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The Aharonov–Bohm effect in the background of a time-dependent vector potential is re-examined for 
both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations 
which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in 
a recent paper (Singleton and Vagenas 2013 [4]), the interference pattern will be altered with respect to 
time because of the time-dependent vector potential.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Aharonov–Bohm (AB) effect plays an important role in 
modern quantum theories [1]. There are two kinds of AB effect 
which are named vector and scalar AB effects respectively. The vec-
tor AB effect predicts that compared with the conventional double-
slit experiment in quantum mechanics, the interference pattern 
will be shifted if a long–thin flux-carried solenoid is located be-
tween these two slits [1]. This prediction has been confirmed by 
several experiments [2,3].

Quantum mechanically, the dynamics of electrons moving in a 
region with the vector potential is governed by the Schrodinger 
equation (we study the non-relativistic case firstly and consider 
the relativistic case at the end of this paper)

ih̄
∂ψ

∂t
= Hψ (1)

where H is the Hamiltonian

H = 1

2m
(p − eA)2 (2)

with e, m being the charge and mass of the electron, A and p =
−ih̄∇ being the magnetic potential and the canonical momentum. 
For the sake of simplicity, we set c = 1. It is well-known that the 
solution to equation (1) can be gotten from the free Schrodinger 
equation

ih̄
∂ψ0

∂t
= H0ψ0, H0 = p2

2m
(3)
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by multiplying a phase factor (Dirac factor) e
i e

h̄

∫ r
r0

A(r′)·dr′
to the 

solution of the free one

ψ(r, t) = ψ0(r, t)e
i e

h̄

∫ r
r0

A(r′)·dr′
(4)

provided the vector potential is time-independent, i.e., ∂A
∂t = 0.

It means that if two electrons start from the same point and 
arrive at the screen via two different paths which enclose the 
long–thin flux-carried solenoid will acquire a relative phase dif-
ference although there are no forces acting on them. This phase 
difference can be obtained directly from the solution (4). It is

δαB = e

h̄

∮
A(r) · dr = e

h̄

∫
B(r) · dS = e�

h̄
(5)

where the integral is performed along a closed loop which is 
formed by one of the paths and reversing the other, � is the mag-
netic flux inside the long–thin solenoid. The phase difference (5)
can also be written in the form [4]

δ(phase) ∝ (field) × (area) (6)

by considering the second expression of equation (5). The vector 
AB effect indicates that the vector potential A, which was intro-
duced as an auxiliary in classical theory, is in fact observable in 
quantum theory.

The scalar AB effect predicts that the interference pattern in 
the conventional two-slit interference experiment will be shifted 
if two electrons travel in two regions with different scalar poten-
tials when they are recombined in the screen. In contrast with the 
vector AB effect, the observation of scalar AB effect in experiments 
is rather later [6]. The scalar AB effect can be analyzed from the 
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dynamics of electrons in the background of a scalar potential. The 
Hamiltonian is given by

H = p2

2m
+ eφ (7)

where φ is the scalar potential. It can be verified that the solu-
tion to the Schrodinger equation with the Hamiltonian (7) can be 
achieved from the solution to the free Schrodinger equation ψ0 by 

multiplying a factor e− iq
h̄

∫ t
t0

φ dt
, i.e.,

ψ(r, t) = ψ0(r, t)e
− ie

h̄

∫ t
t0

φ(t′) dt′
(8)

provided ∇φ = 0.
Therefore, two electrons pass through two regions with differ-

ent scalar potentials will acquire a phase difference although there 
is no electric field. The phase difference is determined by the so-
lution (8). It is

δαE = e

h̄

t2∫
t1

�φ dt (9)

where �φ is the scalar potential difference between two regions in 
which two electrons pass through and t2 − t1 is the time the elec-
trons spend in the regions. In order to write the phase difference 
(9) in the same form as (6), one can introduce the electric field E
and rewrite �φ in (9) as �φ = ∫

E · dr. Thus, the phase difference 
in scalar AB effect can also be written formally as [4]

δαE = e

h̄

t2∫
t1

∫
E · drdt. (10)

The scalar AB effect indicates that contrary to the classical the-
ory in which the scalar potential is taken as an auxiliary, it has 
observable effect in quantum theory.

The phase difference in vector and scalar AB effects can be writ-
ten in a unified covariant formula [4,5],

δαB E = e

h̄

∮
Aμdxμ = e

h̄

( t2∫
t1

�φdt −
∮

A · dr
)

(11)

if

∂A

∂t
= ∇φ = 0 (12)

is satisfied. The exact meaning of the closed loop integral in the 
first expression is explained in Ref. [4].

By expanding the Faraday two-form F = − 1
2 Fμνdxμ ∧ dxν ex-

plicitly as F = (Exdx + E ydy + Ezdz) ∧dt + Bxdy ∧dz + B ydz ∧dx +
Bzdx ∧ dy, the authors of Ref. [4] show that the expression (11)
can also be written in an equivalent covariant form

δαB E = − e

2h̄

∫
Fμν dxμ ∧ dxν = e

h̄

∫
F . (13)

Both the expressions (11) and (13) are the starting points of ana-
lyzing the time-dependent vector AB effect in Ref. [4]

In fact, the unified covariant expression (11) is based on the so-
lution to the Schrodinger equation. To this end, let us consider the 
Hamiltonian of an electron moving in the background of electric 
and magnetic potentials. It is

H = 1
(p − eA)2 + eφ. (14)
2m
The solution to the Schrodinger equation with the above Hamilto-
nian is

ψ(r, t) = ψ0(r, t)e
i e

h̄

( ∫ r
r0

A(r′)·dr′−∫ t
t0

φ(t′)dt′
)

(15)

provided ψ0(r, t) is the solution of the free Schrodinger equation 
and the condition (12) is satisfied. The phase difference (11) can be 
obtained naturally from the solution (15) if the paths of two elec-
trons enclose a long–thin flux-carried solenoid or the two electrons 
pass through two regions with different scalar potentials.

Both vector and scalar AB effects can not be understood from 
classical theories since there are neither electric nor magnetic 
forces acting on the electrons locally. Therefore, the AB effects not 
only indicate that the electric–magnetic potentials (φ, A) which 
were introduced as auxiliaries in classical theories are observable 
in quantum theories, but also reveal the non-locality of the phase 
in quantum theories.

Up to now, the time-independent vector AB effect, which is 
also named as type I AB effect because of the electrons moving 
in a field-free region, is well studied and confirmed experimentally. 
However, there are some controversies on the time-dependent vec-
tor AB effect (the scalar potential is set to zero, i.e., φ = 0). Obvi-
ously, the time-dependent AB effect differs the time-independent 
one greatly since electrons move in a region where the field and 
the force are not zero in the former case. Therefore, one must take 
into account both the AB phase shift and the phase shift coming 
from the direct electric or magnetic forces in studying the time-
dependent AB effect. Because of it, the time-dependent AB effect 
is also named type II AB effect.1 The distinction between type I 
and type II AB effects is not commonly discussed until a recent 
paper [8].

There are some theoretical studies on the time-dependent AB 
effect. Ref. [9] presents a general discussion on the vector poten-
tial of the time-dependent AB effect. The author finds that if the 
magnetic field vanishes at the outer region of solenoid then the 
vector potential can only depend on time linearly. The authors of 
[10] investigates the Hamiltonian of both time-independent and 
time-dependent AB effects. In [11], the author concludes that there 
is no time-dependent shifting of the interference pattern in time-
dependent AB effect since the contributions from the electric and 
the magnetic parts cancel exactly. The authors of [12] finds that 
the electric and magnetic contributions to the phase shift will be 
canceled partly since the magnetic phase shift is bigger than the 
electric one. However, this article only considers impulsive changes 
of the flux inside the solenoid. The path integral formulation and 
holonomies are applied to investigate time-dependent AB effect in 
[13]. In Refs. [14], the authors generalize the results of the time-
independent vector AB phase difference to the time-dependent one 
by substituting A(r) by A(r, t) or B(r) by B(r, t) on the right hand 
side of (5). Therefore, the conclusion in Ref. [14] is that the inter-
ference pattern will be altered with respect to time if the vector 
potential is time-dependent.

The time-dependent AB effect is also studied from experimen-
tal aspect. Following the suggestions of [14], the authors of [15]
carried out an experiment. The results of this experiment show 
that there are no time-dependent interference pattern. The authors 
of [16] give an analysis for the reasons why one did not observe 
the time-dependent interference pattern in the experiment [15]. 
In fact, there was an much earlier accidental experiments on the 
time-dependent AB effect in [17]. In this experiment, an interfer-
ometric experiment was carried out. Later, it was realized that 

1 In fact, the Aharonov–Casher [7] effect can be regarded as a kind of type II AB 
effect.
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the region where the electron beams passed through was ‘con-
taminated’ by a 60 Hz magnetic field. However, this experiment 
only observed a stationary interference pattern. An explanation to 
the results of [17] was given in [18]. In this paper, the authors 
suggested that the combination of the time-independent AB ef-
fect plus an additional shift coming from the force ∼ r × B exactly 
cancel and lead to the stationary interference pattern. Recently, an 
analysis of this experiment is given in [19]. In this paper, the au-
thors pointed out that the results of experiment [17] can also be 
explained by combining the regular AB phase effect and the phase 
shift due to the induced electric field.

In a more recent paper [4], the authors get a similar conclu-
sion with [11] that there is no net phase shift difference coming 
from the time-dependent vector potential. They find that the vec-
tor and the scalar AB phase shifts will be canceled exactly both 
from expression (11) and (13). This work is further illustrated and 
generalized in Refs. [20–24]. It seems that the conclusions of [11,4]
coincide with the observations in experiments [15,17].

In Ref. [4], the authors start their analysis from the co-
variant expression (13).2 Expanding the Faraday two-form F =
− 1

2 Fμνdxμ ∧ dxν explicitly, one finds that the contribution from 
three magnetic terms is 

∫
(Bxdy ∧ dz + B ydz ∧ dx + Bzdx ∧ dy) =∫

B(r, t) · dS. While the electric terms contribute 
∫
(Exdx + E ydy +

Ezdz) ∧ dt . According to Faraday’s law, the varied magnetic field 
will induce an electric field, i.e., E = − ∂A

∂t , the authors of Ref. [4]
conclude that the contribution from electric terms equals to 
− 

∮
A(r, t) ·dr = − 

∫
B(r, t) ·dS. It seems that the contributions from 

magnetic and electric parts cancel exactly.
Then, the authors of Ref. [4] analyze this problem from the 

semi-classical point of view. Based on the phase difference expres-
sion (11), the authors consider the case of the magnetic vector 
depending on time linearly. For the sake of clarity, we present a 
schematic drawing of the configuration in Fig. 1 which is similar 
with the one in Ref. [14]. A beam of electrons are split into two 
beams at the point A. Then these two beams of electrons travel 
along two half circles and recombine in the screen B. The long–
thin solenoid with the linearly increased magnetic flux is located 
at the center of the circle. We assume that the direction of the vec-
tor potential A(r, t) is clockwise and with an increasing magnitude. 
According to Faraday’s law, the direction of the induced electric 
field is anti-clock. As a result, the upper path electrons will be ac-
celerated while the lower path electrons will be decelerated by the 
induced electric field.

The vector potential outside the solenoid is

A = kI(t)

r
θ̂ , (16)

where k is a constant, I(t) is the time-dependent current, θ̂ is a 
unit vector in the angular direction. Accordingly, the induced elec-
tric field is given by

E = −∂A

∂t
= −k

r

dI(t)

dt
θ̂ . (17)

As is shown in Ref. [4], the contribution from the time-dependent 
vector to the phase difference in an infinitesimal arc can be calcu-
lated by using the expression (11). It is

δαA(t) = ek�t�θ

2h̄

dI(t)

dt
, (18)

where �t is the time the electron spends in the infinitesimal arc 
and �θ is the angular displacement during the time �t .

2 We note that there are some queries on the covariance of the expression (13)
in Ref. [25].
Fig. 1. A schematic drawing of the configuration. A beam of electrons are split into 
two at point A. These two beams of electrons travel along two half circles and re-
combine in the screen B. The thin-long solenoid is located at the center of the circle. 
We assume that the direction of vector potential is clockwise and the magnetic flux 
inside the solenoid is increased linearly. Therefore, the direction of the induced elec-
tric field is anti-clock. The directions of forces the induced electric field act on the 
upper and the lower electrons are opposite.

The contribution from the electric part to the phase difference 
is calculated by applying the semi-classical method in Ref. [4]. Be-
cause of the induced electric field, the electron in the upper path 
will be accelerated. The acceleration is

a = eE

m
= − ek

mr

dI(t)

dt
θ̂ , (19)

and the change in distance due to the acceleration is

�d = 1

2
a(�t)2 = −ek�θ�t

2mv

dI(t)

dt
(20)

where v is the velocity of the electron. Due to this change in 
distance, the effect of the induced electric field on the phase dif-
ference within the infinitesimal arc is given by

δαE-field = 2π�d

λ
= −ek�t�θ

2h̄

dI(t)

dt
(21)

in which λ is the de Broglie wavelength, i.e., λ = h
mv . Thus it seems 

that in an arbitrary infinitesimal arc in the upper path, the AB 
phase shift due to the time variation of the potential (18) exactly 
cancels the phase shift due to the effect of the induced electric 
field (21).

We shall point out that the analysis and the conclusions in 
Ref. [4] in fact, are invalid. Firstly, the expressions of phase dif-
ference (11), or, equivalently (13) are only valid in the case that 
there are no electric or magnetic forces acting on the electrons in 
the whole process, i.e., the type I AB effect. Obviously, the time-
dependent vector potential will induce an electric field, which 
exerts on the electrons in the process of the traveling. There-
fore, it is inappropriate to apply the expression (11) and (13) to 
the present case although it seems natural from the expression 
δα = e

h̄

∫
F that the magnetic contribution 

∫
(Bxdy ∧ dz + B ydz ∧

dx + Bzdx ∧dy) = ∫
B(r, t) ·dS cancels exactly the electric contribu-

tion 
∫
(Exdx + E ydy + Ezdz) ∧ dt = − 

∫
B · dS.

Secondly, there are also errors in applying the semi-classical 
method to analyze this problem in Ref. [4]. The analysis in Ref. [4]
are only valid in the upper path of electrons in Fig. 1. For the lower 
path of electrons, the contribution from the varied magnetic vec-
tor is the same as the upper one, but the induced electric field 
will decelerate the electrons, therefore, two contributions can not 
cancel as in the upper case. In fact, one can image an extreme 
case in which the vector potential varies rapidly so that the in-
duced electric field is strong enough to prevent the electrons in 
the lower path to reach the screen. As a result, there will be no 
interference pattern in the screen. It is obvious different from the 
time-independent case.
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According to the principles of quantum mechanics [26], wave 
functions must be the solutions to the dynamical equations 
(Schrodinger or Dirac equations in the present study). However, 
it is easy to verify that the wave function (15) on which the re-
sults of phase difference (11), (13) based, is not the solution to 
Schrodinger equation with a time-dependent vector potential. Or, 
in another word, the wave function (15) is the solution to the 
Schrodinger equation for the type I AB effect rather than the type 
II one. It is the key point of the invalidity of [4]. To see it clearly, 
we remind that the Hamiltonian of an electron in the background 
of a time-dependent vector potential can not be obtained from (2)
simply by replacing A(r) by A(r, t) since there will be an induced 
electric field E = − ∂A(r,t)

∂t . Different from the electrostatic field, this 
induced electric field is not curl-free, i.e., ∇ × E �= 0. Therefore, it is 
impossible to introduce the concept of ‘potential’ with respect to 
this induced electric field. However, this induced electric field will 
act on the electrons by accelerating or decelerating them. Thus, the 
Hamiltonian of an electron interacting with a time-dependent vec-
tor potential should include a term which can describe the effect 
of the induced electric field. The appropriate form should be

H = 1

2m
[p − eA(r, t)]2 − e

r∫
r0

∂A

∂t
· dr, (22)

where the integral in the last term is path-dependent. A Hamilto-
nian which is similar with (22) was obtained in Ref. [14]. In that 
paper, the authors argued that the last term can be dropped for 
some specific situations.

The solution to the Schrodinger equation with Hamiltonian (22)
can be solved. It is

ψ(r, t) = ψ0(r, t)e
i e

h̄

∫ r
r0

A(r′,t)·dr′
(23)

where ψ0(r, t) is the solution to the free Schrodinger equation. 
Therefore, for the specific configuration Fig. 1, the phase difference 
of two electrons traveling in the upper and lower paths will be

δα =
∮

A(r, t) · dr =
∫

B(r, t) · dS = �(t). (24)

Clearly, the interference pattern will be altered with respect to 
time according to our result.

At the end of this paper, we would like to mention the time-
dependent vector AB effect in relativistic quantum mechanics. The 
relativistic motion of electrons in the background of a magnetic 
potential is described by the Dirac equation,

ih̄
∂ψ

∂t
= Hψ, H = cα · (p − eA) + mβ, (25)

in which α =
(

0 σ
σ 0

)
, β =

(
I 0
0 −I

)
are 4 × 4 matrices with σ

and I being the Pauli matrices and 2 × 2 identity matrix, ψ(r, t) is 
a four-component spinor.

If the vector potential A is time-independent, one can verify 
directly that similar with the non-relativistic case, the solution to 
the Dirac equation (25) is

ψ(r, t) = ψ0(r, t)e
i e

h̄

∫ r
r0

A(r′)·dr′
(26)

if ψ0(r, t) is the solution to the free Dirac equation, i.e., ih̄ ∂ψ0
∂t =

H0ψ , H0 = cα · p + mβ .
However, if the vector potential depends on time explicitly, i.e., 

A = A(r, t), an induced electric field will appear. Thus, the Hamilto-
nian (25) is insufficient to describe the present situation. One must 
add a term in Hamiltonian (25) so as to reflect the fact that the 
induced electric field will accelerate or decelerate the electrons. 
This term is exactly the same as the one in non-relativistic case. 
Therefore, the Hamiltonian with the time-dependent vector poten-
tial should be

H = cα · [p − eA(r, t)] + mβ − e

r∫
r0

∂A

∂t
· dr. (27)

As in the non-relativistic case, the integral in the last term is also 
path-dependent.

The solution to the Dirac equation with the Hamiltonian (27)
is

ψ(r, t) = ψ0(r, t)e
i e

h̄

∫ r
r0

A(r′,t)·dr′
(28)

if ψ0(r, t) is the solution to the free Dirac equation.
As a result, there will be a phase difference between the elec-

tron traveling from the upper and lower paths. The phase differ-
ence is the same as the non-relativistic one (24). Therefore, the 
interference pattern will also be altered in the relativistic case.

To summarize, based on one of the principles of quantum me-
chanics that wave functions must satisfy the dynamical equations 
(Schrodinger equation for non-relativistic and Dirac equation for 
the relativistic cases in the present study), we find that the analy-
sis and conclusions in Ref. [4] are invalid. The interference pattern, 
in our conclusion, should be altered with respect with time. Of 
course, both the predictions in Ref. [4] and ours need to be con-
firmed by careful and accurate experiments.
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