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Abstract. Since the elucidation of the nature of dark energy depends strongly on redshift
observations, it is desirable to measure them over a wider range, but supernovae cannot be
detected out past redshift 1.7. Gamma-ray-bursts (GRBs) offer means to extend the analysis
to at least redshifts of > 6. The reason is that GRBs are visible across much larger distances
than supernovae. GRBs are now known to have several light-curve and spectral properties from
which the luminosity of the burst can be calculated, and it might GRBs become into standard
candles. We have used data of 69 GRB to study the behavior of the parameter of the dark
energy equation of state as a function of redshift.

1. Introduction
Nowadays cosmological models can be confronted with real data. The observed cosmic microwave
background (CMB) with a temperature of around 2.73 K with tiny temperature differences of
about 10−5 between the different patches of the sky, sustains the assumption of homogeneity of
the universe, at a certain scale. Moreover, in 1998, very refined observations of the brightness of
distant supernovae seemed to hint the presence of a negative pressure component in the universe,
which would make it to expand acceleratedly. In other words, some distant supernovae were
fainter than expected and the most compeling explanation was that their light had travelled
greater distances than assumed. To fit with the observed behaviour of supernovae redshifts, the
cause of the accelerated expansion, the so called dark energy, should exert a negative pressure.

Therefore the more acurate knowledge of the dark-energy Equation of State (EoS) is of
paramount importance to understand its nature: if it evolves with time, how much of it is
there or if it is rather a manifestation of extra-dimensional physics. By making observations of
distances over a wide range of redshifts we can place significant constraints on models of the
universe. So a strong imperative in the quest for dark energy is to extend the analysis to high
redshifts. However the range of observed redshifts of the supernovae is 0.1 < z < 1.7. On the
other hand, Gamma-ray bursts (GRB) are visible across much larger distances than supernovae,
then GRBs offer the chance to extend the Hubble diagram (the plot of distance versus redshift)
to at least redshifts of z ≈ 6.

In this contribution we explore the dependence of the parameter w(z) of the dark-energy
(DE) equation-of-state (p = w(z)ρ), on the redshift derived from GRBs data. To this end we
first find a reasonable calibration for the GRB in order to extract the luminosity distance dL

VI International Workshop on the Dark side of the Universe (DSU 2010) IOP Publishing
Journal of Physics: Conference Series 315 (2011) 012019 doi:10.1088/1742-6596/315/1/012019

Published under licence by IOP Publishing Ltd 1



as a function of the redshift. Then we proceed to calculate the Hubble function H(z) to obtain
w(z). In the next section we briefly summarize the main features of the cosmological model.

2. The model with FRW spacetime
As we mention above, the homogeneity of the universe, to a certain scale, is strongly suggested
by the uniformity of the observed CMB, with anisotropies of about 10−5. This makes suitable to
model the universe with a homogeneous and isotropic geometry, like the Friedmann-Robertson-
Walker (FRW). It combined with the assumption that general relativity is the correct theory on
cosmological scales leads to the Friedmann equations for the scale function a(t), that governs
the expansion of the universe.

General Relativity is the theory that models the gravitational interaction with the spacetime
curvature, this quoted in the Einstein Eqs. Rµν +Rgµν/2 = 8πTµν . The right hand side of this
equation is the energy-momentum tensor Tµν , that includes the matter content of the universe,
that is assumed to be a perfect fluid, whose equation of state is put by hand. This perfect fluid
is the contribution of several components among them: barionic matter and dark matter (the
curvature component is assumed to vanish, according to the observations). The left hand side of
the Einstein equations is related to the curvature quantities, that are derived from the assumed
FRW geometry. From these assumptions the derived Friedmann equations are

H2(a) =

(
ȧ

a

)2

=
8πG

3
ρ(a), k = 0, (1)

ä

a
= −4πG

3
(ρ+ 3p), (2)

where a(t) is the scale factor of the universe, a dimensionless quantity customarily chosen to be
1 at present; ρ is its average energy density and H(a) is the Hubble parameter or the rate of
expansion of the universe.

Both sides of the first Friedmann equation can be observationally probed directly. To fit with
the supernovae redshift observations Eq. (1), demands another component besides the dust
that models barionic matter, ρ(a) = ρm(a) ∼ a−3 even if a non-zero curvature is assumed. One
possible resolution to this puzzle is to modify the right hand side of the Friedmann equation,
Eq. (1), by introducing a new form of “dark” energy component, ρ(a) = ρm(a) + ρX(a).

Before going on, we define the fractional density parameter as

Ωi =
ρi
ρic

=
8πGρi
3H2

, (3)

where ρic is the critical density for which the spatial geometry is flat. The density in Eq. (3)
is the fractional density for the i-component of the universe. The several components, tagged
as ρi, mainly are the gravitational matter and the dark energy densities. Observations point to
the flatness of the universe, i.e. Ωtotal =

∑
Ωi = 1 (assuming cero curvature). The fact that

the sum of densities is equal to one is called the concordance model, that can also be expressed
as ΩΛ + Ωm = 1, where ΩΛ and Ωm are the critical density of dark energy and of gravitational
matter, respectively; the latter includes dark matter and barionic matter.

3. ω(z) Parameter of the EoS from observations
The required gravitational properties of dark energy needed to induce the accelerated expansion
are well described by its equation of state

ω(z) =
pX(z)

ρX(z)
, (4)
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which enters into the second Friedmann equation Eq. (2), implying that a negative pressure
(ω < −1/3) is necessary in order to induce accelerated expansion.

The parameter ω(z) determines not only the gravitational properties of dark energy but also
its evolution. This evolution is easily obtained from the energy momentum conservation

d(ρXa3) = −pXd(a3), (5)

which leads to

ρX = ρ0Xe
3
∫ z

0
dz′
1+z′ (1+ω(z′))

, (6)

where the subscript ’0’ indicates the present value of the quantity. From Eq. (6) we see that
the determination of ω(z) is equivalent to that of ρX(z) which in turn is related to the Hubble
parameter H(z), that from the first Friedmann equation and using (6) can be expressed as

H(z)2 = H0(z)
2[Ω0m(1 + z)3 +Ω0Xe

3
∫ 3

0
dz′
1+z′ (1+ω(z′))

]. (7)

Thus, the knowledge of Ω0m, z and H(z) suffices to determine ω(z) which is obtained from
the previous equation as

ω(z) =
2
3(1 + z)d lnH

dz − 1

1− H2
0

H2Ω0m(1 + z)3
. (8)

From observational data it is possible to extract dL(z) and then determine H(z), since,

H(z) =

{
d

dz

(
dL(z)

1 + z

)}−1

. (9)

So the main quantity to find is the luminosity distance dL as a function of the redshift
z of distant objects. Measuring redshifts is straightforward from the detected spectrum of
the luminous object; the hard part is determinig distances for objects of unknown intrinsic
brightness. One of the most popular techniques is to try to find a standard candle. Standard
candles are objects in the universe with a well calibrated intrinsic luminosity that can be used
to determine distances on cosmological scales. Type Ia supernovae are these kind of objects [1],
and it has to do with their origin, as a white dwarf that accreting matter (from a companion
star, for instance) gets to the Chandrasekhar limit mass.

Therefore, to enlarge the range of redshifts in probing cosmological models using Gamma-ray-
bursts (GRBs), as a first step we must establish under which parameters can GRB be considered
as reliable standard candles.

4. Calibrating Gamma-ray burst.
There are several distance indicators to determine the cosmological luminosity distance dL(z).
If a certain distance indicator is calibrated without any cosmological model, the indicator can
be used to determine the cosmological parameters such as Ωm, ΩΛ and ω = p/ρ.

In this section we show a calibration for a 69 GRBs sample [2], where the luminosity distance
is a function of the redshift for two intervals, z ≤ 1.755 and z > 1.755. Based in the data of
Type Ia Supernovae, the calibration obtained by Kodama et al.[3] was,

dL(z)

1027cm
= 14.57z1.02 + 7.16z1.76. (10)

With Eq. (10) and the 69 GRBs observational data, we can use Eq. (9) and in this way infer
if the dark energy effective EoS parameter ω is close to -1 (cosmological constant). Any small
deviation from this value could give a different theoretical scenario: if it is exactly equal (when
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of course referring to observational errors) to -1, we have a cosmological constant; if it is larger
than -1, we have quintessence energy; while if it is smaller than -1 we have the so called phantom
dark energy.

However with the Kodama calibration we obtained a plot for w(z) that was physically
unreasonable, diverging at certain redshift. This was not reported in [3].

We tried to repair this inconsistency by finding out another calibration for the GRBs extracted
directly from data. In order to calibrate the GRB observed data and obtain the dependence
rule between the luminosity distance dL and the redshift z, we try the five posible relationships
proposed in [2].

These relate GRBs isotropic luminosity, L, or the total burst energy in the gamma rays, Eγ ,
to the observables of the light curves and/or spectra: τlag, the time lag, V variability, the peak
of the νFν spectrum Epeak and τRT, the minimum rise time, as follows,

log

(
L

1ergs−1

)
= 52.26− 1.01log

[
τlag(1 + z)−1

0.1s

]
, (11)

log

(
L

1ergs−1

)
= 52.49 + 1.77log

[
V (1 + z)

0.02

]
, (12)

log

(
L

1ergs−1

)
= 52.21 + 1.68log

[
Epeak(1 + z)

300keV

]
, (13)

log

(
Eγ

1ergs−1

)
= 52.57 + 1.63log

[
Epeak(1 + z)

300keV

]
, (14)

log

(
L

1ergs−1

)
= 52.54− 1.21log

[
τRT (1 + z)−1

0.1s

]
. (15)

The isotropic luminosity L is given by

L = 4πd2LPbolo, (16)

where Pbolo is a observational quantity reported in [2].
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Figure 1. The luminosity distance as a function of the redshift of GRBs, Eq. (18) derived
using the calibrated Eγ − Epeak relation.
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Figure 2. w(z) parameter of the equation of state as a function of z, derived from 26 subset of
GRBs given in [2].

The plot between Eγ vs Epeak, Eq. (14), turned out to be the best to find a tendency. To
obtain dL(z) from this calibration one has the relation

d2L =
(1 + z)

4πSboloFbeam
10

[
50.57+1.63log

(
Epeak
300keV

(1+z)

)]
cm2, (17)

where Sbolo and Fbeam are observationally reported in [2].

The adjust of the data gives the following rule, see Fig. (1),

dL(z)

1027cm
= 10.7z + 5.9z2, (18)

that is not far from the one proposed in [3], Eq. 10. We note that this calibration was
obtained for a 26 subset of 69 GRBs data.

Using this extracted rule for the luminosity distance as function of z and using Eq. (8), we
derived the dark-energy equation-of-state parameter w(z), Fig. (2).

The plot of w(z) is not continuos, but shows a divergence at certain z around 1.54. The
reason of this divergence is that Eq. (8) blows up when H2(z) = H2

0Ω0m(1 + z)3, then
Eq. (8) does not work for all the range of z, unless we consider values of Ω0m smaller than
ordinarily accepted. In other words, larger redshifts demand more abundance of dark energy
and consequently less gravitational matter due to the concordance model. Our results point to
the need of an alternative way to determine w(z) appropriate to large redshifts.

5. Conclusions
The aim of this work is to determine the functional dependence of the dark-energy equation-
of-state parameter in terms of the redshift, w(z), from observational data coming from the
GRBs. First we find the best calibration between the observational data of GRBs, obtaining the
luminosity distance as function of redshift, dL(z), Eq. (18). Then we obtain the corresponding
Hubble function and then w(z). However we found an anomalous behavior in w(z). The reason
is an inconsistency of w(z), Eq. (8), that has a limited range of validity, that we found to be for
z < 1.54.

During the process of this research we learned of similar works, for instance [4], where the
EoS is adopted and then tested. We remark that in our work we tried to extract w(z) directly
from data only assuming the FRW and concordance model.
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With the improving of the observations, in particular with the recent launch of new satellites
devoted to GRBs surveys, as Fermi-GLAST and AGILE, one should be able to expand the
samples of GRBs and this will allow more robust analysis for w(z) using GRBs.
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