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In the framework of the littlestHiggsModel with𝑇-parity, we discuss the top partner production at future 𝑒+𝑒− collider.We calculate
the cross sections of the top partner production processes and associated production processes of Higgs and top partner under
current constraints. Then, we investigate the observability of the 𝑇-odd top partner pair production through the process 𝑒+𝑒− →𝑇−𝑇− → 𝑡𝑡𝐴�퐻𝐴�퐻 in the 𝑡𝑡 dilepton channel for two 𝑇-odd top partner masses𝑚�푇−

= 603 (708)GeV at √𝑠 = 1.5TeV. We analyze
the signal significance depending on the integrated luminosity and find that this signal is promising at the future high energy 𝑒+𝑒−
collider.

1. Introduction

The discovery of the Higgs boson at the Large Hadron
Collider (LHC) [1, 2] is a great step towards understanding
the electroweak symmetry breaking (EWSB) mechanism.
However, the little hierarchy problem [3, 4], which is essen-
tially from quadratically divergent corrections to the Higgs
mass parameter, still exists. In the past, various new physics
models have been proposed to solve this problem, and the
littlest Higgs Model with 𝑇-parity (LHT) [5–7] is one of the
most promising candidates.

In the LHT model, the Higgs boson is constructed as
a pseudo-Nambu-Goldstone particle of the broken global
symmetry. The quadratic divergence contributions to Higgs
boson mass from the SM top quark loop, gauge boson loops,
and the Higgs self-energy are cancelled by the corresponding𝑇-parity partners, respectively. Among the partners, the top
partner is the most important one since it is responsible for
cancelling the largest quadratically divergent correction to
the Higgs mass induced by the top quark.

Recently, the ATLAS and CMS collaborations have per-
formed the searches for the vector-like top partner through

the pair or single production with three final states 𝑏𝑊,𝑡𝑍, and 𝑡𝐻 and have excluded the top partner with the
mass less than about 700GeV [8–10]. Besides, a search has
been performed in pair-produced exotic top partners, each
decay to an on-shell top (or antitop) quark and a long-
lived undetected neutral particle [11]. Apart from direct
searches, the indirect searches for the top partners through
their contributions to the electroweak precision observables
(EWPOs) [12, 13], 𝑍-pole observables [14–16], and the flavor
physics [17–24] have been extensively investigated. The null
results of the top partners, in conjunction with the EWPOs
and the recent Higgs data, have tightly constrained the
parameter space of the LHT model [25–30].

Compared to the hadron colliders, 𝑒+𝑒− linear colliders
may provide cleaner environments to study productions and
decays of various particles. Some design schemes have been
put forward, such as the International Linear Collider (ILC)
[31–33] and the Compact Linear Collider (CLIC) [34–36];
they can run at the center of mass (c.m.) energy ranging from
500GeV to 3000GeV, which enables us to perform precision
measurements of the top partner above the threshold. In
addition, the polarization of the initial beams at 𝑒+𝑒− linear
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colliders will be useful to study the properties of the top
partner. Some relevant works have been widely studied in
various extensions of the Standard Model (SM) [37–39],
including the Little Higgs model [40, 41]. However, the works
in Little Higgs model mostly were performedmany years ago
and before the discovery of the Higgs boson, so it is necessary
to revisit this topic. Moreover, the different final states are
analyzed in this work.

The paper is organized as follows. In Section 2 we review
the top partner in the LHT model. In Section 3 we calculate
top partner production cross sections. In Section 4 we
investigate signal and discovery potentiality of the top partner
production at 𝑒+𝑒− collider. Finally, we draw our conclusions
in Section 5.

2. Top Partner in the LHT Model

The LHT model is a nonlinear 𝜎 model based on the
coset space 𝑆𝑈(5)/𝑆𝑂(5) [42–49]. The global group 𝑆𝑈(5) is
spontaneously broken into 𝑆𝑂(5) at the scale 𝑓 ∼ O (TeV) by
the vacuum expectation value (VEV) of the Σ field, which is
given by

Σ0 = ⟨Σ⟩(02×2 0 12×20 1 0
12×2 0 02×2

). (1)

TheVEV Σ0 also breaks the gauged subgroup [𝑆𝑈(2)×𝑈(1)]2
of 𝑆𝑈(5) down to the diagonal SM electroweak symmetry𝑆𝑈(2)�퐿 × 𝑈(1)�푌. After the symmetry breaking, there arise
4 new heavy gauge bosons 𝑊±

�퐻, 𝑍�퐻, 𝐴�퐻 whose masses are
given at O(V2/𝑓2) by

𝑀�푊𝐻
= 𝑀�푍𝐻

= 𝑔𝑓(1 − V28𝑓2
) ,

𝑀�퐴𝐻
= 𝑔�耠𝑓√5 (1 − 5V28𝑓2

) (2)

with 𝑔 and 𝑔�耠 being the SM 𝑆𝑈(2)�퐿 and 𝑈(1)�푌 gauge
couplings, respectively. The heavy photon 𝐴�퐻 is the lightest𝑇-odd particle and can serve as a candidate for darkmatter. In
order tomatch the SMprediction for the gauge bosonmasses,
the VEV V needs to be redefined as

V = 𝑓√2 arccos(1 − V2SM𝑓2
) ≃ VSM (1 + 112 V2SM𝑓2

) , (3)

where VSM = 246GeV.
In the fermion sector, the implementation of 𝑇-parity

requires the existence of mirror partners for each original
fermion. In order to do this, two fermion 𝑆𝑈(2) doublets 𝑞1

and 𝑞2 are introduced and 𝑇-parity interchanges these two
doublets. A 𝑇-even combination of these doublets is taken
as the SM fermion doublet and the 𝑇-odd combination is its𝑇-parity partner. The doublets 𝑞1 and 𝑞2 are embedded into
incomplete 𝑆𝑈(5) multiplets Ψ1 and Ψ2 as Ψ1 = (𝑞1, 0, 02)�푇
and 2 = (02, 0, 𝑞2)�푇, where 02 = (0, 0)�푇. To give the additional

fermions masses, an 𝑆𝑂(5) multiplet Ψ�푐 is also introduced
as Ψ�푐 = (𝑞�푐, 𝜒�푐, 𝑞�푐)�푇, whose transformation under the 𝑆𝑈(5)
is nonlinear: Ψ�푐 → 𝑈Ψ�푐, where 𝑈 is the unbroken 𝑆𝑂(5)
rotation in a nonlinear representation of the 𝑆𝑈(5). The
components of the latterΨ�푐 multiplet are the so-calledmirror
fermions. Then, one can write down the following Yukawa-
type interaction to give masses of the mirror fermions:

Lmirror = −𝜅�푖�푗𝑓(Ψ�푖

2𝜉 + Ψ�푖

1Σ0Ω𝜉†Ω)Ψ�푗
�푐 + h.c., (4)

where 𝑖, 𝑗 = 1, 2, 3 are the generation indices. The masses of
the mirror quarks 𝑢�푖

�퐻, 𝑑�푖
�퐻 and mirror leptons 𝑙�푖�퐻, ]�푖�퐻 up to

O(V2/𝑓2) are given by

𝑚�푑𝑖
𝐻

= √2𝜅�푖𝑓,
𝑚�푢𝑖
𝐻

= 𝑚�푑𝑖
𝐻

(1 − V28𝑓2
) ,

𝑚�푙𝑖
𝐻

= √2𝜅�푖𝑓,
𝑚]𝑖
𝐻

= 𝑚�푙𝑖
𝐻

(1 − V28𝑓2
) ,

(5)

where 𝜅�푖 are the diagonalized Yukawa couplings.
In the top quark sector, two singlet fields𝑇�퐿1

and𝑇�퐿2
(and

their right-handed counterparts) are introduced to cancel the
large radiative correction to the Higgs mass induced by the
top quark. Both fields are embedded together with the 𝑞1 and𝑞2 doublets into the 𝑆𝑈(5) multiplets: Ψ1,�푡 = (𝑞1, 𝑇�퐿1

, 02)�푇
and Ψ2,�푡 = (02, 𝑇�퐿2

, 𝑞2)�푇. The 𝑇-even combination of 𝑞�푖 is
the SM fermion doublet and the other 𝑇-odd combination
is its 𝑇-parity partner. Then, the 𝑇-parity invariant Yukawa
Lagrangian for the top sector can be written down as follows:

L�푡

= −𝜆1𝑓2√2𝜖�푖�푗�푘𝜖�푥�푦 [(Ψ1,�푡)�푖 Σ�푗�푥Σ�푘�푦 − (Ψ2,�푡Σ0)�푖 Σ�耠
�푗�푥Σ�耠

�푘�푦] 𝑡�耠�푅
− 𝜆2𝑓 (𝑇�퐿1

𝑇�푅1
+ 𝑇�퐿2

𝑇�푅2
) + h.c.,

(6)

where 𝜖�푖�푗�푘 and 𝜖�푥�푦 are the antisymmetric tensors with 𝑖, 𝑗, 𝑘 =1, 2, 3 and 𝑥, 𝑦 = 4, 5, Σ�耠 = ⟨Σ⟩ΩΣ†Ω⟨Σ⟩ is the image
of Σ under 𝑇-parity, and 𝜆1 and 𝜆2 are two dimensionless
top quark Yukawa couplings. Under 𝑇-parity, these fields
transform as 𝑇�퐿1

↔ −𝑇�퐿2
, 𝑇�푅1

↔ −𝑇�푅2
, and 𝑡�耠�푅 → 𝑡�耠�푅. The

above Lagrangian contains the following mass terms:

L�푡 ⊃ −𝜆1𝑓( 𝑠Σ√2𝑡�퐿+𝑡�耠�푅 + 1 + 𝑐Σ2 𝑇�耠

�퐿+
𝑡�耠�푅)

− 𝜆2𝑓(𝑇�耠

�퐿+
𝑇�耠

�푅+
+ 𝑇�耠

�퐿−
𝑇�耠

�푅−
) + h.c., (7)

where 𝑐Σ = cos(√2ℎ/𝑓) and 𝑠Σ = sin(√2ℎ/𝑓). The 𝑇-parity
eigenstates have been defined as 𝑡�퐿+ = (𝑡�퐿1 − 𝑡�푅1)/√2, 𝑇�耠

�퐿±
=(𝑇�퐿1

∓ 𝑇�퐿2
)/√2, and 𝑇�耠

�푅±
= (𝑇�푅1

∓ 𝑇�푅2
)/√2. Note that 𝑇-odd

Dirac fermion 𝑇− ≡ (𝑇�耠
�퐿−
, 𝑇�耠

�푅−
) does not have the tree-level



Advances in High Energy Physics 3

Higgs boson interaction, and thus it does not contribute to
the Higgs mass at one-loop level.

The two 𝑇-even eigenstates (𝑡�퐿+ , 𝑡�耠�푅) and (𝑇�耠
�퐿+
, 𝑇�耠

�푅+
) mix

with each other so that the mass eigenstates can be defined as𝑡�퐿 = cos𝛽𝑡�퐿+ − sin𝛽𝑇�耠
�퐿+
,

𝑇�퐿+
= sin𝛽𝑡�퐿+ + cos𝛽𝑇�耠

�퐿+
,

𝑡�푅 = cos𝛼𝑡�耠�푅 − sin𝛼𝑇�耠
�푅+
,

𝑇�푅+
= sin𝛼𝑡�耠�푅 + cos𝛼𝑇�耠

�푅+
,

(8)

where the mixing angles 𝛼 and 𝛽 can be defined by the
dimensionless ratio 𝑅 = 𝜆1/𝜆2 as

sin𝛼 = 𝑅√1 + 𝑅2
,

sin𝛽 = 𝑅21 + 𝑅2

V𝑓.
(9)

The 𝑡 ≡ (𝑡�퐿, 𝑡�푅) quark is identified with the SM top quark,
and 𝑇+ ≡ (𝑇�퐿+

, 𝑇�푅+
) is its 𝑇-even heavy partner, which is

responsible for the cancellation of the quadratic divergence
to the Higgs mass induced by the top quark loop.

The Yukawa term generates the masses of the top quark
and its partners, which are given at O(V2/𝑓2) by

𝑚�푡 = 𝜆2V𝑅√1 + 𝑅2
[1 + V2𝑓2

(−13 + 12 𝑅2

(1 + 𝑅2)2)] ,
𝑚�푇+

= 𝑓
V
𝑚�푡 (1 + 𝑅2)𝑅 [1 + V2𝑓2

(13 − 𝑅2

(1 + 𝑅2)2)] ,
𝑚�푇−

= 𝑓
V
𝑚�푡
√1 + 𝑅2𝑅 [1 + V2𝑓2

(13 − 12 𝑅2

(1 + 𝑅2)2)] .
(10)

Since the 𝑇+ mass is always larger than the 𝑇-odd top partner𝑇− mass, the 𝑇+ can decay into 𝐴�퐻𝑇− in addition to the
conventional decay modes (𝑊𝑏, 𝑡𝑍, 𝑡𝐻).

The 𝑇-invariant Lagrangians of the Yukawa interactions
of the down-type quarks and charged leptons can be con-
structed by two possible ways, which are denoted as Case A
andCase B, respectively [50]. In the two cases, the corrections
to the Higgs couplings with the down-type quarks and
charged leptons with respect to their SM values are given at
order O(V4SM/𝑓4) by (𝑑 ≡ 𝑑, 𝑠, 𝑏, ℓ±�푖 )𝑔ℎ�푑�푑𝑔SM

ℎ�푑�푑

= 1 − 14 V2SM𝑓2
+ 732 V4SM𝑓4

Case A,
𝑔ℎ�푑�푑𝑔SM

ℎ�푑�푑

= 1 − 54 V2SM𝑓2
− 1732 V4SM𝑓4

Case B. (11)

3. Top Partner Production in 𝑒+𝑒− Collision

In the LHT model, the Feynman diagrams of top partner
production are shown in Figure 1, which proceeds through

the 𝑠-channel 𝛾 and 𝑍 exchange diagrams. These processes
include 𝑇-even top partner pair production 𝑒+𝑒− → 𝑇+𝑇+,𝑇-odd top partner pair production 𝑒+𝑒− → 𝑇−𝑇−, and a𝑇-even top partner associating with a top quark production𝑒+𝑒− → 𝑡𝑇+.

The Feynman diagrams of the Higgs and top partner
associated production are shown in Figure 2, which has
additional diagrams mediated by the 𝑇-even top partner 𝑇+

compared to the process 𝑒+𝑒− → 𝑡𝑡𝐻 in the SM. These
processes include Higgs associating with 𝑇-even top partner
pair production 𝑒+𝑒− → 𝑇+𝑇+𝐻, Higgs associating with𝑇-odd top partner pair production 𝑒+𝑒− → 𝑇−𝑇−𝐻, and
Higgs associating with a top quark and a 𝑇-even top partner
production 𝑒+𝑒− → 𝑡𝑇+𝐻.

Before calculating the top partner production cross sec-
tion, we firstly consider the constraints on the top partner
mass from current measurements. We update the constraint
on the LHT parameter in our previous works [51, 52], where
the global fit of the latest Higgs data, EWPOs, and 𝑅�푏

measurements is performed. Thereinto, the constraints from
the direct searches for Higgs data at Tevatron [53, 54] and
LHC [55, 56] are obtained by the package HiggsSignals-1.4.0
[57, 58], which is linked to the HiggsBounds-4.2.1 [59–63]
library. We compute the 𝜒2 values by the method introduced
in [64–66] and obtained the constraint on the LHTparameter
space. This constraint will lead to the exclusion limits on the
top partner masses, which is displayed on the 𝑅 ∼ 𝑓 plane
for Case A and Case B in Figure 3 at 2𝜎 confidence level with𝛿𝜒2 = 8.02. We can see that the combined constraints can,
respectively, exclude𝑚�푇+

and𝑚�푇−
up to𝑚�푇+

> 920 (750) GeV Case A (B),
𝑚�푇−

> 590 (500) GeV Case A (B). (12)

One can notice that Case B predicts a stronger suppression
for the down-type fermion couplings to the Higgs boson,
such as 𝐻𝑏𝑏, which helps to enhance the branching ratios
of 𝐻 → 𝛾𝛾,𝑊𝑊∗, 𝑍𝑍∗, 𝜏𝜏, so that Case B is favored by the
experimental data [67].

In the left frame of Figure 4, we show the top partner
production cross sections as a function of c.m. energy√𝑠 for𝑓 = 700GeV and 𝑅 = 1 (corresponding to 𝑚�푇+

= 986GeV
and 𝑚�푇−

= 708GeV) in 𝑒+𝑒− collision with unpolarized
beams. The production cross sections are calculated at tree-
level by using CalcHEP 3.6.25 [68, 69], where the SM
parameters are taken as follows [70]:

sin2𝜃�푊 = 0.231,
𝛼�푒 = 1128 ,𝑀�푍 = 91.1876GeV,𝑚�푡 = 173.5GeV,𝑚�퐻 = 125GeV.

(13)

We can see that the top partner pair production cross
sections increase abruptly at threshold and reach amaximum
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Figure 1: Feynman diagrams of the top partner production at 𝑒+𝑒− collider.
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Figure 2: Feynman diagrams of the Higgs and top partner associated production at 𝑒+𝑒− collider.

roughly 200GeV above threshold.Then, the production cross
sections fall roughly with the c.m. energy √𝑠 increase due
to the 𝑠-channel suppression. The 𝑇−𝑇− production usually
has a larger cross section than 𝑇+𝑇+ production since the 𝑇−

mass is always lighter than the 𝑇+ mass in the LHT model.
The production cross sections of the associated production
of Higgs and top partner have the similar behavior as the
top partner pair production, but usually have smaller cross
sections due to smaller phase space. The production cross

section of the process 𝑒+𝑒− → 𝑡𝑇+𝐻 reaches its maximum
when the resonance decay of the top partner 𝑇+ emerges.

Considering the polarization of the initial electron and
positron beams, the cross section at 𝑒+𝑒− collider can be
expressed as [71]

𝜎 = 14 [(1 + 𝑝�푒) (1 + 𝑝�푒) 𝜎RR + (1 − 𝑝�푒) (1 − 𝑝�푒) 𝜎LL
+ (1 + 𝑝�푒) (1 − 𝑝�푒) 𝜎RL + (1 − 𝑝�푒) (1 + 𝑝�푒) 𝜎LR] , (14)
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where 𝜎RL is the cross section for completely right-handed
polarized 𝑒− beam (𝑝�푒 = +1) and completely left-handed
polarized 𝑒+ beam (𝑝�푒 = −1), and other cross sections 𝜎RR,𝜎LL, and𝜎LR are defined analogously.We show the top partner
production cross sections in polarized beam with 𝑝�푒 = 0.8
and 𝑝�푒 = −0.6 in the right frame of Figure 4 and find that
the relevant top partner production cross sections can be
enhanced by the polarized beams.

4. Signal and Discovery Potentiality

Take into account the relatively large production cross
section; we will perform the Monte Carlo simulation and
explore the sensitivity of 𝑇-odd top partner production in
the following section. The 𝑇-odd top partner 𝑇− has a simple
decay pattern, which decays almost 100% into the𝐴�퐻𝑡mode.

We will explore the sensitivity of 𝑇-odd top partner pair
production with unpolarized beam through the channel

𝑒+𝑒− → 𝑇−𝑇− → 𝑡 (→ 𝑙+]�푙𝑏) 𝑡 (→ 𝑙−]�푙𝑏)𝐴�퐻𝐴�퐻→ 𝑙+𝑙− + 2𝑏 +��𝐸�푇

(15)

which implies that the events contain one pair of oppo-
sitely charged leptons 𝑙+𝑙− (𝑙 = 𝑒, 𝜇) with high transverse
momentum, two high transversemomentum 𝑏-jets, and large
missing transverse energy��𝐸�푇.

The dominant background arises from 𝑒+𝑒− → 𝑡𝑡 in
the SM. Besides, the most relevant backgrounds come from𝑡𝑡𝑍(→ ]]), 𝑊+(→ 𝑙+]�푙)𝑊−(→ 𝑙−]�푙)𝑍(→ 𝑏𝑏), and 𝑊+(→𝑙+]�푙)𝑊−(→ 𝑙−]�푙)𝐻(→ 𝑏𝑏). Here, the backgrounds 𝑍𝑍𝑍,𝑍𝑍𝐻, and 𝑍𝐻𝐻 are neglected due to their small cross
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Table 1: Cut flow of the cross sections for the signal (𝑆) and the backgrounds (𝐵) for the two signal benchmark points (P1: 𝑓 = 700GeV,𝑅 = 1) and (P2: 𝑓 = 700GeV, 𝑅 = 1.5) at√𝑠 = 1.5TeV.
Cuts 𝑆 (×10−3 fb) 𝐵 (×10−3 fb) 𝑆/𝐵𝑇−𝑇− (P1) 𝑇−𝑇− (P2) 𝑡𝑡 𝑡𝑡𝑍 𝑊𝑊𝑍 𝑊𝑊𝐻 P1 P2
No cut 184 119 3485 32 367 100 0.046 0.03
Cut-1 139.8 94.0 2011 20.8 283 104 0.058 0.039
Cut-2 81.1 54.9 929.6 9.6 59.8 41.1 0.078 0.053
Cut-3 62.4 45.6 334.7 5.6 15.6 11.5 0.17 0.12
Cut-4 48.7 36.5 120.1 3.4 3.0 2.2 0.38 0.28
Cut-5 44.8 33.6 34.8 2.4 2.6 1.5 1.08 0.81

sections. We turn off the parton-level cuts and generate the
signal and background events by using MadGraph 5 [72],
where the UFO [73] format of the LHT model has been
obtained by FeynRules [74] in [25]. We use MadGraph 5 to
generate the process by issuing the following commands:

generate e- e+ > thodd thodd∼, (thodd > t ah, t > l+
vl b), (thodd∼ > t∼ ah, t∼ > l- vl∼ b∼) [for signal];
generate e- e+ > t t∼, t > l+ vl b, t∼ > l- vl∼ b∼ [for 𝑡𝑡];
generate e- e+ > t t∼ z, t > l+ vl b, t∼ > l- vl∼ b∼, z >
vl vl∼ [for 𝑡𝑡𝑍];
generate e- e+ > w- w+ z, w- > l- vl∼, w+ > l+ vl, z >
b b∼ [for𝑊𝑊𝑍];
generate e- e+ > w- w+ h, w- > l- vl∼, w+ > l+ vl, h >
b b∼ [for𝑊𝑊𝐻].

The parton shower and hadronization are performed
with PYTHIA [75], and the fast detector simulations are
performed with Delphes [76]. We use the default card (i.e.,
delphes card ILD) of ILC in Delphes 3.3.3. The 𝑏-jet tag-
ging efficiency is taken as default value in delphes, where it
is parameterized as a function of the transverse momentum
and rapidity of the jets. When generating the parton-level
events, we assume 𝜇�푅 = 𝜇�퐹 to be the default event-by-
event value. FastJet [77] is used to define jets via the anti-𝑘�푡 algorithm [78] with distance parameter Δ𝑅 = 0.4. We
use MadAnalysis 5 [79] for analysis, where the (mis)tagging
efficiencies and fake rates are assumed to be their default
values.

Take into consideration the constraints on the top partner
mass from current measurements; we take 𝑓 = 700GeV,𝑅 = 1 (corresponding to 𝑚�푇−

= 708GeV) and 𝑓 =700GeV, 𝑅 = 1.5 (corresponding to 𝑚�푇−
= 603GeV)

for two benchmark points in the following calculations. In
order to reduce the background contribution and enhance
the signal contribution, some cuts of kinematic distributions
are needed. In Figure 5, we show the normalized distributions
of transverse momentum 𝑝�푙1

�푇 , the pseudorapidity 𝜂�푙1 , 𝜂�푏1 , the
separation Δ𝑅(𝑙1, 𝑏1) between 𝑙1 and 𝑏1, the energy 𝐸(𝑏1𝑙1)(=𝐸(𝑏1) + 𝐸(𝑙1)), and the total transverse energy𝐻�푇.

Since the dominant background arises from 𝑡𝑡, the cuts
that are chosen to suppress the backgrounds should be
centered around the 𝑡𝑡 background. Firstly, we can apply
the cuts of general kinematic distributions, such as 𝑝�푙1

�푇 , 𝜂�푙1 ,
and 𝜂�푏1 , to suppress the backgrounds. For the Δ𝑅(𝑙1, 𝑏1)

distribution, there are two peaks in the 𝑡𝑡, 𝑡𝑡𝑍 backgrounds
and one peak in the𝑊𝑊𝑍,𝑊𝑊𝐻 backgrounds; we can use
the deviation between the signal peak and background peak
to suppress the backgrounds. Then, in view of the energy𝐸(𝑏1𝑙1)distribution,we can also use the deviation between the
signal peak and background peak to reduce the backgrounds.
After that, the𝐻�푇 distribution of the signal can be utilized to
remove the 𝑡𝑡 background effectively. According to the above
analysis, events are selected to satisfy the following cuts:

Cut-1: 𝑝�푇 (𝑙1) > 50GeV;
Cut-2: 𝜂 (𝑙1) < 1;𝜂 (𝑏1) < 1;

Cut-3: Δ𝑅 (𝑙1, 𝑏1) < 2.5;
Cut-4: 𝐸 (𝑏1𝑙1) < 400GeV;

Cut-5: 𝐻�푇 < 400GeV;

(16)

For easy reading, we summarize the cut-flow cross sec-
tions of the signal and backgrounds for c.m. energy √𝑠 =
1.5 TeV in Table 1. To estimate the observability quantitatively,
the Statistical Significance (SS) is calculated after final cut by
using Poisson formula [80]

SS = √2𝐿 [(𝑆 + 𝐵) ln(1 + 𝑆𝐵) − 𝑆], (17)

where 𝑆 and 𝐵 are the signal and background cross sections
and 𝐿 is the integrated luminosity. The results for the SS
values depending on the integrated luminosity for √𝑠 =
1.5 TeV are shown in Figure 6. It is clear from Figure 6
that we can obtain the 2𝜎 significance at a luminosity of35 (45)fb−1, 3𝜎 significance at a luminosity of 70 (100)fb−1,
and 5𝜎 significance at a luminosity of 200 (280)fb−1 for 𝑚�푇−
= 603 (708)GeV.
5. Conclusions

In this paper, we discuss the top partner production at
future 𝑒+𝑒− collider in the LHT model. We first consider
the constraints on the top partner masses from the current
measurements and then calculate the cross sections of various
top partner production processes, which include 𝑒+𝑒− →
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Figure 5: Normalized distributions of 𝜂�푙1
, 𝜂�푏1
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, 𝐸(𝑏1𝑙1), and𝐻�푇 in the signal and backgrounds for the two signal benchmark points
at√𝑠 = 1.5TeV.
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Figure 6: The statistical significance depending on integrated
luminosity for√𝑠 = 1.5 TeV.

𝑇+𝑇+, 𝑒+𝑒− → 𝑇−𝑇−, 𝑒+𝑒− → 𝑡𝑇+ and 𝑒+𝑒− → 𝑇+𝑇+𝐻,𝑒+𝑒− → 𝑇−𝑇−𝐻, and 𝑒+𝑒− → 𝑡𝑇+𝐻. Next, we investigate
the observability of the 𝑇-odd top partner pair production
through the process 𝑒+𝑒− → 𝑇−𝑇− → 𝑡𝑡𝐴�퐻𝐴�퐻 with the
dilepton decay of the top quark pair for √𝑠 = 1.5 TeV. We
display the signal significance depending on the integrated
luminosity andfind that the 2𝜎 significance can be obtained at
a luminosity of 70 (100)fb−1 for𝑚�푇−

= 603 (708)GeV, which
is promising at the future high energy 𝑒+𝑒− collider with high
luminosity.
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