Riemann Surfaces, Conformal Fields and Strings

The role of Riemann surfaces in modern particle physics s discussed. Mathemat-
wally. quantum field theories can be defined on these manifolds if they are con-
formally mvariant. Physically. Riemann surfuaces provide a model (or the world
sheet swept out by a propagating relativistic string. Thus Riemann surlaces are the
natural setting for conformal ficld theory. and both these concepts together provide
+ formulation of string theory.
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. FIELD THEORY AND RIEMANN SURFACES

The space-time on which the particle physicist writes a Lagrangian
field theory and deduces equations of motion, classical solutions
and quantum scattering amplitudes is usually taken to be a Rie-
mannian manifold.' The idea is central to general relativity and
gravitation.” and has become more important in particle physics
with increasing emphasis on unified theories of all forces including
gravitation,

Riemannian geometry is usually incorporated as a series of pre-
swriptions, starting with the introduction of a second-rank sym-
metric tensor field, the metric g, (r). and combinations of its de-
nvatives such as the Christoffel connection I'% (x) and the Riemann
curviture tensor RY, (x). These are then coupled invariantly to
themselves and to other classical fields such as scalars d(x) and
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vector gauge fields Af(x). Some typical field-theory actions on
Riemannian manifolds are:

(i) (1/4k?) [ d*x\V/gR: the Einstein—Hilbert action (k is the grav-
itational constant);

(ii) (1/2) [ d*x\V/gg*” 9,dd,¢: the scalar field coupled to gravity;

(iii) —(1/4) [ d*xVgg*g tr(F,,F,,): the Yang—Mills field cou-
pled to gravity. (1)

From the mathematician’s point of view, a Riemannian manifold
is a somewhat specialized structure. To define it, one starts with
a topological space and introduces a differentiable structure (a set
of coordinate charts such that coordinate changes across overlaps
are given by differentiable functions). This gives rise to a differ-
entiable manifold. At the next stage a Riemannian metric is in-
troduced, and one gets a Riemannian manifold. For the particle
physicist it has generally been this last attribute which has played
a major role; the topology and differentiable structure have (until
recently) played a relatively minor part.

An interesting specialization of the notion of a differentiable
structure is that of a complex structure.? The coordinate charts are
chosen to be complex, and coordinate changes across overlaps are
given by complex analytic functions. In this way one gets a complex
manifold. This can in turn be endowed with a metric. The various
structures we have discussed can be listed in order of complexity
(Fig. 1).

Riemann surfaces belong in the lower branch of this flow chart.
They are, quite simply, one-complex-dimensional (connected)
manifolds.* They need not be thought of as metric spaces at all.
An important fact about them is that they are relatively simple
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and rather well-understood objects. Their topologies and complex
structures are completely classified. In sharp contrast, differenti-
able manifolds in four dimensions, and possible Riemannian met-
rics on them, are far from being classified.

From the physicist’s point of view, Riemann surfaces are scarcely
interesting as models of space-time! For one thing, they are two-
dimensional as real manifolds. But their mathematical simplicity
makes it very tempting to try and construct field-theory models
on them.

II. STRING DYNAMICS AND RIEMANN SURFACES

Had physicists two decades ago reasoned things out in the manner
discussed above, they would probably have come to a halt at this
point. Fortunately for us, things worked out quite differently. Two-
dimensional “‘space-times’’ entered particle physics in the descrip-
tion of the “world sheet” swept out by a propagating relativistic
string® (Fig. 2).

It is a theorem* that a two-real-dimensional manifold can be
described as a one-complex-dimensional manifold if it is orientable
(which means that one can define a unique normal vector smoothly
everywhere). For closed strings, this will be true of their world
sheets if the strings themselves are assigned an orientation which
1s preserved in interactions. Thus closed oriented strings sweep
out Riemann surfaces.

It does not (yet) follow that, in describing the dynamics of such
a string, it will be sufficient to deal with Riemann surfaces, in-
dependent of a metric. In fact, as presently formulated, the basic
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postulate of string theory does require a two-dimensional metric
on the Riemann surface, as we will see, but the dependence on
the metric ultimately cancels out in physical quantities. In a some-
what roundabout way, then, string theories are field theories on
Riemann surfaces.

This comes about in the following way. Introduce a string co-
ordinate X*(o.,r). where X" labels points in a Euclidean space-
time and (o) are local real coordinates on an oriented two-
dimensional surface. A string configuration may be thought of as
a map from the Riemann surface into physical space-time (Fig. 3).

Choosing a metric g,,(o,t) on the two-dimensional surface, we
postulate an action®”’

~1
S = o J' dodt \/gg"b 9, X%, X, (2)

where the integral is performed over the surface. The motivation
for this classical action may be seen from the fact that the classical
equation of motion for the metric (varied as an independent field)
is

1
arlX“abXpu - —2_gabg0d acX#a(!Xu =0 (3)

This is solved by
8ab = ed-'(lr.’)aa‘X‘LabIY},L

where &(o,) is an arbitrary function. Substituting this into Eq. (2)
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one gets the classical action
=l |
S = 3 f dodt (det(d, X+, X,))"* 4

This is just the area of the world sheet swept out by the string in
n-dimensional space.” Note that the ¢-dependence has dropped
out, as a consequence of Weyl invariance (invariance of Eq. (2)
under local rescalings of the metric: g,,(a,t) — e®“ g (a,t) for
arbitrary ¢(o,1)).

The connection between this action principle and Riemann sur-
faces as one-complex-dimensional manifolds comes about through
three important theorems*:

(i) Every orientable two-real-dimensional manifold admits a com-
plex structure, hence can be made into a Riemann surface.
(ii) Every Riemann surface admits a unique metric of constant

curvature, denoted g,,(o,t).
(it) All possible metrics on a given Riemann surface are confor-
mally related: if g, (o,t) and g,,(o,t) are two metrics, then

gulod) = =g (o) (5)
for some function ¢(o,t).

From (i) and (iii), every metric is conformally related to a unique
one of constant curvature. Thus in the action (2), we can substitute
any arbitrary g,, by e®g,,, for a suitable ¢(o,t). The ¢-dependence
now drops out, and we are left with

8 = ;—wl f dodt \/gge 9,X0, X, (6)

But now theorem (ii) tells us that each g, is uniquely associated
to a given complex structure, that is, to a given Riemann surface.
Thus the string action is (classically) an action on a Riemann sur-
face.
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III. THE CLASSIFICATION OF COMPACT RIEMANN
SURFACES

The question of how many inequivalent g,,'s there are reduces to
that of classifying incquivalent Riemann surfaces. Let us make
somewhat more precise what is meant by a complex structure.

The concepts involved in defining a manifold can be illustrated
by a diagram (Fig. 4). ., and p, are two overlapping patches on
the manifold. ¢, and ¢, associate subsets of Euclidean space, v,
and v,, to their respective patches. These are the coordinate maps.
The “transition function™ f describes how the shaded regions on
the left and right are related, by virtue of being different coordi-
natizations of the same shaded region in M.

For a Riemann surface the coordinate patches », and v, lie in
the complex plane. If the compiex coordinate on », is z and on
v,, w, then the transition function is

fiz—=>w=w() (7)

The fact that w is an analytic function of z, on every overlap of
coordinate patches, is what defines a complex structure. Another
choice of patches, coordinates and analytic transition functions
would define a different complex structure, unless the transition
functions on overlaps of the old and new patches are also analytic,
Thus a single complex structure is not just one collection of analytic
charts, but all choices of such collections which agree analytically
with each other.

FIGURE 4
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How many inequivalent Riemann surfaces are there? Let us
concentrate on compact surfaces without boundary. Topologicalls .
these are labelled by “‘genus.” or number of “handles™ (Fig. =
Within each genus one has to ask how many inequivalent compizy
structures there are, in the sense described above. The result 1

(i) For g = 0, there is a unique complex structure.
(ii) For g = 1, there is a one-complex-parameter family of com-
plex structures.
. (iii) For g = 2, there is a (3g — 3)-complex-parameter family o:
complex structures.

'«?% The parameters labelling inequivalent complex structures ars
! called “Teichmuller parameters™ or “moduli.”

For the torus (g = 1), one can give a simple intuitive descripticr.
- .of the moduli. Consider the complex plane. and a lattice of points
on it (Fig. 6). A lattice on the complex plane is simply a discrets
.. set of points which are integral linear combinations of two basi:
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vectors, which we have chosen to be the unit vector along the real
axis, and an arbitrary independent vector labelled by a complex
number 7. Now if we identify all points in the complex plane which
differ by a lattice vector m + n (for arbitrary integers m, n), then
we are left with the shaded parallelogram shown in the figure,
which is equivalent to all other such parallelograms under the
identification. Moreover, the opposite edges of the shaded region
are identified, and this is therefore a representation of the torus.
The complex number 7 labels the torus: for each different number,
we get a different lattice and hence a different torus. However, it
may happen that certain different values of T generate the same
torus: for example, T and 7 + 1. The transformation *— 1 + |
is called a modular transformation. Physically meaningful quan-
tities which are defined on the surface labelled by T must be in-
variant under modular transformations, since these are discrete
transformations of the given torus onto itself.

1V. THE PATH INTEGRAL OF STRING THEORY

In modern language, the basic postulate of string theory” is that
scattering amplitudes of various string states are given by the in-
sertion of certain fields (called *“vertex operators,” "' one for each
string state) into the path integral whose action is Eq. (2). The
path integral is evaluated, in principle, by summing over metrics
on compact Riemann surfaces of a given genus, and the result is
summed up over all genus:

Alky, oo ky) = 2 et | [deaplldXv]

genus g
X e~ SXEV(X k) ... V(X.ky) (8)

Here V[ X .k,] is the vertex operator for the emission of some string
state of momentum k;, and ¢ is a coupling constant. What we have
written looks similar to a loop expansion in ordinary quantum field
theory, with the genus counting the number of loops.

As formulated, there appears to be a formidable functional in-

tegral over all possible metrics in a given genus. But because of
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Eq. (6), only inequivalent Riemann surfaces give different actions,

and this forms a finite-parameter family in each genus, labelled by

the moduli. This is true as long as the classical Weyl invariance

continues to hold in the quantum theory. Polyakov showed that
; there is in general an anomaly in the Weyl symmetry. but this
| vanishes in 26 space-time dimensions for the action Eq. (2). In
this critical dimension the amplitude in Eq. (8) is evaluated purely
| by summing over all inequivalent Riemann surfaces, regardless of
a metric.'" Thus the integrand to be performed is a finite-dimen-
sional one, over modular parameters. For consistency, the inte-
grand must be modular invariant.

It is a somewhat puzzling feature of string theory that a two-
| dimensional metric has to be carried along until the end, at which
point it does not affect physical results. Possibly a new formulation
based directly on Riemann surfaces (or generalizations of this con-
cept) will simplify the situation.

V. CONFORMAL FIELD THEORY: THE BASIC
CONCEPTS

4 Let us rewrite the action, Eq. (6), in terms of local isothermal
| complex coordinates z, 7 on the Riemann surface. These coordi-

/' nates are defined by the requirement that in a given patch the line
| ‘element be given by:

ds? = e**Idzdz (9)

\for some function ¢(z,z). That such coordinates can always be
chosen is intuitively evident from the fact that two of the three
t<‘00mp0mnts of the metric g, can be fixed at will by the two avail-
i‘able coordinate choices, while the third is the conformal factor
&(z,2). In these coordinates, the action is:

1
§= == f dzdz 0,X"3, X, (10)

W
“L:"'“

In this form the entire information about the complex structure
s contained in the way the coordinates patch up over the Riemann
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surface. On the overlap of two isothermal coordinate patches, the
transition functions are, as usual, analytic:

Z— w(z2) (11)

Clearly this is a symmetry of the two-dimensional classical field
theory Eq. (10). This is called conformal invariance, which is really
just that property of a field theory which tells us that it may be
defined on a Riemann surface.

Conformal invariance is a property of a large class of field-
theoretic models in two dimensions.'*'? Indeed, it was realized
many years ago'# that a two-dimensional field theory with scale
invariance actually possesses conformal invariance. This latter in-
variance, being parametrized by arbitrary analytic functions, forms
an infinite-dimensional group of symmetries. This enables one to
solve many such models completely by using very general prop-
erties of their symmetry algebra.!?

We have thus found an answer to two basic questions: what kind
of field theories can be written on Riemann surfaces, and what
physical use they might be to the particle physicist. To the first,
the answer is conformal field theory, while to the second the answer
lies in string theory. (It is beyond the scope of this article to discuss
in detail why string theories are believed to be useful in particle
physics.’)

Now although the specific conformal field theory which describes
the closed bosonic string propagating in a flat space-time is de-
scribed by the simple action Eq. (10), one can take the point of
view that the space of all possible conformal field theories has
applicability to string physics. The logic is that one is not ultimately
interested only in the propagation of a single string in a flat back-
ground space-time. Specifically, one may be interested in a string
propagating in arbitrary curved background space-times.">'® This
brings in a large class of conformal field theories, which are specific
types of non-linear o-models with vanishing B-function.'®'” But
besides these examples, which have an obvious physical motiva-
tion, one can argue that every conformal field theory is a candidate
“vacuum’’ configuration for a many-string theory, subject to the
condition that Weyl invariance be maintained. This proposal. if
implemented in a dynamical framework, could even supplant con-
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ventional string field theory. Thus, to study string theory, we need
to understand all conformal field theories on all Riemann surfaces,

VI. CONFORMAL FIELD THEORY: LOCAL PROPERTIES

We may list some simple classical actions which describe conformal
field theories:

(i) The free scalar field theory:
1 .
S = —— f dzdZ 3, X9: X (12a)
m

X(z,z) is a scalar field.
(ii) The (bosonic) non-linear o-model:

1
§= b f dzdz G, (X) 9, X 6, X" (12b)

X*, p =1...d, arescalar fields, and G, (X) is an arbitrary
non-singular matrix function of the X", which has the geo-
metrical interpretation of a metric on the space of fields.

i (iii) The free Majorana spinor field theory:

s = oL [ dzdz (bony - T0.5) (120)
21T

¢ is a complex one-component Euclidean spinor. In Min-
kowski space it would represent a real, or Majorana, spinor
field.

/1 (iv) The free Dirac spinor field theory:

S = % f dzdz (béxc — ¢a,b) (12d)

In Minkowski space b, ¢ would represent two independent
real spinors, hence can be thought of as components of a
Dirac spinor field.
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The local fields of these actions transform as tensors under an-
alytic coordinate changes z — w(z). A generic field with this prop-
erty is called a primary conformal field!?:

az\** [az\™
A(z,2) = A'(w,w) = (aw> <6W> A(z,2) (13)
The pair of real numbers (A, A,) is called the conformal dimen-
sion of the field A.

In the actions listed above, the field .X has dimension (1.,0)
while  has dimension (1/2,0). For Dirac field, invariance of the
Lagrangian only requires that the pair of independent but can-
onically conjugate fields b, ¢ have dimensions (/,0) and (1 — J,0),
respectively, where J is usually chosen to be an integer or half-
integer.

Classically, a consequence of conformal symmetry is that the
energy-momentum tensor T, 1s traceless. It is also conserved as
a consequence of translation invariance:

T8 =0, D*T,, =0 (14)
In isothermal coordinates, these equations reduce to:
Tz? o O’ Dszz + DETz: = O
It follows that the non-vanishing components are (anti-)analytic!*:
a37-‘22 = 0 = azT'z'E (15)

We may list the analytic energy-momentum tensors for the sim-
ple conformal field theories listed in Eq. (12):

() T,, = % 3.Xo, X

(ii) T, = %GW(X) 9, X%9, X"
(16)

I

(i) T, = ~304, 0

(iv) T,, = —={Jbd,c + (1 — J)ca,b)



It is easy to check that they are all holomorphic as a consequence
of the corresponding equations of motion.

The symmetry algebra of a conformal field theory may be de-
duced from the behavior of the product of energy-momentum ten-
sors at short distances. T,, generates conformal transformations
on fields by:

3 A(ww) = [%e(z)Tudz, A(W,W)] (17)

We have chosen some disk on the Riemann surface and a coor-
dinate z which vanishes at the origin of the disk. Quantization is
carried out by associating time with the radial variable on the disk,
so that the conserved charge associated with T,. is its contour
integral around a closed contour encircling the origin. By inserting
an arbitrary analytic function €(z) on the disk into the integral, we
pick out combinations of the modes of T,,. By simple manipula-
tions, the above expression can be rewritten

8 A(ww) = %M'G(Z)TZZA(W,W)dZ (18)

where now the contour encircles w. Thus the conformal transfor-
mation of A comes only from singular terms in its operator-product
expansion (OPE) with T,,. If A is a primary field, the infinitesimal
form of Eq. (13), under the transformation z — w = z + €(z),
implies:

3.A(z,2) = A e'(2)A(Z,2) + €(z2) 0A(2,2) (19)

Comparing Egs. (18) and (19), we find the operator-product ex-
pansion

BAW,T) 8, A(w.T)
(z — w)? z—w

T, (2)A(w.W) =
(20)
+ non-singular terms

This equation is to be interpreted in terms of the behavior of any

correlation function (in the path integral sense) of products of
arbitrary local fields with T,,(z) and A(w,Ww).
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T,,is not itself a primary field. On dimensional grounds its OPE
with itself can contain an extra term besides the ones describing
a primary field!%:

_C_ 1 2T|\'W awTWW
2(z—-w)*  (z-=-w? (z-w)

T..(2)T,.(w) =
1)
+ non-singular terms

The c-number coefficient ¢ is called the “central charge” or “anom-
aly” in the OPE. This is, in general, nonzero. One can check,
using the short-distance behavior of two-point functions on the
disk:

(U(z) W(w)) ~

zZ—w
1
7 — W

(22)

(b(z) c(w)) ~

that ¢ = 1/2 for the free Majorana field, and ¢ = —2(6J2 — 6J
+ 1) for the Dirac field. For free scalar fields, ¢ = 1.

It is useful to define an operator formalism for conformal fields
on Riemann surfaces. In such a formalism, the expectation values
in the path-integral sense discussed above are converted into the
matrix elements between suitable states of “time-ordered" prod-
ucts of operators. In order to implement this, one makes use of
the fact that the infinite cylinder can be conformally mapped onto
the complex plane (with the origin deleted). In the former picture.
the cylinder represents the time evolution of a quantum state.
where the state at —= and + 2 is the vacuum of the theory. On
the plane, the in-vacuum is at the origin, the out-vacuum is the
state at |z| = o, and the constant time slices on the cylinder have
gone into concentric circles on the plane. This is known as radial
quantization,

For a general Riemann surface, one can perform radial quan-
tization in the following way: take the semi-infinite cylinder, and
map il conformally onto the unit disk. Now the in-vacuum is as-
sociated with the origin of the disk. as before, but the state at the
other end of the cylinder. which is not a vacuum state (since the

LRTS



other end is not at + ) is mapped onto the state at the boundary
of the disk. This unit disk is taken to be a coordinate patch D of
a Riemann surface 2, (Fig. 7).

Now, operators can be constructed on the disk D using the
mapping onto the semi-infinite cylinder. Their expectation values
on the disk are taken with the vacuum state (o| on the left and
some other state [g) on the right, and this state |g) is determined
by the Riemann surface.

The local coordinate on the disk, z, is chosen to vanish at the
origin. Operators on the disk can be decomposed into modes in
terms of these coordinates. Thus, for the energy-momentum tensor

we have:

1 (23)

It is easy to show, from Eq. (21), that the operators L, satisfy the
algebra:

(LuLl = (0 = MLy + 35102 = DBye (24)

This is the infinite-dimensional symmetry algebra of conformal
field theory. It is called the Virasoro algebra.!812

A great deal of work has been done on representations of the
Virasoro algebra.!2131° The central charge c is a local property,
independent of the Riemann surface, and its allowed values in
unitary representations have been classified. The mathematical
structure of these representations is very profound and allows one
to derive powerful constraints on the correlation functions of con-
formal fields. One can obtain differential equations for correlation

2
FIGURE 7
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functions of a large class of theories; these can be solved explicitly
on the sphere, but the extension to higher genus is not that simple.
For free theories one can use Wick’s theorem to derive all n-point
functions from the two-point function, and much more is known
explicitly in this case. Infinite-dimensional algebras are known which
contain the Virasoro algebra as a subalgebra. These correspond
to conformal field theories with additional symmetries besides con-
formal invariance. Example are the superconformal algebras?’:!3
and the current-conformal algebras.?' Conformal theories based
on these symmetry algebras are the subject of active research, both
from the point of view of mathematical physics and for their pos-
sible applications to critical phenomena® and to string theory.

VII. STRING AMPLITUDES

As indicated previously, scattering amplitudes in string theory are
given by insertion of certain fields called vertex operators in the
string path integral. These operators are conformal fields of di-
mension (0,0): this follows when one requires that Weyl invariance
of the string theory be maintained at the quantum level. The am-
plitudes are thus given by correlation functions of vertex operators
in conformal field theories. More precisely, the expression (Eq.
(8)) does not require us to divide out by the vacuum path integral
(“*partition function™) in computing string amplitudes, while this
division is implicit in the definition of correlation function, which
is a statistical average. Thus a string amplitude is the product of
a correlation function of vertex operators with the partition func-
tion of the theory.

When evaluated on the 2-sphere (genus 0), these functions de-
termine tree-level string amplitudes, while the corresponding quan-
tities calculated on genus-g surfaces represent the g-loop correc-
tions to these amplitudes. A complete understanding of partition
functions and correlation functions for conformal field theories on
Riemann surfaces will provide crucial insight into the properties
of string theory.

Let us return to the simplest string action, Eq. (10). The free




scalar field X'*(z,z) appears to be a primary ficld of dimension
(0,0), but, as is well known, its correlation functions have infrared
singularities, so that it is not a well-defined quantum field at all.
Nevertheless one can write down a regularized expression for its
two-point function, from which those of other conformal fields can
be deduced by differentiation and Wick’s theorem.

On the infinite complex plane, one finds, by inverting the kinetic
term in Eq. (10):

(X2, D)X (W, %))prane = —3*" loglz — w|? (25)
An infrared cutoff is implicit in the logarithm. From this one gets

_ b
(z = wy

<32XM(Z) aWXV(W)>plane = _6’“’82(2 - W)

(azXM(Z) anv(w))plane

— JQnv
(26)

Here 0, X" and d,. X" are genuine conformal fields of dimension
(1,0) and (0,1), respectively. Another interesting conformal field
can be defined using exponentials of the modes of the free scalar
field. We make a mode expansion of X*(z,Z) on the plane:

. Roytt
XH(zZ) = X¢ + iptlnfe] + —= 5, 22
\/-i n+0 n
(27)
, iy mr
\/2_ n#+0 n

where X# and p% are the center-of-mass position and momentum
of the string, and «!, @} are oscillators describing the excitation
modes. In operator language, quantization is performed via the
canonical commutators:

[X%.ps]

[o,0] = nd

* [ohay] = 0
(28)

wrmodt = [@,00]



Now define the ‘‘vertex operator™ '°

Viggz) | X3y = V.V, V,

V, = exp(—a,p¥ In|z|)exp(ia, X %) 29)

b, ~— oF z71 a4, < 0"
VvV, = Bt n i "
-oof25 52 el 2 5, 22)

_ o R,z -a, « ayz”
. ‘“”‘p(\/z 2 ) o\vE 2

a, = (a; ... ay)is aset of arbitrary real or complex numbers.

We have merely written down a precise prescription for normal-
ordering an object as complicated as the exponential of a scalar
field. One can now compute, on the plane, the correlation function
of two vertex operators:

cpldu X¥M(2.2) - . Libp XE(Ww W)
<.€" ()--eu W '>plane

Il

da + b) |z — wj*? (30)

da + b)|z — w

Il

Although this can be checked directly using the OPE of T,, with
the vertex operator, the form of the two-point function immedi-
ately implies that V(a,z,z) is a conformal field of dimension
(a?12,a%2).

In string theory, amplitudes are computed by associating gen-
eralized vertex operators to each particle state of the string. The
operator defined in Eq. (29) corresponds to emission of a scalar
particle, the tachyon, which corresponds to the ground state of
the closed bosonic string. The numerical vector a, is associated to
the space-time momentum k, of the tachyon. As mentioned ear-
lier, scattering amplitudes for particle states of the string are ob-
tained by multiplying correlation functions of the corresponding
vertex operators by the partition function.

The correlators calculated above have been defined on the in-
finite complex plane. Actually this can be made into a Riemann
surface. The complex plane can be stereographically projected
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FIGURE 8§

onto a 2-sphere with one point deleted (Fig. 8). Straight lines
through the north pole identify pairs of points P and P’ on the 2-
sphere and the complex plane in a one-to-one fashion. So the
complex plane is the punctured sphere. Adding one point to the
complex plane makes it compact (we can think of this as the “point
at infinity”’). Thus the correlators we have computed in Egs. (25),
(26), and (30) are those for free scalar field theory on the sphere.

For Riemann surfaces of higher genus, mode expansions of fields
may be performed on some region which is topologically a disk,
as in Fig. 7. Correlation functions are calculated on the disk, with
boundary conditions on the circle enclosing the disk determined
by doing a path integral on the rest of the Riemann surface.?34
Alternatively (and more or less equivalently) one can try to de-
termine the correlation function from its known singular behavior
on the disk (which is a local property independent of the Riemann
surface), from conformal Ward identities and from general prop-
erties of functions on Riemann surfaces.*

An important class of conformal fields, the holomorphic fields,
are those whose equation of motion is an equation of analyticity.
Examples are the free Majorana field {s; the free Dirac fields b,
c; the derivative of the scalar field a, X* and the energy-momentum
tensor T,,. For such fields we have the equations of motion:

0 =0

b = 9;¢ = 0

0:(9.9) = 0 (31)
9:T,, = 0
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The first three equations follow from the free Lagrangians Egs.
(10), (12¢), and (12d) while the last one is a general property of
conformal field theory, as we have seen.

A consequence ol the analyticity of these fields is that their
correlation functions are analytic (holomorphic) except at points
where the arguments of fields coincide, where there is a singularity.
Thus we are interested in meromorphic functions on Riemann
surfaces. This puts a strong constraint on allowed functions, since
the theory of analytic and meromorphic functions on Riemann
surfaces is well-studied and has a very tightly constrained struc-
ture 42

The most convenient functions in terms of which correlators on
Riemann surfaces can be expressed are the well-known 6-func-
tions.2*?7 In genus 1 (the torus) we have the important 8-functions,

+ =
e<la)> (Z"T) = 2 ei'rr(n+n)2'r+2'rri(n+a)(z+b)

Vi= —

where z is a coordinate on the torus and 7 is the Teichmuller
parameter which labels the complex structure (Fig. 6). The con-
stants a and b are chosen to have the values 0 or 1/2. For the
bosonic field, a particularly important construction is the “‘prime

form” »-%7
12
0 9 (z — wlt)

E(z,w) R (32)
0l 1 (ol7)

This has the property that it goes like (z — w) as z approaches w,
and is non-singular, nonzero and analytic everywhere else. It is
the generalization appropriate to a torus of the function (z — w)
on the plane which generally appears in correlators, and can be
easily generalized to higher genus Riemann surfiaces. The only
problem is that it is a multi-valued function, while correlators of

free bosonic fields are single-valued. This can be remedied by
multiplying or adding certain other functions. For example, the




generalization of Eq. (25) to the torus is:

X2 2D)X (W P)orus

= 8**"<log|E(z,w)|2 - 2 Eﬂ(zlm——:_w)j (33)

In the coincident limit, the second term vanishes and the first one
reduces to Eq. (25).

Similarly the two-point function of the tachyon vertex operator
on the torus is:

( . eia,;X“(z.E) : eib.;Xl*(z.E) : )torus

I _ 2! a.b
=8(a + b) {IE(Z,W)IéXp( —'rrﬂ(%ml)) } (34)

which again has the same singular behavior as on the plane.

An aesthetically satisfying feature of string theory is that physical
scattering amplitudes (which, in the correct string theory, should
be related to experimentally measured cross sections) are given in
terms of powers and derivatives of the 6-functions, which have
very beautiful mathematical properties.

VIII. CONCLUSION

Whether or not string theories have immediate success in particle
physics, the concept of conformal quantum field theory on Rie-
mann surfaces is mathematically profound, and will presumably
play a major role in the general framework of quantum field the-
ory. It is already of importance in the study of critical phenomena
in statistical systems. Quite conceivably, this subject will reappear
in different and rather unexpected ways in physics. [t might also
happen that with mathematical advances in the study of differ-
entiable and complex structures in four dimensions, the intuition
gained from studying conformal field theory on Riemann surfaces
will prove useful in understanding the right kind of field theory to
describe quantum gravity.
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