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Abstract. A generalized model of space-time is given, taking into consideration the
anisotropic structure of fields which are depended on the position and the direction
(velocity).In this framework a generalized FRW-metric and Friedmann equations are
studied. A long range vector field of cosmological origin is considered in relation with
the physical geometry of space-time in which Cartan connection has a fundamental role.

1. Introduction
During the last few years considerable studies with respect to observable anisotropies of the
universe have been done[1, 2].These are connected to the very early state of the universe and
related to the estimations of WMAP of CMB, the anisotropic pressure or the incorporation
of a primordial vector field(e.g. a magnetic field) to the metrical spatial stucture of the
universe[5, 4, 16].In this case the form of scale factor will be influenced by the introductory field.
A geometry which may connect the Riemann metric structure of the space-time to the physical
vector fields is the class of Finsler-Randers type spaces. In these spaces an electromagnetic field,
a magnetic field or a gauge vector field can be emerged out by a physical source of the universe
and be incorporated to the geometry causing an anisotropic structure. The possible formation
of singularities can be studied by a generalised Raychaudhuri equation initially presented in
[8, 7]. The Cartan’s torsion tensor[19, 21] characterises all the geometrical machinery of Finsler
Geometry and appears to all the expressions of geometrical objects such as connection and
curvuture. A Finsler geometry can be considered as a physical geometry on which matter
dynamics takes place while the Riemann geometry is the gravitational geometry[20, 11, 13].

In the following we present some basic elements of Finsler geometry[13, 12]. In 1854
B.Riemann, before arriving at Riemannian metric was concerned with the concept of a more
generalised metric

ds2 = F(x1, x2, ..., xn, dx1, ..., dxn) (1.1)

where n is the dimension of the space.A Finsler structure is endowed by a n-dimensional C∞
manifold Mn, a function F(x,y) C∞ on the tangent bundle ˜TM = TM/(0) F (x, y) : ˜TM → R
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that satisfies the conditions

(F1) F(x, y) > 0 ∀ y �= 0 (1.2)
(F2) F(x, py) = pF(x, y) for any p > 0 (1.3)

where y denotes the directions or velocities on the considered manifold with the previous
coordinates.The metric tensor(Hessian)

fij(x, y) =
1
2

∂2F2

∂yi∂yj
(x, y) (1.4)

has rank fij = n which is homogeneous of zero degree with respect to y due to the Euler’s
theorem. The lenght s of a curve C : xi(t), a ≤ t ≤ b on the manifold is

s =
∫ b

a
F(x(t), y(t))dt. (1.5)

The integral of the length is independent of the parameter if and only if the condition (F2) is
valid. The condition of homogeniety enables us to define the line element

ds = F(x, dx) (1.6)

and the variation of the arclength δ
∫

ds = 0 implies the Euler-Lagrange equations
d
ds

(
∂F
∂y (x, y)

)
− ∂F

∂x (x, y) = 0 which represent the geodesics of the Finsler space. The equation
of geodesics then becomes analogous to the ones of the Riemann space

d2xi

ds2 + γi
jky

jyk = 0 (1.7)

where the Christoffel symbols are defined by the usual formula

γi
jk(x, y) =

1
2
gir(x, y) (grj,k(x, y) + grk,j(x, y) − gjk,r(x, y)) . (1.8)

The notion of torsion tensor is crucial within the Finsler Geometry’s framework. A Finsler
space is a Riemann space if and only if Cijk = 0 where Cijk is a torison tensor defined by
E.Cartan as

Cijk =
1
2

∂fij

∂yk
(1.9)

therefore a Finsler space can be treated as a natural generalisation of a Riemann space.

2. Anisotropy and Randers type Finslerian spaces
An alternative way of considering physical phenomena is to incorporate the dynamics to
the active geometrical background following the Einstein’s interpretation of gravity. Our
investigation is based on the introduction of a Lagrangian metric[14, 8] facing universe’s
present anisotropy[1] as an embodied characteristic of the geometry of space-time. A similar
investigation has been applied in case of electromagnetism [6, 17] together with some recent
progress in gravity, cosmology and fluid dynamics[7, 14, 15]. We consider the geodesics of the
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4-dimensional space-time1 to be produced by a Lagrangian identified to the Randers-type metric
function

F (x, y) = σ(x, y) + φ(x)k̂αyα (2.1)

σ(x, y) =
√

aκλ(x)yκyλ (2.2)

where aκλ(x) is the Robertson-Walker metric defined as

aκλ(x) = diag(1,− a2

1 − kr2 , −a2r2, −a2r2 sin2 θ). (2.3)

where k = 0, ±1 for a flat, closed and hyperbolic geometry respectively. The spatial coordinates
are comoving and the time coordinate represents the proper time measured by the comoving
observer. The vector yµ = dxµ

ds represents the tangent 4-velocity of a comoving observer along
a preferred family of worldlines(fluid flow lines) in a locally anisotropic universe;the arclength
parameter s stands for the proper time.We proceed considering the natural Lorentzian units i.e.
c = 1. If we fix the direction y = ẋ then σ(x, ẋ) = 1.The vector field

uα(x) = k̂αφ(x) (2.4)

stands for a weak primordial electromagnetic field |uα| � 1 incorporated to the geometry of
space-time as an intrinsic characteristic. The whole information about the anisotropy is coded to
the scalar φ(x)[14].We consider a linearised variation of anisotropy therefore the approximation
φ(x) ≈ φ(0) + ∂µφ(0)xµ is valid for small x.

3. The osculating metric and the choice of the connection Aκ
λµ(x)

The metric of the Finsler space can be directly calculated from the metric function F . Since
fµν(x, y) = 1

2
∂2F 2

∂yµ∂yν (x, y) we derive[14]

fµν = gµν +
1
σ

(uµyν + uνyµ) − β

σ3 yµyν + uµuν (3.1)

where

gµν(x, y) =
F

σ
(x, y)aµν(x) (3.2)

and

β(x, y) = φ(x)k̂αyα = uα(x)yα, (3.3)

αµν(x) represents the RW-metric.
Under the weak field assumption2 we can approximate the Finsler metric fµν(x, y) ≈ gµν(x, y)

by considering of a small perturbation of the last three terms in (3.1). The metric is considered to
have signature (+,−,−,−) for any (x, y). The square of the length of an arbitrary contravariant
vector Xµ is to be defined |X|2 = fµν(x, y)XµXν ≈ gµν(x, y)XµXν . We insert the metric
gµν(x, y) into (3.2) to calculate the connection components of the metric

rκ
λµ(x, y) =

[
1
2
gκρ (gρλ,κ + gρκ,λ − gλµ,ρ)

]
(x, y) (3.4)

1 The greek indices belong to {0, 1, 2, 3} and the latin ones to {1, 2, 3}
2 In General Relativity a weak vector field in space (e.g. primordial magnetic field) can be treated as first order
peturbation upon the Riemann metric tensor
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In many cases we consider a convenient Finsler metric to approximate the gravitational
theories[19, 21]. This metric is connected with a Riemannian one, rµν(x) refered as osculating
Riemannian metric[19]

rµν(x) = fµν(x, y(x)) ≈ gµν(x, y(x)) (3.5)

the equation of geodesics is given by the usual formula

d2xµ

ds2 + rµ
ρσ(x)yρyσ = 0 (3.6)

where rκ
λµ(x) are the Christoffel components coming from the metric rµν(x). The equations (3.6)

are identified to ones of Finsler space (1.7) due to the homogeneity properties of the Cartan’s
torsion(Cαβγyα = Cαβγyβ = Cαβγyγ = 0).

The Cartan’s torsion tensor can be easily deduced from (2.1) and (1.9)and the full expression
is[14]

Cµνλ =
1
2

{
1
σ

S(µνλ)(aµνuλ) − 1
σ3 S(µνλ)(yµyνuλ) − β

σ3 S(µνλ)(aµνyλ)
}

(3.7)

where Sµνλ denotes the sum over the cyclic permutation of the indices. Every single term of (3.7)
is proportional to the components of the field uα thus Cµνλ ≈ 0 under the condition |uα| � 1
and then we can drop all the torsion dependent terms at the calculation of the rκ

λµ(x). A direct
calculation in virtue of (3.4) leads to the following expressions for the nonzero Aκ

λµ osculating
affine connection coefficients

A0
11 = aȧ

1−kr2 + a2

1−kr2 zt,

A0
22 = aȧr2 + a2r2zt,

A0
33 = aȧr2 sin2 θ + a2r2 sin2 θzt,

A1
01 = A2

02 = A3
03 = ȧ

a + zt,
A1

22 = −r(1 − kr2)(1 − rzt),
A1

11 = kr
1−kr2 + zt,

A1
33 = −r(1 − kr2) sin2 θ(1 + rzr),

A2
12 = A3

13 = 1
r + zr,

A2
33 = − sin θ cos θ + sin2 θzθ,

A3
23 = cot θ + zθ

(3.9)

where we have taken into account that F/σ = 1+uαyα/σ ≈ 1. The tensorial quantities zt zθ, zr

are defined by
zµ(x) = ( F

2σ ),µ(x, y(x)) (3.10)

and related to the variation of anisotropy. Since the vector field yα has been picked up to satisfy
the condition yα

; µ = 0 this yields the comoving nature of yα = (1, 0, 0, 0)

zµ(x) = u0,µ(x)/2. (3.11)

The right choice of the connection components gives directly the curvature tensor3.We insert
(3.9) into

Lκ
λµν = Aκ

λν,µ − Aκ
λµ,ν + Aρ

λνA
κ
ρµ − Aρ

λµAκ
ρν (3.12)

3 The curvature which is associated to the commutation relations of the δ-derivatives
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Lµν = Lα
µαν (3.13)

L = gµνLµν . (3.14)

The calculation of the Ricci tensor can be drastically simplified in virtue of zµ,ν = 0 and z2
µ ≈ 0.

This approximation is valid since φ(x) is linearly expressed while zµ can be cosidered very small
at the first stages of a highly accelerated expanding universe[24]. We arrive then at the following
nonzero components

L00 = −3
(

ä
a + ȧ

azt

)
L11 = (aä + 2ȧ2 + 2k + 4aȧzt)/(1 − kr2)
L22 =

(
aä + 2ȧ2 + 2k + 4aȧzt

)
r2 − kr3zr − cot θzθ

L33 =
(
aä + 2ȧ2 + 2k + 4aȧzt

)
r2 sin2 θ + 2 sin θ cos θzθ

(3.15)

The geodesic deviation equation in the case of a perfect fluid along the neighbouring world
lines can be generalised within the Finslerian framework (ξµ is the deviation vector)[9, 12]

δ2ξµ

δs2 + Lµ
νρσyνyρξσ (3.16)

where the operator δ
δs denotes the Finslerian δ−connection along the geodesics.

The formula that characterises isotropic points in a Finslerian space-time of constant
curvature K reduced to the familiar form[19, 22, 14]

Lκλµν = K(gκµgλν − gκνgλµ) (3.17)

4. The Einstein’s field equations for an anisotropic universe
The energy-momentum tensor of a Finslerian perfect fluid for a comoving observer is defined to
be[21, 7]

Tµν(x, y(x)) = (µ + P )yµ(x)yν(x) − Pgµν(x, y(x)) (4.1)

where P ≡ P (x), µ ≡ µ(x) is the pressure and the energy density of the cosmic fluid respectively.
The vector yα = dxα

dτ is a 4-velocity of the fluid since y = (1, 0, 0, 0) with respect to comoving
coordinates. Thus Tµν becomes4 [23]

T00 = µ (4.2)
Tij = −P F

σ aij (4.3)
T = Tµ

µ

= σ
F µ − 3P (4.4)

where F/σ ≈ 1 at the weak field limit.
The substitution of (4.1) to the field equations

Lµν = 8πG

(
Tµν − 1

2
Tgµν

)
(4.5)

4 Tµν = diag(µ, −F
σ

aijP ) in matrix form
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implies the following O.D.E

ä

a
+ 2

ȧ

a
zt = − 4πG

3 (µ + 3P ) (4.6)

ä

a
+ 2

ȧ2

a2 + 2
k

a2 + 4
ȧ

a
zt = 4πG(µ − P ) (4.7)

In virtue of (4.6),(4.7) we obtain the Friedmann equation
(

ȧ

a

)2

+
ȧ

a
zt =

8πG

3
µ − k

a2 (4.8)

which is similar to the one derived from the Robertson-Walker metric in the Riemannian
framework, apart from the extra term ȧ

azt. We associate this extra term to the present Universe’s
anisotropy.

The quantity zt is easily calculated from (3.10)

zt =
1
2
k̂0φ(x),0. (4.9)

The physical quantity zt depends on the scalar φ(x) which is the only quantity of the Lagrangian
that gives us insight about the evolution of anisotropy.The parameter zt is measured by the
Hubble’s units as (4.8) implies. It is significant that zt depends on the geometrical properties
of the Finslerian space-time manifold. Indeed, the component C000 can be directly calculated
from (3.7) as

C000 =
u0

2
(4.10)

(as we previously considered |uα| << 1) after differentiating with respect to proper time we lead
to the direct dependence of zt on the Cartan torsion component C000

zt = C000,0 (4.11)

hence the variation of anisotropy is closely related to the variation of the Cartan torsion tensor
as an intrinsic object of the Finslerian space-time.

5. The cosmological anisotropic parameters
We list the main anisotropic parameters constructed within the Finslerian framework[21, 8, 7, 14]

The anisotropic scale factor is defined along each world line. S(s) is the length scale
introduced in [7, 2]. S(s) = ã(υ(s)) where υ(s) is the tangent vector field along the world
lines.

The anisotropic Hubble parameter H̃ is given by the relation(Ṡ = ∂ã
∂yµ υ̇µ(s))

H̃ =
Ṡ

S
=

1
3
Θ̃ (5.1)

The term Θ̃ is the expansion in the Finslerian space-time expressed by

Θ̃ = ∇µyµ − Cλ
µλẏµ (5.2)

Where the symbol 	 means the Riemannian covariant derivative associated with the osculating
Riemannian metric tensor rµν(x). The anisotropic Hubble parameter can be computed from
(4.8)

H̃2 = H2 + Hzt (5.3)
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thus we have to attribute Hubble’s units to zt.
The density parameter can be defined with respect to anisotropic Hubble parameter H̃

Ω̃µ =
8πG

3H̃2
µ =

µ

µ̃crit
(5.4)

where

µ̃crit =
3H̃2

8πG
. (5.5)

The deceleration parameter is defined in terms of the anisotropic scale factor S(s)

q̃ = −SS̈/Ṡ2. (5.6)

Therefore the Friedmann equation can also be rewritten in the form

Ω̃ − 1 = k/(H̃2a2) (5.7)

6. Discussion
The study of a FRW-model in the framework of a generalised metric space with a weak vector
field into the osculating Riemannian structure of the universe provides us with the extended
Friedmann equation (4.8).The contribution of the variation of anisotropy is expressed by the zt-
constant produced by the Finslerian character of the geometry of spacetime.In classical relativity
the entire evolution of a homogeneous isotropic universe is contained in the scale factor a(t)(e.g.
evolution of matter,radiation and vacuum densities and every other physical quantity depending
on the proper time t).In case we take into account the directional dependence of the scale factor
we violate the assumption of isotropy. This consideration leads us to modify a(t) to the form
ã(υ(s)) to be compatible within the framework of locally anisotropic spacetime. The vector υ(s)
represents the unit tangent vector in flow lines(wordlines of the cosmological fluid). The whole
picture can be naturally interpreted in terms of the locally anisotropic metric structures of the
universe.The solution of the FRW equations can be applied to the estimation of the variation of
anisotropy and calculate with better precision the temperature of the CMB radiation depicted
at the present picture of WMAP[25].
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