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Potential-Well Distortion in Barrier RF
C.M. Bhat and K.Y. Ng
FNAL, Batavia, IL 60510, USA

Head-tail asymmetry has been observed in the longitudinal beam profiles in the Fermilab Recycler Ring where
protons or antiprotons are stored in rf barrier buckets. The asymmetry is caused by the distortion of the
rf potential well in the presence of resistive impedance. Gaussian energy distribution can fit the observed
asymmetric beam profile but not without discrepancy. It can also fit the measured energy distribution. On the
other hand, generalized elliptic distribution gives a better fit to the beam profile. However, it fails to reproduce
the observed energy distribution.

1. INTRODUCTION

Head-tail asymmetry of the longitudinal beam pro-
file has been observed at the SLAC SLC damping
ring [1] and in other electron rings. This is attributed
to the distortion of the rf potential by the resistive
part of the coupling impedance, and the experimental
measurement at the SLC damping ring, depicted in
Figure 1, fits the theory very well. However, such
an asymmetry has never been reported in proton
bunches.

In the presence of a pure resistive impedance Rs, the
potential-well distorted bunch profile of an electron
bunch, ρ(τ), can be obtained from the solution of the
Haissinski equation [2], which states

ρ(τ) = ρ0 exp
[
− τ2

2σ2
τ

+ αRN

∫ τ

0

ρ(τ ′)dτ ′
]
, (1)

Figure 1: Potential-well distortion of bunch shape for
various beam intensities for the SLAC SLC damping
ring. Solid curves are solutions of the Haissinski equation
and open circles are measurements. The horizontal axis
is x = τ/στ , in units of unperturbed rms bunch length,
while the vertical axis gives y = 4πeρ(τ )/[V ′

rf(0)στ ],
where V ′

rf(0) is the rf potential gradient at x = 0. The
beam is going to the left.

where τ is the arrival time (positive/negative for the
head/tail), στ is the rms bunch length in the absence
of the impedance, ρ0 is the longitudinal density of the
beam center,

α
R

=
e2β2E0Rs

ηT0σ2
E

, (2)

βc is the particle velocity with c being the velocity of
light, η is the slip factor, N is the number of particles
in the bunch each carrying the electron charge e, E0 is
the beam nominal energy, and σ

E
is the unperturbed

rms energy spread. The equation can be solved in the
closed form giving a shift of the profile peak from the
center

∆τ =
α

R
Nστ√
2π

. (3)

The potential-well distorted beam profiles for various
resistive impedance are shown in Figure 2.

Figure 2: Exact longitudinal beam profile solution of the
Haissinski equation when the impedance is purely
resistive. The parameter αRN , defined in Eq. (2), is
proportional to the resistive impedance Rs and the beam
intensity, and is positive above transition and negative
below transition. The beam is going to the left. Its
profile lags backward below transition because of resistive
loss, and leans forward above transition because particles
with smaller energy travel faster above transition.
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Notice that the first term in the exponent of
Eq. (1), Urf(τ) = −τ2/(2σ2

τ ), represents the lin-
earized rf potential and is an even function of the
particle arrival time τ , while the second term,
∼ α

R
Nρ0τ , the cause of the asymmetric solution, is

an odd function of τ , representing the perturbation
to the rf potential arising from the interaction of the
beam with the resistive impedance. The reactive
part of the coupling impedance, on the other hand,
distorts the rf potential symmetrically and therefore
contributes only to the lengthening and shortening of
the beam. The longitudinal asymmetry of the beam
is only significant, however, when the second term
is comparable to the first term. Proton beams are
usually long and the bunch spectra roll off before
they reach the broadband resonance. In other words,
proton beams can hardly see the real part of the
impedance. Thus the effective α

R
N/

√
2π is usually

very small and, as a result, no significant head-tail
asymmetry has ever been reported. However, at
the Fermilab Recycler Ring where rf barriers are
used [3], the rf potential experienced by most part of
the beam is essentially zero. For this reason, head-
tail asymmetry of the beam profile has been observed.

2. THE RECYCLER RF

Broadband cavities are employed to create barriers
of opposite polarities to confine antiprotons [4]. Some
of the merits are:

1. The beam can spread out uniformly, as indicated
in the top plot of Figure 3, so that the space-
charge force becomes smaller.

2. Two batches can be merged easily by moving
them in two separate barrier buckets close to-
gether and then annihilating the two central bar-
riers, as indicated in the lower plot of Figure 3.

3. The length of a batch can be compressed by
moving the two barriers closer together slowly.

4. The whole batch can be moved from one location
to another by moving the two confining barriers
slowly in the same direction.

The are four 50 Ω broadband ferrite-loaded rf sta-
tions [4]. The amplifiers are of 3.5 kW from 10 kHz to
100 MHz, capable of supplying a total of ±2 kV. The
rf waveform generated is determined by the amplitude
and phase of each of the 588 revolution harmonics.

When the baseline between the two barrier pulses is
nonzero, as shown in the top plot of Figure 4, the bar-
rier potential becomes slanting, as shown in the lower
plot. Such nonzero baseline can come from either rf
errors or the coupling impedance of the vacuum cham-
ber. Here, we are talking about a deviation of ∼ 10 V
from zero, out of a total barrier voltage of ±2 kV, or
∼ 0.5%.

Figure 3: Top: The trajectory of a proton inside a
barrier bucket set up by two barrier waves with equal
and opposite polarities. Bottom: Two barrier buckets set
up by 4 barrier waves are prepared side-by-side. When
the two central barrier waves annihilate each other, the
two buckets will be merged into one.

RF Potential

RF Voltage

Figure 4: When the baseline voltage (top) inside a
barrier bucket set up by two barrier waves of opposite
polarities is different from zero (dashed), the rf potential
well (bottom) no longer has a flat bottom. A beam inside
the potential well therefore no longer has a head-tail
symmetric linear density.

2.1. Nonlinearity in High-Level RF

In the top plot of Figure 5, head-tail asymmetry
is evident for the proton beam in a barrier bucket at
the low intensity of ∼ 1 × 1011 with the beam pro-
file leaning towards the head, which is the left in the
display. The Recycler Ring is a permanent-magnet
storage ring at 8.9383 GeV operating below transition.
Since the beam leans forwards, it cannot be because of
the interaction with the resistive coupling impedance,
because particles losing energy will lag behind below
transition.

After some investigation, a small parasitic 90 kHz
(revolution harmonic component) sinusoidal compo-
nent was found imposed on the rf vector sum of all
four rf stations [5]. This is equivalent to having a
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Figure 5: Top: A beam of intensity ∼ 1 × 1011 exhibits
head-tail asymmetry between two barrier waves. Middle
and bottom: Amplitude and phase in the Recycler high-
level rf exhibit nonlinearity from 90 kHz to 1 MHz. The
amplitude plot is 0.2 dB per division and the phase plot
is 2◦ per division. Markers 1 and 2 are at fundamental
(∼ 90 kHz) and first (∼ 180 kHz) revolution harmonics.
A response with flatness of less than 0.26 dB in
amplitude and less than 1.8◦ in phase is required.

nonlinear response in the high-level rf amplifiers. The
design requires the response for all revolution compo-
nents from 90 kHz to 1 MHz to differ by less than
0.26 dB in amplitude and 1.8◦ in phase. As is dis-
played in the middle and lower plots of Figure 5, the
S-parameter S21 measurement reveals a much larger
deviation from linearity for the parasitic fundamental
component. Between 90 kHz (Marker 1) and 180 kHz
(Marker 2), the variations are 1.1 dB in amplitude
(middle plot with 0.2 dB per division) and 6.26◦ in
phase (lower plot with 2◦ per division). Using a net-
work analyzer, S21 was realized for the overall sys-
tem, and from mathematical modeling, a second or-
der numerator and denominator transfer function was
found. The inverse of this transfer function provides

Figure 6: Top: After the implementation of the linear-
ization transfer function, head-tail asymmetry in beam
disappears. Middle and bottom: Amplitude and phase in
the Recycler high-level rf are now consistent with the
linearity requirement. The amplitude plot is 0.2 dB per
division and the phase plot is 2◦ per division. Markers 1,
2, 3, and 4 are at fundamental (∼ 90 kHz), first
(∼ 180 kHz), second, and third revolution harmonics.

the required linearization transfer function. The lin-
earization transfer function was realized in hardware
by summing high-pass, band-pass, and low-pass filters
together [6]. Implementation of the correction brings
the response of the high-level rf to the required lin-
earization, as demonstrated in the middle and lower
plots of Figure 6. As expected, the head-tail asymme-
try in the beam profile, shown in the top plot, disap-
pears.

3. COUPLING IMPEDANCE

With the linearization compensation properly ad-
justed for beams with low intensities (∼ 1 × 1011),
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Figure 7: A beam of intensity N = 6.4 × 1011 inside a
barrier bucket of width ∼ 1.59 µs exhibits head-tail
asymmetry, after response linearization is implemented.
The beam lags backwards in agreement with energy loss
due to resistive impedance.

the slant in the beam profile reappears, however, in
beams with higher beam intensities. An example is
shown in Figure 7 at the intensity of 6.4×1011. Unlike
the asymmetry seen in Figure 5, now the tail lags be-
hind the head. Since the Recycler Ring operates be-
low transition, this asymmetry may come from the
interaction with the resistive part of the longitudinal
impedance.

The barrier broadband cavities have a total resis-
tive impedance Re Z‖

0 = 200 Ω, which is visible to the
beam up to ∼ 45 MHz (or up to revolution harmon-
ics 500). Comparatively, the resistive wall impedance
of the vacuum chamber can be neglected because its
real part is only Re Z‖

0 = 12.0 Ω at the revolution
harmonic [7]. When substituted into the Haissinski
equation, the solution results in a beam profile closely
resembling that observed in Figure 7. This theory-
predicted solution is depicted as solid in Figure 8.

The local current of the beam in between the barrier
pulses is approximately

Ilocal =
eN

T2
, (4)

where T2 ≈ 1.59 µs is the distance between the inner
edges of the two barriers. The beam-loading voltage
left in the barrier cavities is therefore

Vb = IlocalZ
‖
0 ≈ eNZ

‖
0ρ(τ) ≈

eNZ
‖
0

T2
= 12.9 V . (5)

Thus the beam-loading effect can be compensated by
adding an accelerating voltage to the broadband bar-
rier cavities. As expected, the head-tail asymmetry
disappears in Figure 8 with the addition of such a
voltage. Experimentally, we also see that slant of

Figure 8: Solution of the Haissinski equation [Eq. (9)
below] with a resistive impedance of Rs = 200 Ω and
beam intensity 6.4 × 1011 reproduces the observed beam
profile with head-tail asymmetry shown in Figure 7. A
compensating voltage, 12.4 V, restores the head-tail
symmetry. Here Tb is total bunch length.

the beam profile goes away in Figure 9 after adding
∼ 8.82 V to the region between the barriers.

There have been discrepancies between the solu-
tions of the Haissinski equation and experimental ob-
servations. If we assume the energy offset of the beam
∆E to follow a Gaussian distribution, the Rs = 200 Ω
leads to a solution of the beam profile ρ(τ) at the
intensity 6.4 × 1011 with a head-tail asymmetry of
±17%, which is larger than what we actually observe1

Figure 9: The head-tail asymmetry of the beam profile in
Figure 7 is compensated by adding ∼ 8.82 V to the
region between the barriers.

1The fractional asymmetry is not so well-defined in Figure 7
and in other measurements, because the baselines at the head
and the tail differ by s significant amount.
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(∼ 14%) in Figure 7. To correct for asymmetry in the
Haissinski equation, one needs 12.4 V, which is ∼ 40%
larger than actual compensation needed in Figure 9.

We end this section by plotting some particle tra-
jectories in the longitudinal phase space in Figure 10.
We see that the trajectories in the presence of beam
loading, regardless of going to the left or right, are
always losing energy. It is obvious that when inte-
grating over energy offset, the beam profile will have
a higher density near the tail than the head.

Figure 10: A schematic drawing of the trajectories of
particles inside a barrier bucket interacting with a
resistive impedance. Because of a constant loss of energy
along the trajectories, the longitudinal profile of the
beam exhibits higher density at the tail than the head.

4. UNSOLVED PROBLEMS

There remain many unsolved problems in this anal-
ysis of head-tail asymmetry in the longitudinal profile
of the beam inside a barrier bucket. Some of them are
listed below:

4.1. Problem 1

The theory-predicted voltage compensation is in
general larger than what is needed in reality. The the-
ory predictions are depicted as open circles and joined
by solid lines in Figure 11. The experimental required
compensation voltages are plotted as solid rhombuses
and joined by dashes. The deviation appears to grow
larger at higher intensities. Some possible reasons for
this discrepancy are:

1. The linearization of the high-level rf amplifier re-
sponse has been over-compensated. During the
experimental measurement of the beam profile,
the linearization knobs have been adjusted with
the intention to eliminate the slant of the pro-
file when the beam intensity is at 1.1 × 1011.
The over-compensation of linearity will defi-
nitely lead to less head-tail asymmetry at higher
beam intensities.

2. The shunt impedance of the cavities may have
been less than 200 Ω. However, loaded shunt
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Figure 11: The compensating voltage is shown as a
function of the beam intensity, theory in circles and
experimental observation in solid rhombuses. The
experimental compensating voltages are consistently less
than the theoretical prediction.

impedance may not be much less than the un-
loaded shunt impedance because the cavities
are broadband. It will be nice if the loaded
impedance can be measured independently.
It is possible that the impedance model used in
the Haissinski equation is incorrect. So far we
have assumed a resistive impedance Rs which
is frequency independent. In reality, the shunt
impedance of the broadband cavities is visible to
the beam up to 45 MHz only and becomes negli-
gible at higher frequencies. To simulate this fre-
quency dependency, we try to introduce a more
realistic model for the longitudinal wake,

W0(t) =

√
2
π
Rsσωe

−σ2
ωt2/2 , (6)

for a particle lagging behind a point source by
the time t, so that the resistive impedance

Re Z‖
0 (ω) = Rse

−ω2/(2σ2
ω) (7)

rolls off around σω/2π ≈ 45 MHz. Unfortu-
nately, this wake only leads to negligible changes
in our results, which are to be expected, because
the beam inside a barrier bucket does not have
many high-frequency components.

It is important to point out that the theoretical de-
termination of the slant compensating voltage is, in
fact, very general. It depends only on the fact that
the distribution ψ(∆E, τ) in longitudinal phase space
is a function of the Hamiltonian H , or

ψ(∆E, τ) = ψ(H) , (8)

and does not depend on the detailed beam distribution
in the longitudinal phase space.
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4.2. Problem 2

The observed longitudinal head-tail asymmetric
beam profiles have been very linear, even up to the
intensity of 11.8 × 1011, as illustrated in the top plot
of Figure 12. On the other hand, the predicted head-
tail asymmetry, as depicted in the lower plot, is not
linear.

In the presence of a barrier rf and a purely resistive
coupling impedance the Haissinski equation can be
written as

ρ(τ) = ρ0 exp
[
−2πβ2E0eV0T1

|η|σ2
E
T0

Urf(τ)

+ α
R
N

∫ τ

0

ρ(τ ′)dτ ′
]
, (9)

where T0 is the revolution period and ±V0 is the volt-
age of the squared barriers with time duration T1.
Here, Urf is the reduced rf barrier potential, some-
thing as indicated as solid drawing in the lower plot
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Figure 12: The observed longitudinal profile of a
11.8 × 1011 beam in the top plot is very linear, whereas
the theoretical predicted profile assuming Gaussian
energy distribution in the lower plot is not.

of Figure 4 with negative and positive unit voltage
gradients at the squared barriers.

The beam profile ρ(τ) can be solved more easily
by converting the Haissinski integral equation into a
differential equation. In between the barriers, where
potential Urf(τ) = 0, differentiation with respect to τ
gives

ρ′ = −α
R
Nρ2 . (10)

The solution of this differential equation is

ρ(τ) =
ρ0

1 + α
R
Nρ0τ

, (11)

which is just the solution of the Haissinski equation
in the region between the barrier waves. We can see
clearly that the beam profile is, in fact, hyperbolic
instead of linear.

So far we have assumed a Gaussian energy distri-
bution of the beam. We can also try the more gen-
eralized elliptical-like distribution. In the absence of
any rf and coupling impedance, the distribution in the
longitudinal phase space is

ψ(τ,∆E) = A
[
∆̂E

2

0 − ∆E2
]n

, (12)

where ∆̂E0 is the half-energy spread, A is a normaliza-
tion constant, and n is a number that need not be an
integer or half integer. In the presence of two barriers
and a pure resistive impedance Rs, the Hamiltonian
can be written as

H=−η(∆E)2

2β3cE0
− eV0T1

βcT0
Urf(τ) +

e2RsN

βcT0

∫ τ

0

dτ ′ρ(τ ′) .

(13)
The phase-space distribution, being a function of the
Hamiltonian, therefore transforms from Eq. (12) to

ψ(τ,∆E) = A

[
∆̂E

2

0 − ∆̂E
2

0

(
∆E2

∆̂E
2

0

−

− bUrf(τ) + a

∫ τ

0

ρ(τ ′)dτ ′)

)]n

, (14)

where

a =
2β2e2NE0Rs

−ηT0∆̂E
2

0

and b =
2β2E0eV0T1

−ηT0∆̂E
2

0

. (15)

We can rewrite the above in the simpler form

ψ(τ,∆E) = A
[
∆̂E

2
(τ) − ∆E2

]n
, (16)

with

∆̂E
2
(τ) = ∆̂E

2

0

[
1 + bUrf(τ) − a

∫ τ

0

ρ(τ ′)dτ ′
]
. (17)
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Then the longitudinal beam profile can be readily ob-
tained by an integration over the energy offset,

ρ(τ) = 2A
[
∆̂E

2
(τ)
]n+ 1

2 ×

×
∫ 1

0

(1 − t2)ndt = 2γnA
[
∆̂E

2
(τ)
]n+ 1

2
, (18)

where

γn =
∫ 1

0

(1 − t2)ndt =
πΓ(2n+ 2)

22n+1Γ2
(
n+ 3

2

) . (19)

We next consider the region − 1
2T2 ≤ τ ≤ 1

2T2 where
the barrier potential Urf(τ) = 0 with T2 representing
the separation between the inner edges of the barriers.
Differentiation with respect to τ leads to

ρ′ = −2n+ 1
2

aρ
2

2n+1
0 ρ

4n
2n+1 , (20)

where

ρ0 = 2γnA
(
∆̂E

2

0

)n+ 1
2

(21)

is the linear density at τ = 0. This differential equa-
tion can be integrated easily resulting in the beam
profile

ρ(τ) = ρ0

[
1 +

2n− 1
2

aρ0τ

]− 2n+1
2n−1

. (22)

The integration from τ = − 1
2T2 to + 1

2T2 should give
unity, or

∫
ρ(τ)dτ =

1
a

[(
1 − 2n− 1

2
aρ0T2

2

)− 2
2n−1

−
(

1 +
2n− 1

2
aρ0T2

2

)− 2
2n−1

]
= 1 , (23)

from which ρ0 and therefore the normalization con-
stant A can be solved. Note that we should expect
roughly ρ0T2 = 1 and deviation occurs when ρ(τ) de-
viates from linearity. Knowing ρ0, we can compute
the maximum and minimum half energy spreads:

∆Emax,min = ∆̂E0

(
1 ∓ 2n− 1

2
aρ0T2

2

)− 1
2n−1

, (24)

occurring at τ = ± 1
2T2. The situation of n = 1

2
needs special treatment, and it corresponds to an ex-
ponential distribution for the beam profile. The beam
profiles corresponding to the generalized elliptical dis-
tribution of n = 0.1, 0.5, 1, and 1.5 are computed
for beam intensity 11.8 × 1011, half energy spread
at the beam center ∆̂E0 = 3.8 MeV, and resistive

impedance Rs = 200 Ω. They are depicted in Fig-
ure 13. The beam profile for the Gaussian distribu-
tion with rms energy spread σ

E
= 2.3 MeV is also

plotted for comparison, and is found to lie in between
the ones corresponding to n = 0.5 (dashes) and n = 1
(dot-dash). We do see that the head-tail asymme-
try becomes rather linear when n . 0.5 and therefore
agrees with experimental observation.

Figure 13: Longitudinal beam profile in the generalized
elliptical distribution. Starting on the left from the top
and going downward, the longitudinal beam profiles
correspond to n = 0.1, n = 0.5 (exponential), Gaussian,
n = 1.0, and n = 1.5. The predicted beam profiles are
quite linear when n . 0.5. Here, Tb is total length of
beam.

4.3. Problem 3

Although the longitudinal profile derived from the
generalized elliptical distribution with n . 0.5 is close
to linear agreeing with the observed head-tail asym-
metric beam profile, the energy distribution does not
agree with observation.

There is a 1.75 GHz Schottky detector in the Re-
cycler Ring to monitor the momentum spread of the
beam inside the barrier bucket. Schottky signals cor-
responding to beam intensity 11.67×1011 are depicted
in Figure 14. The Schottky amplitudes are displayed
in dBm which is a logarithmic scale. From this the en-
ergy distribution can be obtained easily and is shown
in Figure 15 in a linear scale as solid circles joined
by dots. The rms energy spread turns out to be
σ

E
= 2.3 MeV (3.9 kHz in the Schottky-signal plot).

The energy distribution derived from the elliptical dis-
tribution with n = 0.55 is also plotted and appears
similar to a parabolic distribution (dot-dashed curve)
having no tails and clearly does not fit the observation
at all. The energy distribution derived from the Gaus-
sian distribution is computed and is shown as a solid
curve in the figure. It appears that this distribution
fits the observation very much better.

WGB02
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Figure 14: Schottky signals of the 19485th revolution
harmonic (1.75 GHz) of a beam of intensity 11.67 × 1011

in a barrier bucket. The Schottky amplitudes are in dBm
which is defined as 10 log10 Ni/N0, where Ni is the
amplitude at the ith point and N0 is a scale factor.

5. CONCLUSION

1. We have reported head-tail asymmetry in a pro-
ton beam due to potential-well distortion of the
special barrier rf.

2. This beam linear density ρ(τ), being head-tail
asymmetric, may overflow the barrier bucket
when beam intensity is too high.

3. When barrier bucket is too full, instabilities will
occur due to resonances driven by rf jitters [8].

4. The asymmetry will also affect other future ap-
plications of barrier rf, for example, in the stack-
ing of two booster batches on top of each other in
the Fermilab Main Injector in order to increase
the linear density of the proton beam.

5. The required compensating beam-loading volt-
ages appear to be smaller than what the theory
predicts (Figure 11). It is important that when
the beam profile is measured again in the fu-
ture, proper linearization of the high-level rf is
maintained. Care must be taken to assure no
over-compensation of the rf response nonlinear-
ity.

6. It appears that the generalized elliptical distri-
bution with n . 0.5 leads to a rather linear
beam profile and therefore fits the observation
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Figure 15: The Schottky signals of the beam in Figure 14
is converted into energy-offset distribution in the linear
scale, and are depicted as solid circles joined by dots.
The theory-predicted energy-offset distributions are also
plotted for comparison. The one assuming elliptical
distribution (dot-dashed) with n = 0.55 does not have
long tails and does not fit the observed distribution well.
The one assuming Gaussian energy distribution (solid)
does fit the observed Schottky data well.

pretty well. However, the energy distribution
derived from such distribution does not fit the
observed one at all. On the other hand, Gaus-
sian energy distribution fits the observed distri-
bution rather well, but the longitudinal profile,
being hyperbolic, does not fit the experimental
one. Maybe we should investigate some other
phase-space distributions like cosine square, etc.
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