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ABSTRACT

A genera; method is proposed for the measurement of the polari-
zation and alignment of a particle of arbitrary spin from the analysis
of its three body decays. This method provides a procedure for the
determination of spin and parity of the decaying system which is in-
dependent of the dynamics of the decay process.. The procedure is
closely related to the one currently used for two-body reactions except
that the normal to the decay-plane replaces the center-of-mass momentum
as an analyzer. The general formalism is developed and illustrated by

two examples; three pion decays and baryon-two pion decays.

(Submitted to The Physical Review)

'
R
- pi

N . .
; Work supported by U. S. Atomic Energy Commission.

TOn leave of absence from Service de Physique Theorique, Saclay,
Gif-sur-Yvette, France.



I. INTRODUCTION

The deécription of three interacting bodies is a well seasoned and
familiar problem which has received a revived interest by particle physi-
cists during the past few years.l’2 The fact that increasing numbers of
particles (or resonances) of high mass are being experimentally discovered
which have appreciable three body decay modes behoo%es us to examine the
three body problem from the standpoint of a decaying system. However, we
do not consider the dynamics of the decay process but merely make use of
the consequences of rotational and inversion invariance. The treatment
presented here is therefore completely general, exhibiting the kind of
angular and polarization distributions which are consistenf with a systenm
of arbitrary spin decaying into three particles with spin. Such distribu-
tions, when compared with experiment, provide a possible determination of
the spin and parity of the decayiﬁg particle and eventually a meéns to
measure its polarization and alignment, quantities of great interest for
the understanding of its production mechanism.” Our method applied to three
body decays is closely related to the one currently used in the analysis of
two body decays except that the normal to the decay plane replaces the
center-of-mass momentum as an analyzer of the polarization. Formulae
giving “the angular and polarization distributions in terms of thé decay-

ing particle density matrix are in fact written in a very similar form for

both cases.



As is well known, the description of a three body system requires
five varigbles. A convenient choice of these variables consists of two
energies and three angles. The two energies are taken to be the center-
of-mass energy of tw
Dalitz plot. The three angles can be chosen as phbse which define completely
the orientation of the decay plane. In the treatment presented here we con-
sider only the orientation of the decay plane and sum over all energy con-
figurations, or, in some cases, separately over different regions of the
Dalitz plot. In this sense, the distributions presented here are the
complement of the Dalitz plot distribution where all angular configurations
are averaged over, and where the three body system is studied in terms of
ite energy distribution.*

The analysis of the energy distribution in terms of a Dalitz plot has
the advantage of giving useful information even 1if the decaying particle is
neither polarized nor aligned. Nevertheless, its practical interest is bound
to the dominance of a very small number of independent amplitudes. In many
cases the general anaiysis suggested here, which does not rely on ahy dynamical
assumptions governing the decay process, can be used to determine the spin
and parity of aldecaying state via its three~b9dy decay alone. When the
system has in addition a two-body decay mode the combined analysis of both
two and three body modes can be applied in unison in order to obtain improved
and more accurate knowledge of the system's quantum nurbers.> in all cases
it could be used ir order tb get informetion about the production mechanisms

by means of polarization and alignment analyzation.



. The angular distribution of the normal to the decay plane is readily
obtained when three free relativistic partiéle states of well defined
angular momentum J and parity are constructed using the general projection
method of Wigner.® The anguiar dependence of the decay amplitude is given
ag & linear combination of rotation matrix elements corresponding to the
27 + 1 dimensional representation of the rotation group: (a,B,y).

The arguments are three Euler angles, which can be chosen as the azimuthal

D
mm

and polar angles of the normal to the decay plane and a third angle, 7, re-
ferring to a rotation of the decay plane around the normal. These angles
then completely specify the orientation of the decay plane. This is a

straightforward extension to three particles of a procedure already used

to construct two particle states.”

The general formalism is presented in Section II, and a general ex-
pression tfor the angular distribution of the normal to the decay plane is
obtained B The simplifications due fg parity conservation and possible
identity Qf two of the particles are also discussed. The formalism is
then applied in Section III to the problem of the decay into three spin
zero particles and in Section IV to the problem of the decay into two spin
zero and one spin 1/2 particle. The distribution of the polarization of
the decay spin 1/2 particle is discussed in detail and we stress the analogy
between the formulae obtained and the ones currently used for two body decays
into a spin zero and a spin 1/2 particle. In both Sections IIX and'IV we
slso discuss decays into a pion and a resonance which eventually decays

into two pions or a pion and a hyperon depending on its quantum numbers.



In addition to giving the general formalism the most simple cases are
explicitly treated. In Section III éngular distributiéns are given for
the de;ay of spin li and 2i into three pions. In Section IV angular dis-
tribution of the normal to the decaj plane, as well as polafizatién dis-
tributions for the decay spin l/2_hyp¢ron are given for the decaying state
having spin 1/2 and spin 3/2.

J

The Dm'm functions required for explicit calculations with spins

less than or equal to 3 are given in an appendix.

IT. GENERAL FORMALISM

Three Particle States

A gquantum state containing 3 free particles is completely defined by
the mbmentum and polarization of each particle. Such a state may be con-
structed as the direct produét of three one-particle states |Ei’%i >
where ai and Ki stand resbectively for the momentum and helicity of the
i-th particle. To be more precise we define the state la;,%i > as done

in Reference (7), namely that ' -

>

.
s N\, > =R Q, A > (1)
lql’ i 9;040 i’? i
-
where Qi’ Ri > 1s an helicity state with eigenvalue A, and momentum
Q. along the positive 2z axis (|5.l = |+.|).' R stands for the rota-
1 i 4 $:650

tion operator, with Euler angles @i,ei,o. Ps and ei are respectively

. ->
the azimuthal and polar angles of 9 with respect to the fixed coordinate



system x y'z (Figure 1). The helicity, i.e., the component of the total
angular momentum of the particle along its momentum, is obviously invariant
under rotation.

A three particle state is written as®

> > >
. . > 2
‘ql, Asa, A5 a s A (2)

It is convenient to describe the decay in the center-of-mass system

where
> > (
Q.+ g, g, =0 3)

The three momenta then form a triangle in a plane, the normal of which is

> > .
defined as a unit vector along ql X q, . The conservation of energy gives
the further restriction

+ q_2+m
3

N
+
o |
+
g8

qg- +m

W

= m ()

where m is the mass of tﬁe decaying particle.

A more convenient description of this state is in terms of a different
set of quantum numbers which are the energies W, 0, and . of the three
particles restricted by (&) — and three Buler angles @, B, y which specify
the orientation of the momentum triangle in space (Figure 2).

The rotation angles are defined by starting from a standard position
where the triangle is in the x-y plane. As a convention we take 31 + 52

glong the x axis and the normal 61 X 62 along the z axis. The angles
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a and P are respectively chosen as the azimuthal and polar angles of the
normal to the decay plane. The angle 7 refers to a rotation around the
normal esnd is illustrated in Figure 2.. All helicities remain unchanged

through these three successive rotations. We then write a three particle

state thus defined as
o Ao, Ny e Ao B,y | (5)

With the set of states (2) the density of final states dpF for the

three body decay is written as

52 .3 ooz > > > )
- 4% q,d% q,4° q_ B (ql +q, + q3) 3 (aa o, o - )
PF
2w 2w 2m
12 3
or as usually done
1 -0y 0,)%- @ - o& - m2) \
dpF =3 daadmédwld cos 6, d@lz icos 6, , - A /
172

(6)
. -
where @lg and 912 are the azimuthal and polar angles of q,2 with respect

> ' . . 3
to ql . Integration with respect to cos 6,,, ¢,,, €OS &, and 9, @gives a

density distribution in the , O, plane.

) This is the Dalitz plot.

With the states (5), the density of states is obtained by replacing

dp, 4 cos 6, dp, , by d@dcospPdy in (6). The Jacobian determinant

is equal to 1.1t



In their center-of-mass system the three decay particlgs are in a
state of well defined angular momentum aﬁd, if we consider only decays
via strong or electromagnetic interactions, also parity. The total
angular momentum is equal to the spin j of the decaying particle. Such

s state is written as

o, N ; ¢§%23 m3%3; jmM> (7)

where m is the eigenvalue of the component of angular momentum operator J
" along a fixed axis chosen as the z axis; M is the eigenvalue of angular
mementum along the normal to the decay plane, which can be used together
with the other observebles J° and J, to specify the sta_té.
The angular distribution of the normal to the decay piane, obtained

from a pure state of definite m and M such as (7), is given by

dN_‘ 2 " .
i = ‘/\|A| ay dmadma (8)
where 4df =

sinfBdgdca and where
A=<ol; o);ol;aBy [ai%l; X oA JmM>

In order to continue further we need the relationship between a state

of definite angular momentum such as (7) and a state described in terms of

&

Euler angles. To achieve this we follow the procedure of Wigner® and write

.* .
. .3 £ D d - . . > :
]aﬁkidw %Q,aBRE,J m M ‘/q Y, (@B 7) [ml}l,w %2¢03%3,a Bry>dasinBdpdy

2 2

(9)




where the integration is performed over all rotations, namely

O<a<2mx 0<B<m 0<y<2rx

As is well known these angles can be defined as in Figure 2 or just
as well v may be considered as the angle of the third rotation per-
formed around the normal to the decay plane. As easily checked uging the
group property of the D functions, (9) transforms under rotations as a
state of total angular momentum j with z component m and component M.along
the normal to the decay plane, a rotationally invariant quantity. The
energy and helicity of each particle are invariant under rbtations and
their same eigenvalues appear on bofh gides of (9). It should be femarked-
that we do not obtain in this way the most convenient orthonormal set of
states for three free particles similar to the case of the two body problem.6
Such states have been explicitly constructé&d by Wick! in coupling two
particles together and then coupling the third one to the system con-
structed from the first two. A quantum state with eigenvalues j m and M
will be in general described Ey a wave function of w, and. , which
multiplies the angular wave function (10). The angular distribution of
the normal which is obtained by integration over the Dalitz plot (8) will
average over all configurations the final state interaction of two of the
decay particles in a particular angular momentum state.

Using the angular momentum eigenstate (9) we have that

a=0% (@ 7) (10)



A normalization coefficient could appear in (10). It is however inde-

‘pendent of m and M and therefore irrelevant for our purposes.

The Normal to the Decay Plane as an Anélyzer

We now turn to the decay of a particle of spin j whose state is
not pure but rather a statistical mixture of states described by a
density matrix Pomt The eigenvalues m and m' run from -j to +j in
integer steps and refer to the z axis. The angular distribution of the
normal to the decay plane can be obtained for each set of eigenvalues

of the final particle helicities. Using (10) the angular distribution

reads as

(a?j) 7(1,-/\2,7\3 B ZM,M‘Zm,m’pmm’ \fDnM (Q p 7) Dmei (Of p 7) dy 7MM‘

where :?%;ﬁx

. _
\/ﬂ do, dew, FM(aaKl,mzka,aBKB) Fyt (w;%l;aékz;aBKB)

The phenomenological decay ampiitudes FM which have been introduced are
functions of rotationally invariant quantities only. They depend in general
on M but not on m.

Since the 7y dependence of a D function is simply a factor e’-iM7
interference between different FM amplitudes vanishes in the normal
angular distribution when it is integrated over 7.

If everything else but the direction of the normal to the decay plane

is summed over, a simple relation is obtained for the angular distribution

of the normal

an J* J 2 . ]
an = Zm;mt Pom ! ZM DmM (@p o) Dm’M (£ 0) IRMI (11)

- 10 -



where
2 _ : . . 2
IRMI 2x le’kz’xz \/W A do_ lFM (mi%l,aékz,aBXB)

Equation (ll) relates the angular distribution of the normal to the
density matrix of the initial particle in terms of the 2j + 1 decay
parameters RM'

This also shows that the maximum number of independent decay ampli-
tudes, as far as the orientation of the decay plane is considered,is
actually 23 + 1 for each set of final helicities. Conservation of parity
in the decay process further reduces this number as will be shown later.
Thig number of independent decay amplitudes 1is also equal to the maximum
number of linearly independent tensors, built with the particle momenta,‘
in terms of which the decay amplitudes can also be written.

Tn order to use (11) one may calculate the required D functions.
Alternatively, use of the Clebsch-Gordan series allows (11) to be written

as

=S P ;%C(jjﬁ lar, ) ¢33t |, 0 ()" —2%:1 SRR LW

(12)
+/
where we have introduced standard Clebsch-Gordan coefficients.l2

The angular distribution is thus given by a sum of spherical harmonics
with highest order 2j. This generalizes the well known theorem on the
complexity of the angular distribution in 2-body reactions to the case of

3 bodies in terms of the normal to the decay plane.
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It is converdent to group together terms with opposite values of

M and to write {11) as

T ( L (Re P ® cos{m-m! )~ Im Pom sin (m—m‘)a) [R;[ Zif;(ﬁ) + R{{ Zﬂ:(ﬁ)ll
M>0{mm'

(13)

where we have introduced the notations

I+

2™ (g) =l () &l () 2 ad | (B) Al ()

2) s R" >0 and R may be either positive

’

-M

and R; = %—(IRM

or negative. The D functions have been writtenlz as

ZiIR

~-im'C My

di.M () e™

As follows from their definition, and the relation

m'm

J _ JHm?® .J
Gy B = (-1)77 ar,  (x-B)
the 2Z functions satisfy the relation

.M:li ' m! .m
M () = = (A 2 (ap)

If we invert the direction of the normal which, in terms of
the Euler angles means the following transformation a =« + Q,
B —x - B, then the angular function which goes with R;:I is unchanged
while” the function which goes with RI;I changes sign as is obvious
from (13)« Hence the normal direction is not determined when two
particles are identical and when the summation over all available

energies is performed according to (8). In that case, all

- 12 -



terms proportional to Rﬁ will vanish identically. In order to
keep the direction of the normal well defined it is necessary to sum
independently on parts of the Dalitz plot, for instance separately for
w >w and o <.
1 .2 1 2
We can further group together terms with opposite values of both

m and m! and write the angular distribution of the normal as

' m!
%% = I % % [cos(m-m‘) a(Re Pt T (-1)*™ Re P oo )
M>0 7 nmm! '

- sin(m-m') @ (Im Py

_ m-m' JM+ +
(0™ oo )] 2™ (5) B}

(1k)

-m? '
+ [cos(m—m') o (Re Pon (1" Re e ot )

)m—m‘

. . 7 jM— -
- sin(m-m') @ (Im S (-1 Im p_ o )] A ®) Ry

Due to the hermiticity of the deﬁsity mafrix, and the definition of the
Z functions, terms where m and m' are interchanged give the same contri—
bution. As follows from their definition Zi%; (8) = 0, for integer
and zi%i (B) = 0, for half integer j.

Parity Conservation

If parity is conserved in the decay we have to replace (7) by an
eigenstate of the parity operator with the proper eigenvalue. We then

consider the action of the parity operator P on an angular momentum eigen-

state (9). We have that

330

3 :
P oA ;o000 55 mM> =L/}>iM (oB7) Rogy T 'ai%l,abkg,w N.,0,0,0 > dx sin BdBdy

- 13 -



since the parity operator P commutes with the rotation operator. We now
use the fact that the parity operation can be defined as the product of a
reflection with respect to a plane times a rotation of angle = around a
normal fo that plane. The plane chosen is the decay plane of the reference

state.

|aikl,m2%2,aek3,0,o,o > i.e., the x-y plane (Figure 2).

We denote by Y the reflection operator with respect to that plane and write

+
P=e lﬂJi‘y, The action of Y changes the sign of all helicities. In

fact the following relation holds™”

S -A +S_-A 485 -X
1 22 3

' 1 3
Y mi%l;aé%2;a3%3;0,0,02> =, (-1) §mh-Al;m2—%2;m5-%3;O,O,o >

where S and 1 stand for the spin and intrinsic parity of each particle.

It follows that

S, =A,+S_~A_+S_=A
L Y 2 2 3 3
. N e 3 > = -
P ]mlxl,mz)z,m3x3,g m M nln2n3( 1) T

+ind

j%
\/ﬁD mM (@p7) RaBy © z wl—kl;aé—%z;ws—XB,O,O,O > da sin paABAYy

In order to express the state after the parity operation in terms of the

original states (9) we use Ra57 = oTi0Jz -iBJy -17J97

1%
-1 to the first rotation angle thus replacing D iM (@B y) by

and simply add

M S%
(-1)’ I);M (@,B,7 + x). In this manner one obtains that
Sl—%l+SZ—K2+SB—K3

‘ . . s _ M v : .
P o o o 5 imM > = (1) 7(-1) Nylafy 'aﬁ—xl;aé—%25a3~%3;gmM >

(15)
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Applying (15) to a 3-pion state we find the relation that

. M1 L
P ‘ ® ,o,,e 53 n M > = (-1) | ® B0 53 m M > (l6>

This yields an important result for 3-pion decays, namely that if the
parity of the decaying particle is even (odd) only odd (even) values of
M contribute.

For a one baryon and two pion state we take kl = % and get

P o, M

R ab,ag;j mM>= (-1)

where € 1is the relative parity between the initial and final baryon.
Whereas only even or odd values of M contribute to a final 3x state, for
a two pion one baryon state, all values of M contribute. However we

consider the proper parity states given by
L Iw Ao gm 3jmM> =+ (-1) M l W, ,-h 30 sm 35 m M >) (a7)
(-——2 l’ l) 2: 3: - l’ \lJ 2: 31 .

Either parity case will give fhe same angular distribution since states

of different helicities are orthogonal.

One of the Momentum as an Analyzer

The basic quantum states (5), which we have introduced, are labelled
by Euler angles which refer to the direction of the normal. We could
just as well consider these 3 angles as defiﬁing the direction of one
of the three momenta, a, say, and a further rotation of qa, around q, -

We can follow the same steps and obtain a formula identical to (ll) for
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the angular distribution of one of the momenta. The functions RM
will of course be different. Equation.(lh) is still valid and gives the
polarization of the decaying particle in terms of the distribution of

one of the momenta.t?

If the analysis in terms of the normal fturns
out to be a little easier to work through, it is due to the simple
form in which parity conservation is expressed. For a three pion de-
cay, we simply had to eliminate either even or odd values of M. When

the three Fuler angles refer to one momentum it is found that (16) has

to be replaced by the following relation:
R j+M+A -
Plojow;jmM> = (-1)¥" | w @ my§ m-M > (151)

If the parity of the decaying particle is (-1)Y, the decay amplitude,
Ry @nd R are equal (opposite) if M is odd (even) and there is no M=0
amplitude. If the parity is -‘(—l)J the opposite assigmment holds. For

each M value, both parity states give the same angular distribution.

Identical Particles

The identity of two (or all three) particles will imply further re-
lations among the decay amplitudes. In the examples considered in Sections
III and IV for instance, they will apply when two m-mesons have the same
charge or are in an eigenstate of isotopic spin. If two identical particles
are produced, the decay state has to be symmetrical (antisymmetrical) with
reépect to thé exchange of the two particles according to thelr Bose-Einstein
(Fermi~Dirac) statistics. In order to construct states with such permu-

tation property, we introduce a permutation operator P12 (éxchange of
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particle 1 and 2 leaving 3 unchanged ) and apply it on both sides of (9)

. * )
P wlkl;wzkz;agkz;j,m,M > ='/5da sin Bdpdy DiM (opy) P abkz,m % 0By >

iz . 12] 1 1’
(18)

fda sin Bdpdy DJ (eB7) |a> Aoy Ny o N 0By >

The set of angles & B 7 which now appears in the Ket vector no longer refers
to the normal to the decay plane but rather to a final rotation of negative
angle around an axis opposite to the normal. Since we are defining the set
of angles with respect to the normal this actually qorresponds to a new
.set, namely & + x, ® - B and 2x - 7; The rotation defined by the set ofv
angles O + x .and % - B Dbrings al + 32 in a direction identical to the
one obtained using and} B. A rotation of angle 21t - 7 around.the new
normal then gives the same configuration as the one obtained with the set
of angles o,B, and %, Since we integrate over all rotation angleé, wé
may replace the arguments of the D function and write (18)'as

fdas1n6d6d7DJ (a-:r,:r-ﬁZn-y{ S A, 33,ocf37>

3%

DiM (@ - =%, ® - B,2x - y) is the new angular part of the wave function

describing the orientation of the normal to the decay plane.
Transforming the D functions and using the definition of our state

(9), we revrite (18) as &| oM ,0 A 0N ;j,m,-M > where ¢ = (-1)3*2M.

- 17 -



We note that, as a consequence of our convention, ﬁhe applica-
tion of Pla twice is equivalent to a rotation of 2.

The decay states being symmetrical (antisymmetrical) with respect
to the exchange of the two particles have amplitudes FM((D17‘1 ,a)e'?\g)

which will satisfy the relation
e Fy (o ,00,) =+ () F oy (oA ,00n) (19)

When the identical particles are spin zero mesons the helicity indices

are suppressed and we have in both cases
2 2
|7y (o, ,0,) | 2 = |7y (o) (20)

When integration over the whole Dalitz plot is performed according to (8),
we find that opposite values of M give the same angular distribution for

the normal to the decay plane, and therefore Rﬁ does not contribute.

III. DECAY INTO 3 SPINLESS PARTICIES

We now consider in more detail the decay of a particle of arbitrary
integer spin J into three non identical spinless particles. At first we
do not take into account any restrictions resulting from possible isotopic
épin configurations.

The 2j + 1 a priori independent decay amplifudes are reduced by
parity conservation according to (15) and we obtain the maximum number

of independent amplitudes as shown in Table I.

- 18 -



In the most simple cases we have: one amplitude for 0 and 17; two
independent amplitudes for l+ and 2+; three independent amplitudes

for 2~ and 3-, etec. This result may be obtained by other approgches,
but ﬁot in such a simple way. We can, for example, exhibit sets of
independent amplitudes written in terms of cartesian tensors and which

for the spin 1 and 2 cases take the form

- Ve e
1 G eprcqquQB
1" 6 (q +q) +0.(q -a)

lq:L 21 2’7 2
(21

+ ' pda
2 (‘Gl(ql tgp), + G le - qz)“) €ypoath Lo,

- nv nv v w v . p v
2 6, (ajq, + aga)) + Gy(ayq, - aya,) + 26, aiq,

The G's which are the coefficients of the independent tensors are
Iorentz invariant quantities. They are assumed to be analytic functions
of s, t and u, the center-of-mass energy squared of the three particles

taken two by two, i.e.,lS

s = (o, + )% u=(qg+q)?, t=(y +aq) (22)

The functions lRM|2 defined above will in general be linear combinations
of products of two of the tensor invariants Gi with coefficients that are
functions of s, t, or u.

Taking account of the conservation of parity we next give the ex-

plicit expressions for the angular distribution of the normal to the deca)
g 7
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plane. For the case of the decaying particle having spin and parity .
1~ we have only the M = 0 amplitude and R; = 0, RZ is the common

factor to the angular distribution which following (14) takes the form

QE _ + 10 10
T = Ro {(pll + p_l_l) z 7 B) + f0o Zoo 8)

+ 2 [cos o (Re p10 - Re p ) - sin & (Im o} + Im p ) Zig (8)

=10 10 ~10
+ 2 [cos oo (Re pl_l> - sin 20 (Im pl_:L)] zi?l (5)} (23)

We readily get the Z functions from the table of d functions given in

the Appendix and obtain

y 2 Fa=
— = + +
g R { 2 cos™ B o) sin B(p 1 p_l_

- 2/2 si cos ( Re - Re os @ - (Im + Im si (1)
/2 sin B cos B | ( P p_lo) cos ( o, p_lo) in

-2 sin® g (R cos 20 - Im in 20 ok
sin® B (Re o, ©© o _, sin ) (24)

This is a well known result. The angular distribution determines six
quantities (including the trace pll + Poo + p_l_l) of the spin 1 density
matrix(usually known as the tensorial polarization) but leaves undeter-
mined the three other terms (the vectorial polarization). The fact that
the vectorial polarization is not determined is because there is only one

decay amplitude. The observation of the ¥ distribution would give

nothing new.
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] +
We now turn to the pseudo-vector (1 ) case. Where there are two
decay amplitudes corresponding to M =% 1 and the angular distribu-
+ .
tion is a function of two terms, one proportiomal to R_ and one pro-
1

portional to R; . It reads

Z11+ (&)

+ ll+
— 4 7 +
an Rl {(pll p—l—l) 11 (B) Poo “oo

' +
+ 2 a (R - R - sin a (Im + Im zxt
_COS ( © plo © p—lo> L. ( p:Lo p—:Lo)] 10 (ﬁ)

+ 2| cos 2@ Re p - sin 20 Im p ] A (5)}
| 1-1 1-1) 1-1

- ll—
i Rl §(pll B p—l—l) le (8)

+2fcos a (R + R - sin & (Im - zt-
[c sa(Rep +Rep )-sinc(mp -In p_lo)] o (6)}

The Z functions are easily calculated yielding the explicit expression

an _ _F L y 1+ cos®B | . 2
aq %.{(%A P’ 2 P Pop SANTP

++2 sin B cos ( Re - Re cos & -~ (Im + i cx)

B {(Re p__ P_.o) ( o Irﬂp“lo) sin
+ sin® B (eos 20 Re p -sin2x Imp )
1-1 11
+ R ( - co +v2 g a (R - si
5 l(pll p_l_l) s B sin B [c0s (Re plo + Re p_lo) sin ¢

(zm plo - p—lo)]} 

(25)
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Provided the two decay amplitudes Rz are both different from zero,
the vectorial polarization can now be completely determined. One needs
only thg ratio of their absolute values.

The angular distribution of the normal to the decay plane for a spin
2 particle is obtained in the same way. The pertinent 32 functions are
given in the Appendix. For the 2+ case where there are two independent
decay ampiitudes we obtain for the normal angular distribution
an sin®p

+ 2
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For 2~ we have 3 decay amplitudes corresponding respectively to
M=+2 and O and thus the decay distribution will be a three para-
meter expression. We use (14) and the a% functions given in the

Appendix and obtain

aN _ ' + 1 .4 2 ]
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. 3 s - -
¢ R - - a + 2
(cos e (p p-z-l) sin & Im (le p_g_l)) i sin B sin“B

+ | cos 2@ Re (p p ) -sin2x Im (peo -0 20))\/é.51n25 (3 CO$25 - 1) ‘
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20s 20 Re p . - sin 20 Imp )6 sin®B cos®B
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(cos a Re (p - p-lo) - sin @ Im (plo + p_lo)) = sin 28 (3 cos®B - 1)

‘cos 3¢ Re (p oy T pg_l) - sin 3@ Im (p__:El + p2_1)> % sin®p sin 2B

+ (cos Lo Re Poen ~ sin 4 Im pa-a)% sin®*p % (27)

When two particles are identical, integrating over the Dalitz plot averages

to zero those terms proporticnal to R and the resulting expressions reduce

'to those given by Dennery and Krzywicki.16 It is however possible to aver-

age separately over parts of the Dalitz plot (w > w, and m > @, say) and

thereby allow for non-zero contributions from terms proportional to R .

Should resonances with higher spin be observed, explicit angular dis-

tributions of the normal to the decay plane could be readily obtained from

the Legendre polynomial of order J, Pj (cos B) using the following relations.12
( * m d .J
p) = - +m! cot B + a (8)
1+
m,m'+l ¢qgim’ T 1)(37m') \51n B B m'm
J - . qd - mf-m _J - J
a5, (8) =P, (cos B) ;5 dn,, (B) = (-1) a . ,(8) = (1™ ™ ad L (e)
(28)

Relations (24), (25), (26) and (27) are somewhat more complicated than neces-

sary since they correspond to the most general density matrix. In many prac-

tical cases the production mechanism is such that the density matrix has many

symmetries when referred to particular axes and many of

the terms written
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in (24-27) will not appear. On the other hand, the observation, or

absence of particular terms in (2&-21@ would give information on the pro-
duction process.3 In this respect we recall the relations which express
parity conservation in a two body production process, when the initial

beam and target are not polarized. If the z axis to which the density matrix
is referred is chosen normal to the production plane parity conservation in

the production process yields

= i -m!
Pntm 0 if m-m' odd (29)

If the z axis is along the resonance momentum in the center-of-mass system,

parity conservation in the production process yieldsl7

pmxm = ("l)m - p_mx_m (30)

This last choice of density matrix has the advantage of being invariant
under specisl Lorentz transformations along the resonance momentum i.e.,
when one passes from the production CM system to the decay CM system.18

We now consider the implication of the identity of the =w-mesons. If
two of the n-mesons are identical, i.e., have the same charge or are in a
state of well-defined isotopic spin, we have shown in the preceding section

that
FM(ml,mé,ag) = & F—M<a§’wi’a§)

whether they are symmetrical or antisymmetrical with respect to the ex- )
- i t o +_,_1—_ 2 2\
change of the two particles! charges. It follows that RM =3 EFM, + lF_M

- 1 2 2 . . .
and RM = §-§7Mi - !F"M!‘) are respectively symuetric and anblsymmetric
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functions of (a&—a;) of of (s - u). An antisymmetric function does not
contribute when the distribution is integrated over the Dalitz plot (8).
In order to observe terms proportional to Rﬁ.z, and determine all
parts of the decaying particle density matrix, it is necessary to de-
fine the normal to the decay plane according to the different energies
of the two identical particles. As mentioned above this.corresponds té
summing twice over half of the Dalitz plot with wl > wé and aa < mé

In many cases the symmetric function will be dominant since the
simplest symmetric function is 1 while the simplest antisymmetric one
is (s = u)/M?, where M is a phenomenological parameter with the dimension
'of a mass. In any reliable model this mass would be of the ordef of the
inverse range of the interaction. If the range is short, i.e., if vector
mesons play a dominant role,19 the average energy of each particle could
be less than the inverse range (depending, of éourse, on how heavy the
decay particle is) and the antisymmetric term would then be quenched by
centrifiugal barrier effect as opposed to the dominant symmetric one.

Furthermore, when the decay amplitude is written in termes of
Cartesian tensors such as (22) as is usually the case when déaling with
a particular model, the antisymmetric term vanishes when the different tensor
amplitudes have the same phase, i.e., are relatively real. This can be
seen as follows: If tﬁe spin is Jj, the decay amplitude is written as a
Cartesian tensor or order j. It is constructed with the two linearly
independent vectors available, for instance g¢q = q_ - q2 and P =vq + g

b8 1 2

where q and g are the momenta of the two identical pilons. The decay
- 2 .
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5
~ L

!

amplitude is a linear combination of monomial expression of the type

G, P. P. ... D. , ee. Q. (31)
k i, > i, qln+l qlJ )

The density matrix element constructed in tensor form Py

. .'iJ)jl ...jJ
contributes to the angular distribution a term ‘

ZGG*

P. 2.9 P. +..Q. p. .. .
k £ 1l qlJ 3y Jg Tiye-eipsdeeddg

k£
where the indices of the sets {i} and 1j% running from 1 to 3 refer
either to p or q components depending on the subscript k){a... We can apply

the Hermitian property of the density matrix to write the decay distribu-

tion as

*
Re {G G } (p. eeeQ, Py +..Q. ) + (p. veaQ, D. ...Q. ) Re p, ... .
{ k2 ( 11 qlJ Jy Jy Jy dy . 1, q}J 11...1J,Jl...JJ

- Im {GKG;}((pil...qu pj

Using the fact that the whole decay amplitude is symmetrical with respect to

the exchange of the two identical particles we have tﬁat if Gk is sym-

metrical (antisymmetrical), the associated tensor contains a component of
q an even (0dd) number of times. Inspection then shows that odd powers of
components of the normal to the decay plane, i.e., terms of the form

n, = piqj - qipj, which correspond to terms linear in cos B or sin B in
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the angular distribution are obtained only in the terms proportional to
mle ¢t
U278 )

In order to fully determine the decaying particle density matrix we
see that it is necessary to have amplitudes of different phases. This is
necessarily the case in 3 pion decays when a two pion resonance (the p meson )
can actually be produced.

To illustrate this point we consider the decay of a pseudo vector
particle A into a p n state with the subsequent decay of the p into

two pions (Figure 3). We introduce the unsymmetrized A p n decay ampli-

tude as
g, € ¢, * e,(epra)e ra)
and a puan decay amplitude
gela-q)

where eA and ep respectively stand for the linear polarization vectors

of the A and p mesons. The A 3n decay amplitude can be expressed
after proper symmetrization of pions 1 and 2, as

- + - - + -
gl(q ql) 8., qz(q ql) gl(q qg) g.q, ql(q qz)

N (@+q)® -m2 ' (@ +q )% - nm?
- 1 P ¢ 2 p
This last expression is of the form
G (s,t,u){a, + o)) +G (s,5,u)(a - a) - (32)
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where GL(G2> are symmetrical (antisymmetrical) functions with respect
to the exchange of s and u. In (32) the mass of the p is actually

complex and we write mi as Mi + 21 Mp Pp where M and Pp are the
p mass and width. In terms of the coupling constants gl and gg one

finds for the interference term the covariant expression

24 T (s-u
Im’GiGZ}~ o) {2

b s n®) ()

g® ((K'Q)Z - (K-P - 2q,+q, - ua)g)

+ 362 + 2g,g (KP - 2q,:q, - ug)}

where K=gq+ q + g, is the A meson momentum. The term R; in Bq. (25)
is proportional to the interference term Im (GlGZ) . The interference term
will be non-negligible as compared to a symmetric IG?'2 term on the p
bands, except on that part of the p Dbands which actually cross-over within
the Dalitz plot. The non-cross-over p bands contain the events useful for

determining the vectorial polarization of the A particle.

Vector Meson-Pion Decay -

Since meson resonances appear to play a dominant role in elementary
* particle interactions a three meson decay may often be congidered as two
successive twg body decays, two of the mesons being the decay products of
a meson resonaﬁce produced together with the third one. Decays of this
type have been already observed® and we now consider in some detail an

example of such a process (Figure 3).
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To illustrate the argument we consider a parity conserving decay
where the intermediate two meson resonance is a vector meson and where
the initial decaying state has a definite angular momentum. In order to
construct a state of well-defined parity we use the result of applying
the parity operator on a two body helicity state given by Equation (41)

of Reference T, i.e.,

-5 -S_y .. |
T]Z (“‘l)J L a21jm, - A2 : (33)
Therefore a decay state of well-defined parity can be expressed as®

RN —];(ijm7\>+€ (-1)]5 m, x> (34)

where j is the spin of the parent decaying particle, m its component on
a fixed axis, A is the helicity of the vector meson and € 1is the relative
parity of the vector meson and parent decaying particle. The sum in (34) extends
over only two values of A; A =1 (or -1) and O.

It follows from (33) that for either choice of parity a vector meson
helicity of %1 is allowad whiie the helicity O state is allowed only
when € = (—l)j. If the vector meson is a p (negative parity) the
helicity state A =0 1is allowed for the assigmments, l+,2—,3+ . . ., ete,,
for the parent decaying particle, Turning now to the two spinless particle
decay mode of the vector meson we see that states with N=2%21 and O
give different angular distributions. When the angular distribution is re-

ferred to the vector meson line of flight as a polar axis and averaged

azimuthally one finds respesctively for the cases A =*land A =20 (in the
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ector meson rest frame) angular distributions of the form

.2 2
sin® 6 or cos
1611 eﬁﬁ

This is true independently of the parent decaying particle state of

polarization or alignment.

A cos® eﬁﬂ term allows for the occurrence of events with the 3
mesons along the same line in the parent decaying varticles rest frame
and would show that the relative parity to the vector meson is (-l)j.
Taking into account the negative parity of the p meson yields a parity
(-l)j+l for the parent particle decaying into an intermediate pn state.

This simple 2 body approach neglects any interference effects
between the third particle. Nevertheless it can be confidently applis?
when there is no doubt that two of the mesons form a vector meson the
third one being unaffected. The p bands for instance, in a 3x decay,
(outside of any overlapping region) can be selected for this purpose.

To complete this discussion we give in (35) the angular distributi-
obtained from (Bh). The method for arriving at this expression follows
the derivation of Equation (38) given below.

The angular distribution of the vector.meson in the parent meson

rest frame is then

I (9,@) = % m;m} {cos(m~m!)¢ Re {pmm, + (—l)m—m: an%nJ

) m-m'
- sln(m—m')@.lm lpmm’ - (-1) pqnﬂnJ}
mm!

< |2 227 (0) w2l |2 2000 (o))
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IV. ISOBAR TWO AND THREE BODY DECAYS

We consider next the decay of a particle of arbitrary half integer

spin J into a spin 1/2 hyperon and two spinless mesons. Parity is assumed

to be conserved in the decay and hence the decay state corresponding to a
pure spin state J_ =m is written according to (17), as
. 1 M,. , 1
2 FM(lJ;m;M '2_> + € ("l) !J:m}M) - §>) (36)
M

where € stands for the parity of the decaying particle, relative to the
decéy baryon. M takes all half integer values - j <M<}
Since all M values may appear in the expression obtained for the
angular distribution of the normal to the decay plane this distribution
‘will appear slightly more complicated than the one obtained in the 3=x
case. Nevertheless, the a priori'unknown parameters, the 23 + 1 decay
amplitudes and the density matrix elements which describe fhe polarization
and aligmnment of the decaying particle, also predict the polarization state
~of the daughter hyperon. Its denéity matrix can in turn be fully determined
from the knowledge of the decay asymmetries.
Since our approach using the helicity formalism,generalizes the deri -
vation of well known relations for two body decays,to three body decays, -
we first briefly introduce our method for the two body case. Many of these
results are already knownéo but have not been given in the same concise and .
simple form presented here. Furthermore, in many practical cases 2~bo&y
and B—gody decays occur with similar branching ratios (Yi ;9Aﬂ, Yﬁ — Astxt
and Y: —% + 7, YZ —~Anx ...) and it may be useful to have the various decay -
distributions compiled together as they both refer to the same set of density

matrices.



1(e,9)

Consider now the parity conserving two body decay of a particle
into a hyperon and a spin zero meson. From Equation (33) we find that
parity conservation assumes that the decay state corresponding to a

pure spin state (JZ =m) takes the form™"

L{lmbove P lsn -1>) 1)

Hence there is only one amplitude associated with a parity conserving
decay. It follows from (37) that the angular distribution and the longi-
tudinal polarization of the decay hyperon, depend on the angular momentum,

and polarization state of the decaying particle but not 6n the relative
parity € . The transverse polarization, which is an interference term
between the two helicity states, however changes sign with € which is

22

a well known result. If we take the z axis and the hyperon momentum

(in the isobar rest frame) to define a-decay plane, then the polariza-
tion vector of the final hyperon is in this decay plane (Figure k).
From (37) one readily finds angular distribution of the decay spin

1/2 hyperon as

|}

1 ) y j 5% '
]Flz X 5 %m, Pt {Dm%— ((P;G)O) Dm—é— (@;9)0) + Dm;_% (CP}GJO) Dm__%_ (CP;Q;O)

1 . . 3
B 2 m§n’<Re pmm'cos (m_m’) ¢ - Im pmml sin (m,-m') (P) Z;gﬁm (9)

(38)

i

L . _ m-m!
En%m* cos (mm)cPRv<pmm,+(1) p-m—m‘)

- sin (m-m') ¢ Im (pmm, + (_L)m—m' panqn)}~ Zi%; (6)
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For the longitudinal polarization, i.e., the expectation value
+ -
of the helicity, we have merely to replace Z (6) by Z (6) and thus

we obtain

Ir|2

pLXI(e,é)=—5— )

b cos ﬁnqn!) ¢ Re (pmm‘_ (-l)mém! o)

m-m!t
m! 1L -1

(39)

)m-—m '

.1
o i iz~
sin {(m-m') ¢ Im (pmm‘+ (-1 pqnqn‘) 20 (6)

The longitudinal polarization given by (39) vanishes if the isobar is not
pola;ized. If the isobar is polarized it is zero, as expected, when

‘ 1_ 1
averaged over the angular distribution since 72" (n-g) = - 22 () .

The transverse polarization, directly obtained from (37) reads

o e (L1)iE JE]2
I (6,0) =€ (Y250 = oo

j 3 j i
X Dmx% (CPJG)O) Dm% (CP)Q:O) + Dmx_% (CP,G,O) D;r]r%- (CP,G,O)

.1 2 5
—_ \J-E_Z— ;.LI_F_.L D~ - PR (S0 AP - ’ . . \VJ
=¢ (-1) 5 ﬂiﬂ VRC pmm,§ua(m—m-)w - Im pmm‘Sln(m-m')@}Am’m(e)
where
j L3 h ] 3
. 3 j ’ )
With the relation xﬂm,_m () = (-1 ™ xJ, (B) we rewrite the trans-
verse polarization as
sl F|2 i $
X I (8 =€~1J+2, by -m? e -1y
pp X I (6,0) = e(-1)7= 5= T % (m-n*) o Re (o, + (-1) memt)
s ! N m+m! J .
sin (nn') @ In (o .- (-L™™ 5 OF %, (0)
(40)
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Examination of Equation (40) shows that the transverse polarization
also vanishes if the isobar is not polarized, and furthermore that if
the azimuthal angle ¢ is not observed, only diagonal terms of the
density matrix contribute.

The simplicity of the method 1is related to the fact that the ratio
of the helicity amplitudes does not change when transformed from the |
isobar rest system to the hyperon rest frame.

For a specific illustration, we give the above decay distributions
obtained for the decay of a spin 1/2 and spin 3/2 isobar. The Zi and
X functions are obtained from the values of the d@ function given in the
'Appendix. Tn order to give relatively simple expressioﬁs we average over
the ¢ angle. The effect of any other density matrix elements whose con-
tributiéns have Dbeen averaggd out can be obtained in a straightforward way
if this azimuthal average ié not performed.

For j = L we have the well known results

2
ax ,
1 () =[ 1(6,9) 4 ¢ = 2x |F|® %
)
p, x 1(0) = 2x |2l oy -y o) cos 8 (51)
22 "2z
1 .
Py X I(s) = 2x )F{Z I e(pyy - p,l,i) sin @
22 2 2
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In the j = 3/2 case, it reads

1(e) = 2x Ip}2 :—ng {(pé_%'*’ D_%_%) {l+ 3cosee)+ (p_z__z_ +fz_;’a_) 3 gin® 9}
22 272
I(e) = %2 iFle {(DL; -p 1) (9 cos®6 - 5)
2 272

(b2)
% 3{p -p sin® 9: cos © o
2% -2-32 »

) (9 cos®s-1)

sin® 9} sin @
- 2 :
2

At this point we may easily derive a useful result. From (39) and

1(8) = :”§% 7|2 e g(p%; - p

+3[p. -p
33 _32
22 2

(L0) we get the ratio of the expectation values of < pL(G,Q) I (8,9) cos 8 >

and < pT(Q,Q) I (6,9) sin 6 > where the bracket symbol means average over
all directions. We use the Clebsch-Gordan series expansion (12) together

with the orthogonality property of the B-functions. We find

< p(6,9) I (6,0) cos 8 > =

Iwl2
7

Wl
B M

1
m-3 . .
(-1)" 2 Re(p, -0 ) CG J Lm,-m) 03 5 1[3,- 1)

and

< pT(Q)CP) I (Q)CP) sin 6 > =

7|2 1 35 m+3 . -
LV ()T 2 (-1 Relop - o ) €3 3 1 m,mm) (5 gl g
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It follows that

nj—

<vp.(8,9) I(6,p) cos & > VI A
R =L - - e(-1)072
)

1 . .
< pp(6,9) I(6,0) sin 6 > vacls g1l

[\
[\

The ratio of the two Clebsch-Gordan coefficients is readily obtained

and we find

It should be stressed, however, that the two quantities which appear in
this ratio are both proportional to the parent particle polarization. Thié
result can be generalized to higher moments of the type illustrated below
with the restriction of 4 being 0dd 2° For example, we can calculate
the ratios

< p,(6,0) 1(0,0) P (cos 0) >

<pp6,9) I(s,0)P% (8) >

RE =

Lx

m __~img
where_}>£ (8) = e Y% (6,9) ST

In a similar way we find for the average longitudinal polarization

< p,(6,9) 1(6,9) F,(cos 0) > =

1
S\ . . N .
T+l 2 2 (-1)"Z Re(p - o ) C( 3 Elm,-m)C(s 2]1,- 1)
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which vanishes for even 4 and for the average transverse polarization

<mp(0,9) T(0,0) (0) > =

J+—1— ) 1 h
A R TR R ICR R A LS ICE R PO

€
m . mm

It then follows that®° Rﬂ can be expressed as the ratio of Clebsch-

Gordan coefficients

1 ¢33 t]E,-8)

R = G(-l)j- 2 = E(—l)j—% "&(% + l)

/) .
c(s 3214, % 23+l

Similar relations can also be obtained in the same simple way when the
Legendre polynomials and Legendre functiong are replaced by D functions.
(One always obtains the ratio of two Clebsch-Gordan coefficients but off
diagonal density matrix elements are introduced.)

We now turn to the three body decay into a spin 1/2 hyperon and two
spinless mesons. The angular distribution of the normal to the decay plane
is given by (13) and (14). This is a simple generalization of (38) where
the normal to ﬁhe decay plane replaces the momentum as an analyzer of the
decayling particlé polarization. However for‘a three body decay into two
spin O mesons and a.spin 1/2 hyperon, there are in general 2J + 1 Inde-
pendent amplitudes instead of one as in (38). The 2j + 1 decay ampli-
tudes EM are in general unknown functions of the invariant scalars

s, t and u. However, the kind of angular functions which arise in the
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normal angular distribution do not depend on the explicit form of the
FM 'but only on the parameter M. Just as in the case of 3 decays if
some of the decay products are in a Tixed isospin state, then there can
be some additional relations among the amplitudes FM . For example the
_En mesons will be in a state of well-defined isotopic spin for the decay
Y: (1660) —A 2n(oranching ratio 0.23), and for the decay Yz (1520) —A2x
(branching ratio 0.16) ... The decay amplitudes F, with opposite values -
of M are then related by (19) and just as in the case treated above for the
three pion decay the Rﬁ amplitudes will vanish when summed over all
energy configurations.
As an illustration of the general formula (14), we give the angulér
distribution of the normal obtained when the parent decaying particle has

angular momentum 3/2. In order to make the resultant expression more

compact we define the 12 guantities

1 33 _3_3
2 2 2 p=4
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and

C,=p - P
33 _2_ 3
2 2 2

CT

O
22 TzZ7 2

1
C X) = cos @ Re | ¢ + - sin a Im -
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In terms of these quantities the angular distribution of the normal may

be expressed as
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Analysis of the three body decay in terms of Equation (43) would pro-
vide 16 different functions of & and B which can in prinéiple fully de-
termine the decaying particles denéity matrix,

We now turn to the polarization of the decay spin l/2}hyperon.
As follows from the way we decomposed the parity operation where the z
and y axis were defined to be along the hyperon momentum and along the

normal to the decay plane respectively, the state

(- 1 1
\/-—g-(h,m,M 2>+e(1) | 3,m,M, -§>)

is an eigenstate of the spin component of the hyperon normal to the decay
plane, with eigenvalue e(-l)M_% . As usual this polarization is defined
in the hyperon rest system.

It follows from (36) that the expectation value of the polarization
of the hyperon, normal to the decay plane, can be easily expressed in
terms of the decaying partiéle density matrix, The polarization is de-
fined as the expectation vaiue of c-ﬁ where n is a unit vector along
the normal to the decay plane. In terms of the parent decaying particles
density matrix P the distribution of transverse polarization along the

normal can be expressed as

P %%'= ¢ Z (- l) i !2 2y Pt {D%TM(Q B 0) Di; (@p 0) (4k)

Just as for the angular distribution of the normal, we regroup terms with
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opposite values of M and obtain

Pragcmt o |
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(45)

In order to illustrate this general relation we consider the case

of the parent decaying particle to have angular momentum

L .
the 7 functions already obtained for the normal angular distribution

- hp -

Applying

)
J




we find
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= 2 % .
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Equations (43) and (46) can be used to determine the spin and parity of

the decaying isobar by fitting to the three body data, or at least can be

_1;3 -

+ 3 R;)+ %; c!(a) sin B sin2p (R; + 3 Rz)
2 2



used to impose further consistency requirements when the two body decay
data are simultaneously analyzed in terms of (38, 39, and 40).

For example (46) when applied to the Yi (1660) data should yield
polarizafions of the same sign for the A and I, when averaged over
both the Dalitz plot and the azimuthal angle of the normal if the A and
¥ particles have the same parity. This comparison cquld be considered as
an independent determination of the IA relative parity and generalizes
to three body decays a result already known for two-body decays.=

If desired, the expectation value of the hyperon polarization along
any other direction is readily obtained from (36). However, the polari-
zation normal to the decay plane is the only component of polarization
which does not vanish when an average is performed over y . This is
because the normal component of the polarization does not depend on any
interference terms between the decay amplitudes. The observation of vy,
or of the decay hyperon polarization component in the decay plane (as a
function of 7), would yield further information on the decay amplitudes.
However, the relations of the type illustrated by (L43) and (46), obtained
by averaging over 7, provide enough constraints to fully determine the
decaying particles density matrix and further provide an independent means

of determining its spin®* and parity.

Isobar-Pion Decay

Since a three body decay of a high mass isobar may proceed through ah
intermediate isobar-pion decay we now consider, as in the case of the three

pion decay, two successive parity conserving two-body decays eventually

- Ly



producing a final three-body state of 1/2 baryon and two spinless

mesons. We restrict the arguments below to exclude any possible over-
lapping isobar bands, thus eliminating any possible ambiguities as to
the kind of two-body decay. The N* (1688) - N* (1238) + n and

=% (1810) » =¥ (1530) + n provide two such examples.® In both cases,
one of the daughter particles is a decuplet member with angular momentum
3/2+. For the first step of this two step process parity conservation
implies two independent decay amplitudes. Assuming that the intermediate
particles are a spin 3/2 particle and a spin zero particle we have that
the intermediate decay state corresponding to a pure spin stafe of the

initial particle can be expressed as

-

o
hviled

()

where j is the parent isobar angular momentum and € stands for the relative
parity of the parent and daughter isobars. For the special case of the
parent isobar having spin 1/2 there is only one decay amplitude and F

2.
would not appear in (H?). 2

The density matrix p' of the daughter isobar can be expressed in

terms of the parent density matrix p as

oy . .
p! =F oo el(m m )(P dJ (9) dJ

IRY gV mm! - mp m (h8)

vy (@) e

- b5 -

i 1 §
{F (‘j)m) §>+ € ("l)J 2 lj;m) ——23_>) + F (‘j)m; ;12:'>+ € (“l)J 2'j)m)- -

2

)



The density matrix p! 1s defined in terms of a coordinate system
derived from the initial coordinate system in thé parent isobar rest
frame by a rotation of angles 6 and ¢ where @ and @ are polar
and azimﬁthal angles of the momentum of the daughter isobar in the parent
isobar system.(Figure 5). Parity conservation as expressed by equations
of the form (h7) then implies that for an unpolarized parent particle

plp_v = p&v (49)

As follows from the transformation property of the helicity amplitudes
under Lorentz transformation the density matrix p' 1is the same in either
the parent isobar rest frame or the daughter isobar rest frame. We note
also that Bquations (48) and (49) are valid for all spin of the daughter
isobar. |

If the daughter isobar subsequently has a two-body decay her density
matrix given by (48) may now be used directly in (38), (39) and (L0) to
express the resultant angular distributions. In particular for the case
of the daughter isobar having spin 3/2 the density matrix @8)can be
substituted directly in (4k2). The results obtained in the beginning of
Section IV pertaining to two body decays can now be applied directly to
the daughﬁer isobar decay, eépecially the theorem on the ratio of trans-
verse to longitudinal rolarization.

The succession of reference frames used in the analysis of such a
two step process, followed by the eventual isobar decay into Y + =x, are

shown on Figure 5.
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It is perhaps by this last example of the two stage decay that
the simplicity of a method using helicity state is cleérly demonstrated.
The more traditional treatment_would require recoupling coefficients to
describe the second stage of the decay in terms of the paraméters de-

scribing the first stage, a complication avoided by our presentation.

- L7 -



APPENDIX

We list together the d functions which are useful for the analysis
of the decay of particles of spin less than or equal to 3. Npt all the
d functions are given. The missing ones are easily obtained using the

simple symmetry relations

6l (8) = (1"l (8
&, B) = (1" e (p)

Several recurrent relations useful for the calculation of the 4
functions are given in the appendix of Reference T. More relations are
given in References 12 and 25,

The relevent d are now listed below.

Spin %
d (B) = cos 52 a (B) = sin P
11 2 Y 2
2 2 o 2
Spin 1
_ 1+ cosB _sin B
dll(B) B —’—_E~~_‘ d01(5) B VG;
1l - cos B -
dl—l (B) = e doo(B) = cos B
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Spin 5
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5 5 2 2 5
22 2
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a_, () =~ —%sin B(3 cos®p+2 cos B-1) dgo (8) = ‘g/i\;i;cos B singl B
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Figure

Figure

Figure

Figure

Figure

FIGURE CAPTIONS

The éngles of rotation of the one particle helicity state.

The decay plane configuration - Triangle 1 represents the decay
plane in the standard position. Triangle 2 shows the plane after
rotation of angle 7. Triangle‘B shows the decay plane in its
actual position with its normal indicated by H.

p-it decay. The p momentum is taken along z' - the relative
momentum of the decay pions is taken along z".

Hyperon-pion decay. The decay hyperon momentum is taken along

z!. Pps P, and p are the transverse, longitudinal and total polar-—
izations of the decay hyperon respectively.

The two stage decava** Y+ T, Y Y o+ n, the coordinate
system (x,y,z) is the rest frame associated with the Y**. The

Y* momentum is alongEZ’ and (x',y',z") ié the rest frame associated
with the Y . The Y momentum is along z". In addition the co-
ordinate system (x",y",z") in the Y rest frame, used for the
analysis of the final hyperon polarization is indicated on the
figure where 2™ is along the nucleon in the analyzing decay

Y - N + n. Note that the direction of the y axis remains in-

variant between any two successive frames of reference.
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TABLE T

J even J odd
parity even J J+l
parity odd J+1 J

Number of independent amplitudes describing the angular
distribution of the three pion decay of a spin J particle.
The columns refer to the angular momentum J and the rows to

the parity of the decaying particle.



