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1 Introduction

A spin foam model is a procedure which associates an amplitude Z(M) ∈ C to
a closed, triangulated 4-manifold M. The data for a spin model associated to M
is the following. First, a map from the set of triangles of M to the set of unitary,
irreducible representations of a (quantum) group. Second, an assignment of state
spaces to the set of tetrahedra of M. A state space for a tetrahedron τ is the vec-
tor space of intertwining operators between the representations assigned to the
boundary of τ . Finally, the last ingredient is an assignment of a set of amplitudes
to the four-simplexes of M. The amplitude Z(M) for the triangulated manifold M
is then given by a weighted sum over (a subset of) the set of representations and
intertwining operators.

A spin foam model can be interpreted as a discretised functional integral for
a large class of theories including quantum gravity. Such an interpretation relies,
in particular, on the study of the semi-classical properties of the model. A key
step towards the understanding of this regime is the analysis of the asymptotic
behaviour of the amplitude for the four-simplexes when the representation labels
are taken to be large.

In this paper, we summarise the results obtained in [1; 2; 3], where an asymp-
totic analysis of the four-simplex amplitudes for the Ooguri model [4] of topolog-
ical BF theory and for both Euclidean and Lorentzian versions of the EPRL model
[5] of quantum gravity was performed. For an asymptotic analysis of the whole
amplitude Z(M) for a closed manifold M of Euclidean signature see [6; 7]. This
paper is based on the talk given by W.J. Fairbairn at the 2nd Corfù summer school
and workshop on quantum gravity and quantum geometry.

2 Four-simplex amplitudes

A key ingredient in the formulation of a spin foam model associated to a triangu-
lated 4-manifold M is the amplitude associated to the four-simplexes. Let σ be a
four-simplex of M. The corresponding amplitudes for the Ooguri, Euclidean and
Lorentzian EPRL models are all determined by the same data associated to the
boundary ∂σ of σ .

2.1 Boundary state space

Let πk : SU(2)→Aut(Vk),k∈N/2, denote the spin k unitary, irreducible represen-
tation of the Lie group SU(2). The tetrahedra in the four-simplex σ are labelled
with a = 1,2, . . . ,5, which implies that the couples ab,a 6= b, label the triangles
of the simplex. Given the assignment of a spin kab to each triangle of ∂σ , one
can associate a state space Ha to each tetrahedron a of ∂σ given by the SU(2)-
invariant subspace of the tensor product of the four representations associated to
the four triangles bounding the tetrahedron

Ha = InvSU(2)

(⊗
b 6=a

Vkab

)
∼= HomSU(2)

(
C,
⊗
b 6=a

Vkab

)
.
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The state space for the boundary of σ is then given by

H∂σ =
⊗

a
Ha,

and the amplitude for the four-simplex σ is given by a linear map Aσ : H∂σ →C.
To pose the asymptotic problem appropriately, it is instrumental to parametrise

the space of four-valent intertwiners by introducing coherent states for the spins k
[8]. A coherent state for the direction n ∈ S2 ⊂ R3 and spin k is a unit vector ξ in
Vk defined, up to a phase, by the condition (J ·n)ξ = ikξ , where J is a three-vector
whose components are the standard anti-Hermitian generators of su(2) and the dot
‘·’ is the 3d Euclidean inner product. In the coherent state basis, the state Ψa ∈Ha
associated to the tetrahedron a is given by assigning coherent states to the four
boundary triangles ab, with fixed a and varying b, and by SU(2)-averaging the
four-fold tensor product using the Haar measure on SU(2)

Ψa(k,n) =
∫

SU(2)

dX
⊗
b 6=a

πkab(X)ξab. (1)

The boundary state for the boundary of σ is

Ψ(k,n) =
⊗

a
Ψa.

The data {kab,nab} specifying the boundary state up to a phase is called the
boundary data. The asymptotic formulae depend on this boundary data and certain
classes of boundary data will play a paramount role in the following.

A boundary data is called non-degenerate if, for each tetrahedron a, the face
vectors nab corresponding to the coherent states ξab for fixed a and varying b span
a three-dimensional space. In this case, if the four vectors nab satisfy the closure
condition

∑
b:b6=a

kabnab = 0, (2)

they specify an embedding of the tetrahedron in three-dimensional Euclidean
space, such that the vectors are the outward face normals and the kab are the areas.
In this way, each tetrahedron inherits a metric and an orientation but the metrics
and orientations of different tetrahedra do not necessarily match. Non-degenerate
boundary data for the whole four-simplex is said to be geometric or Regge-like
if the individual tetrahedron metrics and orientations glue together consistently
to form an oriented Regge-calculus positive definite 3-metric for the boundary of
the four-simplex. This is the requirement that the induced metrics on the triangles
agree for both of the tetrahedra sharing any given triangle, and the induced orien-
tations are opposite. Such boundaries satisfy the gluing constraints of [10; 11].

For geometric boundaries, one can make a canonical choice of phase for the
boundary state. For this type of boundary data, there exists a unique1 set of ten
SU(2) elements gab = g−1

ba which glue together the oriented geometric tetrahedra
of the boundary and map the outward normal to one tetrahedron to the inward

1 up to a Z2 lift ambiguity discussed in [2].
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normal to the other gbanab = −nba. From this data, one can select the phases of
the coherent states by the condition

ξba = gbaJξab, (3)

where J : Vk → Vk is the quaternionic structure associated to the representation k.
The boundary state Ψ with this choice of phase is called a Regge state.

2.2 Amplitudes

2.2.1 Ooguri model

The Ooguri model is a topological model corresponding to 4d BF theory with
group SU(2). The amplitude Aσ (Ψ) ∈ C for the four-simplexes of the model
evaluated on a boundary state determined by the boundary data is a 15 j symbol.
Expressed in the coherent state basis it reads

15 j(k,n) = (−1)χ

∫
SU(2)5

∏
a

dXa ∏
a<b

〈Jξab,X†
a Xbξba〉2kab . (4)

Here, ξ ∈ C2 is a coherent state in the fundamental representation, J is the corre-
sponding quaternionic structure J : C2 →C2; (z0,z1) 7→ (−z̄1, z̄0), and the brackets
〈,〉 denote the Hermitian inner product on C2. The sign factor (−1)χ is determined
by the graphical calculus relating the 15 j spin network diagram to the above eval-
uation.

2.2.2 Euclidean EPRL model

The Euclidean EPRL model is a model of Euclidean quantum gravity with finite
Immirzi parameter γ . Throughout this paper, it will be assumed that γ is a pos-
itive real number. When discussing the Euclidean model it will furthermore be
assumed that γ < 1. Under this assumption, the Euclidean EPRL model is equiv-
alent to the FK model with finite Immirzi parameter [9]. The construction is that
of a constrained topological model based on the spin cover SU(2)×SU(2) of the
four-dimensional rotation group. The unitary, irreducible representations of the
spin group are labelled by a couple of spins ( j+, j−) and act on the finite dimen-
sional vector space V( j+, j−). These representations factor into representations of
the diagonal SU(2) subgroup as follows
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V( j+, j−)
∼=

j++ j−⊕
j=| j+− j−|

Vj, (5)

with j increasing in unit steps.
The Euclidean EPRL model is constructed by identifying the boundary SU(2)

representation k with the highest diagonal SU(2) subgroup factor of ( j+, j−), that
is, k = j+ + j−. More precisely, the identification involves the Immirzi parameter
γ as follows

j± =
1
2
(1± γ)k. (6)

From this identification, one can construct SU(2)×SU(2) intertwiners from
the coherent states Ψa associated to the boundary tetrahedra. By forming a closed
diagram from these interwiners, where the contractions involve the standard
(pseudo-) symplectic inner product on the irreducible representations of SU(2),
one obtains the four-simplex amplitude for the Euclidean EPRL model. With the
convention that an element X in SU(2)×SU(2) is written as (X+,X−), the ampli-
tude for the four-simplex σ is given by the formula

AE
σ (k,n) = (−1)χE

∫
(SU(2)×SU(2))5

∏
a

dX+
a dX−

a ∏
a<b

Pab, (7)

where the propagator Pab yields

Pab = 〈Jξab,X+†
a X+

b ξba〉2 j+ab ×〈Jξab,X−†
a X−

b ξba〉2 j−ab , (8)

with the spins j± constrained by Equation (6). This implies that the amplitude AE
σ

is an ‘unbalanced’ square of the 15j symbol :

AE
σ (k,n) = 15 j

(
1
2
(1+ γ)k,n

)
×15 j

(
1
2
(1− γ)k,n

)
.

2.2.3 Lorentzian EPRL model

The EPRL model is also defined for Lorentzian signature spacetimes. The model
is a constrained topological model now based on the spin cover of the Lorentz
group, that is, SL(2,C) regarded as a real Lie group. The principal series of uni-
tary, irreducible representations of SL(2,C) are labelled by two parameters (n, p),
with n a half-integer and p a real number. These representations act in an infi-
nite dimensional Hilbert space V(n,p) of homogeneous functions of two complex
variables z = (z0,z1) ∈ C2. The inner product (,) is defined using the standard
invariant two-form Ω on C2−{0}

∀ f ,g ∈V(n,p), ( f ,g) =
∫

CP1

Ω f̄ g. (9)

The integration range is the complex projective line CP1 because the combination
Ω f̄ g has the right homogeneity to project down from C2−{0} to CP1.
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These representations split into representations of the SU(2) subgroup as

V(n,p) =
∞⊕

j=|n|
Vj, (10)

with j increasing in steps of 1.
The Lorentzian EPRL model is constructed by assuming2 that n ≥ 0 and by

identifying the boundary SU(2) representation k with the lowest SU(2) subgroup
factor of (n, p), that is, k = n. In fact, the full prescription is the following

(n, p) = (k,γk). (11)

This identification leads to the embedding of the coherent states for the
boundary tetrahedra into the space of SL(2,C) intertwiners. The contraction of
these intertwiners in the inner product (9) according to the combinatorics of the
appropriate spin network diagram leads to the following amplitude for the four-
simplexes

AL
σ (k,n) = (−1)χL

∫
SL(2,C)5

∏
a

dXaδ (X5) ∏
a<b

Pab. (12)

Here, the delta function fixes the non-compact SL(2,C) symmetry of the ampli-
tude and the propagator Pab is defined by

Pab = cab

∫
CP1

Ω〈X†
a z,X†

a z〉−1−ipab−nab〈X†
a z,ξab〉2nab

×〈X†
b z,X†

b z〉−1+ipab−nab〈Jξba,X
†
b z〉2nab , (13)

where cab is a constant given by cab =
(2nab+1)

√
n2

ab+p2
ab

π(nab+ipab) , and (n, p) are constrained
by equation (11).

3 Asymptotic analysis

All the above amplitudes are integral expressions in exponential form and so
the asymptotic limit, where all the boundary spins are simultaneously rescaled
kab → λkab and taken to be large (λ → ∞), can be analysed with stationary phase
methods.

2 This is because V(n,p) is isomorphic to V(−n,−p). Therefore it is not necessary to consider
both of these representations.
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3.1 Asymptotic problem and critical points

3.1.1 Ooguri model

The scaled 15 j symbol can be re-expressed as

15 j(λk,n) = (−1)χ

∫
SU(2)5

∏
a

dXa exp
(
λSk,n[X ]

)
,

where the action S for the asymptotic problem is complex and given by

Sk,n[X ] = ∑
a<b

2kab ln〈Jξab,X†
a Xbξba〉. (14)

The critical points dominating the asymptotic formula are the stationary points of
S which are such that the real part of S is maximal, that is, ReS = 0.

Such critical points are determined by a closure condition (2) and by the equa-
tion

Xbnba =−Xanab, (15)

where the SU(2) action in (15) is defined via the homomorphism to SO(3). The
closure equation is obtained by varying the action with respect to the group
variables and evaluating the result on the solutions to the Equation (15), which
expresses the maximality of the real part of the action.

3.1.2 Euclidean EPRL model

Since the Euclidean EPRL amplitude in the coherent state basis is a rescaled
square of the 15 j symbol, it is immediate to see that the amplitude (7) can be
re-written as

AE
σ (λk,n) = (−1)χE

∫
(SU(2)×SU(2))5

∏
a

dX+
a dX−

a exp
(
λSk,n[X+,X−]

)
,

where the action S is the sum of two decoupled 15 j actions (14)

Sk,n[X+,X−] = S j+,n[X+]+S j−,n[X−], (16)

with the spins j± constrained as in (6).
Accordingly, there are now three critical point equations. A closure constraint

(2) together with the two following equations

X±
b nba =−X±

a nab. (17)



8 J. W. Barrett et al.

3.1.3 Lorentzian EPRL model

The Lorentzian framework is slightly different because the representation theory
of the Lorentz group is more involved. Each propagator contains an internal vari-
able, z, which is integrated over. Where it is necessary to distinguish these vari-
ables on the different propagators, the notation zab will be used for this variable,
for each a < b. In the following, the combinations

Zab = X†
a zab and Zba = X†

b zab,

for each a < b occur frequently; this notation will be used as a shorthand.
Using this notation, the Lorentzian propagator (13) can be written as

Pab = cab

∫
CP1

Ωab

(
〈Zba,Zba〉
〈Zab,Zab〉

)ipab
(

〈Zab,ξab〉〈Jξba,Zba〉
〈Zab,Zab〉1/2〈Zba,Zba〉1/2

)2nab

,

where

Ωab =
Ω

〈Zab,Zab〉〈Zba,Zba〉
,

is a measure on CP1. Therefore, the four-simplex amplitude can be re-expressed
as follows

AL
σ (λk,n) = (−1)χL

∫
(SL(2,C))5

∏
a

dXaδ (X5)
∫

(CP1)10

∏
a<b

cabΩab exp
(
λSk,n[X ,z]

)
.

The action S for the stationary problem is given by

Sk,n[X ,z] = ∑
a<b

nab ln
〈Zab,ξab〉2〈Jξba,Zba〉2

〈Zab,Zab〉〈Zba,Zba〉
+ ipab ln

〈Zba,Zba〉
〈Zab,Zab〉

, (18)

where the couple (n, p) is constrained according to (11). Note that the first term of
the action is complex and the second term is purely imaginary.

The critical points of the action are determined by a closure condition (2) and
two spinor equations, for each a < b,

(X†
a )−1

ξab =
‖Zba ‖
‖Zab ‖

eiθab(X†
b )−1Jξba and Xaξab =

‖Zab ‖
‖Zba ‖

eiθabXbJξba,

(19)

where ‖Zab‖ is the norm of Zab induced by the Hermitian inner product, and θab is
a phase. The closure equation is obtained by extremizing the action with respect to
the group variables and evaluating the result on the solutions to the first Equation
in (19). This equation determines the points maximizing the real part of the action.
The last Equation in (19) is obtained from the variation of the action with respect
to the spinor variables zab.
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3.2 Geometry of the critical points

The critical points dominating the asymptotic formula for the Ooguri and
Euclidean EPRL amplitudes are determined by the same equations and there-
fore have the same geometric interpretation. The Lorentzian version of the EPRL
model will be treated separately.

3.2.1 Ooguri and Euclidean EPRL models

To understand the geometry of the critical point equations, it is illuminating to
define the variables

bab = kabXanab.

In terms of these variables, the critical point Equations (2) and (15) become

∑
b:b6=a

bab = 0, and bab =−bba. (20)

These equations define a geometric structure called a vector geometry. It is imme-
diate to see that a vector geometry determines a su(2)-valued two-form B which
is constant on a four-simplex: the variables bab are identified with the surface inte-
grals of the two-form on the triangles of the four-simplex and the closure condition
is mapped to Stokes’ theorem for the constant two-form around the boundary of
the tetrahedra.

A further geometrical picture emerges if one makes restrictions on the class of
boundary data. Suppose that the boundary data is such that there exist two distinct
solutions to the critical point equations, that is, two solutions to (15) unrelated by
the symmetries of the 15 j action given by the formula X ′

a = εaY Xa, with Y ∈ SU(2)
and εa = ±1. Call these two solutions {X+

a } and {X−
a }, with a = 1, . . . ,5. From

this data, one can reconstruct a bivector geometry as follows.
We introduce the vector space isomorphism

φ : Λ
2(R4)→Λ+(R4)⊕Λ−(R4); B 7→ (b+,b−),

decomposing any two-form over R4, or bivector, into self-dual and anti-self-dual
components. Note that Λ±(R4)∼= R3 as vector spaces. From the asymptotic data,
one can construct the bivectors

Bab = (b+
ab,b

−
ab), with b±ab = kabX±

a nab. (21)

These bivectors satisfy the following bivector geometry conditions [12; 13].
First, they are simple because |b+

ab| = |b−ab|. Second, they are cross-simple
because the bivectors (21), with fixed a and varying b, live in the same 3d
hyperplane N⊥

a defined by the unit vector Na. This vector is the image of the
reference vector N = (1,0,0,0) of the three-sphere S3 under the action of the
SU(2)×SU(2) element (X+

a ,X−
a ). Hence, the following equation holds

NaIBIJ
ab = 0, with γE(Na) = X+

a X−†
a ,
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where γE : S3 → SU(2) is the standard diffeomorphism identifying the space of
unit vector S3 ⊂ R4 with the unitary group SU(2). Furthermore, the constructed
bivectors satisfy closure and orientation

∑
b:b6=a

Bab = 0 and Bab =−Bba,

because of the closure condition (2) and the Equations (15) satisfied by the crit-
ical points. Under the assumption of non-degeneracy of the boundary data, these
bivectors also satisfy a tetrahedron condition. Finally, one can show that the crit-
ical points determine normals Na which are either such that at least three out of
the five normals are linearly independent, or such that all are pointing in the same
direction. In the first case, which occurs when the two solutions {X+

a } and {X−
a }

are distinct, the corresponding bivectors satisfy the non-degeneracy condition of a
bivector geometry.

Therefore, the bivector geometry theorem [12; 13] implies that, if the boundary
data is such that there exist two distinct solutions to the critical point equations,
the bivectors (21) are equal, up to a sign, to the bivectors of a geometric four-
simplex in R4. This geometric four-simplex is determined up to inversion through
the origin. Hence, a distinct pair of solutions to the critical point Equations (15) is
equivalent to a geometric four-simplex in R4, up to inversion.

3.2.2 Lorentzian EPRL model

Here, we make the assumption that the boundary data is such that the critical point
Equations (19) admit a non-trivial solution {Xa}. The geometry of the critical
points is then based on the identification between spinors and null vectors. Let
γL : R3,1 → H be the isomorphism between Minkowski space R3,1 and the space
of 2×2 hermitian matrices H. Call H+

0 the subset defined by

H+
0 = {h ∈H | deth = 0, and Tr h > 0}.

The isomorphism γL identifies the future null cone C+ in Minkowski space with
H+

0 because detγL(x) = −η(x,x), where η is a Minkowski metric with signature
−+++. Therefore, using the standard map between spinors and elements of H+

0

ζ : C2 →H+
0 , z 7→ ζ (z) = z⊗ z†,

one can define a map ι : C2 →C+ ⊂ R3,1.
Following this construction, one can associate two null vectors

ι(ξ ) =
1
2
(1,n) and ι(Jξ ) =

1
2
(1,−n),

to a given coherent state ξ . From these two vectors, one can construct the space-
like bivector

b = 2∗ ι(Jξ )∧ ι(ξ ), (22)
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where the star ∗ is the Hodge operator on Λ 2(R3,1). Regarded as an anti-symmetric
4×4 matrix, b is given explicitly by

b = ∗


0 n1 n2 n3

−n1 0 0 0

−n2 0 0 0

−n3 0 0 0

 .

Thus, to every coherent state ξab of the asymptotic data, one can associate a space-
like bivector bab. In fact, the critical point Equations (19) carry a richer geometric
structure. This geometry is made transparent by acting with a Lorentz transforma-
tion on the bivectors bab and defining the space-like bivectors

Bab = kabX̂a⊗ X̂abab, (23)

where X̂a is the SO(3,1) element corresponding to ±Xa in SL(2,C).
These bivectors satisfy the bivector geometry conditions. They are simple and

cross-simple by construction. The normal appearing in the cross-simplicity condi-
tion for tetrahedron a is here a future pointing vector Fa in the future hyperboloid
H+

3 . This vector is the image of the reference vector F = (1,0,0,0) ∈ H+
3 under

the action of Xa, that is, γL(Fa) = XaX†
a . Furthermore, the constructed bivectors

satisfy closure and orientation because of the closure condition (2) and the spinor
Equations (19) satisfied by the critical points. To show the orientation equation,
one uses the action of J on SL(2,C) given by JXJ−1 = (X†)−1, for all X in
SL(2,C). Under the assumption of non-degeneracy of the boundary data, these
bivectors also satisfy a tetrahedron condition. Finally, the critical points deter-
mine normals Fa which are either such that at least three out of the five normals
are linearly independent, or such that all are pointing in the same direction. In the
first case, which occurs when the solution {Xa} does not lie in the SU(2) subgroup
stabilising F , the corresponding bivectors satisfy the non-degeneracy condition
of a Minkowskian bivector geometry.

This implies that, if the boundary data is that of a 4d Minkowskian, non-
degenerate four-simplex, the bivectors (23) are equal to the bivectors of (either
one of) an inversion-related pair of geometric four-simplexes in R3,1, up to a sign.
Therefore, a solution to the critical point Equations (15) is equivalent to a geomet-
ric four-simplex in Minkowski space with spacelike tetrahedra, up to inversion.

3.3 Classification of the solutions

The classification of the solutions to the critical point Equations (15) and (19)
depends on the boundary data. In this paper, we restrict our attention to geo-
metric boundaries of Euclidean and Lorentzian four-simplexes. If the boundary
data is that of a Lorentzian four-simplex, the critical point Equations (15) for the
Ooguri and Euclidian EPRL models admit no solutions, while one can show that
the Equations (19) for the Lorentzian EPRL model admit two parity-related solu-
tions. If the boundary data is that of an Euclidean four-simplex, the critical point
Equations (15) admit two distinct solutions and, surprisingly, the same is true for
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the Lorentzian critical point Equations (19). This is due to the following fact. If
the group elements Xa in SL(2,C) are restricted to the unitary subgroup SU(2),
the two spinor Equations (19) collapse to a single equation which is precisely (15)
in the spinor representation.

3.4 Asymptotic formulae

For geometric boundary data, we have a distinguished boundary state, the Regge
state, defined by (3). We now look at the two types of geometric boundaries con-
sidered in this paper with the boundary state given by a Regge state.

3.4.1 Ooguri and Euclidean EPRL models

In the spinor representation, the critical point Equations (15) involve a phase

X†
a Xbξba = eiφabJξab. (24)

This implies that the 15 j action evaluated at a critical point yields

Sk,n = 2i ∑
a<b

kabφab. (25)

4d Lorentzian boundary. For these types of boundaries, there are no solutions to
the critical point equations and the 15 j symbol goes to zero asymptotically faster
than any polynomial of λ . The same applies to the Euclidean EPRL amplitude.

4d Euclidean boundary. In this case, there are two inequivalent solutions to the
critical point equations {X+

a } and {X−
a }, the corresponding phases being noted

φ
±
ab. Using the fact that these two sets are solutions and coupling the resulting two

equations leads to the following eigenvalue equation

Eabξab = ei(φ+
ab−φ

−
ab)

ξab, with Eab = X−†
a X−

b X+†
b X+

a .

Solving this equation for Eab and comparing it to the definition of the Euclidean
dihedral angle Θ E

ab for the triangle ab
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cosΘ
E
ab := Na ·Nb =

1
2

trEab,

one can show that

|φ+
ab−φ

−
ab|= Θ

E
ab.

In fact, one can solve the sign ambiguity completely; the sign between the two
angles is controlled by the sign relating the bivectors (21) to the bivectors of the
geometric four-simplex. Fixing a choice of ± labels consistent with the relative
sign, and using the canonical choice of phase for the boundary state, one arrives
at the conclusion that

φ
±
ab =±1

2
Θ

E
ab,

up to multiples of π that play no role once exponentiated.
Taking this into account when evaluating the action (25), we can write down

the asymptotic formula describing the asymptotic behavior of the Ooguri model.
The asymptotic formula has two terms, corresponding to the two solutions, and is
given by

15 j(λk,n)∼
(

1
λ

)6
[

N+ exp

(
iλ ∑

a<b
kabΘ

E
ab

)
+N− exp

(
−iλ ∑

a<b
kabΘ

E
ab

)]
,

(26)

where N± are constants that do not scale.
The asymptotic behaviour of the Euclidean EPRL model is obtained by the

taking the unbalanced square of the above formula. The result reads

AE
σ (λk,n)∼

(
1
λ

)12
[

2N+− cos

(
λγ ∑

a<b
kabΘ

E
ab

)
+N++ exp

(
iλ ∑

a<b
kabΘ

E
ab

)

+N−− exp

(
−iλ ∑

a<b
kabΘ

E
ab

)]
, (27)

where the constants N+−,N++ and N−− do not scale.

3.4.2 Lorentzian EPRL model

The action at the critical point has vanishing real part and we are left with the
imaginary part

Sk,n = i ∑
a<b

pab ln
‖Zba ‖2

‖Zab ‖2 +2nabθab. (28)
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4d Lorentzian boundary. In this case, the critical points determine a non-
degenerate four-simplex with Lorentzian metric, up to inversion. Considering a
such solution, one can couple the two spinor Equations (19) and obtain the eigen-
value equation

Labξab = erabξab, with Lab = X−1
a XbX†

b (X†
a )−1,

and erab =‖Zba ‖2 / ‖Zab ‖2. Solving this equation for the Hermitian matrix Lab
leads to the identification

|rab|= |Θ L
ab|,

where Θ L
ab is the Lorentzian dihedral angle associated to the triangle ab defined

as the intersection of the two hyperplanes determined by Fa and Fb. This triangle
is a thick wedge in the terminology of [14] which implies that the corresponding
dihedral angle is defined, up to a sign, by

coshΘ
L
ab :=−Fa ·Fb =

1
2

trLab.

As in the Euclidean case, the sign ambiguity can be resolved and, with the canon-
ical choice of phase for the boundary state, one can show that the action at the
critical points is given by (28) with

ln
‖Zba ‖2

‖Zab ‖2 = Θ
L
ab, and θab = 0,π.

To each solution one can associate a second solution corresponding to a parity
related four-simplex and, consequently, the asymptotic formula has two terms. It
is given, up to a global sign, by the expression

AL
σ (λk,n)∼

(
1
λ

)12
[

N+ exp

(
iλγ ∑

a<b
kabΘ

L
ab

)
+N− exp

(
−iλγ ∑

a<b
kabΘ

L
ab

)]
,

(29)

where N± are constants that do not scale.

4d Euclidean boundary. If the boundary data is that of an Euclidean four-simplex,
we have seen that there exist non-trivial critical points. There are two SU(2) solu-
tions to the critical equations for these types of boundaries which, together, build
an Euclidean bivector geometry. The asymptotics are given by

AL
σ (λk,n)∼

(
1
λ

)12
[

N+ exp

(
iλ ∑

a<b
kabΘ

E
ab

)
+N− exp

(
−iλ ∑

a<b
kabΘ

E
ab

)]
.

(30)
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4 Conclusion

In this paper, we have presented results on the asymptotic behaviour of four-
simplex amplitudes for the Ooguri model and the Euclidean and Lorentzian EPRL
models. We used stationary phase methods applied to integral formulations of the
amplitudes expressed in the coherent state basis. The asymptotic formulae are
given, in all three cases, by simple functions of the Regge action for the four-
simplex geometry. Note that as a corollary of our results, the asymptotics of the
EPR and FK models [9; 15; 16; 17; 18] can be immediately derived.

To conclude, we comment on the physical implications of our results. The
asymptotics discussed here correspond to the semi-classical regime of the studied
spin foam models, as the large spin limit corresponds, with fixed triangle areas, to
sending h̄ to zero. Therefore, the Ooguri, Euclidean and Lorentzian EPRL models
contain the Regge action in their semi-classical limit. These results are important
but some work remains to be done to fully understand the semi-classical limit of
these spin foam models, because the work presented here only analyses a single
simplex. The next step is to use these results to study the asymptotics of glued
simplexes and compare the critical point equations with the Regge equations for
the corresponding simplex configurations.
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