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l .  I . ~ t r ~ t ~ . o n  

Classical gauge theories still play their role as conceptual 
building blocks of elementary particle theories. Using the 
fifferential geometric formulation, the geometric interpretation 
and topological dependence of these basic concepts become most 
apparent. The quantized versions of these theories essentially 
follow two different approaches: a.) that of Lagrangian quantum 
field theory based on perturbation theory and developped with the 
help of physically motivated model-Lagrangians, b.) that of 
axiomatic indefinite-metric operator theories or axiomatic C*- 
algebra theories based on physically motivated first principles 
(generalized Wightman axioms). In both domains Quantum 
Electrodynamics is the most elaborated and best established theory 
of fundamental interactions. 

The QCC approach [1],[2], where QCC stands for Quantlzation of 
Connection and Curvature, takes neither Lagrangian densities nor 
Wightman axioms but the classical geometry as a starting-point. 
~ts intention is to give - in a mathematical rigorous way - a 
~Omplete chain of procedures leading from classical geometry (i.e. 
the 'bundle picture' of gauge theories) to the basic structures of 
Indefinite-metric operator gauge field theories. This is achieved 
by using two intermediate formalisms: That of 'generalized 
~eometry' and the *-algebra formalism of quantum field theory 
[4],[5]. The term 'generalized geometry' refers to the fact, that 
in the classical theory differential forms are replaced by deRham 
currents [6] and differential operators by generalized operators 
~ending deRham currents (and differential forms) to deRham 
currents. 

The motivation for introducing 'generalized fields' in the 
above sense is that the equations these fields satisfy should 
~ePresent the behavior of the components of the N-point functions 
of a corresponding algebraic gauge quantum field theory. This is 
also the content of a quantization rule, which determines the link 
b~tween the generalized geometry and the *-algebra formalism. Then 
a Gelfand-Naimark-Segal (GNS) construction [4b],[5a] is applied to 
~rive an indefinite-metric operator theory. 
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We will first give a short introduction to the main ideas of 
the QCC-approach; details can be found in [1] and a more detailed 
introduction also in [2]. Then some results [3] obtained from the 
QCC-procedure when applied to a U(1)-gauge theory are summarized, 
answering the questions: a.) Is the derived structure of QED 
comparable to that of other approaches? b.) Does the QCC-procedure 
provide more information?. 

2, ~_9,~C__q.~q..a..c~ 

For reasons of technical and formal simplicity the QCC- 
approach uses global formulations as long as possible; i.e. it 
works on the total space of a convenient principal bundle avoiding 
references to local sections, if possible. In this spirit the 
classical gauge theories are given in terms of a principal bundle 
P(M,G) over a space-time manifold M with metric g, where G denotes 
a suitable gauge group (in general a compact connected semi-simple 
Lie group) with Lie algebra G. The classical fields are then 
represented by G-equivariant differential forms on the total space 
P with values in a vector space corresponding to a representation 
of the gauge group G (e.g. the Lie algebra G corresponding to the 
adjoint representation). To be more specific, a connection form [ 
represents a gauge potential, its curvature Q the field strength; 
external currents J are given by G-equivariant G-valued one formS, 
etc. Recall that a connection form r together with the metric g o~ 
the base manifold M defines a unique metric g* on P making P into 
a Kaluza-Klein space (P,g^). Field equations are given in terms of 
canonical operators. We will focus on the field equations for the 
gauge fields, which are given by the Bianchi identity ~Q = 0, and 
by 

(2.1) 9 z Q = J , 

where ~ 9 denote the covariant derivative and the covariant 
coderivative, respectively. Equation (2.1) will be interpreted as 
the defining equation for J in this context. 

Staying within the global approach, we have to implement g auge 
transformations in an active way; i.e. either by vertical bundle 
automorphisms or, infinitesimally, by G-equivariant G-valued 
functions f on P. Then r, Q and J transform according to 

(2 .2 )  r ---> r + Vf, Q ---> Q + [Q,f], J ---> J + [J,f]. 

The first step in the quantization procedure reformulates the 
classical theory in terms of deRham currents [6]. DeRham currentB 
may be viewed as differential forms, the coefficents of which are 
distributions (test functions). To be able to formulate the theory 
also locally; i.e. by objects on the base manifold M, we are 
forced to define "smearing" of deRham currents with respect to the 
Kaluza-Klein metric g* on P. So we understand p-deRham currents a~ 
linear functionals over the space DP (P,G) of G-valued p-forms on P 
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With compact support, making use of the Hodge star isomorphism 
*: D p (P,G) ---> D .-p (P,G), n-dim P; i.e. formally we have 

(2.3) S(a) = je sA ,u , s 6 (Dp (P,G))' , a~DP (P,G) 

A generalized connection form T f (D I (P,G)) ' on P can be shown 
to decompose into a given classical connection form ? and a basic 
(i.e. horizontal and G-equivariant) l-deRham current E6(D I (P,G))': 

(~.4) T = F + E. 

The field equation for E corresponding to the classical equation 
(2.1) e.g. takes the form [2] 

(2.5) ~ E  + ~[E,E] + ,-I [E,*E] + ,-I [E,*Q] ~ J 

Where the external current J6 (Dt.(P,G)) ' now is a basic l-deRham 
Current. This equation corresponds to a "quantized" potential in a 
classical background field. Observe, that the classical background 
field (i.e. the classical connection form r) is here introduced 
via the metric g" on P: Fixing the metric g^ means fixing the 
classical connection, and it is this correspondence which, in the 
light of the QCC-approach, forces one to discuss the introduction 
of gauge fixing terms, ghost fields, etc. by determining the 
background field physically (i.e. in general locally). 

Classical gauge transformations are implemented in the 
generalized formalism in a straightforward way. A generalized 
Connection form T and its components r and E transform under these 
BO-called 'c-transformations' according to 

(2.6) T ---> T + ~f, r ---> r + ~f, E ---> E + [E,f], 

Where ~ denotes the generalized covariant derivative, and f in 
general will be a G-valued distribution on P. of course after 
having fixed the metric g^ (i.e. the connection form r) on P it 
does not make sense to gauge transform r anymore. We therefore 
replace the c-transformations by q-transformations, which leave 
the classical connection r invariant. For T, F and E the q- 
transformations are given by 

(2.7) T ---> T + ~f, r ---> r, E ---> E + ~f. 

We Observe that the field E now transforms like a gauge potential 
although it is a basic 1-deRham current, and we shall refer to it 
as the generalized potential. 

The space DIM (P,G) of basic 1-test forms contains a subspace 
blt,v (P, G) restricted to which two gauge equivalent generalized 
DOtentials E, E' coincide. The subspace DIt,, (P,G} is given by the 
~ernel of the generalized covariant coderivative ~ ; i.e. by test 
~rms ue DI. (P,G) satisfying [2] 

(~.8) ~a _ ,-IEE,,a] = 0 . 
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It is exactly this subspace which in the QCC-approach generates 
the physical states of the constructed indefinite metric operator 
theory. Of course the mathematical difficulties to determine this 
kernel in the general case should be mentioned here. 

We now construct a gauge quantum field themr~ in terms of the 
*-algebra formulation [4],[5]. But instead of starting with an 
abstract *-algebra, we will work with concrete algebras BP, called 
test form algebras, which are defined as topological direct sums 
of completed r-fold tensor products of suitable chosen test form 
spaces DP (P,G); i.e. B p = ¢ + Zr ~rDP (P,G). Field functionals 
C 6 (Bp)' are then defined with respect to a 'canonical' 
quantization rule, which states e.g. for a potential functional 
CZe(B*) ' that C E is a real, normed, linear functional (i.e. not a 
necessarily positive state) over the test form algebra B ~ , the r- 
point functions of which behave like the generalized potential 
E G(D* (P,G))' in each variable separately. 

Relations between different fields defined by classical 
linear operations a (e.g. d, 5, V, ~, or gauge transformations) 
are now converted to canonical *-algebra homomorphisms e~ relating 
subalgebras of the corresponding test form algebras. To give an 

Example: The relation between generalized fields S, E (Dp-* (P,G))' 
and $2 ~ (Dp (P,G))' is given by dS1 w Sz ; i.e. dS, (u) = S, (Sa) = 
$2 (~), with s&D p (P,G). Then the corresponding functionals 
CI~ (Bp-I). and Cz e (B p)' should satisfy the equation OdC, = C2 ; 
i.e. ~aC~ (k) = C, (®,k) = C~(k), keBP, where ®a : B p ---> BP-~6 
denotes the induced *-algebra homomorphism onto its image Bp-*8 in 
BP- ' 

Of special interest is the subalgebra B*i,v of B* constructed 
from the test form space D*i.v (P,G). Potential functionals are 
defined to be gauge equivalent iff they are identical when 
restricted to B~1.v. Motivated by the fact, that all physical 
informations are gauge independent, we postulate: Potential 
functionals C ~ are positive when restricted to B'tar. 

Having established the general structur of a gauge quantum 
field theory in its *-algebra formulation, where of course 
physical properties like Poincar~ invariance, the spectral 
condition, etc. may still have to be implemented, we derive an 
indefinite metric operator theory from it by applying the 
Gelfand-Naimark-Segal (GNS) construction [4b],[5a]: every 
functional C e (Bp) ' generates a strong cyclic representation D ¢ of 
the corresponding test form algebra BP in a topological vector 
space H c with cyclic vector ~c and non-degenerate Hermitian form 
<.,.>c. 

Relations between generalized fields, first encoded into *- 
algebra homomorphisms, now find their analogue in isometric 
intertwining maps between subspaces of the corresponding 
representation spaces. For instance starting with the situation of 
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the example given above we obtain the following diagram: 

OB 
BP - - - >  B P - ~ e C  B p - ~  

nc' L ~ rl c '  

H e~' < - - -  H C ~  C H c~ 
We 

Where n c* and ~cz are canonical projections and W~ is a surjective 
isometric intertwining map sending the cyclic vector ~cx in H c* 
onto the cyclic vector ®cz in H c~ . The map Wa is an isomorphism 
iff <.,.>cz is positive-definite on HC~s. 

If {~,DE,~E,(.,.> ~ } denotes the operator theory constructed 
from a potential functional C E ~ (B*)', then the physical subspace 
~phvs in H ~ is induced by the invariance algebra B11nv : 

Hepbys .= (# ~HE / #=D~ (k)~ E , keBXlnv } 

The hermitian form <.,.>~ in general is positive semi-definite on 
~phy. • It is positive definite on the subspace H~, :- HE phv./HE0 
in HE phys, where H~0 denotes the space of zero norm states. 

Instead of going into the intricacies of the general formalism 
(see [2]) we concentrate on its results [3] for an U(1)-gauge 
theory. 

Abelian gauge theories have some very special features with 
respect to the QCC-approach. We first observe that the classical 
background field decouples completely from the "first quantized" 
fields. Furthermore, not only the field strength and the external 
Currents but also the quantized potentials E are invariant under 
Classical gauge transformations; but the q-transformations (2.7) 
~eplacing them look the same; i.e. E ---> E + df . Since E is also 
horizontal, we may formulate the theory as well on the space-tlme 
~anifold M. 

In the following we will as usual denote the (generalized) 
DOtential by k ~ (D L (M))', the field strength by F 6 (D ~ (M))'and the 
e~ternal current by J6 (D* (M))'. For these deRham currents on M 
the basic equations reduce to 

(3.1) F = dA , 5F = J , 

from which the Bianchi identity dF=0 and the conservation of the 
CUrrent 5j~0 follows trivially. F and J are invariant under q- 
transformations and A transforms like A ---> A + dr, f e (D O (M))'. 

In the abelian case the subspace DIL,v (M) of DI (M) is given by 
the kernel of the coderivative 5; i.e. Dilnv(M) = ker 5. Choosing 
Minkowski space as space-time manifold M, we have ker 5 = Im 5; 
i,e. D~inv (M) = D1a (M). 
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In the following let B~ denote the p-test form algebra on M; 
i.e. B~ =~ + ~ D ~  (M). The potential, field strength and current 
functionals are given by states C a 8 (B*) ' C ~ ~ (BZ) ', and 
C • 6 (B*) ', respectively. According to (3.1) they satisfy 

(3.2) ® d e *  = C F , OaC F = C ~ 

Furthermore the Bianchi identity 8dC F = 0 states that C F vanishes 
on the subalgebra BZ, of B 2 , and the current conservation ®aC J = 0 
states, that C J vanishes on the subalgebra B*d of B*. On Minkowski 
space M the subalgebra B~lav of B l , constructed from the test form 
space D'lay (M), can be identified with the subalgebra Bls of B ~ • 
With respect to the quantization rule we postulate: C F and C J are 
positive states, C A is positive when restricted to the subalgebra 
B1,av. Such a triple (C*,CF,C J) of functionals, satisfying (3.2) 
is called a field configuration. 

Two potential functionals C a , C ̂ ' are defined to be gauge 
equivalent iff Ca(k) = Ca' (k), k £ B*lav. Induced by the fact that 
im 5c ker ~ two gauge equivalent functionals C A , C a' satisfy 
8dC A = 8dC*' = C F . Furthermore we have the 

~emm~i, If C a, C a' are gauge equivalent, then there exists a real, 
normed functional C 7 e (B*)', vanishing on B'lay, such that 

(3.3) C ̂ ' = C a *" C T 

Here *" denotes the s-product in the sense of [Sb]. 

The GNS-construction assigns to a field configuration 
(C*,C F ,C ~) three different operator theories |H ̂ ,D*,®A,<.,.>^} , 
{H~ ,D r ,OF ,<.,.>F } and [H J ,D ~ ,¢~ ,<.,.>J } • Again the Hermitian form 

(.,.)* is positive seml-definite on the physical subspace HAphv, 
of H* defined by HAphys : =  {~ H ̂  / ~=Da(k)® *, k~B~Inv }, and it 
is positive definite on HA+. The Hermitian forms (.,.)r and <.,.>~ 
are positive definite on H F and H J , respectively. The relations 
between the three representation spaces are summarized in the two 
diagrams 

e a  c F , ,  c # : ed C ̂  = C F : 

0,4 
BI .... > B2d 

H J < .... H r d 

Wd 

~8 
C____> B z .... > B 1 8 

~_..) H F ( .... HApbys 

I t  A + 

The isometric intertwining map Wd is an isomorphism, the map WB il 
not an isomorphism, but it induces an isometric isomorphism 
between H ~ and H*+. 
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We observe that in general for two gauge equivalent 
functionals C A , CA' neither their state spaces H*, H*' nor their 
physical subspaces Haphys, HA'pUv. are isomorphic, but their 
positive state spaces HA+ and H*°. are. Since in general q-gauge 
transformations are not given by *-algebra homomorphisms, they can 
not be represented by operator equations on the spaces H a or H A' 
But using the lemma above; i.e. (3.3), there is an operator 
representation on the space H := H A x H T given by D ̂ ' := D ̂ *" D T , 
as described in [4b], with ,s denoting the s-product. 

The basic structure of QED as deduced from the QCC-approach 
may be resumed in the following diagrams: 

H A <--~ H A+ 

H A' <--~ H A '+ 
H F <--~ H Fd (----- H a 

H F  ~ H A + ~ H A , + 

Q H J = H F d 

TO be able to compare the derived structure of QED with that 
of other approaches we shall choose a specific gauge: the Gupta- 
Bleuler gauge. For that we fix M to be Minkowski space-time. On 
the algebraic level of the derived field theory Poincar~ 
transformations are implemented by *-algebra homomorphisms 
0, : B p ---> B p , g E P, which are induced by the canonical action 
of the Poincar~ group P on differential forms on M. We define a 
functional C 6 (Bp)' to be Poincar~ invariant iff e.C = C, g~P. 

For physical reasons we will expect a potential functional 
Ca 6 (Bi) ' to be Poincar~ invariant only when restricted to the 
SUbalgebra BXluv. If a potential functional C* is Poincar@ 
Invariant on BXJuv then the isometric intertwining maps W0 induced 
by the *-algebra homomorphisms eg leave invariant the physical 
Subspace HAphvj ; i.e. W, HAphysC H*phy., g ~P. 

The subalgebra BLL C B I generated by the span of the test form 
S~aces Did (M) and Di6 (M) is called the Lorentz subalgebra. It has 
the property B~IuvC BxLC B x . A potential functional CA 6 (BX) ° is 
Called a Gupta-Bleuler gauge iff 

i) eeC* = 0 , 
ii) C* is positive on Bit, 
iii) <.,.>* is positive definite on the subspace H~ c H ̂ , 

Where d = d5 + 5d denotes the Laplace-deRham operator. A Gupta- 
Bleuler gauge C* is consistent with the Poincar~ invariance of C A 
on BXl.v. Furthermore for a Gupta-Bleuler gauge C A the equation 

A = j holds as an operator equation on H~ C H*. 
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It then can be shown [3] that an operator theory of the free 
field as given explicitely in Strocchi, Wightman [7c] is fully 
compatible with the corresponding operator theory derived by the 
QCC-approach. 

4. Final remarks 

First recall that the QCC-approach does work for every metric 
on the base (space-time} manifold M; i.e. not only for flat 
metrics. Furthermore it is highly sensitive for the topology of 
the space-time manifold M. The structure of QED given above may 
serve as an example. 

a.) If M is topological non-trivial than ker 5 ~ im 5. The 
subspace D*i,v (M) = ker 5 CD1 (M), relevant for the definition of 
physical states in the operator formalism, and the subspace DI~ {M) 
- im 5 CD~ (M) relevant for the relation between potential and 
field strength satisfy Dtl,v (M) D Dis (M}. This induces a 
segmentation of the physical subspace H*phy. into different 
'topological charged' sectors, classified by the cohomology of M. 

b.) If M is a compact Riemannian manifold, then the techni~uee 
of Hodge theory, Fredholm alternative, etc. can be applied so that 
the substructure of a state space H* can be given in more explicit 
terms. 

c.) In the more physical case of a pseudo-Riemannian manifold 
M one may introduce a space-time splitting structure on M. If M 
then is isomorphic e.g. to R x S ~ one can apply the techniques b.) 
to the space-like parts of the theory. 
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