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Abstract

Quantum Gravity and Cosmology

by

Lorenzo Mannelli

The main theme of this Thesis is the connection among Quantum Gravity and

Cosmology. In the First Part (Chapters 1 to 5) I give an introduction to the Holographic

Principle. The Second Part is a collection of my research work and it is articulated as

follows. Chapter 7 is dedicated to analyze the renormalization properties of quantum

field theories in de Sitter space. It is shown that only two of the maximally invariant

vacuum states of free fields lead to consistent perturbation expansions. Chapter 8

first present a complete quantum mechanical description of a flat FRW universe with

equation of state p = ρ. Then show a detailed correspondence with our heuristic picture

of such a universe as a dense black hole fluid. In the end it is explained how features

of the geometry are derived from purely quantum input. Chapter 9 study the problem

of infrared renormalization of particle masses in de Sitter space. It is shown, in a toy

model in which the graviton is replaced with a minimally coupled massless scalar field,

that loop corrections to these masses are infrared (IR) divergent. It is argued that this

implies anomalous dependence of masses on the cosmological constant, in a true theory

of quantum gravity.
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Part I

The Holographic Principle
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Chapter 1

Introduction

The main theme of this Thesis is the connection among Quantum Gravity and

Cosmology and it mostly contain the research work that I have been doing in this field.

The quantization of gravity is probably the most outstanding unsolved problem

in theoretical Physics. It has been studied for more than 70 years, nonetheless we haven’t

been able yet to find a complete formulation of a Quantum Theory of Gravity (QTG).

The most promising candidate in this direction is String Theory.

Even if we don’t know what the QTG is going to be there are strong evidence

that must be “Holographic”. The word Holography in this contest refer to a property

of the fundamental degrees of freedom of the theory. In a QTG these are not extensive

(growing with volume) as we would expect from a local Field Theory description. They

rather scale like the area of a surface.

This surprising property has been first discovered studying Black Holes. In

this case the degrees of freedom (dof) describing the black hole grow as the area A of

2



the event horizon. More precisely the dof are counted by the entropy which satisfy the

relation

S =
A

4

in Planck units.

The generalization and study of this property in a QTG has initially been

carried on by t’ Hooft and Susskind. More recently a completely covariant formulation

of the “Holographic Principle” has been given by Bousso.

String Theory being a QTG give us a description of the fundamental degrees

of freedom of Nature. In the String Theory examples where has been explicitly possible

to count the dof we have seen that they are Holographic in nature i.e. they scale as an

area. The most remarkable among these examples is probably AdS/CFT.

In conclusion even if we still don’t have a fundamental theory of nature we

strongly believe that Holography is going to be one of its main feature.

The ideas of the Holographic Principle can be applied to the study of cosmol-

ogy. This has been one of the dominant topics of my research in these years.

In the First part of this Thesis I give an introduction to the Holographic

Principle. I mostly refer to the excellent review of Bousso [1]. The Second Part of the

Thesis is a collection of the research work I published during the years of my doctorate.

I will now briefly summarize the content of these articles.

In the first paper “De Sitter Vacua, Renormalization and Locality”, written in

collaboration with Tom Banks, we analyze the renormalization properties of quantum

field theories in de Sitter space and show that only two of the maximally invariant

3



vacuum states of free fields lead to consistent perturbation expansions. One is the

Euclidean vacuum and the other can be viewed as an analytic continuation of Euclidean

functional integrals on RP d. The corresponding Lorentzian manifold is the future half of

global de Sitter space with boundary conditions on fields at the origin of time. We argue

that the perturbation series in this case has divergences at the origin which render the

future evolution of the system indeterminate, without a better understanding of high

energy physics.

In the second paper “Microscopic Quantum Mechanics of the p = ρ Universe”,

written in collaboration with Tom Banks and Willy Fischler, we first present a complete

quantum mechanical description of a flat FRW universe with equation of state p = ρ.

We then find a detailed correspondence with our heuristic picture of such a universe as

a dense black hole fluid. Finally we show how features of the geometry are derived from

purely quantum input.

In the last paper “Infrared Divergences in dS/CFT”, written in collaboration

with Tom Banks and Willy Fischler, we study the problem of infrared renormalization

of particle masses in de Sitter space. We use the conjectured dS/CFT correspondence

introduced by Strominger and collaborators. dS/CFT gives a perturbatively gauge

invariant definition of particle masses in de Sitter (dS) space. We show, in a toy model

in which the graviton is replaced with a minimally coupled massless scalar field, that

loop corrections to these masses are infrared (IR) divergent. We argue that this implies

anomalous dependence of masses on the cosmological constant, in a true theory of

quantum gravity. This is in accord with the hypothesis of Cosmological SUSY Breaking

4



(CSB).
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Chapter 2

Entropy Bounds for Black Holes

In this section we discuss black hole entropy and some of the entropy bounds

that have been derived from it.

The entropy bounds discussed in this section are independent of the specific

characteristics and composition of matter systems. However, they apply only when

gravity is weak.

2.1 Black Holes Thermodynamics

The notion of black hole entropy is motivated by two results in general rela-

tivity.
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2.1.1 Area Theorem

The area theorem (Hawking [2]) states that: during the evolution of a black

hole the area of the event horizon never decreases with time:

dA ≥ 0 (2.1)

Moreover, if two black holes merge, the horizon area of the new black hole will be greater

than the total horizons area of the original black holes.

Consider for example an object falling into a Schwarzschild black hole this

will increase the mass of the black hole, M . Hence the horizon area, A = 16πM2 in

D = 4, increases. On the other hand in any classical process the black hole cannot emit

particles and so the mass and the area cannot decrease.

The theorem suggests an analogy between black hole area and thermodynamic

entropy.

2.1.2 No-hair Theorem

The no-hair theorem affirm that [2], [3], [4], [5]: A stationary black hole is

characterized by only three quantities: mass, angular momentum, and charge.

Consider a matter system, such as a star, that collapses to form a black hole.

The black hole will eventually evolve into a final, stationary state. The no-hair theorem

implies that this state is unique.

From the point of view of an outside observer, the formation of a black hole

appears to violate the second law of thermodynamics. The collapsing system may have

7



arbitrarily large entropy, but the final state has none at all. Different initial conditions

will lead to indistinguishable results.

A similar problem arises when a matter system is dropped into an existing

black hole.

2.2 Bekenstein Entropy and the Generalized Second Law

Thus, following the no-hair theorem, seems like when an object fall into a black

hole his entropy disappear, on the other side the area of the black hole event horizon

increase. This strongly suggest that we may associate the entropy of a black hole with

its area.

Based on this reasoning, Bekenstein [6],[7],[8] suggested that a black hole ac-

tually has an entropy equal to its horizon area, SBH = ηA, where η is a number of order

unity. We will show in Sec. 2.2.1 that η = 1
4

SBH =
A

4
. (2.2)

[In full, SBH = kAc3/(4G~).] The entropy of a black hole is given by a quarter of the

area of its horizon in Planck units. In ordinary units, it is the horizon area divided by

about 10−69m2.

Furthermore, Bekenstein [6],[7],[8] proposed that the second law of thermody-

namics it is valid only for the sum of black hole entropy and matter entropy

dStotal ≥ 0. (2.3)

8



where Stotal = Smatter + SBH

In other words for ordinary matter systems alone, the second law need not to

be valid. But if the entropy of black holes, Eq. (2.2), is included in the balance, the

total entropy will never decrease. This is referred to as the generalized second law or

GSL. More precisely we can state the generalized second law as follows.

Consider a thermodynamic system T , consisting of well-separated, non-interacting

components. Label the components of the system made of ordinary matter as Ci and

their entropy with S(Ci). On the other side we will label the black holes as Bj and their

horizon areas as Aj .

The total entropy of T is given by

Sinitial
total = Smatter + SBH. (2.4)

Here, Smatter =
∑

S(Ci) is the total entropy of all ordinary matter. SBH =
∑ Aj

4 is the

total entropy of all black holes present in T .

Now let the components of T to interact until a new equilibrium is established.

At the end of the evolution, the system T will consist of a new set of components Ĉi

and B̂j , which total entropy is Sfinal
total. The GSL states that

Sfinal
total ≥ Sinitial

total . (2.5)

What are the microstates counting the entropy of a black hole is still an open

question, the answer will most likely require the knowledge of a fundamental theory of

quantum gravity.

9



However, one result stands out because of its quantitative accuracy. Recent

developments in string theory have led to description of limited classes of black holes in

which the microstates can be identified and counted (Strominger and Vafa [9]).

The formula S = A/4 was precisely confirmed by this calculation.

2.2.1 Hawking Radiation

Purely from General Relativity we can infer the following relation, sometimes

called “first law of black hole mechanics”, among mass M surface gravity κ and area A

of a black hole

dM =
κ

8π
dA. (2.6)

for a definition of κ, see Wald [10]; e.g., a Schwarzschild black hole in D = 4 has

κ = (4M)−1.

If we interpretate κ as the temperature and A as the entropy of the black hole

(as explained in the previous section) Eq. (2.6) reproduce the first law of thermodynamic

for a black hole

dM = TdSBH. (2.7)

A further confirmation that is correct to identify κ with the temperature of a

black hole has been given by Hawking [11],[12], he showed with a semi-classical calcula-

tion that black holes do in fact radiate via a quantum process. A distant observer will

detect a thermal spectrum of particles coming from the black hole, at a temperature

T =
κ

2π
. (2.8)

10



For a Schwarzschild black hole in D = 4, this temperature is ~c3/(8πGkM), or about

1026 Kelvin divided by the mass of the black hole in grams. Note that such black holes

have negative specific heat.

The discovery of Hawking radiation clarified and further strength the interpre-

tation of the thermodynamic description of black holes.

In particular, Hawking’s result affirmed that the entropy of black holes should

be considered a genuine contribution to the total entropy content of the universe, as

Bekenstein [6],[7],[8] had anticipated.

Via the first law of thermodynamics, Eq. (2.8), Hawking’s calculation fixes the

coefficient η in the Bekenstein entropy formula, Eq. (2.2), to be 1/4.

A radiating black hole loses mass, shrinks, and eventually disappears unless it

is stabilized by charge or a steady influx of energy. Over a long time of order M
D−1
D−3 ,

this process converts the black hole into a cloud of radiation.

In the following we will study two processes that will help to clarify the GSL

and establish bounds on the entropy of matter systems.

First we will discuss the case in which a matter system is dropped into an

existing black hole. Then we will turn to the process in which a black hole is formed

by the collapse of ordinary matter. In both cases, ordinary entropy is converted into

horizon entropy.

11



2.2.2 Bekenstein Bound: Geroch Process

Consider a weakly gravitating stable thermodynamic system of total energy E.

Let R be the radius of the smallest sphere enclosing the system. To obtain an entropy

bound the strategy is to move the system from infinity into a Schwarzschild black hole

of radius b much larger than R. To optimize the tightness of the entropy bound we

want to add as little energy as possible to the black hole. So we imagine to move the

system slowly until is right outside the event horizon and then dropping it inside the

black hole.

The mass added to the black hole is given by the energy E of the system,

redshifted according to the position of the center of mass at the drop-off point. It can

be easily seen that the entropy added to the black hole is

δSBH =
dSBH

dM
δM ≤ 2πER.

By the generalized second law, the entropy cannot decrease in the process: δSBH −

Smatter ≥ 0. Hence,

Smatter ≤ 2πER. (2.9)

2.2.3 Spherical Entropy Bound: Susskind Process

Let us consider an isolated matter system of mass E and entropy Smatter located

in a spacetime M. Moreover let us assume that M is asymptotically flat. We define

A to be the area of the circumscribing sphere, i.e., the smallest sphere that fits around

the system. Note that A is well-defined only if the metric near the system is spherically

12



symmetric or gravity is weak.

Let us further assume that the matter system is stable on a timescale much

greater than A1/2, so that the time-dependence of A will be negligible.

The mass of the system must be less than the mass M of a black hole of the

same surface area. Otherwise, the system could not be gravitationally stable, and would

collapse in a black hole. The system can be converted into a black hole of area A by

collapsing a shell of mass M −E onto the system. Let the shell of entropy Sshell be well

separated from the black hole, The initial entropy is

Sinitial
total = Smatter + Sshell.

The final state is a black hole of entropy

Sfinal
total = SBH =

A

4
.

Following the generalized second law of thermodynamic the entropy cannot

decrease in the process, thus we arrive at the spherical entropy bound

Smatter ≤ A

4
, (2.10)

2.2.4 Relation to the Bekenstein Bound

The spherical entropy bound can be derived from the Bekenstein bound, if the

latter is assumed to be valid for strongly gravitating system. The requirement that the

system be gravitationally stable implies 2M ≤ R in four dimensions. From Eq. (2.9),

13



one thus obtains:

S ≤ 2πMR ≤ πR2 =
A

4
. (2.11)

We see that the spherical entropy bound is weaker than the Bekenstein bound, in

situations where both can be applied.

However as we will see in the following the spherical entropy bound is more

suited to a covariant generalization.
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Chapter 3

Degrees of Freedom and Entropy

3.1 Degrees of Freedom

The Holographic principle is a statement about the number of degrees of free-

dom (dof) of a fundamental system. It affirm that the number of degrees of a system

scale with the area.

In order to make this statement precise in these Sections we will define the

concept of degrees of freedom and fundamental system. Moreover we will show why

local field theories do not count correctly the number of degrees of freedom. In the

following we will restrict us to a finite spherical region of volume V and boundary area

A. Assume, for now, that gravity is weak so that these quantities are well defined, and

that spacetime is asymptotically flat.

Let us define the number of degrees of freedom of a quantum-mechanical sys-

15



tem, N , to be the logarithm of the dimension N of its Hilbert space H:

N = lnN = ln dim(H). (3.1)

Note that a harmonic oscillator has N = ∞ with this definition. The number of degrees

of freedom is equal (up to a factor of ln 2) to the number of bits of information needed

to characterize a state. For example, a system with 100 spins has N = 2100 states,

N = 100 ln 2 degrees of freedom, and can store 100 bits of information.

3.1.1 Fundamental System

By ”fundamental system” we mean the description of a system in term of a

fundamental theory of nature.

We assume here and in the following that this fundamental theory of nature

will admit a description in term of Hilbert spaces and so it is appropriate to talk about

degrees of freedom as we defined them in the previous section.

We yet don’t know what the fundamental theory of nature will be (and if there

will be one !) but that best candidate that we have at today i.e. String Theory (from

the point of view of the author !) admit such a description in term of Hilbert spaces.

3.2 Complexity According to Local Field Theory

Let us assume here that the fundamental theory is quantum field theory in a

fixed background. We will give a rough estimate of the number of degrees of freedom

and then compare with the counting of degrees of freedom given by the entropy bound.

16



Quantum field theory consist of one or more oscillator at every point in space-

time so apparently we have an infinite number of degrees of freedom. However in this

reasoning we have disregarded the effects of gravity altogether.

If we introduce gravity in a crude way we may expect that we cannot resolve

distances smaller than the Planck length, lP = 1.6× 10−33cm. So we will discretize the

space into a Plank grid and assume that there is an oscillator per Plank volume.

Moreover, the oscillator spectrum is discrete and bounded from below by finite

volume effects. It is bounded from above because it must be cut off at the Planck energy,

MP = 1.3 × 1019GeV. This is the largest amount of energy that can be localized to a

Planck cube without producing a black hole. Thus, the total number of oscillators is V

(in Planck units), and each has a finite number of states, n. Hence, the total number

of independent quantum states in the specified region is

N ∼ nV .

The number of degrees of freedom is given by

N ∼ V lnn & V.

This result is in agreement with our prejudice that the degrees of freedom in the world

are local in space, and that, therefore, grows with volume. It turns out, however, that

this view conflicts with the entropy bound.
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3.3 Complexity According to the Spherical Entropy Bound

Thermodynamic entropy has a statistical interpretation. Let S be the thermo-

dynamic entropy of an isolated system at some specified value of macroscopic parameters

such as energy and volume. Then N = eS is the number of independent quantum states

corresponding to these macroscopic parameters.

In Section 2.2.3 we derived the spherical entropy bound. It states that the

entropy of the fundamental system is bounded by its area

S ≤ A

4
,

In particular Black Holes saturate the bound

SBH =
A

4
,

Therefore, the number of degrees of freedom in a region bounded by a sphere of area A

is given by

N =
A

4
;

on the other hand the number of states is

N = eA/4. (3.2)

We assume that all physical systems are larger than the Planck scale. Hence,

their volume will exceed their surface area, in Planck units. (For a proton, the volume

is larger than the area by a factor of 1020; for the earth, by 1041).

The result obtained from the spherical entropy bound is thus in contradiction

with the much larger number of degrees of freedom estimated from local field theory.
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Which of the two conclusions should we believe?

3.4 Why Local Field Theory Gives the Wrong Answer

We will now show that the Quantum field theory computation overcounted

the number of degrees of freedom, because we didn’t appropriately take in account the

effects of gravitation. We assume in the following D = 4 and neglect factors of order

unity.

A spherical surface cannot contain more mass than a black hole of the same

area. According to the Schwarzchild solution the mass of a black hole is given by its

radius. Hence, the mass M contained within a sphere of radius R satisfy

M . R. (3.3)

Previously, in Section 3.2 we imposed the same bound but only for a Planck

cell i.e. a sphere of radius (R = 1).

For a larger region this cutoff would allow M ∼ R3 , in contradiction with Eq.

(3.3). In other worlds we didn’t take into account that we would form a black hole well

before exciting all the degrees of freedom allowed by quantum field theory.

This resolve the mismatch in the counting of degrees of freedom among field

theory and the holographic bound.

Because of gravity not all the degrees of freedom allowed by field theory can be

excited.
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Chapter 4

The Covariant Entropy Bound

The aim of this and the following Sections is to give a covariant generalization

of the spherical entropy bound (2.10) that we will call the covariant entropy bound. This

generalization will find application in a variety of scenarios like for example cosmological

universe and AdS/CFT.

To construct the covariant entropy bound we need to find a generalization of

the concept of volume contained inside a D− 2 spatial dimensions surface. It turns out

that this is encoded in the notion of light-sheet introduced in the following.

4.1 Light-Sheets

4.1.1 The Raychaudhuri Equation

In this Section we discuss the dynamics of families of light rays in General

Relativity this is necessary to give a precise mathematical definition of the concept of
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F4

F1

F3

B

Time

Figure 4.1: Lightsheets.
The four null hypersurfaces orthogonal to a spherical surface B. The two cones F1, F3

have negative expansion and hence correspond to light-sheets. The other two families of
light rays, F2 and F4, generate the skirts. Their cross-sectional area is increasing, so
they are not light-sheets.
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light-sheet.

A family of light rays is locally characterized by its expansion, shear, and twist,

which we define in the following.

Let B be a surface of D − 2 spatial dimensions, parametrized by coordinates

xα = 1, ..., D− 2. Choose one of the four families of light rays F1, . . . , F4 that originate

from B into the past and future directions to either side of B Fig. 4.1. Each light ray

satisfies the geodesics equation

dka

dλ
+ Γa

bck
bkc = 0

where λ is an affine parameter and the tangent vector ka is defined by

ka =
dxa

dλ

and satisfies the null condition kaka = 0. The light rays generate a null hypersurface

L parametrized by coordinates (xα, λ). This means that in a neighborhood of B, each

point on L is unambiguously defined by the light ray on which it lies (xα) and the affine

distance from B (λ). Let la be the null vector field on B that is orthogonal to B and

satisfies kala = 2. (This means that la has the same time direction as ka and is tangent

to the orthogonal light rays constructed on the other side of B).

The induced D − 2 dimensional metric on the surface B is given by

hab = gab +
1
2
(kalb + kbla)

In a similar way, it is possible to find an induced metric for all other spatial cross-sections

of L. The null extrinsic curvature defined as

22



Bab = hc
ah

d
b∇ckd

contains information about the expansion, θ , shear, σab, and twist, ωab, of the family

of light rays, L

θ = habBab

σab =
1
2

(Bab + Bba)− 1
D − 2

θhab

ωab =
1
2

(Bab −Bba)

Note that all of these quantities are functions of (xα, λ).

In the next Sections we will need the following geometrical interpretation of

the expansion parameter θ (λ). Define A (
λ̄
)

as the area of the submanifold λ = λ̄ on

the null hypersurface L Fig. 4.2, then we have

θ (λ) =
dA
dλ

The Raychaudhuri equation describes the change of the expansion θ along the

light rays:

dθ

dλ
= − 1

D − 2
θ2 − σabσ

ab + ωabω
ab − 8πTabk

akb (4.1)

For a surface-orthogonal family of light rays, such as L, the twist ωab vanishes (Wald

[10]). The final term, −Tabk
akb, will be non-positive if the null energy condition is

satisfied by matter, which we assume. Then the right hand side of the Raychaudhuri

equation is manifestly non-positive. It follows that the expansion never increases.
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We obtain the following differential inequality

dθ

dλ
≤ − 1

D − 2
θ2

By solving it one arrives at the focussing theorem: If the expansion of a family of light

rays takes the negative value θ1 at any point λ1, then θ will diverge to −∞ at some

affine parameter

λ2 ≤ λ1 +
D − 2
|θ1|

The divergence of θ indicates that the cross-sectional area A (
λ̄
)

is locally vanishing,

at such point infinitesimally neighboring light rays intersect and this is by definition a

caustic point.

4.1.2 Orthogonal Null Hypersurfaces

Consider a D− 2 spatial dimensions surface B it has precisely four orthogonal

null directions Fig. 4.1. We will call them future directed ingoing, future directed

outgoing, past directed ingoing, and past directed outgoing. Locally, these directions

generate four null hypersurfaces F1, . . . , F4 that border on B.

The Fi are generated by the past and the future directed light rays orthogonal

to B, on either side of B.

If we consider a 2-sphere B embedded in Minkowski space Fig. 4.1, the two

ingoing cones F1 and F3, and the two outgoing “skirts”, F2 and F4, are easily seen to be

null and orthogonal to B. However, the existence of four null hypersurfaces bordering

on B is guaranteed in Lorentzian geometry independently of the shape and location of
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A(λ)

Caustic

Decreasing
     Area

Increasing
     Area

Figure 4.2: Caustic.
Ingoing rays perpendicular to a convex surface in a Euclidean geometry span decreasing
area. This motivates the following local definition. “Inside” is the direction in which
the cross-sectional area A(λ) decreases . After light rays locally intersect, they begin to
expand. Hence, light-sheets must be terminated at caustics.
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B. They are always uniquely generated by the four sets of surface-orthogonal light rays.

At least two of the four null hypersurfaces F1, . . . , F4 will be selected as light-

sheets, according to the condition of non-positive expansion discussed next.

4.1.3 Light-sheet Selection

In order to generalize the Entropy Bounds Section 2.2.3 we want to define

the notion of ”volume inside” the 2-dimensional surface B. We could choose a spacelike

surface Σ passing through B and define the ”volume inside” B in the usual way. However

this definition is not covariant as it depends on the choice of the spatial slice Σ.

An appropriate covariant definition of “inside” of B is found considering the

case in which B is a 2-sphere embedded in Minkowski space Fig. 4.1 In this example

the family of null-hypersurfaces is made of two ”cones” F1 and F3... and two ”skirts”

F2 and F4. We will define the ”cones” F1 and F3 as the ”inside” of B and we will call

them light-sheets.

This definition is appropriate because is covariant and furthermore the two

light-sheets terminate at some point (in this example the tips of the cones) and so

represent bounded hypersurfaces.

We note that the fundamental property that characterize the light-sheets is

that, as we move away from the boundary, the area A (λ), introduced in Section 4.1.1,

decrease. Taking this property as the one that characterize light-sheets we will now

extend the definition to general spacetime.

Let Fi be one of the four families F1, . . . , F4 of null hypersurfaces originating
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from B, furthermore assume that Fi is parametrized with coordinates xα = 1, ..., D− 2

and an affine parameter λ as explained in Section 4.1.1, we will say that Fi is a light-sheet

if

θ (λ) ≤ 0 for λ = λ0 (4.2)

where λ = λ0 on B and λ increase as we move away from B.

As explained previously if we define A (
λ̄
)

as the area of the submanifold λ = λ̄

on the light-sheet Fig. 4.2, then we have the following geometrical interpretation for

θ (λ)

θ (λ) =
dA
dλ

So a light-sheet is defined by the condition that as we move away from the

boundary B of an infinitesimal quantity dλ the area A (λ) decrease.

By repeating this procedure for i = 1, . . . , 4, one finds all light-sheets of B.

Because the light rays generating opposite pairs of null directions (e.g. F1 and F4) are

continuations of each other, it is clear that at least one member of each pair will be

considered a light-sheet. If the light rays are locally neither expanding nor contracting,

both members of a pair will be light-sheets. Hence, there will always be at least two

light-sheet directions. In degenerate cases, there may be three or even four.

For the simple case of the spherical surface in Minkowski space, the condi-

tion (4.2) reproduces the intuitive answer. The area is decreasing in the F1 and F3

directions—the past and future directed light rays going to the center of the sphere.
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4.1.4 Light-sheet Termination

In the example of a 2-sphere embedded in Minkowski space Fig. 4.1 the light-

sheets ends at the tips of the cones F1 and F3. Strictly speaking, however, there was no

particular reason to stop at the tip, where all light rays intersect. On the other hand, it

would clearly be disastrous to continue the light-sheet beyond the tip. It would generate

another cone which would grow indefinitely, containing unbounded entropy. One must

enforce, by some condition, that the light-sheet is bounded. In all but the most special

cases, the light rays generating a light-sheet will not intersect in a single point, so the

condition must be more general.

A suitable condition is to demand that the expansion be non-positive every-

where on the light-sheet, and not only near B

θ(λ) ≤ 0, (4.3)

for all values of the affine parameter on the light-sheet.

By construction, Section 4.1.3, the expansion is negative or zero on the bound-

ary B. Raychaudhuri’s equation Eq. (4.1) guarantees that the expansion can only de-

crease. The only way θ can become positive is if light rays intersect, for example at the

tip of the light cone.

However, it is not necessary for all light rays to intersect in the same point.

By Eq. (4.1), the expansion becomes positive at any caustic, that is, any place where a

light ray crosses an infinitesimally neighboring light ray in the light-sheet Fig. 4.2.

Thus, Eq. (4.3) implies that light-sheets end at caustics. In general, each light
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ray in a light-sheet will have a different caustic point, and the resulting caustic surfaces

can be very complicated. The case of a light cone is special in that all light rays share

the same caustic point at the tip.

4.2 Entropy on a Light-Sheet

The geometric construction of light-sheets is well-defined. But how is “the

entropy on a light-sheet”, Smatter, determined? Let us start with an example where

the definition of Smatter is evident. Suppose that B is a 2-sphere around an isolated,

weakly gravitating thermodynamic system. Given certain macroscopic parameters, for

example an energy or energy range, pressure, volume, etc., the entropy of the system

can be computed either thermodynamically, or statistically as the logarithm of the

number of quantum states associated with the configuration defined by the macroscopic

parameters.

With the previous assumptions, the two light-sheets of B are to good approx-

imation, a past and a future light cone. Let us consider the future directed light-sheet.

The cone contains the matter system completely , in the same sense in which a t = const

surface contains the system completely . A light-sheet is just a different way of enclosing

a matter system. (In fact, this is much closer to how the system is actually observed in

practice.) Hence, the entropy on the light-sheet is simply given by the entropy of the

matter system.

Let us now consider cosmological spacetimes, in this case the entropy is usually
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well approximated as a continuous fluid, as a consequence Smatter will be the integral of

the entropy density over the light-sheet.

4.3 Formulation of the Covariant Entropy Bound

Now that we have introduced the appropriate mathematical formalism we are

ready to state the covariant entropy bound.

Consider a D-dimensional Lorentzian spacetime M . Let A(B) be the area of

an arbitrary D − 2 dimensional spatial surface B (which need not be closed). A D − 1

dimensional hypersurface L is called a light-sheet of B if L is generated by light rays

which begin at B, extend orthogonally away from B, and have non-positive expansion,

θ ≤ 0,

everywhere on L. Let S be the entropy on any light-sheet of B. Then

S ≤ A(B)
4

. (4.4)

Let us restate the covariant entropy bound one more time, in a constructive

form most suitable for applying and testing the bound.

1. Pick any D−2 dimensional spatial surface B, and determine its area A(B). There

will be four families of light rays projecting orthogonally away from B: F1 . . . F4.

2. Usually additional information is available, such as the macroscopic spacetime

metric everywhere or in a neighborhood of B. Then the expansion θ of the or-

30



thogonal light rays can be evaluated for each family. Of the four families, at least

two will not expand (θ ≤ 0). Determine which.

3. Pick one of the non-expanding families, Fj . Follow each light ray no further than

to a caustic, a place where it intersects with neighboring light rays. The light rays

form a D − 1 dimensional null hypersurface, a light-sheet L(B).

4. Determine the entropy S[L(B)] of matter on the light-sheet L, as described in

Section 4.2.

5. The quantities S[L(B)] and A(B) can then be compared. The covariant entropy

bound states that the entropy on the light-sheet will not exceed a quarter of the

area: S[L(B)] ≤ A(B)
4 . This must hold for any surface B, and it applies to each

non-expanding null direction, Fj , separately.

In particular, the bound is predictive and can be tested by observation, in

the sense that the entropy and geometry of real matter systems can be determined

(or, as in the case of large cosmological regions, at least estimated) from experimental

measurements.
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Chapter 5

Quantum Field Theory in Curved

Spacetime

We briefly introduce some concepts of Quantum Field Theory in Curved Space

that will be useful in the Second Part.

5.1 Scalar Field Quantization

For the sake of simplicity we will only study the quantization of a scalar field on

a fixed background. Nevertheless this example is rich enough to contain all the features

we are interested in.

The field quantization proceeds in strict analogy with the case of Minkowski

space. We start with the Lagrangian density

L(x) =
1
2
[−g(x)]

1
2
{
gµν(x)φ(x),µφ(x),ν − [m2 + ξR(x)]φ2(x)

}
(5.1)
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where φ(x) is a scalar field of mass m and

gµν , µ, ν = 0, 1, . . . , n− 1

is the metric on a n-dimensional, globally hyperbolic, pseudo-Riemannian manifold and

g =
√

det(gµν).

The coupling among the scalar field and the gravitational field is given by the

term ξR(x)φ2(x) where ξ is a constant and R(x) is the Ricci scalar.

The action is given as usual by

S =
∫
L(x) dnx

Considering the variation of the action respect to φ(x) we get the equation of motion

[¤ + m2 + ξR(x)] φ(x) = 0 (5.2)

where the Laplacian is given by

¤ φ = gµν∇µ∇ν φ = (−g)
1
2 ∂µ[(−g)

1
2 gµν∂νφ]

The correct normalization for the states is obtained imposing the scalar product

(φ1, φ2) = −i

∫

Σ
φ1(x)

←→
∂µφ∗2(x)[−gΣ(x)]

1
2 dΣµ (5.3)

←→
∂

where dΣµ = nµdΣ, with nµ a future-direct unit vector orthogonal to the

spacelike hypersurface Σ and dΣ is the volume element in Σ. The hypersurface Σ is

33



assumed to be a Cauchy surface in the (globally hyperbolic) spacetime and one can

show, using Gauss’ theorem that the value of (φ1, φ2) is independent of Σ.

There will exists a complete set of functions ui(x) solutions of Eq. (5.2) which

are orthonormal respect to the scalar product Eq. (5.3).

(ui, uj) = δij

(u∗i , u
∗
j ) = −δij

(ui, u
∗
j ) = 0

It is possible to decompose the field φ(x) respect to this base of functions

φ(x) = Σi[aiui(x) + a†iu
∗
i (x)]

The quantization of the fields is obtained in the usual way, imposing the commutation

relation

[ai, a
†
j ] = δij

[a†i , a
†
j ] = 0

[ai, aj ] = 0

The vacuum state |0〉 has the property that is annihilated by all the ak operators

aj |0〉 = 0, ∀ j

The Fock space is constructed acting on the vacuum with creation operators

|1j1 , 1j2 , . . . , 1jk
〉 = a†j1a

†
j2

. . . a†jk
|0〉
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Differently from Minkowski spacetime there is not a unique prescription to

choose the modes decomposition of the field φ(x). Different decomposition will generate

in general different Fock spaces. In the following Section we analyze how these Fock

spaces are related.

5.2 Bogolubov Coefficients

Let us consider a second set of orthonormal modes ūi(x). The field may be

decomposed respect to this set also

φ(x) = Σi[āiūi(x) + ā†i ū
∗
i (x)]

This decomposition of φ define a new vacuum state |0̄〉

āj |0̄〉 = 0, ∀ j

and a new Fock space

|1̄j1 , 1̄j2 , . . . , 1̄jk
〉 = ā†j1 ā

†
j2

. . . ā†jk
|0〉

Given that both sets are complete, the new modes ūj can be expanded in terms of the

old ui

ūj = Σi[αjiui + βjiu
∗
i ]

and vice versa

ui = Σj [α∗jiūj + βjiū
∗
j ]
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These relations are called Bogolubov transformations. The matrices αji, βji are called

Bogolubov coefficients and using the scalar product (5.3) are given by

αij = (ūi, uj), βij = −(ūi, u
∗
j )

Moreover, it is possible to find the following expression for the annihilation operators

ai = Σj(αjiāj + β∗jiā
†
j) (5.4)

and

āi = Σi(α∗jiai + β∗jia
†
i )

It follows immediately from Eq. (5.4) that two Fock spaces based on two

choices of modes ui and ūj are different as long as βji 6= 0. For example |0̄〉 will not be

annihilated by ai

ai |0̄〉 = Σjβ
∗
ji |1̄j〉 6= 0

Furthermore, if we consider the expectation value of the number operator Ni = a†iai in

the new vacuum |0̄〉

〈0̄|Ni |0̄〉 = Σj |βji|2

we find that the new vacuum contains Σj |βji|2 particles associated with the old mode

ui.

5.3 Green Functions

We will now describe how to derive the several Green functions of the theory.
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Let us first introduce the Wightman functions

G+(x, y) = 〈0|φ(x)φ(y) |0〉

G−(x, y) = 〈0|φ(y)φ(x) |0〉

All the others Green functions can be derived from those. In particular we

have

Pauli Jordan or Schwinger function

iG(x, y) = 〈0| [φ(x), φ(y)] |0〉

Hadamard’s elementary function

G(1)(x, y) = 〈0| {φ(x), φ(y)} |0〉

Feynman propagator

GF (x, y) = 〈0|T (φ(x)φ(y)) |0〉

= θ(tx − ty)G+(x, y) + θ(ty − tx)G−(x, y)

Retarded and advanced Green functions

GR(x, y) = −θ(tx − ty)G(x, y)

GA(x, y) = θ(ty − tx)G(x, y)

G, G1, G± all satisfy the homogeneous equation

[¤x + m2 + ξR(x)] G(x, y) = 0
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on the other hand GF , GR, GA satisfy the equations

[¤x + m2 + ξR(x)] GF (x, y) = −(−g(x))
1
2 δn(x− y)

[¤x + m2 + ξR(x)] GR,A(x, y) = (−g(x))
1
2 δn(x− y)

In Minkowski space all the Green functions can be obtained from the same in-

tegral in momentum space, choosing an appropriate path of integration in the complex

plane, this correspond in turn to choose different boundary conditions for the differen-

tial equations. In curved space the situation is more complicated and the appropriate

boundary conditions must be specified case by case.
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Part II

Publications
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Chapter 6

De Sitter Vacua, Renormalization and

Locality

6.1 Introduction

In the recent outbreak of interest in de Sitter spacetimes, attention has been

drawn again to the existence of a one (complex) parameter family of vacuum states

(called the α-vacua) for free quantum fields in de Sitter spacetime [13]. Experts in the

field have long harbored a vague suspicion that only the standard Euclidean vacuum

was sensible, but until now there has been no conclusive argument to this effect. The

purpose of this note is to present one.

The argument is, in essence, very simple. Propagators in quantum field theory

are singular on the light cone. The propagators in the α-vacua are linear superpositions

of a Euclidean1 propagator evaluated between two points x, y, and the same propagator
1We use the short phrase Euclidean propagator to denote the propagator of a field in dS space, which
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evaluated between x and the antipodal point to y, yA. The Feynman diagrams of

interacting quantum field theory contain products of propagators between the same two

points. These are not distributions, and a subtraction procedure must be supplied to

define them. The key point of standard renormalization theory is that the subtractions

all take the form of local contributions to the effective action, and can thus be viewed

as renormalizations of couplings in the theory. We will show by simple examples that

in the α-vacua this is no longer true. The subtractions include non-local contributions

to the effective action of the form e.g.

δS = δλ

∫
φ(x)φ(xA) (6.1)

where δλ is a divergent constant. Thus, renormalized interacting field theory in a

generic α vacuum is intrinsically non-local, and presumably has no sensible physical

interpretation.

There are only two values of α for which this catastrophe is avoided. The first

is <(α) = a = −∞ which gives the standard Euclidean vacuum and has no antipodal

singularity . The second is α = 0, which is the unique vacuum state invariant under

the antipodal map. The Green’s function in this vacuum appears to be the analytic

continuation of a Euclidean functional integral on RP d2. In this vacuum state, which

we call the antipodal vacuum we must view the Lorentzian spacetime manifold as the

orbifold of de Sitter space by the antipodal map. Every point is identified with its

antipode, and the interaction 6.1 is local. From a physical point of view we have a

is obtained by analytic continuation of the Euclidean functional integral on a sphere.
2To our knowledge, E. Witten[14] was the first to point out the significance of this special value of

alpha and its Euclidean interpretation.
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manifold with a past spacelike singularity and an asymptotic de Sitter future. We call

this spacetime the antipodal universe.

In discussions of inflationary cosmology, one often invokes a Quantum No-

Hair Theorem for de Sitter space . According to this theorem, generic initial states

of quantum fields in dS space, evolve into a state indistinguishable from the Euclidean

vacuum after enough e-foldings. A crucial assumption in this theorem, is that the initial

state approaches the Euclidean vacuum for very high angular momentum modes (in

global coordinates - in planar coordinates we would say ordinary momentum modes).

Modes of any finite comoving wave number are redshifted to a size larger than the

horizon volume after a sufficient number of e-foldings, and are no longer observable by

a local measurement. If the initial state is the Euclidean vacuum for sufficiently high

momentum modes, then the local observer will eventually see a state indistinguishable

from the Euclidean vacuum.

The state implied by the orbifold boundary conditions does not satisfy the

conditions of this theorem. In global coordinates the Euclidean vacuum for a boson

field is a Gaussian with time dependent covariance, for each angular momentum mode.

The orbifold boundary conditions imply instead that the initial wave function of the

even angular momentum states is a field eigenstate , while that of the odd modes is

an eigenstate of the canonical momentum. These are non-normalizable states,for each

angular momentum mode, and differ from the Euclidean vacuum for arbitrarily large

angular momentum. They do not obey the de Sitter no hair theorem. Thus, the future

evolution of the antipodal universe depends on the initial conditions.
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We argue further that the initial conditions may be subject to infinite ultra-

violet corrections in higher orders of perturbation theory. These are the standard UV

divergences of fixed time Schrodinger picture states in quantum field theory. If this

were true , we would have to claim that, without a nonperturbative understanding of

the state near the orbifold singularity, we could not make reliable predictions in the

antipodal universe.

These considerations cast doubt on the identification of the Lorentzian antipo-

dal vacuum with the analytic continuation of a Euclidean functional integral on RP d.

The latter is renormalized by the standard counterterms for quantum field theory on

smooth manifolds without boundary. It may be that the boundary conditions defined

by the RP d functional integral are a fixed point of the boundary renormalization group

of the Lorentzian orbifold field theory, but we have not done enough computations to

verify this conjecture.

All of these arguments are made in the context of quantum field theory in

a fixed spacetime background. In quantum gravity, we have the additional problem

that the antipodal initial state has infinite energy density, which leads us to expect a

large back reaction. A much more extensive discussion of the back reaction problem in

α-vacua will be presented in [15].

Our conclusion is that only the Euclidean vacuum state has a chance of de-

scribing sensible physical processes in de Sitter space. The rest of this note is devoted

to calculations which explicate the argument made above.

We note that after we submitted this paper to arXiv.org, two related papers
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appeared which have some overlap with our work. The first, by Einhorn and Larsen[16],

discusses aspects of higher loop graphs in α vacua, and also concludes that these are

generally ill-defined. The second[17] discusses the Z2 orbifold of dS space (and points

out that it was first introduced long ago by Schrodinger). It is not clear to us that their

definition of the quantum theory is the same as ours. They do not discuss divergences

near the origin of time in this system.

6.2 Interacting Scalar Field Theory in an α Vacuum

In this section we will present a calculation of the two point function in a

simple scalar field theory. We hope the reader will realize that our conclusions are quite

general. In particular, we began this project by computing the two point function of

the renormalized stress tensor in an α vacuum. This computation would enter into any

perturbative theory of quantum gravity in de Sitter space. This calculation is more

divergent than any we will actually present, but exhibits the same non-locality that we

find in our simple example. We decided that the extra indices and the subtleties of

covariance would only distract the reader from the main point.

6.2.1 Notation

In the following we will consider 4-dimensional de Sitter space dS4. It may be

realized as the manifold

−X2
0 + X2

1 + X2
2 + X2

3 + X2
4 = l2 (6.2)
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embedded in the 5-dimensional Minkowski space M4,1. We will use lower case

x to indicate 4-dimensional coordinates on dS4 and upper case X to denote embedding

coordinates. We will denote the antipodal points by XA ≡ −X. Henceforth we will set

l = 1.

We are considering an interacting scalar field theory in dS4 with action

S =
1
2

∫
d4x (−g(x))

1
2 [(∇φ)2 −m2φ2 − λ

3!
φ3] (6.3)

In dS4 there is a one complex parameter, α, family of dS invariant vacua [13]

that we will denote |α〉. The associated de Sitter invariant family of two point Wightman

functions is

〈α|φ(x)φ(y)|α〉 = Wα(x, y) =

n2
(
We(x, y) + eα+α∗ We(y, x) + eα We(x, yA) + eα∗ We(xA, y)

)
(6.4)

with

α ∈ C

<(α) = a < 0 (6.5)

n = n(α) =
1√

1− eα+α∗
(6.6)
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Here we use the Euclidean two point Wightman function We(x, y) defined in

[18]. The Euclidean Wightman function and vacuum correspond to a = −∞.

6.2.2 Computation

In this section we will compute a term in the 1-loop effective action, in a general

α-vacuum. The computation will lead to divergent non-local counterterms. Only the

Euclidean vacuum produces a completely local counterterm action.

The 1-loop, two point contribution to the effective action in our simple field

theory is

Γ(φ) ∼
∫

d4xd4y (−g(x))
1
2 (−g(y))

1
2 φcl(x)Fα(x, y)Fα(x, y)φcl(y) (6.7)

The Feynman propagator Fα(x, y) can be expressed in terms of the Wightman

functions and the parameter α as

Fα(x, y) = Θ(x0 − y0) Wα(x, y) + Θ(y0 − x0) Wα(y, x) (6.8)

Wα(x, y) = n2
(
We(x, y) + eα+α∗ We(y, x) + eα We(x, yA) + eα∗ We(xA, y)

)
(6.9)

with

n = n(α) =
1√

1− eα+α∗
(6.10)
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The behavior of the two point Euclidean Wightman function near the light

cone is for dS4

We(x, y) ∼ C

(x0 − y0 − i ε)2 − (xs − ys)
2 , (6.11)

where x = (x0, xs), y = (y0, ys) and C is a constant whose value is not relevant for the

following considerations.

We will show now that in F 2
α(x, y) only the terms W 2

e , having a singular be-

havior near the light cone of the form

W 2
e ∼

C2

(x− y)4
(6.12)

W 2
e ∼

C2

(xA − y)4
(6.13)

W 2
e ∼

C2

(x− yA)4
(6.14)

W 2
e ∼

C2

(x− yA)2(xA − y)2
(6.15)

contribute to the divergent part of the effective action. In these equations,

we suppress the iε prescription because it is not relevant at this point. Considering

W 2(x, y) as a distribution on the space of test function φ(x) we have

TW 2
e
[φ] =

∫
d4xW 2

e (x, y)φ(x)
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=
∫

d4x

(
W 2

e (x, y)− C2

(x− y)4

)
φ(x) +

∫
d4x

C2φ(x)
(x− y)4

=
∫

d4x

(
W 2

e (x, y)− C2

(x− y)4

)
φ(x)

+
∫

d4x
C2 (φ(x)− φ(y))

(x− y)4
+ φ(y)

∫
d4x

C2

(x− y)4

= Regular +
∫

d4z δ(z − y)φ(z)
∫

d4x
C2

(x− y)4
(6.16)

where the regular part does not contribute to the divergent part of the effective

action. Similarly, in the terms which contain squares of Wightman functions evaluated

between points and their antipodes, we have

TW 2
e
[φ] =

∫
d4xW 2

e (xA, y)φ(x)

= Regular +
∫

d4z δ(z − yA)φ(z)
∫

d4x
C2

(xA − y)4
(6.17)

and

TW 2
e
[φ] =

∫
d4xW 2

e (x, yA)φ(x)

= Regular +
∫

d4z δ(z − yA)φ(z)
∫

d4x
C2

(x− yA)4
(6.18)
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Similarly

TW 2
e
[φ] =

∫
d4xWe(xA, y)We(x, yA)φ(x)

= Regular +
∫

d4z δ(z − yA)φ(z)
∫

d4x
C2

(xA − y)2(x− yA)2
(6.19)

All the other terms in W 2
e are regular and do not contribute to the divergent

part of the effective action.

After eliminating the regular terms in F 2
α(x, y) and doing the replacements

Θ(x0 − y0)Θ(y0 − x0) → 0, Θ(x0 − y0)2 → Θ(x0 − y0), and Θ(y0 − x0)2 → Θ(y0 − x0),

we get

Fα(x, y)2 = n4 Θ(x0 − y0) We(x, y)2 + e2 α+2 α∗ n4 Θ(y0 − x0) We(x, y)2

+e2 α∗ n4 Θ(x0 − y0) We(x, yA)2 + 2 eα+α∗ n4 Θ(x0 − y0) We(x, yA) We(xA, y)

+e2 α n4 Θ(x0 − y0) We(xA, y)2 + 2 eα+α∗ n4 Θ(x0 − y0) We(x, y) We(y, x)

+2 eα+α∗ n4 Θ(y0 − x0) We(x, y) We(y, x) + e2 α+2 α∗ n4 Θ(x0 − y0) We(y, x)2
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+n4 Θ(y0 − x0) We(y, x)2 + e2 α∗ n4 Θ(y0 − x0)We(y, xA)2

+ 2 eα+α∗ n4 Θ(y0 − x0) We(y, xA) We(yA, x) + e2 α n4 Θ(y0 − x0) We(yA, x)2 (6.20)

Replacing the We terms with their singular behavior near the light cone, we

find

Fα(x, y)2 ∼

δ(x− y)


 C2 n4 Θ(x0 − y0)(

(x0 − y0 − i ε)2 − (xs − ys)
2
)2 +

C2 e2 α+2 α∗ n4 Θ(x0 − y0)(
(y0 − x0 − i ε)2 − (xs − ys)

2
)2

+
2C2 eα+α∗ n4 Θ(x0 − y0)(

(x0 − y0 − i ε)2 − (xs − ys)
2
) (

(y0 − x0 − i ε)2 − (xs − ys)
2
)

+
C2 e2 α+2 α∗ n4 Θ(y0 − x0)(

(x0 − y0 − i ε)2 − (xs − ys)
2
)2 +

C2 n4 Θ(y0 − x0)(
(y0 − x0 − i ε)2 − (xs − ys)

2
)2

+
2C2 eα+α∗ n4 Θ(y0 − x0)(

(x0 − y0 − i ε)2 − (xs − ys)
2
) (

(y0 − x0 − i ε)2 − (xs − ys)
2
)




+δ(x− yA)


 C2 e2 α n4 Θ(x0 − y0)((

xA
0 − y0 − i ε

)2 − (xA
s − ys)

2
)2 +

C2 e2 α∗ n4 Θ(x0 − y0)((
x0 − yA

0 − i ε
)2 − (xs − yA

s )2
)2
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+
2C2 eα+α∗ n4 Θ(x0 − y0)((

xA
0 − y0 − i ε

)2 − (xA
s − ys)

2
) ((

x0 − yA
0 − i ε

)2 − (xs − yA
s )2

)

+
C2 e2 α∗ n4 Θ(y0 − x0)((

y0 − xA
0 − i ε

)2 − (xA
s − ys)

2
)2 +

C2 e2 α n4 Θ(y0 − x0)((
yA
0 − x0 − i ε

)2 − (xs − yA
s )2

)2

+
2C2 eα+α∗ n4 Θ(y0 − x0)((

y0 − xA
0 − i ε

)2 − (xA
s − ys)

2
) ((

yA
0 − x0 − i ε

)2 − (xs − yA
s )2

)

 (6.21)

The δ(x − yA) term gives rise to a non local, divergent, contribution to the

effective action . The coefficient of δ(x− yA) is


 C2 e2 α n4 Θ(x0 − y0)((

xA
0 − y0 − i ε

)2 − (xA
s − ys)

2
)2 +

C2 e2 α∗ n4 Θ(x0 − y0)((
x0 − yA

0 − i ε
)2 − (xs − yA

s )2
)2

+
2C2 eα+α∗ n4 Θ(x0 − y0)((

xA
0 − y0 − i ε

)2 − (xA
s − ys)

2
) ((

x0 − yA
0 − i ε

)2 − (xs − yA
s )2

)

+
C2 e2 α∗ n4 Θ(y0 − x0)((

y0 − xA
0 − i ε

)2 − (xA
s − ys)

2
)2 +

C2 e2 α n4 Θ(y0 − x0)((
yA
0 − x0 − i ε

)2 − (xs − yA
s )2

)2

+
2C2 eα+α∗ n4 Θ(y0 − x0)((

y0 − xA
0 − i ε

)2 − (xA
s − ys)

2
) ((

yA
0 − x0 − i ε

)2 − (xs − yA
s )2

)

 (6.22)
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After the substitutions (xA
0 , xA

s ) → (−x0, −xs), (yA
0 , yA

s ) → (−y0, −ys), Θ(x0−

y0) + Θ(y0 − x0) → 1,

we find that the non-local part of the divergent counterterm is


 C2 e2 α n4

(
(x0 + y0 + i ε)2 − (xs + ys)

2
)2 +

C2 e2 α∗ n4

(
(x0 + y0 − i ε)2 − (xs + ys)

2
)2

+
2C2 eα+α∗ n4

(
(x0 + y0 + i ε)2 − (xs + ys)

2
) (

(x0 + y0 − i ε)2 − (xs + ys)
2
)


 (6.23)

The three terms in this expression are different because they have distinct iε

prescriptions and therefore diverse poles in the complex plane.

As a consequence to eliminate all the divergent, non local terms in the effective

action we must set

eα = ea+ib = 0 (6.24)

eα∗ = ea−ib = 0 (6.25)

⇒ ea = 0 (6.26)

⇒ a = −∞ (6.27)
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This corresponds to the choice of the Euclidean vacuum as previously stated.

We should remark that the constant n = 1√
1−eα+α∗ = 1√

1−e2a
. can never be zero because

the family of de Sitter invariant vacua is defined by α ∈ C, <(α) = a < 0. There is

however another way to obtain a system with local effective action. The nonlocalities

are all products of fields at points and their antipodes. For α = 0 we can interpret the

Green’s functions as living on an orbifold of dS space, the antipodal universe, in which

a point is identified with its antipode. On this spacetime, all of our counterterms can

be viewed as local operators.

Witten[14] has suggested that for this value of α the Green’s functions can

be viewed as analytic continuations of the Euclidean functional integral on the real

projective space RP 4. Since RP 4 is a smooth manifold without boundary, this Euclidean

functional integral should be renormalized by the same local counterterms that define

the field theory on the sphere. We will discuss this interpretation in the next section.

6.3 The Wave Functional in the Antipodal Vacuum

We have seen that, with the exception of the Euclidean and Antipodal vacua,

field theory in an α vacuum cannot be renormalized by local counterterms. We now

want to investigate whether the Antipodal vacuum forms the basis for a sensible quan-

tum field theory. Certainly, the Euclidean functional integral on RP d is well defined.

However, it is not immediately apparent that the Green’s functions defined by this

functional integral have a Hamiltonian interpretation. The conventional reflection pos-
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itivity argument requires the reflected Euclidean points to be distinct from the points

themselves.

Indeed, it would appear that the Lorentzian version of the Antipodal universe

requires more renormalization than the corresponding Euclidean functional integral.

RP d is a smooth manifold without boundary and the Euclidean functional integral on

this manifold will be renormalized by the same local subtractions that are required

for the Euclidean functional integral on the sphere. However, the Lorentzian version

of the theory describes the evolution of a quantum field theory starting from a fixed

state at a sharp time. It has been known since the work of Symanzik[19] that in

renormalizable quantum field theories, the wave functional at a sharp time requires

additional renormalizations, above and beyond those which render the Green’s functions

finite. In modern parlance, the sharp time state introduces a boundary into the system

and one must introduce counterterms for all relevant boundary operators at the fixed

point of the bulk renormalization group.

Thus, it would seem that, if field theory is to be defined in the antipodal vac-

uum it requires additional definitions to determine the initial state. These remarks also

seem to indicate that the connection between the Lorentzian theory and the Euclidean

theory on RP d must somehow be valid only in the absence of boundary renormaliza-

tions. We have remarked that the Euclidean antipodal Green’s functions do not seem

to require additional subtractions. It is possible that this means that the Lorentzian

boundary conditions implied by continuation from RP d are automatically fixed points

of the boundary renormalization group.
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Indeed, the above discussion of boundary renormalization is valid for boundary

conditions of the form φ(t = 0, x) = φ0(x), which would define the Schrodinger wave

functional. We then think of the orbifold boundary condition as a restriction on the

allowed Schrodinger functionals. Perhaps , since the Lorentzian orbifold does not have

a geometric boundary, all boundary counterterms will vanish in such a state3. We

have not been able to determine the validity of such a conjecture. In particular, in

general field theories there would seem to be marginal and relevant boundary operators

which are not projected out by the orbifold condition. We do not understand why

additional counterterms proportional to these relevant operators are not generated by

the Lorentzian Feynman rules.

Even apart from these additional renormalization effects, the state defined

by the antipodal boundary conditions is somewhat singular. Classically, the field is

required to be invariant under simultaneous reflection in the global coordinate time and

spatial sphere. If we expand the field into spherical harmonics, then (for free field theory

in dS space) each mode φL is a time dependent harmonic oscillator, with a frequency

that is even under reflection about the point of minimal size. Under reflection in the

sphere, φL → (−1)LφL. Thus, invariance under the antipodal map is equivalent to the

quantum mechanical statement that the initial state is annihilated by φL for odd L and

by the conjugate momentum ΠL for even L. The quantum system is then studied as

a collection of time dependent oscillators, with these initial conditions, on the interval

t ∈ [0,∞]. Note that the quantum state defined by this boundary condition differs from
3TB thanks M. Douglas for a discussion of this point.
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the Euclidean state of the same system even for L → ∞. The dS No-Hair Theorem is

not applicable, and this state does not approach the Euclidean vacuum at large times.

Finally, we note that the deviation from the Euclidean vacuum for large L also

implies that the matrix elements of the renormalized stress tensor between states of the

form

a†L1
. . . a†Ln

|A > (6.28)

where |A > is the antipodal vacuum and the operators are its associated cre-

ation operators, will blow up as t → 0.

These additional divergences have little to do with renormalization. They are

more analogous to the singularities at particular places in Lorentzian momentum space

that one finds in the analytic continuation of renormalized Euclidean Green’s functions

in any field theory. That is, they represent real physical processes, rather than virtual

contributions to the effective action.

The consequence of these remarks is that, although the antipodal vacuum does

not suffer from the renormalization problems of the generic α vacuum, its physics is not

under control at t = 0.

6.4 Conclusion

We have investigated the perturbative renormalizability of quantum field the-

ories in rigid dS space, when the vacuum state of the free fields is chosen to be one of
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the non-Euclidean, dS invariant vacua. In general the renormalization program fails.

Non-local counterterms, involving products of fields at both points and their antipodes,

are necessary to render the interacting Green’s functions finite. Even if it were possible

to prove that this nonlocal renormalization program could be carried out to all orders

(which is by no means obvious) , the resulting theory would probably not have a Hamil-

tonian interpretation. We consider this as evidence that quantum field theory in generic

α-vacua does not make sense.

Apart from the Euclidean vacuum, the antipodal vacuum is the only one where

the non-local renormalization problem can be avoided. This vacuum state can be in-

terpreted in terms of field theory on an orbifold of dS space, in which the non-local

operators are local. It is possible that the resulting theory is just the analytic contin-

uation of the Euclidean functional integral on RP d, though one would have to do a

more thorough study of boundary renormalizations in the Lorentzian orbifold in order

to prove this.

Independently of this renormalization problem, there are clearly divergent ma-

trix elements of local operators like the stress tensor on the fixed plane t = 0 of the

Lorentzian orbifold. If we tried to couple gravity to the system this would lead to large

back reaction effects. At the very least, a straightforward perturbative approach to the

system would fail. Back reaction effects and the failure of the semiclassical approxima-

tion in general α-vacua are discussed in more detail in [15].
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Chapter 7

Microscopic Quantum Mechanics of the

p = ρ Universe

7.1 Introduction

A little over two years ago, two of us (TB and WF) introduced a new approach

to cosmological initial conditions called holographic cosmology [20]. The basic principle

on which it was based is the holographic entropy bound [21][22]. In a Big Bang cosmol-

ogy, the bound implies a finite entropy for any causal diamond1 whose future boundary

is a finite timelike separation from the Big Bang. This entropy decreases to zero as

we approach the initial singularity. We interpreted this entropy as the entropy of the

maximally uncertain density matrix for measurements done inside the causal diamond,
1In fact, all of our previous work referred instead to the causal past of a point. Raphael Bousso has

repeatedly emphasized the greater virtues of causal diamonds (where every point can be both seen and
influenced by an observer) and we have realized that all of our actual formulae could be taken to refer
to causal diamonds rather than causal pasts.
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a conjecture with several attractive features.

Our approach led us both to a tentative set of rules for defining a general

quantum space-time, and to a heuristic approach to the Big Bang singularity. In this

paper we close the circle of these ideas. We find a solution of the consistency conditions

we have formulated for quantum cosmology, which behaves qualitatively like the dense

black hole fluid which was the basis for our heuristic description.

The mathematical formalism which we will present in this paper was alluded

to in several of our previous publications [23]. It is motivated by the results of Belinskii,

Khalatnikov and Lifshitz (BKL) and subsequent workers, which suggest that dynamics

near a Big Bang singularity is chaotic [24]. This leads us to postulate that the time

dependent Hamiltonian near the Big Bang, is, at each instant chosen independently

from a certain random distribution of Hamiltonians. We will describe the distribution

in more detail in section 3. For large causal diamonds, this hypothesis leads to a

time independent spectral density for the time dependent Hamiltonian; that of a 1 + 1

dimensional conformal field theory. Thus, the system is given a random kick at each

time, but the spectral density of the time dependent Hamiltonian approaches a universal

limit. The energy/entropy density relation σ ∼ √
ρ of this system is precisely that of

our heuristic black hole fluid, and is the relation following from thermodynamics and

extensivity in any dimension, for a fluid with equation of state p = ρ.

Guided by this correspondence, we argue that the energy per unit length of the

1+1 dimensional system should be taken as the space time Hamiltonian for an observer

in a given causal diamond in the p = ρ background. Using the transformation between
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entropy and cosmological time, we show that this observer, in most of the states of the

1 + 1 dimensional system, sees an energy precisely equal to the mass of a horizon filling

black hole.

We then show that the basic structure of our quantum formalism allows us to

derive the d dimensional space time metric, which is a flat FRW universe with perfect

fluid matter satisfying the equation of state p = ρ. The scaling symmetry of the 1 + 1

CFT is reinterpreted as invariance of the dynamics under the conformal Killing vector

of this cosmology. This symmetry was crucial to our derivation [20] of a scale invariant

fluctuation spectrum for the cosmic microwave background.

We have structured this paper in the following manner: In the next section we

present a general framework for the local quantum dynamics of gravitational systems.

The formalism associates operator algebras with causal diamonds in a space time. The

details of the mapping depend on the nature of the boundaries of space time. The

fundamental quantum variables are associated with holographic screens for a causal

diamond by the Cartan-Penrose [25] equation. Heuristically, we view them as “quantum

pixels on the holographic screen of a causal diamond”. They transform as spinors

under local Lorentz transformations and inherit a natural Z2 gauge invariance from the

classical CP equation. We use this gauge symmetry to transform them into fermions,

explaining the conventional connection between spin and statistics.

In Section 3 we apply this general formalism in cosmology. We argue that it

introduces a natural arrow of time. The relation between this and the thermodynamic

arrow of time must be derived at a later stage. We suggest that a random, time depen-

60



dent dynamics is the proper description of physics near the Big Bang, and propose a

particular class of random Hamiltonians for this purpose, with results outlined above.

In the conclusions we recall the outline of our heuristic description of holo-

graphic cosmology and its application to observational cosmology. We sketch a program

for deriving the assumptions and parameters of the heuristic picture from the mathemat-

ical formalism presented in this paper. We also introduce a more general model which

describes a “gas of causally disconnected, asymptotically de Sitter (dS) universes” em-

bedded in a p = ρ background. Such a model can implement the anthropic principle for

the cosmological constant, without requiring other parameters of low energy physics to

be anthropically selected.

7.2 Local framework for a holographic theory of quantum

gravity

Thirty years of work on perturbative and non-perturbative formulations of

string theory, have presented us with ample evidence for the holographic nature of this

theory of quantum gravity. Every gauge invariant quantity in all versions of the theory,

refers to an observable associated with the conformal boundary of a spatially infinite

space-time.

There is a simple intuitive argument, which suggests why this should be the

case. A theory of gravitation must describe the apparatus which might measure any

given prediction of the theory, because all physical objects gravitate. In a quantum
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theory, this is problematic, because the mathematical predictions of quantum theory

refer to limits of measurements made by an arbitrarily large measuring apparatus. In

a theory of gravity, such a measuring apparatus would have large effects on the system

being measured unless it were moved an infinite distance away. This suggests that the

pattern we have observed in string theory is an inevitable consequence of the marriage

of gravitation and quantum mechanics. All gauge invariant observables in a quantum

theory of gravity describe the response to measurements made by infinite machines on

infinitely distant surfaces. String theory in asymptotically flat, asymptotically AdS,

and asymptotically linear dilaton space-times obeys this rule.

Stringy evidence and simple physical intuition thus both point to the impos-

sibility of defining gauge invariant quantities for local systems. But the necessity of

describing a real world, which is cosmological in nature, suggests that we need a more

local description of physics. This can be reconciled with the arguments above only by

recognizing that no local description will be gauge invariant.

Indeed, this is a lesson we have already learned from attempts to quantize

gravity in the semi-classical approximation. In order to define a concept of time and

a quantum mechanics with unitary time evolution in this framework, we must choose

a classical background solution [26]2. The background plays the role of the infinite

measuring device that we need to define a gauge invariant notion of time. The resulting
2The examples of the relativistic particle and world sheet string theory (viewed as two dimensional

gravity) show that one can quantize a generally covariant system beyond the semiclassical expansion
only by second quantizing it. This evidence suggested the notion of Third Quantization, but there is
no consistent formulation of a Third Quantized theory above two dimensions. Practitioners of loop
quantum gravity have also encountered the unitarity problem of the Wheeler DeWitt equation. They
tend to either put it off to future research, or try to live with non-unitary time evolution.
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formalism is quantum field theory in curved space-time. Time evolutions defined by

different classical solutions, or even by different coordinatizations of the same classical

solution, do not commute with each other and cannot be easily reconciled. This leads

to the notion of Black Hole Complementarity, which gives a conceptual (though not yet

a mathematical) resolution of the black hole information paradox. Two of us (TB and

WF) generalized this to Cosmological Complementarity for Asymptotically dS (AsdS)

space-times, and E. Verlinde has suggested the name Observer Complementarity to

describe general space-times with event horizons.

Quantum field theory in curved space-time leads to the familiar paradox of

black hole decay, and fails decisively in the presence of space-time singularities. The

evidence is that the same is true for weakly coupled string theory, which also relies on

a classical space-time background. We need a better way.

For some time, the present authors have felt that the fundamental clue to a

local formulation of quantum gravity could be found in Bousso’s general formulation

of the holographic principle [27]. A fundamental notion in Lorentzian geometry is the

concept of causal diamond. This is the region of intersection of the causal past of a point

P with the causal future of a point Q which is in the causal past of P . The covariant

entropy bound implies that for any causal diamond, the entropy that can flow through

its boundary is bounded by the area of the maximal area d−2 surface on the boundary.

We have conjectured [28] that in the quantum theory of gravity, this entropy should be

associated with the logarithm of the dimension of the Hilbert space necessary to describe

all measurements done inside the causal diamond. In every Lorentzian space-time, the
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covariant entropy bound for a causal diamond, is finite for sufficiently small time-like

separation between P and Q.

Of course, finiteness of the entropy of a density matrix does not by itself imply

that the Hilbert space of the system is finite. But finite entropy density matrices in

infinite systems, rely on special sets of operators (typically the Hamiltonian) whose

spectrum defines a natural restriction of the Hilbert space. Our general discussion

of quantum gravity suggests that a local description should contain no such special

operators. That is, in general we expect the Hamiltonian of a local observer to be time

dependent, and different observers will have different, generally non-commuting, time

dependent Hamiltonians. The only natural density matrix, whose definition does not

depend on a special operator, is the unit matrix.

The finite dimensional Hilbert space conjecture meshes with the arguments

above, because a finite dimensional system cannot describe the infinite machines which

make operational sense of the precise mathematical predictions of quantum theory.

Thus we view a small causal diamond as defined in quantum theory by a (generally

time dependent) Hamiltonian on a finite dimensional Hilbert space. Since such a sys-

tem can never make arbitrarily precise measurements on itself, its Hamiltonian and

other observables cannot be fixed. That is, given the a priori restriction on the pre-

cision of measurements, we will always be able to find many alternative mathematical

descriptions, which agree up to the specified level of precision allowed by the size of the

causal diamond. We view this statement as the quantum origin of the Problem of Time
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in semiclassical general relativity3 and we view any given Hamiltonian description of

a causal diamond as a gauge fixing. The aptness of this metaphor will become more

apparent as we get deeper into the formalism.

We have not yet pointed out the most important aspect of our conjecture,

namely that it provides a derivation of a notion of locality from the holographic prin-

ciple itself. Indeed, what could it mean to assert the finiteness of the operator algebra

associated with a causal diamond, if not the statement that it formed a tensor factor of

the operator algebra of the entire space-time? The operators of the causal diamond D

commute with all other operators necessary to describe the physics in any larger causal

diamond D′ containing D.

The algebraic formulation of quantum field theory similarly assigns an operator

algebra to each causal diamond. The field theory operator algebras are all infinite, and

the detailed relation between algebraic and space-time structure will be different than

what we propose here. However, the similarities of the two frameworks may eventually

provide us with a better understanding of how field theory arises as a limit of a real

theory of quantum gravity.

7.2.1 The hilbert space of an observer

The basic idea of our program is to use the holographic conjecture about the

dimension of the Hilbert space of a causal diamond, to translate geometrical concepts

into quantum mechanics. We urge the reader to think of the geometrical pictures as
3More generally, it is the quantum origin of general coordinate invariance.
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“guides to the eye” at this stage, and to think of the quantum formalism as fundamental.

At a later stage, one would hope to obtain a mathematical derivation of the rules of

Einsteinian geometry from the quantum formalism. In this paper, we will provide one

example of such a derivation, in a very special case.

We will use the word observer to denote a large, localized quantum system,

which is capable of carrying out “almost classical” measurements on its environment.

Any such observer will follow a timelike trajectory through space-time. We can describe

this trajectory in terms of causal diamonds in the following manner. First consider

space-times such that the observer’s trajectory has infinite timelike extent in both past

and future. Pick a point P on the trajectory and a segment of equal length to the past

and future of P . Take the causal diamond defined by the endpoints of this segment. As

we make the interval smaller, the FSB area of this diamond gets smaller. If we want to

associate this area with the logarithm of the dimension of a Hilbert space, this process

must stop at some smallest length. Let K be the dimension of this smallest Hilbert

space. We will make a proposal for K in a moment.

Now we extend the interval around the point P , until the area of the causal

diamond has increased by the logarithm of the dimension of K4. By continuing this

procedure, we describe the information that can be measured in experiments done by

an observer in terms of a sequence of Hilbert spaces, HN of dimension (dimK)N . This

corresponds to a sequence of causal diamonds, as shown in Fig. 7.1. The entropy of
4One could imagine a formalism in which one changes the dimension of the Hilbert space by one

at each step. It is harder to describe this in terms of an attractive operator algebra. Our motivation
for tensoring in a fixed Hilbert space at each step is the concept of a holographical pixel, to be defined
below.
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the maximally uncertain density matrix for this system is N ln(dimK). This is to be

identified with one quarter of the area of the causal diamond in Planck units.

For Big Bang cosmologies, we can do something similar, but it is convenient

to choose causal diamonds whose past tip lies on the Big Bang, and extend them only

into the future. The smallest causal diamond for any observer, is that observer’s view

of the Big Bang hypersurface. Note that it will be completely finite. In our view,

the Big Bang looks singular in general relativity, because one is thinking of the theory

as a field theory and trying to describe all of the degrees of freedom of that theory

in each horizon volume. The holographic principle suggests instead that near the Big

Bang surface, small causal diamonds contain very few degrees of freedom, and have a

completely non-singular quantum description.

Although the quantum mechanics of a causal diamond is always independent of

that in other causal diamonds in the same space-time5, one should not imagine that the

initial state in a generic causal diamond is pure. Interactions to the past of the diamond

could have entangled its degrees of freedom with those of other disjoint diamonds. Our

fundamental cosmological hypothesis will be that the state in a causal diamond whose

past tip is on the Big Bang, is pure. This corresponds to the familiar notion of particle

horizon. All quantum correlations between the degrees of freedom of the system are to

be generated by the dynamics, rather than put in as initial conditions.

We would like to emphasize that this hypothesis introduces the Arrow of Time
5That is, the Hilbert space of a causal diamond contains all the degrees of freedom necessary to

describe measurements in that region. There will be mappings between the Hilbert spaces of different
causal diamonds, and consistency relations among the different time evolution operators.

67



as a fundamental input to the definition of cosmology. That is, we could define both

Big Bang and Big Crunch cosmologies (with, for simplicity, a past or future with the

asymptotic causal structure of Minkowski space), in terms of semi-infinite sequences of

Hilbert spaces. However, in the Big Bang case, the initial conditions would be subject to

our purity constraint for causal diamonds whose tip lies on the singularity. By contrast,

in the Big Crunch, the initial conditions would be described in terms of scattering data

in the remote past. Even if we discussed finite causal diamonds whose future tip lay

on the Big Crunch, it would not make sense to assume the final state in those causal

diamonds was pure. It has been correlated with the states in each other causal diamond,

by the evolution of the scattering data down to the singularity. Thus we contend that

the intrinsic formulation of a theory of quantum cosmology, forces us to introduce a time

asymmetry, when there is a cosmological singularity6.

The causal diamond formalism automatically introduces an ultraviolet energy

cutoff, because it discretizes the time step. Notice however that the cutoff is not uniform

in time. In a region of space-time (and a given foliation) where the spatial curvature is

negligible, the area of causal diamonds scales like the proper time to the d − 2 power.

So a fixed area cutoff, corresponds to a finer and finer slicing of proper time, as N

increases. To get an intuitive feeling for this scaling note that it is the same as what one

gets by applying the time energy uncertainty relation and saying that the time step is

the inverse of the energy of the largest black hole that can fit in to the causal diamond
6If there is a reasonable description of a universe which undergoes a Big Bang followed by a Big

Crunch, the time direction will be specified by the purity constraint. We would describe such a universe
in terms of pure states in causal diamonds with their tip on the Big Bang. The range of N would be
finite, and only the last causal diamond in the sequence would touch the Big Crunch.

68



at step N7.

Note that, while we have introduced geometrical notions (area), our construc-

tion says nothing as yet about the actual geometry of space-time. One can introduce

trajectories via sequences of causal diamonds with fixed area step, in any Lorentzian

space-time. Certain global aspects of the space-time are encoded in the behavior of HN

for large N . In space-times with asymptotic causal structure like that of Minkowski

space, the area of the causal diamond goes to infinity continuously as the time-like

separation between its tips goes to infinity. In asymptotically AdS space-times, the

area goes to infinity at finite time-like separation, when the causal diamond hits the

time-like boundary of AdS. After that point the operator algebra becomes infinite and

is equal to the algebra of conformal fields on the boundary, smeared with functions of

compact support in boundary time. In asymptotically dS spaces, we expect the opera-

tor algebra to remain finite even in the limit of infinite proper time. We have already

discussed the modification of the formalism necessary to the description of space-times

with cosmological singularities. Thus, the boundary geometry of space-time affects the

nature of the index set N (in AdS, the mapping between N , which counts area, and

time, becomes singular at a finite time. After this point, the time becomes a continuous

parameter while the area is infinite). In asymptotically dS space-time we can choose

N to parametrize a discrete global time. Then N is allowed to go to infinity, but we

stop adding degrees of freedom at a finite value of N). More generally, we expect the
7Here and henceforth, we will use a rough definition of a black hole as a localized concentration of

energy and entropy, which maximizes the entropy for a given energy. We are aware that none of these
concepts has an absolutely rigorous definition in general relativity.
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geometry to emerge from an interplay between area and the time evolution operators

in each Hilbert space HN .

In each Hilbert space, we postulate a sequence of unitary operators

UN (k) ≡ e−iHN (k) for 1 ≤ k ≤ N . In a Big Bang space-time UN (k) is supposed to

represent the evolution of the system between the future tips of the k-th and (k− 1)-th

causal diamond.8 Here we encounter the first of the fundamental consistency conditions

of quantum gravity. The Hilbert space HN contains a tensor factor isomorphic to HK

for K < N . Inside this factor the dynamical description of the later observer, must

coincide with its own past history. That is

UN (k) = UK(k)⊗ VNK(k), (7.1)

for k ≤ K. We should view the operator VNK(k) as describing the dynamics of degrees

of freedom, which are, at time k, not observable by the observer under discussion. It

acts only on the tensor complement ofHK in HN . It will become important when trying

to make the dynamics consistent with the descriptions given by other observers.

We hope that this discussion of the Hilbert space of a single observer has been

relatively easy to follow. By contrast, it is extraordinarily difficult to get one’s head

around the consistency conditions relating observers with different time-like trajectories.

We attack this question by first introducing the p = ρ cosmology, where there is a

simple solution of all of the consistency conditions. Only at the end of our discussion

of this cosmology will we return to the consistency conditions in a general space-time.
8From now on we will concentrate on the cosmological case. Much of the discussion has an obvious

generalization to other boundary conditions.
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First however, we introduce our parametrization of the operator algebras in terms of

holographic pixels, and define the Hilbert space K.

7.2.2 SUSY and the holoscreens: the degrees of freedom of quantum

gravity

We now want to make an ansatz for the Hilbert space K which will connect

our formalism to Riemannian geometry. If we associate the degrees of freedom with the

holographic screen of a causal diamond, then the most fundamental thing that occurs

when we increase the size of the diamond is that we “add a pixel” to the screen. The

minimal new information must tell us about the size and orientation of that pixel, and

about the null direction along which information from the bulk is projected onto the

pixel.

There is a classical geometrical description of the orientation of a holographic

screen in terms of pure spinors [25]. A pure spinor in d dimensions satisfies

ψ̄γµψγµψ = 0 (7.2)

The defining equation is homogeneous and classically one views two pure spinors as

identical if ψ1 = λψ2, where λ is real or complex depending on the reality of the

spinor representation. In 3, 4, 6 and 10 dimensions, a general spinor in the smallest

irreducible spinor representation of the Lorentz group is automatically pure. The CP

equation comes up repeatedly in superstring theory, particularly in the super-embedding

approach [29].

71



The CP equation defines neither the position nor the size of the holographic

pixel. Only the direction of the null vector and the orientation of its screen are fixed.

This is in accord with the intuition that metrical notions, like area, are measured in

Planck units, and should not appear until we quantize the theory.

To quantize the pixel variable ψ, we first note that it has half the components

of a general Dirac/Majorana spinor (we impose Majorana conditions in those dimensions

in which they exist). Denote the non-vanishing components as Ŝa. They transform as

the spinor representation of SO(d − 2), the transverse rotation group which leaves nµ

invariant. Note that in choosing to quantize only the physical components of the pure

spinor, we are partially choosing the gauge for local Lorentz invariance, leaving over

only an SO(d−2) subgroup. Quantization of the pixel variable is dimension dependent.

In the remainder of the paper, we will treat p = ρ universes with arbitrary dimension,

but in order to be specific, we will here discuss only the case d = 11 , where Ŝa has 16

real components. The finite Hilbert space K of the previous section will be identified

with the Hilbert space of a single quantized pixel. The most general SO(9) invariant

quantization rule, which is representable in a Hilbert space with a finite number of states

is

[Ŝa, Ŝb]+ = 2δab (7.3)

Note that this rule breaks the projective invariance of the classical CP equation,

except for a Z2 subgroup. We view this residual Z2 as a gauge symmetry, which should

be implemented in the quantum theory.
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We now utilize these variables to construct the Hilbert spaces of the previous

section. For a single observer we add a single copy of the Ŝa algebra at each time step.

The new operators, Ŝa(N), commute with the operators, Ŝa(t); t < N , describing the

smaller causal diamond at the previous time step. The Hilbert space we tensor in is the

irreducible representation of this Clifford algebra. It is easy to satisfy the consistency

conditions for the evolution operators, by choosing HN (k), N > k, to be a sum of two

terms. The first depends only on the Ŝa(t) for t ≤ k, and the second only on those with

t > k. The first term is chosen equal to Hk(k).

Z2 gauge invariance is guaranteed by choosing each Hamiltonian to contain

only even polynomials in the pixel operators. We can then perform a Z2 gauge trans-

formation, to define new variables by

Sa(n) = (−1)FnŜa(n), (7.4)

where (−1)Fn is the product of all of the Ŝk for k 6= n. We then obtain the fermionic

algebra

[Sa(m), Sb(n)]+ = 2δabδmn (7.5)

Fermi statistics is thus seen to be a quantum remnant of the projective invari-

ance of the CP equation, and the spin statistics connection is built in to our formalism9

9The cosmology we will describe in this paper has no particle excitations, so the relation between
these fermionic commutation relations and the statistics of particles will not be evident. In [30] one of
the authors will present a holographic description of 11 dimensional SUGRA in flat space-time which
will exhibit the precise connection.
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Later, when we speak of maps between Hilbert spaces corresponding to spa-

tially separated, but overlapping causal diamonds, H(D1) and H(D2) we will view these

maps as implemented by isomomorphisms between subalgebras of the pixel operators

on each Hilbert space. Note that these need not be linear mappings between the gener-

ators. We can find non-linear functions of the pixel operators, which satisfy the same

Clifford algebra. The homomorphism might be a linear map between the fundamental

pixel operators of one Hilbert space, and such “composite” pixel operators in another.

7.2.3 Rotation invariance

A model of a homogeneous isotropic universe, should be invariant under spatial

rotations. In our 11D example, the 16 real Sa operators transform as a spinor of SO(9)

but not of SO(10). There is an analogy, which we believe will be helpful in understanding

rotation invariance [30], between the Sa(n) operators and sections of the spinor bundle

over the 9-sphere. Any such section is given locally, by a map Sa(Ω), from the sphere to

the spinor representation of the SO(9) which preserves a point Ω. We should think of

the Sa(n) as finite dimensional analogs of sections of the spinor bundle over the sphere.

The seminal idea of non-commutative geometry [31] is to replace the commu-

tative C∗ algebra of continuous complex valued functions on a manifold, with a general

non-commutative C∗ algebra. In particular, if we choose finite dimensional matrix al-

gebras we obtain fuzzy spaces. Particular infinite sequences of matrix algebras lead to

fuzzy approximations to Riemannian manifolds.

In non-commutative geometry, the concept of vector bundle is replaced by
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the (equivalent in the commutative case) notion of a projective module. A projective

module R over an associative algebra A is a representation of A with the property that

there exists another representation R̄ such that R ⊕ R̄ = Ap, where the power means

pth tensor product of the regular representation of A on itself by left multiplication.

This is the analog of the existence of an anti-bundle V̄ for each vector bundle V over a

commutative manifold, such that V ⊕ V̄ is trivial.

Our Sa(n) variables should belong to an operator valued projective module

for a finite dimensional associative algebra on which SO(10) acts. Finite dimensional

representations of the Clifford-Dirac algebra γM of SO(10) are examples of such fuzzy 9

spheres. The smallest one is given by the irreducible representation of the Clifford-Dirac

algebra and has real dimension 32. In formulas below, we will use this doubling of the

indices of Sa(n) to ensure SO(d− 1) rotation invariance.

We will not pursue these rotational properties further in this paper, but note

merely that they may be helpful in resolving a puzzle we will encounter later.

7.3 Quantum cosmology of a dense black hole fluid

7.3.1 The random operator ansatz

We now want to present a complete solution of the general constraints on

quantum cosmology. We will argue that this solution corresponds to a flat FRW universe

with equation of state p = ρ. This is the system which we have studied heuristically in

previous publications under the name of “a dense black hole fluid”. The mathematical
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analysis of this section will, we believe, amply justify that colorful terminology. We

emphasize that we are presenting this solution of the constraints before making a general

statement of what the constraints are. We hope that this order of presentation will help

readers to understand the general construction.

A fundamental clue to our mathematical formalism is the result of BKL [24]

that the dynamics of general relativity near a space-like singularity is chaotic. This

suggests that the quantum theory should be described by a random Hamiltonian. The

causal diamond formalism and its description in terms of fermionic holopixels suggests

a particular ensemble of random Hamiltonians.

Let us begin by considering the quadratic term in the Hamiltonian HN (N). It

has the form

H
(2)
N (N) = i

1
N

Sa(n)hmnSa(m) ≡ 1
N

HFT , (7.6)

where hmn is a real anti-symmetric N×N matrix. We have imposed SO(d−1) invariance

by using the invariant scalar product on the component indices of S10. Our ansatz will

be to choose h to be a gaussian random matrix with the standard probability distribution

P (h) = eNtrh2
. For large N the distribution is described by a master field, with spectral

density given by the Wigner semi-circle law, ρh(x) =
√

1− x2. The distribution is flat

near the origin and has a cutoff of order one for its eigenvalues. It then follows that

the large N thermodynamics of HFT ≡ NH
(2)
N (N) is that of a free 1 + 1 dimensional

10Here we are assuming that the appropriate fuzzy spinor bundle is just the direct sum of copies of
the minimal one in which we double the indices of Sa to extend it to an SO(d− 1) representation. This
doubling should be understood in the above formula. It may be that this missing factor of d − 2 we
encounter below is an indication that this is the wrong choice.
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fermionic field theory [32]. The entropy is of order N , the eigenvalue spacing is of order

1
N . Thus HFT should be viewed as a 1 + 1 dimensional free fermion system with UV

cutoff of order 1, living on an interval of length of order N . The 1 + 1 dimensional

entropy and energy densities are related by σ1+1 ∝ √
ρ1+1. We will identify these as the

space-time entropy and energy densities of our cosmology. This equation of state would

be appropriate for an FRW universe with equation of state p = ρ. Before pursuing this

relationship, let us extend our ansatz for the basic Hamiltonian.

The thermodynamics of this system is dominated by the IR physics of 1 + 1

CFT. This will be unchanged by a wide class of perturbations of HFT . Indeed, the only

relevant perturbations of this system are the fermion mass and the marginally relevant

four fermi operators. Our random matrix ansatz has automatically set the fermion

mass to zero. The marginally relevant perturbations are marginally irrelevant if their

sign is appropriately chosen. Thus we can add to HFT an arbitrary even function of

the pixel operators of degree ≥ 4, whose coefficients in the eigenvalue basis of hN are

smooth functions of the eigenvalue in the large N limit, as long as the sign of the quartic

terms is chosen correctly. We see that a very wide class of random Hamiltonians for

our system, will have identical large N thermodynamics. Thus, our full ansatz for the

cosmological time evolution is that for each N we make an independent choice of random

Hamiltonian, HN (N), from the distribution defined in the last two paragraphs.

The operators HN (k) with k < N are partially fixed by the requirement that

HN (k) = Hk(k) ⊗ 1 + 1 ⊗ ON (k), where ON (k) depends only on the variables Sa(t)

with N ≥ t > k. The universe experienced by the observer in this causal patch is
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unaffected by the choice of these operators. One might however have thought that

they were constrained by the spatial overlap conditions. For our choice of overlap

conditions in the p = ρ universe, this turns out to be untrue. The ON (k) are completely

unconstrained. We suspect that this might not be the case for more general space-times.

We will see below, that although our ansatz reproduces the scaling laws of the p = ρ

universe, it fails to reproduce certain more refined features of the geometry. This leads

us to surmise that the ansatz needs to be modified. The necessary modification is likely

to require us to specify ON (k).

A full definition of a quantum space-time must include the descriptions of other

observers. A coordinate system can be thought of as a way of covering space-time by

the trajectories of observers. We will choose time-like observers and will choose a time

slicing such that at a given time, along any trajectory defining our coordinate system,

the area of the maximally past extended causal diamond is the same. We call this

equal area slicing of a Big Bang space-time. At (say) the initial time the ends of the

trajectories form a lattice. We specify the topology of this spatial slice, including its

dimension by choosing a particular topological lattice. For simplicity of exposition, we

will choose the d − 1 dimensional hypercubic lattice. At large N this choice will not

matter and our ansatz would work for any lattice with the same continuum topology.

Each trajectory is specified by a sequence of Hilbert spaces and unitary op-

erators as above. Two neighboring trajectories would correspond to two overlapping

sequences of causal diamonds, as shown in Fig. 7.2 . A priori one could imagine mak-

ing independent choices of Hamiltonian at each point on the spatial lattice. We will
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argue that this is inconsistent with the random operator hypothesis, and that in fact the

sequence of Hamiltonians defining a given observer will be identical at all spatial points.

Only the initial state can differ from point to point. Indeed, the causal diamonds of two

trajectories will generally have an overlap Fig. 7.2 . The overlap will not be a causal

diamond, but will contain some maximal area causal diamond. It is reasonable to pos-

tulate that the information which could be accessed in the overlap can be encoded in a

Hilbert space which is (isomorphic to) a tensor factor in each of the individual causal

diamond Hilbert spaces. Furthermore, if we look at the actions of the time evolution

operators of the individual diamonds, on this common factor space, they must agree.

Since there are many such overlaps, this is a very strong constraint on the dynamics.

In the p = ρ cosmology, our ansatz for spatial overlap Hilbert spaces is simple

and general. If we consider two Hilbert spacesHN (x) andHN (y) which are s steps away

from each other on the lattice, we choose the overlap to be HN−s(x) = HN−s(y). In

finer detail, we identify the individual Sa(t,x) operators, with their counterparts in the

Hilbert space at y. If we now require that the Hamiltonian evolutions of each sequence

of causal diamonds are identical, then all of our consistency conditions are satisfied, in

the following sense. For each geometrical overlap between causal diamonds, we have

defined a Hilbert space and a sequence of time evolution operators, which purports to

describe the physics in the overlap region of space-time. The overlap Hilbert space is

a tensor factor in each of the individual observer’s Hilbert space. Furthermore, the

dynamics in this tensor factor is consistent with that defined by either of the individual

observers.
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It seems likely, but we have not been able to prove, that there is no other

solution of the overlap conditions which would be compatible with each observer having

a random sequence of Hamiltonians.

7.3.2 Homogeneity, isotropy and flatness

Our construction is homogeneous on the spatial lattice. We have built isotropy

into our construction in a formal way, by insisting on SO(10) invariance. The overlap

rules give us further indications that our system is isotropic. We will have occasion

to refer both to the Euclidean distances and angles on our hypercubic lattice, and the

actual Riemannian distance in the space-time metric we claim to be constructing. The

reader should be careful to keep these two ideas completely separate. We have defined a

space-time lattice with lattice points labeled (N,x). Define the base of the causal past

of the point (N,x) to be the set of all points on the lattice, whose Hilbert space at time

N has an overlap with HN (x). According to our overlap rules, the boundary of this

set is given by the endpoints of walks on the lattice, starting at x and increasing the

Euclidean distance on the lattice at each step. The base of the causal past thus forms

a hypercube oriented at forty five degrees to the coordinate axes. Each step along the

walk reduces the area of overlap by one unit, and so should be thought of as increasing

the Riemannian distance by some (N dependent) unit. Thus, the boundary of the base

of the causal past consists of points which are the same Riemannian distance away

from x.

Think of a carpenter’s ruler which follows a walk along the lattice to the
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boundary of the base of the causal past. The map between the coordinate (lattice)

space and the real geometry, is given by “straightening out the carpenter’s ruler”. The

tilted hypercube is mapped into a sphere.

We have thus derived homogeneity and isotropy of our cosmology from our

definition of the overlap rules. Given the non-compact topology of the lattice, the

spatial curvature is non-positive. There are three different arguments that it is zero.

The first is simply that our model saturates the entropy bound. At any given late time,

the excited states of our system are generic states of the Hilbert space, because they are

obtained by the action of a sequence of random Hamiltonians. We know that even the

maximally stiff equation of state p = ρ cannot saturate the entropy bound in a universe

of negative curvature.

The second argument for flatness also shows us that our spin connection is

Riemannian. The overlap conditions have forced us to identify the Sa operators in

Hilbert spaces at different points. Thus, the parallel transporter is the identity in

SO(10) and the curvature of the spin connection vanishes.

Finally, note that for large N the spectrum of our system has a scaling symme-

try because it is that of a 1+1 CFT. If it is to be identified with an FRW universe, that

universe should have a conformal isometry corresponding to the symmetry11. Such an

isometry exists for any FRW universe with flat spatial sections and a single component

equation of state. Curved spatial sections introduce a scale and such geometries do not

have a conformal isometry.
11We also learn that the “matter” in this universe must be invariant under this conformal isometry.
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The last argument can be stated in another way. We have defined a sequence

of physical spheres, the causal boundaries at time N on our d−1 dimensional coordinate

lattice. If the spatial geometry were curved, we would expect to see a scale, the radius

of curvature, at which the behavior of the geometry changed. As we take N to infinity

we will sweep through this scale. However, the dynamics does not have such a scale in

it. It becomes scale invariant for large N .

To summarize, we have shown that the random Hamiltonian ansatz, which

obeys our consistency conditions for a quantum cosmology, gives a spatial geometry

which is homogeneous, isotropic and flat. It also obeys two laws which suggest that it is

in fact the quantum realization of p = ρ cosmology. The entropy bounds are saturated

for all time, and the energy entropy relation of an extensive p = ρ fluid is valid at all

times. In the next subsection we will provide further evidence that this is the right

interpretation of our system.

7.3.3 Time dependence - scaling laws

In order to discuss the time dependence of our geometry, we have to identify the

conventional cosmological time parameter in terms of the parameters of our quantum

system. In any flat FRW cosmology, the area of causal diamonds at cosmological time

t, scales as td−2. Thus, we should write N ∼ td−2. The logarithm of the N dependent

time evolution operator is −i∆NHN , where ∆N is N independent. Writing

∆N ∼ td−3∆t (7.7)
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we see that the cosmological time dependent Hamiltonian is

H(t) ∼ N
(d−3)
(d−2) HN (7.8)

HN (N) is the Hamiltonian as viewed by an observer in a given causal diamond. To the

extent that one can really talk about such an observer in the heuristic picture of a dense

black hole fluid one views it as hovering about the maximal black hole at a distance of

order its Schwarzchild radius. The energy of the system is just the energy of the black

hole for such an observer. In our quantum mechanical model, for most states of that

system, the energy per unit length is of order 1 (i.e. N independent). Thus

H(t) ∼ N
(d−3)
(d−2) (7.9)

This implies that the local cosmological observer sees an energy which scales like the

mass of the maximal black hole, exactly as required by our heuristic picture. Note that

this calculation works in any dimension.

We can get further confirmation by noting that we have outlined an order

of magnitude calculation of the physical size of the particle horizon in the previous

subsection. It is N lattice steps in coordinate space, while the UV cutoff scales like

N
− (d−3)

(d−2) . Thus, the physical size of the particle horizon scales like N− 1
d−2 . Since the

spatial geometry is flat, this implies a horizon volume

VH ∼ N− d−1
d−2

The cosmological energy density is obtained by dividing 7.9 by this volume. Thus,
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ρ ∼ N− 2
d−2 ∼ 1

t2
(7.10)

where at the last stage we have again used the relation between entropy and cosmological

time. Similarly, the total entropy is N so the entropy density is

σ ∼ N− 1
d−2 ∼ 1

t
(7.11)

Thus, we have obtained both the σ ∼ √
ρ equation of state of the p = ρ universe, as well

as the 1
t2

dependence of energy density, usually derived from the Friedmann equation,

from a purely quantum mechanical calculation.

7.3.4 Time dependence: a consistency relation, and a failure

Another interesting geometrical quantity is the area of the overlap causal di-

amond, as a function of N and of the geodesic separation between the trajectories. In

the Appendix 7.6 we calculate this area for a general flat FRW space-time. Not sur-

prisingly, it scales like ∆d−2 where ∆ is the geodesic separation. On the other hand,

in our quantum definition of overlap, the entropy in the overlap is (N − k)LS , where k

is the minimal number of lattice steps separating the tips of the two causal diamonds,

and LS = ln(dimK). The overlap entropy is linear in k. We have argued that for fixed

N , the number of steps is linear in the geodesic distance ∆.

This is not necessarily a contradiction. The quantum calculation is only sup-

posed to agree with the geometrical picture in the limit that N is large, and for causal

diamonds which have large area. The area of the overlap diamond decreases to zero
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as k → N . Thus, it might be reasonable to require agreement with geometry only for

k
N ¿ 1. In this limit, both expressions are linear in k and we can compare how they

scale with N .

Consider two diamonds in a flat FRW space-time, whose future tips lie at

conformal time η0. Let these two diamonds be separated by co-moving coordinate

distance ∆x. Then, according to our calculations in the Appendix 7.6, the area of the

maximal causal diamond which fits in their intersection is, to leading order in ∆x,

AGeo
int = A

(
1− d− 2

η0
∆x

)
(7.12)

To fit with the quantum mechanical picture, where the entropy associated with this

intersection is (N−k)Ls for two diamonds separated by k lattice steps , we must choose

A = 4NLs, and N
η0

(d−2)∆x = 1, for the co-moving separation corresponding to a single

step on our coordinate lattice. The geodesic distance at time η0

2 (the time of maximal

area on the causal diamonds) represented by a step is thus

∆d = a
(η0

2

) η0

N(d− 2)
(7.13)

There is now a consistency condition. We can compute the area of the causal

diamond at time η0 in two ways. On the one hand, in order to causally separate two

causal diamonds, we must, according to our overlap rules, move N steps on the lattice.

This indicates that the radius of the maximal sphere on the causal diamond is N
2 lattice

steps. This corresponds to an area
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A = Ωd−2

(
N

2
∆d

)d−2

(7.14)

Ωd−2 is the area of a unit d − 2 sphere. This area (in Planck units, and we have set

GN = 1) must be 4NLs. This gives us a second equation for ∆d

∆d =
2
N

(
4NLs

Ωd−2

) 1
d−2

(7.15)

Note that this has an attractive scaling property ∆d ∼ N− d−3
d−2 . We have

suggested that the proper time cutoff scales like the inverse of the energy of the maximal

black hole, which fits in a causal diamond. Here we find a spatial distance cutoff of the

same order of magnitude.

To compare the two expressions for ∆d we use the Friedmann equation for

p = ρ geometry to write

a
(η0

2

)
= a0

(
(d− 2)a0η0

2(d− 1)

) 1
d−2

(7.16)

We also express η0 in terms of the area, and thence the entropy

η0a0 = 2
d+1
d−1

(
NLs(d− 1)
(d− 2)Ωd−2

) 1
d−1

(7.17)

Plugging these expressions into 7.13 we obtain

∆d =
1

d− 2
2
N

(
4NLs

Ωd−2

) 1
d−2

(7.18)
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Thus, the two expressions for the geodesic distance scale the same, but differ by

a factor d−2. We have not been able to explain this discrepancy. It is clearly related to

the fact that the relation of overlap area to geodesic distance in geometry is A ∼ ∆d−2.

We suspect the discrepancy indicates the need for a slight modification of our overlap

rules, and is connected to another disturbing feature of these calculations. One might

have expected the numerical factors in the matching of geometry to quantum mechanics

would depend on the dimension of the pixel Hilbert space K, which in turn depends on

the space-time dimension. Further, one might have expected the overlap rules to have a

directional dependence on the lattice which should break the local SO(d−1) invariance

of the individual fermionic Hilbert spaces, leaving only a global SO(d − 1). Neither of

these expectations is realized in our current rules, and we expect that when the rules

are modified to take this into account, the discrepant factor of d− 2 will disappear.

We emphasize that the calculation of the area of overlaps does have consistent

scaling behavior with N . This is an independent check that our quantum system satisfies

the scaling laws of p = ρ geometry. In order to achieve this we had to insist on comparing

geometric and quantum predictions only at leading order in the area. For a more normal

space-time background this would probably not be sufficient to reproduce what we know

of the physics. The p = ρ fluid appears to be a system in which the laws of geometry

are satisfied only in a very coarse grained sense.

We have tried to find other detailed numerical comparisons between our quan-

tum formalism and space-time physics. Unfortunately they all seem to lead simply to a

definition of constants in the quantum formalism. We record these calculations in the
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Appendix 7.6.

7.4 More general space-times

The general kinematic framework for discussing holographic space-times is very

similar to what we outlined above. We will distinguish two different kinds of temporal

asymptotics: Scattering universes and Big Bang universes. Big Crunch space-times pose

additional problems, which we will ignore in this paper.

A Scattering universe has past and future asymptotics which are describable

in terms of QFT in curved space-time. That is to say, in both the past and the future

there is a complete set of scattering states, which may be viewed as localized excitations

propagating on a classical geometry. The Penrose diagram of a true scattering universe

will be like that of Minkowski space, or the universal cover of AdS. In the semi-classical

approximation, dS space is a scattering universe, but if one accepts the conjecture that

the quantum theory has a finite number of states, this is no longer precisely correct.

Nonetheless, we will include dS space under the rubric of scattering universes. The

reason for this is our belief [28] that as the c.c. goes to zero, the theory of dS space will

contain a unitary operator which converges to the scattering matrix of an asymptotically

flat space-time. The definition of this operator will contain ambiguities which go to zero

exponentially with the c.c., as long as the scattering energies are kept fixed as Λ goes to

zero. We will reserve the phrase true scattering universes to describe space-times with

a Penrose diagram similar to that of Minkowski space. This does not imply that the
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geometry is asymptotically flat. Non-accelerating FRW universes are also true scattering

universes. Big Bang space-times can asymptote either to a future scattering universe

or to dS space.

In a scattering universe, one describes the quantum theory by picking a point

on a time-like trajectory, and considering the causal diamonds defined by successively

larger intervals around that point, as in Fig. 7.1. For each causal diamond we have a

sequence of unitary transformations UN (k) which describe time evolution in each of the

sub-diamonds contained in it. These must satisfy the causality requirement

UN (k) = Uk(k)⊗WN (k),

where WN (k) acts only on the tensor complement of Hk in HN . As N →∞ , in a true

scattering universe, we will have

UN (N) → U+(N)SU−(N),

where U±(N) describe free asymptotic propagation and S is the scattering matrix. In

an asymptotically (past and future) dS universe there should be, in the limit of small

cosmological constant, a similar construction [28], [33]. However, in this case we cannot

take the large entropy limit. After some time, the dimension of the Hilbert space

stops increasing. Nonetheless, in the limit of small cosmological constant, we expect

an approximate S-matrix to exist. It would describe a single observer’s experience of

excitations coming in through its past cosmological horizon and passing out through its
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future cosmological horizon. However, most of the states in the system cannot be viewed

in this way. From the point of view of any given observer, they are instead quantum

fluctuations bound to the cosmological horizon. The interaction between the horizon

states and the “scattering states” introduces a thermal uncertainty in the scattering

matrix. This uncertainty cannot be removed by local measurements, because the locus

of the horizon states is an extreme environment from the point of view of a given

observer. It cannot perform observations near the horizon without a large expense of

energy, which distorts the measurement [34].

Thus, in the AsdS case, the S-matrix is only approximately defined. Paban,

and two of the present authors [33] have argued that the S-matrix for energies12 that

are kept fixed as the c.c. goes to zero, should have a well defined but non-summable

small Λ asymptotic expansion, with errors of order (in four dimensions) e−(
MP 4

Λ
)3/2

.

In both a true scattering universe, and an AsdS universe the description of

a single observer suffices from an operational point of view. However, the constraints

on the quantum mechanics of a single observer are not very strong. As in the p = ρ

universe, we introduce other observers as a lattice of sequences of Hilbert spaces HN (x).

The lattice has the topology of Rd−1 13. For each pair of points on the lattice, we

introduce, at each N , a tensor factor ON (x,y) of both HN (x) and HN (y). For nearest

neighbor points, the dimension of ON (x,y), (≡ D(N,x,y)) is (dimK)N−1. For fixed
12In this sentence, energy refers to the eigenvalue of an operator which approaches a timelike compo-

nent of the momentum in the Poincare algebra, as the c.c. goes to zero. This is not the same as the
Hamiltonian of the static observer, though the commutator between these generators is expected to be
small in the subspace with fixed Poincare energy.

13Compact or partially compact spatial topologies present new difficulties, with which we are not yet
prepared to deal.
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N , D(N,x,y) should be a monotonically decreasing function of the lattice distance

between x and y. The specification of this function is part of the definition of the

quantum space-time.

Most importantly, the time evolution operators in each sequence of Hilbert

spaces HN (x) are constrained by the requirement that they be compatible on all over-

laps. This is such a complicated system of constraints, that one might have despaired

of finding a solution to it, if it were not for the example of the p = ρ universe discussed

in the previous section. We have yet to find a clue, which would help us to construct

an example of a universe that supports localized excitations.

For true scattering universes, the initial state is pure only as N → ∞. The

Hilbert spaces of different observers must all coincide in this limit. The S-matrix is

expected to be unique and mathematically well defined. The most interesting question

for such space-times is how one can express the constraints of compatibility of the de-

scriptions of different observers as equations for the S-matrix. We conjecture that these

equations will be generalizations of the usual criteria of crossing symmetry and analyt-

icity, and that, together with unitarity, and a specification of the boundary geometry,

they will completely determine the S-matrix.

For Big Bang cosmologies, the construction is similar except that there is an

initial time slice, and all causal diamonds begin on that slice14.
14Remember that we are working in a gauge-fixed formalism. This condition is part of the gauge

fixing.
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7.5 Discussion

The phenomenological discussion of holographic cosmology presented in [20]

begins from a system close to the p = ρ cosmology, but requires inhomogeneous defects

as input. We have treated these defects heuristically as a network of spheres joined

together in a “tinker toy”. This was motivated by the observation that the Israel

junction condition applied to a single sphere of radiation or matter dominated cosmology

embedded in a p = ρ background, requires the sphere to shrink in FRW coordinates.

The tinker toy is supposed to be the maximal entropy configuration15 for which this

collapse does not occur. To maximize the entropy we minimize the initial volume of the

normal region. The initial ratio of volumes is called ε and is assumed small. We then

argued that the volume of normal region, in equal area slicing, grows relative to that

of the p = ρ region. Eventually, the physical volume of the initial coordinate sphere is

dominated by the normal region. The p = ρ regions are large black holes embedded in

the normal region. From this point on, the evolution can be treated by conventional

field theory methods, and we argued that it is plausible, if the low energy degrees of

freedom include an appropriate inflaton field, for the universe to undergo a brief period

of inflation. Depending on the value of ε (and another parameter which we cannot

calculate), the fluctuations of the microwave background can be generated either in the

p = ρ phase, or during inflation. The two possibilities are incompatible with each other

and the experimental signatures of them are, in principle, distinguishable.
15which fits inside a given initial coordinate sphere. We will return to what determines the initial size

of this sphere.
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In order to put this cosmology on a mathematical basis, we have to find a

holographic description of a normal radiation dominated universe. Next we must un-

derstand how the consistency conditions which we have discussed in this paper, can be

used to define an infinite hyperplanar boundary between a normal phase and the dense

black hole fluid. This would be the quantum analog of the Israel junction condition. At

this stage of development one might hope to get a crude estimate of ε. More detailed

questions, such as whether the fluctuations generated during the p = ρ era have Gaus-

sian statistics, will probably require us to understand the more complicated boundary

of the tinker toy.

These problems seem hard, but before the present work we had despaired of

ever finding a solution to the consistency conditions for holographic cosmology.

We want to end this paper with a metaphysical speculation. The Israel junc-

tion condition applied to the large sphere inside of which the tinker toy fits, would

seem to require that that region collapse in coordinate volume. One way to avoid this

catastrophe would be to imagine that both the initial black hole fluid, and the tinker

toy had infinite extent in space.

There is a more attractive way out of this problem. If we try to embed a

(future) asymptotically de Sitter space into the p = ρ fluid, we can satisfy the Israel

condition by matching the cosmological horizon to a sphere of fixed physical size in the

p = ρ background. Now we imagine an infinite p = ρ background, littered with tinker

toys of various sizes, with the proviso that low energy physics inside each tinker toy

universe is compatible with eventual evolution to a stationary state of fixed positive
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cosmological constant. From a global point of view, we would have a collection of finite,

asymptotically dS universes, embedded in an infinite, flat p = ρ background.

We can also understand the stability of this sort of cosmology from an entropic

point of view. We have advocated the p = ρ cosmology as the most entropic initial

condition for the universe. In fact, in the more general cosmology consisting of an

infinite p = ρ background, filled with a collection of dS bubbles, any causal diamond

which includes complete dS bubbles, has the same number of states “excited” as the

pure p = ρ fluid. It is only when we look at causal diamonds inside a dS bubble that we

find observers which observe less than the maximal amount of entropy. We have argued

that the most generic way for such low entropy regions to arise is for the interior of the

dS bubble to begin as a tinker toy embedded in a p = ρ background. This then goes

through a stage where the localized entropy increases and is eventually followed by an

AsdS stage where the localized entropy is very small because everything has been swept

out of the observer’s horizon.

Our notion of a generic state in an AsdS universe should be compared with

that of [35]. These authors organize the states according to the eigenvalues of the static

Hamiltonian. They then require that cosmological evolution be viewed as a typical

thermal fluctuation with certain constraints16. Among these constraints is the anthropic

principle. They then argue that a typical cosmology consistent with these constraints

will not look like the world we observe. From our point of view, the choice of initial

conditions made by these authors is not the maximally entropic one for a local observer.
16The explicit model is a scalar field with an inflationary maximum and a dS minimum with small

c.c. . The typical cosmological fluctuation is one which puts the scalar at the inflationary maximum.
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They impose global constraints on the states (thermality with respect to the static

Hamiltonian of the asymptotic future, and homogeneity over the inflationary horizon

size) at arbitrarily early times. On the contrary, in most early horizon volumes we allow

an absolutely random state to be acted on by a random sequence of Hamiltonians.

Certain horizon volumes, which contain parts of the tinker toy, are somewhat more

structured. In a previous paper we have argued that these initial conditions have much

more entropy than inflationary ones. In our model, inflation only becomes possible in

large normal regions in which the black hole fluid has become dilute.

The p = ρ universe with a distribution of AsdS bubbles is a model which

naturally provides us with an ensemble of universes with varying cosmological constant.

If we wish, we can apply the anthropic mode of reasoning to this model. If the physics

of a stable dS universe approaches a limit as Λ goes to zero, with the parameters

which determine the primordial density fluctuations and the dark matter density at the

beginning of the matter dominated era, both becoming independent of Λ in the limit,

then Weinberg’s anthropic argument for the value of the c.c. would more or less explain

the value that we see. At the very least, it explains most of the “fine tuning” that we

find so disturbing.

We are of two minds as to the virtues of such a model. Much of our previous

work on the asymptotic dS universe simply postulates the cosmological constant as an

input, whose value will never have an explanation. The model under discussion views

that input as being determined by a very weak form of the anthropic principle. We gain
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some degree of understanding17, but at the expense of introducing a large set of degrees

of freedom which will never be observed. Occam would surely complain!

On the positive side, one should compare this use of the anthropic principle

with others which have been contemplated in the literature. First of all, in this model we

imagine that all of the physics in a given tinker-toy universe is completely determined

by the value of a single parameter, the cosmological constant. Thus, our model is

required to calculate most physical quantities successfully, from first principles. Only

one parameter is determined anthropically, and it is one for which the anthropic range

is quite narrow if everything else is fixed at its measured value. Secondly, the anthropic

argument we use is quite broad, and would apply to any form of life whose existence

depends on structures as complicated as galaxies. This fixes the c.c. to be no larger

than a factor of 100 times its observed value. Even the more refined arguments of

Vilenkin [36] , which reduce this factor to something of order one, do not depend on

crucial details of nuclear physics or organic chemistry, as long as we view the c.c. as the

only parameter which varies among the different universes in our ensemble.

To summarize, we have described a well defined quantum mechanical model,

which obeys a plausible set of axioms for quantum cosmology. At large scales it obeys

scaling laws which are the same as those obeyed by a flat FRW universe with equation of

state p = ρ. The detailed dynamics of the model realizes many of the properties of such

a system that two of the authors have proposed based on the intuitive idea of a dense

black hole fluid. The constants in the geometrical equations can mostly be fit by choices
17avoiding the introduction, by hand, of a huge integer, the number of physical states, into our model

of the world
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of constants in the quantum mechanics, but we have found one constant which seems

to be determined unambiguously. Unfortunately it misses the geometric prediction by

a factor of d− 2.

7.6 Appendix

7.6.1 Intersection of causal diamonds

In this sub-appendix we will determine the causal diamond DM with maximal

FSB area, which is contained in the intersection of two causal diamonds D1 and D2

both starting at time η1 and ending at time η2. We will solve the problem first in the

simple case of Minkowski spacetime and then in a general conformally flat spacetime.

So let’s first consider Minkowski spacetime with dimension d = 4

ds2 = dη2 − dx2

where we use the following notation x = (x, y, z) for the spatial coordinates.

It will be clear in the following that identical considerations apply to spacetimes

of general dimension.

Given the two causal diamonds D1 and D2, both starting at time η1 and

ending at time η2, we will indicate with DM the maximal causal diamond belonging to

the intersection of D1 and D2 Fig. 7.3 and Fig. 7.6. Let’s indicate with Σ the spatial

surface to which both the base sphere SD1 and SD2 of D1 and D2 belong. Let S̃ be

the maximal sphere that fits into the intersection of SD1 and SD2 . S̃, SD1 and SD2 are
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represented in Fig. 7.4 and Fig. 7.5. Furthermore let (ηi,xi) (ηf ,xf ) be the points of

D1 ∩ D2 with the minimum and maximum values of η Fig. 7.6.

It is obvious that the maximal causal diamond DM , belonging to the inter-

section of two causal diamonds D1 and D2, must start at (ηi,xi) end at (ηf ,xf ) and

have as base sphere SDM
= S̃ . In the η, x -plane Fig. 7.6 we will indicate with ∆x the

separation among the tips of D1 and D2 at time η1. The maximal causal diamond DM

will start at conformal time ηi and end at conformal time ηf .

Denote by rDM
the radius of the base sphere on DM and with h = ηf − ηi the

height of the causal diamond DM Fig. 7.6 Fig. 7.7. Defining h = 2a we see from the

pictures Fig. 7.6 Fig. 7.7 we have rDM
= a. Furthermore we can see inspecting Fig. 7.6

that ∆x is given by

ηi − η1 =
∆x

2

and so

rDM
= a =

1
2
(η2 − η1)− (ηi − η1)

=
1
2
(η2 − η1)− ∆x

2

The quantities that we have determined, i.e. the radius of the base sphere

rDM
, the height h and the initial and final times ηi, ηf , are all the parameters that

describe the geometry of DM .

We will now turn to the general problem of determining the maximal causal

diamond DM in an FRW cosmology

ds2 = a2(η)
(
dη2 − dx2

)
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Since the space is conformally flat all the previous considerations continue to apply and

the maximal causal diamond is still DM Fig. 7.3, Fig. 7.4 and Fig. 7.5. Moreover the

parameters that determine completely the geometry of DM are, as before, the radius

of the base sphere rDM
= 1

2(η2 − η1)− ∆x
2 , the height h and the initial and final times

ηi, ηf .

Next we determine the sphere of maximal area (maximal sphere) on the causal

diamond DM in an FRW cosmology

ds2 = a2(η)
(
dη2 − dx2

)

The area of a generic 2-sphere S of radius r, given by the intersection of DM and the

spatial section at time η Fig. 7.6 Fig. 7.8, is

A(η) = 4πr2a2(η) (7.19)

As mentioned before we want to determine the maximal area sphere SM .

Assume that the spacetime contracts monotonically as we move toward the

past: (a(η) decreases monotonically as η goes to zero). Then the maximal sphere is

always in the upper half of the causal diamond Fig. 7.8 and its radius is

r = ηf − η (7.20)

To determine the maximal sphere we have to maximize the area A(η) in the

interval (ηf , η), where we defined η = 1
2(ηf − ηi).

The Friedmann’s equations in conformal coordinate are

ȧ2

a2
=

8πρa2

3
− k (7.21)
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where k = 0 for the conformally flat metric that we are considering. We will assume as

usual for an FRW cosmology that the matter content of the universe is a perfect fluid

with stress tensor

T b
a = diag(−ρ, p, p, p)

Assume that the pressure p and energy density ρ are related by the equation of state

p = wρ

With this ansatz for the matter content the Friedmann’s Equations (7.21) can

be solved and we find the conformal factor

a(η) = a0

(
η

q

)q

, q =
2

1 + 3w
(7.22)

The extremum of area A(η) is given by

dA(η)
dη

= 0

using the Eq. (7.22) for the conformal factor and the expression (7.20) for the radius

we find

η̃ =
qηf

1 + q

furthermore we have

d2A(η̃)
dη2

= −2(1 + q)
q

(
ηf

1 + q

)2q

< 0, ∀ q, ηf

showing that η̃ is actually a maximum.

It is clear from Fig. 7.8, that if

η̃ > η =
1
2
(ηf − ηi) (7.23)
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then the point where we have the maximal sphere is at ηM = η̃, otherwise the maximal

sphere it is at ηM = η.

The condition given by Eq. (7.23) is equivalent to

qηf

1 + q
>

1
2
(ηf − ηi)

w <
1
3

ηf + 3ηi

ηf − ηi
(7.24)

where the last quantity is clearly always greater than zero.

The previous condition (7.23) is always verified for dust w = 0 and for space-

time with a positive cosmological constant w = −1, implying that in these case the

maximal sphere is at ηM = η̃ .

For a radiation dominated universe we have w = 1
3 and the condition (7.24)

becomes

1
3

<
1
3

ηf + 3ηi

ηf − ηi

⇒

ηi > 0 (7.25)

this is always true and so even in this case we have ηM = η̃ .

The interesting case for the bulk of this paper is w = 1. In this case if ηf À 1

(large enough causal diamonds) the condition (7.24)

w <
1
3

ηf + 3ηi

ηf − ηi
(7.26)
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is never verified. As a consequence in this limiting case we always have ηM = η, or in

other words the maximal sphere coincides with the base sphere of DM . This gives the

area formula we used in the text.

7.6.2 Holographic relations in a general FRW cosmology

In this sub-appendix, we want to show how the relation between area and

conformal time for a general FRW universe, filled with a combination of perfect fluids,

can be used to extract the equation of state. This indicates that in a more general

holographic cosmology, we can expect the formula for the Hamiltonian as a function of

the area to determine the background metric.

The metric for an FRW universe is

ds2 = −dt2 + a2(t)
(

dr2

1− kr2
+ r2dΩ2

)

To analyze this problem it’s more useful to work with conformal time η and comoving

coordinate χ

dη =
dt

a(t)
, dχ =

dr√
1− kr2

ds2 = a2(η)
(−dη2 + dχ2 + f2(χ)dΩ2

)

Where as usual k = −1, 0, 1 and f(χ) = sinhχ, χ, sinχ correspond to open,

flat and closed universes, respectively.

We want to analyze a flat universe f(χ) = χ. Consider the FRW universe with

a big bang singularity, given any point p in the space-time consider the backward light

cone, it initially expands and then starts contracting when we approach the singularity.
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Let B be the apparent horizon ,i.e. the spatial surface with the maximum area on the

light cone. According to the covariant entropy bound, the total number of degrees of

freedom is bounded by the area of B

N ≤ A(B)
2

The apparent horizon is found geometrically as the sphere at which at least one pair

of lightsheets has zero expansion. The radius of the apparent horizon χAH(η), as a

function of time, is given by the equation

.
a

a
(η) = ±f ′

f
= ± 1

χ

The proper area of the apparent horizon is given by

AAH(η) = 4πa2(η)f2[χAH(η)]

In the case of a flat universe f(χ) = χ

AAH(η) =
4πa2(η)

ȧ2

a2

Using the Friedmann’s equations (in conformal time)

ȧ2

a2
=

8πρa2

3
− k

with k = 0, we have

AAH(η) =
3

2ρ(η)

All these results are valid for cosmologies with a generic ρ. Thus, the time

dependence of the area of the apparent horizon determines the time dependence of the

energy density and vice versa.
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We will first write everything as a function of cosmological scale factor, so that

the previous equation reads

AAH(a) =
3

2ρ(a)

We want to determine ρ(a) for a fluid with many components. The equation of energy

conservation for one fluid is

d
(
a3(ρ + p)

)
= a3dp

Assuming an equation of state

p = wρ

this can be rewritten

dρ

da
+ α

ρ

a
= 0

with

α = 3(1 + w)

In general for many fluids we will have

∑

i

dρi

da
+ αi

ρi

a
= 0

with

αi = 3(1 + wi)

To keep things simple we will consider the case of two fluids, but the results

will be valid in the general case.

A general solution is given by

ρ = ρ1 + ρ2
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with

dρ1

da
+ α1

ρ1

a
= f(a)

dρ2

da
+ α2

ρ2

a
= −f(a)

so

ρ1 = C1a
−α + a−α

∫ a

a1

dā āαf(ā)

ρ2 = C2a
−α − a−α

∫ a

a1

dā āαf(ā)

with a1 = a(η = 1) and C1 and C2 integration constants.

In this context the form of the function f(a) is not determined and so we will

consider f(a) to be arbitrary. The function f(a) describes how the two fluids exchange

energy and is determined by the dynamics of the system.

The area AAH will not depend on wi ∀a iff

∂AAH

∂wi
=

−3
2ρ2

∂ρ

∂wi
= 0, ∀a

⇐⇒
∂ρ

∂wi
= 0, ∀a

where we assumed ρ 6= ∞.

It turns out that there are no values of Ci, ai, f(a), α for which

∂ρ

∂wi
= 0, ∀ a
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In fact considering for example ∂ρ
∂w1

we have

∂ρ

∂w1
=

∂ρ1

∂w1

= −3a−α

(
C1 log(a) + log(a)

∫ a

a1

dā āαf(ā)

−
(∫ a

a1

dā āα log(ā)f(ā)
))

a necessary condition for this to be zero ∀ a is that the derivative respect to a is zero

∀ a, where we assumed that a 6= 0. We have

∂

∂a

(
1

−3a−α

∂ρ1

∂w1

)
=

1
a

(
C1 +

∫ a

a1

dā āαf(ā)
)

Assuming a 6= ∞ this can be zero ∀ a iff C1 = f(a) = 0 but in this case we would have

ρ = 0, ∀ a.

As far as the dependence of AAH on the energy densities at some initial time

ρ̃i = ρi(ã), the area AAH will not depend on ρ̃i ∀ a iff

∂AAH

∂ρ̃i
=

−3
2ρ2

∂ρ

∂ρ̃i
= 0, ∀a

⇐⇒
∂ρ

∂ρ̃i
= 0, ∀a

where we assumed ρ 6= ∞. It turns out that even in this case there are no values of

Ci, ai, f(a), α for which

∂ρ

∂ρ̃i
= 0, ∀a
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In fact

ρ̃i = ρi(ã) = Ciã
−α + ã−α

∫ ã

a1

dā āαf(ā)

=⇒

Ci =
(

ρ̃i

ã−α
−

∫ ã

a1

dā āαf(ā)
)

and

∂ρ

∂ρ̃i
=

∂ρi

∂ρ̃i
=

∂Ci

∂ρ̃i
a−α

=
a−α

ã−α
6= 0, ∀a

always assuming that a 6= 0. Thus, we can always extract the parameters wi from the

scale factor dependence of the energy density, and consequently, from the scale factor

dependence of the area of the apparent horizon.

We now return to the problem of studying the dependence of ρ as a function

of η on the parameter wi, ρ̃i, which we will now denote generically as βi. We have

ρ = ρ (a(η, βi), βi)

and so

∂ρ

∂βi
=

∂ρ

∂βi
+

∂ρ

∂a

∂a

∂βi

The problem is slightly more complicated but can still be solved exactly, in fact the

dependence of a on βi can be found by solving the Friedmann equations by quadrature

ȧ2

a2
=

8πρ (a(η), βi) a2

3
− k
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We conclude that the component equations of state of an arbitrary multi-

component fluid, can be extracted from the dependence of the horizon area on conformal

time. In this derivation we have used the Friedmann equation. In the quantum approach

to cosmology, which we have discussed at length in this paper, we believe that the

replacement for the Friedmann equation is the equation determining the N dependence

of the Hamiltonians HN (k,x). There are strong constraints on these Hamiltonians,

coming from the overlap conditions. We have found one solution of these equations and

argued that it corresponds to a p = ρ FRW universe. We conjecture that other solutions

will also represent Big Bang cosmologies.

7.6.3 Computation of ce from geometry and constant in front of HN

The Einstein equations in d space-time dimensions are

Gµν = 2Ωd−1GNTµν

where Ωd−1 is the surface of a sphere in l = d − 1 spatial dimensions. In 4 dimension

we recover the usual result

Gµν = 8πGN Tµν

Through a standard computation we recover the Friedmann’s equation in d

dimensions
(

ȧ

a

)2

=
8 (Ωd−1GN )

d(1− d)
ρ

For a p = ρ cosmology the expression for the energy density as a function of
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the entropy density is

ρ = ce
2σ2

substituting in the Friedmann’s equation we have

(
ȧ

a

)2

=
8 (Ωd−1GN )

d(1− d)
ρ =

c2
dc

2
eσ

2
0

a2(d−1)

the solution of the previous equation is

a(η) = a0η
1

d−2

(
a0

d− 2
d− 1

) 1
d−2

(7.27)

with

a0 = (cdceσ0(d− 1))
1

d−1 (7.28)

cd =

√
8 (Ωd−1GN )

d(d− 1)

in the following we will set

GN = 1

For a p = ρ cosmology the value of the constant ce can be obtained saturating the

entropy bound.

We have for a causal diamond of maximal FSB area A

A = ad−1
0

(
d− 2
d− 1

)
Ωd−1

(η

2

)d−1
= 4Nls = 4σ0Ωd−1η

d−1

(
1

d− 1

)

substituting the equations (7.27) and (7.28) we find

ce = 2d+1 1
cd

1
(d− 1)(d− 2)

= 2d+1 1√
8(Ωd−1)
d(d−1)

1
(d− 1)(d− 2)

This expression for ce can be used to fix the constant in front of the Hamiltonian HN .
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There do not seem to be any further consequences of requiring that our quan-

tum cosmology obey the equations of classical p = ρ cosmology, not just as scaling

relations, but including the constants. This only serves to define Newton’s constant,

and the constant in front of our quantum hamiltonian. The one classical relation from

which these constants scale out is the relation between overlap areas. Here we have a

chance for a numerical triumph, but our current definitions miss by a factor of d− 2.

110



7.7 Figures
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D1

h

x

Figure 7.1:
Nested causal diamonds defining an observer in a time symmetric space-time
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D1 D2

D

h

x

Figure 7.2:
Nested causal diamonds defining a nearest neighbors pair of observers in a time sym-
metric space-time
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x

y

D2

D1

DM

h

Figure 7.3:
The two causal diamonds D1 and D2 (z spatial coordinate suppressed) and the maximal
causal diamond DM that fits in the intersection D1 ∩ D2. The picture is valid for
Minkowski spacetime and more generaly conformally flat spacetimes.
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x

z

y

SD1

SD2

SDM

Figure 7.4: The base spheres SD1 and SD2of the two causal diamonds D1 and D2

(Fig. 7.3) S̃ is the maximal sphere belonging to the intersection of SD1 and SD2 . S̃
coincide with SDM

the base sphere of DM .

115



y

x

SD1 SD2

SDM

Figure 7.5:
The base spheres SD1 and SD2 of the two causal diamonds D1 and D2 (Fig. 7.3), coor-
dinate z suppressed.
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D1 D2

DM

h1

h2

h

h

hi

hf

Dx

x

Figure 7.6:
The two causal diamonds D1 and D2 (z, y spatial coordinates suppressed) and the
maximal causal diamond DM that fits in the intersection D1 ∩ D2. ηi, ηf are the points
of D1 ∩ D2with the minimum and maximum values of η. ∆x is the separation among
the tips of D1 and D2 at time η1.
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xrM

Figure 7.7:
Detail of the the maximal causal diamond DM . h = ηf − ηi is the height of DM and
rDM

is the radius of the base sphere on DM .
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r
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Figure 7.8:
Detail of the themaximal causal diamond DM . r is the radius of a generical sphere on
DM , rM is the radius of the sphere of maximal area on DM i.e. the maximal sphere.
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Chapter 8

Infrared Divergences in dS/CFT

8.1 Introduction

The hypothesis of Cosmological Supersymmetry Breaking (CSB) is based on

the idea [37] [38] [39] that quantum theories of stable, asymptotically de Sitter (AsdS)

space-times exist and have a finite number of physical states. The (positive) cosmological

constant, Λ,is an input parameter, which controls the number of states. The limit of

vanishing Λ is a super-Poincare invariant theory, but SUSY is broken for finite Λ: the

operator which converges to the Poincare Hamiltonian P0, does not commute with the

SUSY charges.

Classical SUGRA supports such a picture, but suggests a relation between the

gravitino mass and the c.c.: m3/2 ∼ Λ1/2/MP . CSB is the proposal that the exponent

1/2 in this relation is replaced by 1/4 in the quantum theory. Given the interpretation

of Λ as a parameter controlling the number of states, this is a critical exponent, and it
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is plausible that it has fluctuation corrections. Indeed, low energy effective field theory

cannot calculate the real relation between the gravitino mass and the c.c., since the c.c.

is a relevant parameter and one must introduce a counterterm for it. The exponent

above is just the “natural” relation of classical SUGRA, without fine tuning of the

constant in the superpotential. If we accept such fine tuning, we can get any relation

we want between m3/2 and Λ in effective field theory.

However, the necessity of canceling an infinite c.c. appears to be a short

distance problem in effective field theory, and as such, does not seem to depend on the

value of the c.c. . As a consequence, there has been considerable skepticism about CSB.

In [40], one of the authors presented an argument for the exponent 1/4, based

on crude approximations to the dynamics of the cosmological horizon in the static

observer gauge for dS space. It was clear that from the static observer’s point of view,

the enhanced exponent is an IR effect. However, since the argument relied on conjectures

about the horizon dynamics, it has not convinced anyone. Skeptical observers want

to understand where effective field theory reasoning breaks down. The work of [41]

provided an important clue. In the static gauge most of the states in a quantum theory

of dS space live on the horizon of the static observer. Local field theory can describe

only a negligible fraction of the entropy. On the contrary, it was argued in [41] that in

global coordinates, the entire Hilbert space may be well described by field theory. The

contradiction between a finite number of states and the field theoretic description can

be viewed as an IR cutoff, which restricts the global time coordinate to an interval of

order |t| ≤ R
6 ln (RMP ) around the time symmetric point. The field theory also has a UV
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cutoff at a scale Mc ∼
(

MP
R

)1/2
. This description is inappropriate for states containing

black holes whose size scales like R, but there is a basis of field theoretic states in global

coordinates, which may span the Hilbert space.

A simple way to restate this conclusion is to invoke the fact that the global

description of dS space in field theory does not seem to break down until we contemplate

introducing black holes on early time initial data slices, whose entropy exceeds that of

the space-time. The combined UV and IR cutoffs prevent us from introducing such

objects, and describes a cutoff field theory with a finite number of states. The field

theory description of many of these states breaks down near the time-symmetric point,

but near the upper and lower limits of t, it is a good approximation to their properties.

We have thus set up a framework in which IR divergences in a field theoretic

treatment of dS space can be thought of as introducing non-classical dependence on the

c.c. . It has often been argued that perturbative quantum gravity expanded around

dS space is fraught with IR divergences. These claims have been less than convincing,

because no-one had identified gauge invariant observables with which to check the phys-

ical meaning of the logarithmically growing graviton propagator. This problem is solved

by dS/CFT [42][43][44]. In particular, the mass of a field in dS space is given a gauge

invariant meaning: it is related to the dimension of a conformal field on the boundary.

The plan of this paper is as follows: in the next section we review dS/CFT,

in the Wheeler-DeWitt formalism proposed by Maldacena. This allows perturbative

calculations to be performed in a straightforward manner, apparently troubled only by

conventional UV divergences. In section 3 we perform one loop calculations of boundary
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dimensions in a variety of non-gravitational field theories. We find that when the theory

contains a massless, minimally coupled scalar field with soft couplings, the dimensions

are infected with IR logarithms. In the conclusions, we discuss the difficulties attendant

on an extension of these calculations to perturbative quantum gravity.

8.2 Review of dS/CFT

In his talk at Strings 2001 in Mumbai [42], Witten proposed a sort of scatter-

ing theory for de Sitter space. The fundamental object was the path integral with fixed

boundary conditions on I±. It was implicitly assumed that, as in asymptotically flat and

Anti-deSitter spaces, a field theoretic approximation became exact near the boundaries

of space-time. This assumption is open to criticism. It is likely that generic boundary

conditions on fields on I− will lead to Big Crunch space-times, rather than space-times

which are future asymptotically dS. However, this criticism does not apply to pertur-

bation theory, where the boundary conditions are infinitesimal perturbations of those

corresponding to the dS vacuum. Witten’s prescription provides a perturbative defini-

tion of amplitudes in dS quantum gravity, which are invariant under diffeomorphisms

that approach the identity near I±.

Somewhat later, Strominger proposed [43] that suitably defined boundary am-

plitudes should be the correlation functions of a Euclidean conformal field theory (CFT).

An apparent difference with Witten’s proposal is the role of conformally covariant, rather

than invariant amplitudes in dS/CFT. However, Maldacena [45] has emphasized that
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the operator dimensions, OPE coefficients and the like, of dS/CFT, are gauge invariant

observables in the sense of Witten.

The boundary correlation functions defined by Strominger should certainly

be conformally invariant, but it is not clear that they should obey the axioms of field

theory. Analogous arguments would lead us to believe that the holographic dual of

linear dilaton backgrounds [46] was a Lorentz invariant field theory. The calculations of

Peet and Polchinski [47] show that it is not. In the dS/CFT case, the form of the two

point function follows from conformal invariance alone, and does not give us enough

of a clue to the nature of the holographic dual. As believers in the proposition that

quantum dS space has only a finite number of states, the present authors are inclined

to disbelieve that a CFT will be the exact description of the quantum theory.

For our present purposes, all of these issues of principle are somewhat beside

the point. We want a definition of correlation functions on I± which is perturbatively

well defined and gauge invariant. Furthermore, we will be interested only in two point

functions, and will not have to address the question of whether higher order correlators

obey the axioms of CFT. We have found that the dS/CFT prescription advocated by

Maldacena [44] is the most appropriate for our purposes. Maldacena observes that

the Euclidean path integral on a space with the topology of a hemisphere defines a

“wave function of the universe” which is a functional of fields on the boundary of the

hemisphere. In leading semiclassical approximation, the geometry is the section of the

round sphere metric

ds2 = dθ2 + sin2(θ)dΩ2
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with 0 ≤ θ ≤ θ0. Maldacena defines boundary correlators as the expansion coefficients

of the logarithm of the wave function of the universe for fixed θ0. The analytic extrapo-

lation θ0 → π
2 +it, t →∞ defines correlation functions on I+. If the limiting correlation

functions exist, they should be covariant under the conformal group of the sphere. In

particular, if we work in planar coordinates on the upper triangle of the dS Penrose

diagram

ds2 =
1
η2

(−dη2 + dx2
)

(I+is at η = 0) then the boundary two point function should have the form |x|−∆. For

a free scalar field of mass m2 this is indeed true, and the relation between mass and

dimension is given by

∆± = a =
1
2

(
d− 1±

√
(d− 1)2 − 4m2R2

)

This is an analytic continuation (in the c.c.) of analogous formulas in AdS/CFT. Indeed,

Maldacena’s proposal for the correlation functions is the direct analog of the calculation

of Euclidean correlation functions in AdS/CFT.

The purpose of the present paper is to compute one loop corrections to ∆± in

simple field theory models. We will see that when the theory has a massless, minimally

coupled scalar with soft couplings, these corrections are IR divergent.

8.3 Review of QFT in dS space

In this section we will introduce the principal formulae of QFT ind-dimensional

de Sitter (dSd) space, and fix our notation .
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For a more complete discussion we refer to the excellent review paper [48].

8.3.1 Coordinate Systems

d-dimensional de Sitter dSd can be realized as the manifold, embedded in d+1

dimensional Minkowski Md,1 space, defined by the equation

−X2
0 + X2

1 + · · ·X2
d = R2 (8.1)

where R is the de Sitter radius.

The de Sitter metric is the standard metric induced by immersion inMd,1 with

the usual flat metric. The isometry group of dSd is O(d, 1) in fact this leave invariant

both the hyperboloid defined by the equation (8.1) and the flat metric of Md,1.

For the most part, we will use planar coordinates

X0 = sinh t− 1
2
xixie

−t

Xi = xie−t (8.2)

Xd = cosh t− 1
2
xixie

−t

with i = 1, . . . , d the metric take the form

ds2 = −dt2 + e−2tdxidxi

In these coordinates the spatial sections have flat Euclidean metric.

It is useful to introduce conformal coordinates too, defined by the transforma-

tion

η = et

126



The metric is conformally flat and takes the form

ds2 =
1
η2

(−dη2 + dxidxi

)

with i = 1, . . . , d. In the following, unless otherwise stated, we will consider the Eu-

clidean section of dSd defined by the analytical continuation

η → ix0 (8.3)

after the transformation (8.3) the metric become

ds2 = − 1
x2

0

(
dx2

0 + dxidxi

)
(8.4)

in these coordinates the boundary of dSd Σ is given by the submanifold x0 = ε where

ε → 0.

8.3.2 Geodesic Distance

The geodesic distance between two points x and x′ is

µ(x, x′) =
∫ 1

0

[
gabẋ

a(λ)ẋb(λ)
] 1

2
dλ, xa(0) = x, xa(1) = x′

In the following we will often use the new variable

z = cos2
( µ

2R

)

It is possible to show that

cos
(

µ(x, x′)
R

)
=

ηabX
a(x)Xb(x′)
R2

with Xa(x), Xb(x′) ∈Md,1 embedding coordinates and ηab =diag(−1, 1, . . . , 1).
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Consequently we have

z = cos2
( µ

2R

)

=
1
2

(
1 + cos(

µ

R
)
)

=
1
2

(
1 +

ηabX
a(x)Xb(x′)
R2

)

In the Euclidean conformally flat coordinates (8.4) we have

z = −(x0 − y0)2 + (x̄− ȳ)2

x0y0
= −2 +

x2
0 + y0

2 + (x̄− ȳ)2

x0y0

8.3.3 The Cut-off Prescription

Maldacena’s prescription defines the boundary correlators by analytic contin-

uation in global time. We have proposed that these formulae should be cut off at a fixed

global time T . IR divergences will appear as divergent behavior at large T . It is most

convenient to do calculations in conformal coordinates. Thus we have to understand

the effect of a global time cut-off in conformal coordinates.

The relation between the two coordinate systems is most simply understood

by writing the embedding coordinates in terms of conformal coordinates. The slices of

fixed embedding time and global time coincide:

X0 =
R

2

(
x0

R
− R

x0

)
− x2

2x0

At X0 = T , see Fig. 8.1 and Fig. 8.2. This relation implies a maximal value of |x|

for fixed x0, as well as a maximal value of x0 (which runs between −∞ and 0 in the
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Figure 8.1: Global coordinates. Foli-
ation of dS with compact spatial sections
(spheres).
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Figure 8.2: Flat coordinates. Foliation
of dS with flat spatial sections.

conformal coordinate patch). The relation is

x2
max = −2x0

(
T − x0 +

R2

x0

)

The maximal value of x0 is the point at which xmax = 0.

x0
max ≈ −R2

T
T À R

The maximal geodesic distance between two points on a give x0 slice is xmax
x0

max
. The slice

on which this distance is maximal is given by x0∗ = −2R2

T . The geodesic distance on this

slice is o(T ), while the maximum coordinate distance is o(R). IR divergences will come

predominantly from slices near this maximal slice.

Dirichlet boundary conditions on the X0 = T surface become spatial Dirichlet

boundary conditions on the spatial slices of conformal coordinates. On most of the slice
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of maximal geodesic size, the Dirichlet propagator will coincide with the usual Euclidean

propagator defined by analytic continuation from the entire sphere. Thus, the boundary

conditions will not affect the IR divergences.

8.3.4 Wave Function of the Universe

We are looking for a gauge invariant definition of the IR renormalization of

the particle mass. The Wave Function of the Universe (WFU) will provide us with such

a definition.

The WFU Ψ[hij , φ0] was first introduced by Hartle and Hawking in [49]. If

I[g, φ] is the Euclidean action for gravity and a set of fields indicated by φ, the Euclidean

WFU is defined as the path integral

Ψ[hij , φ0] =
∫

C
[dg][dφ]e−I[g,φ] (8.5)

over a class C of space-times with a compact space-like boundary Σ on which the induced

metric is hij and over the field configurations φ with boundary value φ0. The boundary

Σ has only one connected component.

In the case Λ > 0 we imagine a semiclassical expansion of the integral over

Riemannian spaces with the topology of a hemisphere, expanded around the metric on

the portion of the round sphere below polar angle θ0. We then analytically continue to

the future half of Lorentzian dS space. This prescription corresponds to the choice of

Euclidean vacuum in de Sitter space.

Given the WFU we can define the ”boundary two-point function” in the limit
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where the boundary is taken to I+

δΨ[hij , φ0]
δφ0(x̄)δφ0(ȳ)

Once we expand around dSd we find

δΨ[hij , φ0]
δφ0(x̄)δφ0(ȳ)

= C+
1

(x̄− ȳ)2∆+
+ C−

1
(x̄− ȳ)2∆−

(8.6)

, where C± are constants This form is dictated by conformal invariance. If λ and m are

the coupling and the mass of the field φ, in the classical Lagrangian, then ∆ will be a

function of λ and m and will provide a gauge invariant definition of the renormalized

mass.

The Eq. (8.6) is the analogue of the boundary correlators defined in the

AdS/CFT correspondence

Z[φ0] =
〈
e
∫

d4xφ0(x)O(x)
〉

CFT
, φ(x0 = ε) ∼ φ0

〈0|O(x̄)O(ȳ)|0〉 =
δZ

δφ0(x̄)δφ0(ȳ)
= C̃

1

(x̄− ȳ)2∆̃

There are however, important differences between the two cases. They stem

from the fact that the Euclidean section of dS space is a spherical cap and has a con-

ventional Dirichlet problem, different from the singular Dirichlet boundary conditions

on the boundary of Euclidean AdS space. There are no large volume divergences in

the Euclidean calculation. They appear only after extrapolation to infinite Lorentzian

time. As a consequence, the divergent behavior comes as a combination of both powers

∆±. For fields corresponding to the principal series of dS representation theory, the real

parts of ∆± are equal.
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The prescription to extract boundary two-point function in dSd given by (8.6)

was first pointed out by Maldacena in [44] and it is, as explained in this paper, different

from the prescription used by Strominger and collaborators in [43], [50].

8.3.5 Representations of the dSd Group

The scalar representation of the de Sitter group SO(1, d) are classified accord-

ing to the mass m in the following series, see [51], [52]: the principal series

m2 >
(

d− 1
2RdS

)

the complementary series

0 < m2 <

(
d− 1
2RdS

)

and the discrete series, whose only case of physical interest is m2 = 0.

Under a Wigner-Inönü contraction to the Poincare group, only the represen-

tations of the principal series contract to representation of the Poincare Group.

Lowe and Güijosa [53] and Lowe [54] use the principal series to construct the

dS/CFT correspondence. They stress the fact that when one replaces the dS isometry

group with a q-deformed version, the unitary principal representation deform to a finite

dimensional unitary representation of the quantum group1.

The massive scalar particles in our formulae will always correspond to the

principle series representations, so that the boundary dimensions all have the same real
1The idea that a q-deformed version of the dS group might have finite dimensional unitary represen-

tations, resolving the contradiction between dS invariance and a finite number of states, was pointed out
to one of the authors (TB) by A. Rajaraman in the fall of 1999. There seemed to be a problem with this
idea, because the dS group has no highest weight unitary representations, but Lowe and Güijosa made
the crucial observation that the cyclic representations of the quantum group (which are not highest
weight) converged to the principal unitary series.
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part. We will also use a massless, minimally coupled scalar, which is our toy model of

the graviton.

8.4 Scalar Green Functions

In the next few subsections we will derive the scalar Green Functions relevant

for our computations and their asymptotic behavior. As explained in the section on

the cut-off procedure, we will not impose Dirichlet boundary conditions on the bulk

propagators. The IR divergences, which are our principal concern, are not affected by

the boundary conditions on the bulk propagator. For a more detailed discussion of dS

Green functions, see for example [55], [56].

8.4.1 Maximally Symmetric Bitensors

The relevant geometric objects in maximally symmetric spaces, like dS, are

the geodesic distance µ(x, x′) between two points x and x′, the unit tangent vectors

nσ(x, x′) and nσ′(x, x′) to the geodesic at x and at x′, the vector parallel propagator

gµ
ν′(x, x′) and the spinor parallel propagator Λα

β′(x, x′).

The geodesic distance is by definition the distance along the geodesic xa(λ)

connecting x and x′

µ(x, x′) =
∫ 1

0

[
gabẋ

a(λ)ẋb(λ)
] 1

2
dλ, xa(0) = x, xa(1) = x′

The vectors nσ, nσ′ are defined by

nσ = ∇σµ(x, x′) and nσ′ = ∇σ′µ(x, x′)
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where ∇σ is the covariant derivative. We note that

nσ = −gσ
ρ′nρ′

The vector and spinor parallel propagators are defined by

V µ(x) = gµ
ν′(x, x′)V ν′(x′) (8.7)

ψα(x) = Λα
β′(x, x′)ψβ′(x′) (8.8)

for every parallel-transported vector V µ(x) and spinor ψα(x), respectively.

Tensors that depend on two points x and x′ on the manifold are called bitensor.

We will say that a bitensor is maximally symmetric if is invariant under any isometry of

the manifold. It can be proved that any maximally symmetric bitensor can be expressed

as a sum of products of gµ
ν′ , gµν , gµ′ν′ , µ, nσ and nσ′ . Furthermore the coefficients of

these terms are functions only of the geodesic distance µ(x, x′).

The covariant derivatives of the above bitensors are given by

∇µnν = A (gµν − nµnν)

∇µ′nν = C (gµ′ν + nµ′nν)

∇µgνρ′ = −(A + C) (gµνnρ′ + gµρ′nν) (8.9)

∇µΛα
β′ =

1
2
(A + C) [ (ΓµΓνnν − nµ) Λ]α

β′

∇µ′Λα
β′ = −1

2
(A + C) [ (Γµ′Γν′nν′ − nµ′) Λ]α

β′
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where A and C are the following functions of the geodesic distance:

for Rd : A(µ) =
1
µ

C(µ) = − 1
µ

for dS and AdS : A(µ) =
1
R

cot
µ

R
C(µ) = − 1

R sin
( µ

R

) (8.10)

The radius R is real for dSd and it is R = iR̃ with R̃ real for AdSd. The covariant

gamma matrices satisfy the usual relation {Γµ,Γν} = 2gµν .

8.4.2 Bulk Two-Point Function

In this subsection we will evaluate the scalar two-point function

G(x, x′) = 〈ψ|φ(x)φ(x′)|ψ〉

We will assume that the state |ψ〉 is maximally symmetric, this implies that for

spacelike separated points G(x, x′) depends only on the geodesic distance µ(x, x′). For

timelike separation the symmetric and Feynman functions also depend only on µ but the

commutator function depend on the time ordering too. Doing an analytical continuation

from spacelike separation µ2 > 0 to timelike separation µ2 < 0, it is possible to obtain

all these two-point functions.

We now derive a differential equation for G(x, x′) . Applying the Laplacian

operator to G(x, x′) we have

¤G(µ) = ∇ν∇νG(µ) = ∇ν(G′(µ)nν)

= G′′(µ)nνnν + G′(µ)∇νnν

= G′′(µ) + (d− 1)A(µ)G′(µ)
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where we have used the formulae (8.10) and the notation G′ = dG
dµ .

Using the equation of motion (¤−m2)φ = 0 we find

G′′(µ) + (d− 1)A(µ)G′(µ)−m2G = 0 (8.11)

as long as x 6= x′.

Defining the change of variable

z = cos2
( µ

2R

)

the Eq. (8.11) for G becomes

z(1− z)
d2G

dz2
+ [c− (a + b + 1)z]

dG

dz
− abG = 0 (8.12)

where we defined

a = ∆+ =
1
2

(
d− 1 +

√
(d− 1)2 − 4m2R2

)
(8.13)

b = ∆− =
1
2

(
d− 1−

√
(d− 1)2 − 4m2R2

)
(8.14)

c =
1
2
d (8.15)

8.4.2.1 De Sitter Space: Massive Scalar

De Sitter space corresponds to choosing R real in the Eq. (8.10). There are

two linearly independent solution G(z) to Eq. (8.12). Any of the solutions of Eq. (8.12)

is associated with a particular vacuum |ψ〉.

The Two-point function

GE(x, x′) = 〈E|φ(x)φ(x′)|E〉
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associated with the Euclidean vacuum |E〉 Introduced in Section 8.3.4 and defined as

analytical continuation from the sphere is given by

GE(x, x′) = qF (a, b; c; z) (8.16)

where F (a, b; c; z) is the hypergeometric function.

The two-point function in the Euclidean vacuum turns out to have the following

properties:

1. has only one singular point at µ(x, x′) = 0 and therefore regular at µ(x, x′) = πR

2. Has the same strength µ → 0 singularity as in flat space.

The constant q in Eq. (8.16) is determined by the condition that as µ → 0

GE(x, x′) has to approach the flat two point function

Gflat(µ) ∼ Γ
(

d
2

)

2(d− 2)π
d
2

µ−d+2, µ → 0

we find

q =
Γ(a)Γ(b)

Γ
(

d
2

)
2dπ

d
2

R−d+2

For the computation it will be useful to derive the asymptotic expansion of

G(z) for z → −∞ that correspond to x0 → 0 or y0 → 0.

The geodesic distance in conformally flat coordinate was given in Section 8.3.2

and it is

z = −(x0 − y0)2 + (x̄− ȳ)2

x0y0
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we have

lim
x0→0
y0→0

z ∼ −(x̄− ȳ)2

x0y0

so that the asymptotic expansion of G(z) for z → −∞ is

lim
z→∞G(z) ∼ C+

1
z∆+

+ C−
1

z∆−
= C+

( −x0y0

(x̄− ȳ)2

)∆+

+ C−

( −x0y0

(x̄− ȳ)2

)∆−
(8.17)

with

C+ = q
Γ(d

2)Γ(∆− −∆+)

Γ(∆−)Γ(d
2 −∆+)

, C− = q
Γ(d

2)Γ(∆+ −∆−)

Γ(∆+)Γ(d
2 −∆−)

8.4.2.2 De Sitter Space: Massless Scalar

The two-point function for a massless minimally coupled scalar field in de

Sitter space was studied in [57], [56]. They find the following expression for the two-

point function

G0(z) =
R2

192π2m2
+

R

48π2

(
ln(1− z) +

1
1− z

)
(8.18)

= C0

(
ln(1− z) +

1
1− z

)
+ C̃

We will not need the actual values of the constants C0 and C̃ in our computa-

tion.

The asymptotic expansion for z → −∞ of the massless two-point function

(8.18) is

G0(z) ∼ C0

(
ln

(x̄− ȳ)2

x0y0
+

x0y0

(x̄− ȳ)2

)
(8.19)
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8.4.3 Bulk to Boundary Propagators: dS/AdS

The Bulk to Boundary propagator for AdSd were derived by Witten in [58].

They obey the equations

(¤x −m2)K̃(x, ȳ) = 0

K̃(x̄, x0; ȳ) → (x0)((d−1)−∆)δd(x̄− ȳ), for x0 → 0

and their explicit form in the Poincare coordinates in AdSd is

K̃(x̄, x0; ȳ) =
Γ(∆)

π
d−1
2 Γ

(
∆− d−1

2

)
(

x0

x2
0 + (x̄− ȳ)2

)∆

with

∆ = ∆+ = a =
1
2

(
d− 1 +

√
(d− 1)2 + 4m2R̃2

)

If we consider the conformally flat coordinates (8.4) in dSd the equations defining the

Bulk to Boundary propagator become

(
¤x + m2

)
K(x, ȳ) = 0

We impose Dirichlet boundary conditions, K → δ(x−ȳ) as x approaches the boundary of

a spherical cap. The cap is then continued to a hemisphere, and analytically continued to

θ = π
2 + it. In our conformal coordinates for the Lorentzian section, t →∞, corresponds

to x0 → 0. In this limit

K(x̄, x0; ȳ) → C+(x0)((d−1)−∆+)δd(x̄− ȳ) + C−(x0)((d−1)−∆−)δd(x̄− ȳ), for x0 → 0
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with

∆± = a =
1
2

(
d− 1±

√
(d− 1)2 − 4m2R2

)

8.4.4 Boundary Two-point Function: dS/AdS

The boundary two point function for AdSd in the Poincare patch as given for

example in [46] is

〈0|O(x̄)O(ȳ)|0〉 =
δZ

δφ(x̄)δφ(ȳ)
= C

1
(x̄− ȳ)2∆

with

∆ = ∆+ = a =
1
2

(
d− 1 +

√
(d− 1)2 + 4m2R̃2

)

For dSd in the conformally flat coordinates (8.4) we have

δΨ0[hij , φ0]
δφ0(x̄)δφ0(ȳ)

= C+
1

(x̄− ȳ)2∆+
+ C−

1
(x̄− ȳ)2∆−

with

∆± = a =
1
2

(
d− 1±

√
(d− 1)2 − 4m2R2

)

8.5 General Structure of the Computation

In this section we want to give a general description of the calculation we will

perform for three specific models.

As we have already discussed in Section 8.3.4 we are interesting in computing

at 1-loop the Wave Function of the Universe (WFU)

Ψ[hij , φ0] =
∫

C
[dg][dφ]e−I[g,φ]
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x1 y2

Figure 8.3: Tree diagram. This diagram
represent the tree-level contribution to the
Wave Function of the Universe (WFU).
The points x1 and x2 are on the boundary.

x yx1 y2

Figure 8.4: 1-loop diagram. 1-Loop con-
tribution to the WFU. The points x1 and
x2 are on the boundary while x and y are
bulk points.

for the models described in Section 8.6. The tree-level and 1-loop diagrams are repre-

sented respectively in Fig. 8.3 and Fig. 8.4.

Given the WFU we want to find the “boundary two-point function”

δΨ[hij , φ0]
δφ0(x̄)δφ0(ȳ)

(8.20)

this will provide us with a gauge invariant definition of the renormalized mass.

We consider a general action of the form

S =
∫

ddx
√

g (φA4φA + φB4φB + φC4φC) + λ
√

gφAφBφC

where

S0 =
∫

ddx
√

gφα4φα, α = A,B,C

is the quadratic part of the action i.e.

S0 =
∫

ddx
√

g
1
2

[
(∂φA)2 + m2

Aφ2
A

]

for a scalar field and

S0 = SM + S∂M =
∫

M
ddx

√
gψ̄ (D/−m) ψ +

∫

∂M
ddx

√
hψ̄ψ
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for a spinor field.

In the WFU we are integrating over fields with the following boundary condi-

tions

φα|Σ = φα0, α = A,B, C

where by the symbol φα|Σ we mean the field evaluated on the boundary of the Euclidean

spherical cap. To impose the boundary condition we decompose the field in the following

way

φα = φα1 + φα2

with

φα1|Σ = φα0, φα2|Σ = 0

The field φα1 is the solution of the free wave equation with Dirichlet boundary condi-

tions, and can be written in terms of the appropriate Bulk to Boundary propagator

φα1 = Kα ◦ φα0 =
∫

Σ
dȳ Kα(x̄, x0; ȳ)φα0(ȳ), ȳ ∈ Σ, α = A,B,C

described in the Sections 8.4.3 and 8.14.3.

To compute the 1-loop correction to the ”boundary two-point function” (8.20)

we have to evaluate the terms in Ψ[hij , φ0] that are quadratic both in φ0 and in the

coupling constant λ. Expanding the path integral we have

Ψ =
∫

[dφA][dφB] [dφC ]e−S0[φA,φB ,φC ]−∫
ddx

√
g(x)λφAφBφC

=
∫

[dφA][dφB] [dφC ]e−S0[φA,φB ,φC ]

[
1− λ

∫
ddx

√
g(x)φA(x)φB(x)φC(x)

+
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φA(x)φB(x)φC(x)φA(y)φB(y)φC(y) + O(λ3)

]
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where we indicated with S0[φA, φB, φC ] the quadratic part of the action.

The terms quadratic in φα0 α = A,B, C come from the expansion of the term

φA(x)φB(x)φC(x)φA(y)φB(y)φC(y)

we have

φA(x)φB(x)φC(x)φA(y)φB(y)φC(y)

= φA1(x)φA1(y) [φB2(x)φB2(y)φC2(x)φC2(y)]

+ · · ·

We will compute only the correction to the two-point function of the field φA.

The part of the path integral relevant to this calculation is

ΨA
1-loop [φA0] =

∫
[dφB] [dφC ]e−

∫
ddx

√
gφB4φB−

∫
ddx

√
gφC4φC

×λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φA1(x)φA1(y) [φB2(x)φB2(y)φC2(x)φC2(y)]

The only parts of the fields that fluctuate in the path integral are φα2, in fact φα1 is

fixed by the boundary conditions. For this reason the measure of integration is given

by

[dφB] [dφC ] = [dφB2] [dφC2]
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Standard manipulation give us the following expression for the path integral

ΨA
1-loop [φA0] =

∫
[dφB2] [dφC2]e−

∫
ddx

√
gφB4φB−

∫
ddx

√
gφC4φC

×λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φA1(x)φA1(y)[φB2(x)φB2(y)φC2(x)φC2(y)]

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φA1(x)φA1(y)〈E|φB2(x)φB2(y)φC2(x)φC2(y)|E〉

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φA1(x)φA1(y)〈E|φB(x)φB(y)φC(x)φC(y)|E〉

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φA1(x)φA1(y)GB(x, y)GC(x, y)

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)

∫

Σ
dx̄1 KA(x; x̄1)φA0(x̄1)

×
∫

Σ
dx̄2 KA(y; x̄2)φA0(x̄2)GB(x, y)GC(x, y)

The boundary two-point function at 1-loop is given by

δΨA

δφA0(x̄1)δφA0(x̄2)
= C

1
(x̄1 − x̄2)2∆

+
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y) KA(x; x̄1)GB(x, y)GC(x, y)KA(y; x̄2)

We have similar expressions for the boundary two-point functions of the others

fields φB, φC .

8.6 Models

We have computed the 1-loop boundary two point function for the following

models:

Scalar Fields with Cubic Interaction

S =
∫

ddx
√

g
1
2

[
(∂φ)2 + m2φ2 + (∂φ1)2 + m2φ2

1 + (∂φ0)2
]
+
√

gλφφ0φ1
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where the field φ0 is massless.

Scalar Fields with Derivative Couplings

S =
∫

ddx
√

g
1
2

[
(∂φA)2 + m2φ2

A + (∂φB)2 + m2φ2
B + (∂φ)2

]
+
√

gλφgµν∂µφA∂νφB

where the field φ is massless.

Spinor Field with Derivative Coupling

S0+SI =
∫

ddx
1
2
√

g(∂φ)2+
∫

M
ddx

√
gψ̄(D/−m)ψ+

∫

∂M
ddx

√
hψ̄ψ+

∫

M
ddx

√
gλ∂aφψ̄Γaψ

where the field φ is massless. The surface term for the fermions is explained in [59],[60],[61].

We have chosen these models in order to see whether the fact that the massless

boson is derivatively coupled effects the IR divergence, and to study the effect of fermion

chirality. In the conclusions we will discuss the issues that these results raise for the

analogous calculations in quantum supergravity.

8.7 1-loop Computation: Scalar Fields with Cubic Inter-

action

In this section we will compute the 1-loop boundary two point function for the

massive field φ interacting with a massive scalar field φ1 and a massless scalar field φ0.

The lagrangian is

L =
√

g
1
2

[
(∂φ)2 + m2φ2 + (∂φ1)2 + m2φ2

1 + (∂φ0)2
]
+
√

gλφφ0φ1
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The asymptotic expansions of both the bulk and bulk to boundary propagators,

at large Lorentzian time and space-like separation, contain terms with both powers

(x0)∆± . For the principal series, these powers differ in the sign of their imaginary part.

We have found that the most divergent terms as x0 → 0 come from products of terms

from individual propagators that all have the same power of x0. We call these the pure

terms. Mixed terms have rapidly oscillating phases, which lead to more convergent

integrals. We will find that in this model the pure terms look like the tree level results,

but with a divergent correction to the mass. The mixed terms are sub-leading, and do

not have the same form as the tree level result. We will explicitly show only our results

for the pure terms.

As explained in Section 8.5 the 1-loop correction to the boundary two-point

function

δΨ1-loop

δφ0(x̄1)δφ0(x̄2)
= G1-loop(x̄1, x̄2)

is given by

G1-loop(x̄1, x̄2) =
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y) K(x; x̄1)G1(x, y)G0(x, y)K(y; x̄2)

=
λ2

2

∫
dd−1x̄

∫
dd−1ȳ

∫
dx0

∫
dy0

1
xd

0

1
yd
0

K(x; x̄1)G1(x, y)G0(x, y)K(y; x̄2)

In principle, the bulk propagators in these equations should satisfy (vanishing) Dirichlet

boundary conditions at a fixed global time, T . We have seen that in conformal coordi-

nates this corresponds to an x0 dependent Dirichlet boundary condition on a sphere in

x space, as well as an upper cut-off x0
max ∼ −R2/T . The IR divergences will come from

the regions of maximal spatial geodesic size, and, because of the Dirichlet boundary
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conditions, from regions where the two integrated bulk points are far from the spatial

boundary sphere. Thus considering only the leading IR divergent part of the answer,

we can use the usual Euclidean vacuum Green’s function (without Dirichlet boundary

conditions) and approximate it by its asymptotic form at large geodesic distance:

GIR
1-loop(x̄1, x̄2) ∼ λ2

2

∫
dd−1x̄

∫
dd−1ȳ

∫
dx0

∫
dy0

1
xd

0

1
yd
0

(x0y0)((d−1)−∆±)

×δd−1(x̄− x̄1)G1(x, y)G0(x, y)δd−1(ȳ − x̄2)

=
λ2

2

∫
dx0

∫
dy0

1
xd

0

1
yd
0

(x0y0)((d−1)−∆±)G0(x̄1, x0; x̄2, y0)G1(x̄1, x0; x̄2, y0)

∼ λ2

2

∫ ε

α
dx0

∫ ε

β
dy0

1
x0

1
y0

C0C− ln
(

(x̄− ȳ)2

x0y0

)(
1

(x̄− ȳ)2

)∆±

Here we used the fact that bulk to boundary propagators satisfy

K(x̄, x0; ȳ) → C+(x0)((d−1)−∆+)δd(x̄− ȳ) + C−(x0)((d−1)−∆−)δd(x̄− ȳ), for x0 → 0

explained in Section 8.4.3 and the asymptotic expansion (8.17), (8.19) for the bulk

two-point functions2 .

Integrating in x0 and y0 and keeping the leading part in ε → 0 we find

GIR
1-loop(x̄1, x̄2) ∼ λ2

2
1

(x̄1 − x̄2)2∆±
×

(
ln

(
(x̄1 − x̄2)2

ε

))3

+Subleading terms in ε

2In tree level calculations involving two bulk to boundary propagators, only one of them can be
replaced by a δ function, since the other ends up evaluated at separated points. The powers of x0 that
would set it equal to zero are part of the renormalization factor that defines the limiting boundary two
point function. In our calculation, both bulk to boundary propagators are legitimately replaced by δ
functions.
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8.8 1-loop Computation: Scalar Fields with Derivative

Coupling

In this section we will compute the 1-loop boundary two points function for the

massive scalar field φ derivatively coupled to a massless scalar field φA and a massive

scalar field φB. The action is

S =
∫

ddx
√

g
1
2

[
(∂φ)2 + m2φ2 + (∂φB)2 + m2φ2

B + (∂φA)2
]
+
√

gλφgµν∂µφA∂νφB

Following the general lines of the computation done in Section 8.5 we find for

the 1-loop WFU

Ψ1-loop =
∫

[dφB2] [dφC2]e−
∫

ddx
√

g 1
2 [(∂φ)2+m2φ2+(∂φB)2+m2φ2

B+(∂φA)2]

×λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)

×(φ(x)gµν(x)∂µφA(x)∂νφB(x))(φ(y)gρλ(y)∂ρφA(y)∂λφB(y))

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)φ1(x)φ1(y)

×gµν(x)gρλ(y)∂x
µ∂y

ρGA(x, y)∂x
ν ∂y

λGB(x, y)

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)

∫

Σ
dx̄1 KA(x; x̄1)φ0(x̄1)

∫

Σ
dx̄2 KA(y; x̄2)φ0(x̄2)

×gµν(x)gρλ(y)∂x
µ∂y

ρGA(x, y)∂x
ν ∂y

λGB(x, y)

The 1-loop two point function is

δΨ1-loop

δφ0(x̄1)δφ0(x̄2)
= G1-loop(x̄1, x̄2)
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Considering only the leading IR divergent part we have

GIR
1-loop(x̄1, x̄2) ∼ λ2

2

∫
dx0

∫
dy0

1
xd

0

1
yd
0

(x0y0)((d−1)−∆±)

×gµν(x)gρλ(y)∂x
µ∂y

ρC0C− ln
(

(x̄1 − x̄2)2

x0y0

)
∂x

ν ∂y
λ

(
x0y0

(x̄1 − x̄2)2

)∆±

=
λ2

2

∫
dx0

∫
dy0

1
xd

0

1
yd
0

x2
0y

2
0(x0y0)((d−1)−∆±)∂x

µ∂y
ρC0C−

× ln
(

(x̄1 − x̄2)2

x0y0

)
∂x

µ∂y
ρ

(
x0y0

(x̄1 − x̄2)2

)∆±

=
λ2

2

∫
dx0

∫
dy0

1
xd

0

1
yd
0

x2
0y

2
0(x0y0)((d−1)−∆±)∂x

i ∂y
j C0C−

× ln
(
(x̄1 − x̄2)2

)
∂x

i ∂y
j

(
x0y0

(x̄1 − x̄2)2

)∆±

=
λ2

2

∫
dx0

∫
dy0 x1

0y
1
0(−4∆(3 + 2∆))C0C−

(
1

(x̄1 − x̄2)2

)2+∆±

where we used the bulk to boundary propagators property explained in Section 8.4.3 and

the asymptotic expansion (8.17), (8.19) for the bulk two-point functions. Furthermore

we used the fact that

∂x
0 ∂y

0

(
ln

(x̄− ȳ)2

x0y0

)
= 0, ∂x

0 ∂y
j

(
ln

(x̄− ȳ)2

x0y0

)
= 0

with i, j = 1, . . . , d .

Doing the integrals and keeping the leading parts in ε → 0 we find

GIR
1-loop(x̄1, x̄2) ∼ (ε)4

(
1

(x̄1 − x̄2)2

)2+∆−
(8.21)

+Subleading terms in ε
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8.9 1-loop Computation: Spinor Field with Derivative Cou-

pling

In this last section we will evaluate the 1-loop boundary two-point function

for a spinor field ψ derivatively coupled to a massless scalar field φ. The action in the

tangent frame is

S0+SI =
∫

M
ddx

1
2
√

g(∂φ)2+
∫

M
ddx

√
gψ̄(D/−m)ψ+

∫

∂M
ddx

√
hψ̄ψ+

∫

M
ddx λ

√
g∂aφψ̄Γaψ

The surface term for the fermions is explained in [59],[60],[61].

More specifically we are using the metric

ds2 = − 1
x2

0

(dx0dx0 + dx̄ · dx̄) = − 1
x2

0

(dx0dx0 + dxidxi)

and the vielbein ea
µ, a = 0, . . . , d − 1 such that gµν = ea

µeb
νηab. The explicit

form of the vielbein and is inverse is

ea
µ =

1
x0

δa
µ

eµ
a = x0δ

µ
a

the spin connection has the form

ω0j
i = ωj0

i =
1
x0

δj
i

and all other component vanishing. The Dirac operator is given by

D/ = eµ
a(∂µ +

1
2
ωbc

µ Σbc) = x0Γ0∂0 + x0Γ̄ · ∇ − d− 1
2

Γ0
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where Γa = (Γ0,Γi) = (Γ0, Γ̄) satisfy {Γa, Γb} = 2ηab and ∂µ = (∂0, ∂i) = (∂0,∇).

The explicit form of the interacting term is

LI = λ
√

g∂aφψ̄Γaψ = λ
√

geµ
a∂µφψ̄Γaψ = λ

√
gx0δ

µ
a∂µφψ̄Γaψ

Again following the same reasoning of Section 8.5 we find for the 1-loop WFU

Ψ1-loop =
∫

[dψ] [dψ̄]e−(
∫

M ddx 1
2

√
g(∂φ)2+

∫
M ddx

√
gψ̄(D/−m)ψ+

∫
∂M ddx

√
hψ̄ψ+

∫
M ddx λ

√
g∂aφψ̄Γaψ)

=
∫

[dψ] [dψ̄]e−S0

∫
ddx

∫
ddy

√
g(x)

√
g(y)

×λ2

2
(
∂aφ(x)ψ̄(x)Γaψ(x)

) (
∂bφ(y)ψ̄(y)Γbψ(y)

)

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)ψ̄1(x)〈E|∂aφ(x)Γaψ(x)∂bφ(y)ψ̄(y)Γb|E〉ψ1(y)

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)ψ̄1(x)ΓaS(x, y)Γb∂x

a∂y
b G0(x, y)ψ1(y)

=
λ2

2

∫
ddx

∫
ddy

√
g(x)

√
g(y)

∫
dd−1x̄ ψ̄0(x̄)K(y, x̄)ΓaS(x, y)Γb∂x

a∂y
b G0(x, y)

×
∫

dd−1x̄ K(x, x̄)ψ0(x̄)
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taking the limit x0 → 0, y0 → 0 we find the leading IR part of Ψ1-loop

ΨIR
1-loop ∼ λ2

2

∫
ddx

∫
ddy

1
xd

0

1
yd
0

ψ̄0+(x̄1)ΓaS(x, y)Γb∂x
a∂y

b G0(x, y)ψ0−(x̄2)

∼ λ2

2

∫
ddx

∫
ddy

1
xd

0

1
yd
0

×ψ̄0+(x̄1)ΓaC−C0

(
x0y0

(x̄− ȳ)2

)∆− Γ̄ · (x̄− ȳ)
|x̄− ȳ| Γb∂x

a∂y
b ln

(
(x̄− ȳ)2

x0y0

)
ψ0−(x̄2)

=
λ2

2

∫
ddx

∫
ddy

1
xd

0

1
yd
0

(x0y0)∆1+1

×ψ̄0+(x̄1)ΓaC−C0

(
x0y0

(x̄− ȳ)2

)∆− Γ̄ · (x̄− ȳ)
|x̄− ȳ| Γbδµ

a∂x
µδν

b ∂y
ν ln

(
(x̄− ȳ)2

x0y0

)
ψ0−(x̄2)

=
λ2

2

∫
ddx

∫
ddy

1
xd

0

1
yd
0

(x0y0)∆−+1

×ψ̄0+(x̄1)ΓaC−C0

(
x0y0

(x̄− ȳ)2

)∆− Γ̄ · (x̄− ȳ)
|x̄− ȳ| Γbδi

a∂
x
i δj

b∂
y
j ln

(
(x̄− ȳ)2

)
ψ0−(x̄2)

=
λ2

2
C−C0

∫
ddx

∫
ddy

1
xd

0

1
yd
0

(x0y0)∆−+1

×ψ̄0+(x̄1)Γi

(
1

(x̄− ȳ)2

)∆− Γk(x̄− ȳ)k

|x̄− ȳ| Γj∂x
i ∂y

j ln
(
(x̄− ȳ)2

)
ψ0−(x̄2)

where we used the bulk to boundary propagators property

lim
x0→0

(x0)−
d
2
+mψ(x) = −cψ0−(x̄)

lim
x0→0

(x0)−
d
2
+mψ̄(x) = cψ̄0+(x̄)

explained in Appendix 8.14.3 and the asymptotic expansion (8.33), (8.19) for the bulk

two-point functions. As in the previous section we noticed that

∂x
0 ∂y

0 ln
(

(x̄− ȳ)2

x0y0

)
= 0, ∂x

0 ∂y
j ln

(
(x̄− ȳ)2

x0y0

)
= 0, i, j = 1, . . . , d
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The boundary two-point function at 1-loop is

G1-loop(x̄1, x̄2) =
δΨIR

1-loop

δψ̄0+(x̄1)δψ0−(x̄2)

=
λ2

2
C0C−

∫ ε

α
d0x

∫ ε

β
d0y (x0y0)(∆−+1−d)

×Γi

(
1

(x̄1 − x̄2)2

)∆− Γk(x̄1 − x̄2)k

|x̄1 − x̄2| Γj∂x
i ∂y

j ln
(
(x̄1 − x̄2)2

)

doing the integrals and keeping the leading terms in ε → 0 we find

G1-loop(x̄1, x̄2) ∼ λ2ε2(∆−−d+2) (8.22)

×ΓiΓkΓj

(
1

(x̄1 − x̄2)2

)∆− (x̄1 − x̄2)k

|x̄1 − x̄2| ∂x
i ∂y

j ln
(
(x̄1 − x̄2)2

)

+Subleading terms in ε

8.10 Analysis Divergences

8.10.1 Three Massive Scalar Fields with Cubic Interaction in dSd

8.10.1.1 Leading Terms

We didn’t perform explicitly the computation in this case but it is easy to see

that the leading IR divergent term (which is not in fact divergent in this case) in the

boundary two-point function has the following form up to a constant

GIR
1-loop(x̄1, x̄2) ∼ λ2

2
ε2∆2

1
(x̄1 − x̄2)2∆2

1
(x̄1 − x̄2)2∆1

+Subleading terms in ε
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where ∆2, ∆1 correspond respectively to the fields φ1 and φ2. In this expression we

have kept only pure terms. Other terms are no more divergent than these.

The leading IR term in GIR
1-loop(x̄1, x̄2) is proportional to

ε2∆2

We have

∆i
± =

1
2

(
d− 1±

√
(d− 1)2 − 4m2

i R
2
dS

)
=

1
2
(d− 1)

(
1±

√
(1− αi)

)

with

αi =
(

2miRdS

d− 1

)2

So we immediately see that GIR
1-loop(x̄1, x̄2) is IR convergent for every αi i.e. both for

the complementary and principal series, see Section 8.3.5.

This computation shows that in the case of massive fields there is no IR diver-

gence in the boundary two point function. This is in accord with naive expectations.

8.10.2 Two Massive and One Massless field in dSd

The leading IR term in G1-loop(x̄1, x̄2) is proportional to

(log ε)3

So in this case G1-loop(x̄1, x̄2) is IR divergent.

The analysis of divergences in the remaining case (8.21), (8.22) is very similar

and we will not repeat it. We want only to remark that these cases are not IR diver-

gent, due to the presence of derivative couplings, as can be seen inspecting the power

dependence of the ε cutoff.
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8.11 The Meaning of the Divergences

To understand the meaning of the divergences we have found, we compare our

expressions to those obtained by perturbing the free massive theory by a term 1
2δm2φ2.

That computation gives

δm2

∫
dx0

1
xd

0

∫
dd−1x̄ K(x0, x̄; x̄b)K(x0, x̄; ȳb)

where K is the massive bulk to boundary propagator. The IR divergent contribution

to this integral comes from x0 ∼ 0, where we can substitute one of the propagators by

K(x0, x̄; x̄b) ∼ (x0)d−1−∆δ(x̄− x̄b). The result is

δm2

∫
dx0

1
x0
|x̄b − ȳb|−2∆

It is important to note that this expression for the perturbed two point function could

be derived explicitly from the expression of the two point function as an integral over

the boundary. One simply uses Green’s theorem and a perturbative analysis of the

Klein-Gordon equation. The same statement would not be true in AdS/CFT. In that

context, the Euclidean boundary conditions depend on δm2, and so the straightforward

perturbative analysis of the path integral misses a term coming from the perturbation

of the boundary conditions. It turns out that the missing term is sub-leading if the

boundary operator is irrelevant, but is the dominant term if it is marginal or relevant.

By contrast, in the one loop computation with massless fields and non-derivative
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coupling, we obtained the IR divergent part

∫
dx0

∫
dy0

1
xd

0

1
yd
0

(x0y0)d−1−∆

(
x0y0

|x̄b − ȳb|2
)∆

(lnx0 + ln y0)

The first term after the integration measure comes from the two bulk to boundary

propagators, which we have approximated by their small x0 limits. This enabled us to

do the two spatial integrals using the δ functions. The first term in square brackets

is the asymptotic form of the massive bulk propagator, while the second is that of the

massless propagator. We note that if we had instead exchanged a massive field from the

principle series in the loop, or if the massless scalar had derivative couplings, this last

factor would have been a positive power of x0 and all the integrals in the loop diagram

would have been convergent. This means that for a purely massive theory the IR region

of coordinate space does not contribute to the mass renormalization at all3. The value

of the mass renormalization following from exchange of a minimal massless scalar, with

soft couplings is thus

δm2 ∝
∫

dx0
1
x0

lnx0 ∼ ln2 T ∼ ln2 Λ

The last equality reflects our prejudice that the IR cutoff should be determined in terms

of the c.c., by the requirement of finite entropy.

We note that minimally coupled scalars would generally arise as Nambu-

Goldstone bosons and would be derivatively coupled. Our calculation shows that one

would not expect IR mass divergences in models with NG bosons. However, we believe
3We would get contributions from the region where the two bulk points in the diagram were close

together, corresponding to the usual UV mass renormalization.
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that there are indications that gravity has IR divergence problems comparable to those

of minimally coupled massless bosons with soft couplings. Thus, the divergence we have

uncovered reflects our best guess at the behavior of perturbative quantum gravity in dS

space.

8.12 Generalization to a Model with Gravity

The simplest generalization of the calculations we have done is to a model of

gravity interacting with a massive scalar in a dS background. The Lagrangian is

L =
√
|g| [M2

P R− (
gµν∂µφ∂νφ + m2φ2

)]

As always in perturbative quantum gravity calculations must be done in a fixed gauge.

We first studied this problem in the gauge for fluctuations around the dS metric defined

by

hµν =
1
d
gµνh + Hµν

gµνHµν = 0 = DµHµν

gµν is the background dS metric, and Dµ its Christoffel connection. In this gauge, the

Lagrangian for h is that of a scalar field with tachyonic mass, while the components of

Hµν satisfy a massive Klein-Gordon equation. One might think that the IR divergences

at one loop arise only from the exchange of h4. If this were the case, the calculation

would be a simple generalization of our non-derivative trilinear scalar interaction, with

the massless field replaced by a tachyon.
4In this gauge, ghosts couple only to gravitons and so there are no ghost contributions to the one

loop boundary two point function of the massive scalar.
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The result of this computation is disastrous and confusing. The IR divergence

is power law rather than logarithmic (relative to the tree level calculation). Furthermore

the power of |x̄b − ȳb| differs from the tree level power, so we cannot interpret the effect

as a mass renormalization. If this result were valid one would be led to the conclusion

that the dS/CFT correlation functions simply did not exist, even in perturbation theory,

and the divergence could not be explained as a divergent mass renormalization.

We gained insight by viewing the transverse gauge as the α → 0 limit of the

one parameter family of gauge fixing Lagrangians

δL =
1
2α

(DµHµν + 2bα∂νh)2

The coefficient b is chosen to cancel the mixing between Hµν and h in the classical

Lichnerowicz Lagrangian for fluctuations around dS space. In this class of gauges,

it is easy to see that the tachyonic mass, as well as the overall normalization of the

h propagator, is α dependent. The same is therefore true of the power of T and of

|x̄b − ȳb| in the the IR divergent part of the h exchange graph.

Thus, either this contribution is canceled by Hµν exchange, or the answer is

not gauge invariant. Formal arguments using graphical Ward identities seem to suggest

that the boundary two point function is indeed α independent. Thus, we expect the

power law IR divergences to cancel at this order. This suggests the possibility that

logarithmic divergences, which come from the behavior of the transverse, traceless part

of the graviton propagator, may not cancel. Gravitational theories would then exhibit

the same sort of IR divergences as our toy model. Of course, we really need to do a
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careful computation in order to verify gauge invariance of the results. We plan to return

to this in a future publication. See [61] and references therein.

8.13 Appendix: Comparison with AdS

In this appendix we record comparisons of our computation of three massive

scalars, with an analogous computation of AdS space. The purpose of this is to verify

that there is no analogue of the divergences we have found, even when one of the scalars

is massless. The essential reason for this difference is that the bulk AdS propagator

is constructed only from normalizable modes. By contrast, in dS space the Euclidean

propagator contains both solutions of the homogeneous wave equation at large proper

distance.

8.13.1 Three Scalar Fields AdS

For comparison we will describe the case of three massive scalar fields with

cubic interaction in AdS.

As before it is easy to see that in AdS the part of GIR
1-loop(x̄1, x̄2) that is de-

pendent on ε is proportional to

ε2∆+

In AdS we consider only one type of modes

∆ = ∆+ =
1
2

(
d− 1 +

√
(d− 1)2 + 4m2

i R
2
AdS

)
=

1
2
(d− 1)

(
1 +

√
(1 + αi)

)
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with

αi =
(

2miRAdS

d− 1

)2

so

∆+ > 0, ∀ αi

and G1-loop(x̄1, x̄2) is IR convergent for every αi even when mi is zero.

8.13.1.1 Anti de Sitter: Scalar Propagator

The two-point function for a scalar field of mass m in AdSd has been derived

for example in [55]. They find

G(z) = rz−aF (a, a− c + 1; a− b + 1; z−1) (8.23)

r =
Γ(a)Γ(a− c + 1)

Γ(a− b + 1)π
d
2 2d

R2−d

with a, b, c given respectively by (8.13), (8.14), (8.15) and where for AdSd we have

R = iR̃, R̃ ∈ R.

The asymptotic expansion z →∞ of (8.23) is

F (a, a− c + 1; a− b + 1; z−1) → 1

lim
z→∞G(z) ∼ rz−∆

with

∆ = ∆+ = a =
1
2

(
d− 1 +

√
(d− 1)2 + 4m2R̃2

)

160



8.14 Appendix: Spinor Green Functions

Here we record the spinor Green Functions needed for the computations and

their asymptotic behavior. For a more exhaustive discussion see for example [55], [62],

[63].

8.14.1 Spinor Parallel Propagator

In this section we will derive a differential equation for the spinor parallel

propagator Λ(x′, x)α′
β (8.8) whose action on a spinor is

ψ′(x′)α′ = Λ(x′, x)α′
βψ(x)β

this equation for Λ(x′, x)α′
β will be a fundamental ingredient in the derivation of the

spinor Green function S(x, x′) .

Λ(x′, x) satisfy the following properties

nµ∇µΛ(x, x′) = 0 (8.24a)

Λ(x′, x) = [Λ(x, x′)]−1 (8.24b)

Γν′(x′) = Λ(x′, x)Γµ(x)Λ(x, x′)gν′
µ (x′, x) (8.24c)

(8.24a) follows from the definition of parallel transport of a spinor along a curve, (8.24b)

derive from the fact that the Λ(x′, x) form a group and (8.24c) indicate how to parallel

transport the gamma matrices.
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Manipulating the previous equations we obtain

∇µΛ(x, x′) =
1
2
(A + C) (ΓµΓνnν − nµ) Λ(x, x′) (8.25)

and

∇µ′Λ(x, x′) = −1
2
(A + C)Λ(x, x′)

(
Γµ′Γν′nν′ − nµ′

)

8.14.2 Bulk Two-Point Function

The spinor Green S(x, x′) function is defined by the equation

[
(D/ −m)S(x, x′)

]α

β′ =
δ(x− x′)√

g(x)
δα
β′ (8.26)

The most general form for S(x, x′) is

S(x, x′) = [α(µ) + β(µ)nνΓν ] Λ(x, x′) (8.27)

with α(µ), β(µ) functions only of the geodesic distance.

Substituting (8.27) into (8.26) and using (8.25) we obtain two differential equa-

tions for α(µ) and β(µ)

β′ +
1
2
(d− 1)(A− C)β −mα =

δ(x− x′)√
g(x)

(8.28)

α′ +
1
2
(d− 1)(A + C)α−mβ = 0, (8.29)

Combining (8.28) and (8.29) we find the following differential equation for α(µ)

α′′ + (d− 1)Aα′ − 1
2
(d− 1)C(A + C)α−

[
(d− 1)2

4R2
+ m2

]
α = m

δ(x− x′)√
g(x)

(8.30)
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8.14.2.1 De Sitter Space: Massive Spinor

To derive S(x, x′) in dSd space we perform the change of variables

z = cos2
µ

2R

α(z) =
√

zγ(z)

the Eq. (8.30) become

H(a, b; c; z)γ(z) = 0 (8.31a)

H(a, b; c; z) = z(1− z)
d2

dz2
+ [c− (a + b + 1)z]

d

dz
− ab

with

a =
d

2
− i|m|R, b =

d

2
+ i|m|R, c =

d

2
+ 1

As explained in Section 8.4.2.1, the solution corresponding to the Euclidean

vacuum is the one that is singular only at z = 1 i.e.

γ(z) = λF(a, b; c; z) = λF(d/2− i|m|R, d/2 + i|m|R; d/2 + 1; z)

α(z) = λ
√

z F(d/2− i|m|R, d/2 + i|m|R; d/2 + 1; z)

The constant λ is derived by the requirement that (8.27) has the same behavior of the

flat spinor Green function for R →∞. We have

λ = −m
Γ(d/2− i|m|R)Γ(d/2 + i|m|R)

Γ(d/2 + 1)πd/22d
R2−d

163



Finally β(z) is determined by the Eq. (8.29)

β(z) = − 1
m

[
1
R

√
z(1− z)

d

dz
+

d− 1
2R

√
1− z

z

]
α(z) (8.32)

= − λ

mR

√
1− z

[
z F(d/2 + 1− i|m|R, d/2 + 1 + i|m|R; d/2 + 2; z)

+
d

2
F(d/2− i|m|R, d/2 + i|m|R; d/2 + 1; z)

]

The asymptotic z → −∞ expansion for the spinor two-point function is found to be

lim
x0→0
y0→0

S(x, y) =

((
C+

−x0y0

(x− y)2

)∆+

+ C−

( −x0y0

(x− y)2

)∆−
)

Γ̄ · (x− y)
|x− y| (8.33)

with

∆+ =
d− 1

2
+ im

∆− =
d− 1

2
− im

8.14.3 Bulk to Boundary Propagators: dS/AdS

The complete expression for the spinor Bulk to Boundary propagators:

ψ1(x) =
∫

dd−1x̄ K(x, x̄)ψ0(x̄) (8.34)

ψ̄1(x) =
∫

dd−1x̄ ψ̄0(x̄)K(x, x̄)ψ0(x̄) (8.35)

has been given for example in [61].

For our purposes we will need only the asymptotic expansion x0 → 0, y0 → 0

for the propagators (8.34), (8.35), we have

lim
x0→0

(x0)−
d
2
+m

(
−1

c

)
ψ(x) = ψ0−(x̄)− 1

c

∫
dd−1ȳ |x̄− ȳ|−d−1+2m (x̄− ȳ) · Γ̄ψ0+(ȳ)

(8.36)
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lim
x0→0

(x0)−
d
2
+m

(
1
c

)
ψ̄(x) = ψ̄0+(x̄)+

1
c

∫
dd−1ȳ ψ̄0−(ȳ)(x̄−ȳ)·Γ̄ |x̄− ȳ|−d−1+2m (8.37)

where the constant is c = πd/2Γ(m + 1
2)/Γ(m + d+1

2 ). And we have used the

following decomposition for the fields

ψ0(x̄) = ψ0+(x̄) + ψ0−(x̄)

ψ̄0(x̄) = ψ̄0+(x̄) + ψ̄0−(x̄)

with

Γ0ψ±(x̄) = ±ψ±(x̄)

ψ̄±(x̄)Γ0 = ±ψ̄±(x̄)

For the right-hand side of (8.36), (8.37) to be integrable, with respect to the measure

dd−1ȳ on the boundary Σ we have to impose the conditions

ψ+(ȳ) = 0

ψ̄−(ȳ) = 0
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