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Abstract. We present the study of the quantum closed Friedmann-Robertson-Walker (FRW)
cosmological model with a matter content given by a perfect fluid with barotropic state
equation p = γρ. The Wheeler-DeWitt equation is viewed as the Schrödinger equation for
the linear harmonic oscillator with energy E. Such type of Universe has quantized masses of
the order of the Planck mass and harmonic oscillator wave functions. Then, we consider the
n = 2 supersymmetric superfield approach for the same model and obtain a normalizable wave
function (at zero energy) of the universe. Besides, the mass parameter spectrum is found in
the Schrödinger picture, being similar to those obtained by other methods, using a black hole
system.

PACS numbers: 04.20.Fy; 04.60.Ds; 12.60.Jv; 98.80.Hw

1. Introduction
The quantum solution of the FRW cosmological model has been calculated in many works
[1, 2, 3, 4], but not related to mass quantization.

The main purpose of this work is to consider a time independent Schrödinger equation and
its SUSY generalization to obtain a mass spectrum for the closed FRW model, in which dust
matter is filling the universe, as well as the wave function of the FRW cosmological model in
both formalisms. It was made following the canonical quantization procedure.

The rest of the paper is organized as follow. In sec. II, using the canonical formalism, we
construct the correspondig Hamiltonian for the FRW cosmological model. In sec. III the time
independent Schrödinger equation is obtained, promoting the classical Hamiltonian to operators,
and applying it to the wave function ψ, Ĥψ = 0. Here we introduce the quantization rules for
the energy, which depends on an integer number n. These quantization rules were obtained
using the creation-annihilation representation. In sec IV, the mass spectrum is calculated. In
Sec. V, we present the SUSY version, obtaining the corresponding susyquantum solution in
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Sec. VI with aid of the quantum constraints and the matrix representation. Also, we give
the supersymmetric quantum conditions for the energy in the Schrödinger picture. Sec. VII is
devoted to conclusions.

2. The canonical Hamiltonian
Starting with the FRW model we consider the classical lagrangian for a pure gravitating system
and the corresponding term of matter content, perfect fluid with barotropic state equation
p = γρ, and cosmological term [4]

L = − c2R
2NG

(
dR
dt

)2

+ N
κc4

2G
R + N

c4Λ
6G

R3 − NMγc2R−3γ . (1)

In particular, we will consider the dust case γ = 0, with κ = 1 and Λ = 0, The action for this
system has the form

S =
∫ [

− c2

2GN
RṘ2 +

c4

2G
NR − NEs

]
dt, (2)

with Es = Mc2, where M corresponds to the mass parameter of the closed Universe and dust
scenario.

Note that if we take the lapse function as

N(t) = Ñ(t)R(t)
c2

MplG
, (3)

we have an invariant action, obtaining the following canonical Hamiltonian using the usual
scheme

H = Ñ

[
− P2

R

2Mpl
− Mpl

2
ω2

0

(
R − MG

c2

)2

+
M

2Mpl
Mc2

]
, (4)

with the fundamental frequency of the system ω0 = c3

MplG
. The lapse function Ñ(t) is a Lagrange

multiplier, which enforces the first class constraint H = 0.
We transform Eq. (4) by defining ξ = R − MG

c2
, thus its momentum conjugate becomes

Pξ = PR and the constraint at the classical level reads as follows

Hcan = ÑH = Ñ

[
−

P2
ξ

2Mpl
− Mpl

2
ω2

0ξ
2 +

M
2Mpl

Mc2

]
= 0. (5)

3. Harmonic oscillator equation and quantization rules

Making the usual realization of the operator
P̂2

ξ

2Mpl
= − h̄2

2Mpl

d2

dξ2 and applying it to the wave-
function ψ, we get the following linear harmonic oscillator equation

[
− h̄2

2Mpl

d2

dξ2
+

Mplω
2
0

2
ξ2

]
ψ =

M
Mpl

Es

2
ψ. (6)

In this point we make the transformation

Es =
c4

2G
Rsup (7)
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considering the form of Es given in (2) we obtain that Rsup = 2MG
c2

, being the radius for the
closed universe. Making the transformation ξ

�pl
= x, one can rewrite (6) as

1
2

[
x2 − d2

dx2

]
ψ =

1
4

RsupEs

�plEpl
ψ. (8)

Using the creation-annihilation representation, with the usual algebra between them, [a, a†] = 1,
we can rewrite Eq. (8) as

a†aψ =
1
2

[
x2 − d2

dx2

]
ψ − 1

2
ψ =

(
−1

2
+

1
4

RsupEs

�plEpl

)
ψ = nψ, n = 0, 1, 2, · · · . (9)

In this way, we have the following useful relations

RsupEs = 4(n + 1
2)�plEpl

= 4(n + 1
2)h̄c, (10)

E2
s = 2(n + 1

2)E2
pl, (11)

Es

2
= (n + 1

2)h̄ω0. (12)

One can see that when n is big, we find
Rsup

�pl
= 2

√
2n + 1, (13)

such that, when n → ∞, Rsup coincide with the maximum expansion of the scale factor R.
Let us write the equation (8) in the following form

d2ψ

dx2
+ (α2

n − x2)ψ = 0, αn =
Es

Epl
(14)

where αn is parameter associated with the energy of the nth eigenstate, the quantum solution
is similar to the harmonic oscillator case

ψn(x) =
(

1√
πn!2n

) 1
2

Hn(x) e−
1
2
x2

, (15)

with Hn(x) the Hermite polynomials.

4. The discrete mass spectrum
Now, it is clear that the system, even in its lowest energy state n = 0, has a finite, minimal
energy. Eq. (10) implies the following quantization mass rule

Mn =
√

2n + 1 Mpl. (16)

We introduce the condition on the Mn parameter when n → ∞. This parameter may be the
classical mass parameter Msup, for the closed universe, filled with dust matter, in the maximum
expansion.

These results are similar to those obtained by other methods in the black hole scenario,
[5, 6, 7, 8, 9].

The difference in mass between any two consecutive eigenvalues is given by

∆Mn+1 ≡ Mn+1 − Mn =

⎡
⎣

√
1 +

2
2n + 1

− 1

⎤
⎦ Mn n finite (17)

= 0 n → ∞,

the result when n → ∞ is in agreement with the correspondence principle.
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5. The classical supersymmetric lagrangian
We will proceed with the superfield formulation of the action (2). For this purpose we need to
generalize the local time transformations t → (t, η, η̄) in the following way

δt = a(t) +
i

2
(ηβ′(t) + η̄β̄′),

δη =
1
2
β̄′(t) +

1
2
(ȧ(t) + ib(t))η +

i

2
˙̄β′ηη̄, (18)

δη̄ =
1
2
β′(t) +

1
2
(ȧ(t) − ib(t))η̄ − i

2
β̇′ηη̄,

where η is a complex odd parameter (η odd “time” coordinates), β(t) is the Grassmann complex
parameter of the local “small” n = 2 supersymmetry (SUSY) transformation, and b(t) is the
parameter of local U(1) rotations of the complex η. Then, the superfield generalization of action
(2), which is invariant under the local n = 2 supersymmetry transformation (18) has the form

S =
∫ (

− c2

2G
IN−1IRDη̄IRDηIR +

c3√κ

2G
IR2 − McIR

)
dηdη̄dt, (19)

where
Dη =

∂

∂η
+ iη̄

∂

∂t
, Dη̄ = − ∂

∂η̄
− iη

∂

∂t
(20)

are the supercovariant derivatives of the global “small” supersymmetry of the generalized
parameter corresponding to t.

The Taylor series expansion for the superfields IN(t, η, η̄) and IR(t, η, η̄) are the following

IN(t, η, η̄) = N(t) + iηψ̄′(t) + iη̄ψ′(t) + V ′(t)ηη̄, (21)
IR(t, η, η̄) = R(t) + iηλ̄′(t) + iη̄λ′(t) + B′(t)ηη̄. (22)

The components of the superfield IN(t, η, η̄) are gauge fields of the one-dimensional n = 2
extended supergravity. N(t) is the einbein, ψ(t) and ψ̄(t) are the complex gravitino fields, and
V (t) is the U(1) gauge field. The component B(t) in (22) is an auxiliary degree of freedom
(non-dynamical variable), and λ, λ̄ are the fermion partners of the scale factor R(t).

We get the Lagrangian only in terms of dynamical fields,

L = − c2

2G
R(DR)2

N + i
2(λ̄Dλ − Dλ̄λ) + N

[
−√

κMc2 + κc4

2G R + 1
2

GM2

R

+
√

κc
2

λ̄λ
R + GM

2c
λ̄λ
R2

]
+ c2

√
κR1/2

2G1/2 (ψ̄λ − ψλ̄) − MG1/2

2R1/2 (ψ̄λ − ψλ̄), (23)

where DR = Ṙ − iG1/2

2cR1/2 (ψλ̄ + ψ̄λ), Dλ = λ̇ − i
2V λ and its complex conjugate Dλ̄ = ˙̄λ + i

2V λ̄.
The classical canonical Hamiltonian is calculated in the usual way for systems with

constraints,

Hc = NH +
i

2
ψ̄S − i

2
ψS̄ +

1
2
V F, (24)

where H is the Hamiltonian of the system, S and S̄ are the supercharges and F is the U(1)
rotation generator. The form of the canonical Hamiltonian (24) explains the fact that N, ψ, ψ̄
and V are Lagrangian multipliers enforcing the first-class constraints H = 0, S = 0, S̄ = 0 and
F = 0, expressing the invariance under the conformal n = 2 supersymmetric transformations.
We obtain the first-class constraints
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H = − G

2c2R
π2

R − κc4R

2G
− M2G

2R
+ c2M

√
κ − c

√
κ

2R
λ̄λ − MG

2cR2
λ̄λ, (25)

S =
( iG1/2

cR1/2
πR − c2√κR1/2

G1/2
+

MG1/2

R1/2

)
λ, (26)

S̄ =
( iG1/2

cR1/2
πR +

c2√κR1/2

G1/2
− MG1/2

R1/2

)
λ̄, (27)

F = −λλ̄, (28)

where πR = − c2R
GN Ṙ + icR1/2

2NG1/2 (ψ̄λ + ψλ̄) is the canonical momentum associated to R.
The canonical Dirac brackets are defined as

{R, πR} = 1, {λ, λ̄} = i, (29)

respect to these brackets, the super-algebra for the quantum generators H, S, S̄ and F becomes

{S, S̄} = −2iH, {S, H} = {S̄, H} = 0, {F, S} = iS, {F, S̄} = iS̄. (30)

We can choose the following matrix representation for the fermionic parameters λ, λ̄ and ξ as

λ =
√

h̄σ−, λ̄ = −
√

h̄σ+, ξ = σ3, (31)

with σ± = 1
2(σ1 ± σ2), where σ1, σ2, σ3 are the Pauli matrices.

6. Superquantum solutions
In the quantum theory the first-class constraints H = 0, S = 0, S̄ = 0 and F = 0, associated
with the invariant action under the n = 2 local conformal supersymmetry become conditions on
the wave function Ψ(R). Furthermore, any physical state must satisfy the quantum constraints

H Ψ(R) = 0, S Ψ(R) = 0, S̄ Ψ(R) = 0, F Ψ(R) = 0, (32)

where the first equation in (32) is the Wheeler-DeWitt equation for the minisuperspace model.
The eigenstates have two components in the matrix representation (31)

Ψ =
(

Ψ1

Ψ2

)
.

However, the supersymmetric physical states are obtained applying the supercharges
operators SΨ = 0, S̄ Ψ = 0. With the conformal algebra given by (30), these are rewritten
in the following form (

λS̄ − λ̄S
)
Ψ = 0. (33)

We use the matrix representation for λ and λ̄ to solve (33), obtaining the differential equation
for the Ψ1(R) and Ψ2(R) components

(
− h̄G1/2

c
R−1/2 ∂

∂R
−

√
κc2

G1/2
R1/2 + G1/2MR−1/2

)
Ψ1 = 0, (34)

(
− h̄G1/2

c
R−1/2 ∂

∂R
+

√
κc2

G1/2
R1/2 − G1/2MR1/2

)
Ψ2 = 0 (35)
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whose solutions are

Ψ1 = C Exp
[
−

√
κc3

2Gh̄ R2 + Mc
h̄ R

]
, (36)

Ψ2 = C̃ Exp
[√

κc3

2Gh̄ R2 − Mc
h̄ R

]
. (37)

At this point, from (36) we can see that Ψ1 has the right behaviour when R → Rsup, where
Rsup is the maximum radius for the closed universe, whereas Ψ2 does not behave properly. Thus,
there exist a normalizable component Ψ1 for H, where this eigenstate corresponds to the state
with eigenvalue E = 0.

Using (36), we obtain the wave function for closed universe (κ = 1), with mass M0,

Ψ1 = C Exp

[
−2n

R

Rsup

(
R

Rsup
− 1

)]
. (38)

On the other hand, following the reference [10], we can view in the Schrödinger picture,
that the Wheeler-DeWitt equation (25) is transformed into the bosonic and fermionic oscillators
system. Thus, we have the supersymmetric quantum conditions for the energy parameter:

E2
s = nE2

pl, n = 0, 1, 2, .. (39)

Es =
√

nEpl, (40)
Es Rsup = 2nh̄c. (41)

Using Eq. (40), we have the quantization rule for the mass parameter of the universe in the
dust model,

Mn =
√

nMpl. (42)

The difference in mass between any two consecutive eigenvalues is given by

∆Mn+1 ≡ Mn+1 − Mn =

[√
1 +

1
n
− 1

]
Mn n finite (43)

= 0 n → ∞,

the result when n → ∞ is in agreement with the correspondence principle, being the classical
mass when the scale factor R = Rsup.

7. Conclusions
The main result of this work is that the universes of this type have a quantized mass of the
order of the Planck mass Mpl = 2.18 × 10−8Kg. The mass spectrum does have corrections in
the standard quantum cosmology, but in the susy approach does not, see Eqs. (16,42). In both
approaches, the corresponding solutions were found.
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