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The object of this note is to formulate a characterisation of 

both equilibrium and metastable states of classical systems in terms 

of certain global and local stability conditions. It will be found 

that, according to this characterisation~ a class of systems with 

appropriately weakly tempered or long range forces can support meta- 

stable states. This result may be regarded as complementary to that 

of Lenford and Ruelle [ 17, concerning the absence of metastable states 

in systems with suitably strongly tempered forces. A preliminary version 

of the contents of the present note is to be found in Ref. [2J. 

We shall restrict our formulation here to classical lattice systems: 

hard-core continuous systems may be similarly formulated within the 

scheme of Ref. [3]. 

Let ~ be an assembly of identical~ mutually interacting particles 

on a lattice T = Z d, each site of which is occupiabie by at most one 

particle. The states and forces in ~ may be specified within the frame- 

work of Ref. [4]. Accordingly, we represent a particle configuration 

for E by a subset x of T, consisting of the occupied sites. The family 

X of all subsets of T thus corresponds to a phase space for ~ . For 

t E T~ we define the cylinder set ~t = {x e X I t e x~ and equip X 

with the topology generated by { ~t' X ~t I t & T~, thereby rendering 

X compact. We define Y to be the subspace of X whose elements are finite 

point subsets of T; and we define the state spac~ , for~ to be the 

set of all Radon probability measures on X. Space translations may be 

represented in X, Y,~ in obvious fashion. We denote bY~T the set 

of translationally invariant states of~ . 

Let A be the set of all finite point subsets of T. For each ~ ~ A, 

we denote T\~ by o< c. We define an equivalence relation~ (~) in X 

by specifying that x ~(~)x I means that x ~ ~ = xl~ ~ ; and define X~ = 
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X/~(~). ~hus, each element x~ of X~ is a cylindrical set in X which 

corresponds to a unique particle configuration in ~. We define~(~o) 

to be the~-a!gebrs generated by the family of cylindrical sets [~'~'I 

A 9~' C ~=I" We denote the restriction of ~(6 ~ ) to @ (~c) by ~O~c. 

If ~ is a semi-bounded Borel function from X into the extended real 

line, we denote by Ee(g/~c) the conditional expectation o£ g with 

respect to ~(~e ) for the state ~. If ~B is the characteristic function 

for a Borel set B in  X, we denote E~(~B[~c ) by ~(B/go) .  
Let ~ be the set of continuous~ translationally invariant functions 

on Y, such that ~ (~) = O; and let ~. I~ and I~" ~IA be the norms on 

defined by the equations 

o~J ~ I~) e~ j 

where N(y) is the number of sites in y. We define ~ (reap. fl ) to be 

the Banao~ space {¢~lU ¢~I c ~ .  ll~lt~) < , ~  ] ~h~s ~ c ~. 
An interaction potential for ~ is taken to be an element @ of ~, 

with the interpretation that the potential energy of a finite system 

of particles occupying the point set y is ~ @ [~'). It follows from 

~'cy 
the definition of ~ that such interactions are both stable and tempered. 

It may be generally assumed that the chemical potential~ (e R) is ab- 

sorbed into @ , i.e. 

where ~ (~ ~ ) is independent of/~ . 

For each ~ e ~, we define a real valued function H~ on X, repre- 

senting the energy of interaction between particles in~, by the formula 

~cx 
We define 22 to be the set of elements ~ of i such that, for 

each ~ ~ A, there exists a lower-bounded Borel function H~ : X~R0[~J 

representing the energy of interaction o£ the particles in ~ both with 

one another and with those in ~c , as specified by the following con- 

ditions. 

(a) 
ycxn ync~¢~ ycx' • yr~c~@~ 

VA~a~, xna c x'f~a = c (4) 
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(b) H~ ( x ) =  I,m t-1,~ (xr~o.) v ×~ ×~  (5) 
o. - 9 , ~  -" 

the limit being taken over any increasing absorbing sequence of finite 

point subsets of T. 

It) For each x c C o(~. ,) i~IC ~ (X) < ~, 

The conditions (a) - (c) specify H~ to within a class of fu/ictions 

which differ from one another by bounded ~ (~c) - measurable functions 

on X. It may easily be seen that the theory which follows is independent 

of the choice of H~ from this class. It may easily be verified that 

We define the (~lobal) free energy density functional f~ :If T -~ R, 

corresponding to the interaction potential @ (e ~) and temperature 

e ( ~ + ) b y t h e  form~Za ( c f [ 4 ]  ) 

where k is Boltzmann's constant and the limit 

sense. For ~ e ~2 ~ e ~ R+ and ~ £ A, 

free energy functional ~ # ~," (~/~) on CZ by the equation 

Thus~ F~, o,3 ( ~ / ~ c  ) corresponds to the free energy of the 'open' 

system of particles in ~ ~ interacting via the potential @ both with 

one another and with the particles in ~c" 

is taken in Fisher's 

we define the conditional 

Definition i. We define K L (@, 9) , the set of locally stable states 

of ~ , corresponding to the interaction ~ (& ~2 ) and temperature e, 

to consist of those states m such that~ if~ e A and ~i£~, with 

' then ~:~' [~I~%) ~" F ~ 

Note. Our local stability conditions are equivalent to the Dobrushin- 

 anford -  uelle (D R> conditions [1,5] , as generalised from to 

~2 - class interactions. However, for our purposes it is essential 

that K L (@, @) be regarded as the set of locally stable states~ whereas 

in Refs. [i~ 53 the D L R conditions were taken to define equilibrium 

states. 
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Definition 2. Let X ° be a closed subspace of X, which is stable under 

space translations,and !et f)_ O (reap. ~° T ) = { e & /~(resp. ~ T )I 

supp ~ C X ° } • 

(i) Then we define K G (@, @) (reap K~ (@, @)), the set of globally 

stable (reap. globally X ° - stable) translationally invariant states of 

[ , corresponding to the interaction @ and temperature e, to consist 

of those elements ~ of~ T (reap. ~° T ) which absolutely minimise f~ 

( resp" ~ : , / l %  ). 

(ii) We define the thermodynamic functions p, pc, from R+ x R into 

R, by the formulae 

P(e~/~):-~ 0)-~ " ~  ~o (~) ; ?°(%/~) :-(ke) i~ o [~) (8) 

where ~ i s  assumed to  be e ~ r e s s e d  i n  terms of  the chemical p o t e n t i a l  
/~ accord ing to  equat ion  (2 ) .  Thus, P rep resen ts  the pressure  of  

and 2 ° represen ts  i t s  pressure when cons t ra ined  to  the reduced 

phase space X °.  
~ote. Since, as noted above, K L (e, ~) consists of the states which 

satisfy the D L R conditions, it follows from Ref El : Theorem 3.2 3 

and Defs. i, 2 (i) that K G (e, @) = K L (~, @)~T if ~ 6 ~. 

However this is not generally true for @ ~ ~ ~ ~, as the following 

example shows. 

~ .  Let ~' be a non-positive-valued element of ~ \ ~. Then 

it follows from equations (i), (2), (#), (5), to~ether with our defi- 

nitions of and that ¢ with 

~ ( x ~ c  ', y C X  ~ . ( 9 )  
Let ~ be the pure s ta te  corresponding to the c o n f i g u r a t i o n  x zn which 
a l l  s i t e s  are occupied; and l e t  d '  be an a r b i t r a r y  s ta te  such tha t  
0-~ c -- 0-~, c Then it follows from equations (i) and (9) that 

Eo~, C H : /  ~ c ) :  0 if ~-; : O- and : ~w9 otherwise. }fence, by equa- 

t ion (7) and Def. i , ~ is  local ly  stable for  a l l  values of e and/@ . 

On the other hand, i t  follows from equations (2), (6) and (7) that, for 
su f f i c ien t l y  large values of - ~ ,  the global free energy density o2 
exceeds that of the state in which all sites are unoccupied. Hence, 

for such values of/~ , CO is locally~ but not globally, stable. Further 

(and trivially:), it is always globally {X ~ ] - stable. 

This example reveals the possibility that systems with suitable 
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w e a k l y - t e m p e r e d  (ie I \ - c l a s s )  forces can support states 
which are locally, but not globally, stable. Accordingly, we propose 

the following definitions of equilibrium and metastable states. The 

motivation for these definitions, as well as their implications, will 

be discussed below. 

Definition 5- (i) We define the set K E (8, @) of translationa!ly 

invariant equilibrium states of 2 , corresponding to (8, ~), to be 

K G (8 ,  @ ) ~  K L (8 ,  ~ ) .  
o (9,  ~) o f  t r a n s l a t i o n a l l y  ( i i )  We d e f i n e  t h e  s e t  K N 

i n v a r i e n t  X ° - m e t a s t a b l e  s t a t e s ,  c o r r e s p o n d i n g  t o  (8 ,  ~ ) ,  t o  be  
o K L (8, 4) ~ KG (8, 9) ~ K G (8, ~). Thus, in this definition, meta- 

stability is associated with some specific reduced phase space X °. 

Comments. We envisage that Def. 3 may lead to a theory of metastable 

states possessing very long lifetimes and 'good' thermodynamical be- 

haviour, as observed experimentally, for the following reasons. 

(i) We conjecture, for want of an adequate kinetic theory,'that locally 

stable states are dynamically stable against perturbations arising from 

° ( 8 ,  - the coupling of~ to a thermal reservoir. In this case, the K M 

class states have infinite lifetimes. 

(2) By equation (8), pC corresponds to the pressure of a system ~o, 

say, with phase space X ° and interaction potential @. Thus, pc serves 

to generate the thermodynamical laws for ~o, just as P does for 2 . 

o (@, @) _ class states exhibit 'good' thermodynamical be- Hence the K M 

haviour, as generated by pC. 

(9) Suppose that, at temperature 8, the systeml possesses the following 

properties, which are realisable in certain models (of. Conclusion (III) 

below). 

(a) The globally X O - stable states are metastable or true equilibrium 

states, according to whether~< or > some value ~o(@); and (b) pc 

is analytic in~ in some open neighbourhood of ~o(~). Then it follows 

from Defs. 2, 3 that, under these conditions, the pressure function pc 

for the X ° - metastable phase is an analytic continuation in ~ of the 

pressure P for the equilibrium phase. 

Conclusions (I) , By Def. 3(ii) and the note following Def. i,~ has 

no metastable states if ¢ C ~ 

(If) On the other hand, the example following that note shows that ~ 

may support metastable states if @ E ~ ~ ~. 

(III) We have obtained similar results for the physically more inter- 

esting case of hard-core continuous systems. !n particular, we have 

shown that the Fisher-Felderhof cluster model [6] has a metastable 

phase corresponding to a superheated liquid, whose pressure function 
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is a smooth continuation of that of the equilibrium liquid phase. These 

properties stem from the fact that the model satisfies the conditions 

specified in the above Comment (3), with X ° the space of single cluster 

conf&gurations. 

(IV) By extending the present formalism to mean field theories, We have 

shown that the Van der Waals fluid model, with infinite range Kac poten- 

tial, has a metastable phase corresponding to a supercooled gas, whose 

pressure is an analytic continuation of that for the stable gaseous 

phase (of. also [7 ,8 ] ) .  
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