituting this result to the commutation relation, we finally arrive at

[f(@)+ - f(Q)-,Q]=1 (1.46)

which is equivalent with the matrix-string equation (1.22) for the general potential U with
the identification f(Q) = ﬂ%@/l We have shown that the general one-matrix model is
the general solution of the action principle.

There are two kinds of symmetries in this action characterizing the solution space of

the regularized random surfaces based on the one-matrix model.

(1) Toda flow:

KN = —(KQyhN™")_K, (1.47)

5P = =[(KQyK ™"y — (KQy,K~1)_, P]. (1.48)

Lo} —

(2) Canonical ‘gauge’ symmetry:

§K = -GK, (1.49)

SP = [G,P] (1.50)

i

where G is an arbitrary antisymmetric matrix. The symmetry (1) shows that the solution
space is parametrized by an completely integrable differential equations, Toda-lattice
hierarchy. The symmetry (2) corresponds to the infinite dimensional orthogonal group

changing the orthonormal basis, and contains as a special case, a ‘conformal symmetry’,



G = antisymmetric part of Q"** P (n > 1), which leads to the Virasoro condition [11]
on the partition function, since it induces the transformation @ — Q + ¢,Q™*'. More
generally, G contains a W,, algebra generated by the antisymmetric part of Q'P? (i >
0,7 > 1).

All of these symmetry properties have counterparts in the continuum theory. In the
finite N case, however, the action principles for the multi- matrix models become increas-
ingly complex as the number of the matrices increases and the form of the action varies.
In contrast with this, a remarkable feature in the continuum action principle [12] is its
universality. Namely, all the so-called (p, g) models can be embedded in one and the same
form of the action principle, in which only the constraint varies. At present, it is not clear
whether the action principle has deeper significance than as a convenient rewriting of the
matrix model. I myself have a hope that the continuum action principle, in view of its
simplicity and universality, might contain some clue towards {further understanding of the
meaning of the non-perturbative string theories. It should be emphasized that the action
principle describes the structure of the theory space, and that the theory space in the crit-
ical string theories is essentially the space of all possible background spacetimes (=target
space of matter systems in 2D gravity). It is also tempting to speculate a possibility of
relating the commutation relation [P, Q] = 1 with the duality and minimal distance prop-
erty (see, e. g., [14]) in perturbative string theories. I would now like to refer the reader

to my recent preprint, mentioned in Foreword and future works for further discussion.
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(g, p) Critical Point from Two-Matrix Models [1]

K HE % H §

BRE2KXRTcENoBRCBLTHBAHHME L AT IFELVERD
BB RTOBHO2RTEEEERT 2 EHTED LI ILUA-
o COBRTHBEHER VWS ELt-TH LT THEEAHFRLE
fivtoZEAohTLVAMERGEROER &M T 0 FEE AR AIEE
W DTH b5, CO2RNENOEBHYNMEFE » o0 FHERR N 5 O HE
MOTRCHFNEREF S L 2BCABRLIVI . Hro 1T ERcE
WTRZTOEFABRALBINIBEEARETI2HOFERXOEEZ — K
bEDBIEBNTELY . TOFRRKIVERBEtoMBE:XM RS 2L
BWoTWd, —H2FTHNEREZILHDEFTHARVC>VTRIDOL S —
MEe AR ERDEERTEUDP-o FECTDouglasit(q-
1) TR L-TwbWw S (p, q)EERSERIL,. T0EARARE
NENQKR. pROWBRERETFQ, PEAHWVT

[P@]=1 (1)

LHBEAZohBdE0) THEZRELAB . COFHIHEANTEEHE-T VLS
DTLOFHRHEESLVWTIHAOHFENEENHRRSI ML LALES BN
CETMERZR I ERELCITHAERLS (4, 5)ERLEMNKRD
SNEKEE THoh BEHERUWOEFLoEAH AU VT ORE =R
RLU2TAERIceRETOHEEZVNAE &I LD (4, 5) EHKEE:E
Kb ohd 2R LAEABETCROCOBEREZMBEL2 TN T —#o
(p, a)BEREZRIL-DOMNEFEERT . EL O —BULEHHEIZOHEAD
SHEOMEABEERYT 3,
THREORFICREREZHEAZTH VL, COBREEA G THERD
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L e e e b e R A L

O &,

)\R; = R:+1 + RuRt—] (2)
CREENDZ, COERERAWT AR N,
ZN = N'hévR{v—] "‘R?v_zRN—l (3)

ERENZI HBREMTIFAER.MBELSFERXNLRDZLEDVEHETS
2, COEENEREBRET 2 LRIV HEFBERAEH(ENTED C
DEEBARACRFEESTZESTHAENEZTERBRARCHE TV HE X P
THEIERLIDVIRTOBEO2RARHEH»00FEEZRALEAERXLR
BN TEDL, COmBOED ML double scaling  limit &1 EE N B,
—AETHNBEBEOBELRERSHAOEMS — R CHHEORHICL 2

2Pn(z) = Pnyi(z) + RO Py y(z) + SV P_s(z) + - (4)

DRI D, COLDEUABABEILUABRA LU LDERAERD 32 &
BBLBBE2, 22CLVDouglasdTFHEF-LBETHEEERTT
5 CEEAD, BEZTHHEYUTHLEKOEF v v rRBEILECEAY
BN ABRBETCR2ONBERIC >IR3 FEFr vV E2BAT E, O
CTREEMHMIC(3.5) B LKL, COB2 2057 Y veriodin
LTERZHAD L ETHO,. TDOREMIE
2Pn(z) = Payi(z)+ RO P, _1(2) + SP,_s(z)
+T Pr_s(z) + UL Pr_s(2) (5)
YQm(y) = Qmir(y) + RPQum_s(y) + SPQumos(y)
+T.0'Qm-s(y) + UL Q—r(y) (6)

[ dadyem=2Q, () (y) P(z) = (‘?”). )
It
TERT B IELEICEID. CNASBBEHRLALT

&5,

[P.Q]=1 (8)
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ARl . AERBRBE T SFERNEE AL LW ENE, COTRER
ErHAENcR»2E Lo P QoagmBEr R AERN 254222 &%

R ¥o

EHER TR
Qi.] Py Q(=)
= const.+a(Qd+...)
+a(OQd* +...)
+33(Od + .. ) (9)

EHRB, CNB3ROWABEF BRI ADERBIRCFSOFOFEH MY A
BILEBMUECHE COVEBERER A -~ LTHEEOHFERE
EA50CRHBEBCIEATEI  AROLEZHEEPEHLTOERET C
LR EDVBBDO NI A - E2ERLLRET LI ILENTEL TE5LIODEK
R+ THBEPBEERFRICEI-TRES . ABBETIR (3 .5) BB
BAC~WTEBEKHEERL.L-dVWKPBIUQEEFMXDoug ! a
SOFHTHEALONEZLIDE—-HTEIEERT COIIRLTREER
HRERET R LA TCH-EFXRO2THNHBeHLTC.EED (p .
Q) EROoERAEBEILDDOMERTREI NI,

—AloBAErsEolIOREDHEBHFRRZ2 >DEF ¥ v B —FL
EBEMNOBEE2ZEELTVWAILEMEHShEL-L COBBILREDFER
KL BPEQHB —HLTLE S, LA LAENSPLQRER SN I BSOXRHI
RUsH. pRELVqXoFrHesH LT ERV. BLIDAE
ORRBIEF Y v VORBRAZAVLILTEDEIBUHEENI SN ZOME b-
THa I EAHERROVARSLZ L LENSHEEOBRAMNSEZA T WD
War=s2 VRN L TR COMBHUEEREZEZI ZoLBEBRTHD., 2
= VEHEAENE-BNULAFENFL SN 2,

CHOEIR TR ZITHNIBEEOBEFRAEHA NI - EAALEA
ELXRBL,. WC220BKEFVHAIDVWTEGHNICERATA N, 2O
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Weyl invariant formulation of 2D Quantum Gravity
Ki-ichiro Sato

Department of Physics, Faculty of Science
Hokkaido University, Sapporo, 060, Japan

Introduction

We investigate two-dimensional Einstein gravity coupled to N massless scalar

fields, which is described by the following action;
1
So= [ Pav/=glR + 39" Gandus" - 0,%), 1)

where G 4p Is a metric of ¢’s space. Here, we shall consider the case when the
bare cosmological constant is exactly zero. The Hilbert-Einstein term becomes
a total derivative in two-dimensional space-time, hence, gravity itself has no
kinetic term. As will be shown in the later, this is not the problem when the
Weyl invariance is taken into account. This action also appears in string theories
of Brink-Di Veccia-Howe-Polyakov type action. However, we shall consider the
different situation from string theories, where the space-time has no boundary

and has an infinite volume.

The action (1) is invariant under Weyl transformation
6guv = p(Z)Guvs ‘S¢A =0, bz =0
in addition to the general covariance because of the absence of the cosmological
term and mass term. In two-dimensional space-time, Weyl invariance is realized

without introducing the Weyl’s gauge field in Einstein gravity. In the following,

we shall take care of the Weyl invariance, i.¢., typical feature of this system.
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Now, we are going to quantize the system In the operator formalism. First,
we would like to take care so that three components of the metric are treated
as dynamical variables. This is important in order to realize the Wey! transfor-
mation which we should treat. If one chooses only the Weyl invariant variables
as dynamical variables, Weyl invariance becomes trivial and there is no Weyl
transformation. In this connection, we do not consider conformal or light-cone
type gauge because, one cannot regard the metric as tensor under the Lorentz
transformation in these condition. So, we would like to adopt the harmonic (
0,9*" = 0) and the zero scalar curvature gauge ( R = 0 ) as gauge condition.
There are many possible gauge choice so that dynamical freedom of the metric is
three. However, we would like to choose them. Because, these gauge conditions
are independent each other and there are no first-order derivatives written by
only the metric, which is invariant under the general coordinate transformation.
In these gauge choice, there are a global Weyl invariance and a general linear
( GL(2) ) invariance, at least, in the operator level. Secondly, the quantization
procedure is based on BRS invariances corresponding to both general covariance
and Weyl invariance under the subsidiary conditions of Kugo-Ojima’s type; i.e.,
we shall regard the Weyl invariance as an ordinary local gauge invariance and
perform the gauge fixing and Faddeev-Popov procedure for both invariances.
Hence, we introduce two kinds of BRS transformation corresponding to general

covariance and Weyl invariance, and the generators are Q¢ and Q:V‘Zyl [1].

§z# =0, 6'C* = —C*0,C*, 6*C, = 1B, — C*0\C,, §'B, = ~C 9\B,,
5*!],“/ = —6#0/\ “Jav — auC/\ cGu) — 8,\(0’\9#”), 6* V9= _6/\(0/\ V —g)v (2)
6*¢t = —Cr0\¢1, §*B = —C20,B, 6*C' = —C*0,C, §*C = -C*8,C,

8% g4y = C(2)gu, 6V C(z) =0, 6" C(z) = iB(z), 6" B(z) =0,

) 3)
6PV¢A:6W2#=6WB#(2)=5WC'"=6WCA=0, (

It is easy to check that both BRS transformations are nilpotent and independent
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of each other by definition;
(5*)2=(5W)2=0’ 5¢6W+6W6*=0 (4)

(3) is similar to the BRS transformation of Abelian gauge theories. This is a

reflection of the abelian nature of the Weyl transformation.

Now, we consider the BRS invariant action for the two-dimensional quantum

gravity;

9 (1. . . -
5= / Po(55"Gandud? - 0,6° + 0,5 - B, — i§0,Cx - 0,C
+ V=gRB — i§"8,C - 8,C]

(8)

Recently, Abe and Nakanishi [2] proposed a unitary theory of two-dimensional
quantum gravity different from ours. They start from the action which is obtained
by eliminating the Faddeev-Popov ghosts concerning Weyl invariance from (5).
Instead, their formulation is based on two kinds of BRS invariances; one is ordi-
nary BRS invariance corresponding to general covariance, and another is a vector
type which also exists in our theory as residual symmetries. Although the start-
ing actions are different, their work gave us a good hint, t.e., the physical state

condition is not enough in order to find the physical subspace.

Canorical quantization and extension of BRS algebra

We can show that the canonical commutation relations are consistently im-
posed because the gauge fixing procedure for the Weyl invariance. For example,

the momenta which are canonically conjugate to g;; and B are given by

mt = ——2;9(91“01_90# +209)B +
6S —g

p =22 =Y"906,00 — Bogry),

B= % p (01901 — Bogn1)

2g

7 [Bo — ¢°*(g00 B1 — g1 Bo)],
(6)

respectively. It is to be noted that IT'! contains B and that Il contains di1.

These results means that Nakanishi-Lautrup field B is no longer an auxiliary
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field. Therefore, the physical degrees of the freedom except for the scalar fields
becomes —2, not —3. This is to be expected. Negative degree of freedom means
that gravity itself has no meaning. If the other fields exist together with the
gravitational field, and if the negative freedom of the metric can eat the other
freedom, one obtains a consistent theory. This is one of the basic problems in
two-dimensional quantum gravity. We would like to study this problem in the

next section.

There are more symmetries than BRS and other familiar symmetries in the
present theory. In our case, Einstein equation becomes T, = 0 Using the Einstein
equation, we can show that all fields except for the metric satisfy d’Alembert
equation of the scalar type in our formulation [1] [3]. In the following, X,Y,Z,...,
denote all fields which appear in this theory except for the metric. If X, Y, Z,

...satisly d’Alembert equation, it is easy to check that the currents

PA(X) = §*a, X,

MA(X,Y) = Ve(X,Y)(XPH(Y) — e(X, Y)Y P*(X)) )

satisfy the continuity equations 9,P#(X) = 0 and J,M*(X.Y) = 0 in the har-
monic gauge. Here, ¢(X,Y’) is the sign factor that, when both X and Y sat-
isfy Fermi statistics, takes —1. Hence, the charges P(X) = [dz'P%X) and
M(X,Y) = [da*M°(X,Y) are conserved. As the action (5) has the correspond-
ing symmetries, we can also derive the above result from Noether's theorem by
using equation of motion 7, = 0. As X,Y denote z#, ¢4, B,.CH, C',,, B, (), and
C in our case, the number of the charges amount to IN(N +23) +72. It is to
be remembered that there are the conserved charges M{¢#,C#) which generate

the ¢ super-rotation ’ in the ¢4, C#, C,’s space.

Physical subspace and additional subsidiary condition

In this section, we shall study the structure of the physical subspace. In
the following, we assume the existence of the asymptotic fields for the elemen-

tary fields and assume the asymptotic completeness, and we consider the flat
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background (0| gy |0) = nuy. Asymptotic fields are defined by

Guv — Nuvt+EQuy, ..,
0 —tco

and are governed by the quadratic part of the Lagrangian;

£O) =L Gandud? - 0,64 ~ 50" Dy 8,8 — in"8,C - 0,C

(8)
— 8," - By, — in®9,Cy - 0,0,

where we define ¢ = 9" hyy, Buy = @y — 3¢ and B, = B, - 0,B. Equations
of motion are the same type #*¥3,8,X = 0 for all the fields. Hence, the momen-
tum representation is possible for the al! fields, though we encounter a serious
infrared problem. It is to be remarked that B, and @, satisfy the first order

equations;
8@, =0,  8,B,+08,B, —n,,0 B =0. (9)

For the convenience, we mtroduce the new variables as follows;

L1 _ 1 _
= — + , By = —(Byx B 0+B = —=(B x5, B),
P ﬂ(sooo Po1) \/—( 0 1), O+ \/5(0 1B) "
1 _ 1 -
ct=—(c’xCcYHY, C —(Co = C1).
\/5( C) + = \/5( 0 1)

We rewrite BRS charges and ghost number charges as
§OT = M(B,,C*) = Q{" + Q)7
Q) =i [ dn(e*(pba(r) — Wllpie* 1)),
QY'Y = M(B.0) =i [ dp(cl(p)b(p) — ' (p)elp),
Q) = b(C*,Ce) = [ aplelpIet(p) + ¢ (plea(p),
QU = M(C.0) = [ dpleipetp) + M)
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In order to obtain a unitary theory, we define the physical subspace by
Qi Iphys) =0 Q{7 Iphys) =0 and Q)¥|physy=0. (1)

For later convenience, we shall consider, in the following, the representations of
Qgi) instead of QfCT. So, we consider the representation of the three indepen-
dent BRS algebra;

@r=0, @Y QM =-ig",
@7 =0, [@,Q7=-iq{”,

(@ =0, [Q¥,QY)=-iQ)'*, others=0.

By the way, remember the equations (9). Solving the first order differential

equations (9), we obtain

et =0, b_=0, 8_.b=0, b_=0, Q) =0, (12)

for p > 0. Here, p is a space momentum. In the similar fashion, for p < 0, the
relations in a opposite sign are satisfied. Therefore, only one component of the
@y and one component of the b, are independent variables. The constraints (12)
bring us a difficult problem in finding the quartet representation for Qgi) and
waeyl. Let us consider the case of p > 0. It is no problem in order to find the
two independent quartets for the Q%i) and ngeyl. But, for the remaining one,
the problem arises. Because, the algebra [QE,—), Q(c_)] = —ng_) becomes trivial

from (12), and we show that the ghost states

"‘) = H C—t(Pm)éT—(Pn) 10)
mn
, which can not rewritten as BRS exact form, satisfy the subsidiary condition
(11). Therefore, the physical states |—) are infinitely degenerate in terms of the

ghost number Q(c—). This is the problem, which has relation to the negative
physical freedom (—2).
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In order to avoid the infinite degeneracy in terms of the ghost number Q7 , we
need a new quantum number which can be regarded as BRS charge. Fortunately,
we have already obtained wider symmetries than the symmetries from which we
start. Among those charges, we find the conserved charge QgA = M(CH ¢4). I
there is a scalar field which creates negative norm states and we call the field as

#!, we can always obtain the following two fields;

ET¢1:E¢2 [A+ A()]:—ID((U"]/),

la4(p),al(q)] = —1-6( — q).

(13)

Let us consider the case where diag G4 = (-1, 1,..., 1), which is compatible to
the above case. Then, Q;'_ and (), ~ are nilpotent and hermitian charges like a
BRS charge. Next, we would like to find the quartet representation for the third
BRS transformation. We take the quartet for Q) = Q7™ as

x(p) =a*(p), () =ck(p), Bip)=a1p), Fp)=2ckip), (14)

It is easy to prove that @} anti-commutes with Qgi) and QZ’VeyI‘ Hence, we find

the physical subspace as

Weyl

Vohys = Vgs_gn ®@VED V) ¥ @V,

which is defined by
QF |phys) =0, @} *¥'|phys) =0 and QY |phys) = 0, (15)

where V} are the subspaces in which only BRS quartets live and which have the
zero-norm; Vg3 4~ is positive-definite physical state in which only {¢*,..., 6"}

live. If Vg 4~ has positive-definite norm, total physical subspace is positive
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semi-definite due to the Kugo-Ojima’s quartet mechanism. If not, we can, at

least, confirm that the contribution from the quartets is exactly zero”

At first, scalar fields are not constrained. In quantum theory, the unitarity
require the relevant signatures in the ¢’s space. Scalar field which has a negative-
signatured kinetic term is not familiar in ordinary particle physics. In this sit-
uation, the scalar fields becomes a harmonic map which isometrically embeds a

curved two-dimensional manifold into N-dimensional Minkowski space-time.

Conformal invariance in quantum gravity

In this note, we mainly study the structure of the physical subspace of two-

dimensional quantum gravity. We would like to mention other results.

Though local Weyl invariance is broken by the gauge fixing procedure, the

invariance under its linearized version still remains;

bgur = (axz* + b)guv, (16)

where a, and b are arbitrary infinitesimal quantities. The generators of the
above symmetries are W = P(B) + M(C,C) and W# = M(z*, B). As is well
known, in the harmonic gauge, the general linear invariance exists. The GL(2)

transformation and corresponding generators are given by
be* = a*, 2", G*,=M(2™u.B,) (17)

The translation, the GL(2) and the linearized Weyl symmetries are maximally

extended global symmetries in terms of the space-time coordinates. We shall give

* As we are treating the massless scalar field in two-dimensional space-time, the positive and
negative frequency part of the field is ill-defined. If we introduce a small fictitious mass for
all fields, we may expect that the quartets have zero-norm as leng as the all commutation
relations do not change. In this prescription, the space V4 4w is not well-defined because,
in this Hilbert-space, the norm cancellation does not occur and infrared divergence emerge
as small fictitious mass goes to zero.
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their algebras;

[P/h Pu] = 0) [P;n GUA] = —i(suup)n [Gl‘u; GPA] = z'((SPUGI‘/\ - 5#,\GPU),
W, W] = [W, W = [W",W*] =0, (18)
[Py, W] = [G¥5, W) =0, [P, W] = i6",W, [G*,, W] = 2i6*, W~

Now, we are going to investigate the conformal invariance. In general curved
space, conformal transformation is defined by some combination of the coordi-
nate transformation whose parameter satisfies the conformal Killing equation and
Weyl transformation. In ordinary field theories including conformal field theories,
one discuss the conformal invariance using conformal Killing equation on some
background metric which is external field. In quantum gravity, the metric is no
longer external field. So, there are no meaning to solve Killing equation under
given metric. In quantum theory, we must take care of the state vectors in order
to discuss the symmetries of the quantum system. For examples, we study the
vacuum which have the expectation value (0| g, [0) = 1,,. The symmetries (18)

exist in the operator level. We find the spontaneous symmetry breaking
IGL(2)® WEYL — [50(1,1) & Dilatation

occurs; individual symmetries are broken but the special combination D = G*, +
2W can be unbroken, this symmetry is just the dilatation. It is to be important

that the symmetries under any kind of Weyl transformation are broken under

the non-zero background.

Discussions

We obtain “ unitary ” theory by introducing additional subsidiary condition.
The lack of subsidiary condition is a common feature in two-dimensional grav-
ity theory. In Abe and Nakanishi’s formulation, gauge fixing term can not be

expressed by BRS coboundary. If one can consider the classical ( which means
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non BRS-coboundary term ) system in theirs, it becomes scalar-tensor type which
have only the general covariance. From the the standpoint the scalar-tensor type,
one must introduce additional subsidiary condition by using vector charge which
Abe and Nakanishi call vector type Weyl-BRS. This situation is very similar
to ours. In string theory, the vector type condition is need. In bosonic string,
Kato and Ogawa presented the no-ghost theorem with a subsidiary condition
cg |[phys) = 0. Without introducing the above ccndition, Hamiltonian is doubly
degenerate in terms of ghost zero mode. The FP ghost is a world sheet vector.
So, this may be vector type. In the present stage, we do not know the relation
among them. For this point, further investigation is need.
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RENORMALIZATION GROUP FLOW AND VIRASORO

CONSTRAINTS IN TWO-DIMENSIONAL QUANTUM GRAVITY
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ABSTRACT

The idea of Wilson’s renormalization group is applied to the two-dimensional
Liouville theory coupled to matter fields. The Virasoro structures including those
of Liouville field are explicitly derived at the fixed point of the renormalization
group flow. The Virasoro operators are transformed into another set of Virasoro
operators acting in the target space and it is argued that the latter could be

interpreted as those discovered recently in matrix models.

1. Introduction

The two-dimensional gravity has been intensively studied since the advent of
the work of Polyakov and his collaborators [1]. We have also witnessed in the last
year a remarkable progress in the matrix model [2,3], which is a discretized model
for the two-dimensional gravity and offers a poweful method of non-perturbative
analysis in the double scaling limit [3].

More recently, the authors of Refs. [4] and [5] have proposed a new way
of the matrix model analysis. Their approach is based on the Schwinger-Dyson
equation [2,6] satisfied by correlation functions of puncture operators and they
derived Virasoro constraints on the partition function. It was argued that these
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Virasoro structures would be playing the central role in the matrix model with
the help of soliton equations.

The algebraic constraints a la Virasoro, however, raised a new problem,
namely, the problem of physical interpretation of the Virasoro algebra. There
have been several works [7-10] uncovering various features of the Virasoro struc-
tures , but it will be apparently more helpful if we could gain more physical
insight into the nature of the analysis of Refs. [4,5]. The present work is mo-
tivated by these recent developments in the matrix model und is an outcome of
modest attempts to understand the physical meaning of the Virasoro algebra.

In the present work we will investigate Liouville field theories (11-14] coupled
to matter fields, and apply to this system the idea of the renormalization group
of the Wilson type [15,16]. The renormalization group of the Wilson type has
recently been studied extensively in the context of string theories[17-19]. We will
modify the work of Hughes, Liu and Polchinski [18] by including the Liouville
field, and will show that Virasoro generators show up quite naturally from the
stability conditions of the renormalization group flow.

Our emphasis is put on the fact that the method to be developed in the
Liouville field theory bears the closest analogy with the matrix model. In fact we
convert the Virasoro operators associated with the two-dimensional world sheet
to corresponding ones defined in the target space, and suggest that the latter
could be identified as those discovered in matrix models.

2. Preliminaries

Let us begin with the basics of the Liouville field theories following the line
of David [20] and of Distler and Kawai [21]. (See also Ref. [22].) We consider
the two-dimensional system consisting of matter fields X#(z) (u =1,---,D)
and the Liouville field ¢(z) together with the ghost ¢™(z) and anti-ghost b, (z).
The generating functional is given by the path integral

Z[¥] = /’DXDQS'DI)'Dcex]){—S[\IJ]}, (2.1)
where the action S[¥] consists of the free part and the interacting one Sini[¥],
S[\IJ] = S.\' + Sy + Sda + Sinl.[\p]s (22)

1

Sx = e [ &*rV/ig"" On X 0, X", (2.3)
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1 9 ~ n m n
Sg = m/dux\/a(fﬂ)mnvmc + V®bmnc )a (24)

Sy = 51; / d*z\/§ (g’""amqsanqs - QR¢ + ue“d’). (2.5)

The Liouville field ¢(x) has been extracted from the two-dimensional metric
gmn(z) by the formula

Gmn(z) = €703)G0 (2). (2.6)

It is apparent that, since the original theory depends only on gma(z), there should
be an invariance under the simultaneous change

1
Gmn() = € gma(a), 9lz) = ¢(z) = ~a(2). (2.7)

To determine the coefficients @ and a, we follow the argument of Refs. [20]
and [21]. In fact, the condition for the conformal anomaly to vanish gives us

2-D (
7

Q::

¥
00
S

The other coefficient a is determined by requiring that e*%(*) be a conformal
tensor of weight (1,1), i.e.,

a=- \/_(\/?5 D-V1-D). (2.9)

With these choices of the coeficients, the path integral measures in Eq. (2.1)
are the usual ones referring to the metric §ua(v). The renormalized cosmological
constant p may be set equal to zero by adjusting the unrenormalized one. The
action in Eq. (2.1) has been supplemented by the interaction part Si,:[¥], which
consists of an infinite number of background ficlds. More explicitly, Sin[¥] is
expressed as an infinte series of vertex operators with gravitational dressing

Sint[¥] ~ /d-.«c\f/dl’ /dd T(k, B)etk-X B
/d z\/_/de/dﬂ o (ky B)§™ O X PO, XV ' X PO

(2.10)

We have denoted the “tachyon” and “graviton” fields in the target space by
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T(k,B) and hy,(k, B) and ellipses in Eq. (2.10) stand for all the other excita-
tion modes. The background fields, T(k, 3), h,u(k, B) and so forth are denoted
collectively by ¥ in Eq. (2.10), which is an analogue of the string field in the
second-quantized string theory. We will later describe in more detail the tech-
niques of incorporating the infinite towers of excited states into Sin:[¥] together
with the precise definition of the string field .

3. Renormalization Group Flow

We are now in a position to apply the idea of Wilson’s renormalization group.
We will look for an equation describing the stable points of the renormalization
group flow in the Liouville theory along the line of Hughes et al [18]. The stability
condition of the flow turns out to be a constraint on the interaction action S;p;[¥].

To explain the procedures in general terms let us consider a transformation
of the path integral variables

X#(z) = X*(x) + AXH(2), (3.1a)
Bran(2) = bunu(2) + Abpn(a), (3.1b)
c™(z) = ¢™(x) + Ac™(z), (3.1¢)
B(z) — d(z) + Ad(z). (3.1d)

The partition function (2.1) will be unchanged provided that our dynamical sys-
tem has the symmetry under the transformmation (3.1). More explicitly we have
the following equation

Y 8S NE - 8S 8S
/d x\/a{ - AX"(z)(SXu(I) — Abmn(l)__——éb,,,n(a') ~ Ac (:c)———écm(w) - A¢(x)——6¢(z)

OAXH(z) _ bAbma(z) A" (2) + 6A¢(z)}
dX*(z) Sbmn(z) be™(a) d¢(zx)

=0.

(3.2)
The terms in the second line of Eq. (3.2) come from the Jacobian due to the
change of the path integral variables.

— 149 —



To qualify Eq. (3.2) as an equation describing the stable point of the renor-
malization group flow, the change of variables (3.1) should be due to the two-
dimensional conformal transformation

™ — 2™ +v™(2), (3.3)

where we demand that the infinitesimal parameter function v™(z) satisfy locally

Vmva(z) + Vavm(z) = gmn(Z)V - v(z)

Hughes, Liu and Pochinski [18] argued that the transformation of X* due
to the local scale transformations is accompanied by a generalized anomalous
dimension. In our case the transformation (3.1) should be

0S5

AXMz) = ~"(@onX*0) - 5 [ Puv/ BN ) T

+ / dyy/G (6,N - NNz, y)X*(y),

(3.4a)

Abmn(z) = 0! (2)Vibin(z) = Vit (2)bia(z) = Vo' (2)bim(z)

é
/d“y\/— 8,G (2,1 J)6 fy)

+ E/dzy\/—ﬁ- 60Gm . (G—'])I(l‘.v y)bln(y),

(3.4b)

Ac™(z) = —v"(z)V, ™ (2) + "(2)Vao™ ()

1 9 : '
-—Z/d'y\/g b,,G,,(n:,y) o5

6brnn(y)
1 ¥ -~ C r—1\n
+ 9 /dly\/; 0,Gn - (G l) (x, y)cm(y),

(3.4¢)

Ap(z) = ~v™(2)0nd(r) + 3QV - v(2)

_ 6S
/d Wi N

; / dy\/G (6.Ng- N3 )z, 9)o(y).
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(3.4d)

The symmetrization with respect to the two indices of Abpy, is always assumed
in (3.4b). We have introduced in Eq. (3.4) the two-point functions

(X*(2)X"(y)) = 6" N(z,y), (3.50)
(bmﬂ(x)cn(y)) = Gm(ws y)a (35b)
(¢(z)(y)) = No(z,y). (3.5¢)

The variations of the two-point functions under (3.3) are denoted by §,N(z,y),
64Gm(x,y), and 6,Ny(z,y), respectively. The generalized anomalous dimensions
give rise to contributions containing these variations in Eq. (3.4). The term

proportional to @ in Eq. (3.4d) was introduced so that the variation of the
scalar curvature term in Eq. (2.5) is compensated.

Putting Eq. (3.4) into Eq. (3.2) altogether, we arrive at the equation con-
straining the interaction action Sin:[¥]

gX[Sint] + gy[sinl] + gqs[sint] =0, (36)

where we have defined the renormalization group operations G as follows

) _ 2 -1 bSinl[\Il]
OxlSind = [ 2 \/Gom(2)0m XM 2 30 S

——/d“:c\/_/d“y\/: 5, N(z,y) { };6 Sint| Y] _ 6Sint[ql]5sint[q’]}’

Ha)oXr(y) 6X#(z) 6Xk(y)
(3.72)

gg[S,'m] = /dzx\/—[{ I)vlbnnl(l') + Vv ( o () + anl(l‘)blm(flt)} fsbsiﬂtgi];

+ {v"‘(a:)VmC"(r) - Vm”"(m)cm(m)}%]

L[ 85 [ 6.Gutm S _ 85885ty

Sbmn(2)0c™(y)  Ebma(z) 8c™(y)

(3.7b)
Gy[Sini] =/d"r\/—{ 2)Om (2 ——QV o(z )}%
_%/d?-g:\/g/d'ly\/g 6,,N‘5(.I‘,y){ .‘?Sinl[‘p] _ 0Sin[ ] 55,'".‘[\11]}.

bp(r)ég(y)  dd(z) éd(y)

(3.7¢)
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4. Interaction S;;|¥]

Before launching into the analysis of the stability condition (3.6), we have to
digress a little bit to construct Sin:[¥)] in the most general settings. The methods
we are going to make use of are those proposed by Ichinose and Sakita [23] to
construct string emission vertex operators and generalization thereof [24,25]. It
is not difficult to include the Liouville field into their framework. Hereafter we
will work in the conformally flat metric for §ms,

>

gzé = gz'z =

) g2z = gz =0 (4.1)

SR

and the interaction is given by an integral of the string emission vertex operator
over (z,Z)

Sint[¥] = / d*:V[z, 5 0). (4.2)

The string emission vertex in Ref. [24] is generalized here by including the Liou-

ville field
V[z,é;‘l'l=/DpD€DnDt E(p, €.t X,0,¢,0)¥(p,£,1,t). (4.3)

The integration measures are understood as
[ o] (o0} o oo
Dp= [[ dpa. DE=[]dénd&s. Dy=]dnadiin, Dt= [] dta, (4.4)
n=-—00 n=0 n=0 n=-—00

where £ and 7 are both grassmann numbers.

Our notations in Eq. (4.3) are

E(p,£&,n,t;X,b,¢c,¢)

= exp{: Z Pl n X¥(z, 2)} exp{ Z tal\nd(z, 2)}
X exp Z{EnI\’nc(z) + 7711[\-1117(:)} exXp Z{Eﬂl\-—né(f) + ﬁnI{—nB(z)}a
n=0 n=0
(4.5)
K 1 n - 1 én
n = maz, Kk_, = — 05 (n > 0). (4.6)

Perhaps a few examples for the string wave functions ¥(p, £, 7,t) will be useful
for better understanding of the interaction action (4.2). The low-lying states such



as tachyon and graviton are given, respectively, by

a o
\I’T(p,f,T],t) = (pﬁ)a§ a£ \I’O(paf T]at)a (47(1)
a a9 0 0
Ya(p,€mit) = uu(po)apm por BEq 0B Yo(p,§m, ). (4.7b)

Here ¥o(p, €, 7,t) is defined by

Uo(p, €,y ) = [ 8(pa)8(p—n)6(ta)6(t-n) [ 6(6)8(E)6(na)6(7)  (48)
n=1 n=1

which corresponds to the vacuum and the derivatives in Eq. (4,7) give rise to
excitation of various oscillation modes. It is in fact easy to confirm that Eq. (4.2)

with the string function ¥ = ¥+ ¥g5+------ produces Eq. (2.10) (with suitable
ghost insertion).

The advantage of using the interaction action (4.2) together with (4.3) lies
in the fact that the dependence of the path integral variables (X,b,b,c, ¢, ¢) is
factored out of the string wave function ¥. This makes it possible to perform the
functional derivatives in Eq. (3.7) without touching on the string states. The
fixed point condition will in turn provide us with constraints upon ¥.

5. Virasoro Structures

Let us now have a closer look at the fixed point condition (3.6). We would
like to derive the Virasoro structure from Eq. (3.6) and will confine ourselves to
the linear terms in Eq. (3.7) with respect to Sini[¥].

It is rather straightforward to put Eq. (4.2) into (3.7), thereby taking the
functional derivatives. In fact Eq. (3.7a) is put in the form

Gx[Sini) =/d22\/§/D1>D€DnDt E(p,&,1,tX,b,¢,)¥(p, &, 7, 1)

{an,,I\ [v(2)3.X#(z,7)]

ﬂ:

00 00
Z Z cpm KK 6,N (=, 2") |g:=z} +C.C.
‘: =

t\:ln—'

(5.1)
Here C.C. stands for the anti-holomorphic part due to the variation v(z).
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The first term in the brackets above is a classical part. It can be rewritten
after some combinatrics as

an Ka[v(2)9;X(z,2)] =1 Z Z(m + 1)pm+n - Knv(z)Km41X(2,2) (5.2)

n=0 m=0
and we can replace i K41 X#(2,2) in Eq. (5.2) by the derivative c'i/api‘n+l acting
on E(p,€,m,t;X,bc,¢). The second term in (5.1), on the other hand, is of
quantum origin and depends on the regularization of the two-point function.

Here we employ the conventional regularization, the so-called conformal ordering
method [26], which implies that the variation is given by the formula

K KL6,N(2,2') == 20/ K pppiv(2).  (m, n2>0) (5.3)

By putting the formula (5.3) into Eq. (5.1) and after some manipulations,
we end up with a simple expression

Gx[Sine] = f 2\/G / DpDEDYDEE(p, €1, X, b, 9)

x Z{I\nv F AR .r\_,,ﬁ(s)Lﬁjf)]}\p(p,g,n,t),

(54
where we have introduced the Virasoro generators 54
x) _ N, 0
Ly =~ ;mg Pmin + @ Z—Opm Pr—m> (n20) (5.5a)
— 0
L=~ mz—_ﬂ m—aﬁ  Pm—1- (5.5b)

The p-derivatives in Eq. (5.5) has been made to act on ¥(p,&,n,t) in Eq. (5.4)

by partial integration. The definition of Ei,‘\.) is obtained by replacing p, by p_,
in the above expression.

In a similar way, we can shuffle the renormalization group operations, Gg{Sin|
and G4[Sin:] in Eq. (3.6). The regularization rule for the two-point functions for
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ghost and Liouville fields are:
(mKL6,G(2,2) |z=2= —2(n + 2m + 3)Kming2v(2), (m, n>0) (5.6a)

KK 6,Ny(2,2") |p=2= Kmint10(2). (5.6b)

The final formula for the stability condition (3.6) turns out to be

0 = Gx[Sint] + Gg[Sint] + Gy[Sini]
- / P25 / DpDEDYDE E(p,&,m,t X, bc, )

x Z{Knu(z)Ln_l n Ic_nf)(f)Ln_l}\I:(p,f,n,t),

n=0
(5.7)
where
Ly=L¥ 4+ 19+ ¥, L[,=I+1¥ +IP. (5.8)
The Virasoro generators of ghost and Liouville sectors are defined by
oo
0 0
leg) = Z {(_n -1+ Tn)"—““fm+n + (271 + 2+ m)—nm+'n}
m=0 aﬁﬂl anm
n
+ Y (m+n+ Dénomiimot, (2 20)
m=1
(5.9a)
oo
0 a
-1 m2=:0( ) a£m+1£m anm‘+17]m ( )

oo n
Z 0 1

Lg:b) - mat tmin — EQ(T‘ + Lty — 9 E , tmtp—m, (n 2 0) (5.10a)
m=1 m

m=0

(o <]

@) _

== m

—tm_1- .

2. "o m—1 (5.100)
The generators E&g) and I_ls,‘b) are defined in a similar way. Note that Egs.
(5.5),(5.9) and (5.10) constitute the Virasoro algebras with the central charges



D, —26 and 1+ 3Q* = 26 — D, respectively and thus the total central charge van-
ishes as is expected. The correspondence to the usual oscillator mode notations
for (5.5) and (5.9) is established by the following identification

. 9 2 (m>1) (5.11a)
P g™ G T o (2 -
0
€m & bm—1, '55’" “ Clem, (m 2>0) (5.11b)
—a‘ = b_: (m >0) (5.11¢)
Im Co+ma a’}m ~2—m- = -

6. Liouville Field Theories versus Matrix Models

It is very interesting to compare the above considerations based on the Wil-
son’s renormalization group with the matrix model analysis. The partition func-
tion of the matrix model is defined by

Z(g) = /d]\[ exp{—BU(M)}, (6.1)

where M is an N x N hermitian matrix and the potential is given by
UM) =Y gr(M"). (6.2)
=0

We have introduced in (6.2) an infinite number of coupling constants {g;}, which
are matrix model counterparts of the string wave functions ¥ = (T, hy,,---)
in Liouville theories. The integration mcasure in (6.1) is defined as dM =

T, dMii [ic ; d(RM:;)d(SM;;).

As was discussed in Ref. [27], the derivation of the Virasoro structures is
facilitated by considering the change of integration variables

M — M + eM™L (6.3)

The variations of the potential and the integration measure under (6.3) become

UM)— U(M)+ € Z Lgtr( AL, (6.4)

1=0
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dM — dM + edM ) tr(MYtr(M™h. (6.5)
(=0

The invariance of the partition function Z(¢) under the change of integration
variables amounts to the condition

0=04(s) _E{“Z "'agm ﬁ-yc"m@gn l} Y

=0

(6.6)
It is easy to confirm that the differential operators {ﬁn} satisfy the Virasoro
algebra.

Now it is almost self-evident that there exists a strong resemblance between
the matrix model and Liouville theory in deriving each Virasoro structure. Al-
though we do not know the precise relation between the matrix M and the
dynamical variables (X¥, byp,c™, @), the change of integration variables (6.3) is
reminiscent of the scale transformation (3.1) and (3.4). The physical meaning of
the Virasoro operators is, however, rather subtle. The operators {ﬁn} is defined
in the space of the coupling constants {¢;}, while those in Liouville theory (5.8)
are associated with oscillation modes on the two-dimensional world surface. To
strengthen the relation between matrix and Liouville approaches, all we need is
to find in the latter the analogue of {£,} .

If we could confine ourselves to the linear terms in Sin:[¥], it would be ex-
tremely tempting to introduce the following set {L,}

LoZ]0] = / DXD¢DIDeexp{-Sx — Sy — Sp}SimlLa¥].  (67)

The operators {L,}, defined rather indirectly in (6.7), are supposed to act in

the space of ¥ = (T,hyu, --+). One can easily see that the algebra of {L,} is
transcribed into another Virasoro algebra

[Lm, Lo} = (m —n)Lmin. (6.8)

We can not resist identifying the operators {L;} as the analogue of the matrix
model Virasoro generat~rs {L,}.

At the present stage we are not able to express {L,} in an explicit and
closed form, nor are we quite sure if {£,} are well-defined by (6.7) without any
ambiguities. Further investigations on thesc matters are apparently necessary for
a deeper understanding of the algebraic structures.
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Superconformal Topological Field Theory*

Shin’ichi Nojiri'

National Leboratory for High Energy Physics
Oho, Tsukuba-shi, Ibaraki-ken 305, Japan

abstract

We obtain conformal invariant topological field theories with N = 2 supersymmetry by
twisting Sevrin, Troost and Van Proeyen’s SU(2) x SU(2) x U(1) -extended N = 4 su-
perconformal field theories. We expect that the number of physical states is finite although the
original N = 4 theories have continuous spectra. It is shown that the number of physical states
is actually fi~ite when the central charge ¢ < 6 in the corresponding N = 4 theories. The phys-
ical states inherit the structure of chiral ring in N = 2 superconformal minimal series which is
obtained by the reduction from N = 4 theories. We also show that the algebra contains topo-
logical N = 1 superconformal algebra as subalgebra. Therefore a closed set of finite number of

physical states in the topological N = 1 superconformal algebra can be also obtained.

Recently the great progress has been made in the study of two dimensional
gravity by using matrix models’®* The recursion relations for the correla-
tion functions have structures similar to those of topological field theories’ We
expectsthat two dimensional gravity can be described by two dimensional topo-
logical gravity 7coupled with some topological matter.” The topological confor-
mal matter is obtained by twisting N = 2 superconformal field theories (N = 2
SCFT).10 Especially topological minimal series corresponding to minimal con-
formal series coupled with gravity is obtained by twisting the minimal series of
N =2SCFT”® When the energy momentum (EM) tensor is twisted by the U (1)

current, the conformal dimensions of all the charged operators are modified. If

* This report is mainly based on Ref.1.
t KEK fellow
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. . . . .o 11,12
we consider a supersyrametric extension of topological gravity, we expect

that there exists a topological conformal matter with supersymmetry.

Topological conformal matter with N = 1 supersymmetry has been obtained
by twisting N = 3 SCFT® N = 3 SCFT contains S50(3) currents. When
twisted by the current of U(1) C SO(3), one of the three supercurrents, which
is neutral with respect to the U(1) current,” remains conformal dimension 3/2.
When we construct topological superstrings, topological N = 2 SCFT (N = 2
TSCFT) will be required. Recently proposed matrix models having space-time

\1

supersymmetry W18 might be described by topological supergravity coupled with
topological N = 2 superconformal matter. An example of N = 2 SCFT has been
obtained '°by twisting Schoutens’ SO(4)-extended N = 4 SCFT (SO(4) N = 4
SCFT).17 Notice that this SO(4) N = 4 algebra contains the N = 3 algebra as

algebra..1

In this report, we construct N = 2 TSCFT by twisting Sevrin, Troost and Van
Proeyen’s SU(2) x SU(2) x U(1)-extended N = 4 SCFT (new N = 4 SCFT).®
The point is that new N = 4 SCFT contains two sets of SU(2) currents If we
twist the EM tensor by a current of U(1) C SU(2)giagonal C SU(2) x SU(2), there
still remains N = 2 supersymmetry since two of the four supercurrents can ba

neutral with respect to the U(1) current.” We expect that the number of physical

* Three supercurrents are vector representation of SO(3) algebra and they have the U(1)
charges £1 and 0. .

1 The algebra of conventional N = 4 SCFT does not contain the N = 3 algebra as subalgebra.
The N = 4 SCFT contains SU(2) currents and four supercurrents are spinor representation
of the SU(2) algebra. If we twist the EM tensor by any current of U(1) C SU(2), there
remains no supersymmetry since there is no supercurrent which is neutral with respect to
the U(1) current.

i SO(4) N = 4 SCFT is given by a special case of new N = 4 SCFT and the algebra of new
N = 4 SCFT does not contain that of N = 3 SCFT as subalgebra except this case. When
the two sets of SU(2) currents in new N = 4 SUFT have the common level, SU(2) x SU(2)
current algebra become S0(4) (~ SU(2) x SU(2)) current algebra and new N = 4 SCFT
is reduced to SO(4) N = 4 SCFT.

¢ Four supercurrents are spinor representations in both of two SU(2) algebra. Since 2x 2 =
1 + 3, these supercurrents are trivial (1) and vector (3) representations in SU(2)diagonat
algebra. The supercurrent of the trivial representation is U(1) neutral and those of the
vector representation has the U(1) charges 0, 1.
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states in the N = 2 TSCFT is finite although the original N = 4 SCFT have
continuous spectra. In case the central charge ¢ < 6 in the corresponding N =4
SCFT, we show that the number of physical states is actually finite. The physical
states inherit the structure of chiral ringlgin the minimal series of N =2 SCFT
which was obtained from the reduction of N = 4 SCFT’ Hence the present
N = 2 TSCFT may be regarded as natural analogue of the minimal N = 2
SCFT. Furthermore we also show that the algebra contains N = 1 TSCFT as

subalgebra. Therefore we can also obtain a closed set of finite number of physical
states in the N =1 SCFT.

New N =4 SCFT 18a.lgebra are generated by energy momentum tensor L(z),
two complex supercurrents G**(z), two sets of SU(2) currents {43(z), A%(2)},
{B3(z), B*(2)}, two complex fermions Q**(z) and a U(1) current U(z). The
algebra is summarized in Ref. 1 . The central charge ¢ is determined by the
levels of two SU(2) currents kg = e and kp = f—kﬁ-kﬂ- N =2 TSCFT
is obtained by twisting this new N =4 SCFT. We deﬁne new energy momentum
tensor L(z), new supercurrents G*(z), a U(1) current J(z), another U(1) current
J(z), complex free fermions ¥(z), a BRS current Q(z), an anti-ghost b(z), a
ghost number current J8'%(z), two anti-superghosts % (z) and their conjugates

v%(2), a U(1)-ghost and anti-U(1)-ghost 8(z), x(z) as follows,

Ln= Ly +1n(A3+B3) ;;(5 — € )nUn — 245,,0,
GE = Gi:F:I:2z£ nQiF |
Jo= A3 — B +iUn, Jn=(€- - 4)(A2 + B3) + iU, , ¥F = QF
=GN HiE —&)nQE T, Qu =G Hi(6 - €nQ;
Jehost — _ 43 _ g3 4

b

(1)

c
__571
24€+€_ 0
'y,'f:B;,‘y,:=A;,ﬂ,T— , B =B n, n_Q;_)xﬂ_Q++

Q(z), b(z), v%(z), BE(2), 8(z) and x(z) are primary fields with conformal dimen-
sions 1, 2, ;, 3, 0, 1 and ghost number 1, —1, 1, —1, 1, and —1, respectively. We
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summarize the algebra of N = 2 SCFT in Ref. 1. We find that the algebra has

an isomorphism called spectral flow,

ES:’ £ _ L _ 77'] CJghost + __(CZ _ C)'Sn,O ,

24¢_
Gi (’7 O G:I: + C\I,:I: b5?+(c) = by — 2inxn , Q(’I-( =Qn,
.0 _ (€ —£&4) 0 15 ol —&) .
I = Jn + 12£+£_ ——=Cbno = Ja n+ 3¢7n,0 % Coap, (2)

ggost 0)  gghos _ e =8&4) 5 €
128, 10T T2gE

+ (9, ) »
‘I’n:h(ry ¢ _ ‘I,:I: , 05}’1_(() — en , Xn(:(o = Xn -

C'Sn,o )

Here 1 and ¢ are parameters of flow.

We now discuss the representation of N = 2 TSCFT in Ref. 1. In the
following, we assume that the indices n of b, and ), is an integer. In the Neveu-
Schwarz (Ramond) sector, the index n of supercurrents G is a half-integer (an

integer). We define ‘physical’ state |® > as follows:

Qo|® >=0. 3)
In addition we choose the following ‘gauge’ condition for physical states,s *

bo|® >=0. 4)

Equations (3) and (4) tell that the conformal dimension k of any physical state
|® > vanishes since {by,Qo} = 4Lo (Ref. 1). If the physical state [® > has
a positive norm, we have an inequality with respect to its conforma.l dimension
h and its U(1) charge ¢ : h > 2|g| in the Neveu-Schwarz sector.’ Since the

conformal dimension & of any physical state vanishes: h = 0, its U(1) charge ¢

% If the difference of two physical states |® > and |® >’ is BRS-exact, i.e. |® >= [ >’

+Q0|A > for a state |A >, we should identify |® > with |® >'. This ambiguity is fixed by
this gauge condition.
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also vanishes: ¢ = 0. By using the spectral flow (2), we find that the U(1) charge

of the physical state vanishes even in the Ramond sector,
Jo|® >=0. (5)

Since U(1) charge Jo is given by Jo = A3 — B3 +iUp (1), we have Uy = i(A3 — B3)
on the physical state. Therefore the eigenvalue of Up is quantized although Uy

has a continuous spectrum in the original N = 4 superconformal theory.

Since anti-ghost b is transformed inhomogeneously under the spectral flow

(2), the gauge condition (4) changes in general. To preserve the gauge condition,

we may impose
xo|® >=0. (6)

This condition will be necessary when we construct a topological superstring the-
ory. We note that the condition (6) can be imposed consistently since {Qo, xo} =

—2iJy and Jy vanishes on the physical state.

We expect that the number of physical states in N = 2 TSCFT should be
finite although the original N = 4 theories have continuous spectra. In the
following, we consider a series of N = 2 TSCFT corresponding to a special series
of new N = 4 SCFT, where kg = 1 and k4 = 1,2,--- and hence the central
charge ¢ < 6. We show that the number of physical states in this series of N = 2
TSCFT is actually finite. This series is expected to correspond to the minimal

series of N = 2 SCFT when coupled with topological supergravity.

The series of N =4 SCFT is realized by super SU(2) x U(1) current algebra
i.e. SU(2) currents {J3(z), J¥(2)}, complex fermions Q**(z) and U(1) current

t It has been known that there is a relation between this series of N = 4 SCFT and the
minimal series of N = 2 SCFT >
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(free boson) J9(z) 18 whose operator product expansions are standard,

3 w
@I () = _’“w)2 + 20 oqy,
3 3 % 3 + J (w)
J*(z)J*(w) = ooy +0(1) , JP(2)J*(w) = +O(1)

(M)
Qtt(2)Q " (w) = ;i—w- +0(1) Q+-(Z)Q—+(w) = z—_la +0(1),

() w) = o

+0(31) .

Then the operators in new N = 4 SCFT are realized by, (k4 =k+1, kg =1)

GH4(2) = el FQ ()T () - ()
+2i03(2) + 2VE + 2J°(2)} £ 2iQFE(2) T2 (2)]
T @ () - @ ()
+2i7%(2) + 2VE + 2J°(2)} F 2QFF (2)JE(2)]

#(2) = J@H T () - 0 ()0 ()

G¥F(z) =

(8)
- @A) - G (AR + 16,

B(:) = 1@ ()0 () - 0 (90 (2)

+ 1@ 0a 0 - G- 0a e,

A(z) = 2QFE(2)QFF(2) + JE(2) , BE(2) = 2QFE(2)0FE(2)
Q¥ (2) = VE+20%E(2) , U(z) = VE+2J°(2) -

Notice that this theory has a finite number of primary states if we neglect the

coutribution from the U(1) currents U(z) = vk + 2J°(2). Since the U(1) charge

is restricted after twisting by Eq.(5), there exist only a ﬁmte number of physical
states in the corresponding N = 2 TSCFT.

We now show that the physical states can be regarded as a chiral and primary

states of the minimalseries in N = 2 SCFT. At first we note that G~ (z) takes
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the form: G~ (z) = [-2iQ~~(2)J(2) + 2iQ*(2)J ~(2)]/Vk + 2. Here J(2) is a
U(1) current in Eq.(1). Since a physical state |® > : Qo|® >=G;~|® >=0 (3)
has a vanishing U(1) charge: Jo|® >= 0 (5), we obtain

Q=T )| >=0. (9)

Here (Qt=J")o = _}r'fo dz 25Q* (2 )J~(z). Furthermore since G**(z) has a
structure: G++ = [-2QHt(2){---} +2iQ~*(z) J*(2)]/VE + 2, by using the
gauge condition ( : bg]® >= GFt|® >= 0 and the condition to preserve the
gauge condition : xo|® >a QF T|® >=0 (6), we find

(Q~FJH)l®>=0. (10)

Here (Q~FJ+)o = 5t §,d2 30 +(2)J+(z). If we bosonize Q¥¥F(z) =: eFi4(2) .
and J¥(z) = ¥E(2) : eiz%;l ;, we obtain G¥(z) = Q¥F(2)JF(z) = ¥*(z)
eii\/:g‘?’(z) .. Here ¥%(z) is an SU(2) parafermion field and #(z) = \/%¢(z)+
71%&)(2) Therefore, we can regard Gi(z) as supercurrents in the minimalseries
of N = 2 SCFT. The “supercurrents” G*(z) are nothing but the supercurrents
which appeared in Ref. 20 when ¢ < 6 N = 4 SCFT was reduced to the minimal
series of N = 2 SCFT. Equations (9) and (10) tell that, in the sector™ where the
indices n of G+, G;~ and also G are half-integers, the state |® > corresponding
to |® > by the spectral flow! satisfies: Gtélé >= G;I‘i) >=0,ie |[P>isa
chiral and primary state with respect to the “supercurrents” Gi(z). Therefore

.in= physical states in N = 2 TSCFT inherit the structure of chiral ring in the
minimal series of N = 2 SCFT.

In the following, we construct physical states which satisfies Egs. (9) and (10)

in the Ramond sector where the indices n of all the operators O, are integer.

* Here we do not call this sector the Neveu-Schwarz sector because G**(z) and G~ ~(z) are
not supercurrents but anti-ghost and BRS current after the twisting.
t This spectral flow corresponds to 3 =0 and ( = —% in Equation (2)



The physical states in the Neveu-Schwarz sector are straightforwardly given by
using spectral flow in Eq. (2). We assume that the physical states |® > satisfies:
0q|® >= 0, (n > 0) for all the operators Op. Then the conditions (9) and (10)

reduce to:
EFIFI® >=0. (11)

The state |® > is given by a direct product of the representations in the algebra
of the zero modes {J3, J¥}, QFF and Uy = vk + 2J3. We define:

[m>: {%(JOJ“JO‘ +J7IN) + BB m>=11+ 1)l m >,

1 k
Bm>=llm>, (1=0,3%,1

1oy x""§; m=—1,—1+1,~--,1) (12)
|=F>: QF|-F>=0, [+F>=QfF|-F>,
lu >y : Uolu >py=vulu>y .
Then the solutions of Egs. (9), (10) and also (5), (6) are given by,
L1
|1>+=l11>®|++>®|+—>®|z(§+1) >u,
(13)

1
> =l =1>|++>8|-+>3li(-5+1)>v .

The physical state || >4 (|{ >_) has a ghost number —I — f (- %) By using
spectral flow in Eq.(2) and setting 7 = } and ¢ = 0, the physical state || >/,
corresponding to |{ >4 has a ghost number —{ — % in the Neveu-Schwarz sector.
By setting n = % and ¢ = 0, J§ and Q;" become annihilation operators and
the state |{ >/, remains to be primary.” Similarly by setting = —% and { =0,
the physical primary state corresponding to |l >_ has a ghost number [ in the

Neveu-Schwarz sector.

* Ifweset e.g. m = —1 ¢ =0, the state || >/, satisfies Q.'_*;U >, = 0 due to Eq.(12), which
tells that [/ >/ is not a primary state : Q;+|l >! # 0 since {QtI,Q-;"’} =1(7).
2 B
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Finally we remark that the algebra of N = 2 TSCFT in Ref. 1 contains

that of N =1 TSCFT as subalgebra. If we define: G, = g:";—G':-, ¥, = E%;!;-,

Ba = BF+B5, 7 = 77 +75, these operators {Gp, ¥n, Bn, n } and {@n, bn, Jﬁh%t}
give a closed algebra. Replacing , m = 3(ka + kp) by the central charge in
N =3 SCFT é= 3k (k is a posiiive integer), we find that the algebra of N =1
TSCFT obtained from N = 2 TSCFT becomes identical with the N =1 TSCFT
obtained by twisting N = 3 SCFTlaexcept é= % case} Therefore we can obtain
a closed set of finite number of physical states in N = 1 TSCFT from that in

N =2 TSCFT."

ACKNOWLEDGMENTS

I would like to acknowledge S.-K. Yarg for discussions and reading the
manuscript. I am also indebted to M. Kato, A. Fujitsu and A. Tezuka for dis-

cussions and to N. Ishibashi for communication.

1 That's not so trivial because the algebra of N = 3 SCFT is not subalgebra of the algebra
of new N =4 SCFT except k4 = kp case.

i The number of physical states in the topological N = 1 superconformal algebra obtained
by twisting N = 3 superconformal algebra should be also finite since the physical states
will be given by so-called massless representa.tion.21
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A GAUGE THEORY OF SPIN 1/2 FIELD AND

ITS GRAVITATIONAL INTERACTION
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ABSTRACT

A gauge theory of spin 1/2 (Dirac) field in 4 dimensional
spacetime is presented. The gravitational interaction and the

algebra for grading are also investigated.
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Since the success of the local field theory for electrweak,
strong and gravitational forces, the local gauge symmetry is
considered to be the most fundamentalconcept in particle physics.

For these viewpoints, local supersymmetry(SUSY}l) is
expected to play an important role for the unification of all
matters and forces.

In superstring theory(SST), local SUSY is realized as the
world-sheet supersymmetry (WSSUSY),which plays an important role
for the advocated success of the theory as a promlissing model
for unifying matters and forces including gravitatioﬂg)In WSSusY,
the world space time is 10 dimensional flat space specified

by fermionic vector-spinor coordinates qLIT‘r7 in addition to

bosonic vector coordinates )&}Tﬂﬁ . Due to the mathematical
difficulties, however , it is not clear at all whether SST 1is
really the theory of everything.

While within the framework of 4 dimensional local field
theory, despite the brilliant success mentioned above, we
have not yet succeeded in constructing a promissing model of
the unification. We may stiil drop some fundamental geometrical
gauge symmetry to include gravitation in 4 dimensional local
field theory.

In this letter, following WSSUSY of SST we extend the
ordinary superspace ( J;A ' €(x) ) of sUSY to a generalized

superspace ( z; ' gﬁx) ) and look for a new local gauge

symmetry in 4 dimensional local field theory.

As a simple generalization of the fermionic part of ordi-

nary supergravity(SUGRA), it is natural to take the following



fermionic gauge fields,
(4’ ST N0 ) (1)

and consider the following gauge transformations

shbo = 9.6,00 +9,Ex) = 3, £V (2)
57X, o=" E\,CX)-—B Elx) = Qvlevfsc) (3)

where 7EMVUr) and ﬁaw(x) are symmetric and antisymmetric
tensor-spinor field respectively and %%(r) is unconstrained
vector-spinor gauge parameter.

Our starting point is the foliowing lLagrangian in 4 dimen-

sional flat spacé3),

L =RV —( I+ ) HEBAMMB+ Rec.)
ST — o -TJlEPb, ot (4)

‘%,C — Zﬂx““—(%«v?ﬂ’a”‘x“ ottt ) - (E«Pr%“ﬁs fa,x,:s“-c )
—E“F"qua@zga,x;" (5)
£y = =GR+ fo0) + ERYIT+ 60 )HER%a X" fic.)
= (& By Yot bt ) F 7R rmg ket eC)

The total Lagrangian

= + -+
< Lo T L, + £y, (1)
is parity conserving and invariant under the gauge transformations

(2) and (3).
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Now we show briefly that the total Lagrangian (7) has the follow-
ing remarkable properties (i) and (ii).
(i) The contribution of spin 3 /2 components of ‘t’w(x) and
'X;Wlx) to the total Lagrangiam is the familliar (flat space)
form of the Rarita-Schwinger field in SUGRA.

(ii) When the gravitational interaction is introduced in the

minimal way by using full covariant derivatives, it 1s shown

that Euler equations for "l)'w(:c) and 'X,/w(x) are invariant up
to the nontrivial first order of "b‘wtm and )Cmle) (i1.e. the
variations of Euler equations produce only Einstein tensor terms
up to the first order of \‘;le) and ')(/wim . This situation is

the same as in SUGRA,i.e. the variations of Einstein action can

cancel so far the variations of (7).

(i) By replacing

P — N (8)
Kty —> 7‘6) ’];‘%x) (9)
E‘M\x) — Y.Eto (10)
we can show straightforwardly
&~ N eo(Pré'wq ); % 3"4)8 (1)
W, 0, §%nlo — &Y, = PRE2 (12)

This shows that the pure spin 3/2 part of the action is just
that of SUGRA. Alternatively this shows the possibility that

by gauge conditions Spin3/2 components can be canceled each
other(i.e. gauged away), which is argued later. It is interesting
to note that by replacing \l;“(:t) - XW%) [or 0] and 'qu — 0

[or }I:V\P#:, ] instead of (8) and (9}, x does not produce
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apparently SUGRA lLagrangian(ll). This situation may indicate that

the gauge condition will become coupled eguations of Y (%) and

x

Gy V02 -

v

(ii ) The variations of the Lagrangian with respect to \Pmlx) and

)(,/“!ng give the following Euler equations respectively.

Y N “ \ f‘_ N A 5 N ~ R [
I_WJ)E('«#‘\L’ \,"'"D;«dp\wr +”‘:u9"\h lylw$lh - S/\Fv XsTpaquJ'v ”qu'aa"lfu +"—Yr9v’x,u
(13)

> fo * . _
B 2% £, 00 20 ESPRGNAXe) H( pov) = O
- N - . \ \ P
Xy =(~~‘?5X,;'°Y’°9»va Eu" N QK05 = 5 00, Moy AN Y,

(14)
+6Y,“3vq’pp + gw‘“'\b:_ % %P“- EJZWU'&YAQP‘PM> - ( p e V_) = O/

which are invariant under (2) and (3). Now we introduce the gravi-
tational interaction in the minimal way and check the gauge

invariance under the covariantized (13) and (14). This produces
OV, - OV, _ \ \ (15)
o Iqﬂ) ={ @uv ”$ t G’/uf: "(TFE.J—%EF)}
toy | 4 e s of a o x X~ P — %)
5 K= 3G ¥ V) H G S s (VET 17 - pe ] (16)

where er = va — ~2i g[w-R and the torsions are neglected.

Remarkablely, these situations are the same as in SUGRAq), i,e.

the action consisting of Einstein action and the generally cova-

riantized action (/) is invariant up to the first order of lkwlx)
and XNV(I) under generalized transformations for J‘I/’MJ"’ , 89@«\/(")

P g
and Eg)s'g) determined uniquely by (15) and (l6). We consider

these cancelations very positive indications for all order inva-
riance of the action. "o prove the all order invariance, we

must see the cancelations higher order terms(no derivatives) of
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q’ﬁﬁ) and %&W(Z), which come from the torsions. The results
obtained above may give a new insight to the difficulties of
the gauge interaction ot the higher rank(22) tensor gauge fields,
Next we discuss the physical degrees of freedom of our action,
which shows the conjecture in ref(3) is incorrect. By using the
properties of Dirac matrices, we can rewrite Lagrangian (4),(5)

and (6) as follows
,ff(,,—v?w(-g—xf‘ﬂ’a"%l}g"+wf“‘a“\gf—§7ﬂvmr> +( hec) (17)

5, <ot B - 2 < e v )
+ (hoc.) (18)

Lyx= E(‘iv’? LERAS L AR NPK’SVVBAXI’Q t(4e) (19)

Surprisingly, only the trce of qzjx)appears in the action,
which means 24 degrees of freedom of “&Jﬁﬂ are absent from
the action. Instead,;QMv(w (24 degrees of freedom) appears in
the action. The total number of degrees of freedom is 40,which
equals to that of spin 5/2 gauge field(symmetric), where the
highest helicity state +5/2 1is replaced by +1/2. Applying the
general arguments for spin 5/2 of ref.(5) and (6), we show that
the physical components of our system is helicity + 1/2 state.
An appropriate gauge condition for this is the following one
which has antisymmetric tensor indices. The familiar vctor type
as discussed in ref.(5) and (6) do not work in this case, for

the tower structure of helicity states is different.

_ 1 (y
For = X — 2Ty W) + 500, w I =0 oo
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By using this constraints, Lagrangian becomes as follows,
. + == _

x'#' + L, °<S:u_x, ~> L?PEW , ¥= Z/;,P. (21)
Surprisingly this is the familiar Lagrangian of massless (Dirac)
spin 1/2 field, however a gauge particle. The mass term is
forbidden by the gauge invariance (2) and (3).

(22) possesses chiral symmetry.
As for the grading of the action, we must prove the all order
gaudge invariance in the curved space. The algebraic consider-

ation presented in ref. (7) may be useful.
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