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1. The Physical Nature of the String 

In his lectures, Dr. Dragon has reviewed for us the theory of 

the relativistic string, discussing the formal problems associated with 

incorporation of the constraints of the theory, and the unphysical 

features encountered in attempting a canonical quantization. 

In the course of this seminar I want to describe a model worked 

out in collaboration with C. Carlson, L. N. Chang, and F. Mansouri, 

which was motivated by an attempt to circumvent some of these difficul- 

ties in quantization by identifying canonical variables different from 

the coordinates of the string, already at the classical level. 

Before I get to our model, however, I would like to take time to 

remind you of some of the physical pictures which have been proposed as 

candidates for the underlying structure of the string. The "string model" 

itself is, after all, an attempt to understand what physical structures 

can give rise to Veneziano-type scattering amplitudes, and it is natur- 

al to proceed a step further and ask, "What makes up the string, and 

how does it hold together?" Hopefully, this discussion will provide 

physical motivation for our "conductive string" model. 

The first conceptual problem one is faced with is in visualizing 

how a hadron could look like a one-dimensionally extended object at all. 

It is reasonable to expect that what something looks like depends upon 

how we look at it, and I want to remind you that field-theoretic models 

have already been around for a long time, in which the hadrons do appear 

as one-dimensionally extended matter distributions. The hadrons are 

supposed to "look" this way to the extent that in a high energy, low mo- 

mentum transfer collision, the inclusive particle distribution in the 

central region provides us with a "snapshot" of the hadrons' constituent 

matter distribution. A convenient way to display this information is 

by drawing a p~ - Pll phase space plot 
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Figure I 

If, as the number of partons increases, we can smoothly interpolate be- 

tween the points on the plot with a single curve, we will see the hadron 

as a string of partons. 

Does this parton string have anything to do with the dualists' 

string? If we transform p± to x~ , but keep the "length" axis as the 

longitudinal momentum fraction, we do indeed get just the picture that 

emerges from the Goddard, Goldstone, Rebbi, and Thorn (GGRT) parametri- 

zation of the Nambu string action. The original papers on the subject 

should be consulted to see that this is so (here and elsewhere), because 

I will not have time to show you the details. But this very nice mesh 

between the intuitive parton picture and the actual mathematical formal- 

ism of the string model should be kept in mind when thinking about the 

physics of the string. 

This simple physical picture is not without its faults, of course. 

As indicated in the drawing, we cannot really make contact with what is 

happening to the "leading particles" in the hadrons. Phenomenologically, 

current induced reactions suggest that partons with the quantum numbers 

of the quarks carry the most significant fractions of the hadron's mo- 

mentum. Although Harari-Rosner diagrams suggest a picture where the ends 

of the string are like quarks and antiquarks, with an essentially 

"neutral" middle, the mathematical string formalism does not genuinely 

reflect this fact in any way. 

In addition, this picture reflects only one component of the 

transverse momentum distribution, the exponentially bounded part dying 

off at ~ 400 MeV. We now know that there are other parts of the hadronic 

wavefunction, extending out much further than this with a power-law be- 

havior. The string picture is no more able to account for this region 

than the simple "wee", "soft" parton picture that motivates the Feynman- 

Wilson phase space plot. 

I want to milk this soft parton picture for two more features. 
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The first is that, as the energy increases, the number of produced 

particles increases logarithmically. On a rapidity plot, this means, 

of course, that the central region is filled uniformly. We expect, in 

the snapshot, that there will be a small likelihood for multiple occu- 

pancy at a given rapidity value. This is necessary for our hadron to 

extend out in one dimension, rather than filling up like a three-di- 

mensional jelly. However, this still leaves a question about whether 

the hadron is one big string, or a series of short strings, i.e., whe- 

ther there is any correlation in x~ space between neighboring points in 

longitudinal momentum. I will return to this question momentarily. 

My second point is not really derived from the parton picture, 

but rather an input to it originating from the notion of duality. Du- 

ality tells us there is an intimate relationship between the behavior 

in the Regge region, which the soft parton concepts describe, and the 

resonance region. That is, there should be a connection between the ex- 

tended, "wee sea" component of the hadronic wave-function, and the spec- 

trum of hadrons that is observed. It is natural to anticipate that, if 

there is such a relationship, it arises from the collective behavior of 

the wee partons in the sea. The collective excitations of the sea give 

rise to the observed spectrum of hadrons. To do this, of course, one 

cannot adhere too closely to the strictly "free" notion of partons. Al- 

lowance must be made for parton-parton interactions, which can give 

rise to sequences of excitations, but do not destroy the basic linear 

extension of the hadrons. 

At this point, it is natural to wonder if there is any model, no 

matter how simple, that can actually give rise to behaviors of the type 

we have been discussing. Many of the concepts of the patton model itself 

are realized in the field theoretic multiperipheral model, and this pro- 

vides a natural point of departure for a first attempt to describe 

strings. To go from an initial Regge picture to a dual picture, one 

should generalize the class of graphs that are considered: 

(s~) > 

(t÷) 

Figure 2 
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Kraemmer, Nielsen, and Susskind, and separately Gervais, Sakita, and 

Virasoro studied the properties of such "fishnet" diagrams, and elabo- 

rated the approximations under which such diagrams give rise to Veneziano- 

type scattering amplitudes. Not unexpectedly, this kind of behavior is 

obtained under the assumption that momentum flows smoothly and uniformly 

throughout the graph, so that propagators can be sensibly approximated 

by Gaussians. By so doing, one loses information about the short-dis- 

tance structure of the constituent interactions, and this is already a 

strong hint as to the inherent limitations of the string picture. 

The physical assumptions involved in jumping from a quantum field 

theory to a string picture are even more vividly portrayed in an old 

model due to Bjorken (Tel-Aviv lecture). This model is also discussed 

in detail by Kogut and Susskind in their Physics Report about partons. 

The basic idea is that one can examine the hadronic wavefunction in 

terms of the constituents, at a given time, in ¢3 theory, 

¢(n)(t) ~ < nl, ~i, l;'''nn,~i ,nlU(t, -~) ¢010 > (la) 

-1 
j:In-1 [ M2 J K2 + m2l L2 + m2 ] [ B -1 ] 

i:l 28j ~j 
(Ib) 

Here qj is the longitudinal momentum fraction of the jth parton, 

(Pll)j/Zj(Pll )j; and (K±,j) is the transverse momentum of the jth parton. 

The quantities 8 i are the sequential longitudinal momentum transfers 

down the chain, and (L]_,i) are the transverse momentum transfers. 

Equation (Ib) is obtained using the rules of old-fashioned perturbation 

theory, for a single time ordering in which the cascade occurs as one 

long sequence. (Further, the calculation is performed in the infinite 

momentum frame. Alternately, one may work directly using "light-cone 

quantization". I will use the languages of these treatments inter- 

changeably where there is no real ambiguity.) 

Now, if we further order the momentum flow as in the multiperi- 

pheral model, 8j << nj, and Fourier transform to transverse configuration 

space, we obtain 

~(n) (t) In~ I ] ÷ Ko(mlx - x_[ +11) F(n) (2) 
LJ:l - ±  , j  ,J 

Here K 0 is a Bessel function, which dies exponentially for transverse 
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separations on the order of the length associated with a parton mass. 

Let us examine the important qualitative features of this result: 

I) Near neighbors in n are nearby in • configuration space. The 

second parton "orbits" about the first, the third "orbits" about the 

second, etc., with the net result that the whole configuration random 

walks out in transverse configuration space. 

This simple calculation provides, therefore, a justification, 

albeit loose, for the notion that the hadron is a single long string, 

since indeed the transverse coordinates of neighboring elements on the 

string are tightly correlated. 

2) The transverse and longitudinal momentum dependence of the 

wavefunction factorize. This is a dynamical result, strongly dependent 

on the trivial nature of the ¢3 coupling. It is nonetheless a useful 

notion to hang onto, since the longitudinal momentum can then serve 

purely as a label for the points along the string, and one can as well 

write the transverse coordinates x~,j as xl (nj). 

3) As already noted, these results are obtained from looking at 

a special graph under a special approximation. To "derive" stringlike 

behavior from any field theory, one must of course make some special 

approximations. The value of having a simple model is, equally obvious- 

ly, that one can see clearly just what the nature of the special approxi- 

mations is. In addition to the approximations above, one needs still 

further assumptions plus a "leap of faith" to finally arrive at the 

string. However, these further steps suggest themselves naturally from 

the qualitative picture we've been pursuing. They are that: 

a) Since the near-neighbors in rapidity are close together in 

configuration space, the residual soft interactions needed for 

the system to produce a spectrum are short range, and in fact be- 

tween nearest neighbors; 

b) Since the graph that motivates the thing neglects virtual pair 

formation in any link along the chain (these processes are actually 

down for the usual reasons in the Pz ÷ " frame), and since the 

characteristic property of the partons that appears is the trans- 

verse coordinate, one can think of the x~(nj) as the relevant 

dynamical variables in terms of which the residual dynamics can 

be described. We will work in first-quantization. 

c) In the Regge region, it should be really the infinite "wee 

sea" that mediates the dynamics. We shall neglect, therefore, any 
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[Z n P(n)], i.e., assume the patton configuration with an in- 

finite number of partons is in some sense "dominant", so that a 

continuum approximation is possible. This is really a terrible 

assumption on two counts. 

First of all, we seem to close the door on being able to go back 

and account sensibly for the "valence" configurations, where an 

infinite sea plays no role. Field theoretically, the wavefunction 

must be a sum over resolutions into configurations with all 

possible numbers of partons compatible with the overall quantum 

numbers of the hadron. Actually, the "conductive string" model 

suggests a way to deal with this situation, and I will discuss 

it further in Section III. 

The second problem does not relate to whether we are doing 

sensible physics vis-a-vis field theory, but is a problem of 

internal consistency. It is that if we random-walk out in X_L- 

space with an infinite number of steps, we fill out all of the 

space, i.e., the hadron is infinitely big. Scaling the momentum 

e de' P (e')/ S w (e') 3 one finds from 0 to ~, [e/~ = SO II O de' Pll ' 

< (x~(~) - xi(0))2 > diverges logarithmically. Going backwards 

now, one naturally says any physical string is made out of con- 

stituents, and is not a true continuum. The paradox is that if 

we ask how fine-grained we should make our string so that the 

size of a "hadron" turns out to be the size of a hadron, we come 

up with a spatial cut-off so small as to be physically meaning- 

less. That's why I say this is a problem of consistency. 

Nevertheless, this problem is not troublesome for hadron-hadron- 

scattering. As I will remind you again later, scattering is in- 

volved with the overlap of the Pll ends of separate strings, 

and it is only when we really try to look inside the string that 

we find the inside is infinitely big. To discuss interactions 

with currents, for example, one has to subtract off 

~x~(~)> + <x~(O)>], each of which are also logarithmically di- 

vergent, to obtain finite results. Once this is done, the 

effective size of the hadron reduces to something like [£n 2 3 . 

This is just an aside, but again points to the limitations we 

must remain aware of. 

d) The final thing we must do is make the dynamics stringlike. 

Using the null-plane Hamiltonian to describe the residual inter- 

actions, we have 
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2 m 2 

Heff Z P±~i ÷ ~ ÷ 

i 2n i 

2 

÷ fg dO [(~x&) 
~e 

_ )2 (x&,i x±,i+1 

2 ~x±) 
+ ( ] + (const.) 

ST 
(3) 

provided that the density dn/de = const. Only then do the (hi) 

come out in the proper fashion to give a uniform string Hamilton- 

Jan in the continuum limit. It is gratifying that this require- 

ment is also a mathematical property of the GGRT treatment of 

the string. 

I stress once again that it is because of the rather precise 

manner in which the GGRT results fit the physical picture suggested by 

the parton model that I have dwelled on this model for so much time. 

Progress in attempting to understand hadrons as one dimensionally ex- 

tended objects has not ended here, of course, and a lot of effort is 

currently going into incorporating more physics (such as hard, short 

range forces) into the structure of the theory from the very beginning. 

I prepared a set of (hopefully) pedagogic notes on the string model for 

the SLAC Summer Institute, entitled "The Beginner's String", in which 

references to the stimulating works of numerous authors may be found. I 

will not be able to go into details of these works here. 

II. Lorentz Invariance 

The parton model discussions may be helpful in providing some 

basis for insight into how a hadron can be a string, but in its mathe- 

matical formulation it hardly looks like it could be a Lorentz covariant 

theory. One logical possibility, the one initially explored by Nambu, 

is to complete the process of abstraction by postulating an action 

principle for the string dynamics that incorporates simultaneously the 

Id extension and the Lorentz invariance of the system. The string is, 

after all, imbedded in the four-dimensional Minkowski space. Dr. Dragon 

has been lecturing on the consequences of this elegant postulate. 

With the benefit of hindsight, however, we are now in a position 

to ask whether a set of ten Poincare generators for the dynamical string 

system could have been guessed if one had been very clever. The moti- 

vation for attempting to invent the generators rather than derive them 
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is what is lost in elegance may be made up for in flexibility. 

I will now discuss one route to guessing the desired generators, 

because this is the way we constructed them in the conductive string 

model. 

Actually, the method is not really too much guesswork, since the 

approach was discussed in detail by Bacry and Chang, and by Bardakci 

and Halpern in their works on light-cone quantization. More recently, 

other relevant articles have appeared in Phys. Rev. by Biedenharn and 

van Dam, and by Staunton. Rather than trudging through the formal argu- 

ments, however, I would like to give you a simple mnemonic device which 

conveys the idea. 

Recall one nice thing about the 1.c. quantization is that the 

dynamics has a non-relativistic appearance to it. The Hamiltonian is 

(p~ - + m2/2n), two of the boosts are transverse Galilei boosts, a longi- 

tudinal boost is a scaling operation, etc. But simply using the metric 

A B ~ = A+B_ + A_B+ -A~B I does not give this simple structure to the 

Dirac system. The non-relativistic structure only emerges if we first 

decompose the Dirac field as ~ = ~+ + ~_, using projectors (y±y¥), and 

then observe that the Dirac equation for #_ involves only a "spatial" 

derivative. The components ~_ are not canonical dynamical variables, 

but can be eliminated in favor of the true independent degrees of free- 

dom ~+. 

If, further, we prudently choose the Bjorken, Kogut, Soper re- 

presentation for the y~, we obtain their expression for ~+ (free), 

dn ,+(x) ~ z f dep~f -~. 
X=±il2 

~(pi,n;x) e -ipx ~(x) + dT(p~,,;l) e ipx ~(-X)] , (4) 

I 
where ~(I/2) : (8), ~(-1/2) : (~). We can use two component spinors with 

no loss of generality. 

I've gone into these elementary results to remind you that once 

~_ is eliminated, and Eq. (4) used for ~+, the ten Poincare generators 

of the free Dirac theory may be written as follows: 

G - f dx ~t (x) g~(x) , (5) 
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where the first-quantized forms for the generators, g, are: 

P i = -i~, P+ ~ n, P- ~ H 

p~+ m 2 ; 

2n 

(6a) 

K 3 = ½ {,,~n); (6b) 

a 3 
J3 = Cab Xa Pb + -2- ; (6c) 

Bm= .x± ; (6d) 

Sk : ~ { Xk'H } - ~ { -n K3 } Pk + -~ P~ - m (6e) 

These generators obey the Poincare algebra under the first-quantization 

canonical commutation rules [Xa, Pb] = i6ab. 
N 

For N free particles, we have g(N) = Z gi" It is convenient to 
i use CM and relative coordinates, e.g., 

p~ 2 + m 2 

HI+~ z = ~-~ + ~ • 

If, to the two free particle terms, we add an interaction term between 

them, it is convenient to introduce a (mass) 2 operator in which the inter- 

action is buried. What follows is simply a definition: 

H = HI+ 2 + V12 
p~ +~2 

2M 

(7) 

with 

M ~2 = 2M V12 + ~ (~2~ + m 2) 

Now, the mnemonic is quite simple, and consists of making the 

following replacements in the generators Eq. (6): 

m 2 (parameter) ÷~2 (operator) (8a) 

--~ (Pauli) ÷ Ji (operators) (Sb) 
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Also , ÷ M; and xl, p~ are C.M. operators which commute with ~t 2 and Ji" 

All the algebraic properties of Eq. (6) are to be preserved. Thus the 

Ji satisfy the spin algebra, and ~2 must be a rotational scalar. The 

idea is that the mass, which is a parameter in an elementary particle 

theory, becomes an operator in a composite particle theory. Similarly 

the spin is not s~n intrinsic property, but arises from the dynamical 

configuration of the system. All of the information of the state of 

internal excitation of the particle is carried by ~ t2 and the Ji' which 

are to be expressed in terms of some set of appropriate internal degrees 

of freedom of the system. In the string, these degrees of freedom are 

xl (e,T) and Pl (e,T), or equivalently, their Fourier coefficients, the 

boson operators a n and at:n 

x± (e,T) : xi°)+ p(O)~ + Z/~n2_ ~os n e (an~ (T) + a t (~))] ; 
n n~ 

Pi(e'T) : ~x±/~; (9) 

% 
[an i' amj] : ~nm 6ij 

As it turns out, this is not quite right for the string model. 

Following Gursey and Orfanidis, and Ramond, introduce operators which 

transform as m a i 

a i 
T i 171L- -~- , i.e., 

[ T i, TJ3 : i e ij ~t 2 j5 ; 

[ j3 T i] : i e ij T j 

(lOa) 

(IOb) 

(lOc) 

The combination (m~ i) appears in the generators Sk, Eq. (6e), and from 

GGRT we learn that the structures that emerge in the string model in 

those generators has the algebra of the T i. Dr. Dragon has discussed 

for us the difficulties with 26 dimensions and tachyons that arise from 

the structure of those generators. 

III. The Conductive String 

I have gone to some length to provide you with a non-formal back- 

ground on strings, most of which is well known to specialists, because 

the conductive string model does not really follow from any pretty forma- 



380 

lism, but rather arose as a tentative step away from the rather close- 

knit formal structure of string theory. 

One specific mathematical motivation for this particular way to 

move away from the string model arises from asking why the canonical 

quantization procedure fails for this theory. Why is it that we run in- 

to these troubles with dimension and with tachyons? Perhaps one has not 

chosen the dynamical variables properly, for which quantization rules 

are to be prescribed. At the classical level, another choice for the 

variables suggests itself quite naturally. As Dr. Dragon has noted, the 

equations of motion become the string equations, x : x", if the co- 

ordinate conditions 

(~xU~ 2 
~--~_j : O, (11) 

+ 
with u- : • ± 8, are imposed. That is, (~x~/~u +) and (~x~/~u -) are null 

vectors. 

Now, any such null vector may be represented as 

~x~/~u ± : ~ c ~ ~+ (12) 

already at the classical level. We shall try, therefore, to take the 

pair of two component spinors ~± as our basic dynamical variables. 

The string equation of motion will then be satisfied if 

$_ : i B ~_ (13) 
U± + ~ + 

where B are arbitrary Hermit±an functions. However, by Eq. (12) the ~± 

enjoyed a phase invariance under ~ + eiX'e'~'~. This invariance can be 
t ~ 

preserved in Eq. (13) if the B simultaneously transform as gauge fields, 

+ e iX 

B+B- ~k 

(14) 

We now depart from our strict adherence to the string model by 

treating B± as gauge fields. Specifically, this means that we will de- 

rive Eq. (13) from a new effective Lagrangian, and include kinetic e- 

nergy terms for B± as well. 

Before displaying this effective Lagrangian and plunging into the 

details of the spectrum, etc., I want to jump the gun a little and con- 

firm your suspicion that we will be doing two-dimensional electrodynamics. 
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The point I want to make right now is that there are physical motivations 

for doing this. The argument regarding the choice of proper classical 

variables could not guide one into making B± gauge fields, but it is 

reasonable to try this nonetheless, for different reasons. 

These physical motivations stem in part from work done by Nielsen 

and Olesen, who observed that the electrodynamics of scalar fields, cum 

Higgs mechanism, could give rise to filamentary solutions at the classi- 

cal level. These filaments are analogous to trapped magnetic flux lines 

in a type II superconductor. Nambu has argued that if these flux lines 

terminate on (abelian) magnetic poles, the static, classical expression 

for the energy contains two pieces, 

E ~ a L + b (Yukawa). (15) 

The first piece is proportional to the length of filament between the 

poles, and should represent something like the ground state energy of 

of the unexcited string. The second piece contributes for short wave- 

lengths, and is desirable for producing power-law fall-offs in form 

factors. 

In addition, we have heard Professor Susskind's lecture on the 

hadron-wurst picture he has been working on with J. Kogut. Following 

K. Wilson, one examines the current-current correlation function 

<J (x) J (o)> - ~DA De D@ + J (x) J (o) exp i fd4x~(x;A,¢,¢t). 

The factor [exp i fdx A~]leads one to believe that if the q and q in a 

loop exchange photons in a fairly uniform manner, 

Figure 3 

the contribution to the action will go as~d<A~, where (2d) is the peri- 

meter of the loop. 

But if for some reason the exchanges do not work out this way, but 

rather conspire to make the effective action proportional to the area, 

something interesting occurs. Let me try to give a crude argument for 

how this works. 
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Figure 4 

First, if the action I ~d + /d 2 + a 2, clearly dI/da-a//d2 + a 2~ a/d. 

It does not cost much to separate the quarks further and further apart 

(d + ~). On the other hand, if I ~ da, dI/da ~ d, and we lose a great 

deal. This was why Wilson wanted to get the action to go like the area. 

In addition, however, in a static situation L = -H, and so I ~ E, 

whence E ~ ad. Here "a" is, in some frame, the spatial separation between 

the members of a pair created at the origin and moving toward the point 

x. So again we have a situation where the potential energy grows linear- 

ly with the separation of the pair. 

There are, to summarize, various ways in which conventional field 

theories may support solutions in which the effective interaction is 

just like the interaction in two-dlmensional electrodynamics, or per- 

haps like its non-Abelian brother. One may view the conductive string 

either as an abstraction from such models, on the same footing as de- 

ciding on harmonic forces between partons in Bjorken's illustrative model; 

or as an approximation to the full field theory which may be appropriate 

for studying a special class of properties of the hadron. Let me now con- 

tinue with the main line of development of the model. 

We have 

¢~ I Fab : i ra (~a - ig B a) ~ Fab , (16) 

with "a" and "b" running over 0,i. The spinor ¢ has four components, con- 

sisting of the two components each of ~+ and ~_. The 4x4 matrices ra 

satisfy the algebra {ra,r b} : 2n ab, with n °° : -n 11 : 1,n °l : O. In terms 

of the usual Dirac matrices, we may write r 0 = iy°y5,r i = iY 5. As usual, 

Fab = ~bBa - ~aBb , where the two components B a are linear combinations 

of B+ and B_. It is easily seen that with these choices, variation of 

~ gives the Eqs. (13), plus the Maxwell equations for B. 

Working in analogy with the string model, we confine our spatial 

domain to [0,~] , and impose boundary conditions on ¢ such that (~x~/~e) 

vanishes at the boundaries, using Eq. (12). These boundary conditions 

also lead to the conditions j'(O) : j'(~) : (~j°/~e)lo : (~j°/~e)l~ : 0, 
where the currents 

.a  ~ ra¢ .  (17) j 
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For our purposes we are not interested in the Green's functions 

of the theory, but rather in the physical spectrum of excitations sup- 

ported by the system. As is well known, TDQED has no genuine radiation 

field, and in the gauge B 1 = O, the timelike field can be solved for in 

terms of the charge density, 

: de,le-e,I j°(e,,x) (t8) 

Forming the Hamiltonian, then, we have 

g2 
H = - i  f d e ~ r l ~ l ~  - '4-- ffdo d e '  j ° ( e , x ) ] e - e ' l  j ° ( o ' , T ) .  (19)  

The idea is to diagonalize this Hamiltonian, and display the energy 

eigenstates. Our task is somewhat simplified by the consistency con- 

dition on TDQED first discussed by Zumino, which says that all the phy- 

sical states of the system must be neutral. 

To perform the diagonalization, it is useful to introduce a set 

of coupled fermion operators which satisfy Bose commutation relations. 

These "plasmons" are the Fourier components of the vector current, 

I f dO: ~o cos pe + ij I sin po] : (20) 
P(P) : 2/~ 0 

It is easily seen that the ~' Schwinger term in the equal time JO' Jl 

commutator provides 

~(p), p+(q)] : 6pq. (21) 

Also, ~(p),Q] : O, so acting with plasmons does not destroy the neu- 

trality of a state. Inverting Eq. (20) for JO and inserting into (19), 

one obtains 

2 ® 
1 ~pn  + + + H = H 0 + ~ Z ~ Pn + PnPn + Pn Pn 3' (22) 

n=[ 

where 2 ~ 2g2/~.  In  t h i s  fo rm,  i t  i s  s t r a i g h t f o r w a r d  to  d i a g o n a l i z e  H 

by means o f  a Bogo l iubov  t r a n s f o r m a t i o n .  The d e t a i l s  are p resen ted  i n  

SLAC-PUB-1418, to be published in Phys. Rev., and I will give only the 

results: 

I) The ground state is 

® 2 
1 ~ + + ) ] lO > (23) I~> : exp ~ Z (2 tanh-1 )(Pk Pk - PkPk 

n:1 p~+2k ~ 

-is 
e IO>. 
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This state clearly contains indefinite numbers of quarks and anti-quarks, 

and it is because of this that it acts like a "conductive" medium, any 

excess test charge being screened in the interior and only reappearing 

on the boundary. 

Notice the qq's do not pair off to make bosons localized in space. 

Rather, there are correlated pairs of fixed total momentum. The ground 

state I.CA>has a finite negative definite energy with respect to the Fock 

vacuum I0>, 

2 
1 

ZFc n_ - n - ~---], (24) z0 = 2 n 2n 

with 

~n : / 2 + n 2. (25) 

The fact this energy is negative reflects, of course, that the correlated 

state is favored over the no-particle state. 

We can recognize in this result a possible answer to the problem 

posed earlier as to whether a string is really only the N = - patton con- 

figuration in the wave function. In this type of model, where correlations 

are extremely important, the stationary states will project onto all 

possible (neutral) bare parton states. 

2) The presence of doubled spinors allows for the presence of 

neutral "filled Fermi sea" states in the spectrum. These are of the form 

F 
IF> = ~ b i +(n) cj+(n)IO>, (i~j), (26) 

n:l 

where b + and c + are particle-antiparticle creation operators. The 

essential property of these states is that 

Then 

where 

p(n) IF> : O, (all n). 

H(e-iSlF>) = EF(e-iSIF>), 

F 
i F 2 : 2 Z (n - =) : E F 

n=l 

comes entirely from the non-interacting part of the Hamiltonian. (We are 

now shifting the energy by c o so IC> has zero energy.) 
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3) Plasmons may be added onto the filled sea states, 

N 
P [~ + (m)] m 

INp,P;F> : m=l~ / N ! IF>" 
m 

(27) 

These states are also energy eigenstates, the plasmons contributing as 

massive bosons, by Eq. (25), 

H[e-iSlNp,P;F> ] = (c F + ~p)~-iSlNp,P;F>], 

P /m 2 2 
Z N m + ~ . ep = m=l 

In this model, then, we see clearly that the states of excitation con- 

sist of collective excitations of the constituent fermions. 

To complete the story, we have to construct the Poincare gene- 

rators, and discuss how physical states transform in the full four- 

dimensional Minkowski space. We can do this with the machinery erected 

in Section II, in two steps. 

First, we can identify the dynamical (mass) 2 operator to be some 

function of the Hamiltonian of our theory above. It turns out by a simple 

counting argument that the Hagedorn degeneracy is reproduced if we choose 

~2 = HTDQED (28) 

We will need center of mass four-momenta for our particles, subject to 

the mass-shell conditions 

P P~ : ~t 2. (29) 

This of course relates the "true" Hamiltonian P- to the spectrum of in- 

ternal excitations, as in Eq. (7). 

The state of a single free particle in motion may then be labelled 

Ik +, k 2, J, X> : eik×INp,P;F>. (30) 

The second stage in our construction is to interpret the spin and he- 

licity labels J and ~ by producing operators Ji" This can be done very 

naturally in our model, because the TDQED with four component spinors 

enjoys an extra SU(2) symmetry generated by 
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k 
.k I fde : ¢+ a O) j --~ ( ¢:. 

k 0 

One then finds that the plasmons are Lorentz scalar excitations, 

.i 
,o(m)] = O, (31a) 

While 

jsi F> : (±)F I F >. 

Only the "filled sea" states carry spin, and by means of the ladder 

operators (jl ± ij2) one can complete the multiplets of spin F. Said 

differently, one easily checks that 

2 
W W~IF> = m F(F+I)IF) 

where W is the Pauli-Lubanski vector. 

The net result of all this is that the model describes a system 

of parabolic trajectories, J = /m 2 , with sea states providing the 

leading trajectory. The plasmons then shift this trajectory to the right 

to form an infinite family of particles. Unfortunately, this spectrum 

does not appear to be particularly realistic, although we are always 

in four dimensions and we have no tachyon and no ghosts. It has to be 

admitted that our Lorentz generators are constructed in an ad hoc 

fashion, and other ways of proceeding may exist that would lead to a 

different trajectory structure. For the present, however, I have no 

light to shed on this question. 

IV. Speculations 

The great virtue of the string model, as compared with other 

theories of composite hadrons, is that scattering amplitudes already 

exist, and a great deal is known about the structure of these amplitudes. 

Especially in the last year, a lot of progress has been made in formu- 

lating the theory of interacting strings, both as a particle theory in 

the sense of Feynman path integrals, and as an interacting multilocal 

field theory. 

While I think that the conductive string model illustrates many 

good features that a more realistic model of this genre should possess, 

it remains to be seen whether enough can be learned from the string 
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model to be able to discuss interactions of conductive strings. These 

closing remarks are speculations on approaches to this problem. 

To describe string-string interactions as a second quantized 

field theory, Kaku and Kikkawa have introduced master fields describing 

entire strings, which are functionals of the first quantized coordinates 

x± (e,~), 

: ~[x i (e,~)] . 

Now, in addition to the original string model, there are other string 

models in which the constituents are endowed with intrinsic spins, the 

Neveu-Schwarz and Ramond models. The master field would then have to be 

a functional of two sets of "fields'~on the two-dimensional submanifold, 

where ¢(e,~) is a spinor field describing the spin excitations. 

Structures llke this are reminiscent of the supergauge fields 

that Professor Wess told us about, with x~ and ¢ playing the role of 

the gauge parameters. Here these fields themselves obey free equations 

of motion, Klein-Gordon and Dirac respectively. What we would want for 

our conductive string model is to extend this even further and allow 

the functional arguments of the master field to be interacting quanti- 

ties. The speculation consists of the conjecture that if we hold on to 

the guiding principle of gauge invariance, the consistent formulation 

of such a theory will already contain the allowed forms of the master 

field interactions. This hope is bolstered by the observation that there 

are, in fact, residual vortex-vortex interactions in type II supercon- 

ductors, whose form is determined from the original Landau-Ginzburg 

equations. 

In any case, the study of multilocal field systems is just be- 

ginning, and it may be valuable to investigate master fields with quite 

general field arguments, ~ = ~(x,¢j(x)), where "j" is any space-time 

and/or internal symmetry index, and x are the Minkowski space coordinates, 

in addition to the forms suggested by the string models. Such master 

fields would represent "particles" whose constituents' dynamics is it- 

self field-theoretic in nature. One intuitively expects the particles' 

dynamics to follow from the form of the constituents' dynamics, and an 

interesting problem is how much of this can be deduced from general con- 

siderations such as gauge invariance. 


