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1. Introduction

The BFKL equation seems to be the appropriate effectiveryhiso describing high energy
initial state radiation in the kinematic region where thendelstam invariants of the momentum
exchange and of the total scattering momentum are strongly ordem@:;D < t| <« s ltis well
known that the relevant phase space region is very impaatahe LHC, but signs of its importance
were already observed at the HERA and other colliders.

However, the BFKL equation predicts too strong rise of thessrsection for decreasing ratio
of |t|/sviolating the Froisart bound and thus the unitarity. A nove&r extensions of the equation
was proposed [1] to take into account merging of over-pdpdlayluons and thus damping the
growth of the gluon density and consequently the cross@ecirhe BK equation [2] is one of
such extensions of the BFKL equation. The growth of the smiudf the BK equation is suppressed
compared to the solution of the linear equation.

The BFKL and also the BK equations are only suitable to desdtie inclusive cross section.
Inclusion of coherence effects was proposed to extend tidityaof latter equations for exclusive
final states. An equation which includes the BFKL kernel pfgscoherence effects and at the same
time interpolates between the BFKL and the DGLAP approxiomatis the CCFM equation [4].

An interesting question raises: How does a correspondimglinear equation, a non-linear
extension of the CCFM equation, look like and how does themite requirement interplay with
the saturation constraint?

A non-linear extension of the CCFM equation in a simple forasvguggested in [3]. The
latter proposed non-linear equation was not yet studietiénliterature. We will start filling the
emerged gap in this publication. We will examine closely tieev non-linear equation and find
non-physical behaviour near the soft cut-off. We will sugfggn improvement of the equation and
present numerical results.

1.1 The CCFM equation

The CCFM equation reads
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with x being proton momentum fractioR, the t-channel gluon transversal momentuirthe
transversal momentum of the emitted gluon arahd &5(k) being now the initial condition. In
addition the variable = q/(1—z) = (k' —k)/(1—z) and a new scal@ characterising the hard
scale or the maximum emission angle in the evolution aredited. The function”?(z k,q) is
the gluon splitting function which includes finite terms.

The factorAs(p, (zq)?) is the Sudakov form factor. The Non-Sudakov form fadiqg(k?, (zq)?)
is included in the gluon splitting function.
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1.2 TheKGBJS equation

We will follow the line of authors of [3] who suggested a namelar extension of the CCFM
equation (1.1) in this form
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An important comment is required about the upper limit inztietegral in (1.1). This upper
limit regulates integrals with a pole i It is easy to see, that it also generates a limit on the vdlue o
the variablgg’| > Qp/(1— z) and also on the variablg| > Qo/(1— z). The latter limit is going to
affect transversal momentum dependence of the solutidmedfGBJS equation (1.2) near the soft
scale|k| ~ Qo. In case wher® < |k| < Qo/(1— z) the non-linear term in the (1.2) will be equal
to O rendering the solutions of the linear and the non-lireeprations almost equal. F| = Qo
we thus have

& (%,Qo, p) =~ &(x,Qo, P) - (1.3)

This is not what we would intuitively expect from a dipole ditygle with growth tamed by
a non-linear correction. We are going to study propertiethefsolutions of the non-linear equa-
tion (1.2), but we suggest a modification which can give a nmateiral behaviour of its solution.
We modify the argument of the delta function in the non-linkeam
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to shift its pole’ outside of the intervelQo, Qo/(1— 2)).

2. Numerical solutions of the equations: Discussion of theresults

We solve the equations (1.1), (1.2) and (1.4) by iteratiom daitice under certain additional
conditions. We set thes = 0.2. We have written the CCFM equation with a form of the Non-
Sudakov form factor which requires a kinematical constréinsatisfy unitarity. We will thus
require|q| < |k|/y/z [5] in the CCFM kernel. We set the parametgrs- Qo = 1 GeV. To mimic
energy-momentum conservation we apply an upper limit omthg < /S integration. In this
publication we choos¢/Sot ~ (1GeV/Xmin). Wherexmin is the minimal momentum fractioxfor

which we parametrise the solution of a given equation. We thk initial condition to be
E0(k?) = % (2.1)

with Ci,, being a constant parameter. WeGgt= 0.5 for the CCFM and the KGBJS equations.
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2.1 Discussion

In this subsection we are going to discuss the comparisoneo$alution of the CCFM equa-
tion (1.1) with our new modified KGBJS equation (1.4).

Let us take a look on the plots in the figure 2. We will first dssthek distributions. We can
see that the modification really breaks the condition (1s8)the solutions of the linear equation
and the non-linear equation are not equal at the soft cupgfiwe do not observe a formation of
the dip as for the original KGBJS equation in figure 1. The biha of the suppression for small
k is similar to the one generated by the BK equation.

The natural behaviour of the solution of (1.4) is reflectesbah thex distributions. The
difference betweemn distribution of the CCFM and the non-linear equation getslm for |K|
getting bigger.

3. Conclusions

We have numerically obtained solutions of different vamsiof the CCFM equation. We have
also solved the KGBJS equation [3] and its modification.

We have studied the transversal momentkrand x distributions of the obtained solutions
analytically and also numerically.

We find that solutions of the CCFM and the KGBJS equations Imaitthe soft cut-off which
implies no suppression in the point where the CCFM solutias the biggest magnitude.

We suggest a modification of the KGBJS equation which remtheanintuitive behaviour of
the solutions of the original equation near the soft cut-off

The resulting suppression due to the non-linear term inghgien of equations (1.2) and (1.4)
is a result of complicated interplay between values of tipeldi amplitude in the smal and also
largex phase space regions.

Although the investigation presented here shows, thatibisasy to find a natural model for
a non-linear extension of the CCFM equation, we recommeadhtiproved equation (1.4) to be a
subject of more studies of inclusive and exclusive obsdegab
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Figure 1: The x andk distributions of different versions of the CCFM equationhe tsolid black line
compared with the KGBJS equation (1.2) — the blue dashed line
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Figure 2. Thex andk distributions of different versions of the CCFM equationhe solid black line —
compared with the modified KGBJS equation (1.4) — the blubeldsne.



