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Abstract.  With in the energy density functional formalism a phenomenological theory of 
nuclei is developed which incorporates clustering at the nuclear surface in a general form. This 
explains the large values of symmetry energy extracted recently at low values of nuclear matter 
density. It is shown that the nuclear matter binding energy per nucleon (B/A), in the 
neighbourhood of zero density, must approach its value at the saturation density. The 
parameters of the theory are mainly constrained from the binding energies and root mean 
square radii of 376 spherical nuclei as well as the large values of the recently extracted 
symmetry energy at low densities. Importance of quartic term in symmetry energy is 
demonstrated. It is shown that it originates due to clustering as well as due to contribution of 
three-nucleon interaction in the state-of-the-art equation of state of neutron matter at and below 
the saturation densities. It is found that clustering significantly reduces the neutron skin 
thickness in nuclei. 

1. Introduction 
In this contribution, we present the first theory with in the energy density functional (EDF) formalism 
which includes clustering at the nuclear surface in its most general form. In contrast to earlier theories, 
for example the Quantum Statistical (QS) approach [1-3] which is based on a generalized Bethe-
Uhlenbeck expansion and where only clusters up to A ≤ 4 are included, the present approach include 
clusters of all shapes and sizes along with medium modification. This is achieved in a 
phenomenological manner. Recently [2,3], large values of symmetry energy has been reported for 
nuclear matter densities ≤ 0.009 fm-3 at low temperatures. This arises because of the gain in binding 
energies due to cluster formation at sub-nuclear densities. Symmetry energy is defined as the 
difference between energy per nucleon of neutron matter and the nuclear matter. The neutron matter is 
a super fluid gas with positive pressure at all densities.  It follows that the symmetry energy in the 
vicinity of zero density must approach the nuclear matter binding energy per nucleon as the neutron 
matter energy goes to zero as density goes to zero. We postulate that the B/A of nuclear matter at zero 
density is equal to its value at the saturation density. This follows from the results of virial expansion 
of the low density nuclear matter which strongly supports the α-particle clustering [5] as the density 
and temperature decreases. Also, in an idealized α-matter calculations, with Coulomb interaction 
switched off, Johnson and Clark [5], showed that the B/A of nuclear matter at zero density must 
approach ≈ 7.3 MeV, which is the binding energy per nucleon of the α-particle without the Coulomb 
interaction. But why α-particles? Why not heavier nuclei, or large chunks of nuclear matter itself 
which would give lower energies as the density approaches zero. In this limit B/A approaches its value 
at the saturation density which is around 16 MeV, the volume term, uv, of the Bethe-Weizsäcker mass 
formula. This is an exact result. Thus, with the neutron matter B/A tending to zero with zero density, 
the symmetry energy at zero density will be equal to uv. We incorporate this scenario in an extended 
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version of the Thomas Fermi theory and investigate its consequences. We address the question, 
whether the static properties of nuclei, e.g. binding energies and rms radii, are consistent with our 
postulate of “symmetry energy = B/A = uv” at zero density. Since in nuclei clustering is a surface 
phenomenon, it will tend to equalize the neutron and proton densities as the α-particles clustering is 
expected to be dominant. This may significantly reduce the neutron skin thickness [6]. We find this to 
be the situation. This has implications for the neutron star studies [7]. 

 The above picture of nuclear matter at low densities is qualitatively different from the one 
predicted , e.g., from Skyrme-Hartree-Fock (SHF) or Relativistic Mean Field (RMF) theories. The 
reason is that these theories do not have sufficient correlations to form clusters at the nuclear surface 
or in the low density nuclear matter. For our purpose, we consider the following thermodynamically 
consistent picture of nuclear matter as a function of density. At the saturation density, the nuclear 
matter is nucleonic and stable with uv MeV of B/A. The lower densities of nuclear matter can be 
envisaged through an isothermal expansion (stretching) with decreasing B/A as the density decreases 
due to expansion. Still, the character of NM remains nucleonic and uniform, as is borne out from the 
accurate auxiliary field diffusion Monte Carlo (AFDMC) calculations [8] with Argonne AV6’  NN 
interaction, where AV6’ is a truncated version of AV8’ [9].  Further isothermal expansion will 
eventually bring us to some density where the energy per nucleon will be a maximum and pressure 
zero, a region of unstable equilibrium. This is the region where cluster formation begins. One can 
visualize more cluster formation by lowering the density and energy of NM through further expansion; 
pressure  will now be positive in this region. In this region, NM gives away its energy by performing 
external work. This process can be continued with the formation of larger and larger clusters and 
binding energies per nucleon  till we reach the average zero density. In that limit E/A again becomes – 
uv MeV and pressure zero. Our equation of state (EoS) for NM adheres to this picture. 

In section 2, we give the formulations and show how the above picture of nuclear matter is 
incorporated in the theory. Section 3 gives the results and discussion. Section 4 is conclusions.  

2. Formulation 
For the EDF we adopt a recent version of Extended Thomas Fermi (ETF) approach. This has been 
described earlier [10], but it is desirable that we give a few essential details for continuity and more 
importantly for the crucial required modifications to incorporate clustering at the nuclear surface. The 
energy of a nucleus is a functional of the density ρ: 
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with δ = (ρn – ρp)/ρ. The first integral represents the volume and surface terms. The second integral is 
the contribution due to symmetry energy and the last two integrals are respectively the direct and 
exchange Coulomb energy. S(ρ) and Q(ρ) shall be described a little later. The term Shell is the  
quantal shell contribution which we extract from Ref [11]. The last term is the pairing energy 
contribution. Both, the shell and the pairing terms do not play significant roles, as far as the present 
study is concerned, but they improve the results quantitatively. ρn and ρp are respectively the neutron 
and proton densities, and ρ is the total nucleon density; ρ = ρn + ρp. We have neglected the 
deformation effects as we consider only spherical or near spherical nuclei. ε (ρ) (≡E(ρ)/A) is the 
equation of state of normal nuclear matter. 

For ε(ρ) we use general density functional. Following Ref. [10], we write it as 
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Notice in 2b, when the density approaches zero, the binding energy per nucleon becomes uv. The ε(ρ) 
as given by (2) follows the general pattern for the equation of state of NM as described in the 
introduction. The constant terms A, B, C and D are determined by equalizing  ε (ρ ≥ )  and  ε (ρ ≤ ) and 
their derivatives at ρ = ρx, where ρx is a density parameter  between 0 and ρ 0.   

At present, we have no idea regarding the density dependence of the quartic term in the symmetry 
energy. We thus assume the same dependence as for the quadratic term and replace S(ρ)δ 2 +Q(ρ)δ 4  
by (1–q)Esym(ρ)δ 2 +qEsym(ρ)δ 4 in (1). The parameter q determines the relative importance of the two 
terms. This parameter plays an important role in giving good fit to the binding energies and root mean 
square radii (rms) for our severely constrained EoS of NM and symmetry energy.  

 An important input in our theory is the neutron matter EoS. For this, we employ the recently 
calculated values with Argonne AV8’ [12] and Urbana three-nucleon UIX [13] interactions. This has 
been obtained by employing an accurate fixed phase AFDMC technique with 66 neutrons enclosed in 
a periodic box [14]. In Fig. 1 (left panel) we plot the results of Ref. [14], represented by filled circles 
for AV8’+ UIX. The solid line is the fit obtained by E(ρ)/A=Σi=1,3 yiρi/(1+Σi=1,4 yiρi), where yi and zi are 
parameters corresponding to the solid curve. The open circles represent the results with AV8’ alone 
and can be obtained by multiplying the solid curve with a fudge factor exp( –2.615(ρ–0.05) ) for ρ > 
0.05 fm–3. We use these fits in our calculations of Esym(ρ). 
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Fig.1: (Color online) Equation of State of neutron and nuclear matter as function of density.  

3. Results and discussion 
We have a total of eight parameters. These are K, uv, ρ0, M and ρx in (2),  aρ, q and apair in (1). We vary 
seven of them at a time for specific values of ρx to produce the experimental rms radii [15] and 
energies [16]. Calculated energies are obtained variationally by varying the density. We have 
considered 376 spherical nuclei [17-18] from  12C to 219U. For the charge rms radii only 50 nuclei were 
considered.  

rms deviation Present Ref.  [19] HFB-17 [16] LDM+WK[18] Ref. [17] 
σE MeV 0.937 1.7 0.581 0.630 0.669 
σR MeV 0.023 0.031 0.030 – – 

No. of Nuclei 376 161 2149 367 1654 

 Table I: Root mean square deviations in various approaches. 
In Table 1, we compare our fits with various other approaches. Column 3 gives the result from Ref. 

[19]. In certain respects, this approach is similar to ours but without incorporating clustering. Column 
4, gives the results in the Skyrme-Hartree-Fock-Bogoliubov microscopic-macroscopic approach [20] 
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but also without clustering.  The last two columns, give results for liquid drop models and their 
various versions with quantal shell corrections and deformation. Considering that we have not 
included Wigner energy contribution and sophisticated pairing energy terms, as in Refs. [17-18,20], 
our approach works very well. Our rms radii are better than those in the other approaches, though our 
binding energies are not that good but overall it can be considered satisfactory. In Fig. 2, we plot the 
differences between the calculated (cal) and experimental (exp) energies (left panel) and the proton 
rms radii (right panel). These values are plotted for our preferred ρx = 0.06 fm. We varied ρx between 
0.025 and 0.12 fm-3.  The binding energies and rms radii are not very sensitive to ρx, but the symmetry 
energies are. In the right panel of Fig. 1, we plot the EoS for NM for ρx = 0.05 fm-3 (green, short-
dashed curve), ρx = 0.06 fm-3(red, solid curve) and ρx = 0.07 fm-3 (blue, long-dashed curve). For a 
change of ρx by 0.02 fm-3, the change in the location of maximum in the EoS of NM is only 0.005 fm-3, 
which is the region of unstable equilibrium. Thus it is pretty much fixed around ρ = 0.026 fm-3 and 
indicates the onset of clustering around and below this density.  
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 Fig. 2: Calculated and experimental differences for energies and proton charge rms radii as a function 
of A. 

In Fig. 3, the results for the symmetry energies are given. The color code and legends for the 
various curves are same as those in Fig. 1 (right panel) described earlier. The dotted curve depicts the 
results of QS approach [2]. The experimental extraction of the symmetry energy was obtained in Ref. 
[2,3], in the low density region through heavy ion collisions of 64Zn on 92Mo and 197Au at 35 MeV/A.  
The down blue triangles are the data from [2] which were obtained after correcting it for energy 
recalibration and reevaluation for particle yields in different velocity bins. They are therefore slightly 
different from [2]. We have shown an error bar of ±15% as reported in [3]. Significantly, the medium 
effects on the clusters play an important role. The up red triangle, are the data from [2] which were 
corrected for the medium effects in a self consistence way. The whole bunch of data points (down blue 
triangles) shifts to considerably higher densities (up red triangles) and there is an upward trend for the 
symmetry energies for lower densities, Fig. 3; the down blue triangles have a downward trend. The 
slope of our calculated curves, represented by short-dashed, solid and long-dashed lines are all 
negative at low densities as a result of our ansatz (2) and the EoS of neutron matter. This is in 
conformity with the data; the up red triangles which have been corrected for medium effects. Clearly, 
our calculations distinguish between the two sets of data (the up red and down blue triangles). Our 
symmetry energy shows a distinct minimum at ρmin ≈ 0.02 fm-3. Above this density the quasi-particle 
picture dominates and below this density the cluster formation takes over. In QS approach, this 
minimum is not seen, simply because heavier clusters are not included. Thus, it is important that this 
region of density should be explored experimentally. The right panel of Fig 3 gives an overall picture.  
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Fig. 3: (Color online) Symmetry energy as function of density. For details, see text. 
 

Neutron Matter Clustering σE MeV σR fm q 

AV8’+UIX Yes 7.25 0.080 0.000 

AV8’+UIX Yes 0.937 0.023 0.160±0.004 

AV8’+UIX No 1.368 0.022 0.099±0.006 

AV8’ Yes 0.902 0.023 0.076±0.005 

AV8’ No 1.290 0.023 0.011±0.005 

Table II See text for details. 
 

Appearance of the quartic term in symmetry energy can be attributed to clustering at the nuclear 
surface and the contribution of three-nucleon interaction near the saturation density in the EoS of 
neutron matter. We give in table II, fits for various situations pertaining to clustering (Yes, uv≈16 MeV 
in 2b) and no-clustering (No, uv≈0 MeV in 2b) as well as with and without UIX. Columns 3 and 4 give 
respectively the root mean square deviations σE and σR�� (rms) . In the first row of results, where q was 
put equal to zero, i e. no quartic term in the isospin, the σ  values are very large. Varying q, second 
row, gives a dramatic reduction  by a factor of ≈7 for σE and a factor of ≈4 for σR. This amply justifies 
the inclusion of quartic term and signifies its importance. It is also evident from the results given in the 
next two rows that both clustering and the three-nucleon interaction in the EoS of neutron matter are 
responsible for the appearance of the quartic term. The last row roughly mimics the mean field 
calculations (SHF and RMF). For this and the mean field theories the symmetry energy goes to zero as 
ρ →0. Here, there is no clustering, no three-nucleon interaction in EoS of neutron matter and almost 
no quartic term.  

The origin of quartic term due to potential energies at high densities was emphasized in Ref. [21] 
which we witness here near or below the saturation densities due to three-nucleon interaction as 
evident from the second and third row of results of table II. The origin of the quartic term due to 
clustering is perhaps not surprising. The kinetic energy in the symmetry energy are known to have 
quartic parts, which gets enhanced due to clustering in the low density region. As is also evident from 
table II, results with clustering are significantly better than with no-clustering.  

A quantity of interest is the neutron skin thickness [6], defined as the difference between the rms 
radii of neutrons and protons. In Sky-HF theories δR is sensitive to the slope of the symmetry energy, 
L, at the saturation density. We expect the clustering to affect δR significantly as it is a direct surface 
phenomenon. We find that for 208Pb and 132Sn, δR = 0.10 and 0.16 fm, respectively. These values are 
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smaller (by ≈ 0.05 fm) as compared to SHF and RMF theories. Our L value for both the cases of 
clustering and no-clustering is same; L ≈ 68 MeV which is well within the range of values extracted 
from isospin diffusion data. Our parameter values are,  for ρx=0.06±0.01:  q = 0.16±0.01,  uv =16.00 
MeV, ρ0 = 0.16 fm-3, K = 251.55 MeV, M = -8.71±1.50 MeV, aρ= 45.14±0.03 MeV fm-5 and apair = 
36.1±1.0 MeV.  

The above considerations will have far reaching consequences for neutron star studies [7] and 
hypernuclei [22]. For example, due to cluster formation, the Λ-binding to nuclear matter in the 
neighborhood of zero density must approach to its value at saturation density which is around 30 MeV 
– an outcome of the conceptual requirement mentioned in the introduction.  This indeed is a 
fundamental departure from all the other earlier approaches and requires a separate study. 

 
4. Conclusions 
In conclusion, we have presented a unified theory of nuclei which is reasonably consistent with the 
static properties of nuclei as well as clustering at the nuclear surface and incorporates the large values 
of the symmetry energies at low densities. Two main conclusions are: (a) The slope of the symmetry 
energy is negative at low densities and (b) establishes that quartic term in isospin plays a very 
important role; it originates from clustering as well as due to three-nucleon interaction. In addition, we 
have also demonstrated that cluster formation begins for ρ around 0.026 fm-3 and the symmetry energy 
has a minimum at ρ ≈ 0.02 fm-3 below which clustering starts dominating. 
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