

Research Article

Top Partner Production at e^+e^- **Collider in the Littlest Higgs Model with** *T***-Parity**

Haiyan Wang¹ and Bingfang Yang^{1,2}

¹*School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China* ²*College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China*

Correspondence should be addressed to Bingfang Yang; yangbingfang@htu.edu.cn

Received 3 June 2017; Revised 8 July 2017; Accepted 12 July 2017; Published 23 August 2017

Academic Editor: Edward Sarkisyan-Grinbaum

Copyright © 2017 Haiyan Wang and Bingfang Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP³.

In the framework of the littlest Higgs Model with *T*-parity, we discuss the top partner production at future e^+e^- collider. We calculate the cross sections of the top partner production processes and associated production processes of Higgs and top partner under current constraints. Then, we investigate the observability of the *T*-odd top partner pair production through the process $e^+e^- \rightarrow T_-\overline{T}_- \rightarrow t\overline{t}A_HA_H$ in the $t\overline{t}$ dilepton channel for two *T*-odd top partner masses $m_{T_-} = 603$ (708) GeV at $\sqrt{s} = 1.5$ TeV. We analyze the signal significance depending on the integrated luminosity and find that this signal is promising at the future high energy e^+e^- collider.

1. Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] is a great step towards understanding the electroweak symmetry breaking (EWSB) mechanism. However, the little hierarchy problem [3, 4], which is essentially from quadratically divergent corrections to the Higgs mass parameter, still exists. In the past, various new physics models have been proposed to solve this problem, and the littlest Higgs Model with *T*-parity (LHT) [5–7] is one of the most promising candidates.

In the LHT model, the Higgs boson is constructed as a pseudo-Nambu-Goldstone particle of the broken global symmetry. The quadratic divergence contributions to Higgs boson mass from the SM top quark loop, gauge boson loops, and the Higgs self-energy are cancelled by the corresponding T-parity partners, respectively. Among the partners, the top partner is the most important one since it is responsible for cancelling the largest quadratically divergent correction to the Higgs mass induced by the top quark.

Recently, the ATLAS and CMS collaborations have performed the searches for the vector-like top partner through the pair or single production with three final states bW, tZ, and tH and have excluded the top partner with the mass less than about 700 GeV [8–10]. Besides, a search has been performed in pair-produced exotic top partners, each decay to an on-shell top (or antitop) quark and a long-lived undetected neutral particle [11]. Apart from direct searches, the indirect searches for the top partners through their contributions to the electroweak precision observables (EWPOs) [12, 13], Z-pole observables [14–16], and the flavor physics [17–24] have been extensively investigated. The null results of the top partners, in conjunction with the EWPOs and the recent Higgs data, have tightly constrained the parameter space of the LHT model [25–30].

Compared to the hadron colliders, e^+e^- linear colliders may provide cleaner environments to study productions and decays of various particles. Some design schemes have been put forward, such as the International Linear Collider (ILC) [31–33] and the Compact Linear Collider (CLIC) [34–36]; they can run at the center of mass (c.m.) energy ranging from 500 GeV to 3000 GeV, which enables us to perform precision measurements of the top partner above the threshold. In addition, the polarization of the initial beams at e^+e^- linear colliders will be useful to study the properties of the top partner. Some relevant works have been widely studied in various extensions of the Standard Model (SM) [37–39], including the Little Higgs model [40, 41]. However, the works in Little Higgs model mostly were performed many years ago and before the discovery of the Higgs boson, so it is necessary to revisit this topic. Moreover, the different final states are analyzed in this work.

The paper is organized as follows. In Section 2 we review the top partner in the LHT model. In Section 3 we calculate top partner production cross sections. In Section 4 we investigate signal and discovery potentiality of the top partner production at e^+e^- collider. Finally, we draw our conclusions in Section 5.

2. Top Partner in the LHT Model

The LHT model is a nonlinear σ model based on the coset space SU(5)/SO(5) [42–49]. The global group SU(5) is spontaneously broken into SO(5) at the scale $f \sim \mathcal{O}$ (TeV) by the vacuum expectation value (VEV) of the Σ field, which is given by

$$\Sigma_{0} = \langle \Sigma \rangle \begin{pmatrix} \mathbf{0}_{2\times 2} & 0 & \mathbf{1}_{2\times 2} \\ 0 & 1 & 0 \\ \mathbf{1}_{2\times 2} & 0 & \mathbf{0}_{2\times 2} \end{pmatrix}.$$
 (1)

The VEV Σ_0 also breaks the gauged subgroup $[SU(2) \times U(1)]^2$ of SU(5) down to the diagonal SM electroweak symmetry $SU(2)_L \times U(1)_Y$. After the symmetry breaking, there arise 4 new heavy gauge bosons W_H^{\pm} , Z_H , A_H whose masses are given at $\mathcal{O}(v^2/f^2)$ by

$$M_{W_H} = M_{Z_H} = gf\left(1 - \frac{v^2}{8f^2}\right),$$

$$M_{A_H} = \frac{g'f}{\sqrt{5}}\left(1 - \frac{5v^2}{8f^2}\right)$$
(2)

with g and g' being the SM $SU(2)_L$ and $U(1)_Y$ gauge couplings, respectively. The heavy photon A_H is the lightest T-odd particle and can serve as a candidate for dark matter. In order to match the SM prediction for the gauge boson masses, the VEV v needs to be redefined as

$$v = \frac{f}{\sqrt{2}} \arccos\left(1 - \frac{v_{\rm SM}^2}{f^2}\right) \simeq v_{\rm SM} \left(1 + \frac{1}{12} \frac{v_{\rm SM}^2}{f^2}\right), \quad (3)$$

where $v_{\rm SM} = 246$ GeV.

In the fermion sector, the implementation of *T*-parity requires the existence of mirror partners for each original fermion. In order to do this, two fermion SU(2) doublets q_1 and q_2 are introduced and *T*-parity interchanges these two doublets. A *T*-even combination of these doublets is taken as the SM fermion doublet and the *T*-odd combination is its *T*-parity partner. The doublets q_1 and q_2 are embedded into incomplete SU(5) multiplets Ψ_1 and Ψ_2 as $\Psi_1 = (q_1, 0, 0_2)^T$ and $2 = (0_2, 0, q_2)^T$, where $0_2 = (0, 0)^T$. To give the additional

fermions masses, an SO(5) multiplet Ψ_c is also introduced as $\Psi_c = (q_c, \chi_c, \tilde{q}_c)^T$, whose transformation under the SU(5)is nonlinear: $\Psi_c \rightarrow U\Psi_c$, where U is the unbroken SO(5)rotation in a nonlinear representation of the SU(5). The components of the latter Ψ_c multiplet are the so-called mirror fermions. Then, one can write down the following Yukawatype interaction to give masses of the mirror fermions:

$$\mathscr{L}_{\text{mirror}} = -\kappa_{ij} f\left(\overline{\Psi}_2^i \xi + \overline{\Psi}_1^i \Sigma_0 \Omega \xi^\dagger \Omega\right) \Psi_c^j + \text{h.c.}, \quad (4)$$

where i, j = 1, 2, 3 are the generation indices. The masses of the mirror quarks u_H^i , d_H^i and mirror leptons l_H^i , v_H^i up to $\mathcal{O}(v^2/f^2)$ are given by

$$\begin{split} m_{d_{H}^{i}} &= \sqrt{2}\kappa_{i}f, \\ m_{u_{H}^{i}} &= m_{d_{H}^{i}}\left(1 - \frac{\nu^{2}}{8f^{2}}\right), \\ m_{l_{H}^{i}} &= \sqrt{2}\kappa_{i}f, \\ m_{\nu_{H}^{i}} &= m_{l_{H}^{i}}\left(1 - \frac{\nu^{2}}{8f^{2}}\right), \end{split}$$
(5)

where κ_i are the diagonalized Yukawa couplings.

In the top quark sector, two singlet fields T_{L_1} and T_{L_2} (and their right-handed counterparts) are introduced to cancel the large radiative correction to the Higgs mass induced by the top quark. Both fields are embedded together with the q_1 and q_2 doublets into the SU(5) multiplets: $\Psi_{1,t} = (q_1, T_{L_1}, 0_2)^T$ and $\Psi_{2,t} = (0_2, T_{L_2}, q_2)^T$. The *T*-even combination of q_i is the SM fermion doublet and the other *T*-odd combination is its *T*-parity partner. Then, the *T*-parity invariant Yukawa Lagrangian for the top sector can be written down as follows:

$$\begin{aligned} \mathscr{L}_{t} \\ &= -\frac{\lambda_{1}f}{2\sqrt{2}}\epsilon_{ijk}\epsilon_{xy}\left[\left(\overline{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\Sigma_{ky} - \left(\overline{\Psi}_{2,t}\Sigma_{0}\right)_{i}\Sigma_{jx}'\Sigma_{ky}\right]t_{R}' \quad (6) \\ &- \lambda_{2}f\left(\overline{T}_{L_{1}}T_{R_{1}} + \overline{T}_{L_{2}}T_{R_{2}}\right) + \text{h.c.}, \end{aligned}$$

where ϵ_{ijk} and ϵ_{xy} are the antisymmetric tensors with i, j, k = 1, 2, 3 and $x, y = 4, 5, \Sigma' = \langle \Sigma \rangle \Omega \Sigma^{\dagger} \Omega \langle \Sigma \rangle$ is the image of Σ under T-parity, and λ_1 and λ_2 are two dimensionless top quark Yukawa couplings. Under T-parity, these fields transform as $T_{L_1} \leftrightarrow -T_{L_2}, T_{R_1} \leftrightarrow -T_{R_2}$, and $t'_R \to t'_R$. The above Lagrangian contains the following mass terms:

$$\mathscr{L}_{t} \supset -\lambda_{1} f\left(\frac{s_{\Sigma}}{\sqrt{2}} \overline{t}_{L_{+}} t_{R}' + \frac{1+c_{\Sigma}}{2} \overline{T}_{L_{+}}' t_{R}'\right) -\lambda_{2} f\left(\overline{T}_{L_{+}}' T_{R_{+}}' + \overline{T}_{L_{-}}' T_{L_{-}}'\right) + \text{h.c.},$$

$$(7)$$

where $c_{\Sigma} = \cos(\sqrt{2}h/f)$ and $s_{\Sigma} = \sin(\sqrt{2}h/f)$. The *T*-parity eigenstates have been defined as $t_{L_{+}} = (t_{L_{1}} - t_{R_{1}})/\sqrt{2}$, $T'_{L_{\pm}} = (T_{L_{1}} \mp T_{L_{2}})/\sqrt{2}$, and $T'_{R_{\pm}} = (T_{R_{1}} \mp T_{R_{2}})/\sqrt{2}$. Note that *T*-odd Dirac fermion $T_{-} \equiv (T'_{L_{-}}, T'_{R_{-}})$ does not have the tree-level

Higgs boson interaction, and thus it does not contribute to the Higgs mass at one-loop level.

The two *T*-even eigenstates (t_{L_+}, t'_R) and (T'_{L_+}, T'_{R_+}) mix with each other so that the mass eigenstates can be defined as

$$t_{L} = \cos \beta t_{L_{+}} - \sin \beta T'_{L_{+}},$$

$$T_{L_{+}} = \sin \beta t_{L_{+}} + \cos \beta T'_{L_{+}},$$

$$t_{R} = \cos \alpha t'_{R} - \sin \alpha T'_{R_{+}},$$

$$T_{R_{+}} = \sin \alpha t'_{R} + \cos \alpha T'_{R_{+}},$$
(8)

where the mixing angles α and β can be defined by the dimensionless ratio $R = \lambda_1/\lambda_2$ as

$$\sin \alpha = \frac{R}{\sqrt{1+R^2}},$$

$$\sin \beta = \frac{R^2}{1+R^2} \frac{\nu}{f}.$$
(9)

The $t \equiv (t_L, t_R)$ quark is identified with the SM top quark, and $T_+ \equiv (T_{L_+}, T_{R_+})$ is its *T*-even heavy partner, which is responsible for the cancellation of the quadratic divergence to the Higgs mass induced by the top quark loop.

The Yukawa term generates the masses of the top quark and its partners, which are given at $\mathcal{O}(v^2/f^2)$ by

$$m_{t} = \frac{\lambda_{2} v R}{\sqrt{1 + R^{2}}} \left[1 + \frac{v^{2}}{f^{2}} \left(-\frac{1}{3} + \frac{1}{2} \frac{R^{2}}{(1 + R^{2})^{2}} \right) \right],$$
$$m_{T_{+}} = \frac{f}{v} \frac{m_{t} \left(1 + R^{2} \right)}{R} \left[1 + \frac{v^{2}}{f^{2}} \left(\frac{1}{3} - \frac{R^{2}}{(1 + R^{2})^{2}} \right) \right], \quad (10)$$

$$m_{T_{-}} = \frac{f}{v} \frac{m_t \sqrt{1+R^2}}{R} \left[1 + \frac{v^2}{f^2} \left(\frac{1}{3} - \frac{1}{2} \frac{R^2}{\left(1+R^2\right)^2} \right) \right].$$

Since the T_+ mass is always larger than the *T*-odd top partner T_- mass, the T_+ can decay into A_HT_- in addition to the conventional decay modes (*Wb*, *tZ*, *tH*).

The *T*-invariant Lagrangians of the Yukawa interactions of the down-type quarks and charged leptons can be constructed by two possible ways, which are denoted as Case A and Case B, respectively [50]. In the two cases, the corrections to the Higgs couplings with the down-type quarks and charged leptons with respect to their SM values are given at order $\mathcal{O}(v_{SM}^4/f^4)$ by $(d \equiv d, s, b, \ell_i^{\pm})$

$$\frac{g_{h\bar{d}d}}{g_{h\bar{d}d}^{\rm SM}} = 1 - \frac{1}{4} \frac{v_{\rm SM}^2}{f^2} + \frac{7}{32} \frac{v_{\rm SM}^4}{f^4} \quad \text{Case A,}$$

$$\frac{g_{h\bar{d}d}}{g_{h\bar{d}d}^{\rm SM}} = 1 - \frac{5}{4} \frac{v_{\rm SM}^2}{f^2} - \frac{17}{32} \frac{v_{\rm SM}^4}{f^4} \quad \text{Case B.}$$
(11)

3. Top Partner Production in e^+e^- Collision

In the LHT model, the Feynman diagrams of top partner production are shown in Figure 1, which proceeds through the *s*-channel γ and *Z* exchange diagrams. These processes include *T*-even top partner pair production $e^+e^- \rightarrow T_+\overline{T}_+$, *T*-odd top partner pair production $e^+e^- \rightarrow T_-\overline{T}_-$, and a *T*-even top partner associating with a top quark production $e^+e^- \rightarrow t\overline{T}_+$.

The Feynman diagrams of the Higgs and top partner associated production are shown in Figure 2, which has additional diagrams mediated by the *T*-even top partner T_+ compared to the process $e^+e^- \rightarrow t\bar{t}H$ in the SM. These processes include Higgs associating with *T*-even top partner pair production $e^+e^- \rightarrow T_+\bar{T}_+H$, Higgs associating with *T*-odd top partner pair production $e^+e^- \rightarrow T_-\bar{T}_-H$, and Higgs associating with a top quark and a *T*-even top partner production $e^+e^- \rightarrow t\bar{T}_+H$.

Before calculating the top partner production cross section, we firstly consider the constraints on the top partner mass from current measurements. We update the constraint on the LHT parameter in our previous works [51, 52], where the global fit of the latest Higgs data, EWPOs, and R_h measurements is performed. Thereinto, the constraints from the direct searches for Higgs data at Tevatron [53, 54] and LHC [55, 56] are obtained by the package HiggsSignals-1.4.0 [57, 58], which is linked to the HiggsBounds-4.2.1 [59-63] library. We compute the χ^2 values by the method introduced in [64-66] and obtained the constraint on the LHT parameter space. This constraint will lead to the exclusion limits on the top partner masses, which is displayed on the $R \sim f$ plane for Case A and Case B in Figure 3 at 2σ confidence level with $\delta \chi^2 = 8.02$. We can see that the combined constraints can, respectively, exclude m_{T_1} and m_T up to

$$m_{T_+} > 920$$
 (750) GeV Case A (B),
 $m_{T_-} > 590$ (500) GeV Case A (B). (12)

One can notice that Case B predicts a stronger suppression for the down-type fermion couplings to the Higgs boson, such as $Hb\bar{b}$, which helps to enhance the branching ratios of $H \rightarrow \gamma\gamma, WW^*, ZZ^*, \tau\tau$, so that Case B is favored by the experimental data [67].

In the left frame of Figure 4, we show the top partner production cross sections as a function of c.m. energy \sqrt{s} for f = 700 GeV and R = 1 (corresponding to $m_{T_+} = 986$ GeV and $m_{T_-} = 708$ GeV) in e^+e^- collision with unpolarized beams. The production cross sections are calculated at tree-level by using CalcHEP 3.6.25 [68, 69], where the SM parameters are taken as follows [70]:

$$\sin^2 \theta_W = 0.231,$$

 $\alpha_e = \frac{1}{128},$
 $M_Z = 91.1876 \,\text{GeV},$ (13)
 $m_t = 173.5 \,\text{GeV},$
 $m_H = 125 \,\text{GeV}.$

We can see that the top partner pair production cross sections increase abruptly at threshold and reach a maximum

FIGURE 1: Feynman diagrams of the top partner production at e^+e^- collider.

FIGURE 2: Feynman diagrams of the Higgs and top partner associated production at e^+e^- collider.

roughly 200 GeV above threshold. Then, the production cross sections fall roughly with the c.m. energy \sqrt{s} increase due to the *s*-channel suppression. The $T_-\overline{T}_-$ production usually has a larger cross section than $T_+\overline{T}_+$ production since the T_- mass is always lighter than the T_+ mass in the LHT model. The production cross sections of the associated production of Higgs and top partner have the similar behavior as the top partner pair production, but usually have smaller cross sections due to smaller phase space. The production cross

section of the process $e^+e^- \rightarrow t\overline{T}_+H$ reaches its maximum when the resonance decay of the top partner T_+ emerges.

Considering the polarization of the initial electron and positron beams, the cross section at e^+e^- collider can be expressed as [71]

$$\sigma = \frac{1}{4} \left[(1 + p_e) (1 + p_{\bar{e}}) \sigma_{RR} + (1 - p_e) (1 - p_{\bar{e}}) \sigma_{LL} + (1 + p_e) (1 - p_{\bar{e}}) \sigma_{RL} + (1 - p_e) (1 + p_{\bar{e}}) \sigma_{LR} \right],$$
(14)

FIGURE 3: Exclusion limits on the top partner masses on the $R \sim f$ plane at 2σ confidence level for Case A and Case B, where the parameter κ is marginalized over.

FIGURE 4: Top partner production cross sections as a function of \sqrt{s} for f = 700 GeV, R = 1 in e^+e^- collision with (un)polarized beam.

where σ_{RL} is the cross section for completely right-handed polarized e^- beam ($p_e = +1$) and completely left-handed polarized e^+ beam ($p_{\overline{e}} = -1$), and other cross sections σ_{RR} , σ_{LL} , and σ_{LR} are defined analogously. We show the top partner production cross sections in polarized beam with $p_e = 0.8$ and $p_{\overline{e}} = -0.6$ in the right frame of Figure 4 and find that the relevant top partner production cross sections can be enhanced by the polarized beams.

4. Signal and Discovery Potentiality

Take into account the relatively large production cross section; we will perform the Monte Carlo simulation and explore the sensitivity of *T*-odd top partner production in the following section. The *T*-odd top partner T_{-} has a simple decay pattern, which decays almost 100% into the $A_{H}t$ mode.

We will explore the sensitivity of *T*-odd top partner pair production with unpolarized beam through the channel

$$e^{+}e^{-} \longrightarrow T_{-}\overline{T}_{-} \longrightarrow t (\longrightarrow l^{+}\nu_{l}b) \overline{t} (\longrightarrow l^{-}\overline{\nu_{l}}\overline{b}) A_{H}A_{H}$$

$$\longrightarrow l^{+}l^{-} + 2b + E_{T}$$
(15)

which implies that the events contain one pair of oppositely charged leptons l^+l^- ($l = e, \mu$) with high transverse momentum, two high transverse momentum *b*-jets, and large missing transverse energy E_T .

The dominant background arises from $e^+e^- \rightarrow t\bar{t}$ in the SM. Besides, the most relevant backgrounds come from $t\bar{t}Z(\rightarrow \nu\bar{\nu}), W^+(\rightarrow l^+\nu_l)W^-(\rightarrow l^-\bar{\nu}_l)Z(\rightarrow b\bar{b})$, and $W^+(\rightarrow l^+\nu_l)W^-(\rightarrow l^-\bar{\nu}_l)H(\rightarrow b\bar{b})$. Here, the backgrounds ZZZ, ZZH, and ZHH are neglected due to their small cross

Cuts	$S (\times 10^{-3} \text{ fb})$		$B (\times 10^{-3} \text{ fb})$				S/B	
	$T_{-}\overline{T}_{-}$ (P1)	$T_{-}\overline{T}_{-}$ (P2)	$t\overline{t}$	$t\bar{t}Z$	WWZ	WWH	P1	P2
No cut	184	119	3485	32	367	100	0.046	0.03
Cut-1	139.8	94.0	2011	20.8	283	104	0.058	0.039
Cut-2	81.1	54.9	929.6	9.6	59.8	41.1	0.078	0.053
Cut-3	62.4	45.6	334.7	5.6	15.6	11.5	0.17	0.12
Cut-4	48.7	36.5	120.1	3.4	3.0	2.2	0.38	0.28
Cut-5	44.8	33.6	34.8	2.4	2.6	1.5	1.08	0.81

TABLE 1: Cut flow of the cross sections for the signal (*S*) and the backgrounds (*B*) for the two signal benchmark points (P1: f = 700 GeV, R = 1) and (P2: f = 700 GeV, R = 1.5) at $\sqrt{s} = 1.5$ TeV.

sections. We turn off the parton-level cuts and generate the signal and background events by using MadGraph 5 [72], where the UFO [73] format of the LHT model has been obtained by FeynRules [74] in [25]. We use MadGraph 5 to generate the process by issuing the following commands:

generate e- e+ > thodd thodd~, (thodd > t ah, t > l+ vl b), (thodd~ > t~ ah, t~ > l- vl~ b~) [for signal]; generate e- e+ > t t~, t > l+ vl b, t~ > l- vl~ b~ [for $t\bar{t}$]; generate e- e+ > t t~ z, t > l+ vl b, t~ > l- vl~ b~, z > vl vl~ [for $t\bar{t}Z$]; generate e- e+ > w- w+ z, w- > l- vl~, w+ > l+ vl, z > b b~ [for WWZ]; generate e- e+ > w- w+ h, w- > l- vl~, w+ > l+ vl, h >

The parton shower and hadronization are performed with PYTHIA [75], and the fast detector simulations are performed with Delphes [76]. We use the default card (i.e., delphes_card_ILD) of ILC in Delphes 3.3.3. The *b*-jet tagging efficiency is taken as default value in delphes, where it is parameterized as a function of the transverse momentum and rapidity of the jets. When generating the parton-level events, we assume $\mu_R = \mu_F$ to be the default event-byevent value. FastJet [77] is used to define jets via the anti k_t algorithm [78] with distance parameter $\Delta R = 0.4$. We use MadAnalysis 5 [79] for analysis, where the (mis)tagging efficiencies and fake rates are assumed to be their default values.

b b~ [for WWH].

Take into consideration the constraints on the top partner mass from current measurements; we take f = 700 GeV, R = 1 (corresponding to $m_{T_{-}} = 708$ GeV) and f =700 GeV, R = 1.5 (corresponding to $m_{T_{-}} = 603$ GeV) for two benchmark points in the following calculations. In order to reduce the background contribution and enhance the signal contribution, some cuts of kinematic distributions are needed. In Figure 5, we show the normalized distributions of transverse momentum $p_{T}^{l_1}$, the pseudorapidity η_{l_1}, η_{b_1} , the separation $\Delta R(l_1, b_1)$ between l_1 and b_1 , the energy $E(b_1 l_1)(=$ $E(b_1) + E(l_1))$, and the total transverse energy H_T .

Since the dominant background arises from $t\bar{t}$, the cuts that are chosen to suppress the backgrounds should be centered around the $t\bar{t}$ background. Firstly, we can apply the cuts of general kinematic distributions, such as $p_T^{l_1}$, η_{l_1} , and η_{b_1} , to suppress the backgrounds. For the $\Delta R(l_1, b_1)$

distribution, there are two peaks in the $t\bar{t}$, $t\bar{t}Z$ backgrounds and one peak in the *WWZ*, *WWH* backgrounds; we can use the deviation between the signal peak and background peak to suppress the backgrounds. Then, in view of the energy $E(b_1l_1)$ distribution, we can also use the deviation between the signal peak and background peak to reduce the backgrounds. After that, the H_T distribution of the signal can be utilized to remove the $t\bar{t}$ background effectively. According to the above analysis, events are selected to satisfy the following cuts:

Cut-1:
$$p_T(l_1) > 50 \text{ GeV};$$

Cut-2: $|\eta(l_1)| < 1;$
 $|\eta(b_1)| < 1;$
Cut-3: $\Delta R(l_1, b_1) < 2.5;$
Cut-4: $E(b_1 l_1) < 400 \text{ GeV};$
Cut-5: $H_T < 400 \text{ GeV};$

For easy reading, we summarize the cut-flow cross sections of the signal and backgrounds for c.m. energy \sqrt{s} = 1.5 TeV in Table 1. To estimate the observability quantitatively, the Statistical Significance (SS) is calculated after final cut by using Poisson formula [80]

$$SS = \sqrt{2L\left[(S+B)\ln\left(1+\frac{S}{B}\right)-S\right]},$$
(17)

where *S* and *B* are the signal and background cross sections and *L* is the integrated luminosity. The results for the SS values depending on the integrated luminosity for \sqrt{s} = 1.5 TeV are shown in Figure 6. It is clear from Figure 6 that we can obtain the 2σ significance at a luminosity of 35 (45) fb⁻¹, 3σ significance at a luminosity of 70 (100) fb⁻¹, and 5σ significance at a luminosity of 200 (280) fb⁻¹ for $m_{T_{-}}$ = 603 (708) GeV.

5. Conclusions

In this paper, we discuss the top partner production at future e^+e^- collider in the LHT model. We first consider the constraints on the top partner masses from the current measurements and then calculate the cross sections of various top partner production processes, which include $e^+e^- \rightarrow$

0.025

0.02

0.015

0.01

0.005

0.05

0.04

0.03

0.02

0.01

0.05

0.04

0.03

0.02

0.01

at $\sqrt{s} = 1.5$ TeV.

T - T - 603

 $E[b_1l_1]$ (GeV)

Events (scaled to one)

Events (scaled to one)

Events (scaled to one)

- ttZ- WWZT - T - 708 $T_{-}T_{-}708$ -WWZWWH - WWH tt tt FIGURE 5: Normalized distributions of η_{l_1} , η_{b_1} , $p_T^{l_1}$, $\Delta R_{l_1b_1}$, $E(b_1l_1)$, and H_T in the signal and backgrounds for the two signal benchmark points

 H_T (GeV)

-ttZ

 $T_{-}T_{-}603$

FIGURE 6: The statistical significance depending on integrated luminosity for $\sqrt{s} = 1.5$ TeV.

 $T_+\overline{T}_+, e^+e^- \rightarrow T_-\overline{T}_-, e^+e^- \rightarrow t\overline{T}_+$ and $e^+e^- \rightarrow T_+\overline{T}_+H$, $e^+e^- \rightarrow T_-\overline{T}_-H$, and $e^+e^- \rightarrow t\overline{T}_+H$. Next, we investigate the observability of the *T*-odd top partner pair production through the process $e^+e^- \rightarrow T_-\overline{T}_- \rightarrow t\overline{t}A_HA_H$ with the dilepton decay of the top quark pair for $\sqrt{s} = 1.5$ TeV. We display the signal significance depending on the integrated luminosity and find that the 2σ significance can be obtained at a luminosity of 70 (100) fb⁻¹ for $m_{T_-} = 603$ (708) GeV, which is promising at the future high energy e^+e^- collider with high luminosity.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grants no. 11405047 and no. 11404099 and by the Startup Foundation for Doctors of Henan Normal University under Grant no. qd15207.

References

- [1] G. Aad, T. Abajyan, B. Abbott et al., "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Physics Letters B*, vol. 716, p. 1, 2012.
- [2] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," *Physics Letters B*, vol. 716, no. 1, pp. 30–61, 2012.
- [3] R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, "Electroweak symmetry breaking after LEP1 and LEP2," *Nuclear Physics B*, vol. 703, no. 1-2, pp. 127–146, 2004.

- [4] Z. Han and W. Skiba, "Effective theory analysis of precision electroweak data," *Physical Review D*, vol. 71, p. 075009, 2005.
- [5] H.-C. Cheng and I. Low, "TeV symmetry and the little hierarchy problem," *Journal of High Energy Physics*, vol. 2003, no. 09, article 051, 2003.
- [6] H.-C. Cheng and I. Low, "Little hierarchy, little higgses, and a little symmetry," *Journal of High Energy Physics*, vol. 2004, no. 08, article 061, 2004.
- [7] I. Low, "T parity and the littlest Higgs," Journal of High Energy Physics, vol. 2004, no. 10, article 067, 2004.
- [8] G. Aad., J. Abbott, J. Abdallah et al., "Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector," *Journal of High Energy Physics*, vol. 2014, article 104, 2014.
- [9] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2015-012, ATLAS-COM-CONF-2015-012.
- [10] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., "Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at $\sqrt{s} = 8$ TeV," *Physics Letters B*, vol. 729, pp. 149–171, 2014.
- [11] G. Aad and ATLAS Collaboration, "Search for New Phenomena in $t\bar{t}$ Events with Large Missing Transverse Momentum in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector," *Physical Review Letters*, vol. 108, p. 041805, 2012.
- [12] J. Hubisz and P. Meade, "Phenomenology of the littlest Higgs model with T-parity," *Physical Review D*, vol. 71, p. 035016, 2005.
- [13] J. Hubisz, P. Meade, A. Noble, and M. Perelstein, "Electroweak precision constraints on the littlest Higgs model with T parity," *Journal of High Energy Physics*, no. 1, article 135, pp. 3441–3464, 2006.
- [14] C. X. Yue and W. Wang, "The branching ratio R_b in the littlest Higgs model," *Nuclear Physics B*, vol. 683, no. 1-2, pp. 48–66, 2004.
- [15] X. F. Han, "*R_b* constraints on the littlest Higgs model with *T* parity," *Physical Review D*, vol. 80, p. 055027, 2009.
- [16] B. Yang, X. Wang, and J. Han, "The study of the contribution of the LHT model to *Zbb* coupling," *Nuclear Physics B*, vol. 847, no. 1, pp. 1–16, 2011.
- [17] W.-j. Huo and S.-h. Zhu, " $\vec{b} s \gamma$ in the littlest Higgs model," *Physical Review D*, vol. 68, p. 097301, 2003.
- [18] A. J. Buras, A. Poschenrieder, and S. Uhlig, "Particle-antiparticle mixing, *e*K and the unitarity triangle in the littlest Higgs model," *Nuclear Physics B*, vol. 716, no. 1-2, pp. 173–198, 2005.
- [19] J. Hubisz, S. J. Lee, and G. Paz, "The flavor of a little Higgs with *T*-parity," *Journal of High Energy Physics*, vol. 2006, no. 06, article 041, 2006.
- [20] M. Blanke, A. J. Buras, A. Poschenrieder, C. Tarantino, S. Uhlig, and A. Weiler, "Particle-antiparticle mixing, ε_K , $\Delta \Gamma_q$, A_{SL}^q , $A_{CP}(B_d \rightarrow \Psi K_s)$, $A_{CP}(B_s \rightarrow \Psi \phi)$ and $B \rightarrow X_{s,d}Y$ in the Littlest Higgs model with *T*-parity," *Journal of High Energy Physics*, vol. 2006, no. 12, article 003, 2006.
- [21] A. J. Buras, A. Poschenrieder, S. Uhlig, and W. A. Bardeen, "Rare K and B decays in the littlest Higgs model without T-parity," *Journal of High Energy Physics*, vol. 2006, no. 11, article no. 062, 2006.
- [22] M. Blanke, A. J. Buras, A. Poschenrieder et al., "Rare and CPviolating K and B decays in the Littlest Higgs model with Tparity," *Journal of High Energy Physics*, vol. 2007, no. 1, article 066, 2007.

- [23] G. Cacciapaglia, A. Deandrea, L. Panizzi, N. Gaur, D. Harada, and Y. Okada, "Heavy vector-like top partners at the LHC and flavour constraints," *Journal of High Energy Physics*, vol. 2012, no. 3, article 070, 2012.
- [24] M. Blanke, A. J. Buras, and S. Recksiegel, "Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1," *European Physical Journal C*, vol. 76, no. 4, article 182, 2016.
- [25] K. Huitu and H. Waltari, "Higgs sector in NMSSM with righthanded neutrinos and spontaneous R-parity violation," *Journal* of High Energy Physics, vol. 2014, article 053, 2014.
- [26] J. Reuter and M. Tonini, "Can the 125 GeV Higgs be the Little Higgs?," *Journal of High Energy Physics*, vol. 2013, article 77, 2013.
- [27] J. Berger, J. Hubisz, and M. Perelstein, "A fermionic top partner: Naturalness and the LHC," *Journal of High Energy Physics*, vol. 2012, no. 7, article 016, 2012.
- [28] B. F. Yang, G. F. Mi, and N. Liu, "Higgs couplings and Naturalness in the littlest Higgs model with T-parity at the LHC and TLEP," *Journal of High Energy Physics*, vol. 2014, no. 10, article 47, 2014.
- [29] C. C. Han, A. Kobakhidze, N. Liu, L. Wu, and B. F. Yang, "Constraining top partner and naturalness at the LHC and TLEP," *Nuclear Physics B*, vol. 890, pp. 388–399, 2014.
- [30] X. F. Han, L. Wang, J. M. Yang, and J. Y. Zhu, "Little Higgs theory confronted with the LHC Higgs data," *Physical Review D*, vol. 87, p. 055004, 2013.
- [31] A. Djouadi, J. Lykken, K. Mönig et al., "International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC," https://arxiv.org/abs/0709.1893.
- [32] J. Brau, "ILC Collaboration," arXiv: 0712.19.
- [33] H. Baer, T. Barklow, K. Fujii et al., "The International Linear Collider Technical Design Report - Volume 2: Physics," https:// arxiv.org/abs/1306.6352.
- [34] E. Accomando and CLIC Physics Working Group Collaboration, hep-ph/0412251, CERN-2004- 005.
- [35] D. Dannheim, P. Lebrun, L. Linssen et al., "CLIC e⁺e⁻ Linear Collider Studies," https://arxiv.org/abs/1208.1402.
- [36] H. Abramowicz, A. Abusleme, K. Afanaciev et al., "Physics at the CLIC e^+e^- Linear Collider—Input to the Snowmass process 2013," https://arxiv.org/abs/1307.5288.
- [37] A. Senol, A. T. Tasci, and F. Ustabas, "Anomalous single production of fourth generation t' quarks at ILC and CLIC," *Nuclear Physics B*, vol. 851, no. 2, pp. 289–297, 2011.
- [38] R. Kitano, T. Moroi, and S.-F. Su, "Top-Squark Study at a Future e⁺e⁻ Linear Collider," *Journal of High Energy Physics*, vol. 2002, no. 12, p. 011, 2002.
- [39] Y.-B. Liu and Z.-J. Xiao, "The production and decay of the top partner *T* in the left–right twin Higgs model at the ILC and CLIC," *Nuclear Physics B*, vol. 892, pp. 63–82, 2015.
- [40] K. Kong and S. C. Park, "Phenomenology of top partners at the ILC," *Journal of High Energy Physics*, vol. 2007, no. 08, article 038, 2007.
- [41] K. Harigaya, S. Mastsumoto, M. M. Nojiri, and K. Tobioka, "Magnetic response in the holographic insulator/superconductor transition," *Journal of High Energy Physics*, vol. 2012, no. 1, article 135, 2012.
- [42] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, "The Littlest Higgs," *Journal of High Energy Physics*, vol. 2002, no. 07, article 034, 2002.

- [43] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire, and J. G. Wacker, "The Minimal Moose for a Little Higgs," vol. 2012, no. 08, article 021, 2002.
- [44] I. Low, W. Skiba, and D. Smith, "Little Higgs bosons from an antisymmetric condensate," *Physical Review D*, vol. 66, p. 072001, 2002.
- [45] D. E. Kaplan and M. Schmaltz, "The little Higgs from a simple group," *Journal of High Energy Physics*, vol. 2003, no. 10, article 039, 2003.
- [46] S. Chang and J. G. Wacker, "Little Higgs models and custodial SU(2)," *Physical Review D*, vol. 69, p. 035002, 2004.
- [47] W. Skiba and J. Terning, "Simple model of two little Higgs bosons," *Physical Review D*, vol. 68, p. 075001, 2003.
- [48] F. Lizzi, P. Vitale, and A. Zampini, "The fuzzy disc," *Journal of High Energy Physics*, vol. 2004, no. 08, article 056, 2004.
- [49] M. Schmaltz, "The simplest little Higgs," *Journal of High Energy Physics*, vol. 2004, no. 8, article 056, 2004.
- [50] C. R. Chen, K. Tobe, and C.-P. Yuan, "Higgs boson production and decay in little Higgs models with T-parity," *Physics Letters B*, vol. 640, no. 5-6, pp. 263–271, 2006.
- [51] N. Liu, L. Wu, B. F. Yang, and M. C. Zhang, "Single top partner production in the Higgs to diphoton channel in the Littlest Higgs Model with *T*-parity," *Physics Letters B*, vol. 753, pp. 664– 669, 2016.
- [52] B. F. Yang, J. Z. Han, and N. Liu, "Lepton flavor violating Higgs boson decay $h \rightarrow \mu \tau$ in the littlest Higgs model with *T* parity," *Physical Review D*, vol. 95, p. 035010, 2017.
- [53] T. Aaltonen and CDF Collaboration, "Combination of searches for the Higgs boson using the full CDF data set," *Physical Review D*, vol. 88, p. 052013, 2013.
- [54] V. M. Abazov and D0 Collaboration, "Combined search for the Higgs boson with the D0 experiment," *Physical Review D*, vol. 88, p. 052011, 2013.
- [55] [ATLAS Collaboration], ATL-CONF-2015-005, ATL-CONF-2015-006.
- [56] [CMS Collaboration], CMS-PAS-HIG-14-009, CMS-PAS-HIG-13-001.
- [57] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, "HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC," *The European Physical Journal C*, vol. 74, p. 2711, 2014.
- [58] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, "Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC," *Journal of High Energy Physics*, vol. 2014, no. 11, article 039, 2014.
- [59] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, "HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron," *Computer Physics Communications*, vol. 181, no. 1, pp. 138–167, 2010.
- [60] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, "HiggsBounds 2.0.0: Confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron," *Computer Physics Communications*, vol. 182, no. 12, pp. 2605–2631, 2011.
- [61] P. Bechtle, O. Brein, S. Heinemeyer et al., "Recent Developments in HiggsBounds and a Preview of HiggsSignals," *PoS CHARGED*, vol. 2012, p. 024, 2012.
- [62] P. Bechtle, O. Brein, S. Heinemeyer et al., "HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC," *The European Physical Journal C*, vol. 74, p. 2693, 2014.

- [63] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, "Applying exclusion likelihoods from LHC searches to extended Higgs sectors," *The European Physical Journal C*, vol. 75, p. 421, 2015.
- [64] J. R. Espinosa, C. Grojean, M. Muhlleitner, and M. Trott, "Baryon electric dipole moments from strong CP violation," *Journal of High Energy Physics*, vol. 2012, no. 12, article 097, 2012.
- [65] P. P. Giardino, K. Kannike, M. Raidal, and A. Strumia, "Reconstructing Higgs boson properties from the LHC and Tevatron data," *Journal of High Energy Physics*, vol. 2012, no. 6, article 117, 2012.
- [66] P. P. Giardino, K. Kannike, M. Raidal, and A. Strumia, "Is the resonance at 125 GeV the Higgs boson?" *Physics Letters B*, vol. 718, no. 2, pp. 469–474, 2012.
- [67] ATLAS and CMS Collaborations, "Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV," *Journal of High Energy Physics*, vol. 2016, no. 08, p. 045, 2016.
- [68] A. Belyaev, N. D. Christensen, and A. Pukhov, "CalcHEP 3.4 for collider physics within and beyond the standard model," *Computer Physics Communications*, vol. 184, no. 7, pp. 1729– 1769, 2013.
- [69] A. Belyaev, C.-R. Chen, K. Tobe, and C.-P. Yuan, "Phenomenology of a littlest Higgs model with *T* parity: Including effects of *T*-odd fermions," *Physical Review D*, vol. 74, Article ID 115020, p. 115020, 2006.
- [70] C. Patrignani and Particle Data Group, "Review of Particle Physics," *Chinese Physics C*, vol. 40, no. 10, Article ID 100001, 2016.
- [71] G. Moortgat-Pick, T. Abe, G. Alexander et al., "Polarized positrons and electrons at the linear collider," *Physics Reports*, vol. 460, no. 4-5, pp. 131–243, 2008.
- [72] J. Alwall, R. Frederix, S. Frixione et al., "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations," *Journal of High Energy Physics*, vol. 2014, no. 07, article 079, 2014.
- [73] N. D. Christensen and C. Duhr, "FeynRules—Feynman rules made easy," *Computer Physics Communications*, vol. 180, pp. 1614–1641, 2009.
- [74] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, "UFO—the universal FeynRules output," *Computer Physics Communications*, vol. 183, no. 6, pp. 1201–1214, 2012.
- [75] T. Sjostrand, S. Mrenna, and P. Z. Skands, "PYTHIA 6.4 physics and manual," *Journal of High Energy Physics*, vol. 2006, no. 5, article 026, 2006.
- [76] J. de Favereau, C. Delaere, P. Demin et al., "DELPHES 3: a modular framework for fast simulation of a generic collider experiment," vol. 2014, no. 2, article 057, 2014.
- [77] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual," *The European Physical Journal C*, vol. 72, p. 1896, 2012.
- [78] M. Cacciari, G. P. Salam, and G. Soyez, "The anti- k_t jet clustering algorithm," *Journal of High Energy Physics*, vol. 2008, no. 04, p. 063, 2008.
- [79] E. Conte, B. Fuks, and G. Serret, "MadAnalysis 5, a userfriendly framework for collider phenomenology," *Computer Physics Communications*, vol. 184, no. 1, pp. 222–256, 2013.
- [80] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics," *The European Physical Journal C*, vol. 71, article 1554, 2011.

The Scientific World Journal

Advances in Condensed Matter Physics

Journal of Aerodynamics

International Journal of Statistical Mechanics

Journal of **Computational**

Submit your manuscripts at https://www.hindawi.com

Optics

Research International

Journal of Biophysics

Atomic and Molecular Physics

International Journal of Superconductivity