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We consider emission of a photon by an electron in the field of a strong
laser wave and production of e+e− pair by a high-energy photon in the
field of a strong laser wave. A probability of these processes for circularly
or linearly polarized laser photons and for arbitrary polarization of all other
particles is calculated. We obtain the complete set of functions which de-
scribes such a probability in a compact invariant form. Besides, we discuss
the polarization effects in the kinematics relevant to the problem of e → γ
conversion at γγ and γe colliders.

PACS numbers: 12.20.–m, 42.50.Ct

1. Introduction

The analysis of polarization effects in the Compton scattering

e(p) + γ(k) → e(p′) + γ(k′) (1)

is now included in text-books (see, for example, [1], §87). Nevertheless,
the complete results for the cross sections with both initial and final parti-
cles polarized has been obtained only recently (see [2–4] and the literature
therein). One interesting application of the process (1) is the collision of
an ultra-relativistic electron with a beam of polarized laser photons. In this
case the Compton effect is the basic process for obtaining of high-energy
photons for contemporary experiments in nuclear physics and for future γγ
and γe colliders [5]. The importance of the particle polarization is clearly
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seen from the fact that in comparison with the unpolarized case the number
of final photons with maximum energy is nearly doubled when the helicities
of the initial electron and photon are opposite [3].

With the growth of the laser field intensity, an electron starts to interact
coherently with n laser photons,

e(q) + n γL(k) → e(q′) + γ(k′) , (2)

thus the Compton scattering becomes non-linear.
Besides the non-linear Compton scattering, in the conversion region the

non-linear Breit–Wheeler process takes place:

γ(k1) + n γL(k2) → e+(q+) + e−(q−) . (3)

The non-linear Breit–Wheeler process is a crossing channel for the non-linear
Compton scattering. The main results for the process (3) can be obtained
by usual rules of the crossing relations from the corresponding results for
the non-linear Compton scattering. Therefore, we concentrate in this report
on the basic process — the non-linear Compton scattering.

The non-linear processes (2) and (3) were observed in the recent exper-
iment at SLAC [6]. The polarization properties of these processes are im-
portant for future γγ and γe colliders (see [7, 8] and the literature therein).
Such reactions must be taken into account in simulations of the processes
in a conversion region of these colliders. The method of calculation for such
cross sections was developed by Nikishov and Ritus [9]. It is based on the
exact solution of the Dirac equation in the field of the external electromag-
netic plane wave. Some particular polarization properties of these processes
were considered and have already been included in the existing simulation
codes (see references in [10] and [11]). Five (four) from sixteen (sixteen)
functions for the circularly (linearly) polarized laser photons were found out,
however not always in an exact form.

We obtained exact results for all 16 functions for the non-linear Compton
scattering in paper [10] and for the non-linear Breit–Wheeler processes in
paper [11]. We presented the complete description of both these processes
for the case of circularly or linearly polarized laser photons and arbitrary
polarization of all other particles. Besides, we derived (i) the approximate
formulae relevant for the problem of e → γ conversion; (ii) the polarization
of the final particles averaged over their azimuthal angles; (iii) the limiting
cases of the small and large energies of the final particles; (iv) some numerical
results obtained for the range of parameters close to those considered for the
TESLA project [12]. Here we present the short review of the results obtained
in [10] and [11]. Below we use the system of units in which c = 1, ~ = 1.
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2. Kinematics

Let us consider the interaction of an electron with a monochromatic
plane wave. The corresponding electric and magnetic fields are E and B,
a frequency is ω, and let F be the root-mean-squared field strength, F 2 =
〈B2〉 = 〈E2〉 and nL be the density of photons in the laser wave. The
parameter describing the intensity of the laser field (the parameter of non-
linearity) is defined as

ξ2 =

(

eF

mω

)2

=
4πα

m2 ω
nL , (4)

where e and m are the electron charge and the mass, α ≈ 1/137.
It is convenient to use the same invariant variables as for the linear

Compton scattering:

x =
2pk

m2
≈

4Eω

m2
, y =

kk′

pk
≈

ω′

E
≤ yn =

nx

1 + nx + ξ2
. (5)

The invariant description of the polarization properties of both the initial
and the final photons can be performed in the standard way (see [1], §87)
using notations ξj and ξ′j for the Stokes parameters of the initial and final
photons. For the initial and final electrons we use the invariant polarization
parameters ζj and ζ ′j, which are the projection of the electron-spin four-

vectors a and a′ on the convenient orts ej and e′j (for detail see [10]).
The standard notion of the cross section is not applicable for the reaction

(2) and usually its description is given in terms of the probability of the

process per second Ẇ (n). However, in the procedure of simulation in the
conversion region as well as for the simple comparison with the linear case,
it is useful to introduce the “effective cross section” defined as

dσ(n) =
dẆ (n)

j
, (6)

where j is the flux density of colliding particles. Contrary to the standard
cross section, this effective cross section does depend on the laser beam
intensity, i.e. on the parameter ξ2. The total effective cross section is defined
as the sum over harmonics, corresponding to the reaction (2) with a given
number n of the absorbed laser photons:

dσ =
∑

n

dσ(n) . (7)

The effective differential cross section can be presented in the following
invariant form:

dσ(ζ, ξ, ζ ′, ξ′) =
r2
e

4x

∑

n

F (n) dΓn , dΓn = dy dϕ , (8)
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where re = α/m, ϕ is the azimuthal angle of the final photon, and

F (n) = F
(n)
0 +

3
∑

j=1

(

F
(n)
j ξ′j + G

(n)
j ζ ′j

)

+
3

∑

i,j=1

H
(n)
ij ζ ′i ξ′j . (9)

The function F
(n)
0 describes the total cross section for a given harmonic n,

summed over spin states of the final particles:

σ(n)(ζ, ξ) =
r2
e

x

∫

F
(n)
0 dΓn . (10)

The terms F
(n)
j ξ′j and G

(n)
j ζ ′j in (9) describe the polarization of the final

photons and the final electrons, respectively. The last terms H
(n)
ij ζ ′i ξ′j stand

for the correlation of the final particles’ polarizations.

3. Some results

We have calculated the coefficients F
(n)
j , G

(n)
j and H

(n)
ij using the stan-

dard technique presented in [1], §101. The necessary traces have been found
using the package MATHEMATICA. As an example, we present here the
functions F0,1,2,3 for the circularly polarized laser photons. In the considered
case of the 100 % circularly polarized (Pc = ±1) laser beam, almost all de-
pendence on the non-linearity parameter ξ2 accumulates in three functions:

fn ≡ fn(zn) = J2
n−1(zn) + J2

n+1(zn) − 2J2
n(zn) ,

gn ≡ gn(zn) =
4n2J2

n(zn)

z2
n

,

hn ≡ hn(zn) = J2
n−1(zn) − J2

n+1(zn) , (11)

where Jn(z) is the Bessel function. The functions (11) depend on x, y and
ξ2 via the single argument

zn =
ξ

√

1 + ξ2
n sn , (12)

where

sn = 2
√

rn(1 − rn), cn = 1 − 2rn , rn =
y (1 + ξ2)

(1 − y)nx
. (13)

The results of our calculations are the following. The function F
(n)
0 ,

related to the total cross section (10), reads:

F
(n)
0 =

(

1

1 − y
+ 1 − y

)

fn−
s2
n

1 + ξ2
gn−

[

ysn
√

1 + ξ2
ζ2 −

y(2 − y)

1 − y
cnζ3

]

hnPc .
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The polarization of the final photons is related to the functions

F
(n)
1 =

y

1 − y

sn
√

1 + ξ2
hnPcζ1 ,

F
(n)
2 =

(

1

1 − y
+ 1 − y

)

cnhnPc −
ysncn

√

1 + ξ2
gnζ2

+y

(

2 − y

1 − y
fn −

s2
n

1 + ξ2
gn

)

ζ3 ,

F
(n)
3 = 2(fn − gn) + s2

n

(

1 +
ξ2

1 + ξ2

)

gn −
y

1 − y

sn
√

1 + ξ2
hnPcζ2 .

Up to now only F
(n)
0 and F

(n)
2 at ζ1 = ζ2 = 0 were known. The detailed

discussion of the results and numerous figures for spectra and polarizations
of the final particles can be found in [10] and [11].
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