
Riemann Surfaces, Conformal Fields and Strings 

I he ruk uf Rtc m:rnn surl acc~ in modern pa rticle rhy~ i cs I\ discussed. M<i thc111at-
1r :1!1 \. q11 :1111urn ri cld theories c:1 11 he tlclinccl 011 the" : mani fo lds i f the <1rc co11-
lmm11lll' in ari 11n1. I hysic•tll y. Ri1:t11nnn surl :i tcs provide n 111od1: I for th • wqrlJ 
,h~ c l ~ 'vcp t out IJ n prop:1gating rcla1ivistk string. Thuh Ricmunn surl uccs nrc the 
natural se ll ing for confom1al field theory. and. both these concc pl ~ together pruvidc 
.1 1i1r11tul .1 t1 011 of smng theory. 
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I. FIELD THEORY AND RIEMANN SURFACES 

The space- time on which the particl physicist writ es a Lagrnngian 
field theory and deduces equations ol moiion , cbssi c~d solutions 
anJ quantum scaucring amplitud s is usually taken to be a Rie­
nian111a11 manifold .1 T he. ii.l ea is cent rn l l ' general relati vi ty and 
grav1tat1 n.2 and has becom · mor imporlanl in pnrticlc phys ics 
w11h increasi ng cmphasi on unified theo ries o f all for es including 
grav itation . 

R1cmannian gcomotr is usually incorpo.ratctl as a se ries of pre­
Knptions. starting with the introduction of a i..:cond-r:rnk ~ym ­

mctril: tcn·or fi ' ld , the metric g
1
.,,(x) . anu combinations o[ its de­

r1 \tativc, ~u ch a ~ the hristoff I conn ·ction 1 ·~ ... (,r) unJ the Ricniann 
curvature tensor R~v11 (x). These are then coupled invariantly to 
lhcnisclvcs and to other classical fields such as scalars <P(x) and 
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vector gauge fields A~(x) . Some typical field-theory actions on 
Riemannian manifolds are : 

(i) (114K2 ) f d4xygR: the Einstein-Hilbert action (K is the grav­
itational constant) ; 

(ii) (1/2) f d 4xVggµv aµ<1>av<1>: the scalar field coupled to gravity; 
(iii) - (1/4) f d 4xVggµAg vp tr(F µvFAP): the Yang-Mills field cou-

pled to gravity. (1) 

From the mathematician's point of view, a Riemannian manifold 
is a somewhat specialized structure. To define it, one starts with 
a topological space and introduces a differentiable structure (a set 
of coordinate charts such that coordinate changes across overlaps 
are given by differentiable functions). This gives rise to a differ­
entiable manifold . At the next stage a Riemannian metric is in­
troduced, and one gets a Riemannian manifold. For the particle 
physicist it has generally been this last attribute which has played 
a major role; the topology and differentiable structure have (until 
recently) played a relatively minor part. 

An interesting specialization of the notion of a differentiahle 
structure is that of a complex structure. 3 The coordinate charts are 
chosen to be complex, and coordinate changes across overlaps are 
given by complex analytic functions. In this way one gets a complex 
manifold. This can in turn be endowed with a metric. The various 
structures we have discussed can be listed in order of complexit~· 
(Fig. 1). 

Riemann surfaces belong in the lower branch of this flow chart. 
They are, quite simply, one-complex-dimensional (connected I 
manifolds. 4 They need not be thought of as metric spaces at all. 
An important fact about them is that they are relatively simple 

topological 
space 
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and rather well-understood objects. Their topologies and complex 
structures are completely classified. In sharp contrast, differenti­
able manifolds in four dimensions, and possible Riemannian met­
rics on them , are far from being classified. 

From the physicist's point of view , Riemann surfaces a r s a rccly 
interesting as models of space-time! • r one thing th y are tw -
dimensional as real manifolds. But thei r mathematical implicily 
makes it very tempting to try and c n tru t fie ld-theory mode l 
on them. 

IL STRING DYNAMICS AND RIEMANN SURFACES 

Had physicists two de ad s ago reasoned things out in the manner 
di ·cussed above, they w uld probably have come to a halt at this 
point. orrunately for u , things worked Ltt quite di fferently. Two­
t.limensi nal 'space- times" entered part icl physi in the descrip­
tion of the "world sheet" swept out by a pr pagating re la tivistic 
string5 (Fig. 2). 

It is a theorem4 that a two-real-dimensional manifold can be 
described as a one-complex-dimensional manifold if it is orientable 
(which means that one can define a unique normal vector smoothly 
everywhere). For closed strings, this will be true of their world 
sheets if the strings themselves are assigned an orientation which 
1s preserved in interactions. Thus closed oriented strings sweep 
out Riemann surfaces. 

It does not (yet) follow that, in describing the dynamics of such 
a string, it will be sufficient to deal with Riemann surfaces, in­
dependent of a metric. In fact, as presently formulated, the basic 
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postulate of slrin, theory does requir a lw< -d imensional metric 
in the Riemann surface, as we wi ll see. but the I p ndcncc 011 

them Irie ultimat ·ly ancels out in ph sical quan tities. In n some­
what r unclaboul way, then , string th eories are fi Id lhcori s on 
Riemann surfaces. 

Thi come · ab< ul in the l'ollowing way. Introduce a st ring o­
< rdinatc ; JJ.(a J . wh re 1' labels points in a Euclid 'an ·pace­
tim and (cr,r ure local real oordinates n an oriented two­
dimensional ·urfacc. A string confi uration may be thought of i. 

a m<:1p from rhe Riemann surfac' int phy!iical space-Lime (Fi,. ). 
h osing a metri g,,1,(a.r) on the tw -dimensi nnl surfa e, we 

postulate an action6
·
7 

(2) 

where the integra l is performed over the surface. The motivation 
for this cla · ica I action may b • seen from the fact that the classical 
equation f motion f r the me tric (varied as an independent field) 
is 

0 (3) 

This is solved by 

where <l>(a,t) is an arbitrary function. Substituting this into Eq. (2) 
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one gets the classical action 

(4) 

This is just the area of the world sheet swept out by the string in 
n-dime nsional space. ~1 Note that the <!>-dependence has dropped 
out. as a consequence of Wey! invariance (invariance of Eq. (2) 
unde r I «ti rescalings of the metric: 8ab(rr,t) ~ e<l>1"">gab(a,t) for 
nrhi lra r (!>(er .t)). 

The connection between this action principle and Riemann sur­
faces as one-complex-dimensional manifolds comes about through 
three important theorems4

: 

(i) Every orientable two-real-dimensional manifold admits a com­
plex structure, hence can be made into a Riemann surface . 

(ii) Every Riemann surface admits a unique metric of constant 
curvature, denoted kab(rr,t) . 

(iii) All possible metrics on a given Riemann surface are confor­
mally related: if 8ab( a ,t) and g~b( a ,t) are two metrics, then 

(5) 

for some function <!>(a,t). 

Fr Ill (i) irnd (iii) , every metric is conformally related to a unique 
one of constant curvature. Thus in the action (2), we can substitute 
any arbit ra r 1 g 111> by e<l>gab for a suitable <!>(CT ,t) . The <!>-dependence 
now drops ut. a nd we are left with 

(6) 

But now theorem (ii) tells us that each gab is uniquely associated 
to a given complex structure, that is, to a given Riemann surface. 
Thus the string action is (classically) an action on a Riemann sur­
face. 
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III. THE CLASSIFICATION OF COMPACT RIEMANN 
SURFACES 

The que ticm of how nrnn y inequiva lenl 811ti 's there are reduces lo 
that of classifying incqui alcnt Riemann surfaces. Le t us mak 
s mewhat more precise wh al i meant by a c mplex ·tructure. 

Th c ncept involved in defining a manifold ca n be illusLrated 
by a diagram (Fig. 4 . µ. 1 and µ. 2 are two overlapping patches on 
the manifold . c!> 1 a11d <1>2 as~oc ia te subsets of u lide n pace, v1 

and v2 • to th ir re ·pe ti vc patch . These are the coordinace maps. 
The " transition fun tion" j' d esc ribe~ h w the shaded regions on 
lht: I 'ft and right arc rel<tl ·J. by virtue ol' bt:i ng different co rc.li -
natization of th ame haded region in M. l 

For a Riemann sm face lhe c ordinate patche. v1 and v2 lie in 
the complex plane. If the compiex coordinate on v1 is z and on 
v2 , w, then the transition function is 

f: z ~ w = w(z) (7) 

The fact that w is an analytic fW1ction of z, on every overlap of 
co rtlinate patches, is what define r1 complex structure. Another 
choice of patches co rdinates and analyti transition fun cti ns 
w uld lefine a different complex struct1.1re , u11less the transiti n 
functi ns on verlap of the old and new pat he are also analytic. 
Thus a single complex structure i n t just one c llection of analytic 
charts, but all choices of such c llections which agree analytically 
with each other. 

FIGURE 4 
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How many inequivalent Riemann surfaces are there·: Let us 
concentrate on compact surfaces with ul boundar~. Topokig1cal l_ . 
these are labelled by "genus ... or number of ·· handle .. r F i l!. 5 • 
Within each genus one has to a~k ho\' man~ 1ncq ul\ alcm wrnr1n 
structures there are, in the sense dc:scribcd nbo\·e . The re'-ul1 1• 

(i) For g = 0, there is a unique complex structure . 
(ii) For g = 1, there is a one-complex-parameter family of com­

plex structures. 
(iii) For g ~ 2, there is a (3g - 3 )-complex-parameter famil~ c•: 

complex structures. 

The parameters labelling inequi\ alent complex structures Cir.: 
called "Teichmuller parameter~ .. or '"moduli ... 

For the torus (g = 1), one can gi\e a simple intuitive descriptic•r: 
.of the moduli. Consider the complex plane. and a lattice of points 
on it (Fig. 6). A lattice on the complex plane is simply a discrete 
set of points which are integrctJ linear combinations of t\\ o bC1s1~ 

Complex plane 
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vectors, which we have chosen to be the unit vector along the real 
axis, and an arbitrary independent vector labelled by a complex 
number T. Now if we identify all points in the complex plane which 
differ by a lattice vector m + m (fo r arb it rn ry intege rs 111 , 11) , then 
we are left with the shaded parallelogram shown in Lhe fi gure. 
which is equivalent to all other such paralle lograms under the 
identification . Moreover, the opp site cd cs of Lhe shaded regi< n 
are identified, and this is therefor ' a rcprcsentati n of th torus. 
The complex number T labels the to rus: fo r each different number. 
we get a different lattice and hen e a dif~ rent torus. How vcr it 
may happen that certain diffe rent vnlues of T generate the same 
torus: for example , T and ,. 1 J.. The tra nsformatio n T --. T + I 
is called a modular transformat ion . Phy ·ica ll y meaningful t.1ua n­
tities which are defined on the surface labelled by T must be in­
variant under modular transformations, since these are discrete 
transformations of the given torus onto itself. 

IV. THE PATH INTEGRAL OF STRING THEORY 

Jn m dern language , the basic postulate of string the ry7 i. that 
scatte ring amplitude. or various string tales are given by the in­
serti n of cert ain ri Id ( ailed ' ' vertex p rator \ " 11 ' one fo r each 
strirP . tat ) into th path integral wh se action is ~ q . (2). The 
path integral i evaluated , in principle, by summing over metri(;S 
on compact Riemann surfaces of a give n 1cnu , and lb result L 
summed up over all genus: 

A(k1, ... ,k,,:) = L c11 f [dgab][dXµ] 
genus g 

X e -s1x.~IV(X,k 1 ) • • • V(X,k,,.,,.) (8) 

Here V1' X ,k1I is the v ~rte x op rator for the cmi sion or . omc ·iring 
. late of momentum k,.. and c is a c upling co nstant. What we lrav' 
wrilt n lo( ks similar lo a lo p expansi011 in ordinary quM.lum field 
the ry, with th · genus counting the number of loops. 

A s f rmulatcd, there appears to b a ormidable fun ctional in­
tegral o ver all p ·s ib lc metrics in a giv n genus. Out bcc;wsc )f 

140 



I 

\\ 

Eq. (6), only inequivalent Riemann surfaces give different actions, 
and this forms a finite-parameter family in each genus, labelled by 
the moduli. This is true as long as the classical Wey I invariance 
continues to hold in the quantum theory. Polyakov showed that 
the re is in gene ra l an anomaly in the Wcyl symme try. b ut this 
vani hes in 2 . ra ·e-time dim.e n. ions for the actio n q . (2) . In 
this c ritical dim nsion the a mplitude in q . (8 ) i eva tw1t d pur ly 
by ·umming ove r a ll inequivalent Riemann surface . rega rdless f 
a me tr ic . 11 Thu. the integrand l be performed i a finit e-dime n­
sional one, over modular parameters. For consistency, the inte­
grand must be modular invariant. 

It is a somewhat puzzling feature of string theory that a two­
dimensional metric has to be carried along until the e nd, at which 
point it does not affect physical results. Possibly a new formulation 
based directly on Riemann surfaces (or generalizations of this con­
cept) will simplify the situation. 

· • V. CONFORMAL FIELD TIIEORY: THE BASIC 
CONCEPTS 

1 Let us rewrite the action, Eq. (6) , in terms of local isothermal 
~ • complex coordinates z, z on the Riemann surface. These coordi­
~ ·:~/ nates are defined by the requirement that in a given patch the line 

~) I ., · element be given by: 
I ~·, 

ds 2 = e<l><z.zldzdz (9) 

~r for some function <!>( z ,z). That such coordinates can always be 
'. chosen is intuitively evident from the fact that two of the three 

,) ~ components of the metric gah can be fixed at will by the two avail-
, ~.ab le coordinate choices , while the third is the conformal factor 

'' cl>(z,z). In these coordinates, the action is: 

(10) 

.1•,, In this form the entire information about the complex structure 
, , ' ) is contained in the way the coordinates patch up over the Riemann 
~ kt I 
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surface. On the overlap of two isothermal coordinate patches, the 
transition functions are, as usual, analytic: 

Z ~ w(z) (11) 

Clearly this is a symmetry f lhe tw -dimensional classical field 
theory Eq. (10). This is ca lled conformal invariance, which is really 
just that property of a field tbe ry which tell us that it may be 
defined on a Riemann surface. 

Conformal invariance is a property of a large class of field­
theoretic models in two dimensions. 12•13 Indeed it was realized 
many years ago 14 that a two-dimensional field theory with scale 
invariance actually possesses conformal invariance. This latter in­
variance, being parametrized by arbitrary analytic functions, forms 
an infinite-dimensional group of symmetries. This enables one to 
solve many such models completely by using very general prop­
erties of their symmetry algebra. 12 

We have thus found an answer t two basic questions: what kincl 
of field the ri es can be written on Riemann urfaces, and what 
phy ·ical use they might be l the panic! physicist. To the first. 
the answer is conformal field theory while to the seco nd the an swe r 
li es in stri ng theory . It i beyond the s op of U1i article to di cuss 
in detail why string th ories are b lieved to be usefu l in particle 
physics. 5) 

Now although the specific conformal field theory which describes 
the cl.o ed b onic tring propagac ing i.n a flat space-time is de­
scribed b the simple action ·q. (Hl), one can take tl1e point f 
view that the space of all possibl nformal field theories has 
applicability to string physi .. The logic i that one is not ultimately 
int re ted only in lhe propagati n of a ingle string in a flat back­
ground pace-time. pecifically one may b interested in a tring 
propagating in arbitrary curved background space-Limes. 15•1(! This 
brings in a large class of coni rmal field theories, which are pecific 
types of n n-linear O"·mode ls with vanishing ~-functi n.1

<'> · 17 But 
besides these example·, which have an bviou physical. motiva­
tion, one can argue that every confonnal field theory is (l caodi.clate 
"vacuum" configuration for a many· lring the ry ub.iecl to the 
condition that Wey! invariance be maintained. T hi pr posal . if 
implemented in a dynamical framework, could even supplant con-
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ventional string field theory. Thus, to study string theory, we need 
to understand all conformal field theories on all Riemann surfaces . 

VI. CONFORMAL FIELD THEORY: LOCAL PROPERTIES 

We may list some simple classical actions which describe conformal 
field theories : 

(i) The free scalar field theory: 

(12a) 

X(z ,z) is a scalar field. 
(ii) The (bosonic) non-linear er-model : 

X ••, µ. = 1 ... d, are scalar fi elds , anti ,~ 1 .(X) i an arbitrary 
non -singular matdx functi n f the X 1\ which h<ts the eo­
m trical interpretati n of a m tric on the pace f fie ld s. 

(iii) T he free Maj rana pinor Eie ltl theory: 

(12c) 

ljJ is a complex one-component Euclidean spinor . In Min­
kowski space it would represent a real, or Majorana, spinor 

> field. 
~ (iv) The free Dirac spinor field theory: 

•·. 

(12d) 

In Minkowski space b, c would represent two independent 
real spinors, hence can be thought of as components of a 
Dirac spinor field. 
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The local fields of these actions transform as tensors under an­
alytic coordinate changes z ~ w(z). A generic field with this prop­
erty is called a primary conformal field 12

: 

(az) 6

A (az)x"' 
A(z,z) ~ A'(w,w) = aw aw A(z,z) (13) 

The pair f real numbers (A11 , X ) is called the conformal dimen­
sion of the field A . 

In Lh e actions Ii l d aoove. the fi e ld iJ,X has dim n ion (1 ,0) 
whil 1µ has dime nsion (1/2 ,0). F r Dirac field, invariance of the 
Lagrangian only requires tbal !he pair of ind pend nt but can­
onically conjugate fields b, c have dimensions (J ,O) and ( I - J,O) , 
respectively , where J is usually chosen to b an integer or half­
integer. 

Classically, a consequence of conformal symmetry is that the 
energy-momentum tensor Tµv is traceless. It is also conserved as 
a consequence of translation invariance: 

(14) 

In isothermal coordinates, these equations reduce to: 

T,2 = 0, D,T,, + D=T,, = 0 

It follows that the non-vanishing components are (anti-)analytic 12 : 

a,T,, = o = a,T,, (15) 

We may list the analytic energy-momentum tensors for the sim­
ple conformal field theories listed in Eq. (12): 

(i) T,, = ~ a,xa,x 

(ii) T,, = ~ GµJX) a,xµa,X" 
(16) 

(iii) T,, 
I 

-2iV a, iV 

(iv) T,, -(Jba,c + (1 - J)ca,b) 



It is easy to check that they are all holomorphic as a consequence 
of the corresponding equations of motion. 

The symmetry algebra of a conformal field theory may be de­
duced from the behavior of the product of energy-momentum ten­
sors at short distances. Tzz generates conformal transformations 
on fields by: 

o.A(w,w) = [f E(z)Tzzdz, A(w,W)] (17) 

We have chosen some disk on the Riemann surface and a coor­
dinate z which vanishes at the origin of the disk. Quantization is 
carried out by associating time with the radial variable on the disk, 
so that the conserved charge associated with Tz= is its contour 
integral around a closed contour encircling the origin. By inserting 
an arbitrary analytic function E(z) on the disk into the integral, we 
pick out combinations of the modes of Tzz· By simple manipula­
tions, the above expression can be rewritten 

(18) 

where now the contour encircles w . Thus the conformal transfor­
mation of A comes only from singular terms in its operator-product 
expansion (OPE) with Tzz· If A is a primary field, the infinitesimal 
form of Eq. (13), under the transformation z ~ w = z + E(z), 
implies: 

o,A(z,z) = ~AE'(z)A(z,z) + E(z) aA(z,z) (19) 

Comparing Eqs . (18) and (19), we find the operator-product ex­
pansion 

~AA(w,W) a.,.A(w.W) 
+ (z - w)2 z - w 

(20) 
+ non-singular terms 

This equation is to be interpreted in terms of the behavior of any 
correlation function (in the path integral sense) of products of 
arbitrary local fields with T,,(z) and A(w,w). 
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T,, is not itself a primary field. On dimensional grounds its OPE 
with itself can contain an extra term besides the ones describing 
a primary field 12 : 

c 1 2 T"''V aw T,VIY 
- ( )4 + ( 2 + ( ) 2 z - w z - 11') z - w 

(21) 
+ non-singular terms 

The c-number coefficient c is called the "central charge" or "anom­
aly" in the OPE. This is, in general, nonzero. One can check, 
using the short-distance behavior of two-point functions on the 
disk: 

1 
(ljJ(z) IJJ(w)) - --

z - w 

1 
(b(z) c(w)) - --

z - w 

(22) 

that c = 112 for th frc Majornna field, and c = - 2(61 2 - 61 
+ I) i'or the Dime field. For rrce scalar fie ld , " = l. 

lt i useful t dcfin art op •rntor fonntilism for con I' Hnnl fields 
on Riemann surfaces. In uch a formalism. th e pectalion va lue 
in th · path-integral sense dis ussed above ure converted into the 
matri ' element' between suitabl sta tes or ' ' time-ordered'' prod­
ucts ol' operator .. ln order to implerm.:m thi . on makes use of 
the fact th 1t th · infinite cylind r an be nformnl ly mapped onto 
the complex plun' (with the origin deleted) . In the form r picture . 
the cylinder represent th time evo lution of a quan tum state . 
wh r the state at - :ic and -t x is the vacuum of the rbeory. 0 11 
th - 1 lane, the in-va uum is at the origin. the lit-vacuum i the 
rnne ul lzl = ex: and th constant time lices on the cylinder have 
gone into conccmric circle on the plane . This is known as radial 
quantization . 

or a general Ri mann surface. >nc can perf irm rndia l quun­
tizati n in the following way: ta ke th emi-inEinitc cy linder , and 
map il ·onformally onto the unit disk. Now th· in -vacuun is a. ­
ociated with the ril!.in of the disk. as bcfor ·. but tb · tat al th<: 
ther end of the cylimler. which is not a vacuum . tate ( ihce lhc 
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other end is not at +cc) is mapped onto the state at the boundary 
of the disk. This unit disk is taken to be a coordinate patch D of 
a Riemann surface L (Fig. 7). 

Now opera tors can be constructed c n Lh di k D u ing the 
mapping onto the semi-infinite cylinder'. T heir expecta tion values 
on the disk arc tak ~n with th v;i uum tale ( I on the left and 
some other state lg) on the right , and this stare [g) i. determined 
by the Riemann u1fac . 

The local coordinate on the disk, z, is chosen to vanish at the 
origin. Operators on the disk can be decomposed into modes in 
terms of these coordinates. Thus, for the energy-momentum tensor 
we have: 

T,, 
+x L" 
2: 11+2 

11= -x z 
(23) 

It is easy to show, from Eq. (21), that the operators L,, satisfy the 
algebra: 

[L,,,Lm] = (n - m)L11 +m + 
1
c
2 

n(n2 
- l)8 11 +m.o (24) 

This is the infinite-dimensional symmetry algebra of conformal 
field theory. It is called the Virasoro algebra. 18•12 

A great deal of work has been done on representations of the 
Virasoro algebra. 12 •13 •19 The central charge c is a local property, 
independent of the Riemann surface, and its allowed values in 
unitary representations have been classified. The mathematical 
structure of these representations is very profound and allows one 
to derive powerful constraints on the correlation functions of con­
formal fields. One can obtain differential equations for correlation 

FIGURE 7 
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functions of a large class of theories; these can be solved explicitly 
on the sphere , but the extension to higher genus is not that simple . 
For free theories one can use Wick's theorem to derive all n-point 
functions from the two-point function, and much more is known 
explicitly in this case . Infinite-dimensional algebras are known which 
contain the Virasoro algebra as a subalgebra. These correspond 
to conformal field theories with additional symmetries besides con­
formal invariance . Example are the superconformal algebras20 · 13 

and the current-conformal algebras. 21 Conformal theories based 
on these symmetry algebras are th subject f active research, both 
from the point f view of mathematical physics and for their pos­
sible application to critical phe nomc m1 22 and to string theory. 

VII. STRING AMPLITUDES 

A indi ·a ted previ u. I , scattering amplitudes in strin ' theory ar 
given t y in e rtion of • rtain fi e lds called v rtex operators in the 
string path integral. Th e operators a rc conformal fields of di ­
mension 0.0) : this follows whe n me requires !bat Weyl invariance 
of the . tring the ry l maintained a l the quantum leve l. T he am­
plitudes are thus given by correlation functions of vertex operators 
in conformal field theories. More precisely, the expression (Eq. 
(8)) do s not require us to divide out the v<1cuum path integral 
(''partition functi n") in computing. tring amplitudes, while this 
divisi n is implicit in the de finition o f correlation functi n , which 
is a ·tali stical av rage. Thus a tring amplitude is the product of 
a correlation function of vertex operators with the partition func­
tion of the theory. 

When evaluated on the 2-sphere (genus 0), these functions de­
termine tree-level string amplitudes , while the corresponding quan­
tities calculated on genus-g surfaces represent the g-loop correc­
tions to these amplitudes. A complete understanding of partition 
functions and correlation functions for conformal field theories on 
Riemann surfaces will provide crucial insight into the properties 
of string theory. 

Let us return to the simplest string action, Eq. (10). The free 



scalar field X 11 (z,z) appears to be a primary field r dimension 
(0,0), but, as is well known, it corrcla Lion function have infrarcu 
singularitie , so that il is not a we ll -defined quantum field a t all. 
Neverth le s one ca n write down a rcgulariz c.l expre sioa for its 
1wo-poin1 fun ti n. from which tho:ic of< ther conf rmal fields can 
be clec.luc d by differ ntiation and Wick" th or m. 

On the infinit complex plane one fin<ls, by inv rting the kinetic 
term in q. (lO): 

(Xµ(z,z)Xv(w,W))plane = -oµv loglz - wl 2 (25) 

An infrared cutoff is implicit in the logarithm. From this one gets 

1 -oµv ___ _ 
(z - w)2 

(26) 
- 5µvo 2(z - w) 

H re <J, X 1• and r1"[ X 1• are genuin conformal field of dimen ion 
(I,(>) and (ll, l) re. pectively.. Another interesting coof >rmal fi eld 
can be defined using exponentials of the modes or the free scalar 
fie ld. We make a mode expansion of X''(z.z) n the plane: 

. -µ-n 
l °" <XnZ +- L,,--

\12 n+O n 

(27) 

where X~ and p~ are the center-of-mass position and momentum 
of the string, and a;,, a:;, are oscillators describing the excitation 
modes. In operator language, quantization is performed via the 
canonical commutators: 

(28) 
[ af, ,a:,,] " <:oµv - r-µ-v] no11+m.0U - (Xn ,am 



Now define the "vertex operator" 10 

(29) 

( 

x µ -11) ( x µ II) 
V _ !!..i!:._ "' a _11 z -aµ "' a11 z 

L = exp L,; exp L,; --
\/2 11=1 n \/2 n=l n 

VR == exp(!!..i!:_ i: a~ 11r") exp(~ i: a~z") 
\/211=! n \/2 n=l n 

(/"' = (a 1 • • • a.26) is a set of a rbi1rary real r compl x numbe rs. 
We have mere ly writte n down a precise pre cripti n for norrnal­

ord ring a n objec t as complicated as the exponentia l f a sca lar 
fie ld . ne can now compute, on the I la ne, the c rre lati n fum:ti n 
of two vertex operators: 

o(a + b) lz - wlab 

o(a + b) lz - w1 -a' 

(30) 

Although this can be checked directly using the OPE of Tzz with 
the vertex operator, the form of the two-point function immedi­
ately implies that V(a,z ,z) is a conformal field of dimension 
(a2/2 a2/2). 

ln string theory , ampli tudes are computed by asso iati ng gen­
era lizec.J vertex opera tor to each particle s iat of the s tring. T h 
operator defined in Eq. (29) corre p nds to emissi n of a sca lar 
particle, the tachyon , which corresponds to the ground sta te f 
the closed bo. rue string. The numerical vector a1 ... is associated to 
Lh e sp ace-time mo me ntum k 1,. of the ta hyon. As mentioned ear­
lier, sca ttering amplitudes fo r particle lates or the tring arc ob­
tai ned by multiplying corre la ti n functions of the corresponding 
v1;;rtex operators by the pru·tition function. 

The c rrelators calcu la ted ab ve have been defined on the in­
finite complex plane. Actually this can be made into a Riemann 
surface. The complex plane can be stereographically projected 
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FIGURE 8 

onto a 2-sphere with one point deleted (Fig. 8). Straigh t lines 
through the north pole identify pairs of points P and P' on the 2-
sphere and the complex plane in a one-to-one ·a. hion . So lhe 
complex plane is the punctured sphere. Adding one point t lhe 
complex plane makes it compact (we can think of lhi_ a the " point 
at infinity"). Thus the correlators we have computed in Eqs. (25), 
(26), and (30) are those for free scalar field theory on the sphere. 

For Riemann surfaces of higher genus, mode expansions of fields 
may be performed on some region which is topologically a disk, 
as in Fig. 7. Correlation functions are calculated on the disk, with 
boundary conditions on the circle enclosing the disk determined 
by doing a path integral on the rest of the Riemann surface. 23 •24 

Alternatively (and more or le equivalently) one can try to de­
termine the correlation function from its known singular behavior 
on the disk (which is a I ca l propert independent of the Riemann 
surface), from conformal Ward identities and from general prop­
erties of functions on Riemann surfaces. 25 

An important class of conformal field , U1e holomorphic fi Ids, 
are those whose equation of moti n i an equation of analyticity. 
Examples are the free Majorana field \II; the free Dirac fields b, 
c; the derivative of the scalar field iJ, X"' and the energy-momentum 
tensor T,,. For such field we have the equations of motion: 

a,11i = o 

a,(a,cl>) = o (31) 

a,T,, = 0 
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The firsl thre equations f llow from the free Lagrangians Eqs . 
(JO). ( 12c), <11 I (12d) while the last one is a general property of 
conformal field 1heory, as we have seen. 

A c nsequencc f the analyticity of these fields is that their 
correlatilrn functions arc analytic (holomorphic) except at points 
where the arguments f fi e lds coincide, where there is a singularity. 
Thus we are interested in meromorphic functions on Riemann 
surfaces. This puts a strong constraint on allowed functions, since 
the theory of analytic and meromorphic functions on Riemann 
surfaces is well-studied and has a very tightly constrained struc­
ture. 4 ·25 

The most convenient functions in terms of which correlators on 
Riemann surfaces can be expressed are the well-known 8-func­
tions.26·27 In genus 1 (the torus) we have the important 8-functions, 

8 Q (z/T) =: 2: eiTT(11+n)'T+2TTi(11+a)(z+/J) 
( ) 

+x 

b 11 = -x 

where z is a coordinate on the torus and T is the Teichmuller 
parameter which labels the complex structure (Fig. 6). The con­
stants a and b are chosen to have the values 0 or 1/2. For the 
bosonic field, a particularly important construction is the "prime 
form" 25 - :n 

(
1/2) 8 l/2 (z - W/T) 

(
112) 81 

112 
(o/T) 

(32) E(z,w) 

This has the property that it goc lik · (z - iv) as z approaches 11 1• 

and is non-singular. nonzero and analyti everywhere lsc. It i ~ 

the generalization apf)ropriate to a LOru. of the function (z - 111 ) 

on the plane which genera lly appears in correlators, and can be 
easily generalized l ' higher gen us Riemann surl'<.lc s. The on ly 
problem is that it is a mult i-val ued fu ncti n, whi l correlators or 
free bosonic fields are single-valued. This can t · remedied by 
multiplying or adding certain olher functions. For ·xample. the 



generalization of Eq . (25) to the torus is : 

(Xf'.(z ,z)Xv(w,w))torus 

= l'wv(1ogJE(z,w)J2 - 2'TT _Im_('-z_-_w~)2) 
lmT 

(33) 

In the coincident limit, the second term vanishes and the first one 
reduces to Eq. (25). 

Similarly the two-point function of the tachyon vertex operator 
on the torus is: 

{ ( ) }

a.b 
Im z - w 2 

= 3(a + b) JE(z,w)J exp -TI \m-r ) 
which again has the same singular behavior as on the plane . 

(34) 

An aesthetically satisfying feature of string theory is that physical 
scattering amplitudes (which, in the correct string theory, should 
be related to experimentally measured cross sections) are given in 
terms of powers and derivatives of the 0-functions, which have 
very beautiful mathematical properties. 

VIII. CONCLUSION 

Whether or not string theories have immediate success in particle 
physics, the concept of conformal quantum field theory on Rie­
mann surfaces is mathematically profound, and will presumably 
play a major role in the general framework of quantum field the­
ory. It is already of importanc' in the tucly o f criti ca l phen mcna 
in statistical system . Quite conce ivably , lhi · subject will reappeu r 
in differ nt and rather unexpect <l way. in physics. It might also 
happen that with mathematical advances in th e tudy o f di!'fer­
·ntiable nn<l complex . tructu rcs in four dimensions. 1h in1uiti >n 

gained from studying conformal field theory on Riemann surfaces 
will prove useful in understanding the right kind of field theory to 
describe quantum gravity. 
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