DIRECT PHOTON PRODUCTION IN WA70

Monique WERLEN

Univ. de Genève, DPNC, CH-1211 GENEVE 4, Switzerland

(present address: Univ. de Lausanne, IPN, BSP Dorigny, CH-1015 LAUSANNE)

Abstract:

Direct photon cross sections with high integrated luminosity in $\pi^- p$ (3.5 pb⁻¹), $\pi^+ p$ (1.3 pb⁻¹) and pp (5.2 pb⁻¹) collisions have been measured by the WA70 collaboration in the transverse momentum range 4.0 < p_T <7.0 GeV/c and Feynman x range $-0.45 < x_F < 0.55$ with 280 GeV/c beams at the CERN SPS. A consistent approach, at next-to-leading order for the prompt photon diagrams and the parton densities, allows a determination of the proton and pion gluon structure function and of the QCD scale parameter $\Lambda \overline{MS}$.

Essentially two QCD subprocesses, at leading order, contribute to prompt photon production: the Compton graph $qg \rightarrow \gamma q$, dominant in pp and $\pi^+ p$ collisions and the annihilation graph $qq \rightarrow \gamma g$, important in $\pi^- p$ and pp collisions at large $x_T(=2p_T/\sqrt{s})$. Using new precise deep inelastic scattering (DIS) data, a beyond leading log fit, including the parton structure functions (SF), to $pp \rightarrow \gamma X$ determines the proton gluon structure function. A similar fit to $\pi^+ p \rightarrow \gamma X$ allows a precise determination of the pion SF and of the QCD scale parameter $\Lambda \overline{MS}$.

1. Optimized perturbative QCD theory

Full next-to-leading order calculations of the direct photon cross sections have recently become available [1]. The cross section at $O(\alpha_S^{-2})$ can be written as [2]

$$\sigma^{(2)} = \mathrm{Ed}^{3}\sigma/\mathrm{dp}^{3} = \mathrm{F}(\mathrm{M}) \otimes \mathrm{F}(\mathrm{M})\alpha_{\mathrm{s}}(\mu)[\sigma_{\mathrm{BOR}\,\mathrm{N}} + \alpha_{\mathrm{s}}(\mu)/\pi \mathrm{R}(\mu,\mathrm{M},..)]$$

where M is the factorization scale (SF evolution) and μ the renormalization scale.

To resolve scale ambiguities, the Principle of Minimum Sensitivity (PMS [3]) $d\sigma^{(2)}/dlnM = d\sigma^{(2)}/dln\mu = 0$ is applied. It leads to a saddle point at the "optimized scales" $\mu^{opt}(s,y,p_T)$ and $M^{opt}(s,y,p_T)$ around which the cross section is stable.

Different SF conventions, different optimization methods such as the fastest apparent convergence method [4] (setting higher order to zero) and PMS with only one scale, yield cross sections within 10% of $\sigma^{(2)}(\mu^{\text{opt}}, M^{\text{opt}})$. The small remaining theoretical uncertainties in this next-to-leading perturbative QCD calculation should allow experimentalists to test the theoretical assumptions.

2. WA70 experiment

Taking advantage of the Ω' spectrometer to allow a study of the event structure, the WA70 experiment uses 280 GeV/c proton and pion beams on an hydrogen target. The large acceptance (4m×4m at 10m), fine grained (1 cm) electromagnetic calorimeter [7] consits of a sandwich of liquid-scintillator in teflon tubes and 4.2 mm lead-plates. Two showers are resolved down to a distance of 2.7 cm and the energy threshold is 250 MeV with 50% efficiency at 1 GeV [8]. Prompt photons are identified with a residual background from electromagnetic decay of mesons of about 10% (20%, 30%) at high pT in the π^- (p, π^+) sample.

The analysis is presented in detail in Ref. 5–6. Systematic errors are mainly due to uncertainties in the absolute energy scale ($\approx 7\%$), inhomogeneity of the calorimeter (8% increasing to 16% at the edges of acceptance), background (4% to 14%) and efficiency (5% to 15%). Added in quadrature, the systematic errors amount to 15% in the range 4.5 < p_T < 5.5 GeV/c. The maximum overall normalization uncertainty (adding linearly all the errors in the above range) is about 30%.

The cross sections are shown as a function of p_T for pp (Fig. 1), π^-p (Fig. 2) and π^+p (Fig. 3). In the optimized perturbation theory (PMS) framework, the cross sections are compatible [8] with Duke-Owens [9, 10] SF set 1 ($\Lambda = 200$ MeV, soft gluon) and exclude set 2 ($\Lambda = 400$ MeV, harder gluon).

3. Probing the gluon beyond leading order with real γ [11]

Implementing beyond leading log evolution [12] for the SF, we fit the preliminary DIS μp data $(F_p^2 \text{ and } F_p^2/F_n^2)$ from the BCDMS collaboration [13]. With a simple form for the gluon distribution, $xG(x) = A_g(1-x)^{\eta}$ at $Q_0^2 = 2$ (GeV/c)², the best fit gives $\eta = 7.92 \pm 1.57$ and $\Lambda \frac{MS}{MS} = 188 \pm 20$ MeV (statistical errors only). Such a gluon distribution produce too small a cross section for $pp \rightarrow \gamma X$ as shown in the table below giving results of fits to direct photon data of WA70 as well as NA24 [15] and R806 [16]. Including only statistical errors, the χ^2 and the ratio R (= data/predictions) are given below for various ranges of x_T ($\approx x$). The fit gets worse with increasing x_T , where DIS data do not constrain the gluon SF [14]. χ^2 /points x_T R

WA70 [6]	390.5/7	0.38+0.61	3.→15.
NA24 [15]	39.4/5	0.27-0.59	216.
R806 [16]	411.4/10	0.18-0.365	1.6

3.1 The gluon structure function from a fit to $pp \rightarrow \gamma X$ (WA70)

Sets of SF and corresponding Λ in the SF evolution, derived from fits to BCDMS data for a range of η values, are used to fit the WA70 cross section with two free parameters, η and $\Lambda(\alpha_S)$. The best estimate are $\eta = 3.82 \pm 0.32$ and $\Lambda = 200 \pm 55$ MeV ($\chi^2 = 7.67$, statistical errors only) with a strong correlation (0.948). The systematic errors in η and Λ are evaluated in several different ways: 1) with systematic errors added in quadrature to the statistical errors, 2) comparing fits to different data taking periods, 3) shifting the overall normalization by $\pm 30\%$. These evaluations lead to:

$$\eta = 3.82 \pm 0.32 \pm 0.62$$
 and $\Lambda(\alpha_s) = 200 \pm 55 \pm 142$ MeV,

where the errors are statistical and systematic respectively. The sensitivity to Λ in the SF evolution is small: a variation of Λ by ±80 MeV (the errors quoted in the BCDMS scaling violation analysis [18]), affects the mean gluon density ($\Lambda = 223$ MeV) within the statistical errors.

Doing the same procedure using EMC hydrogen data rather than BCDMS yield a nearly identical gluon density [2] while fits to EMC alone give $4.5 < \eta < 10$ (with $40 < \Lambda < 150$, statistical errors only).

The gluon SF and $\Lambda(\alpha_S)$ derived above fits well NA24 data giving a χ^2 of 5.64 (statistical errors only), but badly the R806 data. If one now tries to get the gluon SF using R806 data, the best estimates are $\eta = 7.07 \pm 0.3$ and $\Lambda = 374.8 \pm 9.5$ MeV. With total errors, the results are $\eta = 8.27 \pm 1.6$ and $\Lambda = 480.\pm 160$. MeV. Error ellipses are shown on Fig. 4 for R806, WA70 and BCDMS. With the simple gluon shape, WA70 agrees with the precise Λ determination from BCDMS, but implies a harder gluon density. Although R806 agrees with a gluon as soft as BCDMS, it favors a higher value of Λ . As the probed x ranges are different, we are currently testing gluon shapes like $xG(x) = A_g(1 - x)^{\eta(X)}$. With $\eta(x) = 2.75 - 4.5 \times \ln\{\ln[(1/(1 - x))]\}$

and $\eta(x > 0.5) = \eta(0.5)$, a compromise between WA70 and R806 ($x_T < 0.33$) may be found while it seems more difficult to accommodate BCDMS.

3.2 Gluon density in the proton

The WA70 determination of the gluon SF is compared on Fig. 5 to the CHARM parametrization [17] at $\Lambda = 310$ MeV and to the BCDMS best fit, all at $Q^2 = 10$ (GeV/c)². The determination from prompt γ data (WA70 for x > 0.38, NA24 for x > 0.27) exclude a gluon as soft as favoured by the indirect [14] DIS methods (CHARM for x < 0.35 or BCDMS for x < 0.25). However, the CHARM result [19], with Λ uncertainties included, overlaps the WA70 determination within statistical errors. Systematics errors are not yet taken into account for BCDMS.

4. Beyond leading order fit to $\pi \pm p \rightarrow \gamma X$ (WA70)

We perform a joint fit to the $\pi^- p \rightarrow \gamma X$ and $\pi^+ p \rightarrow \gamma X$ cross sections (Fig. 2 and 3, $p_T > 4.25$ GeV/c, 12 points). The proton SF are derived from fits to BCDMS and WA70. The pion valence SF has the form $xV_{\pi}(x) \sim x^{\alpha} (1-x)^{\beta}$. The NA10 collaboration have fitted their di-muon data at $Q^2_0 = 25$ (GeV/c)² and parametrized the Q^2 dependence [20]. We use their parametrization extrapolated to $Q^2 = 2$ (GeV/c)² as our starting values. This gives: $\alpha = 0.45 \pm 0.03$ and $\beta = 0.70 \pm 0.04$ corresponding to $<x_V > = \int xV_{\pi}(x) dx = 0.42$. For the π gluon density, we assume a simple form $xG_{\pi}(x) \sim (1-x)^{\eta_{\pi}}$.

4.1 Determination of $\Lambda(\alpha_s)$ and η_{π}

The best fit, with statistical errors only $(\chi^2 = 9.45)$, gives $\Lambda(\alpha_s) = 225.4 \pm 17.9$ MeV and $\eta_{\pi} = 2.08 \pm 0.27$ with a strong correlation (0.886). The effect of the proton gluon SF is small: a variation of ± 0.3 in $\eta(p)$ changes Λ by ± 1.2 MeV and η_{π} by ± 0.1 . A change of Λ in the SF evolution by ± 50 MeV increases the χ^2 by at most one unit. Systematic errors are evaluated following the same procedure as for the proton fits. In particular, fits to different data taking periods (including 1986 preliminary π^- data, 7.7 pb⁻¹) yield mean values for Λ within ± 50 MeV and mean values for η_{π} within ± 0.45 . These evaluations lead to:

$$\Lambda = 225 \pm 18 \pm 60$$
 MeV and $\eta_{\pi} = 2.08 \pm 0.27 \pm 0.70$,

where the errors are statistical and systematic respectively.

The results of this fit are in good agreement with NA24. The π gluon density is softer than that found by Owens using a leading log fit [10] based on J/ Ψ production [21].

4.2 Pion valence structure function

Fits with β and $\langle x_V \rangle$ free yield compatible results (Λ within 5 MeV, η_{π} within 0.04) to the previous fit while $\langle x_V \rangle$ changes by 0.002 and β by -0.1 compared to the NA10 input values. The best WA70 fit, evolved to $Q^2 = 25(\text{GeV}/c)^2$, is in good

agreement with the NA10 fit. This provides an independent determination of the π valence SF from prompt γ production which, although less accurate, is in good agreement with NA10 Drell-Yan fits [20].

5. Summary

Inclusive cross sections for direct photon production have been measured by the WA70 collaboration in $\pi^{\pm}p$ and pp collisions with high statistics in the range $0.3 < x_T < 0.6$ with 280 GeV/c beams.

A consistent next-to-leading order perturbative QCD calculation of prompt photon cross sections, using BCDMS DIS recent hydrogen data, leads to this prelimary set of parameters at $Q_0^2 = 2(\text{GeV}/\text{c})^2$ for $0.3 < x_T < 0.6$:

- $\Lambda(\alpha_{\rm S}) = 225 \pm 18 \pm 60$ MeV, statistically compatible with the precise BCDMS determination from scaling violations analysis [18].
- Proton gluon structure function: xG(x)≈2.1×(1-x)⁴, harder than DIS parametrizations [17, 18] but statistically compatible to DFLM belt [19].
- π gluon structure function: xG(x)≈1.5×(1-x)², softer than Owens leading log fit [10] based on J/Ψ production [21].
- π valence structure function: $\langle x_V \rangle = 0.42$ and $\beta = 0.6$, in agreement with di-muon fits [20, 10].

It is a pleasure to acknowledge the fruitfull collaboration with P.Aurenche, M.Fontannaz and R.Baier, the warm hospitality of LAPP, the enthusiastic support of WA70 colleagues and more particularly M.N.Kienzle-Focacci and finally a careful reading of the manuscript from C.Dukes.

References

- [1] P.Aurenche, R.Baier, M.Fontannaz and D.Schiff, Nucl. Phys. B297 (1988) 661.
- [2] R.Baier, Adv. Res. Worskop on QCD, St Croix, 1987, preprint BI-TP/88-1.
- [3] P.M.Stevenson and H.D.Politzer, Nucl. Phys. B277 (1986) 758.
- [4] G.Grunberg, Phys. Rev. D29 (1984) 2315.
- [5] M.Bonesini et al., Z. Phys. C37 (1988) 535; E.Bonvin, Thesis at Univ. de Neuchâtel (1987).
- [6] M.Bonesini et al., CERN-EP/87-222, subm. to Z. Phys. C.
- [7] M.Bonesini et al., Nucl. Inst. Meth. A261 (1987) 471.
- [8] M.Werlen, Proc. HEP Uppsala (1987) 99 and 207.
- [9] D.W.Duke and J.F.Owens, Phys. Rev. D30 (1984) 49.
- [10] J.F.Owens, Phys. Rev. D30 (1984) 943.
- [11] P.Aurenche, R.Baier, M.Fontannaz, J.F.Owens and M.Werlen, in preparation.
- [12] A.Devoto, D.W.Duke, J.F.Owens, R.G.Roberts, Phys Rev. D27 (1983) 508.
- [13] A.C.Benvenuti et al., Contr. HEP Uppsala 1987; A.Ouraou and M.Virchaux, priv. comm.
- [14] J.F.Owens, Adv. Res. Worskop on QCD, St Croix, 1987, preprint FSU-HEP-871209.
- [15] C.De Marzo et al., Phys. Rev. D36 (1987) 8.
- [16] E.Anassontzis et al., Z.Phys. C13 (1982) 277. Private communication.
- [17] J.V.Allaby et al, Phys. Lett. B197 (1987) 281.
- [18] A.Milsztajn, Proc. HEP Uppsala (1987) 437 and these proceedings.
- [19] M.Diemoz, F.Ferroni, E.Longo and G.Martinelli, CERN-TH 4751/87. Priv. comm..
- [20] B.Betev et al., Z.Phys. C28 (1985) 15.
- [21] J.G. Mc Ewen et al., Phys. Lett. 121B (1983) 198; J.Badier et al., Z.Phys. C20 (1983) 101.

Cross section for 1. $pp \rightarrow \gamma X$, 2. $n^-p \rightarrow \gamma X$ and 3. $\pi^+p \rightarrow \gamma X$. Statistical error bars are drawn and total errors combining systematic in quadrature are shown. Lines are optimized next-to-leading QCD predictions [1] with Duke-Owens structure function set 1 (full) and set 2 (dashed).

Fig.5. Gluon density in the proton determined from WA70 and compatible to NA24 direct photon cross sections compared at $Q^2 \approx 10$ (GeV/c)² to DIS parametrizations. Limits of the x ranges probed are shown with bars.