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Abstract

This thesis studies the interaction of different fields during inflation and resultant

phenomenology at different scales. It particularly focuses on one of the most well moti-

vated inflationary models, called Axion inflation. Axions are pseudo-scalars that possess

the shift symmetry at least at the approximate level, which protects their potential from

quantum corrections and elevates them as a strong inflaton candidate. However, in the

particle inventory of UV complete theories, axion particles are abundant, which mo-

tivates studying axions as inflaton or spectator field during inflation. In this work,

we study a chiral shift symmetric dimension-five operator arising naturally in any ax-

ion theory. Due to this coupling, the gauge field’s dispersion relation is modified and

one helicity of the gauge field is produced abundantly as a function of a dimensionless

parameter proportional to speed of the axion. This breaks the parity conservation.

Furthermore, this amplified gauge quanta inversely decays (ie. sources back) to scalar

and tensor degrees of freedom via two-to-one way; hence, the sourced perturbations

obey non-Gaussian statistics. These sourced modes leave unique imprints on cosmo-

logical observables such as : Chiral gravitational wave (GW) background, large tensor

non-Gaussianity, non-zero TB and EB correlators, detectable GW background at inter-

ferometer scales and the production of primordial black holes.
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Chapter 1

Introduction

“ The effort to understand the universe is one of the very few things which lifts human

life a little above the level of farce and gives it some of the grace of tragedy.” Steven

Weinberg

Historically, the modern cosmology era can be traced back to the discovery of the

Cosmic Microwave Background (CMB) radiation in the mid 1960s [1]. The CMB radi-

ation was emitted about 380,000 years after the Big Bang, when protons and electrons

in the universe combined to form hydrogen atoms and the universe became transparent

to radiation. Hence CMB carries valuable information about our universe at that early

time. A number of satellite, balloon and ground missions have studied its properties

with high accuracy, allowing us to test different cosmological theories. Following the

discovery of the CMB, there has been tremendous amount of effort to scan our universe

in different length and energy scales via various experiments such as Lyman-α forest,

supernovae, γ-ray observations and galaxy surveys. The precise measurements had as-

tonishing results: It has been revealed that most of the current energy content of our

universe is in the form of mysterious “dark energy”, which is responsible for the present

accelerated expansion of the universe. Moreover, inter- and intra-galactic observations

have also shown that, besides dark energy, the universe is filled with dark matter (a

particle that does not interact with light, and which therefore cannot be directly seen,

but only inferred from its gravitational effects), in an amount which is about 5 times

1



2

greater than that of regular matter that we are made of.

The idea that the energy content of the universe determines its expansion, and

ultimately its fate, has been known since the application of GR to distinct spacetimes,

starting around 1920s. This is why the questions in cosmology and particle physics

have overlapped. In result of this fascinating conclusion, that observations conducted

at largest scales can provide information on the elementary particles, and vice versa,

the universe emerged as the largest and richest particle physics laboratory. Since the

energies in the early universe are much greater than those that we can produce on

terrestrial laboratories, this gives us a unique opportunity to study the laws of nature

in a regime which cannot be accessed in any other way.

CMB observations have also shown that the conventional Big Bang picture (namely,

the generation of a thermal bath starting from an initial “explosion”) is not complete.

The CMB is extremely uniform, with fluctuations of only about 10−5 from the average.

This homogeneity cannot be obtained in a universe filled with only matter and radiation,

but it can be explained by a period of accelerated expansion [2]. The field responsible

for the acceleration, denoted as “inflaton”, produces primordial density perturbations

with properties in excellent agreement with observations. When inflation ended, the

inflaton decayed by forming an extremely dense, energetic and expanding plasma, which

characterizes the Big Bang phase. Nowadays, inflation is widely accepted as the first

stage of standard cosmology. Several details of inflation remain to be understood and

proven experimentally.

Having a prolonged accelerated expansion requires that the inflaton potential is

extremely flat. In generic models, the flatness of the potential can be spoiled by quantum

loop corrections, that originate from the inflaton couplings to other fields. In the class

of models of axion inflation, the inflaton is assumed to have only derivative couplings

to other fields. As a consequence, quantum loops involving these interactions do not

modify the inflaton potential. Namely, since the couplings are invariant under the shift

φ→ φ+ constant, they cannot generate an inflaton potential at the perturtbative level.

A shift symmetric coupling of an axion to an anomalous gauge field can however generate

a potential at the nonperturbative level [5]. This potential has periodicity φ→ φ+2πf ,

where f is a quantity of mass dimension one denoted as axion decay constant.1 The

1 The reason for the name is that the operator that couples the axion to gauge fields has the form
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original model of axion inflation, denoted as natural inflation [3], requires an axion scale

greater than the Planck scale [4], which might be problematic in quantum gravity [7].

We discuss in Appendix A how a super-Planckian scale can be generated starting from

two or more axions with sub-Planckian scale.

As indicated above, due to symmetry restrictions, there are two mass-dimension-

5-operators that might have role in axion physics. One couples axion to gauge fields,

Lint, gauge = α
4f φFF̃ , and the other to fermions, Lint, fermion = 1

f ψ̄ γ
µ γ5 ψ ∂µφ. This the-

sis studies the operator that couples an axion to gauge fields during inflation. We have

studied various aspects of this operator and its distinct phenomenological signatures at

different length and energy scales of our universe. During the inflationary expansion,

this chiral coupling introduces a modification to the dispersion relation of the gauge

field that has opposite sign for the two helicities. This results in an amplification of

the helicity for which this contribution is negative, starting from a few efolds before

horizon crossing. On the other hand, the other helicity remains in an unexcited state.

In result of this unequal amplification of the different helicites, the model breaks parity

and generate correlators that vanish when parity is conserved (specifically TB and EB

correlators where the T is the temperature anisotropy, E and B are the gradient and curl

of the CMB polarization). In addition, because the amplified helicity mode generates

scalar and tensor particles in a two-to-one fashion (schematically δA + δA → δφ and

δA+ δA→ δgTT), the sourced scalar and tensor modes strongly deviate from gaussian

statistics. This results in Non-Gaussian signals in various cosmological observables, one

remarkable correlation being BBB. The signatures can be detected for a wide spectrum

of scales depending on the parameters of the model. They consist of the parity violation

in tensor sector via primordial chiral GWs, breaking the direct link between tensor-to-

scalar-ratio and the energy scale of inflation, efficient PBH production with amplified

non-Gaussian density fluctuations, CMB distortion and GW background detectable at

spatial and terrestrial interferometers. It is remarkable that this rich phenomenology

can arise from a single operator.

The outline of the thesis is as follows : In Chapter 2, we summarized the inflationary

cosmology and provide relevant concepts, observables and parameters that would be

φ
f
FF̃ , where F is the gauge field strength, and F̃ its dual. We then see that 1

f
also controls the decay

rate of the axion to gauge fields.
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used in the following chapters extensively. We review classical and quantum aspects of

the simplest models of inflation, namely in the case of a single slowly rolling scalar field

inflaton. Chapter 3 is devoted to the study of the modification of the mode function of

Abelian gauge fields due to their chiral coupling to an axion. We study this coupling

both for the case in which axion is the inflaton, and for the case in which axion is a field

different from the inflaton and it evolves for only a limited portion of inflation (In the

second case, the axion has negligible energy as compared to that of the inflaton; such

a field is denoted in the literature as “spectator” field.). In Chapter 4, we study the

phenomenology of this axion-gauge coupling at the largest observable scales. We show

that in the spectator axion case, it is possible to produce sourced 2 GWs at CMB scales

that dominate over the GWs from vacuum fluctuations of the metric without producing

too much sourced Non-Gaussian density fluctuations. The sourced perturbations in

this model have distinctive properties that allow to distinguish them from the standard

vacuum modes. Chapter 5 is devoted to the small scale phenomenology, specifically

GWs detectable at gravitational interferometers such as Pulsar Timing Arrays (PTA),

LISA and LIGO scanning different frequencies of GW spectrum from nHz to tens of Hz.

We show that this mechanism can leave detectable imprints on these interferometers,

without producing too many primordial black holes (PBHs). We devote Chapter 6 to

the verification of our findings under various constraints including backreaction and

quantum corrections. We determine the regions of validity in perturbative particle

production mechanism and show our results are in these regions. Chapter 7 is for

summary, conclusions and potential directions. We have detailed appendices for Axion

inflation and every corresponding chapter in the main text except Chapters 1 and 2).

In this thesis, the following conventions are followed for physical quantities and no-

tation: ~ = c = 1, Mp = 1√
8πGN

' 2.44 · 1018 GeV, where Mp is the reduced Planck

Mass and GN is the Newton’s constant. Greek indices (µ, ν, α, ..) denote spacetime

labels and Latin indices (i, j, k,...) denote spatial coordinates. For repeated indices,

summation is assumed. We use “density” fluctuations/perturbations and “scalar” fluc-

tuations/perturbations, also Abelian gauge field and vector field, and also axion and

psuedo-scalar interchangeably. The metric convention is (- + + +).

2 By sourced perutrbations, we mean those produced by the gauge field through inverse decay process.

By vacuum perturbations, those produced by the inflationary expansion irrespectively of interactions.



Chapter 2

Inflationary Cosmology

“Despite its name, the big bang theory is not really a theory of a bang at all. It is really

only a theory of the aftermath of a bang.” Alan Guth

Although the standard Big Bang model gives reasonably satisfactory description for

the evolution of the universe after Big-Bang Nucleosynthesis (BBN), it has conceptual

problems in explaining the origins of the hot and dense plasma stage and the CMB

results. Today, inflation is the most compelling early universe scenario to explain the

primordial universe. The generic inflationary predictions are in excellent agreement

with various experiments.

According to the inflationary scenario, the universe experienced a rapid and ac-

celerated spatial expansion for a period before BBN. As a result, for a long enough

inflationary era, the regions in the different parts of the sky, which are assumed to be

causally disconnected in standard Big Bang scenario, were actually in causal contact in

the very early universe. Furthermore, inflation erases any previous inhomogeneities (if

there were) and relics. During inflation, tiny scalar and tensor perturbations are gener-

ated by the inflaton and metric fluctuations with nearly identical amplitude at all scales.

These perturbations are stretched to out of the causal horizon and become frozen, until

they re-enter the horizon after inflation, to construct the seeds of the inhomogeneities.

Although it is possible to realize inflation with extremely low energy scale, it can

5
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be as high as 1016 GeV, which shows that inflation is an important and probably the

only probe for such high energy levels that are not accessible on terrestrial experiments.

Inflation has passed successfully all the tests up to now and many of its features are

still waiting to be understood theoretically and proven experimentally.

We devote this Chapter to briefly review the modern cosmology starting from Big

Bang picture. We summarize the fundamentals of inflationary cosmology at the classical

and quantum level using the simplest inflationary models with a single slowly rolling

scalar field. This Chapter is mostly based on [60, 61, 62]

2.1 Big Bang summary and problems

2.1.1 Homogenous and Isotropic Universe and Big Bang Framework

The current universe is homogenous and isotropic at the largest observable scales. More-

over, there are numerous evidences that the universe was more homogenous at early

times at all scales. It is thought that the inhomogeneities that exist at smaller scales

in the present universe, such as stars (δρ/ρ ∼ 1030), galaxies (δρ/ρ ∼ 105), clusters of

galaxies (δρ/ρ ∼ 10 − 103), have been seeded by tiny fluctuations (∼ 10−5) that have

grown rapidly due to gravitational interaction.

The maximally symmetric spacetime satisfying this cosmic principle (homogeneity

and isotropy) is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)2

[
dr2

1−K r2
+ r2dθ2 + r2 sin θ2dφ2

]
(2.1)

where ds denotes the differential line element, a(t) the scale factor, t is physical time

and {r, θ, andφ} are comoving coordinates of the spherical coordinate system. The

constant K is the curvature signature which is −1 for open, 0 for flat and +1 for closed

geometry.

We also introduce “conformal time” which is another time variable that is frequently

used in expanding spacetimes.

dτ ≡ dt

a(t)
=
d ln a

aH
(2.2)

The evolution of the universe can be determined from the Einstein equations

Gµν = Rµν −
1

2
Rgµν =

1

M2
p

Tµν , (2.3)
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where Gµν is Einstein tensor, Rµν is the Ricci tensor (Rµν = Rλµλν) 1, gµν is the metric, R

is the Ricci scalar (R ≡ gµν Rµν) and Tµν is the energy momentum tensor. Using eq (2.3)

with perfect fluid assumption for the contents filling the universe, ie. Tµν = (−ρ, P, P, P ),

we have

H2 ≡
(
ȧ

a

)2

=
ρ

3M2
p

− K

a2

ä

a
= −ρ+ 3P

6M2
p

(2.4)

where H is the Hubble rate.

These equations combined to give energy conservation/continuity equation as 2

ρ̇+ 3H(ρ+ P ) = ρ̇+ 3Hρ (1 + w) = 0 (2.6)

where above w is the equation of state defined as w ≡ P
ρ . This conservation equation

is valid for every independently evolving matter content. For constant w, the above

equation is solved analytically as

ρ(t) = ρi

(ai
a

)3(1+w)
(2.7)

We summarize the equation of state and the scaling of energy density as a function of

scale factor for some types of energy content as follows

• Ultra-relativistic gas (Radiation) : w = 1/3 → ρ ∝ a−4

• Non-relativistic Dust (Matter) : w = 0 → ρ ∝ a−3

• Cosmological Constant : w = −1 → ρ = const.

The physical interpretation of the scalings above can be expressed as follows: For radia-

tion, in addition to the dilution of the particle density with the expansion of the volume

1 Rλσ µ ν = ∂µΓλσν − ∂νΓλσµ + ΓλµρΓ
ρ
νσ − ΓλνρΓ

ρ
µσ, where Γµνλ = 1

2
gµρ

(
∂gρν
∂xλ

+
∂gρλ
∂xν

− ∂gνλ
∂xρ

)
are the

so-called Christoffel symbols.
2 This equation can be obtained from thermodynamics in the case entropy conservation as follows:

dU = −P dV

d(ρV ) = ρ̇ · V dt+ ρdV = −P dV ⇒ ρ̇ = − (ρ+ P ) dV

V dt
= −3H(ρ+ P ) (2.5)
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∝ a−3, the energy of individual photons decrease with ∝ a−1 as their wavelengths are

stretched by the expansion. For non-relativistic dust, the density gets diluted with the

volume, so it has a−3 dependence. For cosmological constant, it is by definition inert to

cosmological expansion.

If the energy density is dominated by one of the energy contents indicated above,

the time dependence of the scale factor and of the Hubble parameter can be written as

• Radiation Domination : a ∝ t1/2 , H = 1
2t and a ∝ τ

• Matter Domination : a ∝ t2/3 , H = 2
3t and a ∝ τ2

• Cosmological Constant : a ∝ eHt , H = const. and a ∝ −1/Hτ

From the expressions given above, when the evolution of the universe is traced

back to the earliest times, assuming that the cosmological constant does not dominate

from the beginning, the scale factor becomes zero for some initial time independent of

the value of K term. Even though this trace back cannot be trusted very close to the

singularity, which requires infinite energy density, historically this moment of singularity

is dubbed as Big Bang.

Our universe was radiation dominated at very early stages (starting at least from

the BBN era), then became matter dominated and recently it has been dominated by a

source leading to accelerated expansion, with an equation of state equal or very close to

that of a cosmological constant. The Cosmic Microwave Background radiation reveals

that the universe was hot and dense in the early stages, with full of ultra-relativistic

particles. Due to adiabatic expansion, the entropy is conserved, and the temperature is

related with the scale factor as

gf T
3
f a(tf )3 = gi T

3
i a(ti)

3 ⇒ T ∝ g−1/3 a−1 (2.8)

where “g” denotes the number of degrees of freedom in the relativistic plasma.

With the expansion, the universe cooled down and underwent multiple phase transi-

tions (PTs), such as (if there is) the breaking of some higher symmetry of Grand Unified

Theories (GUTs) at t ∼ 10−36s(T ∼ 1015GeV), electroweak PT at t ∼ 10−10s(T ∼
100GeV) and Quantum Chromodynamics (QCD) PT at t ∼ 10−5s(T ∼ 300 MeV).

Around t ∼ 1s (T ∼ MeV), the neutrinos decouple from photon gas, and later Big
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Bang Nucleosynthesis happen around 10− 0.1 MeV. Afterwards, ions combine with the

electrons and make the plasma in the universe neutral. As a result, light decouples from

matter, and it propagates almost freely carrying valuable information about that early

moment 3. This process is called as last scattering and occurs around t ∼ 380, 000 years

(T ∼ 0.3eV). This summarized some cornerstones in the evolution of the universe.

2.1.2 The Shortcomings of standard Big Bang Framework

(i) Horizon Problem

In FLRW geometry, the physical distance covered by a particle traveling with the speed

of light, from some initial time 0 to t, is defined as “particle horizon” or simply “horizon”

and it is given as

RH(t) = a(t)

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

a′
1

a′H(a′)
(2.9)

This value gives the distance between causally connected regions. For radiation and

non-relativistic matter, RH(t) = O(1)
H . For all energy content for which time is related

with the scale factor by a power law, the particle horizon is determined by some O(1)

numerical factor times inverse Hubble parameter. Therefore, “Hubble radius”, defined

as 1
H , is the natural scale for causality.

The physical scales grow with the scale factor (∝ a), but the causal horizon, which

determines the max available distance for the interactions that obey Lorentz symmetry,

grows as O(1)/H. In result, the ratio of the horizon to physical scales evaluates to

O(1)/aH, which increases with time in both radiation and matter dominated universe,

which means that the horizon grows faster with respect to a physical mode. Therefore,

the modes that are in our causal contact today were not in causal contact in the past.

They were much larger than the past horizon scale.

When the CMB is measured today, the signal for these large modes is coming from

numerous causally disconnected horizons of the last scattering surface! Neglecting the

recent cosmological constant domination and using eq (2.1.1), one can roughly calculate

the number of causally disconnected regions inside a physical mode at the last scattering

3 The energy density of radiation and matter become comparable around t ∼ 5 · 104 years (T ∼ eV )
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surface that corresponds to largest scales today as

Nindependent >∼
(
aCMBHCMB

a0H0

)3

>∼
(
TCMB

T0

)3/2

>∼ 105 (2.10)

This result puts a huge question mark about standard Big Bang framework. Because

if there are O(105) causally independent regions when CMB was decoupled, how could

such a perfect homogeneity can be satisfied from these independent regions within the

Big Bang framework?

(ii) Flatness Problem

For observing the flatness problem, one can start expressing eq (2.5) as follows

d ln ρ

d ln a
= −3(1 + w) (2.11)

The Friedmann equation (2.4) can be written as

1− Ω = −K
a2

(2.12)

where Ω ≡ ρ
ρcrit

and ρcrit = 3H2M2
p . By differentiating the equation above and using eq

(2.11), we obtain
dΩ

d ln a
= (1 + 3w)Ω(Ω− 1) (2.13)

From this expression, we see that Ω = 1 is an unstable equilibrium point. Therefore,

one expects that during the course of the evolution of the universe, even if Ω starts

near this value, it should deviate significantly from this value. However, Ω is strictly

constrained to be around 1 [68].

ΩK ≡ 1− Ω = −0.005+0.016
−0.017 (95%, P lanck TT + lowP + lensing) (2.14)

In order to have such a small value today, we observe that the spatial curvature has to

be much smaller in the far past. In order to quantify, we start solving the eq (2.13) by

assuming that w is constant, and we express the result as a function of “N” (defined as

dN ≡ d ln a) for notational simplicity. We obtain

Ω(N) =
Ωi

Ωi + (1− Ωi)e(1+3w)(N−Ni)
(2.15)
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Then we set Ni = 0 and revert the eq above for Ωi, and employ the definition given in

(2.14) to get

Ωi =
Ω(N0) e(1+3w)N0

(1− Ω(N0)) + Ω(N0) e(1+3w)N0
' 1− ΩK,0 e−(1+3w)N0

ΩK,i ' ΩK,0 e−(1+3w)N0 = ΩK,0

(
ai
a0

)1+3w

(2.16)

The current value of the spatial curvature parameter, ΩK,0, is constrained to the

level of O(10−2). The last approximate equality arises from this fact. Armed with this,

we set ΩK,0 = 10−2 and list sample values using the above formula:

• ΩK(NCMB) ' 10−5 (w = 0, N0 = ln(1100))

• ΩK(NBBN) ' 10−22 (w = 1/3, N0 = ln(MeV/10−4eV))

• ΩK(N1013GeV) ' 10−54 (w = 1/3, N0 = ln(1013GeV/10−4eV))

• ΩK(NGUT) ' 10−60 (w = 1/3, N0 = ln(1016GeV/10−4eV))

In result, ΩK has to be tuned for more than 50 digits at early times (For Planck

scale, it is more than 60 digits) in order to respect the experimental limits today. The

flatness problem is this unnatural tuning.

(iii) The Seeds of Inhomogeneities

The above two problems cannot be explained by a causal mechanism in standard Big

Bang, but can only be resolved via extremely fine-tuned initial conditions (ie. standard

Big Bang can assume the scales outside causal horizon are very homogenous and the

spatial flatness is arranged near 50 digits in the early universe). In addition to almost

perfect homogeneity, early universe includes small fluctuations that are nearly scale in-

variant and obey Gaussian distribution. However, again since in Big Bang framework

large scales are completely causally independent, it cannot explain this structure via a

causal mechanism, but again can only assume it as an initial condition.

2.2 Inflationary Physics at the Classical Level

In order to solve the shortcomings discussed above, inflationary cosmology assumes

that there exists an era in which the universe experienced a rapid acceleration before
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the conventional Big Bang stage such that the regions that are thought to be causally

independent in the standard Big Bang model are in fact in causal contact and the

universe becomes locally flat.

In order to have an accelerated universe, one needs ρ+3P < 0 (see eq (2.4)); in other

words, the dominating energy content needs to satisfy an equation of state w < −1/3.

What species can have an equation of state w < −1/3 other than cosmological constant?

Remarkably, a scalar field can realize this. A homogenous scalar field dominating

the energy momentum content of the universe has the action

S =

∫
d4x

[
M2
p

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (2.17)

where R is the Ricci scalar, ϕ is the homogenous scalar field and V is the potential

energy of the field. This field driving the inflation, and dominating the energy density

is called as “inflaton”. The energy density and pressure of the inflaton are given by

ρ =
ϕ̇2

2
+ V

P =
ϕ̇2

2
− V , (2.18)

and the equation of state gets the form

w =
P

ρ
=

ϕ̇2

2 − V
ϕ̇2

2 + V
(2.19)

Accelerated expansion, w < −1/3, is possible for φ̇2 < V . Consistency with CMB results

actually requires φ̇2 � V . In this case, H ≡ Hinf ' constant and a ' ai e
∫
H(t′)dt′ '

ai eH(t−ti).

After inflation starts, the spatial curvature decreases exponentially and eq (2.4) for

homogenous scalar field becomes

H2 =
1

3M2
p

[
ϕ̇2

2
+ V (ϕ)

]
, (2.20)

and the energy conservation eq (2.5) gets the form

ρ̇+ 3Hρ ϕ̇2 = 0 ⇒
[
ϕ̈+ 3Hϕ̇+ V ′(ϕ)

]
ϕ̇ = 0 (2.21)
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where dot denotes derivative wrt cosmic time and prime denotes derivative wrt the field

ϕ. The Friedman eq and the energy conservation together give the evolution equation

of the scalar field. This equation can also be obtained by varying the action wrt ϕ as

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (2.22)

Here we note that for a wide choice of initial conditions, (for a “flat” enough potential)

inflaton catches its attractor and continues its evolution on a common trajectory. This

means that inflation also erases initial conditions via its attractor behaviour and allows

consistent predictions for a given model. In this attractor, the potential energy domi-

nates over kinetic energy and the inflaton rolls slowly through its potential. Therefore in

Slow-Roll (SR) approximation the equations governing the evolution get the following

form

H2 ' V (ϕ)

3M2
p

3Hϕ̇ ' −V ′(ϕ) . (2.23)

One can define the Slow-Roll (SR) parameters via the Hubble parameter

εH ≡ −
Ḣ

H2
=

ϕ̇2

2H2M2
p

, δH ≡
Ḧ

2HḢ
=

ϕ̈

Hϕ̇
(2.24)

where dots denote derivative wrt time. The SR parameters can also be defined via the

inflaton potential

εV ≡
M2
p

2

(
V ′(ϕ)

V (ϕ)

)2

' εH , ηV ≡M2
p

V ′′(ϕ)

V (ϕ)
' εH − δH (2.25)

where prime here denotes derivative with respect to inflaton, denoted as ϕ. We will use

the latter definitions more frequently, so we will drop the subscript “V”, and we will

write simply ε and η from this point on for notational simplicity.

Observe that ε is proportional to slope of the potential and it controls the kinetic

energy of the inflaton, while η is related to the curvature (mass) of the potential and

controls the acceleration of the field. The slow roll conditions are satisfied when both

parameters are small during inflation (ie. ε � 1 and |η| � 1) which requires the

potential to be very flat, which results in long enough inflation to cure the problems

discussed in the Subsection 2.1.2.
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As long as the SR parameters are small, inflation proceeds as we see from eq (2.4),

with
ä

a
= Ḣ +H2 ' (1− ε)H2 > 0 . (2.26)

When the field reaches near the bottom of its potential, the SR parameters are no longer

small, and inflation ends when ρ = −3P , namely when ϕ̇2
end = V (ϕend) corresponding

to ε ' O(1) .

During the inflationary expansion, the amount of spatial growth is expressed con-

ventionally by the number of efolds, “N” , defined as

dN ≡ d ln a = Hdt ⇒ Nf −Ni = ∆N = ln
af
ai

(2.27)

Therefore, 5-efolds mean that the universe has expanded e5 times in one spatial dimen-

sion. It is also conventional that final moment (af ) is defined as the end of inflation

and “N” denotes the number of efolds left until the end of inflation. In terms of field

dynamics, one can express the expansion as follows

N =

∫ tend

t
H dt̃ =

∫ ϕend

ϕ

Hdϕ̃
˙̃ϕ
' 1

M2
p

∫ ϕ

ϕend

V (ϕ̃)

V ′(ϕ̃)
dϕ̃ (2.28)

where prime denotes derivative wrt inflaton and SR expressions given in eq (2.23) are

employed in the last equality. Depending on the details of the subsequent stages espe-

cially “reheating” 4, the inflationary era is required to be at least 50-60 efolds in order

to solve the problems of standard Big Bang era and satisfy a causal contact for the large

modes of the observable universe.

During inflation, the expansion almost exponentially grows with time as a ' aieH(t−ti),

and H being nearly constant. In this era, conformal/comoving quantities are used fre-

quently to factorize the expansion in an overall factor that multiplies the Minkowski

4 This is the phase connecting the inflationary phase with the radiation dominated era, namely the

energy from the inflaton is transferred to ultra-relativistic particles. After inflation ends, the inflaton

oscillates at the bottom of the potential and it eventually decays on a timescale given by the inverse

of its decay rate. The details of reheating are very model-dependent, and they can vastly change

depending on the nature of the inflaton and on its couplings. In all cases, the produced particles

ultimately reach thermal equilibrium and set the stage for the conventional standard Big Bang

expansion. This details of reheating are extremely important, but they are not the focus of this

thesis.
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geometry. We already introduced comoving coordinates and conformal time (see eq

(2.2)) in the first part of this Chapter. Here we give a short math interlude for some

comoving variables that will be used extensively in the rest of the thesis.

The quantity corresponding to the Hubble radius in comoving coordinates is called

simply comoving Hubble radius and it is

1

aH
=

1

H =
1

a′/a
, (2.29)

where prime denotes derivative wrt conformal time. In addition, the comoving particle

horizon is defined as

τH ≡
1

a
RH(t) (2.30)

Finally, we define comoving wavenumber, k, for a given physical length scale, λ as

k ≡ 2π a

λ
⇒ pphysical =

k

a
(2.31)

Therefore, k � aH means that a physical length scale is deep inside the horizon and

k � aH deep outside the horizon (superhorizon). During inflation, the conformal time

has the following relation τ = − 1
aH . Therefore this observation can be expressed with

conformal time as follows:

−kτ � 1⇒ scale is superhorizon

−kτ � 1⇒ scale is inside the horizon.

Armed with these observations, let us return on how inflation solves the shortcomings

of standard Big Bang model:

(i)Horizon problem : In order for inflation to solve the horizon problem, the largest scales

that we observe today should be in causal contact in the far past (during inflation).

Since Hinf ' const., the mode with a wavelength comparable to the Hubble radius

today, 1/H0 (subscript ”0” indicates current value), should be in inflationary horizon,

which translates as

1

H0

(
ai

a0

)
=

1

H0

(
ai
aend

)(
aend

a0

)
<∼

1

Hi

1

H0
e−Ntot

(
aend

a0

)
' 1

H0
e−Ntot

(
T0

Tend

)
<∼

1

Hi
(2.32)
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where above ai and aend denotes the beginning and the end of inflation respectively.

H0 ' 10−42 GeV and assuming Hi ∼ 1013GeV and Tend ∼ 1016GeV, we find Ntot >∼ 60.

(ii) Flatness problem: As shown in the Subsection 2.1.2, in order for inflation to solve

the flatness problem, the spatial curvature parameter ΩK = −K/(a2H2) has to de-

crease very roughly O(10−50) times at the end of inflation in order to solve the flatness

problem. This is indeed the case in the inflationary scenario because during inflation

we have
ΩK,end

ΩKi
=
(
aendHend
aiHi

)−2
' e−2Ntot . We see that 50 digits of fine-tuning can be

removed by Ntot >∼ 60 efolds of inflation depending on the details of the subsequent

evolution of the universe.

2.3 Inflationary Physics at the Quantum Level

Although inflation has been first proposed to solve the horizon and flatness problems

of standard Big Bang model, it became a theory with strong predictive power after

it was understood that the small quantum fluctuations could be the seeds of the in-

homogeneities of our universe. During the inflationary phase, these perturbations are

stretched, and leave the horizon. Outside the causal horizon, their amplitude is frozen.

However, these perturbations re-enter the horizon during radiation and matter dom-

ination eras because in those regimes, the horizon grows faster than physical scales.

As a result, these perturbations lead to tiny inhomogeneities in the matter content.

The amount of inhomogeneity is conventionally expressed in terms of a dimensionless

parameter called density contrast, δ ≡ ρ(x)−ρ̄
ρ̄ . The density contrast grows relatively

slow in the radiation dominated era (with logarithmic dependence on the scale factor),

but really fast in the matter dominated era (proportional to the scale factor). When δ

becomes O(1), it grows even faster due to nonlinear evolution. These clumps of matter

decouple from the expansion and the rest of the universe when the internal gravitational

attraction is stronger than the stretching due to the Hubble expansion. In this subsec-

tion, we give a brief overview of the generation of scalar and tensor type primordial

perturbations during inflation. For this subsection, we will mostly follow Refs. [60, 62].

In the previous section, we focus on the effects of the inflation at the classical level

and neglect the quantum nature of the fields in our formulations, and the effects of
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these fluctuations on the background evolution. The quantum fluctuations really do

not modify the background evolution as long as

• The energy scale of inflation is low enough so that “quantum jumps” of the in-

flaton, ∆φ
∆N ∼ O(H), are subdominant wrt the classical evolution

(
∆φ
∆N '

dV/dφ
3H2

)
(See [63] for details.)

• The inflaton does not enter a Ultra-Slow-Roll phase 5 (See [64] for details.)

Assuming that the inflaton slowly rolls through its potential (ie. the second bullet

above is satisfied automatically), let us show that the stochastic quantum diffusion

jumps have subdominant effect with respect to the classical force term (V ′(ϕ)/H2).∣∣∣∣Fquantum

Fclassical

∣∣∣∣ ' ∣∣∣∣ H

V ′/3H2

∣∣∣∣ ' ∣∣∣∣H2

3φ̇

∣∣∣∣ ' 2π

3

√
Ppert ≪ 1 , (2.33)

where we employ eq (2.23) as we assume SR conditions are satisfied. We have also

used Ppert =
(
H
2π

)2 H2

φ̇2
for the power spectrum of the curvature perturbations generated

during slow roll inflation. Observationally, Ppert = O(10−9) 6.

Although they play a subdominant role for the background evolution of the universe

during inflation (see eq (2.4)), these quantum fluctuations become the seeds of the struc-

ture (inhomogeneities) when they re-enter the horizon after the inflationary expansion.

In addition, quantum fluctuations can reveal extremely valuable information about the

fundamental properties of the inflationary era and of high energy physics. The generic

treatment of perturbations require various technical details which will be discussed in

the various chapters of this thesis. Therefore, this section focuses on the basics of the

inflationary observables.

The General Relativity is concisely expressed as “Spacetime tells matter how to

move; matter tells spacetime how to curve.” by Wheeler’s words. (In GR, “matter”

5 When the inflaton potential is extremely flat, the inflaton enters Ultra-Slow-Phase (USR). In this

phase, although one of the SR parameters, ε, is tiny, the other one η is not. This phase is qualita-

tively very different than SR phase because during USR, quantum diffusion becomes important and

statistical features of the perturbations change. [64]
6 It is possible that potential might be flatter or steeper for the modes produced after CMB scales and

this changes the Ppert, but as long as Ppert � 1, quantum fluctuations will only negligibly change

the background evolution.
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is used for anything but the gravitational field.) This is not any different during in-

flationary expansion and both matter and metric (geometry) perturbations should be

considered together. For an inflationary model with a single scalar field inflaton, there

are 11 perturbations in total. One of them belongs to the inflaton, ϕ = φ(t) + δφ(t, ~x),

φ(t) denoting the homogenous inflaton background. 10 of these belong to the metric

perturbations. As it is symmetric, it has n (n+1)
2 perturbations. Among these 10 per-

turbations, 4 of them are scalar, 4 (2× 2) of them are transverse vector and 2 of them

are transverse traceless tensor. At first order in perturbation theory, scalar, vector and

tensor type perturbations decouple from each other and can be analyzed separately [62].

gµν = a2(t)

(
−(1 + 2Φ) ∂iB +Bi

∂iB +Bi (1− 2Ψ)δij +DijE + ∂(iEj) + hTT
ij

)
, (2.34)

where Dij =
(
∂i∂j − δij

3 ∇2
)

, and Φ, B,Ψ, E are scalar, Bi and Ej are transverse vectors

and hTT
ij is transverse and traceless tensor. Not all these perturbations correspond to

physically independent propagating modes. Two combinations of the scalar perturba-

tions and one combination of vector perturbations are not dynamical, so they can be

determined by other fields. From the remaining 7 perturbations, 4 modes (2 scalar and 2

vector modes) can be eliminated through a change of coordinates and this leaves 3 inde-

pendent physical modes: a (gauge invariant) scalar curvature and the two polarizations

of a tensor gravitational wave.

2.3.1 Scalar Perturbations

The gauge invariant curvature perturbation is conventionally defined as 7

ζ ≡ Ψ +H
δρ

ρ̇
, (2.35)

where δρ is the perturbation in energy density and Ψ is one of the spatial scalar per-

turbation given in (2.34). Although the details of the reheating and the evolution from

the end of inflation until today are not known precisely, we can still have unambiguous

predictions about the primordial perturbations because ”independent from the equation

7 Another conventional definition, for comoving hypersurfaces, is R ≡ Ψ + H δφ

φ̇
. For superhorizon

scales, both these variables become equivalent ζ ' R
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of state inside the horizon”, the curvature modes are conserved outside the horizon (see

Ref. [60, 62]).

The only dynamical scalar degree of freedom reveals valuable information about the

inflationary era through its distinct correlators. The dimensionless power spectrum of

ζ, Pζ , is defined from the two-point function as

〈
ζ~k ζ~k′

〉
≡ 2π2

k3
Pζ(~k) δ(3)(~k + ~k′) , (2.36)

where ζ~k is the Fourier transform of ζ(~x) and k ≡ |~k|, and δ(3) is the 3-dimensional Dirac-

Delta function, which implies momentum conservation. If fluctuations are isotropic,

namely they are rotationally invariant, then power spectrum only depends on the mag-

nitude of the wavenumber ~k, ie. Pζ(~k) = Pζ(k).

The power spectrum is conventionally parametrized as

Pζ(k) = As
(
k

k∗

)ns−1+ 1
2
αs ln(k/k∗)

, (2.37)

where As is the amplitude at pivot scale, ns is the scalar spectral index, αs is the

running of the scalar spectral index, and k∗ is the pivot wavenumber which is usually

taken as k∗ = 0.05 Mpc−1 or 0.002 Mpc−1.

The parameters in Planck ’18 (for the pivot scale k∗ = 0.05Mpc−1) are given as

follows [149]:

• As = (2.1±0.03) ·10−9 (Planck TT, TE, EE+ lowE+ lensing) , 68% CL

• ns = 0.9649± 0.0042 (Planck TT, TE, EE + lowE + lensing) , 68% CL

• αs = −0.0045±0.0067 (Planck TT, TE, EE+ lowE+ lensing) , 68% CL

In slowly rolling single scalar field case, the curvature perturbation is obtained as8

Pζ '
H4

4π2φ̇2

(
k

k∗

)2η−6ε

' H2

8π2 εM2
p

(
k

k∗

)2η−6ε

(2.38)

8 In spatially flat gauge, one can read how it is found as: ζ ' H V ′δφ
ρ̇

, so Pζ ' H2V ′2〈δφ2〉
(φ̇ φ̈+V ′φ̇)2

' H4

4π2φ̇2 ,

where in the last step we employ that δφ is nearly massless, so its power spectrum is
(
H
2π

)2
.
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Hence in single scalar field slow roll, As = H2

8π2M2
p

and ns − 1 = 2η − 6ε� 1 9.

The observed fluctuations in CMB experiments show that they are consistent with

a Gaussian distribution. If the primordial signal were completely Gaussian, then one

expects all the odd correlators (ie. 〈ζ3〉, 〈ζ5〉, ...) to vanish perfectly. However, although

it is suppressed by the strength of the gravity, there exist nonlinear interactions between

curvature perturbations. As a result, even single slowly rolling scalar field has nonzero

but tiny primordial non-Gaussianity 10. The detection of non-negligible amount of

non-Gaussianity might be a sign of a multifield inflation or the different interactions

during inflation. Hence, the bispectrum is an important indicator for primordial non-

Gaussianity and also an indicator for the inflationary physics, defined as

〈ζ~k1
ζ~k2

ζ~k3
〉 ≡ Bζ(k1, k2, k3)δ(3)(~k1 + ~k2 + ~k3) (2.40)

where ki indicate the magnitude of the corresponding vector as |~ki|, and 3 dimensional

Dirac Delta is due to momentum conservation. The 3 momentum vectors satisfy ~k1 +

~k2 + ~k3 = 0, and they form a triangle. Therefore, in addition to the amplitude, the

bispectrum depends on the “shape” of this triangle and overall scale of the momenta.

For example, the slowly rolling single scalar field bispectrum peaks at the squeezed

configuration (k1 � k2 ' k3), while as shown in Chapter 4, the bispectrum resulting

from the pseudo-scalar vector interaction peaks in the equilateral shape (k1 ∼ k2 ∼ k3).

As a result, together with the overall amplitude, the shape and the scale-dependence,

the bispectrum conveys valuable information about the inflationary physics.

2.3.2 Tensor Perturbations

Primordial gravitational waves (GWs) is another important physical observable related

with the inflationary era. They are the transverse and traceless fluctuations of the

metric. Since they are massless, they propagate with the speed of light and have two

9 The scale dependence can be read off as d lnP
dlnk

' 4 d lnH
d ln k

− 2 d ln φ̇
d ln k

= −4ε+ 2η − 2ε = 2η − 6ε

10 The non-Gaussianity is usually parametrized by the “nonlinearity parameter” called fNL, which can

be expanded as

ζ(~x) = ζG(~x) +
3

5
fNL

(
ζ2
G − 〈ζG〉

)
+O(ζ3

G) (2.39)

where ζG is a Gaussian field. The fNL is predicted to be O(1)(ns − 1) ' (10−2) for single field SR

models.
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polarizations (+, x) or in a different basis (L,R). The gravitational wave power spectrum

from the two-point function is defined as〈
hλ(~k)hλ′(~k

′)
〉

=
2π2

k3
Pλ(k)δλλ′ δ

(3)(~k + ~k′) (2.41)

where λ = {L,R} or {+, x}, again Dirac Delta implies momentum conservation (or

translation invariance) and we assume rotational invarinace (isotropy) so that Pλ de-

pends only on the magnitude of the vector ~k. The total power spectrum is obtained by

summing over both polarizations.

Pgw = PL + PR. (2.42)

In single scalar field models each polarization has the same strength, namely PL = PR.

Pgw =
2H2

π2M2
p

(
k

k∗

)nT
(2.43)

Here nT is defined as tensor spectral tilt and for single field models it is 2ε.

A cosmological observable giving the ratio of the scalar power to tensor power is

called as tensor-to-scalar-ratio and defined as

r ≡ Pgw

Pζ
(2.44)

Using eqns (2.38 and 2.43), tensor-to-scalar-ratio becomes

r ' 16ε (2.45)

for single field models. Note that with r (∝ ε) and As (∝ V
ε ), the energy scale of inflation

can be determined as long as GW background is produced by the vacuum fluctuations

of the metric. The As has been known since COBE experiment, and there is a strong

effort to detect the other one. If measured, r also needs to be compared with tensor

tilt nT because in single field models, they satisfy the “consistency relation”, r = 8nT .

According to the very recent results from the joint analysis of BICEP2/Keck Array and

Planck, r < 0.064 with 95% CL, at the scale 0.002 Mpc−1 [149].



Chapter 3

The Interaction of Axion and

Abelian Gauge Field

“Everything which is not forbidden is compulsory.”

Axion inflation is a compelling class of inflationary models which was first pro-

posed to protect the flatness of the inflaton potential from large quantum corrections

by employing a Pseudo-Nambu-Goldstone-Boson(PNGB), axion, with an approximate

shift symmetry (see Appendix A). This symmetry constrains the possible interactions of

the axion to other fields. We study the mass-dimension-five-operator, 1
f φFµνF̃

µν , that

couples axion to gauge fields1.

This chapter is devoted to the chiral coupling between an axion rolling through its

potential and Abelian gauge field during inflation, and becomes a basis for most of

the following chapters in this thesis. In result of this rolling, via the chrial coupling,

one helicity of the gauge field experiences a tachyonic instability (the square of its

frequency becomes negative) around the horizon crossing and gets amplified. In return,

1 It is immediate to see that this operator is shift symmetric. Since ∆S =
∫
d4x
√
−g c · FF̃ is a

complete boundary term (c is an arbitrary constant), as φ is shifted by a constant amount, the

equations of motion and any perturbative process are not affected by this transformation.

22
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the produced vector particles source scalar and tensor(GW) perturbations in a non-

Gaussian two-to-one fashion, schematically δA+ δA→ δφ and δA+ δA→ δg, and lead

to interesting phenomenology for distinct cosmological observations.

The study in this chapter is for a generic pseudo-scalar field, namely axion can

either be the inflaton field driving inflationary expansion or a spectator field which

constitutes a subdominant portion of the energy density and rolls down thorugh its

potential for a limited period of inflation. For the case that the axion is the inflaton,

the particle production parameter that controls the vector field amplification evolves

adiabatically, but in the spectator case, this parameter can be strongly time-dependent

(depending on the choice of the axion potential). For both cases, we explicitly compute

the modified mode function (for the amplified helicity) and show the time evolution of

the contribution to the energy density from a particular vector field mode. The validity

of various approximations to capture this particle production process in the adiabatic

evolution case has also been worked out in detail. This chapter is mostly based on the

work conducted in Refs. [171, 172]

3.1 Gauge field amplification in Axion Inflation

The portion of the Lagrangian containing Abelian gauge field is

LA = −1

4
FµνF

µν − α

4 f
X Fµν F̃

µν , (3.1)

where X is the pseudo-scalar coupled to the vector field, f is the axion decay constant

(or axion scale) and α is a dimensionless coupling constant, Fµν is field strength tensor

of the Abelian field and F̃µν is the dual tensor of the field strength.

The field strength is defined as

Fµν = ∂µAν − ∂νAµ , (3.2)

and dual tensor is defined as

F̃µν ≡ εµναβ

2
√−gFαβ , (3.3)

where the quantity εµναβ is totally anti-symmetric, and normalized to ε0123 = 1.

As indicated, we analyze two cases:
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• X = φ is the inflaton field, and φ̇ evolves adiabatically;

• X = σ is a field with an energy density much smaller than that of the inflaton,

which experiences a momentary speed-up for a few e-folds during inflation.

We work in the Coulomb gauge, namely A0 = ~∇ · ~A = 0, and express the vector field

with two helicites as

Âi(τ, ~x) =

∫
d3k

(2π)3/2
ei
~k·~xÂi(τ,~k)

=
∑
λ=±

∫
d3k

(2π)3/2

[
ε
(λ)
i (~k)Aλ(τ, ~k) âλ

(
~k
)

ei
~k·~x + ε

∗(λ)
i (~k)A∗λ(τ, ~k) â†λ

(
~k
)

e−i
~k·~x
]

=
∑
λ=±

∫
d3k

(2π)3/2
ei
~k·~x ε

(λ)
i (~k)

[
Aλ(τ, ~k) âλ

(
~k
)

+ A∗λ(τ, −~k) â†λ

(
−~k
) ]

(3.4)

where the helicity vectors ~ε (±) satisfy ~k · ~ε (±) = 0, i~k × ~ε (±) = ±k~ε (±), ~ε (±) · ~ε (∓) = 1

and ~ε (±) · ~ε (±) = 0. 2 To obtain third line from the second line, we send ~k → −~k for

the second term in the square bracket and employ ε∗±(~k) = ε±(−~k) = ε∓(~k).

The creation and annihilation operators satisfy the usual commutation relations:[
âλ

(
~k
)
, âλ′ (~p)

]
= 0,

[
â†λ

(
~k
)
, â†λ′ (~p)

]
= 0 and

[
âλ

(
~k
)
, â†λ′ (~p)

]
= δ(~k − ~p)δλλ′

The equation of motion for the mode function of the gauge field becomes(
∂2
τ + k2 ± 2 k ξ

τ

)
A± = 0 , (3.6)

where

ξ ≡ α Ẋ

2 f H
(3.7)

is the dimensionless particle production parameter, τ is the conformal time, which

during inflation is related to the scale factor a by a = − 1
H τ at zeroth order in slow roll.

As seen from the last term of the eq (3.6), depending on the sign of ξ, one of the

two helicity modes is unstable starting from couple e-folds before horizon crossing. We

assume ξ > 0, so that the unstable polarization is the + one (recall that τ < 0 during

2 For an arbitrary vector û = (sin θ cosφ, sin θ sinφ, cos θ), polarization vectors get the form

~ε (±) (û) =
1√
2

(cos θ cosφ∓ i sinφ, cos θ sinφ± i cosφ, − sin θ) . (3.5)
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inflation). This polarization can receive a substantial amplification (this is not the

case for the negative helicity mode). The amplification is controlled by ξ, which has a

different evolution in the two different cases mentioned above.

3.1.1 Nearly constant gauge field from α
f
φF F̃

IfX is the inflaton field φ, which is slowly rolling during inflation, we have ξ ' α
√

2 εφMp

2f ,

where εφ is the standard slow roll inflaton parameter. This quantity is changing only

at second order in slow roll. Therefore ξ can be approximated as a constant while any

single mode (a mode with a given value of k) has a size comparable to the horizon.

As we shall see, this is the time range during which a mode is produced, and can lead

to potentially observable effects (before its energy is diluted away by the expansion

of the universe). However, two different modes k1 6= k2 leave the horizon at different

moments, so they probe possibly different value of ξ, depending on the value of
√
εφ

at two different times at which the two modes left the horizon. In this case we treat ξ

as an adiabatically evolving parameter, denoting by ξk the value of ξ assumed when a

given mode k left the horizon (this is the constant value of ξ that we take in computing

the evolution of that specific mode). 3

Under the assumption of constant ξ (for a given mode k), eq. (3.6) can be solved

analytically. The normalized solution satisfying adiabatic vacuum initial conditions is

given in terms of the irregular Coulomb function

A± '
1√
2k

H±0 (±ξ, −kτ) . (3.8)

The approximated equality above is due to the fact that ξ is not exactly constant. In

the limit ξ � −kτ , this solution is very-well approximated by

A+ '
√
−τ
2

[
2 eπξ π−1/2K1

(√
−8 ξ k τ

)
+ i e−πξ π1/2 I1

(√
−8 ξ k τ

)]
, (3.9)

where, K1 and I1 are modified Bessel functions of second and first types, respectively.

Since, ξ >∼ O(1) in all phenomenologically interesting cases and the field amplification

occurs around horizon crossing, one can further simplify this result by taking the large

3 Improving over this will provide corrections proportional to the slow roll parameters.
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Figure 3.1: Time evolution of the gauge field energy density for a given comoving
momentum k for three approximated solutions (3.8), (3.9) and (3.10).

argument limit of Bessel functions

A+ '
1√
2k

(−kτ
2ξ

)1/4

eπξ−2
√
−2ξkτ+

i√
2k

(−kτ
25ξ

)1/4

e−πξ+2
√
−2ξkτ ,

1

8ξ
� −k τ � 2 ξ ,

(3.10)

and

A′+ '
√
k

2

(
2ξ

−kτ

)1/4

eπξ−2
√
−2ξkτ−i

√
k

2

(
ξ

−8kτ

)1/4

e−πξ+2
√
−2ξkτ ,

1

8ξ
� −k τ � 2 ξ .

(3.11)

The real part of the approximations (3.10) and (3.11) encodes the amplification of

the positive helicity gauge mode. The imaginary part guarantees that the Wronskian

condition A+A
′∗
+ − c.c. = i is satisfied for canonical commutation relations. We note

that these expressions are related by

dA′+ (k, τ)

dτ
'
√

2 k ξ

−τ A∗+ (k, τ) . (3.12)

To appreciate the difference among the three approximations (3.8), (3.9) and (3.10), and

to understand the timescale of the gauge field amplification and subsequent dilution,

we show in Figure 3.1 the time evolution of the physical energy density of the gauge

field modes for a given comoving momentum k. Details of the computation are given

in Appendix B.2.

Time flows from right to left in the figure, with −kτ = p
H = 1 denoting horizon

crossing (p is the physical momentum of the mode, while H is the Hubble rate). At
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the earliest times shown, the mode is deep inside the horizon, and the figure shows

the energy density associated to the vacuum mode solution. Namely, at very large
k
a , the term proportional to ξ can be disregarded in eq. (3.6), and the mode has the

standard (comoving) dispersion relation ω2 = k2. The energy density of the vacuum

mode is UV-divergent, and it needs to be renormalized away (we stress that this has

nothing to do with the gauge field amplification studied in this chapter). As done in the

literature, we simply cut-off this UV regime when we compute the observable effects of

the gauge modes. Following the time evolution of the curves in the figure, we observe a

decrease of this vacuum energy contribution, and then a growth of the energy density.

For ξ = O (1), this growth takes place near horizon crossing (for definiteness, ξ = 3

was assumed in the evolutions shown in the figure). This growth is then followed by

a decrease at the latest times shown in the figure, leading to a peak of the physical

energy density close to horizon crossing. We stress that we are showing only the energy

density of modes with a given comoving momentum k. At any time during inflation,

there is a nearly constant energy density in gauge fields, due to the modes that have

size comparable to the horizon at that given moment.

The growth visible in the figure shows the gauge field amplification due to its coupling

to X (t). The dilution is due to the expansion of the universe. The resulting peak is

well separated from the UV-diverging part (we note that the vertical axis of the figure

is in log scale), leading to a clear distinction between the physical field amplification,

and the standard divergence associated with the empty vacuum state.

The produced gauge field, before being diluted away, sources scalar perturbations

and gravitational waves. The phenomenological implications have been studied in a

number of works in the literature that have used the approximate solution (3.10) 4.

The condition 1
8ξ � −kτ � 2ξ are mathematical conditions for (3.9) to reproduce

(3.8), and for (3.10) to reproduce (3.9). However, we can see from the figure that the

specific values −kτ = 1
8ξ , 2 ξ do not have an immediate physical meaning. In setting a

UV cut-off, we rather use −kτ |max = ξ, which, as visible in the figure, well approximates

the position of the minimum between the unphysical vacuum energy density, and the

physical bump in the energy density due to the gauge field amplification (this is true in

the ξ ∼ 3− 5 range we are interested in).

4 We verified that the results change only slightly if one instead uses the Coulomb functions (3.8).
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3.1.2 Bump in gauge field production from α
f
σ F F̃

We now discuss the gauge amplification for the case in which ξ is significant for only a

few e-folds during inflation, namely strongly time dependent. For that, we assume that

the field X has a momentary faster roll in that period. The pseudo-scalar X is denoted

as σ and it is not the inflaton, but a spectator field.

We assume the simplest and most natural potential for a pseudo-scalar field σ

V (σ) =
Λ4

2

[
cos

(
σ

f

)
+ 1

]
. (3.13)

This term is added to the inflaton potential and we assume no direct coupling between

the inflaton and σ (ie. V = Vφ(φ)) + Vσ(σ)) . We define the parameter

δ ≡ Λ4

6H2f2
, (3.14)

that controls the period that axion speed is considerable. The slow roll equation of

motion of σ is found as

σ = 2 f Arctan
[
eδ H(t−t∗)

]
⇒ σ̇ =

f H δ

cosh [δ H (t− t∗)]
, (3.15)

under the assumption that H is constant and that (3.13) is much smaller than the

inflaton potential (ie. Vσ � Vφ). In this solution, t∗ denotes the time at which σ

becomes π f
2 and reaches its maximum speed σ̇∗ ≡ σ̇ (t∗). We also see that σ̇ is significant

only for a number of e-folds around t = t∗ as ∆N ' 1
δ .

By using τ = − 1
aH (zeroth order in slow-roll), we can express particle production

parameter explicitly as

ξ (τ) =
α σ̇

2Hf
=

α δ

2 cosh [δ H (t− t∗)]
=

2 ξ∗(
−τ
−τ∗

)δ
+
(
−τ∗
−τ

)δ , (3.16)

ξ∗ and by τ∗ are, respectively, the value of ξ and τ at t = t∗. We note that the particle

production parameter gets its maximum value at t∗, and it is ξ∗ = α δ/2.

Then the generic mode eqn (3.6) for gauge field becomes

A′′± +

k2 ± 4 k ξ∗

τ
[
(τ/τ∗)

δ + (τ∗/τ)δ
]
A± = 0 , (3.17)
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As we set ξ∗ > 0,without loss of generality, only positive helicity modes are amplified,

and we can neglect the A− mode. Since ξ varies rapidly, the mode function solutions

for the gauge field obtained in the previous subsection are no longer valid.

The solution of eq. (3.17) cannot be written in closed form. However we can obtain

a good analytical approximation of the time dependence of A+(τ, k) using the WKB

approximation, finding (see Appendix B.1)

A+ (τ, k) '
[ −τ

8 k ξ(τ)

]1/4

Ã (τ, k) , A′+ (τ, k) '
[
k ξ(τ)

−2 τ

]1/4

Ã (τ, k) , (3.18)

where we have defined

Ã (τ, k) ≡ N [ξ∗, x∗, δ] exp

[
−4 ξ

1/2
∗

1 + δ

(
τ

τ∗

)δ/2
(−kτ)1/2

]
, (3.19)

with x∗ ≡ −kτ∗ = k/(a∗H). We determine the time-independent normalization factor

N [ξ∗, x∗, δ] by matching A+ at late time −kτ � 1 with numerical solution of (3.17).

Similar to nearly constant rolling case, in this scenario we see that the amplitude

of the real part of the mode function is much larger than the imaginary part in the

amplification regime. To obtain the imaginary part of the mode function one can employ

canonical commutation relations (see Appendix B.1 for details)

A+ (τ > τ∗) ' N [ξ∗, x∗, δ]

( −τ
8 k ξ (τ)

)1/4

exp

[
−4ξ

1/2
∗

1 + δ

( −τ
−τ∗

)δ/2
(−kτ)1/2

]

+
i

N [ξ∗, x∗, δ]

( −τ
27 ξ (τ) k

)1/4

exp

[
4ξ

1/2
∗

1 + δ

( −τ
−τ∗

)δ/2
(−kτ)1/2

]
,

(3.20)

Note that the mode is not amplified considerably (and negligibly small) for τ < τ∗.

Recall that τ∗ is the conformal time corresponding to the physical time t∗, while x∗ and

ξ∗ denote the values of x and ξ when axion is fastest, namely x∗ = −k τ∗ and ξ∗ = α δ
2 .

The time-independent normalization can be well fitted by a Gaussian shape [171]

N [ξ∗, x∗, δ] ≈ N c [ξ∗, δ] exp

(
− 1

2σ2 [ξ∗, δ]
ln2

(
x∗

qc [ξ∗, δ]

))
. (3.21)

The coefficients N c, σ, and qc control, respectively, the amplitude, the width, and the

position of the bump. They can be evaluated numerically, and in Appendix B.1 we
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Figure 3.2: Time evolution of the contribution to the gauge field physical energy density
from modes with different comoving momenta. x∗ ≡ −kτ∗ = k/a∗

H is the ratio between
the physical momentum of the mode and the Hubble horizon at τ = τ∗.

provide their functional dependence on ξ∗ for the two choices δ = 0.2, 0.5. We see in eq

(3.21) that the position of the peak is at kpeak = qc

−τ∗ = k∗ · qc, where k∗ is the mode

that leaves the horizon at the moment of τ∗. (It can be also expressed as the mode with

x∗ = 1). We expect that modes with x∗ = O (1) are the maximally amplified ones, and

indeed we find qc >∼ 1 in the range of parameters we have studied (see Appendix B.1).

In Figure 3.2 we show the contribution to the energy density from three different

modes of the gauge field (the result has been obtained by inserting (3.20) in eq. (B.20)).

As in the previous figure, we note the unphysical UV-divergent vacuum energy density

decreases with time and it is followed by the physical amplification, followed by the

dilution due to the expansion of the universe.

We note that, among the modes shown, the one with x∗ = 5 is the one with greatest

amplification. We verified that this is the case also among the modes that we do not

show here. The amplification becomes progressively smaller at values of x∗ greater and

smaller than those shown here, in agreement with the Gaussian profile (3.21). We see

from the figure that, for the maximally amplified x∗ = 5 mode, the value −k τ = ξ∗

provides a good position to separate between the unphysical vacuum energy density and

the physical amplification.



Chapter 4

CMB Phenomenology of

Axion-Gauge Interaction

“The Big Bang is the poor man’s particle accelerator.” Yakov B. Zel’dovich

In Chapter 3, we have studied the amplification of the Abelian gauge field via its

chiral coupling to a rolling axion field. In this chapter, we direct our attention to how

the amplified gauge particles source scalar and tensor particles, and to the resulting

phenomenology at the largest observable scales, namely CMB scales. Because in this

interaction only one helicity of the gauge field is amplified, parity symmetry is broken,

and the model produces non-zero primordial TB and EB correlators (that are expected

to vanish in models that preserve parity). Moreover, since the scalar and tensor fluctu-

ations are sourced via 2→ 1 processes, the sourced fluctuations deviate from Gaussian

statistics (specificaly, they have a χ2 distribution). As a result, this mechanism results

in distinguishable signatures at CMB scales. In this chapter, we assume that the axion

is a spectator field, not the inflaton.

There is currently strong experimental effort to detect the gravitational waves (GWs)

generated during inflation. This signal is conventionally parameterized by the tensor-

to-scalar ratio r, which is the ratio between the GW power spectrum (summed over

both polarizations) and the density fluctuation power spectrum at a given large scale.
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A joint BICEP2/Keck Array and Planck analysis has recently reported the 95% CL

bound r < 0.064 at the scale 0.002 Mpc−1 [149]. It is expected that this limit will

be improved by several ongoing and forthcoming CMB polarization measurements. For

example, a statistical uncertainty σ (r) = 0.001 or below is quoted in the proposed stage

4 of ground-based CMB experiments [9].

It is commonly stated that observing the GWs generated during inflation provides

both (i) the energy scale of inflation, and (ii) a lower bound on the excursion of the

inflaton field during inflation (the so-called Lyth bound [10], which holds in the case of

single field inflation). In terms of r, these results read

V
1/4

inf ' 1016 GeV
( rvac

0.01

)1/4
,

∆φ

Mp

>∼
( rvac

0.01

)1/2
. (4.1)

The observation of an inflationary GW signal does not guarantee that the expressions

(4.1) are valid, as they rely on the assumption that the observed GWs are vacuum

modes of the metric, amplified by the inflationary expansion, while it is possible that

the observed GWs are sourced by some other field during inflation. Several recent studies

have shown that it is rather nontrivial to realize such mechanisms. Whatever the GW

source is, it couples at least gravitationally not only to the tensor metric perturbations,

but also to the scalar ones, and so it unavoidably affects also the scalar perturbations to

some degree. The source typically leads to a statistics that is significantly less gaussian

than that of the vacuum modes. Therefore, respecting the stringent limits imposed by

the gaussianity of the scalar perturbations often restricts the source term to a too low

level to lead to observable GWs.

This problem manifest itself for example 1 in one of the most studied mechanisms of

GW generation [31, 32, 33, 34]. In this mechanism, the mass of a scalar field χ depends

1 Other mechanisms for the generation of GWs which are alternative to the standard vacuum pro-

duction, but are still embedded in the inflationary scenario include the use of spectator fields with

low sound speed [11, 12, 13], the modification of the dispersion relation of the tensor modes in the

effective-field-theory approach [14, 15], varying sound speed of the tensor [16], the strong tachyonic

growth of chiral tensor modes in the chromo-natural inflation [17, 18, 19] and in the gauge-flation

model [20], and preheating [21, 22, 23, 24, 25, 26, 27, 28] (in this last case the produced GW signal is

typically at scales much shorter than the CMB ones). It has also been investigated [29, 30] whether

the presence of many light degrees of freedom could modify the standard relation (4.1) between the

energy scale of inflation and r; as shown in [30], this does not appear to be the case.
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on the value of the inflaton, and it is arranged in such a way that it vanishes when the

inflaton reaches a given value φ∗ during inflation. As the inflaton crosses φ∗, a burst

of quanta of the field χ is generated non-perturbatively [35] and can source GWs. In

all the implementations of this mechanism that have been worked out in some details

the GW production is however negligible; as soon as the inflaton moves past φ∗, the

quanta of χ rapidly become non-relativistic. This suppresses their quadrupole moment,

so that the sourced GW signal is below the observational level [33]. On the contrary,

the production of scalar perturbations from these quanta is not suppressed. The bounds

on the non-gaussianity of scalar modes put strong bounds on this mechanism.

To have a successful mechanism for the production of a visible GWs during inflation

it is therefore crucial to maximize the ratio between the sourced GWs and the sourced

scalar modes [33]. 2 For example, one could imagine that the mass of χ is controlled by a

field σ different from the inflaton. The absence of a direct coupling between the inflaton

and χ decreases the amount of scalar perturbations produced by the latter. Even in

this case, however, the gravitational coupling between χ and the inflaton leads to a

much greater production of scalar than tensor perturbations, due to the non-relativistic

nature of χ. Therefore Ref. [33] studied the case in which the source of GW is both (i)

only gravitationally coupled to the inflaton, and (ii) a relativistic gauge field Aµ.

It was shown in [38] that the pseudo-scalar coupling φ
f F F̃ amplifies one helicity of the

vector field. This helicity mostly sources the GWs of one definite chirality [39], through

the two-body interaction δA+ δA→ δg. The chiral nature of the signal is particularly

interesting, 3 since it leads to the parity violation in the CMB that can [42, 43, 44, 45]

allow to discriminate the GWs produced by this mechanism from the vacuum ones 4.

However, the vector quanta also inverse decay to inflaton perturbations, 5 δA + δA →
2 We note that also in warm inflation [36] the tensor-to-scalar ratio is reduced compared to the standard

case due to the dissipative effects and the much greater production of scalar with respect to tensor

perturbations due to the coupled inflaton [37].
3 Moreover, the φFF̃ interaction does not lead to a ghost instability as the mechanism of chiral GW

production from a gravitational Chern-Simons term coupled to the inflaton [40, 41].
4 The phenomenological constraints on the production of chiral magnetic fields and their subsequent

sourcing of chiral gravitational waves have been studied in [46, 47].
5 At the technical level, in the presence of a direct coupling the sourced scalar power is enhanced with

respect to the sourced tensor power by a factor of 1
ε2
φ

, cf. eqs. (8) and (10) of [48] and the discussion

in section 4.1 of [39].
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δφ. This again would lead to an exceedingly large CMB non-gaussianity [48, 49], and,

typically, to a growth of the power spectrum which is constrained by smaller scale

CMB experiments [50] and the non-observation of primordial black holes [51]. Once the

limits from the scalar production are respected, the produced GWs are undetectable at

CMB scales. The scalar non-gaussianity can be reduced if the inflation sources a large

number S of vector species, so that the inflaton perturbations sourced by these vectors

are gaussian due to the central limit theorem (obtaining a visible GW signal however

requires S ∼ few hundreds − thousands [39]). An observable GW signal may be also

achieved if the CMB anisotropies are due to a curvaton [39]. Instead Ref. [33] studied

the case in which the rolling pseudo-scalar is a field σ decoupled as much as possible

from the inflaton (thus realizing the conditions (i) and (ii) mentioned above 6). It was

shown there that, in this case, the δA + δA → δφ gravitational interaction produces

a negligible amount of inflaton perturbations, so that the mechanism can indeed lead

to a visible GW signal. Various aspects of this model, including its embedding in a

UV-complete theory, were explored in [54].

The mechanism in Ref. [33], predicting blue GW spectrum, was further studied in

[55] to reconcile the BICEP2 measurements [56] and the upper bounds on r at larger

scales. It was found that for the mechanism to be successful, one should also ensure that

σ does not contribute to the observed CMB perturbations. One of the simplest ways to

achieve this is to impose that σ becomes massive short after the CMB modes leave the

horizon. This issue was further studied in [57] and in [58]. It was shown that the δφ

production is dominated by their linear interaction with the δσ quanta that are sourced

by the gauge field and that the amplitude of the δφ fluctuations sourced this way is

proportional to the number of e-folds during which σ is rolling (ie. σ has appreciable

speed). Therefore, in this chapter, we focus on the case that δφ fluctuations are sourced

only for a few e-folds of inflation during which the roll of axion is significant. We further

note that the constraints from the scalar bispectrum are relatively weak for modes with

` . 100. As a consequence, if σ̇ ' 0 when modes with ` >∼ O(102) leave the horizon,

then the constraints from non-gaussianity can be more easily evaded.

6 A similar mechanism that also satisfies these conditions, and that also leads to observable GW, has

been recently studied in [52]. In this study, the sourcing vector field is produced by a rolling dilation

field σ (only gravitationally coupled to the inflaton) through the Ratra f (σ) F 2 mechanism [53].
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Earlier studies have made computations with the assumption that σ̇ is constant.

Here we study the generation of primordial perturbations in a more realistic setup,

namely in a model in which the field σ evolves in a given potential. The simplest

potential for an axion field, which is a simple sine potential as given in eq.(4.3), allows for

very small σ̇ both at early and late times, when σ is, respectively, close to the maximum

(σ = 0) and the minimum of the potential (σ = fπ). The speed has a peak at an

intermediate time. (See Section 3.1.2 for detailed study of gauge field amplification in

this scenario). We assume that Vσ is subdominant with respect to the inflaton potential

and that the inflaton potential is very flat, so that the Hubble rate H can be treated as

constant. The peak lasts for a number of e-folds roughly of O
(
H2

m2
σ

)
, where mσ is the

curvature of (4.3). So, remarkably, the simplest axion potential is a perfect candidate for

generating a visible GW signal, while keeping the δφ production under control. In the

following sections, we show that this is indeed the case through explicit computations.

We present some specific examples, namely some choice of parameters in the model,

for which the sourced tensor mode strongly dominates over the vacuum one at large

scales, leading to observable B modes of the CMB polarization. The GW signal also

leads to a marginally observable TB correlation (as a consequence of the broken parity

invariance of the mechanism) and to a well observable (high signal-to-noise ratio) BBB

correlation. At the same time, in such examples we find no statistically significant

signatures in the TT, and TTT temperature correlators.

The plan of the chapter is the following. In Section 4.1 we present the model, the

background evolution, and the vector field production. In Section 4.2 we study the

cosmological perturbations (scalar and tensor modes) sourced by the vector field. In

Section 4.3 we summarize our results for the two- and three-point scalar and tensor

perturbations, and we discuss their phenomenology. In Section 4.4 we present our

conclusions. This chapter is complemented by multiple appendix sections. In Appendix

C.1 we review the computation of scalar modes produced in the case of constant σ̇. In

Appendices C.2 and C.3 we give details of, respectively, the scalar and tensor mode

computation. In Appendix C.4 we present some properties of the bispectra produced

in the model. In Appendix C.5 we estimate the departure of sourced modes from

gaussianity. This chapter is mostly based on the work conducted in Ref. [171].
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4.1 The model, Background Evolution and Gauge Field

Production

We will consider a system containing the inflaton φ and a second rolling field σ which

interacts with the U(1) gauge field Aµ via chiral coupling, so that the lagrangian reads

L = −1

2
(∂φ)2 − 1

2
(∂σ)2 − V (φ, σ)− 1

4
F 2 − α σ

4f
F F̃ . (4.2)

The rolling of σ provides a time dependent background for the gauge field and

amplifies its vacuum fluctuations. This amplification has been studied in detail in

Section 3.1.2. Such a phenomenon, on a de Sitter Universe with expansion rate H, is

controlled by the dimensionless quantity ξ, which must be larger than unity or so to

give observable effects [38].

In order to decouple as much as possible the fluctuations in the gauge field from

the scalar perturbations that are strongly constrained by CMB measurements, we will

assume as in [33] that there is no direct coupling between the inflaton and the field σ,

and we will write V (φ, σ) = Vφ(φ) + Vσ(σ).

As we have discussed in the introduction of this chapter, if σ̇ is approximately

constant throughout inflation, then exceedingly large non-gaussian metric perturbations

are generated. However, a large weight in the constraints on the primordial bispectrum

from cosmic microwave background radiation measurements is carried by relatively high

multipoles, ` = O(100 − 1000), whereas a possible observation of primordial tensor

modes relies on measurements at larger scales, corresponding to ` ∼ O(10− 100). As a

consequence, this chapter is devoted for the case where σ̇ is large only during the epoch

when the scales corresponding to the about the fraction or one tenth (10−2 − 10−1) of

the size of the current observable Universe have left the inflationary horizon. The most

natural potential for an axion-like field such as σ, does this job remarkably:

Vσ(σ) =
Λ4

2

[
cos

(
σ

f

)
+ 1

]
. (4.3)

Assuming Vσ � Vφ, one finds the slow roll solution

σ = 2f arctan
[
eδH(t−t∗)

]
, (4.4)
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where δ ≡ Λ4/(6H2 f2) and where we have denoted by t∗ the time at which σ = π
2 f .

As a consequence,

σ̇ =
f H δ

cosh [δH (t− t∗)]
. (4.5)

The slow roll condition gives

σ̈

3Hσ̇
= −δ

3
tanh [δH (t− t∗)] , (4.6)

so, to ensure that the slow-roll solution is valid, we require that δ � 3. The particle

production parameter, ξ, is given by

ξ(τ) ≡ α σ̇

2Hf
≡ α δ

2 cosh [δH (t− t∗)]
=

2 ξ∗(
a
a∗

)δ
+
(
a∗
a

)δ , (4.7)

where ξ∗ and by a∗ are, respectively, the value of ξ and of a at t = t∗. ξ∗ = α δ/2. The

value of ξ is significantly different from zero and of the order of ξ∗ only for (2 ξ∗)
−1/δ .

a/a∗ . (2 ξ∗)
1/δ.

Before we proceed we have to make sure that the dynamics of σ does not affect

significantly the background dynamics of the inflaton and of the geometry. The two

fields σ and φ are only gravitationally coupled, so we only need to require that σ

provides a negligible contribution to H and Ḣ. This is equivalent to requiring Vσ � Vφ,

and σ̇2 � φ̇2 (given that the inflaton is slowly rolling, the last equation also ensures that

σ̇2 � Vφ). From eq. (4.3), and from the definition of δ, we have Vσ ≤ Λ4 = 6H2f2δ,

which is subdominant to Vφ ' 3H2M2
p provided that f

Mp
� 1√

2δ
. Let us now discuss the

second condition: a sizable σ̇ would modify Ḣ, which, in turn, would affect the spectral

tilt of the inflaton perturbations. We note from (4.5) that σ̇ is exponentially small at

|t − t∗| > 1
δH . So, even if the peak value σ̇∗ was significant, it would alter the spectral

tilt only for a narrow set of modes that left the horizon while σ was rolling. Therefore,

σ̇2
∗ > φ̇2 does not automatically implies a significant phenomenological impact (at the

very least, one cannot naively apply limits on the spectral tilt that assume a very

small running). Nonetheless, to be conservative, we impose that σ̇2
∗ = (fHδ)2 � φ̇2 '

2εφH
2M2

p . Therefore, we impose the two conditions

f

Mp
� 1√

2δ
and

√
2 εφ

δ
. (4.8)

which can be easily enforced.
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The last term in the lagrangian (4.2) is responsible for the amplification of the

vacuum fluctuations of the gauge field. This process has been studied in Section 3.1.2

and the details of the computation has been presented in Appendix B.1. Here we only

mention the results here to set the stage for the scalar and tensor fluctuations sourced

by the amplified vector field.

The decomposition of gauge field by distinct modes is given in eq (3.4) and the

generic form of the mode function is given in eq (3.20). The time-independent nor-

malization is fitted with a gaussian shape function of x∗, ξ∗ and δ. The results for two

sample δ values, δ = 0.2, 0.5 are given in Appendix B.1. Since negative helicity is

neglected, effectively we end up with the following expression for the gauge field

Â0 = 0 , Âi

(
τ,~k
)
'
∫

d3k

(2π)3/2
ei
~k·~x ε

(+)
i

(
k̂
)
A+ (τ, k)

[
â+

(
~k
)

+ â†+

(
−~k
)]

, (4.9)

with the function A+(τ, k) given by eq. (3.18) and Ã by eq. (3.19).

For future reference we give here also the “electric” and “magnetic” field, 7 which

are related to the vector potential by

Êi = − 1

a2
Â′i , B̂i =

1

a2
εijk ∂jÂk , (4.10)

and therefore read

Êi

(
τ,~k
)

= −
∫

d3k

(2π)3/2
ei
~k·~x ε

(+)
i

(
k̂
)
H2τ2

[
k ξ(τ)

−2 τ

]1/4

Ã (τ, k)
[
â+

(
~k
)

+ â†+

(
−~k
)]

,

B̂i

(
τ,~k
)

=

∫
d3k

(2π)3/2
ei
~k·~x ε

(+)
i

(
k̂
)
H2τ2

[−k3 τ

8 ξ(τ)

]1/4

Ã (τ, k)
[
â+

(
~k
)

+ â†+

(
−~k
)]

,

(4.11)

using the approximate solution (3.18).

4.2 Sourced primordial perturbations

This section is divided in two subsections. We study the scalar and tensor modes

generated by the vector modes respectively in Subsection 4.2.1 and 4.2.2.

7 We do not need to identify the gauge field considered here with the Standard Model photon. Nonethe-

less, we sometimes use electromagnetic notation for convenience.
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4.2.1 Generation of scalar perturbations

The action (4.2) contains two scalar and two tensor degrees of freedom as dynamical

modes. After taking the spatially flat gauge (δgij = 0), the scalar sector metric reads

ds2 = a2 (τ)
[
− (1 + 2ϕ) dτ2 + 2∂iB dx

idτ + δijdx
idxj

]
, (4.12)

and, after solving for the non-dynamical variables ϕ and B, we decompose the remaining

physical modes for inflaton, φ̂(τ, ~x), and axion, σ̂(τ, ~x), as

φ̂(τ, ~x) = φ (τ) +

∫
d3k

(2π)3/2
ei
~k·~x

Q̂φ

(
~k
)

a (τ)
,

σ̂(τ, ~x) = σ (τ) +

∫
d3k

(2π)3/2
ei
~k·~x

Q̂σ

(
~k
)

a (τ)
, (4.13)

and denote (φ1, φ2) ≡ (φ, σ) and
(
Q̂1, Q̂2

)
≡
(
Q̂φ, Q̂σ

)
. The free part of the action for

Q̂i (at second ordder) reads

S
(2)
free[Q̂i] =

1

2

∫
dτd3k

[
Q̂′i
† Q̂′i − Q̂†i

(
k2δij + M̃2

ij

)
Q̂j

]
, (4.14)

where prime denotes derivative with respect to the conformal time τ , and

M̃2
ij = −a

′′

a
δij + a2V,ij +

(
3− φ′kφ

′
k

2M2
p

a2

a′2

)
φ′iφ
′
j

M2
p

+
a3

M2
pa
′
(
φ′iV,j + φ′jV,i

)
, (4.15)

with V,i ≡ ∂V/∂φi. The interaction term in (4.2) gives

Sint = −
∫
d4x
√−g α σ

4f
FµνF̃

µν =

∫
d4x a4 α

σ

f
~̂
E · ~̂B , (4.16)

where the “electric” and “magnetic” fields are defined in (4.10).

The equations of motion for Q̂φ and Q̂σ, derived from (4.14) and (4.16), are 8(
∂2

∂τ2
+ k2 + M̃2

φφ

)
Q̂φ + M̃2

φσQ̂σ = 0 ,

8 In principle the inflaton also couples to the gauge sector through gravity and receives contributions

of the type δA+ δA→ δφ. This coupling term is a Planck suppressed operator, and parametrically

one may expect its effects to be as large as the ones from δA+ δA→ δσ → δφ, which is of our main

interest. However, δσ is produced near horizon exit and keeps sourcing δφ while being outside the

horizon, whereas the direct production of δφ from the gauge field occurs only near horizon crossing

and, as shown in [33], is negligible. Therefore the latter mechanism, mediated by δσ, provides the

leading contribution from the gauge field to the curvature perturbations.
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∂2

∂τ2
+ k2 + M̃2

σσ

)
Q̂σ + M̃2

σφQ̂φ = α
a3

f

∫
d3x

(2π)3/2
e−i

~k·~x ~̂E · ~̂B . (4.17)

Expanding M̃ij to first order in the slow roll parameters, we have

M̃2
ij ' −

1

τ2

(
2 + 9 εφ + 3 εσ − 3 ηφ 6

√
εφεσ

6
√
εφεσ 2 + 9 εσ + 3 εφ − 3 ησ

)
, (4.18)

where we have defined the slow-roll parameters as

εφi ≡
φ̇2
i

2M2
pH

2
, ηφi ≡M2

p

V,ii
V

, (4.19)

with no summation for the repeated i indices. In the following computation, we focus

on the production of δσ from the gauge field δA and its subsequent sourcing of δφ,

namely the process δA + δA → δσ → δφ. In this regard, we only take the dominant

terms in (4.18) and approximate (4.17) as(
∂2

∂τ2
+ k2 − 2

τ2

)
Q̂φ '

6

τ2

√
εφεσ Q̂σ , (4.20)(

∂2

∂τ2
+ k2 − 2

τ2

)
Q̂σ ' α

a3

f

∫
d3x

(2π)3/2
e−i

~k·~x ~̂E · ~̂B ≡ Ŝσ
(
τ,~k
)
. (4.21)

We note here that we are disregarding the backreaction of the Q̂φ quanta, sourced by

Q̂σ, on the sourcing Q̂σ modes; this effect is of higher order in slow-roll (the term that

we disregard in (4.21) is εφ εσ suppressed with respect to the terms that we keep.) Let

us also emphasize that since we are interested in the feature due to the change in σ̇, we

do “not” neglect the time dependence of εσ, while we treat εφ constant.

In the spatially flat gauge, the scalar curvature perturbations are related to the

inflaton perturbations by 9

9 In a general two scalar field model, the curvature ζ is a linear combination ζ (t) = c1 (t) δφ (t) +

c2 (t) δσ (t), where the coefficients c1,2 depend on the background (the orthogonal combination being

an isocurvature mode). With the choice of potential (4.3), and with our assumptions on the parame-

ters, the field σ becomes massive short after the CMB modes are produced. As σ becomes a massive

field in an inflationary universe, its energy density and pressure very rapidly drop to zero, and so does

c2. The only potentially observable effect of δσ is through its couplings to the inflaton and metric

perturbations, which are effective only as long as σ̇ 6= 0. The dominant among these interactions is

the linear coupling to δφ that we are computing here (all the other couplings are nonlinear in δσ, and

highly subdominant; they can be disregarded, once we impose that the effects of the linear coupling

are below the observational level).
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ζ̂
(
τ,~k
)
' −H

φ̇
δφ̂
(
τ,~k
)
' Hτ√

2 εφMp
Q̂φ

(
τ,~k
)
, (4.22)

assuming φ̇ > 0. To find Q̂φ

(
τ,~k
)

, we solve eq. 4.20 by separating Q̂φ into two parts,

Q̂φ = Q̂
(0)
φ + Q̂

(1)
φ , (4.23)

where Q̂
(0)
φ is the homogeneous solution of eq. (4.20) and Q̂

(1)
φ is its particular solution.

These two contributions are statistically uncorrelated. We decompose the operator Q̂
(0)
φ ,

corresponding to the vacuum fluctuations, as

Q̂
(0)
φ (τ,~k) = Q

(0)
φ (τ, k) â(~k) +Q

(0)∗
φ (τ, k) â†(− ~k) , (4.24)

where a† and a are the creation and annihilation operators for Q̂
(0)
φ , respectively, and

the mode function Q
(0)
φ is solved to be, with the Bunch-Davies initial conditions 10,

Q
(0)
i (τ, k) =

e−ikτ√
2k

(
1− i

kτ

)
. (4.25)

The particular solution Q̂
(1)
φ is obtained by solving eq. (4.21) and plugging its solution

into eq. (4.20):

Q̂
(1)
φ = 6

√
εφ

∫
dτ ′Gk(τ, τ

′)

√
εσ(τ ′)

τ ′2

∫
dτ ′′Gk(τ

′, τ ′′) Ŝσ(τ ′′,~k) , (4.26)

where the retarded Green function Gk(τ, τ
′) reads

Gk(τ, τ
′) = Θ(τ − τ ′) π

2

√
ττ ′
[
J3/2(−kτ)Y3/2(−kτ ′)− Y3/2(−kτ) J3/2(−kτ ′)

]
, (4.27)

where J and Y denote the Bessel function of real argument. Here we evaluate the

sourced solution (4.26) in the case in which σ̇ is time-dependent11.

10 We neglect the scale dependence of the homogeneous solutions of eq. (4.17) that can be induced by

relatively large values of εσ and ησ; we have checked that the mixing angle, see eq. (C.2), between

Q̂φ and Q̂σ can be made small enough that such a scale dependence will affect only the unobservable

Q̂σ mode and will not leak into the metric perturbations, that are associated to Q̂φ.
11 We deal with time-dependent σ̇, but we briefly studied constant σ̇ in Appendix C.1 for completeness.
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4.2.2 Generation of tensor perturbations

Let us next focus on the tensor perturbations, considering a metric of the form

ds2 = a2 (τ)
[
−dτ2 +

(
δij + ĥij (τ, ~x)

)
dxidxj

]
, (4.28)

where ĥij is transverse and traceless. The leading expression for ĥij is obtained by

expanding the action to second order in ĥij , including the first order interaction term

with the gauge field: 12

SGW =

∫
d4x

[
M2
pa

2

8

(
ĥ′ij ĥ

′
ij − ĥij,kĥij,k

)
− a4

2
ĥij

(
Êi Êj + B̂i B̂j

)]
. (4.29)

To obtain a canonically normalized field describing tensor modes in Fourier space

we decompose

ĥij

(
τ,~k
)

=
2

Mp a(τ)

∫
d3k

(2π)3/2
ei
~k·~x

∑
λ=+,−

Π∗ij,λ

(
k̂
)
Q̂λ

(
τ, ~k

)
, (4.30)

where the polarization operators are

Π∗ij,±

(
k̂
)
≡ ε(±)

i

(
k̂
)
ε
(±)
j

(
k̂
)
. (4.31)

The equations of motion for Q̂λ(
∂2

∂τ2
+ k2 − 2

τ2

)
Q̂λ

(
~k, τ

)
= − a3

Mp
Πij,λ

(
k̂
)∫ d3x

(2π)3/2
e−i

~k·~x
[
Êi Êj + B̂i B̂j

]
≡ Ŝλ(τ, ~k) ,

(4.32)

are solved, as in the scalar case considered in the previous subsection, by separating Q̂λ

into a vacuum mode Q̂
(0)
λ , solution of the homogeneous equation, and a sourced mode

Q̂
(1)
λ

13. The vacuum mode is given by

Q̂
(0)
λ

(
~k
)

= hλ (τ, k) âλ

(
~k
)

+ h∗λ (τ, k) â†λ

(
−~k
)
,

hλ (τ, k) =
e−ikτ√

2k

(
1− i

k τ

)
, (4.33)

12 Interaction terms of the form hhFF give contributions to the two-point function of the tensor per-

turbations that are of the same order in M−2
P as those of the form hFF . However the terms of the

form hFF give a contribution to the tensor power spectrum that is proportional to e4πξ, much larger

than those of the form hhFF , whose contribution is proportional to e2πξ, which therefore will be

neglected [59].
13 These two solutions are “not” correlated as in the scalar case, so their power spectrum add up without

interference term.
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where â†λ creates gravitons of helicity 2λ.

For the sourced mode, we have the formal solution

Q̂
(1)
λ

(
τ, ~k

)
=

∫ τ

dτ ′Gk
(
τ, τ ′

)
Ŝλ(τ, ~k) , (4.34)

where the retarded propagator is the same as that for the scalar perturbations, eq. (4.27).

4.3 Results and phenomenology

The gauge quanta, produced by the rolling pseudo-scalar σ, source quanta of σ through

inverse decays δA+ δA→ δσ. The gauge quanta also source inflaton perturbations and

gravity waves through the 2 → 1 processes δA + δA → δφ and δA + δA → hλ. Under

the assumption of no direct coupling between the inflaton and σ in the potential, the

δA+δA→ δφ interaction is of gravitational strength, and negligible with respect to the

gravity wave production [33]. For this reason we disregard it in this study. On the other

hand, the inverse decay into quanta of σ can produce a large signal, which has a much

stronger departure from gaussianity than the vacuum mode [48]. In the model under

consideration the field σ has a completely negligible energy density at the end of inflation

/ beginning of reheating (both at the background and at the perturbation level), so that

the inflation perturbations can be identified with the observed curvature perturbations

ζ, see eq. (4.22). However, δσ is not completely irrelevant for observations: as long as σ

is rolling, there is a linear gravitational coupling between perturbations of σ and of the

inflaton with a strength proportional to the multiplication of their speed, ie.
√
εσ · εφ

(see the non-diagonal term in matrix (4.18)), leading to conversion of δσ into δφ [57].

In the previous Section (see also appendices C.2 and C.3) we computed the cur-

vature perturbations ζ and the gravity waves produced in the model. The results are

summarized in Subsection 4.3.1 and we study the phenomenological implications of

these results in Subsection 4.3.2.

4.3.1 Scalar and tensor correlators

We are interested in the power spectrum and bispectrum of the scalar curvature ζ and

of the gravity wave polarizations h±. They are defined as〈
ζ̂
(
~k
)
ζ̂
(
~k′
)〉
≡ 2π2

k3
Pζ (k) δ(3)

(
~k + ~k′

)
,
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ζ̂
(
~k1

)
ζ̂
(
~k2

)
ζ̂
(
~k3

)〉
≡ Bζ (k1, k2, k3) δ(3)

(
~k1 + ~k2 + ~k3

)
, (4.35)

and analogously for h±. The scalar curvature ζ and gravity waves h± produced in the

model (4.2) are the sum of a vacuum component and a component sourced by the gauge

quanta. The two components, which we denote, respectively, as

ζ = ζ(0) + ζ(1) , h± = h
(0)
± + h

(1)
± , (4.36)

are uncorrelated among each other, and therefore the power spectra and bispectra of

these modes are the sum of the vacuum and of the sourced spectra:

Pζ (k) = P(0)
ζ (k) + P(1)

ζ (k) , Bζ (k) = B(0)
ζ (k) + B(1)

ζ (k) , (4.37)

and analogously for h±.

The vacuum power spectra are given by the standard relations [60]

P(0)
ζ (k) =

H2

8π2εφM2
p

, P(0)
+ (k) = P(0)

− (k) =
H2

π2M2
p

, (4.38)

where we disregard subleading corrections in slow-roll. This gives the vacuum relation

rvac ≡
P(0)

+ + P(0)
−

P(0)
ζ

' 16εφ , (4.39)

for the tensor-to-scalar ratio. The vacuum bispectra are known to be well below the

current observational limits, and we disregard them 14.

The sourced terms ζ(1) and h
(1)
± present a localized bump in momentum space. This

corresponds to modes that leave the horizon when σ̇ is close to its maximum value.

The gauge field production is exponentially sensitive to the parameter ξ, given in eq.

(4.7). Therefore the height of the bump is exponentially proportional to the maximum

value ξ∗ acquired by ξ. The width of the peak decreases with increasing values of the

parameter δ. This is because, as we have see in Section 4.1, the field σ has a significant

evolution only for a number of e-folds ∆N ' 1
δ . Therefore, the larger δ is, the fewer are

the amplified modes.

14 The local non-Gaussianity parameter for vacuum fluctuations, fNL, vac, has been shown to be order

of scalar tilt, ie. fNL, vac ∝ O(ns − 1)
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As we show in Appendices C.2 and C.3, we can parametrize and express functional

dependence of 2- and 3-point scalar and tensor correlators as follows

P(1)
ζ (k) =

[
εφ P(0)

ζ (k)
]2

f2,ζ

(
k

k∗
, ξ∗, δ

)
,

P(1)
λ (k) =

[
εφ P(0)

ζ (k)
]2

f2,λ

(
k

k∗
, ξ∗, δ

)
, λ = +,− ,

Bζ (k1, k2, k3) =

[
εφ P(0)

ζ (k)
]3

k2
1 k

2
2 k

2
3

f3,ζ

(
k1

k∗
,
k2

k∗
,
k3

k∗
, ξ∗, δ

)
,

Bλ (k1, k2, k3) =

[
εφ P(0)

ζ (k)
]3

k2
1 k

2
2 k

2
3

f3,λ

(
k1

k∗
,
k2

k∗
,
k3

k∗
, ξ∗, δ

)
, λ = +,− . (4.40)

For brevity, we denote the functions at the right hand side as fi,j , where i ∈ {2, 3}
and j ∈ {ζ, +, −}. These functions are dimensionless. The functions f3,j encode the

full dependence of the bispectrum on the momenta ki. In eq. (C.66) we provide an

approximate relation for the shape dependence, written in terms only of the two point

function and of the three point function in the exact equilateral case. The expression

(C.66) is exact by construction on equilateral triangles, and it is very accurate where the

signal is maximum (see Figure C.1). Therefore, in order to study the phenomenology

of the scalar and tensor 2- and 3-point correlation functions, we simply need to provide

the functions, f2,j , as well as f3,j for equal momenta.

We first studied the momentum dependence of these functions for fixed values of ξ∗

and δ. We found that they are well approximated by log-normal shape

fi,j

(
k

k∗
, ξ∗, δ

)
' f ci,j [ξ∗, δ] exp

[
− 1

2σ2
i,j [ξ∗, δ]

ln2

(
k

k∗ xci,j [ξ∗, δ]

)]
. (4.41)

Namely, the momentum dependence 15 is encoded by the three functions f c, σ, xc,

which in turn depend on the evolution of σ̇ through the model parameters ξ∗ and δ. The

function (4.41) has a bump at k = k∗ x
c, where it evaluates to f c. The parameter σ2

controls the width of the bump. For each choice of ξ∗ and δ, the values of f ci,j , x
c
i,j , and

σi,j are obtained by fitting the right hand side of (4.41) to reproduce the position, height,

and curvature of the bump. In Figure 4.1 we verify the accuracy of the approximate

15 For the three point functions (i = 3), the approximation (4.41) refers to the exact equilateral case,

k1 = k2 = k3 = k.
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Figure 4.1: Comparison of the exact function f2, ζ (green dots) and of the approximate
form (red dashed line) given in eq. (4.41), for the two values of δ, 0.2 and 0.5.
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Figure 4.2: ξ∗ dependence of the fitting f2,ζ , x
c
2,ζ and σ2,ζ entering in (4.41), for δ = 0.2

(an analogous agreement is obtained for δ = 0.5, and for other {i, j} functions). The
red dots denote the values at different ξ∗ and the solid lines are polynomial fits.

relation (4.41) by showing the comparison between the exact and approximate form of

f2,ζ for two choices of δ parameters. (These chosen values have no particular relevance,

they are chosen for illustrative purpose only.) An analogous level of accuracy is obtained

for the other fi,j functions and for the other choices of ξ∗ that we have made.

Secondly, we need to specify the dependence of f ci,j , x
c
i,j , σ

2
i,j on the model pa-

rameters ξ∗ and δ. We evaluated these functions for δ = 0.2 and δ = 0.5, and for

ξ∗ = {2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7}. We found that the dependence on ξ∗ is rather

smooth, and can be well described by a second degree polynomial. We provide the

fitting functions in Tables 4.1 and 4.2. As we see from the examples shown in Figure

4.2, the fitting functions are very accurate.

4.3.2 Phenomenology

In this subsection we study the phenomenology of the model (4.2). The total scalar

and tensor modes produced during inflation are the sum of a nearly scale invariant
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{i, j} ln |f ci,j | ' xci,j ' σi,j '
{2, ζ} −5.60 + 10.1 ξ∗ + 0.0947 ξ2

∗ 3.26 + 0.435 ξ∗ + 0.0109 ξ2
∗ 1.41− 0.166 ξ∗ + 0.00962 ξ2

∗
{2,+} −7.98 + 10.0 ξ∗ + 0.0979 ξ2

∗ 5.45 + 0.455 ξ∗ + 0.0316 ξ2
∗ 1.38− 0.178 ξ∗ + 0.0103 ξ2

∗
{2,−} −13.8 + 9.96 ξ∗ + 0.104 ξ2

∗ 2.39 + 0.129 ξ∗ + 0.0214 ξ2
∗ 1.44− 0.169 ξ∗ + 0.0102 ξ2

∗
{3, ζ} −4.72 + 15.1 ξ∗ + 0.142 ξ2

∗ 3.37 + 0.353 ξ∗ + 0.0142 ξ2
∗ 1.13− 0.143 ξ∗ + 0.00830 ξ2

∗
{3,+} −7.77 + 15.1 ξ∗ + 0.147 ξ2

∗ 5.24 + 0.361 ξ∗ + 0.0360 ξ2
∗ 1.11− 0.150 ξ∗ + 0.00880 ξ2

∗

Table 4.1: ξ∗ dependence of the functions entering in (4.41), for δ = 0.2. Among the
entries in the first column, only f c3,+ is negative, while the other f ci,j are positive.

{i, j} ln |f ci,j | ' xci,j ' σi,j '
{2, ζ} −6.47 + 9.04 ξ∗ + 0.0586 ξ2

∗ 1.64 + 0.630 ξ∗ + 0.00738 ξ2
∗ 0.823− 0.0872 ξ∗ + 0.00558 ξ2

∗
{2,+} −6.85 + 9.05 ξ∗ + 0.0596 ξ2

∗ 2.70 + 0.896 ξ∗ + 0.0187 ξ2
∗ 0.768− 0.0993 ξ∗ + 0.00608 ξ2

∗
{2,−} −12.5 + 8.97 ξ∗ + 0.0656 ξ2

∗ 1.22 + 0.396 ξ∗ + 0.00976 ξ2
∗ 0.858− 0.0813 ξ∗ + 0.00530 ξ2

∗
{3, ζ} −5.98 + 13.6 ξ∗ + 0.0861 ξ2

∗ 1.71 + 0.569 ξ∗ + 0.00972 ξ2
∗ 0.641− 0.0792 ξ∗ + 0.00495 ξ2

∗
{3,+} −6.03 + 13.6 ξ∗ + 0.0870 ξ2

∗ 2.63 + 0.841 ξ∗ + 0.0193 ξ2
∗ 0.606− 0.0844 ξ∗ + 0.00520 ξ2

∗

Table 4.2: ξ∗ dependence of the functions entering in (4.41), for δ = 0.5. Among the
entries in the first column, only f c3,+ is negative, while the other f ci,j are positive.

vacuum mode, plus a peaked sourced signal (see Figure 4.1 for the scale dependence of

the latter). The sourced scalar and tensor modes modify the tensor-to-scalar ratio from

its vacuum value (4.39), rvac ' 16 εφ, to

r (k) ≡ PGW,vacuum + PGW,sourced

Pζ,vacuum + Pζ,sourced
' P

(0)
+ (k) + P(0)

− (k) + P(1)
+ (k)

P(0)
ζ (k) + P(1)

ζ (k)
= rvac

1 +
εφ
16 P

(0)
ζ (k) f2,+ (k)

1 + ε2φ P
(0)
ζ (k) f2,ζ (k)

,

(4.42)

where we have disregarded the sourced h
(1)
− mode (given that f2− � f2+). Both the

numerator and the denominator of the fraction appearing in eq. (6.6) have been written

as 1 +Psourced/Pvacuum, so that we can immediately compare the impact of the sourced

tensor modes vs. the sourced scalar modes on r. We see that, relative to the sourced

scalars, the sourced tensors are more relevant at smaller values of εφ. This is the regime

of greatest interest for our study, since it corresponds to a small rvac.

This is confirmed by the contour lines shown in Figure 4.3, where we show the
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Figure 4.3: Black-solid lines: tensor-to-scalar ratio. Orange dashed (Blue dotted) lines
show the ratio between the sourced and the vacuum tensor (scalar) power spectrum.
All ratios are evaluated at the peak of the sourced GW power spectrum.

tensor-to-scalar ratio (black solid lines), the ratio between the sourced and the vacuum

tensor power spectrum (orange dashed lines), and the ratio between the sourced and

the vacuum scalar power spectrum (blue dotted lines), evaluated at the peak of the

sourced GW signal. The ratios are shown as functions of ξ∗ and εφ. The sourced modes

are negligible at the smallest values of ξ∗ shown in the figure, so that r ' rvac ' 16εφ.

Hence the contour lines of same r are ξ∗ independent and horizontal, in this region). At

greater values of ξ∗, and, particularly, at the smallest εφ shown, we see that r � rvac.

Figure 4.3, and several of the following figures, are comprised of two panels. In the

left (right) panel we show results for δ = 0.2 (δ = 0.5). The roll of σ is substantial for

a number of e-folds ∆N ' 1
δ , cf. eq. (4.5). Increasing δ therefore decreases the amount

of time during which σ is rolling. This decreases the amplitude of the produced signal

(encoded in the parameter f ci,j , cf. eq. (4.41)), as well as its width (encoded in σi,j).

The latter effect is due to the fact that, the smaller ∆N is, the fewer are the modes

that exited the horizon while σ̇ was non-negligible. By comparing the results given in

Tables 4.1 and 4.2, we can also see that increasing δ decreases the scalar production

more than the tensor one. This is also visible by comparing the left and the right panel

of Figure 4.3, as well as from the following figures. We can notice that greater values of

δ corresponds to a greater production of tensor vs. scalar modes. This occurs because

inflaton is sourced by δσ via gravitational coupling with a strength proportional to the

geometric mean of the speeds of σ and φ and the sourcing is effective only when σ̇ is
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significant 16. In result, a decrease of ∆N affects the sourced scalar modes more than

the tensor modes because it decreases both (i) the number of modes that are sourced

(namely, the width of the peak)17, and (ii) the interval of time during which the δσ

modes (produced by the gauge field) can be converted into inflaton perturbations.

In the following analysis, we show that the model admits choices of parameters

that result in a sourced signal visible in correlators involving the B-mode of the CMB

polarization, and that are consistent with the well-analyzed 〈TT 〉 and 〈TTT 〉 correlators.

To have visible effects from the sourced GWs, we choose values of k∗ leading to a peak

of the sourced signal at large CMB scales. Specifically, we choose k∗ ranging from

7 × 10−5 Mpc−1 (affecting only the first few multipoles) to 5 × 10−3 Mpc−1 (affecting

multipoles up to the first acoustic peak).

4.3.2.1 CMB power spectra

The main goal of this chapter is to provide a concrete example of a particle physics

process that can enhance the GW signal from inflation, while being “consistent with

the TT and TTT data”. With this, we mean that this additional signal should not

significantly worsen the fit to the TT and the TTT data of the standard cosmological

model which does not include this signal. The signal that we are studying manifests

itself at the largest cosmological scales and we compare it against the latest WMAP data

[65, 66], which are cosmic variance limited at such scales. We fix all the cosmological

parameters consistently with the best fit values reported in [66] and denote this set of

values as C0
18. We express by L0 the likelihood of the fit to the WMAP TT data of

the standard cosmological model with these values of the parameters

L0 = e−χ
2
ξ∗=0/2 . (4.43)

16 Assuming inflaton speed is nearly constant, the sourcing of inflaton is controlled with
√
εσ

17 This affects tensor modes as well.
18 Specifically, we fix the physical baryon density Ωbh

2 = 0.02264, the physical cold dark matter density

Ωc h
2 = 0.1138, the ionization optical depth τ = 0.089, the Hubble constant H0 = 70.0 km/sec/Mpc.

The parameters relevant to the initial condition, i.e., the scalar amplitude ∆2
ζ = 2.41 × 10−9, the

scalar spectral index ns = 0.972 and the WMAP pivot scale k0 = 0.002 Mpc−1, fix our vacuum power

spectrum P(0)
ζ (k) = ∆2

ζ(k/k0)ns−1. We have also assumed a flat universe, with 3.046 relativistic

species and no massive neutrino. Planck experiment also obtained consistent results, [67, 68].
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Figure 4.4: Solid lines: Largest value of ξ∗ allowed by the WMAP TT data as a function
of εφ, and for different values of k∗ (controlling the bump scale of the sourced modes).

Dashed lines: ratio of P(1)
ζ /P(0)

ζ at the peak of the GW bump.

We then add the sourced scalar and tensor modes obtained from the mechanism pre-

sented in the previous sections. For illustrative purposes, we fix three values of k∗

(controlling the peak scale of the sourced signals) and two values of δ (controlling the

width of the sourced signal). For any of these six choices, we then increase ξ∗ (the

parameter that controls the amplitude of the sourced signal) until the likelihood of the

fit decreases by a factor e2 with respect to L0, namely, we find the value ξ∗ = ξ∗,limit

for which χ2
ξ∗,limit

= χ2
ξ∗=0 + 4 19. An experimentalist fitting the WMAP data with the

cosmological parameters C0, would obtain a fit that is two sigmas worse if he/she in-

cludes the sourced signal instead of the standard cosmological model. In fact, the value

ξ∗,limit obtained in this way is conservative, as we do not vary any of the cosmological

parameters C0. Varying them, we can only improve the fit of the WMAP data for that

given value of ξ∗, and so likely obtain larger values for ξ∗,limit. However, changing values

in C0 may give a disagreement with data at smaller angular scales than the WMAP

ones, and for this reason we do not vary such parameters. As we show below, in most

cases the values of ξ∗,limit obtained with this procedure already provide a visible GW

signal, which is the goal of this present analysis (in summary, we are not interested in

providing precise Bayesian limits on ξ∗ within this model - for which we should provide

priors, marginalize over all the other parameters and include smaller scales data - but

only in the goal specified at the beginning of this subsection).

19 We use the WMAP power spectrum likelihood code: http://lambda.gsfc.nasa.gov/.

http://lambda.gsfc.nasa.gov/
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Figure 4.5: Temperature-temperature correlation of WMAP data [65, 66] is compared
against the three theoretical curves for three different values of k∗ and with limiting
value ξ∗ = ξ∗,limit, evaluated for εφ = 10−5 and for δ = 0.2 (left) and δ = 0.5 (right).

In Figure 4.4 we present the value of ξ∗,limit obtained with this procedure as a

function of the slow roll parameter εφ. In the left (right) panel of the figure we set

δ = 0.2 (0.5), corresponding to a significant σ̇ for about 5 (2) e-folds. In each panel we

fix k∗ = 7 × 10−5 Mpc−1 , k∗ = 5 × 10−4 Mpc−1 , and k∗ = 5 × 10−3 Mpc−1, producing

a bump, respectively at the very largest angular scales (` <∼ 5), on the rise of the first

peak, and in the region around the first two peaks. 20 In the same figure we also show

with black dashed lines the ratio P(1)
ζ /P(0)

ζ at the peak of the GW bump. We see that

the allowed amount of scalar signal strongly depends on the scale. In the examples with

the bump at the largest scales, the sourced signal can be as large as the vacuum one

at the peak, due to the large cosmic variance present at those scales. A significantly

smaller fraction, O (1%− 10%), is allowed in the examples in which the signal affects

the acoustic peaks. By comparing the left and right panel of Figure 4.4 we again see

that, for any fixed value of ξ∗, the sourced signal is stronger at small values of δ.

In Figure 4.5 we show the TT power spectrum obtained for the same choices of δ

and k∗ as in Figure 4.4, for εφ = 10−5, and for the corresponding value of ξ∗ = ξ∗,limit.

The theoretical curves present a bump due to the sourced scalar modes. As we already

mentioned, the bump ranges from the lowest ` multipoles (for the smallest k∗ chosen)

to around the first two acoustic peaks (for the largest k∗ chosen).

20 We verified that, apart from the
{
δ = 0.5, k∗ = 7× 10−5 Mpc−1

}
case, the sourced GW give a negli-

gible contribution to the TT signal, and in all the other cases the limits shown in the figure are due

to ζsourced.



52

(S
/N

) B
B

lmax

(ξ*, k* [Mpc-1]) = (4.5, 7×10-5)
(4.4, 5×10-4)
(4.3, 5×10-3)

CV limit

10-2

10-1

100

101

102

103

 10  100

(δ, εφ) = (0.2, 10-5)

(S
/N

) B
B

lmax

(ξ*, k* [Mpc-1]) = (5.3, 7×10-5)
(5.1, 5×10-4)
(4.9, 5×10-3)

CV limit

10-2

10-1

100

101

102

103

 10  100

(δ, εφ) = (0.5, 10-5)

l (
l+

1)
 C

BB l  
 / 

(2
π)

 ×
 T

2 0 
[µ

K2 ]

l

(ξ*, k* [Mpc-1]) = (4.5, 7×10-5)
(4.4, 5×10-4)
(4.3, 5×10-3)

r = 0.1, 10-2, 10-3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 10  100  1000

(δ, εφ) = (0.2, 10-5)

l (
l+

1)
 C

BB l  
 / 

(2
π)

 ×
 T

2 0 
[µ

K2 ]

l

(ξ*, k* [Mpc-1]) = (5.3, 7×10-5)
(5.1, 5×10-4)
(4.9, 5×10-3)

r = 0.1, 10-2, 10-3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 10  100  1000

(δ, εφ) = (0.5, 10-5)

Figure 4.6: First row: Forecasted signal-to-noise ratio for B-mode auto-correlations in
a CMB experiment with Planck-like sensitivity (Colored solid lines), and in a cosmic
variance limited (ideal noise-free) CMB experiment (Black dotted line). Second row:
CBBl coefficients are shown for chosen parameters with solid color lines. The CBBl co-
efficients for scale invariant tensor-to-scalar-ratio (r) for 10−1, 10−2 and 10−3 are shown
with dots from top to bottom respectively.
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In Figure 4.6 we show the auto-correlations between the B modes of the CMB po-

larizations, (BB), sourced by the tensor modes when ξ∗ = ξ∗,limit. The parameters

εφ, δ, and k∗ are chosen as in the two previous figures. For comparison, we also show

the BB correlation obtained for a scale invariant r of 0.1, 10−2, and 10−3 (from top to

bottom, respectively) with black dashed lines. As we already mentioned in the Introduc-

tion, the proposed stage 4 CMB experiments claim an expected statistical uncertainty

σ (r) = 10−3 or below [9] in the scale invariant case. If this is achieved, the theoretical

curves chosen in Figure 4.6 appear to be within observational reach. We recall that

εφ = 10−5 corresponds to a vacuum tensor-to-scalar ratio rvac ' 1.6 · 10−4. Therefore,

the enhancement of the BB signal visible in the figure is entirely due to the sourced

tensor modes. The enhancement is present at progressively larger ` for increasing values

of k∗ shown, namely for bumps of gauge field production at progressively smaller scales.

By comparing the left and the right panel of Figure 4.6 we observe that BB can reach

greater values at increasing δ. This is consistent with what we have already mentioned:

at fixed ξ∗, both the sourced scalar and tensor modes decrease with increasing δ. How-

ever, the scalar mode decreases more. Therefore, at larger values of δ, larger values of

ξ∗ can be compatible with the WMAP TT bounds (cf. Figure 4.4). Such values lead to

a larger amount of sourced tensor modes. The signal-to-noise (S/N) ratio shown in the

figure is evaluated through(
S

N

)2

BB

=

`max∑
`=2

2`+ 1

2

(
CBB`
CBB`,dat

)2

. (4.44)

Here, (CBB` )2 corresponds to the signal given by our theory, while the other terms in

this relation account for the uncertainty of the BB power spectrum in a given experi-

ment. For simplicity, we here (and also in the other S/N estimations) assume a full-sky

isotropic CMB measurement, thus, the summations in terms of m disappear in the S/N

formula. The data spectrum in a given experiment is regarded as the sum of the sig-

nal and instrumental noise, reading CBB`,dat = CBB` + NBB
` . In this study, we analyze

two different types of measurements: a realistic measurement including a Planck-level

noise spectrum [69] (as described in Appendix A of [70]) and an ideal noise-free cosmic

variance dominated measurement (i.e., NBB
` = 0).

The results are shown in the upper panels of Figure 4.6. In the cosmic variance

limited case, because of CBB` /CBB`,dat = 1, S/N becomes a simple increasing function:
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Figure 4.7: First row: Forecasted signal-to-noise ratio for the detection of the TB
correlation in a realistic CMB experiment with Planck-like sensitivity (Colored solid
lines), and in a cosmic variance limited, CMB experiment (Colored dotted lines), as a
function of the maximum multipole ` included in the analysis. Second row: TB spectra.

(S/N)BB =
√

(`max + 3)(`max − 1)/2 (black dotted lines), independently of the shape

of CBB` and the values of input model parameters. The S/N is lower in the Planck-like

realistic experiment; however it can exceed one in the examples with the smallest values

of k∗ shown. A greater BB signal can be obtained at larger values of δ.

The sourced GW signal breaks parity, generating a nonvanishing correlation between

the CMB temperature anisotropy and B-mode polarization (TB) [42, 43, 44, 71, 45].

In Figure 4.7, we compute the forecasted signal-to-noise ratio for our model with same

parameters used in the previous figures. The S/N ratio has been computed via(
S

N

)2

TB

=

`max∑
`=2

(2`+ 1)

(
CTB`

)2
CTT` CBB`,dat

, (4.45)

in the Planck-like realistic experiment and the ideal cosmic variance-limited experiment.

In the Planck-like measurement, we can neglect the noise spectrum of temperature mode



55

NTT
` , since this is negligibly small compared with the signal CTT` on the scales of our

interest (` ≤ 500). We see that, among the examples shown, such a signature can be

marginally detected only for the examples shown at δ = 0.5 in the cosmic-variance-

limited experiment. Not surprisingly, these are the cases that also lead to a stronger

BB signal, cf. Figure 4.6. Among the examples we considered, these are the only

cases for which rpeak (namely the tensor-to-scalar ratio evaluated at the top of the GW

signal) is substantially greater than 10−2. Based on the difference between the δ = 0.2

and δ = 0.5 cases, it is very likely that a large TB correlation can be produced at

greater values of δ, possibly at a detectable level even in a Planck-like experiment. As

a comparison, Ref. [44] forecasted that a one σ detection is possible for r >∼ 0.002 in

the scale invariant case, and a few σ detection for the largest values of r ∼ .05 that can

be achieved in our scenario. The results of [44] are slightly more optimistic than ours

because of the scale invariance of the correlator considered in that paper, that allows to

use information from a larger number of multipoles.

4.3.2.2 CMB bispectra

Let us now study the possibility of detecting the non-gaussian statistics of the sourced

modes. All the CMB temperature and polarization bispectra due to the scalar and

tensor non-gaussianities, discussed in the following analysis, are computed by means of

the techniques outlined in [72, 73].

In Figure 4.8 we show the forecasted signal-to-noise ratio for the detection of the

sourced TTT bispectrum as a function of the maximum multipole ` included in the

analysis, reading (
S

N

)2

TTT

=

`max∑
`1,`2,`3=2

∣∣BTTT
`1`2`3

∣∣2
6CTT`1 CTT`2 CTT`3

, (4.46)

with

B`1`2`3 ≡
∑

m1m2m3

(
`1 `2 `3

m1 m2 m3

)
〈a`1m1a`2m2a`3m3〉 (4.47)

denoting the angle-averaged bispectrum. Here we show only the results in a cosmic

variance-limited CMB experiment. The same results will be obtained also in the Planck-

like experiment, since the instrumental noise is perfectly negligible for ` ≤ 500. All the
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Figure 4.8: First row: Forecasted signal-to-noise ratio for the detection of the sourced
TTT bispectrum in a cosmic variance-limited, CMB experiment, as a function of the
maximum multipole ` included in the analysis. Second row: TTT reduced bispectrum
for equilateral triangles of multipole `. The colored lines are for the same parameters as
in the previous figures. Solid (dotted) lines refer to the contribution to TTT from the
sourced scalar (tensor) modes. The forecasted S/N ratio for scale-invariant equilateral

non-gaussianity of magnitude f equil
NL = 150 is added for comparison.



57

lines shown are for the maximum amount of particle production allowed by the WMAP

TT data (namely, for ξ∗ = ξ∗, limit shown in Figure 4.4).

Given that the sourced signal has a much greater deviation from gaussianity than

the vacuum one [48], and given the stringent limit on non-gaussianity, one may have

expected to find detectable non-gaussianity in the examples shown. Figure 4.8 shows

that this is not the case. The main reason is that, for the values of k∗ that we have

chosen, the sourced signal manifests itself only at the largest CMB scales, so that only

those scales are relevant for the phenomenological study of the bispectrum. This is

confirmed by the colored lines shown in the Figure, where the signal-to-noise ratio

saturates at values of `max well below those included in the Planck studies (in particular,

the smaller k∗ is, the smaller is the value of `max at which the signal-to-noise ratio

saturates). This contrasts with the scale invariant case shown by the dashed line, where

we can see that S/N continues to grow with increasing `max. The strong weakening of

the non-gaussianity limits with decreasing values of `max can be also seen for example

in Figure 11 of [74].

In the analysis, we distinguish between the scalar
〈
ζ(1)3

〉
and tensor

〈
h

(1)3
+

〉
contri-

bution to the TTT signal. In the tensor case, both even (`1 + `2 + `3 = even) and odd

(`1 + `2 + `3 = odd) cases are included in the analysis [75, 71]. We can also see this from

the second row of Figure 4.8, which presents the TTT reduced bispectrum, defined as

b`1`2`3 ≡
[√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)]−1

B`1`2`3 , (4.48)

on equilateral triangles as a function of the multipole `. We observe that, contrary to

the scale invariant case, the bispectrum significantly decreases at the higher multipoles

shown in the figure. Also in the second row, we distinguish between the contribution

of the scalar and the tensor mode. While in the examples with δ = 0.2 the scalar

contribution dominates over the tensor one, the tensor mode plays a non-negligible or

even dominant role in two of the examples shown at δ = 0.5.

Another interesting non-gaussian signature of the sourced tensor mode is the BBB

correlation. The signal-to-noise ratio is computed as(
S

N

)2

BBB

=

`max∑
`1,`2,`3=2

∣∣BBBB
`1`2`3

∣∣2
6CBB`1,datC

BB
`2,datC

BB
`3,dat

. (4.49)
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Figure 4.9: Left panel: Forecasted signal-to-noise ratio for the detection of the sourced
BBB bispectrum in a realistic CMB experiment with Planck-like sensitivity (Colored
solid lines), and in a cosmic variance limited, CMB experiment (Colored dotted lines),
as a function of the maximum multipole ` included in the analysis. Right panel: BBB
reduced bispectrum for equilateral triangles of multipole `. The examples shown are for
δ = 0.5; the other parameters are chosen as in the previous figures.

Like the BB case, we here analyze the detectability both in a Planck-like experiment and

in a cosmic-variance-limited experiment. In Figure 4.9 we show that this signal has a

much higher prospect of being detected than the TB one in the cosmic-variance-limited

measurement. Such large S/N seen in the figure is due to the fact that no instrumental

error is assumed, so that all the noise is due to the small BB signal (instead, the largest

TT signal due to the vacuum scalar modes constitutes a stronger noise for the TB

measurement in the cosmic variance-dominated case).

We also computed the B-mode bispectrum for δ = 0.2, obtaining a larger S/N ratio

than in the δ = 0.5 case shown in Figure 4.9. We do not show this result, as we are

concerned about its reliability: the expression for the noise in (4.46) and (4.49) assumes

that the signal is approximately gaussian. We investigate whether this is the case in

Appendix C.5, where we estimate the departure from gaussianity of the full ζ and h+

signals. Our estimate suggests that the departure is very small in the scalar case, and

marginally small for h+ at δ = 0.5. However, this is not the case for δ = 0.2. The result

performed there suggests that the noise in this case may increase by a O (1) factor with

respect to what we computed using (4.49). This still likely results in a potentially visible

signal in a cosmic-variance-limited experiment, but, due to this uncertainty, we do not

show this result here.



59

As in the TTT case, the S/N shown in the Figure 4.9 is computed by summing all

the signals in `1 + `2 + `3 = even and `1 + `2 + `3 = odd. The sum enhances the S/N.

On the other hand, the analysis in the limited domain, `1 + `2 + `3 = odd in TTT

or `1 + `2 + `3 = even in BBB, is also very informative, since such signals originate

from nonvanishing parity-odd non-gaussianity [76, 77], namely a distinctive signature

of this model 21. More comprehensive analysis with the other auto- and cross-bispectra

including the E-mode polarization, not discussed above, may also help to improve the

detectability [83, 84, 85, 70, 71, 74].

4.4 Summary

Given the expected improvements in sensitivity of the measurements aiming at the

detection of primordial tensor modes, it is crucial to determine whether there are viable

alternatives to the standard mechanism of creation of GWs through the amplification

of vacuum fluctuations.

In this chapter we have shown that, if an axion-like field that is only gravitation-

ally coupled to the inflaton experiences a transient epoch of relatively fast roll, then

tensor perturbations can receive an additional contribution whose amplitude is not

proportional to the energy scale of inflation. This implies that, for a broad range of

parameters, tensors of inflationary origin might be detectable even if inflation happens

at a low scale, and even for subplanckian inflaton displacements, without contradicting

the existing constraints. Remarkably, the simple potential (4.3) naturally satisfies our

requirements. To leave an observable GW signal, the transient epoch must occur while

the large scale CMB modes leave the horizon.

The system we have considered comes with a rich set of signatures. First, the am-

plitude of the induced tensor modes can be strongly scale dependent. As a consequence

significant B-mode CMB fluctuations might be detected only at scales related to the

reionization bump, or only at the B-peak at ` ∼ 80, but not at both angular scales. In

particular, detection at ` ∼ 80 without a corresponding detection at ` ∼ 10 would be

interpreted as a locally blue tilt (similarly to the case in Ref. [55]) for the primordial

21 See [78, 79, 77, 80, 75, 71] for the other possibilities to generate parity-violating CMB bispectra. See

also [81, 82, 74] for the WMAP and Planck constraints.
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tensor spectrum.

Moreover, the parity-violating nature of the process generates a characteristic 〈TB〉
correlator, that, in an ideal experiment, might be marginally detectable if the amplitude

of the induced tensors is large enough.

Finally, the statistics of the produced gravitational waves has a departure from

gaussianity that is significantly more marked than the vacuum modes. We have shown

that for some choices of parameters, a cosmic variance limited experiment could detect

a nonvanishing 〈BBB〉 correlator at a very high level of significance. We have studied

only for a very few choices of parameters, but as we mentioned in the previous section,

a larger tensor mode can be produced for increasing values of the axion mass (greater

δ). In result, this can lead to larger TB and BBB correlators, which may be observable

(particularly in the BBB case) already in a Planck-like experiment.

For the examples we have studied, the effect on the temperature correlators is statis-

tically small. This is the case because (i) due to helicity conservation, the amplitude of

the sourced scalar perturbations is smaller than that of the tensors, and (ii) all relevant

effects take place at multipoles with ` . O(102), where cosmic variance is large. We

have thus explicitly verified that the model studied here is one of the very few existing

examples for which a sourced GW signal is produced, while respecting the strong limits

imposed from the observed T modes of the CMB.

On the other hand, different choice of parameters can be made in the same model

that can result in a stronger scalar mode production than a tensor mode. This can easily

be the case if the field σ rolls for a considerable amount to e-folds during inflation. This

would generate a bump in the scalar modes with significant departure from gaussianity

and with a greater width than in the examples considered above. By tuning the moment

at which the considerable roll of σ takes place, the bump can manifest itself either at

CMB or LSS scales.



Chapter 5

Small Scale Phenomenology of

Axion-Gauge Interaction

“Ladies and gentleman, we have detected gravitational waves. We did it!” David Reitze

Previous chapter focused on the phenomenology resulting from the interaction of a

pseudo-scalar and an Abelian gage field at the largest scales of our observable Universe.

Remarkably, all the shown features originate from the single operator that is naturally

expected to occur in theories with pseudo-scalar fields. In this chapter, we direct our

focus towards the signatures of this interaction at scales much smaller than CMB ones.

We will observe that this coupling has a small scale phenomenology that is as rich as

the one at large scales.

Although CMB and LSS observations provide huge amount of vital information

about the cosmological inflation [67, 87], they allow us to directly probe only a small

fraction of the inflationary evolution. CMB and LSS probe the range of wave numbers

10−4 Mpc−1 <∼ k <∼ 0.1 Mpc−1, corresponding to about 7 e-folds of inflation. CMB y−
and µ−distortions may allow us to probe smaller scales, extending the above range to

∼ 104 Mpc−1. Even this extended range would cover only ∼ 18 out of the 50−60 e-folds

of inflation that produce perturbations within our horizon. This leaves the remaining

∼ 30−40 e-folds largely unexplored, apart from the bounds and the potential signatures

61
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associated with primordial black holes (PBHs) that arise if the scalar perturbations have

a sufficiently high amplitude at those scales [88, 89].

The recent gravitational wave observations at the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [90, 91] have opened a new observational window on general

relativity, astrophysics and cosmology. Concerning cosmology, GW measurements from

a network of terrestrial (such as LIGO, Advanced Virgo, KAGRA, and LIGO-India),

from Pulsar Timing Array experiments, and from space interferometers (such as LISA)

will provide invaluable information on galactic and stellar evolution. They will also give

us the unique opportunity to probe specific models of inflation or specific mechanisms

that could have been acting during inflation, at much smaller scales than those probed

by CMB acoustic peaks, LSS and CMB distortions.

We explore here the possibility that an enhanced GW background is produced di-

rectly during inflation, in the frequency ranges probed by terrestrial or spatial GW

interferometers. For instance, LIGO is mostly sensitive to GWs in the frequency range

(10− 200) Hz [92], corresponding to wavenumbers k ∼
(
1016 − 1017

)
Mpc−1. LISA is

instead mostly sensitive to GWs in the frequency range
(
10−4 − 10−1

)
Hz [93, 94] cor-

responding to wavenumbers k ∼
(
1011 − 1014

)
Mpc−1. Finally, PTA experiments are

mostly sensitive to GWs in the frequency range
(
10−9 − 10−7

)
Hz [95, 96, 97] corre-

sponding to wavenumbers k ∼
(
106 − 108

)
Mpc−1 1 .

A different possibility is that density perturbations produced during inflation col-

lapse to form PBH, which then evolve to the present universe, and ultimately give rise to

BH-BH binary mergers, such as those observed by the LIGO detectors. This is a differ-

ent mechanism of GW production, which is sensitive to modes of different scales. LIGO

is sensitive to collisions between black hole binaries up to a few tens of solar masses,

since the frequency of the innermost stable circular orbit fISCO = 4.4 kHzM�/M has

to be above the seismic noise to be detectable by LIGO [100]. As we discuss in Section

5.3.3, these black holes are expected to arise from merging and accretion from initial

PBH seeds of masses between a few thousandth and a few hundredth of solar masses,

corresponding to wavenumbers in the ∼
(
107 − 108

)
Mpc−1 range. LISA is instead sen-

sitive to black hole binaries from 105 to roughly 108 solar masses [101, 102, 103]. As

we discuss in Section 5.3.3, these black holes are expected to arise from merging and

1 Constrains on inflationary models from PTA experiments can be found for instance in [98, 99].
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k
[
Mpc−1

]
Nestim.

CMB / LSS 10−4 − 10−1 56− 63

y− & µ−distortions 10−1 − 104 45− 56

Pζ → PBH → GW @ PTA 104 − 105 41− 44

Pζ → PBH → GW @ LISA 105 − 107 38− 41

Pζ → PBH → GW @ LIGO 107 − 108 35− 37

Pδg → GW @ PTA 106 − 108 36− 40

Pδg → GW @ LISA 1011 − 1014 22− 28

Pδg → GW @ LIGO 1016 − 1017 15− 17

Table 5.1: First column: list of observational windows on inflation. Second column:
order of magnitude of the wavenumber of the primordial modes in the corresponding
window. Third column: estimated number of efolds before the end of inflation at which
corresponding modes exit the horizon. The 3rd, 4th and 5th rows refer to GWs produced
by the mergers of BH binaries originated by PBHs due to enhanced primordial scalar
perturbations. The last three rows denote primordial stochastic GW from inflation.

accretion from initial PBH seeds of masses in the ∼ 1−103M� range, corresponding to

wavenumbers in the ∼
(
105 − 107

)
Mpc−1 range. PTA experiments are mostly sensitive

to black hole masses roughly from 108 to 1010 solar masses [104], which, assuming a

comparable merging to the PBHs probed by LISA, corresponds to PBH seed massess

in the ∼ 103 − 105M� range, and to wavenumbers in the ∼
(
104 − 105

)
Mpc−1 range.

Table 5.1 summarizes these observational windows, together with the number of

e-folds before the end of inflation at which the corresponding modes were generated 2.

It is fair to say that, while the near scale invariance and the other properites that we

observe in the CMB radiation are a general prediction of inflation, the inflationary GW

signals discussed in the table do not need to be present, and in fact do not arise in the

minimal models characterized by an uncoupled inflaton moving in slow roll. Nonetheless,

the unique opportunity offered by this new observational windows highly motivates the

study of inflationary models or mechanisms that can provide such signals.

2 The figures in the table should be understood as order of magnitude estimates, and have been

obtained with some rounding errors. In these figures, we have assumed a constant Hubble rate

H = 1013 GeV during inflation, and that the Planck pivot scale k = 0.002 Mpc−1 exited the horizon

at N = 60, resulting in N ' 53.8 − ln(k/Mpc−1). In relating N to the PBH mass we assumed

instantaneous thermalization after inflation. From eq. (D.5), this gives N ' 37.9 + 1/2 ln(M/M�),

where M� ' 2× 1033 g is the mass of the sun.



64

One such mechanism that might leave imprints on those scales is the gauge field

amplification in axion inflation. The chiral coupling between an axion (pseudo-scalar)

and a gauge field enhances one of the polarizations of the gauge field, as shown in

Chapter 3, and in turn amplified gauge modes source GW 3 4 .

Obtaining an inflationary GW signal at interferometer scales requires either a bump

or a blue spectrum, to increase the GW signal from the low value that it has at CMB

scales. Such a blue signal is a natural expectation from the interaction ∆Lint ∝ φFF̃ .

This term is a total derivative in the case of constant φ. Therefore, the gauge field

amplification is proportional to the speed of the inflaton field, which naturally increases

towards the end of inflation. As with signatures on CMB scales [48], the main issue in

models that generate a large GW signal is to make sure that they do not simultane-

ously overproduce scalar perturbations. For observables generated in the later stages of

inflation, such as GWs at terretrial interferometers, the main concern is that the scalar

perturbations could lead to the overproduction of PBHs [51, 116, 117, 118]. In fact,

Ref. [51] showed that, if the existing analytic computations of the scalar perturbations

induced from the chiral axion and gauge coupling at small scales are accurate, the PBH

limits prevent the gauge field amplification to be strong enough to generate a visible

GW signal at LISA and LIGO in models of chaotic inflation. However, we show in this

chapter that PBH constraints preventing detectable GW are model dependent and can

be evaded.

The first observation, is that there is an O(1) uncertainty on the amount of scalar

perturbations generated by this mechanism in the regime which is necessary to produce

a large enough signal. As already pointed out in Ref. [51], an O(1) decrease of the scalar

signal would be enough for relaxing the PBH limit to allow a visible GW signal. Here

we stress two additional possibilities.

3 See Ref. [105] for a review of GW production during inflation from this and from other mechanims.
4 The produced vector modes can then have several phenomenological consequences, including the

generation of primordial magnetic fields [38], CMB non-gaussianity [48], increasing scalar power

at large scales [50], primordial black holes [51, 107], chiral gravitational waves (While the original

formulations via Non-Abelian fields [110, 111] are ruled out by CMB observations [17, 18, 20], chiral

gravity waves can also be sourced by gauge fields in extensions of Chromo-Natural inflation and

Gauge-flation [112, 113, 114, 115].) at CMB [39, 33, 171] and interferometer [31, 108, 109] scales.



65

Firstly, we note that, due to the typical blue spectrum of the sourced perturbations,

the PBH limit is enforced by modes at much smaller scales than those probed by in-

terferometers, particularly for the LISA and PTA cases. The PBH limit is enforced by

modes generated around 50 efolds after CMB modes are generated (explicitly, assuming

CMB modes are produced around N = 60, the PBH constraint comes from the modes

around N ' 10), while LISA is mostly sensitive to modes produced at N ∼ 25 before

the end of inflation and for PTA, it is N ∼ 40. Without committing to any specific

inflationary potential (which is a necessity, if one wants to relate signatures at different

scales), we ask the question whether the PBH limit at any given scale precludes an ob-

servable GW signal at that scale. The question is nontrivial, and it must be answered by

an explicit computation, as the answer ultimately depends on the sensitivity of the GW

measurement. Our computations provide a positive answer for the PTA-SKA projected

sensitivity [119] and for the LISA sensitivity curves reported in [94], and a negative one

for the current and projected AdvLIGO sensitivity curves reported in [92]. We reached

this conclusion for two different implementation of the axion-gauge coupling mechanism

that are studied in Chapter 3. The first one employs an axion as the inflaton and cou-

ples it to a gauge field via chiral coupling. The details of gauge amplification in this

case can be seen at Subsection 3.1.1. First implemention employs a modification of

the inflaton (axion) potential short after the LISA (or AdvLIGO) modes are produced.

Specifically, a mild decrease of the inflaton slope is arranged for this purpose (in the

concrete example we studied, we showed that a decrease of the slope of a factor of 3

is sufficient to slow down the inflaton, and to sufficiently weaken the PBH constraint).

The second model we considered is a two field model, introduced in Ref. [171] and al-

ready studied in Section 4, to produce a localized bump in the GW spectrum at CMB

scales. In this model, the gauge field amplification is due to the chiral coupling with a

pseudoscalar σ that is not the inflaton, and it rolls only for a few e-folds of inflation.

The details of gauge amplification in this case can be seen at Subsection 3.1.2. Both

implementations lead to a positive (negative) conclusion for the projected PTA-SKA

and LISA (AdvLIGO) sensitivity curves.

The discussion above refers to the GW signal directly sourced by the gauge fields

during inflation, and that gives rise to the observational windows listed in the last three

rows of Table 5.1. The mechanism of gauge field amplification may also give rise to a
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different, and more complicated, mechanism of GW production. Specifically, it may be

possible that the scalar perturbations give rise to a significant amount of PBHs com-

patible with observations, that act as seeds for structure and may be responsible for

most of the observed non-stellar black holes. Their mergers lead to specific GW signals

at detectors and their mergers throughout the cosmic history lead to a different type of

stochastic GW background than primordial one 5. These PBH could also be identified as

the dominant component of the dark matter of the universe [89, 121, 122, 123, 124, 125].

The evolution from the seeds to the present black holes involves merging of the different

PBHs and gas accretion [122], and is beyond the scope of this chapter. Nevertheless, we

briefly review this possibility here, since the gauge field amplification provides a mecha-

nism for the generation of the seeds which is alternative to another mechanism that have

been proposed in the context of hybrid inflation [88, 89]. We discuss this possibility in

the context of the two-field φ− σ model, as it produces a localized bump of scalar field

modes, and therefore a narrow spectrum of black hole masses, for which estimates can

be more easily made. As mentioned, this new mechanism of GW production provides a

different window on inflation (third, fourth and fifth rows of Table 5.1).

This chapter has been organized as follows. In Section 5.1 we review the limits on

PBH and on the scalar perturbations generated from this mechanism. In Section 5.2

we discuss the GW production for the direct coupling φFF̃ between the inflaton and

the gauge field. In Section 5.3 we discuss the case of localized GW production from a

field σ different from the inflation. Section 5.4 provides a summary of our results and

some concluding remarks. Some details of calculations are presented at Appendix D.

This Chapter is mainly based on Ref. [173].

5 Actually there are more stochastic GW backgrounds in PBH scenario. One of them is induced GW

resulting from the schematic interaction ζ + ζ → h at second order in perturbation theory. Another

one is the stochastic GW background due to the non-spherical collapse of the fluid during PBH

formation. These are beyond the scope of this chapter.
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Figure 5.1: Left panel: Limits on the rescaled black hole fraction β̃ as a function of
the black hole mass. Right panel: Same limits, written as a bound on the primordial
curvature(density) perturbations as a function of number of e-folds before the end of
inflation, assuming a constant Hubble rate H = 1013 GeV during inflation, and a χ2

statistics of the density perturbations (see Appendix D.1).

5.1 Limits on scalar perturbations, and prospects for the

detection of a stochastic GW background

In the left panel of Fig. 5.1, we present the limits on PBH in a wide mass spectrum.

We show the limits in terms of the rescaled variable β̃ introduced in [126] (where it was

denoted as β′ there) as a function of the black hole mass. As we explain in Appendix

D.1, the quantity β̃ is related through equation (D.13) to β, that is the fraction of

regions (of a given size, corresponding to a given black hole mass) that collapse to form

a black hole. We now list the origin of the limits included in this figure.

Going from smaller to greater black hole mass M ,6 the first limits shown in Fig. 5.1

are a consequence of the black hole evaporation which, depending on M , can photodis-

sociate elements formed during Big-Bang Nucleosynthesis, modify the CMB, distort

the galactic and extra-galactic γ−ray background. This set of constraints is studied

in details in Ref. [126] (see also [127]). The constraints we show in the mass range

5 × 1016 <∼ M(g) <∼ 1026 are obtained from the effects of the capture of black holes

by stars (the black holes would eventually destroy the neutron star or white dwarf

remnants),7 according to the updated computations of Ref. [130]. The limits in the

6 We do not include limits at M < 109g shown in Fig. 9 of [126] as they are model dependent, and

assume that the black hole evaporation leaves behind stable relics.
7 These updated constrains are stronger than those arising from the lack of observation of femtolensing
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1026 <∼ M(g) <∼ 1035 range are due to the lack of observations of short duration mi-

crolensing events by the MACHO and EROS Collaborations [131, 132]. These exper-

iments lasted for approximately six years each, and thus could not constrain higher

masses of Massive Compact Halo Objects, which correspond to long duration events of

order a decade. The limit indicated as “WB” is obtained from the non observation of

wide binary disruption [133]. Finally, the “DF” limit refers to dragging of halo objects

into the Galactic nucleus by dynamical friction [134]. For the last three constraints, we

took the limits as reported in Figure 3 of [135]. We did not include the CMB bounds

from y− and µ−distortions 8 due to X-rays emitted by gas accretion onto PBHs before

recombination, because there was an error in Ref. [139] and with a recent reanalysis, the

bounds have shifted by a few orders of magnitude towards larger masses [140]. We also

ignored the Eridanus-II bounds of Ref. [141] because the star cluster at the center of

the dwarf galaxy could be stabilized by an intermediate mass BH, which would prevent

the puffing up of the system. This effect shifts the bounds again below the DF bounds.

In Appendix D.1 we show how these limits translate into an upper bound on the

amount of primordial scalar perturbations Pζ as a function of the number of e-folds N

before the end of inflation at which they leave the horizon ( see the right panel of Figure

5.1). Our computations focus on the PBH formed by scalar perturbations caused by

gauge field amplification in axion inflation. The scalar modes obey a χ2 statistics [51],

which significantly improves PBH production and tightens bounds on Pζ with respect

to Gaussian statistics, as we show in Appendix D.1. We also show there that β changes

dramatically with Pζ , which explains why the limit in the left panel of Figure 5.1 changes

by ∼ 25 orders of magnitude, while that in the right panel changes by only ∼ 2.

of γ−ray bursts [128], and the lack of microlensing events at Kepler [129], which we therefore do not

show here.
8 y− and µ−distortions also put a bound on the scalar power spectrum (independently on whether PBH

form) for modes that re-enter the horizon at z <∼ 106, due to the fact that the energy associated with

these modes does not perfectly thermalizes with the background energy density. µ−distortions are

mostly affected by primordial perturbations of wavenumbers 50 Mpc−1 <∼ k <∼ 104 Mpc−1 [136, 138],

which roughly corresponds to modes that left the horizon at 45 <∼ N <∼ 50 e-folds before the end

of inflation (this assumes that the Planck pivot scale k = 0.002 Mpc−1 corresponds to N = 60.)

y−distortions are instead mostly sensitive to modes 1 Mpc−1 <∼ k <∼ 50 Mpc−1 [136, 138], which

roughly corresponds to 50 <∼ N <∼ 54. All the sourced signals that we consider in this chapter take

place at scales much smaller than these, and therefore do not induce these distortions.
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The field amplification enhancing the scalar perturbations also produces a primor-

dial stochastic background of gravitational waves. We aim to understand under which

conditions this background can be observed, without violating the bounds from PBH.

It is customary to express the amplitude of the GW background in terms of their

present fractional energy density per logarithmic wavenumber interval ΩGW, which is

related to the GW power spectrum by (see [108] for details)

ΩGW ≡
1

3H2
0M

2
P

∂ρGW,0

∂ log k
=

ΩR,0

24
(PL + PR) , (5.1)

where ΩR,0 h
2 ' 4.2 × 10−5 refers to radiation today (including neutrinos, as if they

were still relativistic). The quantity ΩGW is typically plotted as a function of frequency

f = k/2π, which is related to the number of e-folds by

N = NCMB − 44.92 + ln

(
kCMB

0.002 Mpc−1

)
− ln

(
f

100 Hz

)
+ ln

(
HN

HCMB

)
(5.2)

where NCMB is the number of e-folds at which the mode kCMB left the horizon. In

(5.2) we have set this scale to the Planck pivot scale, which in this chapter we assume

to correspond to NCMB = 60. We note that the last term in (5.2) accounts for the

variation of the Hubble rate during inflation (HN denotes the value at N e-folds before

the end of inflation, and HCMB at N = NCMB). This factor was neglected in Ref. [108].

In the following sections we compare the GW signal produced in models of axion

inflation with the sensitivity curves of AdvLIGO (from top to bottom, O1-O3-O5 lines of

Figure 1 of [92]), LISA (from bottom to top, A5M5-A5M2-A2M5-A2M2-A1M5-A1M2

lines of Figure 1 of [94]; the various lines refer to different choices for the length of

the LISA arms and for the LISA duration. Specifically, the labels A1, A2, and A5

correspond, respectively, to 1, 2, and 5 million km; the labels M2 and M5, correspond,

respectively, to 2 and 5 years), and of Pulsar Timing Array experiments (the curve

labeled by PTA corresponds to the combination of the current limits of [95, 96, 97]; the

curve labeled by SKA corresponds to the forecast sensitivity of the Square Kilometer

Array PTA experiment, obtained using the GWPlotter tool [119]).
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5.2 Production from a rolling inflaton φ

In this section we study the small scale phenomenology of the inflationary model

L = −1

2
(∂φ)2 − V (φ)− 1

4
F 2 − φ

4f
F F̃ , (5.3)

for a pseudo-scalar inflaton φ coupled to a U(1) vector field (F is the field strength

associated to the vector, and F̃ its dual). We divide the discussion in two subsections.

In the first one, we review results from the literature to compute the scalar and ten-

sor (GW) primordial perturbations generated in this model. In the second subsection

we then show that, depending on the inflaton potential and on the coupling strength

to vector, this model can result in observable gravity waves at interferometer scales,

without overproducing primordial black holes.

5.2.1 Production of scalar and tensor modes

We consider inflation in the model described by the lagrangian (5.3). Due to the motion

of the inflaton, the coupling amplifies one circular polarization of the vector field, leading

to (See [38] and Chapter 3 for details)

A+ '
1√
2k

(−kτ
2ξ

)1/4

exp
(
πξ − 2

√
−2ξkτ

)
, ξ ≡ ϕ̇

2fH
, (5.4)

where k is the comoving momentum of the gauge field mode, τ is conformal time, and

H the Hubble rate (we are assuming ξ > 0; in the opposite case, the A− polarization is

amplified). Moreover, ϕ denotes the zero mode of the inflaton field, φ = ϕ(t)+δφ (t, ~x).

The amplification of any gauge field mode takes place only when the size of the mode is

comparable to the horizon, so that this mechanism has no UV nor IR singularities. When

deep inside the horizon, the gauge field mode has a standard dispersion relation, and it is

not amplified. At super-horizon scales, the growth weakens and it becomes subdominant

to the expansion of the universe, so that the gauge field is diluted away by the expansion.

The approximate expression (5.4) is valid in the interval 1/8ξ � −kτ � 2ξ. These are

the times during which the mode grows, and remains at a sizable level, before being

diluted away. Therefore this approximation allows to obtain a good estimate of the

phenomenological signatures caused by the mode.9

9 We omit several details of the computations. One can refer to Section 2.1 of [172] or Subsection 3.1.1

for a detailed summary of the gauge field amplification; to Section II.B of [108] or Chapter 6 for
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The gauge modes source scalar perturbations (through the inverse decay A++A+ →
δφ process) and gravitational waves (through the gravitational interaction A+ +A+ →
h+, and A+ + A+ → h−, where h± denotes the two GW polarizations). These signals

add up incoherently to the usual vacuum ones, so that the scalar and tensor correlators

are the decoupled sum of a vacuum (which we denote by the suffix v) and sourced

(suffix s) contribution. The fact that only A+ modes are amplified (which is due to the

breaking of parity associated to the pseudo-scalar inflaton) results in a much greater

production of h+ with respect to h−, namely the sourced GW background breaks parity

nearly maximally [39]. In the following, we disregard the highly subdominant sourced

h− mode. One finds 10

Pζ (k) ' Pζ,v (k) + P 2
ζ,v (k) f̂2,ζ (ξ) e4πξ ,

PGW (k) = PGW,+ (k) + PGW,− (k) ' 2H2

π2M2
p

[
1 +

H2

M2
p

f̂2,+ (ξ) e4πξ

]
, (5.5)

where we recall the standard vacuum result Pζ,v ' H4/(4π2ϕ̇2).

Typically, the parameter ξ adiabatically grows during inflation (we note that ξ '√
ε
2 Mp/f , where ε is the usual slow roll parameter). Therefore, the quantity ξ in

eqs. (5.4) and (5.5) should be understood as the value acquired by ξ when the mode

in consideration crosses the horizon (the same is true for the quantity H appearing in

(5.5)). At CMB scales, ξ is constrained by non-gaussianity [48, 67] and by the growth of

the scalar spectrum with k [50, 67] (one typically obtains ξCMB <∼ 2.2− 2.5, depending

on the specific potential, and priors [67]). For such values of ξ, the amplified gauge

quanta modify the background dynamics in a negligible manner.

As the inflaton speeds up during inflation, ξ increases. At larger values of ξ, the

amplified gauge modes can significantly backreact on the background evolution. The

the study of the backreaction of the vector field on the background dynamics; to Section III of [49]

and Section II of [51] for the computation of the scalar perturbations sourced by the vector modes

during inflation; finally, to Section V of [49] and to Section V of [108] for the computation of the GW

sourced by the vector modes during inflation.
10 The two functions in this parametrization have the behavior f̂2,ζ (ξ) ' 7.5× 10−5/ξ6 and f̂2,+ (ξ) '

4.3 × 10−7/ξ6 in the ξ � 1 regime. The full dependence is given in [49]. We note the presence of a

typo in eq. (3.40) of [49], namely the r.h.s. should contain an additional 1
4

factor. This typo did not

propagate to any of the other equations or figures of that work.
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dominant effect is an additional friction in the equation for the inflaton field (see Sub-

section 6.2.1 for eqn of motion and more details). (the physical reason for this is that

the gauge field amplification occurs due to the motion of ϕ, and therefore at the expense

of the inflaton kinetic energy). This can give rise to a transition [108] between the usual

slow roll evolution at early times and a new attractor solution at late times, where the

gauge field amplification dominates over the Hubble friction. The increase of ξ also gives

rise to a significant increase of the sourced inflaton perturbations and gravity waves.

The increase of the inflaton perturbations complicates the system of scalar perturba-

tions. Eq. (5.4) for the vector modes has been obtained for a homogeneous inflaton (we

note that A+ [ξ [ϕ]] in that expression). However, we expect that at sufficiently large ξ

the inflaton perturbations will be large enough to significantly impact the gauge mode

solution; hence, we need a solution solution for a more general A+ [ϕ+ δφ] case. This

quantity acts as a source in the equation for the inflaton perturbations. Expanding this

source in δφ introduces additional terms in the equation for the inflaton perturbations,

which must be relevant at sufficiently high ξ. A complete equation for the scalar per-

turbations in this regime has not yet been obtained. Here we employ the approximate

analytic equation first derived in [142], and later used in [108, 51] 11

δφ̈+ 3βfricHδφ̇+ k2δφ+ V ′′δφ =
~E · ~B − 〈 ~E · ~B〉

f
, (5.6)

where

βfric ≡ 1− 2πξ

f

〈 ~E · ~B〉
3Hϕ̇

. (5.7)

In our expressions, ~E and ~B denote the “electric” and “magnetic” field associated with

the solution (5.4).12 Taking βfric = 1 in (5.6) amounts in neglecting any dependence

of the vector fields on δφ. The sourced scalar solution in (5.5) has been obtained with

this assumption, and, for the reasons we just discussed we expect it to be accurate

at sufficiently small ξ. Taking instead βfric as in (5.7) amounts into including one of

the effects arising from the dependence of the gauge field from δφ. As the solution

(5.4) depends on the time derivative of the inflaton zero mode, it is reasonable to

11 Following standard notation, dot denotes derivative with respect to physical time, while prime on a

function denotes derivative with respect to its argument.
12 We use standard electromagnetic notation for convenience, but we are not necessarily implying that

the vector field in (5.3) is the Standard Model photon.
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expect that the first effect of δφ in the source will be through the change δξ = δξ

δ(δφ̇)
δφ̇,

which precisely leads to (5.7). This was the reasoning adopted in [142, 108, 51] and

we also follow it in the present work. However, we alert the reader that eq. (5.6) is

not a complete one, and that additional terms, not included in this equation, may also

become important when the departure of βfric from 1 becomes relevant.

As shown in [108, 51], eq. (5.6) leads to the following estimate for the sourced scalar

power spectrum

Pζ,s (k) '
(
〈 ~E · ~B〉

3βfricHϕ̇ f

)2

F2 . (5.8)

As seen for instance from Figure 4 of [51] the sourced scalar solutions in (5.5) and (5.8)

are in remarkable agreement with each other at sufficiently small ξ. This is in particular

true for the values of ξ at which the CMB bounds have been derived. However, as ξ

increases, the solution (5.8) becomes significantly smaller than that in (5.5), due to the

additional friction included in (5.6) for βfric 6= 1. We use eq. (5.8) for our results below.

The factor F in the expression (5.8) was not present in the computations of refs.

[142, 108, 51]. This factor accounts for the impact of the energy density in the gauge

field to the denominator of ζ ≡ −Hδρ
ρ̇ . We evaluate it in Appendix D.2, following the

observations recently made in [143] although it has only a marginal relevance. From

both numerical and analytical computations, we find that this factor evolves from 1 in

the regime of negligible backreaction of the gauge field on the background dynamics

(appropriate at CMB scales) to 7
8 in the regime of strong backreaction (appropriate of

late times). The limiting value 7
8 is independent of the inflaton potential, of the value of

f , and of the number of amplified gauge fields. In the evolutions studied in this study,

this limiting value is reached only at the very end of inflation. To give a reference value,

F ' 0.98 at N = 10 in the evolution shown in Figure 5.2.

The gauge fields also source metric perturbations, and the solution (5.4) has been

used in obtaining the second line of (5.5). Metric perturbations would modify (5.4) in

a completely negligible manner (due to gravity). Therefore we can ignore any δA+

δh δh

correction in the source of the equation for the gravitational waves, and use the second

line of (5.5) in the results presented below.
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Figure 5.2: On left: Scalar power spectrum in axion inflation for a linear inflaton
potential, in the approximation (5.8). The coupling to gauge field is chosen as large as
allowed by the PHB bounds shown in the figure; this gives ξCMB <∼ 1.66 at 60 e-folds
before the end of inflation. On right: Corresponding GW signal for the same model
and parameters chosen in the left panel. The modes that left the horizon 30, 20, and 10
e-folds before the end of inflation are shown with red dots.

5.2.2 Phenomenology at sub-CMB scales

We are now ready to discuss the phenomenology of this model at scales much smaller

than the CMB ones. In particular, we want to review the result of Ref. [51], which ap-

pears to be a major obstacle against the possibility of observing GW at interferometer

scales from the model given in (5.3). Ref. [51] computed the primordial scalar and ten-

sor perturbations produced in this model for a quadratic inflaton potential. They found

that, due to the non-Gaussian nature of the scalar perturbations, the scalar field amplifi-

cation can easily overcome bounds imposed by PBH. They can be avoided only provided

that ξCMB <∼ 1.5 at N = 60 e-folds before the end of inflation. Once this limit is re-

spected, the GW production is below the PTA-SKA, LISA, and AdvLIGO sensitivities.

As by now the quadratic inflaton potential is ruled out by the CMB observations [67],

we perform an analogous computation for a linear inflaton potential, Vinf = M3φ (M is

set by COBE normalization as usual), which is motivated by monodromy [144, 145].

We numerically integrate the background equation of motion for the inflaton and

the Friedmann equation, keeping into account the backreaction of the produced gauge

quanta in both equations (see [108] and eqns. 6.10 and 6.11 in Subsection 6.2.1). We

iteratively vary the axion scale f and the mass parameter in the linear potential so to

obtain the correct power spectrum normalization Pζ = 2.2× 10−9 [67] at N = 60, and

so to obtain the largest inflaton-vector coupling (smallest f) allowed by the PBH limit.

This results in ξCMB ' 1.66 at N = 60, close to the value found in [51] for a quadratic
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inflaton potential.13 We show the scalar spectrum, and the PBH bound, in the left

panel of Fig. 5.2. The right panel of the figure shows the GW produced for the same

linear potential and parameters choice. Also in this case, the limit from PBH bound

on the gauge field enhancement forces the GW signal to be too small to be observed at

PTA-SKA, LISA, and AdvLIGO scales.

We stress that this conclusion strongly relies on the scalar modes being accurately

described by Eq. (5.6) in the ξ � 1 regime. As we discussed after Eq. (5.6), this equation

should receive additional corrections in this regime, that can change the result (5.8) by

an O(1) factor. As already remarked in Ref. [51], an O(1) decrease of the scalar power

spectrum would be enough to make the PBH limit unimportant. Ref. [146] proposed

some conditions for the validity of perturbative computations of the scalar perturbations

in this model. The conditions were reanalyzed in Ref. [172], which showed that these

criteria are satisfied for ξ <∼ 4.8. This is parametrically close to the values necessary to

generate PBH, indicating that, while Eq. (5.6) very likely provides a correct estimate

for the amplitude of the scalar modes, O(1) corrections are a possibility.

If we assume that the result (5.8) is reliable, we can still have two simple possibilities

that make the PBH limit less important from the specific case studied in [51]. We discuss

these two possibilities in the two separate parts in the reminder of this subsection.

5.2.2.1 Dependence on the inflaton potential

We observe from Fig. 5.2 that the PBH limit ξCMB <∼ 1.66 is enforced by modes that

left the horizon at N ' 10 e-folds before the end of inflation. On the other hand, the

13 We note that the upper bound on ξ is obtained from PBH bounds at the latest times of the evolution

(namely, from the smallest values of N). Since M ∝ e2N , these smallest scales correspond to the

smallest PBH masses. (i) We only consider limits for M > 109g, for the physical reasons that we

stated in footnote 1. Ref. [51] made the same physical assumption, but it considered masses starting

from M > 108g (we believe that the 109g figure is more in line with Fig. 9 of [126]). (ii) We included

an efficiency factor γ ' 0.2 in our relation (D.5). (iii) Our relation (D.5) accounts for the variation of

the Hubble rate during inflation. All these three factors contribute to increase the value of Nmin at

which the PBH bound is present, giving a weaker constraint on Pζ in our case, with respect to [51].

We repeated their computation for quadratic inflaton potential, but with our limit on Pζ , obtianing

ξCMB <∼ 1.82, rather than their result ξCMB <∼ 1.5. This slightly weaker limit does not change the

physical conclusion of [51] that the PBH bound prevents GWs from being observable in a quadratic

inflaton potential.
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PTA, LISA, and AdvLIGO bands include modes that left the horizon earlier. This is

particularly true for PTA and LISA, which are mostly sensitive to modes produced,

respectively, at N ' 40 and at N ' 25. Therefore, the interplay between the PBH limit

and the possible GW signal strongly depends on the evolution of ξ, and, ultimately, on

the inflaton potential, in the latest stages of inflation. We have very little knowledge of

the inflaton potential after the CMB and LSS modes are produced, and we can easily

imagine potentials for which ξ has a peak at some intermediate value of N , and then

decreases, without ever violating the PBH bounds.

This is for example immediately achieved if the linear potential changes its slope at

some given point during inflation, as in the Starobinsky model [147]. In that work, the

potential changes its slope abruptly at some given value φ = φ∗. Here, we consider a

“regularized” version of that model, that has the smooth transition

V =


−M3 φ , φ < φ1

M3 (1−r)(φ+φ1)2−2φ(φ1−2rφ1+φ2)
2(φ2−φ1) , φ1 < φ < φ2

−M3 (1−r)(φ1+φ2)
2 − rM3 φ , φ > φ2

. (5.9)

We choose the potential to be linear both at φ < φ1 and φ > φ2, with a smaller slope

(by a factor r < 1) in the second region. The potential in the intermediate region is a

second order polynomial chosen so that V and V ′ are continuous at both φ1 and φ2.

In Figure 5.3 we compare this modified potential (solid line) with the unmodified

linear potential (dashed line). we note that the potential (5.9) is unbounded from below

and it needs to be further modified at greater field values to have a stable minimum

with V = 0. The value of φ1 is chosen so that the departure from the initial linear

potential occurs at N = 24 (this gives φ1 ' −5.22Mp; we then choose φ2 = −4.22Mp).

We then choose r = 0.3, so that the derivative of the potential decreases of a factor of

about ∼ 1/3 from φ1 to φ2.

We choose the inflaton-gauge field maximum coupling allowed by CMB in the case of

a linear potential, f = Mp/48, see Ref. [67]. This corresponds to ξCMB ' 2.41 at N = 60.

The inflaton speed increases in the initial linear potential until φ reaches φ1 and at this

moment, ξ ' 4.43. After the transition φ = φ1, the inflaton speed, and the parameter

ξ decrease due to the decrease of the slope of the inflation potential. This significantly

reduces the gauge field amplification and the sourced scalar and tensor modes. In

Figures 5.3 and 5.4, we also show the unmodified linear potential, the corresponding
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Figure 5.3: The solid line shows the inflaton potential (5.9) spanned by the inflation
from N = 60 to N = 5, with parameters leading to the spectra of Figure 5.4. The two
arrows indicate the position of the two transition regions (the potential is linear both at
φ < φ1 and φ > φ2, but with a different slope). The dotted lines shows an unmodified
linear inflaton potential.
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Figure 5.4: As in Figure 5.2, but with a larger coupling of the inflaton to the gauge
field, and with the modified inflaton potential (5.9). The solid lines are the spectra
obtained in this case (the corresponding potential is shown in the solid line of Figure
5.3). The dashed lines show how the spectra would continue at small scales if the instead
the inflaton potential remained linear at all values (corresponding to the dashed line in
Figure 5.3).
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scalar and GW spectra with dashed lines for a clear comparison. Because the gauge

field amplification is strongly dependent on the particle production parameter ξ, the

mild change of the potential results in completely different signal for the modes that

exit the horizon at those scales.

We see that the potential (5.9) can indeed result in a visible signal at LISA scales,

without violating bounds from PBH. Many other examples can be constructed. Al-

though we do not show here explicitly, it is also clear to see that same potential feature

(this time slope change corresponding to N ∼ 40) can lead to a detectable signal at

PTA-SKA experiment without violating PBH limits.

5.2.2.2 Dependence on the number of gauge fields

Let us assume that N > 1 vector fields are amplified by the L = − φ
4f FiF̃i interaction

(i = 1, . . . , N ). For simplicity, we assume that all the fields have the same coupling

to the inflaton. This is what happens if the vectors are the different components of a

Non-Abelian group. This has several consequences: (i) an increased backcreaction, that

will slow the motion of the inflaton more than in the N = 1 case; (ii) an increased GW

source: as the different gauge fields are statistically uncorrelated with each other, the

GW power spectrum - for any given value of ξ - increases by N with respect to the case

of a single vector field; 14 (iii) an analogous increase ∝ N taking place for the power

spectrum scalar perturbations, schematically, for ζ ∝∑Ni=1
~Ei · ~Bi, we have

〈ζζ〉 ∝
∑
i,j

〈(
~Ei · ~Bi

)(
~Ej · ~Bj

)〉
=
∑
i

〈(
~Ei · ~Bi

)2
〉

= N
〈(

~E1 · ~B1

)2
〉
, (5.10)

(namely, the different sources are statistically uncorrelated, resulting in an N enhance-

ment with respect to the case of a single gauge field); this is contrasted by the fact that

also the second term in (5.7) increases by N . Therefore, as we can observe from (5.8),

the scalar power spectrum has a N enhancement in the ξ >∼ 1 regime, when βfric ' 1,

while a 1/N suppression [142] in the ξ � 1 regime, when the second term dominates in

βfric. Therefore, in the ξ � 1 regime, the ratio between the GW and the scalar power

spectra scales as N 2. It is reasonable to expect that even mild values of N can lead to

an observable GW signal, while respecting the PBH bound.

14 For any given model and coupling, this does not imply a growth of the GW power spectrum by N ,

due to the increase backreaction on the background.
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Figure 5.5: Scalar and tensor signals for a linear inflation potential. The solid lines
show the signal if N = 6 gauge fields are amplified. For comparison, the dashed lines
show the signal when 1 gauge field is amplified.

This is confirmed by Fig. 5.5, where the solid (dashed) lines show the scalar and

tensor power spectra generated if N = 6 (1) gauge fields are amplified. When comparing

the solid with the dashed lines, we notice an increased GW signal at LISA scales, while

the scalar signal is now below the PBH bound at all scales. We note that, for N = 6,

the sourced scalar signal is enhanced more than single gauge field case for N >∼ 30

(corresponding to ξ >∼ 1 and βfric ∼ 1), and suppressed more for N <∼ 20 due to strong

backreaction (corresponding to ξ � 1 and βfric � 1) 15. We also note that in multiple

field case, the GW spectrum is suppressed in the strong backreaction regime with respect

to the case of single gauge field. This suppression results from the fact that enhanced

backreaction in multiple vector case is stronger and it slows the inflaton more than

single field case, which decreases ξ more.

5.3 Production from a rolling field σ different from the

inflaton

In this Section we provide a different example on how to obtain a large GW signal at

interferometer scales without conflicting with the PBH limit at N ' 10. We employ the

model of [171] (or Chapter 4), which provided a localized bump in the spectrum of scalar

15 We fixed the the coupling f = Mp/48 to the same value used in the previous figure, corresponding

to the Planck limit for a linear potential and a single amplified gauge field [67]. It is possible that,

for N > 1 a slightly smaller coupling should be considered. This would require a dedicated analysis

on the CMB limits, which is beyond our scope. A slightly smaller coupling would not change our

findings, and the present discussion.
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and tensor perturbations. The model was proposed to provide an explicit example that

can generate a visible tensor-to-scalar ratio at the CMB scale for very small scale of

inflation (and, therefore, for very small vacuum GWs), without conflicting with limits

imposed by the non-gaussianity of the scalar perturbations at CMB scales. Here we

show that this model can also provide a sufficiently large GW signal for detection at

interferometer scales, particularly for LISA and PTA-SKA experiments. The model is

(For details, see Section 4.1)

L = −1

2
(∂φ)2 − Vφ (φ)− 1

2
(∂σ)2 − Vσ(σ)− 1

4
F 2 − α σ

4f
F F̃ , (5.11)

where φ is the inflaton field, σ is a pseudo-scalar field different from the inflaton that

leads to gauge field amplification, and α a dimensionless parameter. For definiteness, we

assume that σ has the simplest potential typically associated to a pseudo-scalar given

in 4.3, We tune the curvature of the potential to be of the same order as the Hubble

rate H during inflation. We encode this tuning into the parameter

δ ≡ Λ4

6H2f2
<∼ 1 , (5.12)

so that the mass of σ in the minimum of the potential mσ =
√

3δ H is slightly smaller,

but comparable to H (we choose δ = 0.2 in our computations). The pseudoscalar then

experiences the slow roll evolution

σ = 2 f arctan
[
eδ H(t−t∗)

]
⇒ σ̇ =

f H δ

cosh [δ H (t− t∗)]
. (5.13)

We see that the evolution is non-negligible for 1/δ ∼ few e-folds. In our computations

below we fix δ = 0.2 for definiteness. The quantity t∗ is the time at which σ is in the

steepest position of the potential (σ = fπ/2), and at which it has maximum speed.

This value depends on the initial conditions, and we simply treat it as a free parameter

of the model. 16

The rest of this section is divided into three parts. In the first part, we review the

results on the scalar and tensor modes sourced during inflation in this model [171]. In

the second part, we study the prospect of detection of the inflationary GW signal at

16 One could imagine a more complicated model, with a different potential Vσ close to the origin, that

fixes the initial condition for σ at the required position.
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interferometers. In the third part, we discuss a different potential mechanism for GW

production. Specifically, we study the possibility that the sourced scalar perturbations

produce PBHs (in an amount consistent with the limits shown in Figure 5.1), and that

the merging of two such PBHs in the recent universe gives rise to detectable GWs by

PTA-SKA, LISA, or AdvLIGO. We stress that this is an independent mechanism of

GW production with respect to the one discussed in the second part, and that the two

mechanisms are actually sensitive to gauge field amplification taking place at different

times during inflation.

We conclude this discussion by pointing out that a different way to produce a local-

ized bump, without resorting to this second field σ, is to assume that the vector field

is massive, and that its mass is modulated by the value of the inflaton field φ. Refs.

[50, 51] also studied the possibility that the gauge field has a mass > ξH, which highly

suppresses the gauge field amplification, and the consequent PBH production. If the

mass depends on the inflaton, in such a way that the vector is light only in a neighbor-

hood of some given value φ = φ∗ assumed during inflation, then only the gauge modes

produced while φ spans this interval are produced, generating an enhanced scalar and

tensor signal at these scales, similarly to the one that we consider in this section.

5.3.1 Production of scalar and tensor modes

For sufficiently large coupling strength α/f , the motion of σ can lead to a strong ampli-

fication of the vector modes that leave the horizon during the ∼ 1/δ e-folds of inflation

in which σ has a non-negligible roll (Section 4.1). In turn, the amplified gauge modes

source perturbations of σ and gravity waves, through the 2→ 1 processes that we have

already discussed in the previous section. During this time, the simultaneous roll of φ

and σ gives rise to a δσ − δφ coupling between the perturbations of the two fields. As

long as this coupling is active, the perturbations δσ produced by the vector field source

inflaton perturbations (see Sections 4.2 and 4.3),17 which give rise to a bump in the

primordial scalar curvature.18

17 This channel of production of inflaton perturbations is more efficient [57] than the gravitational

production of inflaton perturbations from the gauge modes [33].
18 The primordial scalar curvature ζ is a linear combination ζ (t) = A (t) δφ (t) +B (t) δσ (t), where the

two coefficients A and B depend on the background. In this model, the field σ becomes massive
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The bumps in the primordial scalar and tensor perturbations due to this mechanism

add up incoherently to the standard modes from the vacuum, and the total power

spectra are given by

Pζ (k) ' Pζ,v (k) +

[
H2 (k)

8π2M2
p

]2

f2,ζ

(
k

k∗
, ξ∗, δ

)
,

PGW (k) ' 16 εφPζ,v (k) +

[
H2 (k)

8π2M2
p

]2

f2,+

(
k

k∗
, ξ∗, δ

)
, (5.14)

where again we disregard the sourced but unenhanced “-” GW polarization, which is

much smaller than the sourced “+” polarization. Above we denote the inflaton slow-

roll parameter with εφ, to distinguish it from the slow roll parameter εσ ≡ σ̇2/2H2M2
p

associated with the field σ. The quantity k∗ denotes the comoving momentum of the

mode that leaves the horizon at t∗, while ξ∗ ≡ α σ̇∗/2fH = α · δ/2 with σ̇∗ ≡ σ (t∗).

Ref. [171] evaluated the sourced power spectra numerically for the two specific values

of δ = 0.2, 0.5 and for several values of ξ∗, and showed that they are well fitted by

f2,j

(
k

k∗
, ξ∗, δ

)
' f c2,j [ξ∗, δ] exp

[
− 1

2σ2
2,j [ξ∗, δ]

ln2

(
k

k∗ xc2,j [ξ∗, δ]

)]
, j = ζ, + ,

(5.15)

which is a Gaussian bump (in terms of ln k) centered at k = xc2,j k∗. The quantity xc2,j

is of O(1) so that, as expected, the sourced signals are peaked at the scales that leave

the horizon close to the time at which the roll of σ is fastest. The function f c2,j controls

the amplitude of the bump, and, analogously to (5.5), it grows exponentially with ξ∗.

The function σ2
2,j controls the width of the bump, and it decreases with increasing δ.

This is also to be expected, since greater δ corresponds to a shorter duration of the roll

of σ. The precise dependence of these three functions on ξ∗ is given in Section 4.3, for

the two cases δ = 0.2, 0.5.

shortly after t∗. As σ becomes a massive field in an inflationary universe, its energy density and

pressure rapidly drops to zero, and so does the coefficient B. The only potentially observable effect

of δσ is through its linear coupling to the inflaton perturbations that we are considering, and that is

in act only as long as σ̇ 6= 0.
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5.3.2 Direct Detection of Inflationary Signatures at Interferometer

Scales

To obtain the precise scalar and tensor perturbations generated in the model (5.11)

we need to specify the inflaton potential. From the potential we derive the slow roll

parameters εφ ≡ M2
p

2

(
∂φVφ
V

)2
and ηφ ≡ M2

p
∂φφVφ
V . As long as the background and the

perturbation contributions from σ and the vector fields can be neglected, we recover the

standard results Ḣ ' −εφH2 for the evolution of the Hubble rate, ns ' 1 + 2ηφ − 6εφ

for the tilt of the scalar spectrum, and r ' 16εφ for the tensor-to-scalar ratio. For

definiteness, we assume that r = 0.01 (parametrically close to the current bound 0.064 at

95% confidence [149]), giving εφ ' 6.25 ·10−4. From the observed value ns−1 ' −0.035

[67] we then obtain ηφ ' −0.015. Having |ηφ| � εφ is for example typical of top-hill

inflationary potentials [150].

In the examples that we show in this subsection we avoid specifying an inflationary

potential, and we assume that εφ and ηφ remain constant all throughout inflation. It

is immediate to modify this, once a specific Vφ is given. However, since the slow roll

parameters vary at second order in slow roll, this approximation is sufficiently adequate

for our purposes, and it does not affect our general conclusions for the mechanism that

we are studying in this section. Therefore, we take

H (N) = HCMB e−εφ(NCMB−N) , Pζ,v (kN ) = Pζ,v (kNCMB
) e−(1−εφ)(1−ns)(NCMB−N) .

(5.16)

(where, clearly, εφ can be disregarded in the second relation), with εφ, ns, fixed at the

CMB scales. We then assume NCMB = 60, and take Pζ (kNCMB
) ' 2.2 · 10−9 [67].

With these assumptions, the mechanism only depends on the three parameters

ξ∗, N∗ and δ discussed in the previous subsection, that control the dynamics of σ and

the field amplification. More precisely, N∗ is the number of e-folds corresponding to t∗,

at which the motion of σ is fastest. For definiteness, we take δ = 0.2, corresponding to

a roll of sigma for ∆N ' 1/δ = 5 e-folds, and to a comparable width of the sourced

signal. We then choose N∗ so that the peak of the sourced GW signal is either at PTA,

LISA or AdvLIGO scales, and we choose ξ∗ so that the sourced scalar modes saturate

the PBH bounds. We then study whether this value of ξ∗ is enough to provide a visible

GW signal.
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Figure 5.6: Scalar power spectrum and GW power spectrum produced during inflation
in the two field mode (5.11), assuming a bump at PTA scales. We see that, it is possible
to produce a visible GW signal without violating the PBH bounds.

The results of Figures 5.6 and 5.7 show that it is indeed possible to obtain a visible

signature at, respectively, PTA and LISA scales. The same does not appear to be true

for a signal at the AdvLIGO scale, and with the AdvLIGO sensitivity, as can be seen

from Figure 5.8. Analogous conclusions can be reached from the single field model (5.3)

of Section 5.2, as seen in Figure 5.4. From the comparison of the two models, we believe

that this is a generic feature associated to this mechanism. We stress that the negative

concliusion reached on the AdvLIGO case depend on the computed scalar spectrum,

which is more uncertain than the GW one.

The computations performed in this section have been obtained from the two-field

model (5.11), under the assumptions that (i) the gauge field amplification backreacts

in a negligible way on the background solution and (ii) the perturbations remain in the

perturbative regime. In Chapter 6, we showed that this is the case provided the axion

scale f is within a certain interval, given by the expression 6.37. Using eqs. (5.1) and

(5.14) with f c+,2 [ξ∗, δ = 0.2] ' 3.6 · 10−5 e3.48πξ∗ given in eq. (6.7), we have(
ΩGW h2

)1/4
peak
' 1.32 · 10−7√εφ e2.74 ξ∗ , (5.17)

at the peak of the sourced GW signal (we are disregarding the variation of H during

inflation, which provides a negligible correction to this relation for the values rvacuum =

0.01 considered here). Using this relation, the condition (6.37) rewrites as(
ΩGW h2

2 · 10−9

)1/4

peak

<∼
f

Mp

<∼ 1 . (5.18)
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Figure 5.7: Scalar power spectrum and GW power spectrum produced during inflation
in the two field mode (5.11), assuming a bump at LISA scales. We see that, similarly to
the example shown in Figure 5.4, it is possible to produce a visible GW signal without
violating the PBH bounds.
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Figure 5.8: Scalar power spectrum and GW power spectrum produced during inflation
in the two field model (5.11), assuming a bump at AdvLIGO scales.

The peak values of the GW signals shown in Figures 5.6, 5.7, and 5.8 is always below

2 · 10−9. Therefore, the condition (5.18) is satisfied in a nonvanishing interval for f .

The interval grows at decreasing values of the peaked GW signal.

5.3.3 GWs from merging PBHs

In this subsection we discuss the GW emission of inspiraling primordial BHs formed

when the enhanced curvature fluctuations re-enter the horizon during the radiation

epoch. Such PBHs present a broad mass distribution and satisfy the bounds in Figure

5.1 while still comprising all of the Dark Matter [89]. When they form, their contribution
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to the energy density of the universe is negligible and do not affect BBN, but by the

time of matter-radiation equality they begin to dominate the total energy density. After

recombination, these PBHs start to merge through hierarchical structure formation and

acquire today a mass distribution peaked around a hundred solar masses. These PBHs

would act as seeds for structure formation [89]. Fewer heavier PBHs may have acquired

significantly more mass today due to gas accretion, as well as merging, and constitute

the supermassive BHs at the centers of galaxies and quasars.19

The exact numbers and mass distributions are still uncertain and require detailed N-

body simulations to compute the transfer function from the primordial mass distribution

to the present PBH distribution. In particular, merging between different PBHs will

create PBHs of larger masses, shifting the mass distribution. We will roughly estimate

a factor of 103 shift for the mass corresponding to the peak of PBH seeds, and at least

a factor 105 for the extra increase due to gravitational collapse of gas onto the high end

(more massive) part of the distribution.20 The first population will be responsible for

the emission of GWs in the AdvLIGO band and the enhanced tail of the distribution

will correspond to the IMBH and SMBH population, responsible for the GW emission in

the PTA and LISA bands. Note that the broad peak in the spectrum of fluctuations is

responsible also for a clustering of PBHs upon reentry, which explains the rapid growth

in mass and the enhanced rate of events [122] with respect to the stellar black holes of

similar mass. Keeping this growth of mass into account, we find that, as discussed in

the Introduction, AdvLIGO, LISA and PTA are sensitive, respectively, to modes that

left the horizon about N ∼ 35 − 37, N ∼ 38 − 41, and N ∼ 41 − 44 e-folds before the

end of inflation.

We assume that an episode of localized field amplification, as the one obtained from

the model (5.11) generates a bump in the scalar perturbations (as the one given by

Eqs. (5.14) and (5.15)) in one of these three intervals. We then assume that this initial

bump produced PBH that acts as a seeds of a population of current black holes that can

be identified with the dark matter of the universe. Sizable PBHs in the model (5.11)

can be generated for ξ∗ ∼ 4.5− 5, which is compatible with limits from perturbativity.

19 For a recent analysis of the growth of an initial black hole seed up to supermassive BHs, see Ref. [152].
20 There will also be a decrease in the amplitude of the whole mass distribution due to the energy loss

in gravitational waves from the merging of PBHs, but we will ignore it here.
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We are interested in the collision rate of the PBHs in these distributions. For a

generic PBH mass spectrum, the number of collisions per volume and time is given by

Γ̄tot ≡ 1

2

∑
A,B

〈nBH (MA, t0) nBH (MB, t0) σ(MA, MB, v) v〉 , (5.19)

where nBH (M, t0) is the number density of black holes with mass M at the present

time t0, and where σ(MA, MB, v) is the cross section (merger rate) for the merging

(inspiraling) of one black hole of mass MA on one black hole of mass MB, colliding at

the relative velocity v. Finally, 〈. . .〉 denotes average over volume and velocity.

To perform our estimate, we assume a very narrow distribution of black hole masses

corresponding to a relatively large value of δ in the model (5.11); in this case, we can

assume a single value for the mass in the cross section (5.19), see [151, 122],

σ (MBH, MBH, v) = 2π

(
85π 25

6
√

2

)2/7
G2M2

BH

c4

( c
v

)18/7
' 10−37 Mpc2

(
MBH

M�

)2 ( c
v

)18/7
,

(5.20)

(where G is Newton’s constant, and c the speed of light). As we are assuming that the

black holes are the cold dark matter of the universe, the local black hole number density

at any place in the universe is just the local dark matter number density:

nBH (t0) =
δlocal

MBH
ΩCDM ρc (t0) ' 3.3 · 1010 Mpc−3 δlocal

MBH/M�
, (5.21)

where ΩCDMh
2 = 0.12 has been used [68], and where δlocal ≡ ρlocal

CDM/ρ
mean
CDM is the local

enhancement of PBH dark matter in compact halos. Inserting all this in (5.19), gives

Γ̄tot ' 2 · 10−7 Gpc−3 yr−1 δlocal

(
10 km/s

v

)11/7

, (5.22)

where we have normalized the velocity to typical velocities of compact masses in dwarf

spheroidal galaxies, which are indeed in the few km/s range, up to 15 km/s [153]. We

see that a reasonable local enhancement in the number density could make the signal

observable. For example, this is the case of GWs from inspiralling of clustered PBHs

in dense compact halos building up and orbiting around galaxies [121, 122]. Some of

these have been recently discovered by DES around the Milky Way and show huge

mass-to-light ratios of 500-1000 [153].

The possibility that PBHs comprise all of the Dark Matter is a very attractive sce-

nario [88, 89] that has received special attention lately [121, 122, 123], since the detection
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by AdvLIGO of GW from the merging of very massive black hole binaries [90, 91]. The

systematic detection, by terrestrial laser interferometers, of merging BH binaries within

a broad range of masses, will open a new window into the early universe. The character-

ization of the mass spectrum will tell us about the time and duration during inflation of

new phenomena like particle production or new couplings of the inflaton to other fields.

5.4 Summary

In this chapter, we studied the possibility of detecting inflationary GW in terrestrial

(such as AdvLIGO) and spacial (such as LISA) gravitational interferometers and Pul-

sar Timing Arrays. We specifically studied GWs produced by gauge fields, amplified

due to their coupling φFF̃ to a pseudo-scalar inflaton φ, or to their coupling σFF̃ to

a different field σ that is rolling for a few e-folds during inflation. The sourced GWs

are exponentially sensitive to the speed of the inflaton, so this mechanism is naturally

enhanced at late times / small scales [31, 108], possibly opening new windows of explo-

ration for inflation model building. Like in the case of the detection of sourced GWs

at CMB scales [48, 33, 57, 58, 171], the main difficulty in producing a large sourced

GW signal at interferometer scales is the unavoidable simultaneous production of scalar

perturbations. In this case the problem is the possible overproduction of PBH from the

enhanced scalar signal [51].

In this chapter, we studied whether and under which conditions the limit associated

with the scalar production can be circumvented. An important consideration is that

there is an intrinsic uncertainty associated to the computation if the scalar perturbations

for the couplings that are necessary to produce a visible GW signal. If the correct result

is O(1)-suppressed with respect to the current estimates, then the PBH limit may not be

a problem [51]. Ultimately, we believe that only a numerical computation of the scalar

perturbations, along the lines of Refs. [154, 155, 156, 143], will resolve this issue. Unless

proven incorrect, let us assume that the present estimates are sufficiently accurate. In

this case, we note that, given the typical blue nature of the sourced signal, the PBH

limit is typically enforced by the smallest scales at which it exists, namely for modes

that left the horizon around 10 e-folds before the end of inflation. We therefore studied

the constraints imposed by the PBH limits at a given interferometer scale, without
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making assumptions on the later evolution of the inflaton (in essence, on the inflaton

potential at different field values from those experimentally probed). We found that the

projected LISA and PTA-SKA sensitivities are good enough to allow for the detection of

a GW signal, in a regime that evades the PBH bounds. We instead obtained a negative

conclusion for the expected AdvLIGO sensitivity [92]. 21

A different possibility to circumvent the PBH limit is to assume that N gauge fields

are amplified by the same mechanism. In this case, the ratio between the tensor and

the scalar power spectra is enhanced by N 2 in the regime of strong coupling required

to produce an observable GW signal. We confirmed the finding of [109], that studied

this possibility in the context of Starobinsky inflation [120], showing that in the case of

chaotic inflation even the moderate value N = 6 allows for a visible signal at LISA and

PTA-SKA, while respecting the PBH bounds.

While in most of this chapter we have studied the possible detection of the stochastic

GW signal directly produced during inflation, in Section 5.3.3 we have discussed the

alternative possibility that density perturbations are produced during inflation collapse

to form PBHs, which then evolve to the present universe, and ultimately give rise to BH-

BH binary mergers, such as those observed by the AdvLIGO detectors. The possibility

that these BH can be identified with the dominant component of the dark matter of the

universe has been at the center of interesting recent works [89, 121, 122, 123, 124, 125].

The generation of these PBH requires enhanced density perturbations with respect

to the amplitude at the CMB scale. In the literature, a broad peak in the density

power spectrum, and the consequent PBH production has typically been obtained in

the context of hybrid inflation. Here, we have discussed an alternative mechanism for the

generation of this broad peak, in the context of sourced perturbations in axion inflation

[51]. The main difference between the two cases, is that the sourced perturbations are

highly non-gaussian, which, at any fixed amplitude of the two-point function, results in

an increased PBH fraction (see Figure D.1).

21 We do not have a no-go theorem in support of this statement, but only the evidence given by the two

examples that we have studied. In particular, the two field φ−σ model is “designed” to maximize the

ratio between tensor and scalar perturbations, since it avoids a direct coupling between the inflation

and the gauge fields, therefore constituting an optimized situation. The example we studied, and that

we showed in Figure 5.8, led to a GW signal that is about 20 times smaller than the best projected

AdvLIGO sensitivity.
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In Table 5.1 we have listed the (approximate) interval of modes that can potentially

give observable GW signatures in various experiments. We note the presence of an

interesting correspondence between the modes listed in the 6th row, with the modes

listed in the 4th row of the table (and, marginally, with also those in the 5th row). This

opens the interesting possibility that the same event of localized particle production

during inflation can give rise to both a stochastic GW signal at PTA scales, and to scalar

perturbations that eventually result in BH collisions in the present universe that are

observed possibly at LISA and AdvLIGO. The PTA signal would be proportional to the

amount of particle production (namely, the sourced gauge fields in our model) generated

during inflation. The LISA one instead would be sensitive to both the inflationary

particle production, and the merging and accretion processes that occur between the

PBH formation, and the present universe. The measurement of both signals could

therefore allow us to probe the evolution between the PBH seeds and the present BH.

If a stochastic GW background will be detected, the main challenge for claiming a

cosmological origin will be to discriminate it against a possible astrophysics background.

The GW signal sourced by this mechanism has two distinctive properties. One is its

chirality, due to the preferential growth of one polarization w.r.t. the other one. The

prospect of detection of a chiral GW signal from a network of interferometers was

studied in Refs. [157, 158, 159]. The second is its nearly O(1) non-gaussianity [75, 71]

(the bispectrum being about its power spectrum to the 3/2 power), which can also be

probed by interferometers [160].

To summarize, the GW signal from the pseudo-scalar interaction studied in this

chapter is a very natural candidate for the searches of a stochastic GW background on

earth and space interferometers, due to the strong motivation of models of axion infla-

tion, and the natural growth of the sourced signal at small scales. This potentially offers

a window on scales of inflation on which we currently have little or no direct experimen-

tal knowledge. This signal has very characteristic properties (chirality, and order one

non-gaussianity), which can help us discriminate it from an astrophysical background.

The detectability of this signal requires that the PBH limit on scalar perturbations,

that are unavoidably sourced together with the GW, are respected, possibly along the

lines considered above.



Chapter 6

Constraints on the Axion-Gauge

Coupling

There is more than meets the eye.

In the previous three chapters we have worked on the signatures of axion gauge cou-

pling from very large to very small length scales. We have studied the distinct electro-

magnetic and GW signatures that this coupling might generate. Because this coupling

produces large amount of vector particles in a non-adiabatic fashion via tachyonic insta-

bility, it is natural to verify that found results are robust under various constraints such

as quantum corrections and backreaction considerations. The purpose of this chapter

is to determine the validity regime of the results obtained in the previous chapters.

In the previous chapters we studied an effective and well studied particle production

mechanism in which the rolling axion (inflaton or a rolling pseudo-scalar spectator) X,

via a chiral coupling, sources vector modes which, in their turn, source tensor (GW) and

scalar perturbations. Two particular situations have been considered in the literature

and in this thesis: either the field X rolls at an approximately constant velocity [39, 33],

or it experiences a transient of relatively fast 1 roll [171, 173, 174].

1 More specifically, we assume that Ẋ is significantly different from zero only for a limited time. Also

during this time we assume that X is in a regime of slow-roll, namely that |Ẋ| � HMp.

91
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As we see in the previous chapters, it is not easy to introduce particle production

mechanisms during inflation without spoiling the successful predictions of inflation.

This task is even harder especially if the aim is to produce large amount primordial

gravitational waves because any interaction responsible for GW production will also

source scalar curvature perturbations, ζ, with a coupling that is at least of gravita-

tional strength (or stronger, if the source is directly coupled to the field responsible for

the observed density perturbations). Therefore, the same mechanism that generates a

large GW signal can also generate too large amount of non-Gaussianity at CMB scales,

or too many PBHs at smaller scales. In the previous chapters we showed that the

scalar production can be kept under control in various applications of the axion-gauge

coupling. The signatures that can arise form this mechanism can be listed as inflation-

ary magnetogenesis [38, 47, 164], CMB non-Gaussianity [48, 49], growth of the scalar

power spectrum at CMB scales [50], gravitational waves 2 that might be detectable by

gravitational interferometers [31, 108, 109], parity violation in the CMB [39] and in

interferometers [158], primordial black holes [51, 126, 116, 117, 155, 118], blue tensor

spectra [55] and large and parity violating tensor bispectra [165].

Since this interaction requires that the sourced gravitational waves have a relatively

large amplitude, in general the excited sector that sources the tensors must contain a

sizable energy density. As a consequence, one can wonder whether such large energy

densities can bring us out of the perturbative regime in which such effects are analyzed,

and put into question the validity of such calculations. Some of the perturbativity re-

quirements are rather straightforward. For instance, one should obviously demand that

all the energy in produced modes is smaller than the kinetic energy of the field X, that

is the source of the vector modes. If this condition is not met, a more complete analysis

that includes backreaction on the inflating background is needed, and it has been taken

into account in several applications of this mechanism. A less straightforward require-

ment is that the three point correlators be subdominant to the two point correlators.

This question was tackled in Appendix C.5. More recently, Ref. [146] has considered

two additional requirements from perturbativity for the models of [39, 33], where Ẋ is

approximately constant:

i) The higher order effects do not spoil the leading order estimate for the amplitude of

2 Further discussion of these, or similar mechanisms can be found in [166].
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the gauge field amplified by the rolling of X field

ii) The fluctuations of X do not induce a variance
√
〈X2〉 that is greater than the

periodicity of the potential for X, and hence of the classical zero mode of X.

This chapter shows that the application of the mechanisms of [39, 33] (ie. we consider

both cases: 1) Ẋ is approximately constant, 2) X experiences a transient roll. ) that

produce signatures at CMB scales are well consistent with the limits from perturbativity.

On the contrary, one of these limits is marginally violated by applications that produce

signals at much smaller scales, as for instance GW at interferometers and primordial

black-holes. The violation we find is much smaller than that obtained in [146]: the

gauge field production is controlled by a parameter ξ, that needs to be ' 5 for those

signatures to be relevant, while the perturbativity criteria give ξ <∼ 4.8. We therefore

expect that these results remain valid, with possibly O (1) corrections. 3

This chapter has the following structure. In section 6.1 we review some of the

signatures from these mechanisms, and the phenomenologically interesting regions of

parameter space of the model (these are the regions where the perturbative analysis

is required to be consistent). In Section 6.2 we compute the limits that ensure small

backreaction of the produced gauge fields on the background dynamics. Our main

results on perturbativity are presented in Section 6.3. The limits from backreaction and

perturbativity are then studied in Section 6.4. Section 6.5 contains our conclusions.

The details of the calculations are presented in Appendix E. This Chapter is mainly

based on Ref. [172].

6.1 Phenomenological signatures of the gauge field ampli-

fication

In this Section we briefly summarize which values of field amplification (controlled by

the particle production parameter ξ) are needed to produce various phenomenological

signatures. In the following sections, we then study whether the required amount of

3 The criteria we formulate cannot be applied in the regime of very large ξ, as the one of [142], where

the backreaction of the produced gauge field is strongly affecting the background dynamics, and the

sourced scalar perturbations are much greater than the vacuum one. Ref. [142] discussed how to deal

with the scalar perturbations in that case.
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field amplification is compatible with limits from backreaction and perturbativity.

6.1.1 Signatures for X = φ

We start with the model considered in Subsection 3.1.1, in which X = φ is the inflaton,

whose speed is adiabatically evolving. The lagrangian is given as

L = −1

2
(∂φ)2 − V (φ)− 1

4
F 2 − α

4f
φF F̃ , (6.1)

The phenomenological signatures of this model studied in the literature are primordial

non-gaussianity [48, 49, 67], growth of power-spectrum [50, 67], primordial chiral gravity

waves [39] at interferometer scales [31, 108, 158, 109, 173] and primordial black holes

[51, 173]. From these analyses, the value of ξ required to obtain a visible signal is

approximately

ξ (N ' 60) ' 2.5 from CMB measurement ,

ξ (N ' 15) ' 5 from GW at interferometers ,

ξ (N ' 8) ' 5 from primordial black holes . (6.2)

The value of N in these expression is the number of e-folds before the end of inflation

at which those limits apply. Specifically, these are the values assumed by ξ when the

mode leading to that specific signature left the horizon. The last two limits are obtained

from refs. [158] and [51], respectively. Those works cast the limit in terms of the value

assumed by ξ at N = 60. We obtain the values written in (6.2) by computing the

evolution of ξ (t) in the monomial inflaton potentials used in those works.

6.1.2 Signatures for X = σ

Now, consider the model with X = σ experiencing a momentary fast evolution studied

in Subsection 3.1.2, Section 4.1, 4.2 and 4.3. The Lagrangian is given as 4

L = −1

2
(∂φ)2 − Vφ (φ)− 1

2
(∂σ)2 − Vσ(σ)− 1

4
F 2 − α

4f
σ F F̃ . (6.3)

This model was introduced in [171] (or Chapter 4) 5 to source an observable GW bump

at CMB scales, without producing much scalar perturbations, Pζ,sourced � Pζ,vacuum.

4 We have Vσ(σ) = Λ4

2

(
1 + cos σ

f

)
and δ ≡ Λ4

6H2 f2
as defined in Section 4.1.

5 Also used in interferometer scales to produce GW without producing too many PBHs in Section 5.3
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However, for smaller scales, because the main constraint comes from the PBH limit,

Pζ,sourced � Pζ,vacuum is allowed.

As seen from eq. (3.21), the spectrum of amplified gauge modes in this mechanism

exhibits a peak at the scales that exited the horizon when σ reaches its maximum speed.

Correspondingly, the scalar perturbations ζ, and the GW sourced by these gauge fields

also present an analogous peak at these scales. The total power spectrum of scalar and

tensor perturbations is a sum of the vacuum and the sourced contribution, where the

latter acquires the form

Pj,sourced (k) =
[
εφ P(0)

ζ (k)
]2
f2,j

(
k

k∗
, ξ∗, δ

)
=

[
H2

infla(k)

8π2M2
p

]2

f2,j

(
k

k∗
, ξ∗, δ

)
,

f2,j

(
k

k∗
, ξ∗, δ

)
' f c2,j [ξ∗, δ] exp

[
− 1

2σ2
2,j [ξ∗, δ]

ln2

(
k

k∗ xc2,j [ξ∗, δ]

)]
, (6.4)

where j = {ζ, +, −}, with ± referring to the two GW helicities. In this expression, εφ

is the slow roll inflaton parameter and P
(0)
ζ is vacuum curvature power spectrum. The

three parameters f c
2,+, σ2,+, and xc2,+ control, respectively, the amplitude, the width,

and the position of the peak of the sourced signal, and their functional dependence on

ξ∗ is studied in Chapter 4. Analogous expressions apply for the sourced bispectra.

The generic expression for tensor-to-scalar-ratio is given by

r (k) '
2 H2

π2M2
p

+
(

H2

8π2M2
p

)2
f2,+

H2

8π2εφM2
p

+
(

H2

8π2M2
p

)2
f2,ζ

= 16εφ ·
1 + 1

16

(
H2

8π2M2
p

)
f2,+

1 + εφ

(
H2

8π2M2
p

)
f2,ζ

(6.5)

As seen from the eqn above,

• When both sourced scalar and tensor modes are subdominant wrt vacuum ones,

we have standard relation : r ' rvacuum = 16 εφ.

• When sourced tensor modes dominate over vacuum tensor modes (Pλ,sourced �
Pλ,vacuum, and sourced scalar modes are subdominant with respect to vacuum

scalar modes (Pζ,sourced � Pζ,vacuum), we have : r ' εφ
(

H2

8π2M2
p

)
f2,+.

• When both sourced tensor and scalar modes dominate over vacuum ones, (Pλ,sourced �
Pλ,vacuum and Pζ,sourced � Pζ,vacuum), we have: r ' f2,+

f2,ζ
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At CMB scales, the vacuum scalar modes dominate over the sourced ones, leading

to the tensor-to-scalar ratio

r (k) ' rvacuum + ε2φ P
(0)
ζ f2,+ (k) , (6.6)

Chapter 4 studied the model for δ = 0.2 and δ = 0.5. We also focus our discussion on

these two cases. By fitting f2,+
6 in relevant ξ∗ regime, we obtain the following result

δ = 0.2 ⇒ f2,+ ' 3.6 · 10−5 e3.48π ξ∗ ,

δ = 0.5 ⇒ f2,+ ' 2.7 · 10−4 e3.08π ξ∗ . (6.7)

For CMB scales, sourced scalar modes are subdominant with respect to vacuum scalar

modes, so we have

Pζ,CMB '
H2

8π2 εφM2
p

' 2.2 · 10−9 ⇒ 16εφ '
(

H2

10−4M2
p

)2

(6.8)

Using eq. (6.8) in eq. (6.6), we obtain

rpeak '

 0.006
(
Hinflation
10−6 Mp

)4
e3.48π (ξ∗−4.5) , δ = 0.2 ,

0.020
(
Hinflation
10−6 Mp

)4
e3.08π (ξ∗−5) , δ = 0.5 .

(6.9)

The result (6.9) shows that, provided ξ∗ is sufficiently large, a visible sourced GWs at

CMB scale can be obtained at very small energy scale of inflation. We stress again that

this conclusion is only valid as sourced scalar modes are subdominant to vacuum scalar

modes, which is the case for CMB scale production.

For small scale bump in which the model produces a visible signal at interferome-

ters or produce significant amount of PBH, both the sourced scalar and tensor modes

dominate over vacuum modes.

6.2 Backreaction

In this section we discuss the effects of particle production on the background motion

of X. We divide the discussion into two subsections, where we separately discuss the

X = φ (with adiabatic φ̇ evolution), and X = σ (with a momentary speed up of this

field) cases.

6 Specifically, we linearized the expression for f2,+ given in Tables 1 and 2 of Section 4.3 in the

3 < ξ∗ < 6 region.
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6.2.1 Backreaction for X = φ

The gauge field enters in the equation of motion for the inflaton field φ and in the

Friedman equation as

φ̈+ 3Hφ̇+ ∂φV =
α

f

〈
~E · ~B

〉
,

3H2 =
1

M2
p

[
1

2
φ̇2 + V +

1

2

〈
~E2 + ~B2

〉]
, (6.10)

Using (3.10) one finds [142], in the ξ >∼ O(1) regime (namely, in the regime in which

the gauge field amplification takes place),

〈
~E · ~B

〉
' −2.4 · 10−4 H

4

ξ4
e2πξ ,

〈
~E2 + ~B2

2

〉
' 1.4 · 10−4 H

4

ξ3
e2πξ . (6.11)

Therefore [48, 49]

ξ−3/2 eπξ � 79
|φ̇|
H2

⇒ negligible backreaction on φ eq. ,

ξ−3/2 eπξ � 146
Mp

H
⇒ negligible backreaction on Friedmann eq. . (6.12)

The first condition is more stringent (it is easier to modify the evolution of the inflaton

field, that is moving slowly, than that of the scale factor), and using the normalization

Pζ ' H4
inf

4π2φ̇2
∼ 2.2 · 10−9, it leads to the bound

Negligible backreaction on φ : ξ � 4.7 . (6.13)

We discuss this condition in Section 6.4.1. We note that it is not inconsistent to use the

relations (6.11) in which we assume ξ >∼ O(1), to obtain a limit ξ � 4.7 , because the

gauge field amplification depends exponentially on ξ.

6.2.2 Backreaction for X = σ

In eq. (6.9) we showed that, provided ξ∗ is sufficiently large, a visible sourced GW at

CMB scale can be obtained at very small energy scale of inflation. Here we study how

large this field amplification can be, without violating bounds from backreaction on the

dynamics of σ and φ.



98

We first impose that σ provides a negligible contribution to the energy density

of the universe. To quantify this condition, in agreement with the slow roll relation

φ̇ '√2 εφHMp, we define

εσ ≡
σ̇2

2H2M2
p

. (6.14)

(as σ is slowly rolling, we have εσ ' M2
p

2

(
∂σV
V

)2
). We denote by εσ,∗ = δ2

2
f2

M2
p

the

maximum value acquired by this quantity, when σ reaches its maximum speed σ̇∗.

Using eqs. (5.12) and (5.13), we see that

Vmax (σ) = Λ4 = 3H2M2
p ×

4εσ,∗
δ

,

(
σ̇2

2

)
max

=
σ̇2
∗

2
= 3H2M2

p ×
εσ,∗
3

. (6.15)

We are interested in δ <∼ 1, so the potential energy dominates over the kinetic one, and

we can write the condition

ρσ � 3H2M2
p ⇒ εσ,∗ �

δ

4
. (6.16)

Secondly, we impose that the gauge field amplification does not significantly alter

the motion of σ. The sourced gravity waves are proportional to the energy density ρA

of the sourcing gauge fields. The physical energy density in the gauge fields reaches its

maximum when ξ <∼ ξ∗. As we show in eq. (B.24), the maximum value of ρA is

ρA,max

εφ ρφ
∼
{

2.75 · 10−12 e1.74π ξ∗ , δ = 0.2 ,

8.86 · 10−12 e1.52π ξ∗ , δ = 0.5 .
(6.17)

We find that the maximum of ρA,max is achieved for τ ' τ∗/20 in the δ = 0.2 case, and

for τ ' τ∗/10 in the δ = 0.5 case.

Note that both (6.7) and (6.17) are resultant from numerical fits. The two expres-

sions show nearly the same ξ∗ dependence. This was expected since ρA is the dominant

GW source.

The gauge field is amplified at the expense of the kinetic energy of σ, so we need to

impose that ρA,max (which is reached short after t∗, see Figure B.1) is smaller than the

kinetic energy of σ at this moment, 7

ρA,max �
σ̇2
∗

2
= εσ,∗H

2M2
p ' εσ,∗

ρφ
3
. (6.18)

7 We verified that, once this condition is verified, the right hand side of (B.21) can indeed be neglected.
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Finally, employing the expression (6.17) in (6.18) gives

δ = 0.2 : εσ,∗ � εφ e1.74π (ξ∗−4.67) ,

δ = 0.5 : εσ,∗ � εφ e1.54π (ξ∗−5.03) . (6.19)

We discuss these conditions in Section 6.4.2.

6.3 Perturbativity

We now discuss the two criteria for perturbativity considered in [146], which we want

to evaluate for the two cases X = φ (with adiabatic φ̇ evolution), and X = σ (with a

momentary speed up of this field).

The first criterion is from the renormalization of the gauge field wave function:

RA ≡
∣∣∣∣∣δ(1)〈Â Â〉′
〈Â Â〉′

∣∣∣∣∣� 1 , (6.20)

where the numerator is the lowest order one loop contribution to the propagator and

the denominator is the tree-level propagator. The expectation values are taken in mo-

mentum space, and prime denotes the expectation value without the corresponding

δ−function. The one (and higher) loop contributions are defined with respect to the

interaction hamiltonian obtained from

L =

[
−1

2
(∂X)2 − V (X)− 1

4
F 2 − α

4 f
Xbackground F̂

˜̂
F

]
+

[
− α

4 f
δX̂ F̂

˜̂
F

]
≡ Lunperturbed + Linteraction . (6.21)

We decompose X̂ = Xbackground (t) + X̂(0) (t, ~x) + X̂(1) (t, ~x) + . . . and Â = Â
(0)
+ (t, ~x) +

Â
(1)
+ (t, ~x) + . . ., where the suffix indicates the order of the perturbations in the interac-

tion defined in (6.21).

The last term in Lunperturbed encodes the backreaction of the produced gauge fields

on the background dynamics. By definition, in the regime of small backreaction we

can disregard the effects of this term on the background geometry, and so this term

has the only effect of modifying the “unperturbed” gauge mode Â
(0)
+ from the vacuum



100

one to the one studied in Section 3.1.1 8. With this understanding, and only in this

limit, the expansion in (6.21) becomes an expansion in α
f , or better, in the parameter

ξ = α
f
Ẋbackground

2H that controls the field amplification. In the case of strong backreaction,

we can “no longer” assume that the perturbations X̂(0) (t, ~x) and Â
(0)
+ are a good approx-

imation of the full perturbations of the model, simply because in strong backreaction

regime, the Xbackground follows a “different attractor” described with V ′(X) ' αE ·B/f
(ie. the main friction term results from the gauge field production, not Hubble fric-

tion). Since the trajectory of X is determined from the backreaction and vacuum of

the gauge field is determined from this strongly backreacted pseudo-scalar background,

this becomes a completely nonlinear and nonperturbative system different than what is

described above. Therefore, our perturbativity set-up is guaranteed to fail in the strong

backreaction regime, and this is one of the reasons why backreaction has been studied in

the previous Section. We only consider our analysis meaningful as long as backreaction

is negligible, or only marginally relevant (we expect that our estimate for the range of

ξ under which perturbativity is under control will remain approximately valid) 9.

The one loop correction diagram can be computed via the in-in formalism as

δ(1)〈AA〉 ' −
∫ τ

dτ1

∫ τ1

dτ2

〈[[
Â

(0)
+

(
~k1, τ

)
Â

(0)
+

(
~k2, τ

)
, Ĥ

(0)
int (τ1)

]
, Ĥ

(0)
int (τ2)

]〉
,(6.22)

To simplify the notation, in the following we omit the suffix 0 from the zeroth-order

vector mode functions.

The second criterion is that the interaction (6.21) does not lead to quantum fluctu-

ations that more important than the evolution of X through its potential,

RX ≡

√
〈δX̂(1) (~x, τ) δX̂(1) (~x, τ)〉

fperiod
� 1 . (6.23)

Contrary to (6.20), the expectation value appearing in this expression is in real space.

8 This motivates the choice of “unperturbed” vs. interaction term made in eq. (6.21). Had we chosen

to include the full − α
4f
XFF̃ interaction in Lint, then Â

(0)
+ would be the standard vacuum mode rather

than the solution discussed in Section 3.1.1), and therefore the ratio (6.20) would not corresponds to

the criterion studied in (6.20). Therefore, perturbativity as discussed in [146] means perturbativity

with respect to this splitting.
9 We stress that for strong backreaction, scalar perturbations have to be treated in a nonperturbative

way as done in Ref. [142]
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One can express the variance in Fourier space as follows〈
δX̂(1) (~x, τ) δX̂(1) (~x, τ)

〉
=

∫
d3k1 d

3k2

(2π)3 ei~x·(
~k1+~k2)

〈
δX̂(1)

(
~k1, τ

)
δX̂(1)

(
~k2, τ

)〉
=

∫
d ln k P

(1)
δX (k, τ) , (6.24)

whereP
(1)
δX (k) ≡ k3

2π2

〈
δX(1)

(
~k
)
δX(1)

(
−~k
)〉′

and prime denotes correlator without

corresponding Dirac-Delta function.

For the inflaton case X = φ we employ the results already given in the literature [48,

49, 51]. For X = σ, we instead make use of the in-in formalism〈
δX̂(1)

(
~k1, τ

)
δX̂(1)

(
~k2, τ

)〉
' −

∫ τ

dτ1

∫ τ1

dτ2

〈[[
δX̂(0)

(
~k1, τ

)
δX̂(0)

(
~k2, τ

)
, Ĥint (τ1)

]
, Ĥint (τ2)

]〉
.

(6.25)

The scale fperiod in eq. (6.23) is the periodicity of the potential of X. This has

an immediate identification in the case X = σ, where the potential is (4.3), and there-

fore fperiod = f . As pointed out in [146], if the interaction (6.21) leads to typical

field displacements comparable to (or even greater than) f , then all operators obtained

by Taylor expanding (4.3) become strong, driving the system out of the perturbative

regime. For the case X = φ, the identification of fperiod depends on the specific model

under consideration. For instance, the potential of aligned natural inflation [167] has

four axions scales fi � Mp (i = 1, . . . , 4), but two different terms for two axions are

arranged so to produce a large periodicity for one linear combination of the two axions.

Therefore, fperiod � fi. The coupling between the axions and gauge field is controlled

by the original axion scales in the model, leading to an interaction lagrangian (6.21)

in terms of the original scales, f = O (fi) (see section V of [170] for a detailed compu-

tation). However, an O (fi) field displacement would have a very suppressed effect in

the potential along the φ direction, which has the periodicity fperiod � fi. Therefore, if

X = φ is the inflaton field, the best indicator for the periodicity of the inflation potential

is the classical value assumed by the inflaton φcl <∼ O (fperiod) (under the assumption

that the minimum of the inflaton potential is at φ = 0). Therefore, we write the two

different conditions

Rφ ≡

√
〈δφ̂(1) δφ̂(1)〉

φcl
� 1 , Rσ ≡

√
〈δσ̂(1) δσ̂(1)〉

f
� 1 . (6.26)
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Figure 6.1 provides the diagrammatic expression of the one loop terms (6.22) and (6.25).

�(1)hAAi = ; �(1)h��i =

Figure 6.1: Diagrammatic representation of the one loop terms (6.22) and (6.25).
Dashed lines denote δX modes, while wiggly lines denote vector field A+ modes. The
small bullets denote the interaction (6.21).

Before concluding this section, we should emphasize that all the perturbativity con-

straints we have considered so far concern the amplitude of the classical modes that

have been generated by amplification of vacuum fluctuations. However, we should also

require perturbativity in the more usual sense of sensitivity of the theory to UV quan-

tum modes in a time-independent background. The presence of the coupling in the

Lagrangian (3.1) tell us that this should be treated as an effective field theory below an

energy scale ∼ 4πf/α, and we generally expect new states to exist at or below such en-

ergy scale. Since, as we have extensively discussed above, the typical (physical) energies

of the system we are considering are of the order of H ξ∗, consistency of our analysis

should require

ξ∗H �
4πf

α
, (6.27)

which is satisfied.

6.3.1 Perturbativity for X = φ

Let us discuss the conditions RA � 1 and Rφ � 1 in the case in which X is the inflaton

field φ. We start from the second condition, and we show that it is satisfied in all cases of

interest. Using eq. (6.24), the invariant curvature (in spatially flat gauge) ζ = −H
φ̇
δφ,

and the slow roll relation φ̇ ' −
√

2εH Mp, the condition (6.26) rewrites

Rφ '
√

2ε ×
(
Mp

φcl

)
×
√∫

d ln k P
(1)
ζ � 1 , (6.28)

where we recall that P
(1)
ζ is the power spectrum of the sourced scalar mode ζ. This

condition is satisfied since all the factors on the right hand side of eq. (6.28) are smaller

than one. Let us discuss these factors one by one.
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The first factor is� 1 due to slow roll. At CMB scales, the existing limit ξ <∼ 2.5 (see

eq. (6.2)), implies negligible backreaction of the gauge fields on the inflaton background

dynamics. For the GW signatures at interferometers, and for production of primordial

black holes, we are in a regime in which the gauge field production slows down the

motion of the inflaton (see for instance Figure 2 of [108]). However, φ̇ = O
(√

2εH Mp

)
is still valid, and the fact that the particle production slows down the inflaton effectively

decreases the value of ε in eq. (6.28), further decreasing this factor.

The second factor is model dependent, but we recall that models of axion inflation

realize a super-Planckian inflaton excursion. We already discussed this after eq. (6.25).

Therefore φcl >∼Mp.

Finally, the third factor is � 1 because P
(1)
ζ � 1. This is for sure true at CMB

scales, where ξ <∼ 2.5 forces P
(1)
ζ � P(0)

ζ = O
(
10−9

)
. The sourced power is significantly

greater at progressively smaller scales. However, also when the primordial black hole

limit is saturated, one finds P
(1)
ζ = O

(
10−3

)
, see Figure 5 of [51].

Let us now discuss the condition RA � 1. We evaluated this ratio using eqs. (E.10)

and (E.11). The ratio is a function of both comoving momentum k of the mode in the

propagator, and of time. Due to approximate scale invariance of the vacuum signal, the

dependence on k is extremely weak, so let us first focus our discussion on CMB scales

(k1 = kp in eq. (E.11)). For any fixed mode, the ratio RA assumes a different value at

different times.

As discussed in Subsection 3.1.1, the level of amplification of any given mode due to

the φFF̃ interaction is a function of time. In particular, the fractional energy density
dρgauge

d ln k of any given mode reaches a maximum value when the mode has a size comparable

to the horizon, and it is then diluted away by the expansion of the universe. Most of the

contribution of any given mode to a cosmological observable takes place when
dρgauge

d ln k is

close to its peak value. This defines the time interval for which we need to make sure

that RA � 1 for that given mode. Also, in our computation, we use the UV cut-off

−kτ |max = ξ for all modes 10.

In Figure 6.2 we show the value of RA for one given mode with wave number equal

the Planck pivot scale (k = kp) as a function of ξ. The value of ξ should be understood

as the value assumed by this quantity when the mode of our interest left the horizon. In

10 Modifying the UV cut-off only slightly changes the final results and keeps the final conclusions same.
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x1
x0.5

x0.3

x0.1

3.0 3.5 4.0 4.5 5.0
Ξ10-6

10-4

0.01

1

RA

Figure 6.2: Ratio RA for the X = φ case, as a function of ξ. The ratio is evaluated
for a fixed mode of the size of the Planck pivot scale (due to approximate scale invari-
ance, nearly the same bound is obtained at smaller scales). The different curves shown
correspond to different values of the rescaled time x ≡ −kτ at which RA is evaluated.
For instance x0.1 indicates that RA is evaluated when the energy density in that mode
is 10% of the peaked value that it had previously assumed (as shown in Figure 3.1, the
energy density in one given mode reaches a peak value, and it then decreases).

general, a greater value of ξ results in a greater gauge field amplification, and therefore

in a greater value of RA 11. Different color curves in the figure show the value of RA
for k = kp as a function of ξ, at different times. The values of time shown are chosen by

evaluating the value of
dρgauge

d ln k . For instance x0.1 denotes the value of time (x ≡ −k τ)

when the energy density in that mode has been diluted to 10% of the value it had at its

peak (and analogously for the other values shown in the Figure 6.2 such as 0.5, 0.3 and

0.1. Since the energy density decreases/gets diluted with the expansion, the smaller

fractions are for the later moments. Because the time (x ≡ −kτ) flows from ∞ to 0

during inflation, we have x1 > x0.5 > x0.3 > x0.1).

The strongest limit is obtained for x1, when the energy density in that mode is

maximum. In this case, a numerical fit of the curve shown in the figure gives

RA ' e2.01π(ξ−4.60) . (6.29)

The fit well reproduces the ∝ e2πξ scaling expected from analytic considerations (the

numerator of eq. (E.10) has two extra powers of AR than the denominator).

We recall that the limit in Figure 6.2 assumes a mode with wave number equal the

11 We disregard the narrow spikes seen in the Figure, which take place when δ(1)〈Â Â〉′

〈Â Â〉′ changes sign.
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Planck pivot scale. For signatures at smaller scales (k > kp), eq. (E.11) presents the

extra factor
(
k1
kp

)ns−1
' e−(1−ns)(60−Nk), where Nk is the number of e-folds before the

end of inflation when the mode of wavenumber k exited the horizon. Above we have

assumed that kp exited the horizon 60 e-folds before the end of inflation, so taking this

effect into account for smaller scales, the perturbativity limit can be cast in the form

e2.01π(ξk−4.60) e−(1−ns)(60−Nk) � 1 . (6.30)

This condition is a function of wavenumber, since both ξk and Nk refer to the value

assumed by ξ and by N when the mode of wave number k exited the horizon during

inflation. We discuss this condition in Section 6.4.1.

6.3.2 Perturbativity for X = σ

In the case, X = σ is a pseudo-scalar different from the inflaton and has a nonvanishing

speed only for a few e-folds during inflation, we find the two perturbativity conditions

RA ≡ RA

[
x∗, ξ∗, δ,

τ

τ∗

]
εφ
εσ∗
� 1 , Rσ ≡ Rσ

[
ξ∗, δ,

τ

τ∗

]
εφ
εσ∗
� 1 , (6.31)

where RA and Rσ are given in eqs. (E.25) and (E.32), respectively.

The ratio RA is evaluated mode by mode, and it therefore depends on the comoving

momentum k of the mode through x∗ = −kτ∗. We recall that τ∗ is the conformal time

at which σ̇ is maximum, and − 1
τ∗

is the comoving momentum of the mode that left

the horizon at this time. For each mode, the quantity RA then depends on the time at

which it is evaluated; we express this dependence as a dependence on the ratio τ
τ∗

. The

ratio Rσ is instead obtained after an integral over momentum (performed at any given

fixed time) and so it depends on the time variable τ
τ∗

. Finally, both ratios depend on

the amplification parameter ξ∗ (the maximum value acquired by ξ), and on δ, which

controls the duration of the phase for which the evolution of σ is significant; specifically,

the field σ has a non-negligible evolution for N ' 1
δ e-folds of inflation.

In Figure 6.3 we show the two quantities RA =
RA εσ,∗
εφ

(left panel) and Rσ =
Rσ εσ,∗
εφ

(right panel), for δ = 0.2 and varying ξ∗. In the left panel, we fixed k = 5 k∗. The

quantity shown in the right panel is instead k−independent. The different color curves

in the figure correspond to different times. The times are chosen when the total energy
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Figure 6.3: Ratio RA (left panel) and RA (right panel) for δ = 0.2 and for varying ξ∗.
The different lines correspond to different times at which the ratios are evaluated.

density in the gauge field decreases (due to the expansion of the universe) by a given

amount with respect to the value it had at its peak. For example τ0.5, is the time at which

the energy density has decreased to 50% of the peak value. We only studied the limits

in the time interval between τ1 and τ0.05 since the gauge field decreases significantly

after these times, and it resultantly has no significant impact on observables. The ξ∗

dependence of the largest value for RA and Rσ obtained among the lines shown can be

well fitted by the exponential dependence

δ = 0.2 : RA ' e5.50 (ξ∗−4.75) , Rσ ' e5.44(ξ∗−5.03) (6.32)

∆=0.5 , k=5 k*
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Figure 6.4: Ratio RA (left panel) and RA (right panel) for δ = 0.5 and for varying ξ∗.
The different lines correspond to different times at which the ratios are evaluated.
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In Figure 6.4 we repeat the same study for δ = 0.5. In this case, we obtain

δ = 0.5 : RA ' e5.19 (ξ∗−5.10) , Rσ ' e4.88(ξ∗−5.34) (6.33)

We find that RA > Rσ both for δ = 0.2 and for δ = 0.5. Therefore our final bounds

from perturbativity, RA � 1, can be cast in the form

δ = 0.2 : εσ,∗ � εφ e5.50 (ξ∗−4.75) ,

δ = 0.5 : εσ,∗ � εφ e5.19 (ξ∗−5.10) . (6.34)

We discuss this condition in Section 6.4.2.

6.4 Discussion of the constraints

In this section we discuss the significance of the constraints on gauge field amplification

imposed by backreaction on the background evolution (obtained in Section 6.2) and

by perturbativity (obtained in Section 6.3). We then compare these constraints with

the amplification required to obtain visible signatures (discussed in Section 6.1). We

divide the discussion in two subsections, where we separately discuss the X = φ (with

adiabatic φ̇ evolution), and X = σ (with a momentary speed up of this field) cases.

6.4.1 Discussion for X = φ

The values in (6.2) indicate that ξ ' 2.5 is required to obtain phenomenological signa-

tures at CMB scales, while ξ ' 5 is required for both significant GWs at interferometer

scales and primordial black holes.

The condition (6.13) indicates that the vector field amplification has a negligible

backreaction on the inflaton dynamics for ξ � 4.7. Since the field amplification is

exponentially sensitive to ξ, we interpret this condition (and the ones discussed below)

as ξ <∼ 4.7. This condition is well satisfied when the phenomenological limits at CMB

scales are respected, but it is violated in the realizations that produce visible GWs at

interferometer scales and primordial black holes. In these two cases, the backreaction

of the produced gauge fields slows down the motion of the inflaton and this effect has

been taken into account in the relevant studies such as Ref. Ref. [142]. However,

this problem can also be evaded as shown in Chapter 5. A slight change in the inflaton
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potential, which slows the it down after interferometer scales, protects the scenario from

both PBH overproduction and perturbativity constraints. See for example subsection

5.2.2.1 and Figure 5.4 for an explicit realization of this, in which ξmax = 4.43.

Finally, the relation (6.30) provides a condition under which the computations of the

gauge field and inflaton modes are under perturbative control. This condition evaluates

to ξ <∼ 4.6 for the value of ξ assumed when the CMB modes left the horizon (N = 60).

This condition becomes slightly relaxed for smaller wavelength modes. Using ns ' 0.965

[67], we find ξ <∼ 4.8 for the LIGO scale relevant for the GW signature (corresponding

to N ' 15), and ξ <∼ 4.9 for the scale relevant for the black hole limit. Since in both

cases a visible signature is obtained for ξ ' 5, we see that this value is only marginally

out of the perturbative and of the backreaction bounds. As a consequence, we do not

think that this affects the conclusion that significant GW and primordial black holes

will be generated for ξ = O (5), although order one corrections to the result present in

the literature (as already mentioned in some of those works) can be expected.

6.4.2 Discussion for X = σ

Eq. (6.9) shows that, for sufficiently high field amplification (sufficiently high ξ∗), it is

possible to have a sourced GW signal at very low energy scale of inflation. For a large

range of parameters, this GW amplification can take place without a corresponding in-

crease of scalar perturbations beyond the bounds of cosmic variance, and it is therefore

not ruled out by the TT and TTT observations [171]. In addition, gauge field amplifica-

tion can produce visible GW signals at interferometer scales and result in considerable

amount of PBH by sourced curvature perturbations.

The condition from eq. (6.16) guarantees that σ affects in a negligible way the

expansion of the universe, and (therefore) the motion of the inflaton. Eq. (6.19) ensures

that the gauge field amplification has a negligible impact on the evolution of σ. The

perturbativity considerations discussed in the previous section give instead the bound

(6.34). We note that both bounds (6.19) and (6.34) can be satisfied for arbitrary values

of ξ∗, provided that εσ,∗/εφ is sufficiently large.

We note that εσ > εφ does not impact the Friedmann equation (given that with

the condition (6.16) we impose that ρσ � V (φ)), nor the background equation for the

inflaton field. In principle, it may affect the relation for the spectral tilt ns of the scalar
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perturbations and scalar tilt is only constrained for CMB scales; for interferometer scales

we do not have this constraint. The spectral tilt receives a contribution ∝ Ḣ
H2 ' −εφ−εσ,

resulting in

ns − 1 ' 2ηφ − 6εφ − 4εσ . (6.35)

(Where ηφ ≡M2
p ∂

2
φV/V is the other standard slow roll parameter.) Given the measured

value of ns−1 ∼ −0.03 [67] at CMB scales, we require (for only CMB scales) εσ,∗ <∼ 10−2

to avoid fine tunings in (6.35), but we do not need to impose εσ,∗ < εφ. If the vacuum

GW signal is too small to be observed, it follows that εφ � |ns − 1|, so that eq. (6.35)

should read ns−1 ' 2ηφ−4εσ. Having εσ,∗ > εφ simply implies that, for the few e-folds

in which the motion of σ is non negligible, Ḣ is controlled be the motion of σ. However,

this has no phenomenological consequence as long as εσ,∗ <∼ 10−2, since in this case the

scalar spectral tilt will simply be controlled by ηφ
12.

Therefore all backreaction and perturbativity constraints can be summarized as

δ = 0.2 : Max
[
εφ e5.47 (ξ∗−4.67), εφ e5.50 (ξ∗−4.75)

]
<∼ εσ,∗ <∼ 10−2 ,

δ = 0.5 : Max
[
εφ e4.84 (ξ∗−5.03), εφ e5.19 (ξ∗−5.10)

]
<∼ εσ,∗ <∼ 10−2 . (6.36)

For δ = 0.2, the first condition in the square parenthesis (the one obtained from back-

reaction) dominates over the second one for ξ∗ <∼ 19, so we disregard the second condi-

tion. For δ = 0.5, instead, the first condition (from backreaction) dominates for ξ∗ <∼ 6.

Therefore, we will keep both conditions. Using (6.14), we can rewrite the conditions as

δ = 0.2 : 2 · 10−5 e2.74 ξ∗ √εφ <∼
f

Mp

<∼ 0.71 ,

δ = 0.5 : Max
[
1.4 · 10−5 e2.42 ξ∗ √εφ, 5.1 · 10−6 e2.60 ξ∗ √εφ

]
<∼

f

Mp

<∼ 0.28 . (6.37)

6.5 Summary

Axion fields are very natural candidates for the inflaton or for light extra degrees of

freedom during inflation, since their potential is protected by a shift symmetry, that

can be broken in a controllable way [106]. The main decay of a pseudoscalar X is

12 Although, spectral tilt is not a constraint for small scale perturbations. This choice also immediately

satisfies the condition given in eq (6.16) for any δ choice between 0.2 and 0.5.
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through the least irrelevant operator XFF̃ . This operator can lead to interesting gauge

field amplification already during inflation: in its presence, one polarization of the gauge

field becomes unstable at horizon crossing; the energy density of any given gauge mode

can be highly amplified by this effect, and it is eventually diluted away by the expansion

of the universe. In the few e-folds between the amplification and the dilution, the mode

can give rise to a number of signatures that we have outlined in the beginning of this

Chapter.

In our discussion we have distinguished between the case in which X rolls at an

approximately constant velocity [39, 33], or it experiences a transient of relatively fast

roll [171] (we assume that, even at its fastest roll, the field continues to satisfy |Ẋ| �
HMp). We have reviewed both cases briefly and direct the reader for relevant sections

for the details as it is one of the very few mechanisms that can produce sourced GWs at

CMB scales and small interferometer scales, and at the same time avoids overproducing

scalar perturbations, so that it is not ruled out by the limits on the latter.

The gauge field amplification needs to be sufficiently strong to lead to observable

effects. One should therefore include its backreaction on the background dynamics,

as consistently done in many applications, and also make sure that the computations

remain in the perturbative regime. A strong motivation for this chapter has been the

study of two criteria pointed out in [146] for the validity of the perturbative regime.

Following their definitions, we have checked their computation in the case in which Ẋ is

adiabatically rolling, and we have extended it to the case in which Ẋ has a momentary

roll. In this second case, we have found that there exists a large region of parameters in

which the two criteria are satisfied (we find that the perturbativity criteria are satisfied

in most of the region in which the produced gauge field does not backreact on the

background evolution). In the first case, we have found that the criteria are satisfied in

most of the parameter space.

From our results, it emerges that the criteria are well satisfied in the applications

that produce signatures at CMB scales. One of the two criteria is instead marginally

violated when GWs and primordial black holes are produced at smaller scales. In this

case, ξ ' 5 is needed to produce a visible effect (where ξ is the parameter that controls

the gauge field amplification), while the perturbativity criterion fails at ξ ' 4.8. This

result is not surprising, given that several of the original works already pointed out that
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the scalar perturbations are in a strong coupling regime for those values of ξ, and order

one corrections can be expected (we are comforted in the statement by the fact that the

ξ <∼ 4.8 region is not very far from ξ = 5) 13. We do not believe that the conclusion that

significant GWs and primordial black holes will be generated for ξ ∼ 5 is in question.

An exact computation (performed perhaps through lattice simulation) would certainly

allow to refine the precise bound on ξ, but not the presence of these physical effects.

13 It is also important to note that by adding a slight feature in potential, as done in Subsection 5.2.2.1

(also see Figure 5.4), one can satisfy all the criteria smoothly for the inflaton axion case at small

scales (ie. for interferometer GWs and primordial black holes).



Chapter 7

Conclusion and Discussions

“Hancı dedi bir çiçeği yaratmak asırların, nasırların işidir.

Ben her bahar arar, arar, arar dururum.

Şu yeryüzünde kimin kimsesi yok kendinden başka.

Bir de koca evren başının üstünde.

Doğmuş ve ölmüş apansız binlercesi.

Yok henüz farkına varan, ne olacak bundan sonrası.” Siya Siyabend

The inflationary era is now a cornerstone of modern cosmology, not only because it

resolves the standard Big Bang model shortcomings such as horizon, flatness and un-

wanted relics problems, but also, because it predicts the “seed quantum perturbations”

that result in the current structure of our universe with amplitude, scale dependence

and statistical properties in agreement with the Cosmic Microwave Background and

Large Scale Structure experiments. The merits of inflationary expansion are far more

reached. For example, inflation can make us reach the physics at energy scales that are

not possible to reach on any terrestrial experiments. Since Einstein’s General Relativity,

it has been known that geometry and the ingredients of the energy are coupled to each

other. Therefore, as universe emerges as the largest particle laboratory, early universe

could reveal precious information about the high energy theories. Now, inflation is ac-

cepted as the primordial era to set the stage for the dense, high energy Big Bang plasma.
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Although inflation has passed the tests remarkably well up to this point, several details

about this unusual era are waiting to be understood. Some of these, with the caution

that this list is far away from being complete, can be listed as follows:

• The symmetries, the energy scale, the shape of the potential and the couplings of

inflaton(s)

• The excursion of the inflaton(s) in the field space

• The details of reheating, the era that links the inflationary and Big Bang phases

• GW background from inflation

• The primordial signals that might have been produced during inflation at much

smaller scales than the CMB

A successful inflationary era requires the inflaton potential to be considerably flat so

that the expansion can continue long enough to solve the problems of standard Big Bang

model. However, at very high energies and large excursions in field space, it is very hard

to realize this due to quantum corrections. This task is particularly harder for large

field models, ie. the ones for which the inflaton field spans a range larger than Plank

Mass during inflation. The basic shift symmetry that is approximately respected by

pseudo-scalar particles, called axions, become a strong motivation and hope for keeping

the inflaton potential flat against quantum corrections. Although, this motivation has

been raised for the inflaton field, in the particle inventory of UV complete models, these

types of particles are abundant. Hence, it is important to study the axion particles in the

early universe not only as a candidate for the inflaton field which dominates the energy

content of our universe and drives the inflationary expansion, but also as a spectator

field which is subdominant in energy content with respect to inflaton and evolves in the

nearly de Sitter background as a test field. In this thesis, we focus on on the effects

of parity-violating interaction between axion and gauge fields. In this mechanism, the

rolling axion amplifies one helicity of the gauge field quanta, which in turn source the

scalar (curvature) and tensor (GW) perturbations. Because the gauge field source the

perturbations via two-to-one fashion, explicitly A + A → ζ and A + A → δgTT, the
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sourced perturbations obey non-Gaussian statistics. As a result, this single operator

leads to a number of unique signatures.

After summarizing the inflationary cosmology and providing relevant concepts, ob-

servables and parameters in Chapter 2, we study the effects of this coupling on vacuum

mode function of gauge field in Chapter 3. We focus on two potential scenarios : One

case is that the axion is the slowly rolling inflaton. The other case is axion is a spectator

field which slowly rolls down in its potential and has a non-negligible speed for only a

period of inflation. We devote Chapter 4 for the phenomenology of this interaction at

the largest scales of our observable universe in the spectator axion case. We show that it

is possible that sourced GW modes can dominate over vacuum GW modes without vi-

olating tight bounds from non-Gaussianity at CMB scales. In addition, this interaction

results in non-zero (and potentially detectable) TB and EB correlators due to parity

brreaking, and large tensor non-Gaussianity due to non-Gaussian sourcing. Chapter 5

is devoted for the small scale phenomenology, specifically potentially detectable GWs

at gravitational interferometers such as Pulsar Timing Arrays (PTA), LISA and LIGO,

which scan different frequencies of GW spectrum from nHz to tens of Hz. We show that

without producing too many primordial black holes (PBHs), this mechanism can leave

observable imprints on electromagnetic and gravitational detectors. In Chapter 6, we

study a broad range of constraints, including various backreaction limits and quantum

corrections, for the verification of calculations conducted in the previous chapters. We

show that the results produced in the previous chapters are under perturbative control.

In conclusion, we show that interaction of different fields during inflation suggests

a rich phenomenology without demanding fine-tuning or unreasonable assumptions.

Basically, a very natural operator that is expected to arise in any pseudo-scalar theory

leads to remarkable signatures from very large scales to very small scales helping us

probing larger portion of the inflationary period. The modern cosmology that started

in 1960s with the coincidental detection of Cosmic Microwave Background is now in the

precision era with unprecedented quality and quantity of data from three orthogonal

sources: Photons, Neutrinos 1 and Gravitational Waves; and there is no doubt that new

breakthroughs and discoveries are on the way. Therefore, now is the very correct time

to study the heavens in a careful manner.

1 IceCube very recently detected a neutrino from a Blazar direction [168].
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Appendix A

Axion Inflation and its Coupling

to Gauge Fields

In order for inflation to solve the problems of the Big Bang cosmology such as the flat-

ness, horizon and unwanted relics problems, the inflaton should have a flat enough po-

tential to sustain a sufficiently long accelerated expansion. However, unless protected by

a symmetry, the inflaton potential gets corrections of the type ∆V =
∑

n cn φ
4+n/Λn ,

where φ is the inflaton, cn a dimensionless number and Λ is the scale of the new physics.

For quantum gravity, Λ is expected to be ∼ Mp. Although this UV-sensitivity exists

for all types of inflationary models, these corrections play more dramatic role for large

field models, namely the models in which inflaton field makes an excursion in field space

larger than Planck scale, Mp. These corrections can spoil easily the flatness of the po-

tential by modifying slow-roll parameter η ∼ O(1), defined in eq. (2.25), which results

in shortening of inflationary expansion to O(a few) e-folds.

A well known and simple symmetry that can forbid such operators is the shift

symmetry, namely the invariance of the action under the transformation φ → φ +

constant. A field enjoying this symmetry, at least at an approximate level, is denoted

as an “axion”. The first work that recognized the merits of employing a shift symmetry

in inflation is [3], where the resulting class of models was named Natural (or Axion)

Inflation. However, it is clear that if this symmetry is exact, the potential becomes

trivial and inflation never ends. Therefore this approximate symmetry has to be broken
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for a graceful exit from the inflationary era. A relevant scale in axion inflation is the

axion scale (axion decay constant) f . This scale determines the least irrelevant shift-

symmetric coupling, often the dimension five coupling φ
f FF̃ to gauge fields 1. If the

gauge field is non-Abelian, gauge instantons break the shift symmetry nonperturbatively

to the discrete symmetry as φ → φ+ 2πf . Therefore, f controls the periodicity of the

axion potential, in absence of any explicit breaking of the shift-symmetry. Refs. [3, 4]

studied the simplest potential with such property

V =
Λ4

2

[
1 + cos

(
φ

f

)]
. (A.1)

This attractive idea has been studied extensively in various contexts. Since the

theory of axion is obtained by integrating out the heavier degrees of freedom than the

axion scale [6], it is required that mφ and H (mass and Hubble scale respectively) are

smaller than the axion scale. The arguments from the quantum gravity and string

theory prompt to require the axion decay constant is sub-Planckian, ie. f < MP [7].

There are two problems for the simplest potential of axion inflation given in eq (A.1):

• Natural inflation can be consistent with the observations only if axion scale is

super-Planckian (f >∼ 4Mp) [67].

• The predictions are out of 1− σ contours in the ns − r plane with respect to the

most recent CMB data [67].

These problems have been tried to get evaded by various models and mechanisms

(see [106] for a partial list of relevant literature on this topic) that use sub-Planckian

axions to obtain an effective super-Planckian scale. This is the reason why the particle

production mechanisms during inflation, specifically chiral coupling between axion and

gauge field, which is proportional to 1
f , might lead to rich and detectable phenomenology.

In order to see that clearly, assume we are in a nearly de Sitter stage and we have

an axion field X, coupled to gauge field via α
4fXFF̃ . Resultantly, the dimensionless

parameter that controls the particle production amount becomes

ξ =
α Ẋ

2Hf
=

√
εX
2

αMp

f
(A.2)

1 or to fermions via 1
f
ψ̄ γµ γ5 ψ ∂µφ
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Here we define the slow-roll parameter for the field X as usual εX ≡ Ẋ2

2H2M2
p

and as

long as the field X is slowly-rolling through its potential we expect εX to be very small.

In effective field theory, the coupling constant α is expected to be at most O(1). Hence,

for a super-Planckian axion decay constant, f >∼Mp, we have ξ � 1 which results in that

this coupling has no visible effect on cosmological observables. However, according to the

discussion above, we need that the axions have to have sub-Planckian decay constants

and the super-Planckian scale for inflation needs to be emergent from sub-Planckian

physics. Therefore, in axion inflation, it is very natural to have αMp/f >∼ O(102).

For a concrete example, we will briefly study a model, dubbed as Aligned Natu-

ral Inflation [167]. The model was suggested to solve the super-Planckian axion scale

problem by aligning two sub-Planckian axions such that there emerges a flat enough di-

rection that allows super-Planckian excursions and resultantly can sustain long enough

inflation.

The general 2−field (θ, ρ) model of Natural Aligned Inflation is characterized by

four sub-Planckian axion constants (fi, gi �Mp) and two potential scales [167]

V = Λ4
1

[
1− cos

(
θ

f1
+

ρ

g1

)]
+ Λ4

2

[
1− cos

(
θ

f2
+

ρ

g2

)]
. (A.3)

If the relation f1/g1 = f2/g2 holds, then this potential has one exactly flat direction.

We denote this direction by φ. If this relation is only approximately valid, that direction

becomes flatter than the naive expectation, namely mφ � Λ2
i
fi
,

Λ2
i
gi

. This can be seen as

having an axion φ with an effective scale fφ � fi, gi. This is the alignment mechanism.

The two potential scales can be described as

Λ4
1 ≡

1

1 + rΛ
Λ4 , Λ4

2 ≡
rΛ

1 + rΛ
Λ4 , (A.4)

so that Λ is an overall potential scale, and rΛ is the ratio between the two scales in

(A.3). The ratio between the axion scales can be described as

g1

f1
≡ rg

1 + κ
,
g2

f2
≡ rg

1− κ , (A.5)

Here above, κ is the degree of the alignment. As κ → 0, the alignment gets stronger

and the inflationary direction becomes more flat. Finally, we redefine axion scales as

f1 ≡ rf f , f2 ≡
f

rf
. (A.6)
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In this way, we reformulate the model (A.3) in terms of two parameters of mass

dimension one (f and Λ) and four dimensionless parameters:

V

Λ4
= 1− 1

1 + rΛ
cos

[
1

rf

(
θ

f
+

1 + κ

rg

ρ

f

)]
− rΛ

1 + rΛ
cos

[
rf

(
θ

f
+

1− κ
rg

ρ

f

)]
. (A.7)

In this parametrization, κ → 0 gives exact alignment and we are particularly in-

terested in |κ| � 1. As a result of this alignment one light direction, denoted as φ

(inflationary trajectory) and one heavy direction, denoted as ψ, emerge as eigenstates

of the potential 2.

Under the rotation (given in the footnote 2), the potential becomes

V

Λ4
= 1− 1

1 + rΛ
cos

(
−

r3
f rΛ

1 + r4
f rΛ

φ

fφ
+

1

rf

ψ

fψ

)
− rΛ

1 + rΛ
cos

(
rf

1 + r4
f rΛ

φ

fφ
+ rf

ψ

fψ

)
.

(A.9)

where

fφ ≡ f

√
1 + r2

g

2κ
(A.10)

is the emergent inflationary direction that is much flatter than the heavy direction,

fψ ≡ f
rg√

1 + r2
g

(A.11)

The coupling of these sub-Planckian axion fields with gauge field is expressed as

Lint =

(
cθ
θ

f
+ cρ

ρ

f

)
F F̃ (A.12)

with f , axion scale defined in eq. A.6 and cθ, cρ are model-dependent dimensionless

coefficients expected to be of order one.

2 The rotation matrix can be expressed as follows

(
θ

ρ

)
= R

(
φ

ψ

)

R11 = R22 =
1√

1 + r2
g

+ κ
r2
g(

1 + r2
g

)3/2 1− r4
f rΛ

1 + r4
f rΛ

, R12 = −R21 =
rg√

1 + r2
g

− κ rg(
1 + r2

g

)3/2 1− r4
f rΛ

1 + r4
f rΛ

.

(A.8)
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When we rotate the fields to obtain light and heavy directions, we end up with

Lint = −1

4

(
Cφ φ

κfφ
+
Cψ ψ

fψ

)
FF̃ (A.13)

where the scales fφ and fψ have been defined above, again, the parameters Cφ and Cψ

are model-dependent dimensionless coefficients which may naturally be expected to be

of order one. 3

In result we end up with the following particle production parameter

ξ = |Cφ|
φ̇

2κ fφH
= |Cφ|

Mp

κ fφ

√
εφ
2

(A.14)

which allows ξ >∼ O(1) and interesting signatures at different scales depending on model

parameters.

3 Cφ =
cθ−cρ rg

2
and Cψ =

(cρ+rg cθ)rg
1+r2g

, up to O (κ) corrections.



Appendix B

Details of the Abelian Gauge

Field Amplification for

Non-Adiabatic Evolution

B.1 Details of the derivation of A+(τ, k)

In this appendix we derive the expression (3.20) for the mode function of the photon.

We start from the equation of motion (3.17) for the positive helicity photon, that, after

defining x = −kτ , x∗ = −kτ∗, reads

d2A+

dx2
+

(
1− 2

x

2 ξ∗
(x/x∗)δ + (x/x∗)−δ

)
A+ = 0 . (B.1)

We solve it using the WKB approximation. To do so, we write it in the general form

A′′+(x) +Q(x)A+(x) = 0 , (B.2)

where Q(x) vanishes for x = x̄ and is positive for x > x̄, so that we can define

Q(x) ≡
{

p(x)2 , x > x̄

−κ(x)2 , x < x̄ ,
(B.3)

Then, for x > x̄, in the adiabatic regime |p′(x)| � p(x)2, the general solution reads

A+(x > x̄) ' α√
p(x)

cos

(∫ x

x̄
p(x)dx− π

4

)
− β√

p(x)
sin

(∫ x

x̄
p(x)dx− π

4

)
, (B.4)
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with α and β constants, and where the symbol ' denotes approximate equality in the

WKB approximation. Similarly, for x < x̄, the solution in the WKB regime |κ′(x)| �
κ(x)2 will be a linear combination of exp

(
−
∫ x̄
x κ(x)dx

)
/
√
κ(x) and exp

(∫ x̄
x κ(x)dx

)
/
√
κ(x).

To determine the coefficients of such a combination in terms of α and β we expand

eq. (B.2) near x = x̄ as

A′′+(x) +Q′(x̄) (x− x̄)A+(x) ' 0 , (B.5)

that can be solved in terms of Airy functions, and that we join to the adiabatic solutions

in the regimes x − x̄ → ±∞, as discussed for instance in chapter 7 of [86]. The final

result is

A+(x < x̄) ∼= α/2√
κ(x)

exp

(
−
∫ x̄

x
κ(x) dx

)
+

β√
κ(x)

exp

(∫ x̄

x
κ(x) dx

)
. (B.6)

The requirement that the photons are in their adiabatic vacuum in the ultraviolet

translates into the boundary condition α = 1√
2 k

, β = − i√
2 k

. In the regime x � x̄ we

keep only the term that corresponds to the growing mode, so that

A+(x < x̄) ' − i√
2 k κ(x)

exp

{∫ x̄

x
κ(x)dx

}
. (B.7)

As a check of the validity of our procedure we can consider the limit δ → 0, so that
2 ξ∗

xδ+x−δ
→ ξ, which brings us back to the case of a constant velocity for the rolling axion

first studied in [38]. Indeed, in this regime∫ x̄

x
κ(x) dx

∣∣∣∣
δ→0

=

∫ 2 ξ

x

√
2 ξ

x
− 1 dx = 2 ξ arccos

(√
x

2ξ

)
−
√
x (2 ξ − x) ' πξ−2

√
2ξ x ,

(B.8)

(where in the last step we have expanded to first order in
√
x), that, once inserted into

eq. (B.7), gives a result that coincides with the approximate expression given in [38].

In the general case δ 6= 0 it is impossible to compute the integral of κ(x) in closed

form. Nevertheless, we can write∫ x̄

x
κ(x) dx =

∫ x̄

0
κ(x) dx−

∫ x

0
κ(x) dx , (B.9)

so that only the second term depends on x. Since we care only about the regime of

moderately small x, we consider only the leading part of the integrand as x→ 0:∫ x

0
κ(x) dx '

∫ x

0

√
4 ξ∗

x (x/x∗)−δ
dx =

4
√
ξ∗

1 + δ
x

1+δ
2 x

− δ
2
∗ . (B.10)
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This equation, once inserted into eq. (B.7), gives the full dependence of the function

A+(τ, k) on the conformal time τ as it appears in eq. (3.19) in the main text. The

overall normalization of A+(τ, k), on the other hand, has to be computed numerically,

and we determine it by matching the WKB approximate solution with the numerical

solution of eq. (3.17), yielding the constant N(ξ∗, x∗, δ) defined in eq. (3.19). We have

checked that, in the part of parameter space we are interested in, the expression found

this way approximates the exact solution at the 30% level or better.

Performing a WKB approximation of the evolution equation, we obtained the fol-

lowing accurate expression for the real part of the gauge field amplitude:

AR (τ, k) ' N [ξ∗, x∗, δ]

( −τ
8 k ξ (τ)

)1/4

exp

[
−4ξ

1/2
∗

1 + δ

( −τ
−τ∗

)δ/2
(−kτ)1/2

]
,

dAR (τ, k)

dτ
'

√
2 k ξ (τ)

−τ AR (τ, k) , τ > τ∗ , (B.11)

The expression (B.11) is valid only for τ > τ∗. We verified numerically that the ampli-

tude of the gauge field is much smaller at earlier times, therefore we can disregard these

earlier times in our computations.

We provide the imaginary part of A+ using the Wronskian condition A+A
′∗
+−c.c. = i

AI (τ, k) ' 1

N [ξ∗, x∗, δ]

( −τ
27 ξ k

)1/4

exp

[
4ξ

1/2
∗

1 + δ

( −τ
−τ∗

)δ/2
(−kτ)1/2

]
,

dAI (τ, k)

dτ
' −

√
2 k ξ (τ)

−τ AI (τ, k) . (B.12)

We note that A+ = AR + i AI and its derivative also satisfy the relation (3.12).

We find that the normalization factor N [ξ∗, x∗, δ] is well approximated by the shape

N [ξ∗, q, δ] ≈ N c [ξ∗, δ] exp

(
− 1

2σ2 [ξ∗, δ]
ln2

(
q

qc [ξ∗, δ]

))
. (B.13)

The three parameters N c, qc, and σ depend on ξ∗ and δ. We evaluate this dependence

for the two specific cases δ = 0.2, 0.5, and we then fit the ξ∗ dependence numerically in

the 3 ≤ ξ∗ ≤ 7 interval. We obtain

N c = exp
[
0.437 + 2.97 ξ∗ + 0.00105 ξ2

∗
]

, δ = 0.2 , 3 ≤ ξ∗ ≤ 7 ,

qc = −0.150 + 0.594 ξ∗ − 0.00105 ξ2
∗ ,

σ = 2.78− 0.387 ξ∗ + 0.0229 ξ2
∗ , (B.14)
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and

N c = exp
[
0.117 + 2.54 ξ∗ + 0.000525 ξ2

∗
]

, δ = 0.5 , 3 ≤ ξ∗ ≤ 7 ,

qc = −0.0500 + 0.683 ξ∗ − 0.000716 ξ2
∗ ,

σ = 1.51− 0.220 ξ∗ + 0.0137 ξ2
∗ . (B.15)

B.2 Energy Density in the Abelian Gauge Field

For brevity, we use electromagnetic notation, although we are not assuming that the

vector field is the Standard Model electromagnetic field. In this notation, the energy

density of the gauge field acquires the form

ρA =

〈
E2 +B2

2

〉
, (B.16)

where E and B fields are

~E = − 1

a2

∫
d3k

(2π)3/2
ei
~k·~x~ε+

(
~k
)
Â′+

(
~k
)
,

~B =
1

a2

∫
d3k

(2π)3/2
ei
~k·~x~ε+

(
~k
)
k Â+

(
~k
)
. (B.17)

From these expressions, we see that the energy density per mode reduces to the following

simple form:

dρk
dk

=
1

4π2a4

{
k2 |A′+ (k) |2 + k4 |A+ (k) |2

}
=

k3

8π2a4


∣∣∣∣∣dÃdx

∣∣∣∣∣
2

+ |Ã|2
 , (B.18)

where we have defined

A+ (τ, k) ≡ 1√
2k

Ã (x ≡ − k τ) . (B.19)

A dimensionless expression is obtained by dividing the energy density by the 4th power

of the Hubble parameter, leading to

1

H4
k

d (ρk)

d ln k
=

x4

8π2


∣∣∣∣∣dÃdx

∣∣∣∣∣
2

+ |Ã|2
 , (B.20)

where Hk is the value of the Hubble rate when the mode k left the horizon. This is the

expression plotted in Figure 3.1, for the three approximations for the gauge field mode

function in eqns (3.8), (3.9) and (3.10), and in Figure 3.2 for bump model.
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We also need to evaluate 〈E ·B〉, as it affects the evolution equation for the field X

Ẍ + 3HẊ + ∂σV =
α

f
〈 ~E · ~B〉 . (B.21)

(we want to ensure that this terms can be neglected). Using (B.17), we find

1

H4
k

d 〈 ~E · ~B〉
d ln k

=
x4

8π2

d

dx
|Ã|2 . (B.22)

For spectator axion case, by inserting the expression for the vector field amplitude

into (B.20), using ρφ ' 3H2M2
p , and eliminating H through Pζ,cmb ' H2

8π2εφM2
p
'

2.2 · 10−9, we obtain the following expression for the energy in the vector field

ρA
εφ ρφ

=
N2
c P

(0)
ζ y7/2

6
√
ξ∗
√
yδ + y−δ

∫ ∞
0

dx∗
x∗

x
7/2
∗ e−

8
√
ξ∗
√
x∗y

1
2 + δ

2

1+δ
−

ln2(x∗qc )
σ2

[
4ξ∗ + x∗y

(
yδ + y−δ

)]
,

(B.23)

where we have defined y ≡ τ/τ∗ (therefore, our expression are valid for 0 ≤ y ≤ 1). We

show the result for different values of ξ∗ and for different times in Figure B.1.
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Figure B.1: Total Energy density in the gauge field, rescaled by εφ ρφ, as a function of
time, for fixed values of ξ∗

We observe that the energy density in the vector field reaches a maximum value at

y = O (0.1), and it is then diluted away by the expansion of the universe. We fitted

numerically the dependence on ξ∗ of the maximum value assumed by ρA, obtaining the

very accurate expression

ρA,max

εφ ρφ
∼
{

2.75 · 10−12 e1.74π ξ∗ , δ = 0.2 ,

7.48 · 10−12 e1.52π ξ∗ , δ = 0.5 .
(B.24)



Appendix C

CMB Phenomenology For Rolling

Axion Bump

C.1 Sourced scalar modes at constant ξ

In this Appendix we show how, for constant values of ξ, the isocurvature perturbation

associated to σ is partially converted into curvature perturbation during superhorizon

evolution [57, 58]. As a consequence, large fluctuations in the gauge mode can introduce

a significant sourced component in the curvature perturbations. We start from the

equations (4.17) already given in the main text, and we redefine

M2
ij ≡ −τ2M̃2

ij '
(

2 + 9 εφ + 3 εσ − 3 ηφ 6
√
εφεσ

6
√
εφεσ 2 + 9 εσ + 3 εφ − 3 ησ

)
, (C.1)

If M2
ij is approximately constant we can diagonalize the mass matrix as

M = CT ΛC , C =

(
cos θ sin θ

− sin θ cos θ

)
, Λ =

(
λφ 0

0 λσ

)
, (C.2)

so that we can solve the system (4.17), obtaining

Qφ = sin θ cos θ

∫
dτ ′
[
G
λφ
k (τ, τ ′)−Gλσk (τ, τ ′)

]
Ŝσ
(
τ ′,~k

)
, (C.3)
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G
λφ,σ
k (τ, τ ′) is the retarded Green function associated to the operator ∂2

∂τ2 +
(
k2 − λφ,σ

τ2

)
:

Gλk(τ, τ ′) = Θ(τ−τ ′) π
2

√
τ τ ′

(
Jµ(−kτ)Yµ(−kτ ′)− Jµ(−kτ ′)Yµ(−kτ)

)
, µ =

√
λ+

1

4
.

(C.4)

Inspection of the equations given in subsection 3.1.2 (or Appendix B.1) shows that,

for ξ & O(1), the source term Sσ
(
τ ′,~k

)
is exponentially suppressed for |k τ ′| & 1. As

a consequence, we can set |k τ ′| � 1 in the propagator. Also, since we are looking at

modes far outside of the horizon, we have |k τ | � 1, and we can use the approximate

expression for the propagator

Gλk(τ, τ ′) '
√
τ τ ′

2µ

(
τ ′

τ

)µ
. (C.5)

To first order in the slow roll parameters, denoting λσ = 2 + δλσ and λφ = 2 + δλφ

we can expand

Gλk(τ, τ ′) '
√
τ τ ′

3

(
τ ′

τ

)3/2 (
1− δλ

3
+
δλ

3
log

τ ′

τ

)
(C.6)

so that, neglecting term −δλ/3 which is subdominant with respect to δλ
3 log τ ′

τ ,

Qφ ' sin θ cos θ
δλφ − δλσ

3

∫
dτ ′

(
log

τ ′

τ

)
G2
k(τ, τ

′)Sσ
(
τ ′,~k

)
. (C.7)

Since most of the integral in dτ ′ gets contribution from τ ′ ' −1/k, we can approxi-

mate log τ ′

τ ' − log(−k τ) ' Nk, the number of efoldings of inflation from the time the

mode k has left the horizon.

As a consequence, the perturbation in δφ is the perturbation that would be obtained

if axion was the inflaton times the factor sin θ cos θ
δλφ−δλσ

3 Nk = 2
√
εσ εφNk, that

accounts for the fact that in this model σ 6= φ. The multiplicative factor arises for the

conversion of quanta of σ to φ.

C.2 Scalar Modes

In this appendix section, we show the explicit derivation of the scalar power spectrum

and bispectrum in the model (4.2), whose fitting functions used for the phenomenological

studies are given in expression (4.41) in Subsection 4.3.1.
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Starting from (4.22), we split ζ̂ into the vacuum mode and sourced contribution in

the same way as Q̂φ in (4.23). Using the solution (4.26) for Q̂
(1)
φ , we find the sourced

mode of ζ̂ as

ζ̂(1)
(
τ,~k
)
' 3
√

2Hτ

Mp

∫
dτ ′Gk(τ, τ

′)

√
εσ(τ ′)

τ ′2

∫
dτ ′′Gk(τ

′, τ ′′) Ŝσ(τ ′′,~k) . (C.8)

where Ŝσ and Gk(τ, τ
′) are defined in (4.21) and (4.27), respectively. The explicit

expression for Ŝσ is obtained by using (4.11) as

Ŝσ(τ,~k) = α
a3

f

∫
d3x

(2π)3/2
e−i

~k·~x ~̂E · ~̂B

' αHτ

4f

∫
d3p

(2π)3/2
ε
(+)
i (~p) ε

(+)
i (~k − ~p) p1/4|~k − ~p|1/4

(
p1/2 + |~k − ~p|1/2

)
×Ã (τ, p) Ã

(
τ, |~k − ~p|

) [
â+ (~p) + â†+ (−~p)

] [
â+

(
~k − ~p

)
+ â†+

(
−~k + ~p

)]
,

(C.9)

after symmetrizing p and |~k − ~p|, where

Ã (τ, p) Ã
(
τ, |~k − ~p|

)
= N [ξ∗,−pτ∗, δ]N

[
ξ∗,−|~k − ~p|τ∗, δ

]
× exp

[
−4 ξ

1/2
∗

1 + δ

(
τ

τ∗

)δ/2(√−pτ +

√
−|~k − ~p|τ

)]
(C.10)

Since we are interested in large-scale modes, we can safely assume −kτ � 1, leading to

Gk
(
τ, τ ′

)
' Θ

(
τ − τ ′

) √π

2

√
−τ ′

−k3/2τ
J3/2

(
−kτ ′

)
, −kτ � 1 , (C.11)

while this approximation is not valid for Gk (τ ′, τ ′′). plugging this and (4.27) into (C.8),

we have

ζ̂(1)
(
τ,~k
)
' 3π3/2H

2Mp k3/2

∫ τ

−∞

dτ ′

τ ′
J3/2

(
−kτ ′

) √
εσ(τ ′)

∫ τ ′

−∞
dτ ′′
√
−τ ′′ Ŝσ(τ ′′,~k)

×
[
J3/2

(
−kτ ′

)
Y3/2

(
−kτ ′′

)
− Y3/2

(
−kτ ′

)
J3/2

(
−kτ ′′

) ]
.(C.12)

We then plug (C.9) into the above expression and rescale

~̃p ≡ ~p

k
, x′ ≡ −kτ ′ , x′′ ≡ −kτ ′′ , (C.13)
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to obtain

ζ̂(1)
(
τ,~k
)
'

3π3/2H2α
√
εσ,∗

8Mpf

∫
d3p̃

(2π)3/2
p̃1/4|k̂ − ~̃p|1/4

(
p̃1/2 + |k̂ − ~̃p|1/2

)
×N [ξ∗, p̃ x∗, δ]N

[
ξ∗, |k̂ − ~̃p|x∗, δ

]
P̂
[
~p, ~k

]
Tζ
[
ξ∗, x∗, δ,

√
p̃+

√
|k̂ − ~̃p|

]
,

(C.14)

where we have defined

P̂
[
~p,~k
]
≡ ε(+)

i

(
~̃p
)
ε
(+)
i

(
k̂ − ~̃p

) [
â+ (~p) + â†+ (−~p)

] [
â+

(
~k − ~p

)
+ â†+

(
−~k + ~p

)]
Tζ [ξ∗, x∗, δ, Q] ≡

∫ ∞
0

dx′

x′
J3/2

(
x′
)√εσ(x′)

εσ,∗

∫ ∞
x′

dx′′ x′′3/2 exp

[
−4 ξ

1/2
∗

1 + δ

x′′(1+δ)/2

x
δ/2
∗

Q

]
×
[
J3/2

(
x′
)
Y3/2

(
x′′
)
− Y3/2

(
x′
)
J3/2

(
x′′
)]
, (C.15)

where we have sent −kτ → 0 for the lower bound of the integral. The functional forms

of ξ and εσ are shown in (4.7). Using this, and the fact that
√
εσ = σ̇√

2MpH
= const.× ξ,

we have

ξ(x) =
2ξ∗

(x/x∗)
δ + (x∗/x)δ

,

√
εσ(x)

εσ,∗
=

2

(x/x∗)
δ + (x∗/x)δ

, (C.16)

where x∗ = −kτ∗ = [k/a(τ∗)] /H is the ratio between the physical momentum of the

mode and the horizon at the moment in which ξ is at its maximum. We emphasize

that apart from the creation and annihilation operators, the dependence on k arises

only through x∗ = k/k∗ in the expression (C.14). Using (C.14), we proceed to the

calculations of the scalar power spectrum and bispectrum in the following subsections.

C.2.1 Scalar Power Spectrum

The power spectrum of curvature perturbations ζ̂ can be defined as

Pζ (k) δ(3)
(
~k + ~k′

)
≡ k3

2π2

〈
ζ̂
(
~k
)
ζ̂
(
~k′
)〉

, (C.17)

and it consists of vacuum mode and sourced contribution, namely,

Pζ(k) = P(0)
ζ (k) + P(1)

ζ (k) . (C.18)
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Notice that these two modes are uncorrelated, and thus there is no cross term. Here

P(0)
ζ (k) is the standard vacuum mode, for which, using eq. (4.25), we find

P(0)
ζ (k) =

H2

8π2εφM2
p

, (C.19)

neglecting the slow-roll corrections. For the sourced mode, we compute, using (C.14),〈
ζ̂(1)

(
~k
)
ζ̂(1)

(
~k′
)〉
' 9π3H4α2εσ,∗

64M2
p f

2

∫
d3p̃ d3p̃′

(2π)3

〈
P̂
[
~p,~k
]
P̂
[
~p ′,~k′

]〉
×
(
p̃ p̃′|k̂ − ~̃p||k̂′ − ~̃p′|

)1/4 (
p̃1/2 + |k̂ − ~̃p|1/2

)(
p̃′1/2 + |k̂′ − ~̃p′|1/2

)
×N [ξ∗, p̃ x∗, δ]N

[
ξ∗, |k̂ − ~̃p|x∗, δ

]
N
[
ξ∗, p̃

′ x∗, δ
]
N
[
ξ∗, |k̂′ − ~̃p

′|x∗, δ
]

×Tζ
[
ξ∗,

k

k∗
, δ,
√
p̃+

√
|k̂ − ~̃p|

]
Tζ
[
ξ∗,

k′

k∗
, δ, ξ∗,

√
p̃′ +

√
|k̂′ − ~̃p′|

]
, (C.20)

where k∗ is the mode that exits the horizon at the moment when ξ takes its maximum

value ξ∗, namely k∗ = a(τ∗)H. Evaluating〈
P̂
[
~p,~k
]
P̂
[
~p ′,~k′

]〉
= δ(3)

(
~k + ~k′

) [
δ(3)

(
~p+ ~p ′

)
+ δ(3)

(
~k − ~p+ ~p ′

)]
×ε(+)

i

(
~̃p
)
ε
(+)
i

(
k̂ − ~̃p

)
ε
(+)
j

(
~̃p ′
)
ε
(+)
j

(
k̂′ − ~̃p ′

)
, (C.21)

and using the definition (C.17), we obtain

P(1)
ζ (k) ' 9πH4α2εσ,∗

64M2
p f

2

∫
d3p̃

(2π)3

∣∣∣ε(+)
i

(
~̃p
)
ε
(+)
i

(
k̂ − ~̃p

)∣∣∣2 p̃1/2|k̂ − ~̃p|1/2
(
p̃1/2 + |k̂ − ~̃p|1/2

)2

×N2 [ξ∗, p̃ x∗, δ]N
2
[
ξ∗, |k̂ − ~̃p|x∗, δ

]
T 2
ζ

[
ξ∗, x∗, δ,

√
p̃+

√
|k̂ − ~̃p|

]
. (C.22)

Expressing H2/M2
p and α2εσ,∗/f

2 in terms of P(0)
ζ and ξ∗, respectively, by (C.19) and

α2εσ,∗/f
2 = σ̇2(τ∗)/(2M

2
pH

2f2) = 2ξ2
∗/M

2
p , we find

P(1)
ζ (k) '

[
εφP(0)

ζ

]2
f2,ζ (ξ∗, x∗, δ) , (C.23)

where

f2,ζ (ξ∗, x∗, δ) ≡
9π5

2
ξ2
∗

∫
d3p̃

(2π)3

(
1−

~̃p

p̃
· k̂ −

~̃p

|k̂ − ~̃p|

)2

p̃1/2|k̂ − ~̃p|1/2
(
p̃1/2 + |k̂ − ~̃p|1/2

)2

×N2 [ξ∗, p̃ x∗, δ]N
2
[
ξ∗, |k̂ − ~̃p|x∗, δ

]
T 2
ζ

[
ξ∗, x∗, δ,

√
p̃+

√
|k̂ − ~̃p|

]
,

(C.24)
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using the property of the polarization vector, |ε(λ)
i (~p) ε

(λ′)
i (~q) |2 = (1− λλ′p̂ · q̂)2 /4. For

the concrete evaluation of the p̃ integral, we denote the cosine of the angle between ~̃p

and k̂ by η. After taking the trivial angular integral, we have

f2,ζ (ξ∗, x∗, δ) =
9π3

8
ξ2
∗

∫ ∞
0

dp̃

∫ 1

−1
dη p̃5/2

(
1− 2p̃η + p̃2

)1/4 [
p̃1/2 +

(
1− 2p̃η + p̃2

)1/4]2

×
[

1 +
p̃− η

(1− 2p̃η + p̃2)1/2

]2

N2 [ξ∗, p̃ x∗, δ]N
2
[
ξ∗,
(
1− 2p̃η + p̃2

)1/2
x∗, δ

]
×T 2

ζ

[
ξ∗, x∗, δ, p̃

1/2 +
(
1− 2p̃η + p̃2

)1/4]
. (C.25)

Alternatively, we can change the variables of integration from p̃ and η to x and y such

that x = p̃+ |k̂ − ~̃p| and y = p̃− |k̂ − ~̃p|. Then the integral reduces to

f2,ζ (ξ∗, x∗, δ) =
9π3

32
ξ2
∗

∫ ∞
1

dx

∫ 1

0
dy

(
1− x2

)2
(
√
x+ y +

√
x− y)2

√
x+ y

√
x− y

× N2

[
ξ∗,

x+ y

2
x∗, δ

]
N2

[
ξ∗,

x− y
2

x∗, δ

]
T 2
ζ

[
ξ∗, x∗, δ,

√
x+ y +

√
x− y√

2

]
.

(C.26)

We evaluate f2 numerically using either (C.25) or (C.26). The total power spectrum of

the curvature perturbations is, from (C.18) and (C.23),

Pζ = P(0)
ζ

[
1 + ε2φP

(0)
ζ f2,ζ (ξ∗, x∗, δ)

]
, (C.27)

where P(0)
ζ is given in (C.19).

C.2.2 Scalar Bispectrum

We define the bispectrum of the curvature perturbations as

Bζ (k1, k2, k3) δ(3)
(
~k1 + ~k2 + ~k3

)
≡
〈
ζ̂
(
~k1

)
ζ̂
(
~k2

)
ζ̂
(
~k3

)〉
, (C.28)

where Bζ depends only on the magnitudes of the three momenta, under the restriction

that they form a triangle. The bispectrum in principle consists of the vacuum and

sourced modes, similarly to the power spectrum. However the vacuum mode bispectrum

B(0)
ζ is small, and we focus on the contribution from the source, i.e.

Bζ ∼= B(1)
ζ . (C.29)
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Taking the 3-point function of ζ̂(1) in (C.14), we have〈
ζ̂(1)

(
~k1

)
ζ̂(1)

(
~k2

)
ζ̂(1)

(
~k3

)〉
' 33π9/2H6α3ε

3/2
σ,∗

29M3
p f

3

∫
d3p̃1 d

3p̃2 d
3p̃3

(2π)9/2

〈
P̂
[
~p1,~k1

]
P̂
[
~p2,~k2

]
P̂
[
~p3,~k3

]〉
×

3∏
i=1

(
p̃i|k̂i − ~̃pi|

)1/4 (
p̃

1/2
i + |k̂i − ~̃pi|1/2

)
N [ξ∗, p̃i x∗, δ]N

[
ξ∗, |k̂i − ~̃pi|x∗, δ

]
×Tζ

[
ξ∗,

ki
k∗
, δ,

√
p̃i +

√
|k̂i − ~̃pi|

]
. (C.30)

Evaluating the vacuum expectation value, we find

B(1)
ζ

(
~k1, ~k2, ~k3

)
' 33π9/2H6α3ε

3/2
σ,∗

26M3
p f

3

1

k4
1k

4
2k

4
3

∫
d3p

(2π)9/2
P̃
[
~p, ~p+ ~k1, ~p− ~k3

]√
p|~p+ ~k1||~p− ~k3|

×
(√

p+

√
|~p+ ~k1|

)(√
|~p+ ~k1|+

√
|~p− ~k3|

)(√
|~p− ~k3|+

√
p

)
×N2

[
ξ∗,

p

k∗
, δ

]
N2

[
ξ∗,
|~p+ ~k1|
k∗

, δ

]
N2

[
ξ∗,
|~p− ~k3|
k∗

, δ

]

×Tζ

ξ∗, k1

k∗
, δ,

√
p+

√
|~p+ ~k1|√
k1

 Tζ
ξ∗, k2

k∗
, δ,

√
|~p+ ~k1|+

√
|~p− ~k3|√

k2


×Tζ

ξ∗, k3

k∗
, δ,

√
|~p− ~k3|+√p√

k3

 , (C.31)

where

P̃ [~v1, ~v2, ~v3] ≡ ε(+)∗
i (~v1) ε

(+)
i (~v2) ε

(+)∗
j (~v2) ε

(+)
j (~v3) ε

(+)∗
k (~v3) ε

(+)
k (~v1)

=
1

8

[
v̂1 · v̂2 + v̂2 · v̂3 + v̂3 · v̂1 + (v̂1 · v̂2)2 + (v̂2 · v̂3)2 + (v̂3 · v̂1)2

+ (v̂1 · v̂2) (v̂2 · v̂3) + (v̂2 · v̂3) (v̂3 · v̂1) + (v̂3 · v̂1) (v̂1 · v̂2)− (v̂1 · v̂2) (v̂2 · v̂3) (v̂3 · v̂1)
]

+
i

8
v̂1 · (v̂2 × v̂3) (1 + v̂1 · v̂2 + v̂2 · v̂3 + v̂3 · v̂1) . (C.32)

We can disregard the imaginary part as the bispectrum is real (see Appendix C.4).

Rescaling

k ≡ k1 , x2 ≡
k2

k
, x3 ≡

k3

k
, x∗ ≡

k

k∗
, ~̃p ≡ ~p

k
, (C.33)

and using the relations

H2

M2
p

= 8π2εφP(0)
ζ ,

α
√
εσ,∗

f
=

√
2 ξ∗
Mp

, (C.34)
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we obtain

B(1)
ζ '

[
εφP(0)

ζ

]3

k2
1k

2
2k

2
3

f3,ζ (ξ∗, x∗, δ, x2, x3) , (C.35)

where

f3,ζ (ξ∗, x∗, δ, x2, x3) = 29/233π21/2 ξ3
∗

x2
2x

2
3

∫
d3p̃

(2π)9/2
<
(
P̃
[
~̃p, ~̃p+ k̂1, ~̃p− x3k̂3

])
×
√
p̃|~̃p+ k̂1||~̃p− x3k̂3|

(√
p̃+

√
|~̃p+ k̂1|

)(√
|~̃p+ k̂1|+

√
|~̃p− x3k̂3|

)(√
|~̃p− x3k̂3|+

√
p̃

)
×N2 [ξ∗, p̃ x∗, δ]N

2
[
ξ∗, |~̃p+ k̂1|x∗, δ

]
N2
[
ξ∗, |~̃p− x3k̂3|x∗, δ

]
Tζ
[
ξ∗, x∗, δ,

√
p̃+

√
|~̃p+ k̂1|

]

×Tζ

ξ∗, x2x∗, δ,

√
|~̃p+ k̂1|+

√
|~̃p− x3k̂3|

√
x2

 Tζ
ξ∗, x3x∗, δ,

√
|~̃p− x3k̂3|+

√
p̃

√
x3

 ,

(C.36)

where < denotes the real part.

In order to evaluate the integrals, we can orient ~k1 along the x axis and express ~k2

and ~k3 in terms of x2 and x3, namely,

~k1 = k (1, 0, 0) ,

~k2 =
k

2

(
−1− x2

2 + x2
3,
√
− (1− x2 + x3) (1 + x2 − x3) (1− x2 − x3) (1 + x2 + x3), 0

)
,

~k3 =
k

2

(
−1 + x2

2 − x2
3, −

√
− (1− x2 + x3) (1 + x2 − x3) (1− x2 − x3) (1 + x2 + x3), 0

)
,

(C.37)

and then perform numerical integration. The phenomenology of this result is extensively

studied in Section 4.3.

C.3 Tensor Modes

In this appendix, we present the detailed derivation of the tensor power spectrum and

bispectrum from the source, parallel to the scalar counterparts derived in Appendix

C.2. The phenomenological study in Section 4.3 is done with the use of fitting functions

(4.41) for the results derived in this appendix.
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We define the tensor mode operators in the basis of circular polarization,

ĥλ

(
τ,~k
)
≡ Πij,λ

(
ĥ
)
ĥij

(
τ,~k
)

=
2

Mp a(τ)
Q̂λ

(
τ,~k
)
, (C.38)

where the tensor canonical mode Q̂λ and the polarization tensor Πij,λ are defined in

(4.30) and (4.31), respectively. The equation of motion for the canonical operator Q̂λ is

shown in (4.32). We can decompose the solution into the homogeneous and particular

ones, corresponding to the vacuum and sourced modes, respectively, in the same way

as for the case of the scalar perturbations (4.23). The solution for the vacuum mode

is given in (4.33), and the sourced contribution Q̂
(1)
λ can be solved formally by (4.34).

This, together with (C.38), provides the solution for the sourced mode ĥ
(1)
λ as

ĥ
(1)
λ

(
τ,~k
)
' −2Hτ

Mp

∫ ∞
−∞

dτ ′Gk(τ, τ
′) Ŝλ

(
τ ′,~k

)
, (C.39)

where we have used a(τ) ' −1/(Hτ), the Green function is given in (4.27), and the

source Ŝλ is defined in (4.32). The explicit expression for Ŝλ can be found by using

(4.10) as

Ŝλ
(
τ,~k
)

= − a3

Mp
Πij,λ

(
k̂
)∫ d3x

(2π)3/2
e−i

~k·~x
[
Êi Êj + B̂i B̂j

]
' −H

√
−τ ξ(τ)√
2Mp

∫
d3p

(2π)3/2
Pλ
[
~k, ~p,~k − ~p

]
p1/4|~k − ~p|1/4

(
1 +

−τ
2 ξ(τ)

√
p|~k − ~p|

)
×Ã (τ, p) Ã

(
τ, |~k − ~p|

) [
âλ (~p) + â†λ (−~p)

] [
âλ

(
~k − ~p

)
+ â†λ

(
−~k + ~p

)]
,

(C.40)

where â†λ and âλ are the creation and annihilation operators, respectively, of the helicity

2λ graviton modes. Recalling the relation (4.31), we have defined

Pλ
[
~k, ~p,~k − ~p

]
≡ ε(λ)∗

i

(
~k
)
ε
(+)
i (~p) ε

(λ)∗
j

(
~k
)
ε
(+)
j

(
~k − ~p

)
. (C.41)

Since we are interested in large-scale modes −kτ � 1, we can approximate

Gk
(
τ, τ ′

)
' Θ (τ − τ ′)

k3ττ ′
[
kτ ′ cos

(
kτ ′
)
− sin

(
kτ ′
)]

, −kτ � 1 , (C.42)

which is identical to (C.11). Combining (C.39) with (C.40) and (C.42), we obtain

ĥ
(1)
λ

(
τ,~k
)
'

√
2H2

M2
p k

7/2

∫
d3p

(2π)3/2
Pλ
[
~k, ~p,~k − ~p

]
p1/4|~k − ~p|1/4
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×N
[
ξ∗,

p

k∗
, δ

]
N

[
ξ∗,
|~k − ~p|
k∗

, δ

]
Th
[
ξ∗, x∗, δ,

p

k
,
|~k − ~p|
k

]
×
[
âλ (~p) + â†λ (−~p)

] [
âλ

(
~k − ~p

)
+ â†λ

(
−~k + ~p

)]
, (C.43)

where

Th [ξ∗, x∗, δ, , p̃, q̃] ≡ Th1

[
ξ∗, x∗, δ,

√
p̃+

√
q̃
]

+

√
p̃ q̃

2
Th2

[
ξ∗, x∗, δ,

√
p̃+

√
q̃
]
,

Th1 [ξ∗, x∗, δ, Q] ≡
∫ ∞

0
dx′
(
x′ cosx′ − sinx′

)√ξ(x′)

x′
exp

[
−4 ξ

1/2
∗

1 + δ

x′(1+δ)/2

x
δ/2
∗

Q

]
,

Th2 [ξ∗, x∗, δ, Q] ≡
∫ ∞
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dx′
(
x′ cosx′ − sinx′

)√ x′

ξ(x′)
exp

[
−4 ξ

1/2
∗

1 + δ

x′(1+δ)/2

x
δ/2
∗

Q

]
.

(C.44)

Here we have rescaled the variables x′ ≡ −kτ ′, and x∗ = −kτ∗ = [k/a(τ∗)] /H is the

ratio between the physical momentum of the mode and the horizon at the moment in

which ξ is at its maximum. For the evaluation of the integral, recall

ξ(x) =
2ξ∗

(x/x∗)
δ + (x∗/x)δ

. (C.45)

Using the expression (C.43), we compute the tensor power spectrum and bispectrum in

the following subsections.

C.3.1 Tensor Power Spectrum

We define the power spectrum of the tensor mode as

Pλ(k) δλλ′δ
(3)
(
~k + ~k′

)
≡ k3

2π2

〈
ĥλ

(
~k
)
ĥλ′
(
~k′
)〉

, (C.46)

and separate it into the vacuum mode and the component sourced by the gauge field,

as in (4.36). The vacuum mode is the standard one, and we focus on the computation

of the sourced contribution in this appendix. Using (C.43) and taking the two-point

correlator of ĥ
(1)
λ , we find〈

ĥ
(1)
λ

(
~k
)
ĥ

(1)
λ′

(
~k′
)〉

' δ(3)
(
~k + ~k′

) 4H4

M4
p k

7

∫
d3p

(2π)3
Pλ
[
~k, ~p,~k − ~p

]
P∗λ′

[
~k, ~p,~k − ~p

]√
p|~k − ~p|

×N2

[
ξ∗,

p

k∗
, δ

]
N2

[
ξ∗,
|~k − ~p|
k∗

, δ

]
T 2
h

[
ξ∗, x∗, δ,

p

k
,
|~k − ~p|
k

]
. (C.47)



148

One can show that∫
dφPλ

[
~k, ~p, ~q

]
P∗λ′

[
~k, ~p, ~q

]
=
δλλ′

16

∫
dφ
(

1 + λ k̂ · p̂
)2 (

1 + λ k̂ · q̂
)2

, (C.48)

and therefore we find the sourced part of the tensor power spectrum

P(1)
λ (k) ' H4

8π2M4
p k

4

∫
d3p

(2π)3

(
1 + λ k̂ · p̂

)2
(

1 + λ k̂ ·
~k − ~p
|~k − ~p|

)2√
p|~k − ~p|

×N2

[
ξ∗,

p

k∗
, δ

]
N2

[
ξ∗,
|~k − ~p|
k∗

, δ

]
T 2
h

[
ξ∗, x∗, δ,

p

k
,
|~k − ~p|
k

]
.(C.49)

After rescaling ~̃p ≡ ~p/k, we arrive at the expression

P(1)
λ (k) '

[
εφP(0)

ζ

]2
f2,λ (ξ∗, x∗, δ) , (C.50)

where P(0)
ζ is given in (C.19) and

f2,λ (ξ∗, x∗, δ) = 8π2

∫
d3p̃

(2π)3

(
1 + λ k̂ · ˆ̃p

)2
(

1 + λ k̂ · k̂ −
~̃p

|k̂ − ~̃p|

)2√
p̃|k̂ − ~̃p|

×N2 [ξ∗, p̃ x∗, δ]N
2
[
ξ∗, |k̂ − ~̃p|x∗, δ

]
T 2
h

[
ξ∗, x∗, δ, p̃, |k̂ − ~̃p|

]
. (C.51)

For the concrete evaluation of the integrals, we denote by η the cosine of the angle

between ~̃p and k̂. After taking the trivial angular integral, we have

f2,λ (ξ∗, x∗, δ) = 2

∫ ∞
0

dp̃

∫ 1

−1
dη

p̃5/2 (1 + λη)2
(

1− p̃η + λ
√

1− 2p̃η + p̃2
)2

(1− 2p̃η + p̃2)3/4

×N2 [ξ∗, p̃ x∗, δ]N
2
[
ξ∗,
√

1− 2p̃η + p̃2 x∗, δ
]
T 2
h

[
ξ∗, x∗, δ, p̃,

√
1− 2p̃η + p̃2

]
.

(C.52)

Alternatively, as is done for (C.26), we can change the variables of integration from p̃

and η to x and y such that x = p̃+ |k̂− ~̃p| and y = p̃− |k̂− ~̃p|. Then f2,λ takes the form

f2,λ (ξ∗, x∗, δ) =
1

4

∫ ∞
1

dx

∫ 1

0
dy

(
1− y2

)2
(1 + λx)4

√
x+ y

√
x− y N2

[
ξ∗,

x+ y

2
x∗, δ

]
×N2

[
ξ∗,

x− y
2

x∗, δ

]
T 2
h

[
ξ∗, x∗, δ,

x+ y

2
,
x− y

2

]
. (C.53)
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We can now readily evaluate f2,λ numerically. All the phenomenological features of the

tensor power spectrum in this model are captured in f2,λ. Since we are choosing ξ > 0

(i.e. σ̇ > 0) so that the A+ modes are produced through the tachyonic instability (see

discussion around (3.18)), only the + helicity state of the tensor modes is efficiently

sourced by the gauge field, leading to the hierarchy f2,+ � f2,−.

The total tensor power spectrum for each helicity state is

Pλ =
H2

π2M2
p

[
1 +

H2

64π2M2
p

f2,λ (ξ∗, x∗, δ)

]
= 8εφP(0)

ζ

[
1 +

εφ
8
P(0)
ζ f2,λ (ξ∗, x∗, δ)

]
,

(C.54)

and the tensor-to-scalar ratio is, using (C.27),

r ≡
∑

λ Pλ
Pζ

= 16εφ
1 +

εφ
16P

(0)
ζ (f2,+ + f2,−)

1 + ε2φP
(0)
ζ f2,ζ

. (C.55)

Interesting phenomenological features arise when the sourced contribution dominates

the tensor spectrum while it is subdominant for the scalar spectrum.

C.3.2 Tensor Bispectrum

We define the tensor bispectrum as

Bλ1λ2λ3 (k1, k2, k3) δ(3)
(
~k1 + ~k2 + ~k3

)
≡
〈
ĥλ1

(
~k1

)
ĥλ2

(
~k2

)
ĥλ3

(
~k3

)〉
, (C.56)

where in general Bλ1λ2λ3 is real and depends only on the magnitude of the three mo-

menta, forming a triangle. While it consists of the two contributions from the vacuum

fluctuations and the source effects, the former is unobservable, and we focus on the

latter. Moreover, since only one polarization state of the gauge field is enhanced, the

produced gauge quanta efficiently source only one of the tensor helicity states. We thus

define and have

B(1)
λ ≡ B

(1)
λλλ
∼= Bλλλ , (C.57)

where the superscript (1) denotes the sourced mode. We compute the 3-point correlation

function of ĥ
(1)
λ with the same λ using (C.43),

〈
ĥ

(1)
λ

(
~k1

)
ĥ

(1)
λ

(
~k2

)
ĥ

(1)
λ

(
~k3

)〉
' δ(3)

(
~k1 + ~k2 + ~k3

) 29/2H6

M6
p (k1k2k3)7/2

∫
d3p

(2π)9/2
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×Pλ
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]
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p
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,
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Th
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, δ,
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,
|~p− ~k3|
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]
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(C.58)

After rescaling

k ≡ k1 , x2 ≡
k2

k
, x3 ≡

k3

k
, x∗ ≡

k

k∗
, ~̃p ≡ ~p

k
, (C.59)

and recalling (C.19), we obtain

B(1)
λ '

[
εφP(0)

ζ

]3

k2
1k

2
2k

2
3

f3,λ (ξ∗, x∗, δ, x2, x3) , (C.60)

where

f3,λ (ξ∗, x∗, δ, x2, x3) =
227/2π6

x
3/2
2 x

3/2
3

∫
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,
|~̃p− x3k̂3|
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]
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]
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(C.61)

and

Pλλλ
[
~ki, ~̃p

]
≡ Pλ

[
~k1, −~p, ~p+ ~k1

]
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~k2, −~p− ~k1, ~p− ~k3

]
Pλ
[
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(
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)
ε
(λ)∗
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ε
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)
ε
(+)∗
k

(
~̃p+ k̂1

)
ε
(λ)∗
k

(
k̂2

)
ε
(λ)∗
l

(
k̂2

)
×ε(+)

l

(
~̃p− x3k̂3
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ε
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(
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(C.62)
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In order to perform explicit evaluations of the integrals in (C.61), we fix ~k1 along the x

axis and write ~k2 and ~k3 in terms of x2 and x3, namely,

~k1 = k (1, 0, 0) ,

~k2 =
k

2

(
−1− x2

2 + x2
3,
√
− (1− x2 + x3) (1 + x2 − x3) (1− x2 − x3) (1 + x2 + x3), 0

)
,

~k3 =
k

2

(
−1 + x2

2 − x2
3, −

√
− (1− x2 + x3) (1 + x2 − x3) (1− x2 − x3) (1 + x2 + x3), 0

)
,

(C.63)

and the polarization vector for a given momentum ~q can be written in terms of its

components as

ε(±) (~q) =
1√
2

qxqz ∓ i qy
√
q2
x + q2

y + q2
z√

q2
x + q2

y

√
q2
x + q2

y + q2
z

,
qyqz ± i qx

√
q2
x + q2

y + q2
z√

q2
x + q2

y

√
q2
x + q2

y + q2
z

, −

√
q2
x + q2

y√
q2
x + q2

y + q2
z

 .

(C.64)

Using these explicit forms, we can evaluate (C.61) numerically for any given set of

parameters. In the present case with ξ > 0 (i.e. σ̇ > 0), the positive helicity state of the

gauge field is produced, and consequently only the positive tensor mode ĥ
(1)
+ is efficiently

sourced, resulting in f3,+ � f3,−. The phenomenology of the tensor bispectrum is

featured by f3,λ and is discussed in detail in Section 4.3.

C.4 Shape and properties of the bispectrum

Let us first verify that our expressions for the scalar and tensor bispectrum given above

are symmetric under the exchange of the external momenta ~ki, and real. In this discus-

sion, we refer to the scalar bispectrum for definiteness. However, all our statements also

apply to the tensor bispectrum. To show that the bispectrum is invariant under the ex-

change of any two momenta it is enough to show that B(1)
ζ (k3, k1, k2) = B(1)

ζ (k1, k2, k3)

and that B(1)
ζ (k1, k3, k2) = B(1)

ζ (k1, k2, k3). To verify the first equality, we express

B(1)
ζ

(
~k3, ~k1, ~k2

)
through expression (C.31) (namely, we replace ~k1 → ~k3, ~k2 → ~k1 and

~k3 → ~k2 both at the left and right hand sides of eq. (C.31)), and we relabel the integra-

tion variable as ~p→ ~p− ~k3. Using the fact that the three external momenta add up to

zero, it is immediate to verify that the resulting expression coincides with the expres-

sion (C.31) for B(1)
ζ (k1, k2, k3). To verify the second equality, we again start from the
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expression (C.31) to express B(1)
ζ

(
~k1, ~k3, ~k2

)
and we relabel ~p→ −~p− ~k1. Also in this

case, we recover the expression (C.31) for B(1)
ζ (k1, k2, k3).

To verify that Bζ is real we instead use the reality of ζ̂ (~x), and the consequent

identity ζ̂
(
~k
)

= ζ̂∗
(
−~k
)

, to write Bζ
(
~k1, ~k2, ~k3

)
= B∗ζ

(
−~k1, −~k2, −~k3

)
. We then

perform a 1800 rotation around the axis perpendicular to the plane defined by the three

vectors ~ki (recall that they define a plane since they add up to zero). Under this rotation,

the three vectors change sign. Due to statistical isotropy, the rotation does not change

the bispectrum, and so B∗ζ
(
−~k1, −~k2, −~k3

)
= B∗ζ

(
~k1, ~k2, ~k3

)
. From the two identities

that we have just written we see that the bispectrum is real.

As mentioned, identical properties apply also for Bλ, due to statistical isotropy, and

to the fact that hλ (~x) is scalar and real.

We just proved exact identities, that apply to our explicit final results for f3,ζ and

f3,λ. We now provide an approximate expression for the bispectra, written as a sum of

factorized terms. Namely, each of these terms appears as a product of three functions,

each of which depends on one and only one of the external momenta. As well known, a

factorized approximate expression for the bispectrum considerably speeds up its use in

the data analysis. We conjecture this expression by noting that we expect the bispec-

trum to have a bump at the value of momenta k1 ' k2 ' k3 ' k∗ at which the particle

production is maximum, namely at which also the two point function is maximum. This

leads us to expect a shape dependence of the type

f3,j (k1, k2, k3) ' Normalization× [f2,j (k1) f2,j (k2) f2,j (k3)]1/2 , (C.65)

both in the scalar (j = ζ) and tensor (j = λ) case. The normalization factor can be

obtained by evaluating the bispectrum in the exact equilateral limit. A form that is

factorized, and symmetric in the three momenta is

f3,j (k1, k2, k3) '
[
f3,j (k1, k1, k1)

3f
3/2
2,j (k1)

+
f3,j (k2, k2, k2)

3f
3/2
2,j (k2)

+
f3,j (k3, k3, k3)

3f
3/2
2,j (k3)

]
× [f2,j (k1) f2,j (k2) f2,j (k3)]1/2 , (C.66)

The approximate expression (C.66) has the additional computational advantage that

we simply need to evaluate f3 in the equilateral limit.

To verify the accuracy of (C.66), in Figure C.1 we show the comparison between the

exact and the approximate bispectrum on isosceles triangles, k2 = k3. The black/solid
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Figure C.1: Exact (black solid lines) vs. approximate (purple dashed lines; eq. (C.66))
expression for the scalar (left panel) and tensor (right panel) bispectrum, for isosceles
triangles, k2 = k3, and for ξ∗ = 5 and δ = 0.5. The black (purple) dot indicates
the triangle for which the exact (approximate) bispectrum is maximum. The contour
lines indicate the triangles for which the bispectrum evaluates to (from inner to outer,
respectively) a fraction of 0.9, 0.7, 0.5, 0.3, 0.2 than the maximum value of the exact
bispectrum. The red line at x2/x1 = 1, indicates the equilateral triangles, while the
lower slope x2 = x1/2 line indicates folded triangles (smaller ratios are not possible for
isosceles triangles).
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contours refer to the left hand side of (C.66), while the purple/dashed contours refer

to the left hand side. The contour lines shown in the the figures are obtained by

evaluating the bispectra on a grid of values in the region shown, and by interpolation

(for the functions f2,ζ and f2,λ used to produce the dashed lines we instead employ

the fitting functions given in Subsection 4.3.2). In each panel, a black (purple) dot

indicates the triangle for which the exact (approximate) bispectrum is maximum. In

both cases, the two dots actually appear as nearly superimposed or as superimposed to

each other, as the locations of the two maxima are nearly coincident. We see that indeed

the bispectrum is maximum on an equilateral triangle of scale k1 = k2 = k3 ' few× k∗

approximately equal to the scale at which the sourced power spectrum is also maximum.

Most importantly, as shown by the figure, the approximate bispectrum provides a very

accurate description of the exact one (particularly, close to the maximum).

C.5 Deviation from gaussianity

In this Appendix we estimate the departure from gaussianity of the statistics of the

sourced ζ̂(1) and h
(1)
+ modes. For brevity we denote either of the two fields as f̂ , and

we distinguish between the two fields only at the end of the appendix, when we make

explicit evaluations. We assume that f̂ is approximately gaussian (to be verified by

this computation) and, to estimate the departure from gaussianity we start from the

conventional definition of the local f local
NL parameter

f̂ (~x) = f̂g (~x) + f local
NL

[
f̂2
g (~x)−

〈
f̂2
g (~x)

〉]
, (C.67)

where f̂g is gaussian. The statistics of f̂ is nearly gaussian if the first term in this

decomposition dominates, namely if

f local
NL f̂g (~x) < 1 ↔ R ≡

(
f local

NL

)2 〈
f̂ (~x) f̂ (~x)

〉
< 1 . (C.68)

When this condition is satisfied, we are also estimating that the presence of a nonvanish-

ing three-point function does not change the two-point function significantly (namely,

we are in this way estimating the loop diagram where the nonvanishing three-point

function enters as a vertex).
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In Fourier space, the decomposition (C.67) reads

f̂
(
~k
)

= f̂g

(
~k
)

+ f local
NL

∫
d3p

(2π)3/2
f̂g (~p) f̂g

(
~k − ~p

)
. (C.69)

Under the assumption of small departure from gaussianity, namely that the first term

dominates in (C.69), we obtain the three point correlation function

B (k1, k2, k3) = 2
√

2π5/2f local
NL

[P (k1)

k3
1

P (k2)

k3
2

+
P (k1)

k3
1

P (k3)

k3
3

+
P (k2)

k3
2

P (k3)

k3
3

]
,

(C.70)

where the two- and three-point correlation functions are expressed, respectively, in terms

of P and B as in eq. (4.35). The constant f local
NL corresponds to a specific shape of

the bispectrum, denoted as local non-gaussianity (the standard local non-gaussianity

parameter is obtained from using ζ̂ in (C.69), and from rescaling f local
NL → 3

5 f
local
NL ).

In the present case, we promote f local
NL to an effective momentum-dependence nonlinear

parameter fNL (ki), by inserting in (C.70) the power spectra and bispectra of the sourced

functions ζ̂(1) and ĥ
(1)
+ . We evaluate this expression in the equilateral limit, where the

bispectrum of our sourced signals is maximum (this likely overestimates the departure

of gaussianity of the sourced signals). In this way we obtain

fNL,i (k) ≡ k6 Bi (k, k, k)

6
√

2π5/2P2
i (k)

, i = ζ, λ . (C.71)

To estimate the departure from gaussianity we write the analogous of (C.68) in

momentum space, accounting for the momentum dependence of fNL,i. We thus obtain

the condition

Ri =

∫ ∞
0

dk

k
f2

NL,i (k) Pi (k) =

∫ ∞
0

dk

k

k12 B2
i (k, k k)

72π5 P3
i (k)

≡
∫ ∞

0

dk

k
ri (k) < 1 . (C.72)

Using the parametrization (4.40), we obtain

ri (k) ≡ k12 B2
i (k, k k)

72π5 P3
i (k)

=


ε6φ P

(0)3
ζ f2

3,ζ

72π5
(

1+ε2φP
(0)
ζ f2,ζ

)3 , i = ζ ,

ε3φ P
(0)3
ζ f2

3,λ

36,864π5
(

1+ 1
8
εφP

(0)
ζ f2,λ

)3 , i = λ .
(C.73)

In Figure C.2 we show the quantity rζ (k) (left panel) and r+ (k) (right panel) for

the greatest values of ξ∗ considered in the previous figures, and for which the departure
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Figure C.2: Left (right) panel: parameter rζ (k) (r+ (k)) for the greatest value of ξ∗
used in the previous figures, for δ = 0.2, 0.5 and for εφ = 10−5.

from gaussianity is therefore greatest. The quantity ri (k) is maximized at the bump

of the sourced signal, k ' few × k∗. We note that rζ (k) � 1, while r+ (k) < 1. The

integrals of the curve shown evaluate to

Rζ (δ = 0.2, ξ∗ = 4.5) ' 0.00098 , Rζ (δ = 0.5, ξ∗ = 5.3) ' 0.015 ,

R+ (δ = 0.2, ξ∗ = 4.5) ' 1.6 , R+ (δ = 0.5, ξ∗ = 5.3) ' 0.35 . (C.74)

The ζ signal is approximately gaussian, as the two-point function is dominated by

the vacuum mode (which thus dilutes the non-gaussianity of the sourced mode). The

tensor signal is mildly gaussian (we recall that the expression (C.71) likely overestimates

the departure from gaussianity). This explains why in the examples we have studied

in the main text the S/N ratio for detecting BBB is greater than that for TTT. It is

possible that the large BBB signal can impact (at one loop) the BB correlator, thus

inducing a greater two-point function (and that, in general, higher order correlators may

increase the lower order ones). However, the fact that R+ ' 1 suggests that this cannot

change the order of magnitude of the result we have computed (nor the conclusion that

the model can produce a visible BB signal, while being compatible with the limits from

TT).



Appendix D

Small Scale Phenomenology

D.1 Non-Gaussian scalar modes, and PBH formation

In this Appendix we discuss the necessary steps to obtain the upper limit in the right

panel of Figure 5.1 from the curve in the left panel. Namely, we discuss how the PBH

mass is related to the number of e-folds when a mode left the horizon, and how the

fraction β is related to the primordial scalar power spectrum Pζ . We do this in two

separate parts.

D.1.1 M −N relation

We derive here the relation between the number of e-folds N before the end of inflation

when a mode leaves the horizon, and the mass of the PBH that can be formed by

this mode, if it has a large enough amplitude [88, 51]. We are interested in modes

that re-enter the horizon during radiation domination. We assume that the radiation

dominated era started right after inflation and we denote the end of inflation by tend.

Let us consider a density mode of physical wavelength λ (t). We assume that this

mode has a large enough amplitude to lead to a PBH when it re-enters the horizon

after inflation. As customarily done, we take the inverse of the comoving momentum

k−1 = λ(t)
2π a(t) of the mode as our best estimate for the comoving radius of the region

associated to this mode that collapses to form the PBH. Therefore, the physical radius

of this region at any given time is given by Rk (t) = a (t) k−1.

157



158

The comoving momentum of a mode that exited the horizon N e-folds before the

end of inflation is

kN = aN HN = aend e−N HN , (D.1)

where aN and HN are, respectively, the value of the scale factor and of the Hubble rate

when the mode exits the horizon during inflation. Therefore we have

RkN (t) =
a (t)

aend
eN H−1

N . (D.2)

The black hole mass is obtained from the mass contained in this region when the mode

re-enters the horizon, namely the mass in a sphere of radius RkN (t = tre−enter).

During radiation domination, H = 1
2t . Assuming radiation domination immediately

from the end of inflation gives tend = 1
2Hend,inf

, where Hend,inf is the Hubble rate at the

end of inflation. The scale factor during the radiation dominated era is given by

a (t) = aend

(
t

tend

)1/2

= aend

√
2Hend,inf t . (D.3)

The re-enter time is obtained by equating H−1 (tre−enter) with RkN (t = tre−enter). Using

the above expressions we obtain tre−enter =
Hend,inf

2H2
N

e2N . Inserting this value in (D.2),

we find the physical radius at re-entry. Multiplying the volume of the corresponding

sphere by the physical energy density at that time, ρ (tre−enter) = 3M2
pH

2 (tre−enter) we

obtain the mass in that region. It is expected that a fraction γ of this mass collapses

into the black hole [126], giving the black hole mass

M ' γ 4πM2
p

Hend,inf

H2
N

e2N , (D.4)

or
MBH

g
= 13.3 γ

1013 GeV ×Hend,inf

H2
N

e2N (D.5)

The derivation we have just presented closely follows the analogous one in Ref. [51], that

obtained MBH
g ' 10 e2N . Compared with [51], we have also accounted for the variation

of H during inflation, and we have included the efficiency factor γ [126]. 1

One can also relate the PBH mass with the wavenumber of the modes. We start by

writing HN = kN/aN = kN eN/aend

1 We use the numerical value γ = 3−3/2 ' 0.2 suggested by the analytic computation of [161] for a

collapse in the radiation dominated era (see [126] for a discussion).
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MBH

g
= 13.3 γ

1013 GeV ×Hend,inf

(kN eN/aend)2 e2N (D.6)

or equivalently
MBH

g
= 13.3 γ

1013 GeV ×Hend,inf · a2
end

k2
N

(D.7)

Recall that we assume instant reheating, so tend is the moment for the beginning of

radiation domination era. We denote a0 as today’s scale factor and normalize it to 1,

then we have

ρend,inf

ρrad,0
=

(
a0

aend

)4
(

1 +
7

8
Nν

(
4

11

)4/3
)

3H2
end,inf M

2
p

3H2
0 M

2
p · Ωrad,0

'
(
a0

aend

)4

(1.68)⇒ Hend,inf · a2
end =

H0

h

√
1.68 · Ωrad,0 h2 , (D.8)

above we used Nν = 3. Plugging this expression in eq. D.7 and employing H0 '
2.13h · 10−42 GeV and GeV ' 1.56 · 1038 Mpc−1, we end up with

MBH = 29 γM�

(
k

106 Mpc−1

)−2

(D.9)

D.1.2 Pζ − β relation

We derive here the relation between the curvature power spectrum Pζ , and the quantity

β, which is the fraction of regions collapsing to a PBH. A PBH is formed when a mode

re-enters the horizon if the amplitude of this mode is above a certain threshold. Using

the scalar curvature associated to this mode, the formation occurs if ζ(kN ) >∼ ζc, where

we recall that kN indicates the wavenumber corresponding to the mode that left the

horizon N e-folds before the end of inflation. Therefore, the probability of forming a

PBH is

βform (Mk) =

∫ ∞
ζc

P (ζk) dζk (D.10)

where P (ζk) is a probability density for the scalar curvature ζ. Since the primordial

perturbations are Gaussian at CMB scales, it is common to assume that this probability

is Gaussian. In the cases of interest in the present study, the scalar curvature is the

sum of a vacuum part plus a part sourced by the gauge modes. The vacuum term is

always negligibly small for PBH formation, so we focus on the formation due to the
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Figure D.1: Fraction of the universe that collapses to a PBH for any given mode, as
a function of the ratio between the root-mean-square of scalar curvature and critical
curvature value. The same power spectrum results in a much greater PBH fraction in
the case of χ2 statistics with respect to a Gaussian statistics.

source term. This term originates from the convolution of two Gaussian modes, and it

therefore obeys a χ2 statistics [51]. The PBH formation in the case of this distribution

has been studied in Ref. [162], and then also in [51, 163]. In this case, the expression

(D.10) gives (see for example Section IV of Ref. [51] for details)

βform
χ2 (N) = Erfc

(√
1

2
+

ζc√
2Pζ(N)

)
, (D.11)

where Erfc (x) ≡ 1 − Erf (x) is the complementary error function. It is beneficial [162]

to contrast this result with the Gaussian perturbations case:

βform
Gaussian(N) = Erfc

(
ζc√

2Pζ(N)

)
. (D.12)

In Figure D.1 we show the fraction βform as a function of the power spectrum, for

both χ2 and Gaussian statistics of the primordial scalar perturbations. This result has

been used to convert the PBH limits from the left to the right panel of Figure 5.1.

Therefore, we are mostly interested in the values of Pζ that result into a βform in the[
10−30 − 10−5

]
interval. We see from the figure that, in this regime, a given value of

the power spectrum results in a much bigger value of βform in χ2 vs. the Gaussian case.

The result (D.11) provides the limit on the scalar perturbations from the PBH

fraction β. In turn, this quantity is related to the parameter β̃ used in the left panel of
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Figure 5.1 by the relation [126]

β̃ = γ1/2
( g∗

106.75

)−1/4
β . (D.13)

In this expression, g∗ is the number of (effective bosonic) relativistic degrees of

freedom in the thermal bath at the time in which a perturbation that gives rise to a PBH

of mass M re-enters the horizon, which we have normalized to the number of degrees

of freedom in the Standard Model. From the relations written in Appendix D.1.1, the

Hubble rate at the time of re-entry is related to the PBH mass M by Hre−enter '
4πM2

pγ/M . This corresponds to the temperature

Tre−enter ' 97 MeV

(
106.75

g∗

)1/4
√
M�
M

. (D.14)

We see from this relation that PBH masses M <∼ 3 · 10−7M� correspond to modes that

re-enter at temperatures above the top quark mass, where the full Standard Model field

content is relativistic. Using the relation (D.5), with HN = Hend,inflation = 1013 GeV

as a reference, this corresponds to N <∼ 30. which is always the case for us, apart

from the the discussion in Subsection 5.3.3. For this reason, when we convert the limits

from β̃ to Pζ , we simply fix g∗ = 106.75 at all values of N . We note however that,

strictly speaking, the value of g∗ decreases for modes that re-enter the horizon at later

times, corresponding to lower temperatures and larger PBH masses. When the re-enter

temperature drops well below the electron mass, one has g∗ = 3.36. This happens

for PBH masses M � 2 · 105M�, corresponding to N � 44. In the worst case, our

approximation introduces a mistake ∝
(

106.75
3.36

)1/4 ' 2.4 in the value of β (when used

in Eq. (D.13)), which propagates in a negligible way on the limit on Pζ (we see from

Figure D.1 that β strongly depend on Pζ ; therefore, inverting this dependence, Pζ is

very weakly dependent on β in the regime of interest).

D.2 Suppression factor F

In this Appendix we discuss and evaluate the factor F introduced in eq. (5.8). We start

from the definition of the gauge invariant scalar curvature, evaluated in spatially flat

gauge, ζ ≡ −Hδρ
ρ̇ . From the background equations of the model (5.3) one finds [143]
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ρ̇ = −3Hφ̇2 − 4HρR, where ρ is the total energy density in the model, and ρR is the

energy density in the vector field [142]

ρR =
〈 ~E2 + ~B2〉

2
' 1.4 · 10−4H

4

ξ3
e2πξ . (D.15)

We then find

ζ = −H δφ

φ̇
×F , F =

−φ̇ V ′

H
(

3φ̇2 + 4 〈E
2+B2〉

2

) . (D.16)

We have written the first equation as the standard relation ζ = −H δφ

φ̇
, times a

correction factor. The standard relation applies in the regime of negligible backreaction

of the vector field on the background evolution of the inflaton and of the scale factor,

namely when 〈E
2+B2〉

2 is negligible, and 3Hφ̇ ' −V ′ (in which case, F = 1). However,

more in general, this factor needs to be included [143], and properly evaluated. Refs.

[142, 108, 51] did not include this effect. So, the power spectrum expression that we

have given in (5.8) is the one considered in those works, times a F2 correction.

The point that is raised in Ref. [143] is that F is important when gauge field energy

is dominant over inflaton kinetic energy. We start our discussion by stressing that

F 6= 3 φ̇2

3φ̇2 + 4 〈E
2+B2〉

2

. (D.17)

This relation is correct only in the regime of negligible backreaction, ie. F → 1. How-

ever, one needs to evaluate F using the generic expression (D.16), especially in the

strong backreaction regime.

We do so in Figure D.2 where, as in the main text, we have chosen a linear inflaton

potential, and a coupling to the gauge field as large as allowed by the CMB data in the

model that we are considering. The solid line shown in the figure is the quantity F2

evaluated through the proper expression (D.16). On the other hand, the dashed line is

obtained from the incorrect evaluation of F using eq. (D.17), which makes use of the

ratio between the energy in the vector field and the kinetic energy of the inflaton. We

see that second case results in a great overestimate of the effect of the correction factor.

In fact, we can obtain the asymptotic value of F analytically in the regime of strong

backreaction. In this case, one has [142]

〈 ~E2 + ~B2〉
2

' −4

7
ξ 〈 ~E · ~B〉 ' −4

7
ξ f V ′ . (D.18)
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Figure D.2: Correction factor on the power spectrum, F , as a function of the number
of e-folds of inflation, for a linear potential, and for an inflaton-gauge coupling that
saturates the Planck bounds. The solid line is obtained from generic eq. (D.16) which is
for both negligible and strong backreaction regimes. The dashed line uses the negligible
backreaction approximation in (D.17) which results in an incorrect expression due to
overestimation of suppression.

Inserting this in (D.16), and disregarding the 3φ̇2 contribution to the denominator

(which is appropriate in the regime of strong backreaction), we immediately obtain

F ' 7
8 , in excellent agreement with the late time behavior of the solid line of Figure

D.2. This is the asymptotic value that is reached in the limit of strong backreaction,

independently of the inflaton potential, of the coupling f , and of the number of gauge

fields amplified by this mechanism.



Appendix E

Details of Perturbativity

Constraint Calculations

E.1 Computation of the perturbativity limits for X = φ

In this appendix we derive the limits discussed in Section 6.3.1 for the X = φ case.

We compute the gauge field two-point correlator at leading (zeroth) and first sub-

leading (one loop) order in the interaction (6.21), where X is the inflaton field φ. We

note that this interaction term involves the inflaton perturbation δφ, and not the infla-

ton vev. The inflaton zeroth mode modifies the vector amplitude from the vacuum mode

to (3.8). 1 The resulting wave function is used as the “unperturbed” wave function at

the right hand side of (6.22) (namely, we are perturbing in δφF F̃ , not in φFF̃ ; this is

the same starting point as the computations of [146]).

The unperturbed two point correlator is〈
Â

(0)
+

(
~k1, τ

)
Â

(0)
+

(
~k2, τ

)〉
= |A+ (k1, τ) |2δ(3)

(
~k1 + ~k2

)
. (E.1)

For the one loop expression, using eqs. (6.22) and (6.21), we obtain

δ(1)
〈
Â+

(
~k1, τ

)
Â+

(
~k2, τ

)〉
= −α

2

f2

∫
d3kd3pd3k′d3p′

(2π)3 |~k + ~p| |~k′ + ~p′|

×
[
~ε(+) (~p) · ~ε(+)

(
−~k − ~p

)] [
~ε(+)

(
~p′
)
· ~ε(+)

(
−~k′ − ~p′

)] ∫ τ

dτ1

∫ τ1

dτ2 C , (E.2)

1 More accurately, we use the approximation (3.10) in most of our explicit computations, for the reasons

explained at the end of Section 3.1.1.
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where the integrand is

C =

〈[[
Â

(0)
+

(
~k1, τ

)
Â

(0)
+

(
~k2, τ

)
, δφ̂

(
~k, τ1

) dÂ
(0)
+ (~p, τ1)

dτ1
Â

(0)
+

(
−~k − ~p, τ1

)]
,

δφ̂
(
~k′, τ2

) dÂ
(0)
+ (~p ′, τ2)

dτ2
Â

(0)
+

(
−~k′ − ~p ′, τ2

)]〉
.(E.3)

The explicit evaluation of the commutators and the expectation values gives

δ(1)
〈
Â+

(
~k1, τ

)
Â+

(
~k2, τ

)〉
=

2α2 δ(3)
(
~k1 + ~k2

)
f2

∫ τ

dτ1

∫ τ1

dτ2

∫
d3p

(2π)3

[
1−

~k1 · ~p
k1 p

]2

×
{
k2

1 Im
[
A+ (k1, τ) A∗+ (k1, τ1)

]
C1 + k1 p Im

[
A+ (k1, τ)A

′∗
+ (k1, τ1)

]
C2

+k1 p Im
[
A+ (k1, τ) A∗+ (k1, τ1)

]
C3 + p2 Im

[
A+ (k1, τ)A∗

′
+ (k1, τ1)

]
C4

}
, (E.4)

where

C1 = Im
[
A+ (k1, τ) A

′∗
+ (p, τ2) A′+ (p, τ1) A∗+ (k1, τ2) δφ

(
|~k1 + ~p|, τ1

)
δφ∗

(
|~k1 + ~p|, τ2

)]
,

C2 = Im
[
A+ (k1, τ)A

′∗
+ (p, τ2)A+ (p, τ1)A∗+ (k1, τ2) δφ

(
|~k1 + ~p|, τ1

)
δφ∗

(
|~k1 + ~p|, τ2

)]
,

C3 = Im
[
A+ (k1, τ) A∗+ (p, τ2) A′+ (p, τ1) A

′∗
+ (k1, τ2) δφ

(
|~k1 + ~p|, τ1

)
δφ∗

(
|~k1 + ~p|, τ2

)]
,

C4 = Im
[
A+ (k1, τ)A∗+ (p, τ2)A+ (p, τ1)A

′∗
+ (k1, τ2) δφ

(
|~k1 + ~p|, τ1

)
δφ∗

(
|~k1 + ~p|, τ2

)]
.

(E.5)

This expression is exact. We now note that it is highly dominated by terms which

have the highest possible powers of AR. These are terms ∝ A5
RAI ∝ e4πξ. Keeping only

these terms, we have the very accurate approximation

δ(1)
〈
Â+

(
~k1, τ

)
Â+

(
~k2, τ

)〉
'

2α2 δ(3)
(
~k1 + ~k2

)
f2

∫ τ

dτ1

∫ τ1

dτ2

∫
d3p

(2π)3

[
1−

~k1 · ~p
k1 p

]2

×Im
[
δφ
(
|~k1 + ~p|, τ1

)
δφ∗

(
|~k1 + ~p|, τ2

)]
AR (k1, τ)×

[
pAR (p, τ2) A′R (k1, τ2) + k1AR (k1, τ2) A′R (p, τ2)

]

×
{
pAR (p, τ1)

[
AI (k1, τ) A′R (k1, τ1)−AR (k1, τ) A′I (k1, τ1)

]
+k1A

′
R (p, τ1) [AI (k1, τ) AR (k1, τ1)−AR (k1, τ) AI (k1, τ1)]

}
. (E.6)
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As we already remarked, the expressions for A+ and for δφ entering at the right hand

side are the unperturbed ones, namely those obtained without the interaction (6.21).

For the inflaton field we have

δφ (k, τ) =
Hk (1 + i k τ) e−i k τ√

2 k3/2
, (E.7)

where Hk denotes the value of the Hubble rate when the δφ (k) left the horizon

Defining the dimensionless quantities

x ≡ −k1 τ , x1 ≡ −k1 τ1 , x2 ≡ −k2 τ2 , ~q ≡ ~p

k1
, Ã (x) ≡

√
2k1A (k1, τ) , (E.8)

we arrive to 〈
Â

(0)
+

(
~k1, τ

)
Â

(0)
+

(
~k2, τ

)〉′
' Ã2

R (x)

2 k1
, (E.9)

for the tree level correlator (we recall that the prime denotes the expectation value

without the corresponding δ−function), and, after some algebra, to

RA =

∣∣∣∣∣δ(1)〈AA〉′
〈AA〉′

∣∣∣∣∣ ' α2H2
k1

4 f2

∣∣∣∣∣
∫

d3q

(2π)3

q
[
1− k̂1 · q̂

]2

|k̂1 + ~q|3
∫
x
dx1

∫
x1

dx2

[
ÃR (q x2) Ã′R (x2) + ÃR (x2) Ã′R (q x2)

]
×
{
ÃI (x)

ÃR (x)

[
ÃR (q x1) Ã′R (x1) + ÃR (x1) Ã′R (q x1)

]
−
[
ÃR (q x1) Ã′I (x1) + ÃI (x1) Ã′R (q x1)

]}

×
{
|k̂1 + ~q| (x2 − x1) cos

[
|k̂1 + ~q| (x1 − x2)

]
+
(

1 + |k̂1 + ~q|2 x1 x2

)
sin
[
|k̂1 + ~q| (x1 − x2)

]}∣∣∣∣∣ ,
(E.10)

where prime on the function denotes derivative with respect to its argument. We stress

that this is the leading term for RA in an expansion series in AI/AR. This is very

accurate, since AI/AR = O
(
e−2πξ

)
� 1.

In eq. (E.10) we approximated Hk1q ' Hk1|~q+k̂1| ' Hk1 . This is a good approxi-

mation since H is slowly evolving, and since most of the support of the integral is at

q = O (1). We can then evaluate the prefactor using

α2H2
k1

4f2
=

ξ2H4
k1

φ̇2
= 4π2ξ2P

(0)
ζ (k1) ' 8.7 · 10−8 ξ2

(
k1

kp

)ns−1

. (E.11)

where kp indicates the pivot scale (0.05 Mpc−1), and ns − 1 the scalar spectral tilt.
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E.2 Computation of the perturbativity limits for X = σ

Here we derive the limits stated in Section 6.3.2 in the case in which X = σ. In

evaluating the condition RA � 1, the formal expression (E.6) still applies, where we

need to use the unperturbed gauge functions appropriate for this case. In the next

subsection we provide an approximate solution (not given in [171] or Chapter 4) for the

unperturbed fluctuations of σ. In Subsection E.2.2 we then provide the expression for

RA for this case. Finally, in Subsection E.2.3 we compute the expression for Rσ.

E.2.1 δσ vacuum solutions

As remarked, in the in-in expression (E.6) the unperturbed operators for the gauge and

pseudo-scalar field must be used (where by unperturbed we mean the mode at zeroth

order in the interaction (6.21); we remark that this is the same starting point of the

computations of ref. [146]). The unperturbed pseudo-scalar modes satisfy the equation

δσ̈ + 3Hδσ̇ +

(
k2

a2
+ ∂2

σ V

)
δσ = 0 . (E.12)

Using the background solution (5.13), we find that the mass term evolves with time as

∂2
σ V (t) = −3 δ H2 1− e2 δ H (t−t∗)

1 + e2 δ H (t−t∗)
= −3 δ H2 1−

(
τ∗
τ

)2δ
1 +

(
τ∗
τ

)2δ . (E.13)

In terms of y ≡ a δσ, x ≡ −kτ , and x∗ ≡ −kτ∗, eq. (E.12) rewrites

d2y

dx2
+

[
1− 2

x2

(
1 +

3 δ

2

1−
(
x∗
x

)2δ
1 +

(
x∗
x

)2δ
)]

y = 0 . (E.14)

The last fraction in the round parenthesis varies from ' 1 at x > x∗ to ' −1 at

x < x∗. This transition is very fast for δ < 1. We can obtain an approximate analytic

solution for the unperturbed δσ modes in the limit in which the transition is replaced

by a step function 
d2y
dx2 +

[
1− 2

x2

(
1 + 3 δ

2

)]
y = 0 , x > x∗

d2y
dx2 +

[
1− 2

x2

(
1− 3 δ

2

)]
y = 0 , x < x∗

(E.15)
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The early time (x > x∗) solution that reduces to the adiabatic vacuum mode in the

deep UV is

y (x) =
1

2

√
π

k

√
xH

(1)

3
2

√
1+ 4δ

3

(x) , x > x∗ (E.16)

We then solve the late time (x < x∗) equation, and impose continuity of y and dy
dx at

x = x∗, to obtain

δσ =
H

k3/2
x3/2

{
C1 [ δ, x∗] J∆− (x) + C2 [ δ, x∗] Y∆− (x)

}
, x < x∗ , (E.17)

where

C1 [δ, x∗] =
π3/2

4

[
x∗

(
Y∆− (x∗)H

(1)
1+∆+

(x∗)− Y1+∆− (x∗)H
(1)
∆+

(x∗)
)

+ (∆− −∆+)Y∆− (x∗)H
(1)
∆+

(x∗)

]
,

C2 [δ, x∗] = −π
3/2

4

[
x∗

(
J∆− (x∗)H

(1)
1+∆+

(x∗)− J1+∆− (x∗)H
(1)
∆+

(x∗)
)

+ (∆− −∆+) J∆− (x∗)H
(1)
∆+

(x∗)

]
, (E.18)

and where

∆+ ≡
3

2

√
1 +

4δ

3
, ∆− ≡

3

2

√
1− 4δ

3
. (E.19)

E.2.2 Vector field renormalization

As discussed in Appendix B.1, also in this case the gauge modes satisfy the approximate

relation (3.12). Using this in eq. (E.6), which, as remarked above, continues to hold

also in the present case, we can write

δ(1)
〈
Â+

(
~k1, τ

)
Â+

(
~k2, τ

)〉′
' 4α2

f2

∫ τ

τ∗

dτ1

√
ξ (τ1)√−τ1

∫ τ1

τ∗

dτ2

√
ξ (τ2)√−τ2∫

d3p

(2π)3 p k1

[
1−

~k1 · ~p
k1 p

]2

AR (k1, τ)AR (p, τ1)AR (k1, τ2)AR (p, τ2)

×
[
(−k1 + p)AR (k1, τ)AI (k1, τ1) +

(√
k1 +

√
p
)2
AR (k1, τ1)AI (k1, τ)

]
×Im

[
δσ
(
|~k1 + ~p|, τ1

)
δσ∗

(
|~k1 + ~p|, τ2

)]
. (E.20)
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To evaluate this expression, we again introduce rescaled dimensionless times and

momenta

x ≡ −k1 τ , x1 ≡ −k1 τ1 , x2 ≡ −k1 τ2 , ~q ≡ ~p

k1
, (E.21)

and we rescale the pseudo-scalar and vector functions according to

ÃR (x) ≡
(

8k1ξ (τ)

−τ

)1/4

AR (τ, k1) ' N [ξ∗, x∗, δ] exp

[
−4ξ

1/2
∗

1 + δ

(
x

x∗

)δ/2
x1/2

]
,

ÃI (x) ≡
(

8k1ξ (τ)

−τ

)1/4

AI (τ, k1) ' 1

2N [ξ∗, x∗, δ]
exp

[
4ξ

1/2
∗

1 + δ

(
x

x∗

)δ/2
x1/2

]
,

δσ̃ (x) ≡ k3/2

H
δσ (τ, k1) ' x3/2

{
C1 [ δ, x∗] J∆− (x) + C2 [ δ, x∗] Y∆− (x)

}
. (E.22)

(We only specify the x−dependence of the rescaled quantities; their dependence on

x∗, ξ∗, δ is left understood). In this notation, we can rewrite

RA =
δ(1)

〈
Â+

(
~k1, τ

)
Â+

(
−~k1, τ

)〉′
〈
Â+

(
~k1, τ

)
Â+

(
−~k1, τ

)〉′ ' α2H2

f2

∫ x∗

x
dx1

∫ x∗

x1

dx2

×
∫

d3q

(2π)3

q1/2
[
1− k̂1 · q̂

]2

2|k̂1 + ~q|3
ÃR (q x1) Im

[
δσ̃
(
|k̂1 + ~q|x1

)
δσ̃∗

(
|k̂1 + ~q|x2

)]
×
[

(−1 + q) ÃI (x1) + (1 +
√
q)2 ÃR (x1)

ÃR (x)
ÃI (x)

]
ÃR (x2) ÃR (q x2) . (E.23)

Let us rewrite the prefactor α2H2

f2 . In succession, we use the definition (3.6) of ξ,

evaluated at τ = τ∗, to eliminate α
f ; then, the relation (6.14) to eliminate σ̇∗; finally,

the scalar power spectrum normalization to eliminate H. We find

α2H2

f2
' 16π2P(0)

ζ ξ2
∗
εφ
εσ,∗
' 3.5 · 10−7 ξ2

∗
εφ
εσ,∗

. (E.24)

Combining the last two expressions, we can write

RA ≡ RA [x∗, ξ∗, δ, x]
εφ
εσ,∗

,

RA ' 3.5 · 10−7 ξ2
∗

∫ x∗

x
dx1

∫ x∗

x1

dx2

∫
d3q

(2π)3

q1/2
[
1− k̂1 · q̂

]2

2|k̂1 + ~q|3

× ÃR (q x1) ÃR (x2) ÃR (q, x2) Im
[
δσ̃
(
|k̂1 + ~q|x1

)
δσ̃∗

(
|k̂1 + ~q|x2

)]
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×
[

(−1 + q) ÃI (x1) + (1 +
√
q)2 ÃR (x1)

ÃR (x)
ÃI (x)

]
, (E.25)

were we remarked the parametric dependence of RA, and where we recall that the

gauge and pseudo-scalar mode functions are given in eq. (E.22). We note that, since

x∗ = −k τ∗, and x = −k τ , we can express the functional dependence of RA also as

RA

[
x∗, ξ∗, δ,

τ
τ∗

]
. This is the form that appears in the main text.

E.2.3 Pseudo-scalar field renormalization

We now evaluate the condition (6.26) for Rσ. From eqs. (6.21) and (6.25) we obtain

〈δσ̂(1)(τ, ~k1)δσ̂(1)(τ, ~k2)〉 = − α
2

f2

∫
d3k d3p d3k′ d3p′

(2π)3

∫ τ

dτ1

∫ τ1

dτ2

×|~k + ~p | |~k′ + ~p′ |
(
~ε+(~p) · ~ε+(−~k − ~p)

)(
~ε+(~p ′) · ~ε+(−~k ′ − ~p ′)

)
×
〈 [[

δσ̂(τ, ~k1) δσ̂(τ, ~k2) , δσ̂(τ1,~k) Â′(τ1, ~p) Â(τ1,−~k − ~p)
]
, δσ̂(τ2,~k

′) Â′(τ2, ~p
′) Â(τ2,−~k ′ − ~p ′)

] 〉
.

(E.26)

We decompose this expression in several terms, each containing propagators of two

different fields. Each commutator of two fields is proportional to the imaginary part

of the product of the wave functions of the two fields. The real AR and imaginary AI

parts of the gauge field amplitude are given by eqs. (B.11) and (B.12), respectively.

With the phase convention that we have chosen, only the real part is amplified. For this

reason the expression that we have just written is strongly dominated by the terms that

contain the largest powers of AR. These are the terms in which the vector fields are not

commuted over, and are therefore proportional to A2A
′2 ' A2

RA
′2
R . These terms give〈

δσ̂(1)(τ, ~k1)δσ̂(1)(τ, ~k2)
〉

' δ3(~k1 + ~k2)
4α2

f2

∫
d3p

(2π)3

∣∣∣~ε+(~p) · ~ε+( ~k1 − ~p)
∣∣∣2

∫ τ

τ∗

dτ1

∫ τ1

τ∗

dτ2

{
| ~k1 − ~p |2A′R(τ1, p)A

′
R(τ2, p )AR(τ1, | ~k1 − ~p| )AR(τ2, | ~k1 − ~p | )

+ p | ~k1 − ~p |A′R(τ1, p)AR(τ2, p )AR(τ1, | ~k1 − ~p| )A′R(τ2, | ~k1 − ~p| )
}

×
(

Im [δσ(τ, k1) δσ∗(τ1, k1)] Im [δσ(τ, k1) δσ∗(τ2, k1)] + ~k1 ↔ k2

)
. (E.27)
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Working out the product of the polarization operators, and symmetrizing the time

integration, we obtain, after some algebra,

〈
δσ̂(1)

(
τ,~k1

)
δσ̂(1)

(
τ,~k2

)〉′
' α2

2f2

∫
d3p

(2π)3

(
p1/2 + |~k1 − ~p|1/2

)2
[(
p+ |~k1 − ~p|

)2
− k2

1

]2

4 p |~k1 − ~p|

×

∫ τ

τ∗

dτ1

√
2ξ (τ1)

−τ1
Im [ δσ (τ, k1) δσ∗ (τ1, k1) ]AR (τ1, p)AR

(
τ1, |~k1 − ~p|

)2

. (E.28)

In terms of the dimensionless quantities introduced in (E.21) and (E.22), and recalling

the definition of the power spectrum given after eq. (6.24), we can then write

P
(1)
δσ (k, τ) ' α2H4

64π2f2

∫
d3q

(2π)3

(
q1/2 + |k̂ − ~q|1/2

)2
[(
q + |k̂ − ~q|

)2
− 1

]2

q3/2 |k̂ − ~q|3/2

×
[∫ x∗

x
dx1 Im [ δσ̃ (x) δσ̃∗ (x1) ] ÃR (q x1) ÃR

(
|k̂ − ~q|x1

)]2

, (E.29)

where we have relabeled ~k1 as ~k, the momentum of the generic mode under consideration.

As can be seen from the rhs of (E.29), the power spectrum dependence on the

momentum and on time can be written as a dependence on the dimensionless quantities

−kτ∗ and τ
τ∗

. We therefore write the power spectrum as P
(1)
δσ

(
x∗ = −kτ∗, τ

τ∗

)
. In [171],

it was shown that the power spectra of the sourced GWs and inflaton perturbations in

this model are well fitted by a Gaussian peak. Not surprisingly, the same is true for the

power spectrum (E.29) (the reason is that the amplitude of the sourcing gauge field is

well fitted by this parametrization, cf. eq. (B.13)). Indeed, we evaluated the expression

(E.29) numerically, and we found that it is well parametrized by

P
(1)
δσ

(
x∗,

τ

τ∗

)
' α2H4

f2
M
[
ξ∗, δ,

τ

τ∗

]
exp

−
ln2

(
x∗

xc,M
[
ξ∗, δ,

τ
τ∗

]
)

2σ2
M

[
ξ∗, δ,

τ
τ∗

]
 . (E.30)

As an example of the goodness of this fit, in Figure E.1 we show the power spectrum for

two specific values of δ and ξ∗, and for a specific time τ . Equally good fits are obtained

in the other cases we have studied.
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Figure E.1: Power spectrum of the pseudo-scalar δσ sourced by the gauge field, for two
specific values of δ and ξ∗. The time τ/τ∗ is chosen to be the moment at which the
total energy density in the gauge field has decreased to 10% than the value it had at its
peak. The red dots are the values obtained from a numerical evolution of eq. (E.29).
The blue solid line is the fitting function (E.30).

The amplitudeM, the central position xc, and the width of the peak σM, evolve with

time, as they parametrize the growth of the power spectrum sourced by the gauge fields

A+
2. Since the amplitude of A+ is negligible at τ < τ∗, all our results, and in particular

the expression (E.30), are valid for τ
τ∗
< 1, while we can simply set P

(1)
δσ

(
x∗,

τ
τ∗

)
' 0

at τ
τ∗
> 1. The power spectrum then experiences a fast growth at |τ | <∼ |τ∗|, and it

eventually saturates to a constant value at |τ | � |τ∗|. The parameter xc,M = O (1). So,

expression (E.30) has a peak at x∗ = O (1), namely for the modes that left the horizon

close to the σ̇ was maximum.

Using the fit (E.30), we can perform the integral (6.24) analytically. We can then

express the condition (6.26) as

Rσ =

√∫
d lnx∗ P

(1)
δσ

f
=
αH2

f2
(2π)1/4

√
M
[
ξ∗, δ,

τ

τ∗

]
σM

[
ξ∗, δ,

τ

τ∗

]
� 1 . (E.31)

Using the relation (E.24), as well as α = 2ξ∗
δ (as can be obtained from eqs. (3.6)

and (5.13)), we can rewrite this as

Rσ ≡ εφ
εσ∗

Rσ

[
ξ∗, δ,

τ

τ∗

]
� 1 ,

2 The three parameters M, xc,M, σM, also depend on the two parameters ξ∗ and δ that control the

motion of the field σ.
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Rσ ' 2.8 · 10−7 δ ξ∗

√
M
[
ξ∗, δ,

τ

τ∗

]
σM

[
ξ∗, δ,

τ

τ∗

]
. (E.32)

We recall that the parametersM and σM parametrize, respectively, the amplitude and

the width of the peak in the power spectrum of sourced δσ modes, see eq. (E.30).
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