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We study the equal area law and charge-electric potential criticality for the charged Anti-de Sitter black 
holes. Considering that the black hole charge is a double-valued function of the electric potential, we 
investigate the equal area law in detail. We find that the equal area law has two different expressions 
when the thermodynamic quantities are near the critical point and far from the critical point. For these 
two different cases, we obtain the analytical coexistence curve for the low and high electric potential 
black hole phases by using these two expressions of the equal area law. Based on the result, we 
analytically study the phase diagram and the critical phenomena in the charge-electric potential plane.
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1. Introduction

Since the establishment of the four laws of black hole ther-
modynamics, phase transition and critical phenomena continue to 
be an exciting and challenging topic in black hole physics. It was 
Hawking and Page, who first discovered the existence of phase 
transition between the stable large black hole and thermal gas in 
an AdS space [1]. Especially, motivated by the AdS/CFT correspon-
dence [2–4], the Hawking-Page phase transition was explained as 
the confinement/deconfinement phase transition of the gauge field 
[5]. Subsequently, the study of the black hole phase transition in 
AdS space attracts more attention.

Interestingly, there exist stable small and large charged or ro-
tating black hole in AdS space. Among them, there is a phase 
transition of the van der Waals (vdW) type [6–8]. Very recently, 
the study of the black hole thermodynamics has been further gen-
eralized to the extended phase space. In this parameter space, the 
cosmological constant was interpreted as the thermodynamic pres-
sure [9–12]

P = − �

8π
= 3

8π l2
. (1)
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The corresponding conjugate quantity is the thermodynamic vol-
ume. Then the small-large black hole phase transition was re-
considered in Ref. [13] for the charged AdS black holes. Signif-
icantly, the results state that the black hole systems and the 
vdW fluid have the similar phase structure and P -V (pressure-
thermodynamic volume) criticality. Therefore, it is natural to con-
jecture that they may have the similar microstructure [14]. The 
study has been extended to other black hole backgrounds. Besides 
the small-large black hole phase transition, more interesting phase 
transitions were found, for review see [15,16].

Comparing with the P -V criticality, the Q -� (charge-electric 
potential) criticality has also attracted much more attention. It al-
lows a low electric potential black hole transits to a high electric 
potential black hole triggered by the temperature or pressure. The 
phase diagram and critical phenomena were studied for the differ-
ent AdS black holes [17–26].

On the other hand, as an alternative method of Gibbs free en-
ergy to determine the phase transition point, the equal area laws 
were investigated. As early as in [7], the authors started with the 
first law and showed that there is the equal area law in the T -S
(temperature-entropy) plane for the charged AdS black holes. Em-
ploying this equal area law, the first analytical coexistence curve 
was obtained for the four dimensional charged AdS black holes 
[27]. Based on it, the analytical study of the critical phenomena 
becomes possible. In Ref. [28], we started from the first law of 
the charged AdS black hole, and showed that there exist three 
kinds of the equal area laws in T -S , P -V , and Q -� planes. More-
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over, for the rotating black holes, the equal area law also holds 
in J -� (angular momentum-angular velocity) plane [29]. This re-
sult also clarifies that the equal area law does not valid in the P -v
(pressure-specific volume) plane. Other work concerning the equal 
area law can be found in [30–33].

Although it is shown that the equal area laws must hold in 
different planes, one needs to construct them in detail. For the 
four dimensional charged AdS black hole, equal area laws in T -S , 
P -V planes have been well constructed. However, in the Q -�
plane, the detailed construction is still not given. So in this pa-
per, we will carry out the investigation of the equal area law in 
the Q -� plane for the charged AdS black hole. When plotting 
the isothermal and isobaric lines in the Q -� plane, we find that 
the equal area law has quite different behaviors when the ther-
modynamic parameters are far from the critical point. One is the 
typical case, while another is a novel one, which is mainly caused 
by the fact that the black hole charge is a double-valued func-
tion of the electric potential. For these two different cases, we, 
respectively, obtain the expressions of the equal area laws. Based 
on them, we obtain the analytical coexistence curve in the Q -�
plane. Moreover, employing the form of the coexistence curve, we 
analytically study the phase diagram, order parameter, and Q -�
criticality.

The paper is structured as follows. In Sec. 2, we start with the 
first law, and consider the equal area for a thermodynamic system. 
Then considering the chemical potential term is a double-valued 
function, we obtain two different expressions for the equal area 
law. Since the black hole charge Q is a double-valued function of 
the electric potential �, we generalize the study to the charged 
AdS black hole in Sec. 3. Employing these two different expres-
sions of the equal area law, we obtain the analytical coexistence 
curve in the Q -� plane. In Sec. 4, we analytically study the phase 
diagram, order parameter, and the critical exponent. Finally, a brief 
summary is given in Sec. 5.

2. First law and equal area laws

Before pursuing the specific equal are law in the Q -� plane for 
the charged AdS black hole, we would like to investigate the equal 
area law for an arbitrary thermodynamic system.

Let us start with the first law

dE = T dS − PdV + xdy. (2)

The last term xdy denotes the chemical potential term. The Gibbs 
free energy G = E − P V − T S , which leads to

dG = −SdT + V dP + xdy. (3)

In fact, we can absorb the −SdT and V dP terms into the third 
term, i.e.,

dG =
∑

i

xidyi . (4)

For simplicity, we only let one yi vary freely, while keep others 
fixed, i.e., dG = xdy. Considering that the system undergoes a first 
order phase transition at constant y∗ from x1 to x3, where the 
system phases located at x1 and x3 are two coexistence phases, 
one has �G = 0. Therefore, integrating (4), we can express it in a 
circular integral form∮
c

xdy = 0. (5)

Here the circular integral path is x1(y∗) x(y)−→ x3(y∗) y=y∗
−→ x1(y∗). 

This formula (5) is just the expression of the Maxwell equal area 
law. Employing it, we can exactly determine the value of y∗ . If tak-
ing y = P and x = V , we will have the equal area law in the P -V
plane, i.e., 

∮
c V dP = 0. In general, it is more convenient to express 

y in terms of x rather than express x in terms of y. So next, we 
will change the integral variable y to x in Eq. (5). However, for 
some cases, y has double values for each x, which makes the situ-
ation much more interesting. Since it is not noted before, we will 
examine it in detail in the following section.

2.1. Case I

Here we consider that y is a double-valued function of x, while 
it can be separated into two single-valued functions, y1(x) and 
y2(x). The equal area law is constructed by only one branch of 
y, see Fig. 1(a). Actually, this case is like that y is a single-valued 
function of x. The horizontal line y = y∗ intersects y2(x) (red solid 
curve) at x1, x2, and x3 with x1 < x2 < x3.

Typically, the equal area law (5) can be easily re-expressed as

∮
c

y2dx =
x3∫

x1

y2dx +
x1∫

x3

y∗dx = 0. (6)

Since y∗ is a constant, it reduces to
x3∫

x1

y2dx = y∗(x3 − x1). (7)

This is a typical form that we usually used. Making use this for-
mula, we can determine the value of y∗ of the phase transition 
point.

2.2. Case II

In this case, both single-valued functions y1(x) and y2(x) are 
included in constructing the equal area law. We plot a sketch pic-
ture for them in Fig. 1(b). Functions y1(x) and y2(x) are plotted in 
red dashed line and red solid line, respectively. The horizontal line 
y = y∗ intersects y1(x) at x1, and intersects y2(x) at x2 and x3. 
Functions y1(x) and y2(x) connect at x0, while which is not the 
extremal point of y2(x). Moreover, the relation x0 < x1 < x2 < x3
holds.

These three areas in the figure marked in shadow can be calcu-
lated as

area(a) = −
x0∫

x1

y1(x)dx −
x1∫

x0

y2(x)dx, (8)

area(b) = −
x2∫

x1

y2(x)dx + y∗(x2 − x1), (9)

area(c) =
x1∫

x2

y2(x)dx − y∗(x3 − x2). (10)

If y∗ is the phase transition point and the equal area law (5) holds, 
one must have

area(a) + area(b) = area(c). (11)

Plugging (8)-(10) into (11), we obtain

x0∫
y1(x)dx +

x3∫
y2(x)dx = y∗(x3 − x1). (12)
x1 x0
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Fig. 1. Equal area law in the y-x plane. y is a double function of x, while functions y1(x) (red dashed lines) and y2(x) (red solid lines) are single-valued functions of x. 
(a) Only y2(x) participates in the construction of the equal area law. The horizontal line y = y∗ intersects y2(x) at x1, x2, and x3 with x1 < x2 < x3. (b) Both y1(x) and 
y2(x) are used for the equal area law. The horizontal line y = y∗ intersects y1(x) at x1, and y2(x) at x2 and x3. Functions y1(x) and y2(x) connect at x0. The relation 
x0 < x1 < x2 < x3 holds.
Obviously, this novel expression of the equal area law is different 
from the typical one given in (7). Thus, one must be very careful 
when studying the phase transition for a thermodynamic system 
by using the equal area law.

3. Equal area law for charged AdS black hole

Now, it is widely known that there exists a small-large black 
hole phase transition in the background of charged AdS black hole. 
Here we would like to investigate its coexistence curve by using 
the equal area law in the Q -� plane.

The line element to describe this charged AdS black hole is

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θdφ2), (13)

where the function is given by

f (r) = 1 − 2M

r
+ Q 2

r2
+ r2

l2
. (14)

Here the parameter M and Q are the black hole mass and charge, 
respectively. The AdS radius l is related to the pressure by Eq. (1). 
The temperature T , entropy S , electric potential �, thermodynamic 
volume V , and Gibbs free energy G are

T = 2Prh + 1

4πrh
− Q 2

4πr3
h

, S = πr2
h, � = Q

rh
, (15)

V = 4

3
πr3

h, G = rh

4
− 2π Pr3

h

3
+ 3Q 2

4rh
, (16)

with rh being the horizon radius of the black hole. Solving the 
pressure from the equation of the temperature, one can get the 
state equation for the black hole, which reads

P = T

v
− 1

2π v2
+ 2Q 2

π v4
, (17)

where v = 2rh is the specific volume of the black hole fluid. Us-
ing the condition (∂v P ) = (∂v,v P ) = 0, one can easily obtain the 
critical point [13]

Tc =
√

6

18π Q
, vc = 2

√
6Q , Pc = 1

96π Q 2
. (18)

This point corresponds to a second order phase transition. Below 
the point, the system will encounter a first order phase transition. 
The isothermal and isobaric lines also show the non-monotonous 
behaviors with v or rh. More interestingly, the Gibbs free energy 
demonstrates the swallow tail behavior.

Employing the expression of these thermodynamic quantities, 
the state equation (17) can be expressed as

�4 − �2 + 4π T Q � − 8π P Q 2 = 0. (19)

Solving Q from the equation, we have two solutions

Q 1 =
√

π T + √
2P�2 + π T 2 − 2P

4
√

π P
�, (20)

Q 2 =
√

π T − √
2P�2 + π T 2 − 2P

4
√

π P
�. (21)

So the charge Q is a double-valued function of �, while Q 1 and 
Q 2 are single-valued functions. Moreover, Q 1 and Q 2 meet each 
other at

Q 0 = �
√

1 − �2

2
√

2π P
. (22)

A simple calculation show that Q 1 has no extremal point. While 
Q 2 has one minimum and one maximum, and both of them share 
the same expression

Q m
2 = �

√
1 − 3�2

2
√

2π P
. (23)

In Fig. 2(a), we plot the charge Q as a function of � with fixing P
and T . The pressure P = 1, and the temperature T varies from 0.74 
to 0.8 from top to bottom. From the critical point (18), one can find 
that the critical temperature corresponded to P = 1 is Tc = 0.7523. 
It is obvious that Q 1 always increases with �. While for Q 2, it 
has a different behavior. If the temperature T < Tc, Q 2 decreases 
with �. However, when 

√
2P
π > T > Tc, Q 2 firstly decreases, then 

increases, and finally decreases with �. While when T >

√
2P
π , Q 2

firstly increases, then decreases with �.
Next, we would like to determine the phase transition point by 

constructing the equal area laws in the Q -� plane. In Sec. 2, we 
have discussed the area law for a thermodynamic system when 
y is a double-valued function of x, so we can do the following 
replacement,

x → �, y1 → Q 1, y2 → Q 2. (24)
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Considering the behaviors of the charge Q , we can divide them 
into two cases, see Fig. 2(b). Case I is very near the critical point, 
and case II is far from the critical point. In the first case, the con-
stant phase transition charge Q ∗ only intersects with Q 2. For the 
second case, the constant phase transition charge intersects Q 1 at 
the left and intersects Q 2 at the right.

3.1. Case I: near the critical point

For this case described in Fig. 2(b), we can find that only the 
solution Q 2 is enough to construct these two equal areas. This is 
consistent with that given in Sec. 2.1, so the equal are law can be 
expressed as

�3∫
�1

Q 2dx = Q ∗(�3 − �1). (25)

Plunging Q 2 given in (21) into it, we have

Q ∗ = 1

(�3 − �1)

(
T

8P
(�2

3 − �2
1) +

(
π T 2 + 2P (−1 + �2

1)
) 3

2

24
√

π P 2

−
(
π T 2 + 2P (−1 + �2

3)
) 3

2

24
√

π P 2

)
. (26)

On the other hand, from the state equation, we have

Q ∗ =
π T �1 − √

π
√

−2P�2
1 + π T 2�2

1 + 2P�4
1

4Pπ
, (27)

Q ∗ =
π T �3 − √

π
√

−2P�2
3 + π T 2�2

3 + 2P�4
3

4Pπ
. (28)

Then solving the pressure P from 2 ∗ (26) = (27)+ (28), we will get

P = 3π T 2

2(3 + �2
3 − 4�3�1 + �2

1)
. (29)

Further, we change (27) and (28) into the following forms

P = �1(4π Q ∗T − �1 + �3
1)

8π Q ∗2
, (30)

P = �3(4π Q ∗T − �3 + �3
3)

8π Q ∗2
. (31)

Thus, by solving Eqs. (29), (30), and (31), one can obtain the coex-
istence curve in the Q -� plane. Taking (30)-(31)=0 and 2 ∗ (29) =
(30) + (31), we arrive

− (�3 + �1) + (�3 + �1)
(
−2�3�1 + (�3 + �1)

2
)

+ 4π Q ∗T = 0, (32)

2�3�1 − 2�2
3�2

1 − (�3 + �1)2 + (−2�3�1 + (�3 + �1)2
)2 + 4(�3 + �1)π Q ∗T

8π Q ∗2

− 3π T 2

3 − 6�3�1 + (�3 + �1)2
= 0. (33)

Solving these equations, we can express �1 and �3 in terms of 
the charge Q and temperature T

�1 =
(

1

24A

) 1
3 +

(
A

72

) 1
3 − B

6A
1
3

, (34)

�3 =
(

1

24A

) 1
3 +

(
A

72

) 1
3 + B

1 , (35)

wh

A =

B =

Plu
the

T 2

Ma
as

�1

�3

Mo
from

Q ∗

Act
tion
eve
hol
qua
sec

3.2.

in 
tran
and
Sec

Q ∗

It is
righ
it a

Q ∗

wh
tion
�3
6A 3
ere

−9π Q ∗T +
√

81π2 Q ∗2T 2 − 3, (36)√
3 × 32/3 + 9 × (3A2)1/3 + 9A4/3 + 32/3 A2 − 36 × 32/3 Aπ Q ∗T

31/3 + A2/3
.

(37)

gging �1 and �3 into (29), one can obtain a relation between 
 pressure, temperature and charge [27]

= 8P (3 −
√

96π P Q ∗2)

9π
. (38)

king using this equation, �1 and �3 can be further expressed 

=
√

3 − 8Q ∗√6π P −
√

9 − 48Q ∗√6π P + 288π Q ∗2 P

6
,

(39)

=
√

3 − 8Q ∗√6π P +
√

9 − 48Q ∗√6π P + 288π Q ∗2 P

6
.

(40)

reover, we can solve the charge of the phase transition point 
 the equation, which gives

=
√

3�1,3(

√
3�2

1,3 + 1 − 2�1,3)

2
√

2π P
. (41)

ually, this describes the coexistence curve of the phase transi-
, and the phase diagram can be well determined by it. How-

r, we need to note that this equation only effective for the black 
e system very near the critical case. When the thermodynamic 
ntities are far from the critical point, we need to consider the 
ond case.

 Case II: far from the critical point

For this case, we can find that both Q 1 and Q 2 are useful 
constructing the equal area laws. The charge Q ∗ of the phase 

sition point will intersect Q 1 at �1, and intersect Q 2 at �2
 �3. Thus this case is exactly consistent with that given in 
. 2.2.
Taking the replacement (24), the equal area law (12) reduces to

(�3 − �1) =
�0∫

�1

Q 1(�)d� +
�3∫

�0

Q 2(�)d�. (42)

 worthwhile pointing out that �1 > �0, so the first term in the 
t side is negative. Plugging Q 1 and Q 2 into (42), we integrate 

nd get

(�3 − �1) = T

8P
(�2

3 − �2
1) −

(
π T 2 + 2P (−1 + �2

1)
) 3

2

24
√

π P 2

−
(
π T 2 + 2P (−1 + �2

3)
) 3

2

24
√

π P 2
, (43)

ere we have used �0 =
√

2P−π T 2

2P corresponding to the connec-
 point of Q 1 and Q 2. At the phase transition points �1 and 

, they, respectively, satisfy
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Fig. 2. (a) The behavior of the charge Q as a function of the electric potential � with P =1. The temperature T varies from 0.74 to 0.80 from top to bottom. The dashed and 
solid lines are for Q 1 and Q 2, respectively. The thin red line denotes the connection point Q 0 of the curves Q 1 and Q 2 and the thin blue line is for the minimum point 
Q m

2 . (b) Two different behaviors of charge Q 2. Case I is very near the critical point, and case II is far from the critical point.
Q ∗ =
π T �1 + √

π
√

−2P�2
1 + π T 2�2

1 + 2P�4
1

4Pπ
, (44)

Q ∗ =
π T �3 − √

π
√

−2P�2
3 + π T 2�2

3 + 2P�4
3

4Pπ
. (45)

Making use (43)-(45), we have

3P (�3 − �1)

×
(

�1

√
−2P + π T 2 + 2P�2

1 − �3

√
−2P + π T 2 + 2P�2

3

)

= −(−2P + π T 2 + 2P�2
1)

3
2 − (−2P + π T 2 + 2P�2

3)
3
2 . (46)

Solving the pressure from it, one can obtain

P = 3π T 2

2(3 + �2
3 − 4�3�1 + �2

1)
. (47)

Interestingly, this pressure is exactly the same as (29) of case I. 
Moreover, from (44) and (45), we arrive

P = �1(4π Q ∗T − �1 + �3
1)

8π Q ∗2
, (48)

P = �l(4π Q ∗T − �3 + �3
3)

8π Q ∗2
, (49)

which is also the same as (30) and (31). Thus, it is clear that the 
equations determining the coexistence curve are exactly the same 
for both the cases, so the results (34)-(41) for the first case also 
valid for the second case.

In summary, according to the equal area laws in the Q -� plane, 
we obtain the coexistence curve, see (39)-(41). Moreover, although 
the equal area laws have two different expressions near the critical 
point and far from the critical point, they admit the same coexis-
tence curve.

4. Phase diagram and critical exponent

As shown above, the coexistence curve (41) is effective for 
the thermodynamic quantities both near and far from their crit-
ical values. Based on the result, we in this section would like 
to study the phase diagram and critical exponent in the Q -�
plane.

First, we plot the coexistence curve in the Q -� plane in 
Fig. 3(a). To avoiding the confusion, here we name the low-high 
electric potential black hole phase transition rather than the small-
large black hole phase transition. The light blue shadow region 
denotes the coexistence phase of the low and high electric po-
tential black holes. The low and high electric potential black hole 
phases are located in the left and right of the figure, respectively. 
A simple calculation also shows that the boundaries of the coex-
istence low and high electric potential black hole phases are at 
� = 0 and 1, which is independent of the pressure of the black 
hole system. The critical point is the top point in the coexistence 
curve. Solving it, we have

�c = 1√
6
, Q c = 1

4
√

6π P
. (50)

It is clear that �c is a constant and independent of the pressure 
P . While the critical charge Q c decreases with the pressure.

Moreover, we also show the behavior of �� = �3 − �1 as a 
function of the charge Q in Fig. 3(b). At Q = 0, �� has maxi-
mum value 1. Then �� decreases with the charge, and approaches 
zero when the critical charge is achieved. So �� acts as an order 
parameter, which can be used to describe the low-high electric po-
tential black hole phase transition.

Next, we would like to examine the critical exponents. Since �1

and �3 have analytical forms, see (39) and (40), we can expand 
them near the critical point, the results are

(�1 − �c) = −(6π P )
1
4 (Q c − Q )

1
2 + √

π P (Q c − Q )

−
√

3

2
π P (Q c − Q )2 +O (Q c − Q )3 , (51)

(�3 − �c) = (6π P )
1
4 (Q c − Q )

1
2 + √

π P (Q c − Q )

−
√

3

2
π P (Q c − Q )2 +O (Q c − Q )3 . (52)

So near the critical point, (�1 − �c) and (�3 − �c) have the same 
exponent of 1

2 . Interestingly, one can find that the first term of 
these expansions has opposite signs. While other coefficients are 
exactly the same. Therefore, �� must have the same exponent 1

2 . 
Actually, with a simple calculation, we have

�� = 2(6π P )
1
4 × (Q c − Q )

1
2 . (53)

Obviously, this confirms the exponent 1
2 . More importantly, this re-

sult is an exact one. So it is also valid even for the thermodynamic 
quantities are far from their critical values. Therefore, we have an 
analytical form for the order parameter ��.
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Fig. 3. (a) Phase diagram in the Q -� plane. The shadow region denotes the coexistence phases of the low and high electric potential black holes. (b) Behavior of �� =
�3 − �1 as a function of the charge Q . The pressure P = 1.
5. Summary

In this paper, we have studied the equal area law and the ther-
modynamic criticality in the Q -� plane for the charged AdS black 
holes.

It is widely known that there exists the black hole phase tran-
sition for the charged AdS black holes. The phase transition point 
can be well determined by constructing the equal area law. How-
ever, different from the typical expression of the equal area law, 
we found that there is another expression, which is because that 
the charge Q is a double-valued function of �. When considering 
it, we obtained a new expression for the equal area law, see (12)
or (42). Based on these two different expressions of the equal area 
law, we obtained the analytical coexistence curve. Although these 
two expressions behave quite different, both of them confirm the 
same result, see (41).

Making use the analytical coexistence curve, we explored the 
phase diagram and critical exponents in the Q -� plane. Different 
black hole phases are clearly displayed in Fig. 3(a). Near the criti-
cal points, we found that (�1 − �c) and (�3 − �c) have the same 
exponent of 1

2 . The order parameter �� also has an exponent of 
1
2 . More interestingly, the order parameter has a compact expres-

sion �� = 2(6π P )
1
4 × (Q c − Q )

1
2 for all the range of the charge. 

Furthermore, we believe that our results are very useful on con-
structing the equal area law for a thermodynamic system when 
the double-valued function is included in.
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