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Until recently little was known about the high-dimensional operators of the standard model effective
field theory (SMEFT). However, in the past few years the number of these operators has been counted up to
mass dimension 15 using techniques involving the Hilbert series. In this work I will show how to perform
the same counting with a different method. This alternative approach makes it possible to cross-check
results (it confirms the SMEFT numbers), but it also provides some more information on the operators
beyond just counting their number. The considerations made here apply equally well to any other model
besides SMEFT and, with this purpose in mind, they were implemented in a computer code.

DOI: 10.1103/PhysRevD.101.035040

I. INTRODUCTION

It is sometimes useful to consider interactions which are
allowed by symmetry, even if they are not renormalizable.
Seen as effective interactions, they can be used to study
the effects of new, higher-energy physics in a model-
independent way.
For example, one can take the Standard Model fields and

build all those operators which are invariant under gauge
and Lorentz transformations, including those with a mass
dimension larger than four. This construction is often called
the standard model effective field theory (SMEFT), and it
has been studied for a long time. The unique dimension five
term in SMEFT, which violates the lepton number and may
explain neutrino masses, was mentioned for the first time in
[1]. This very same paper, as well as [2,3], also lists the
dimension six terms which violate the baryon number
(hence they can induce nucleon decay), while the remain-
ing baryon number conserving operators with this dimen-
sion were listed in [4–6]. Nevertheless, for most purposes
several of these operators can be shown to be redundant,
and the authors of [7] were the first to provide a complete
list of nonredundant SMEFT Lagrangian terms up to
dimension six. The counting of how many parameters
are contained in such terms was given in [8].
It is surprising that it took so long to fully understand

these operators, given that their dimension is not particu-
larly large: most of them have four fields or less. Currently,

the operators of dimension seven also seem to be well
understood [9–11], but beyond that there are only partial
results. For example, some lepton number violating oper-
ators were presented in [12,13], and reference [14] lists
field combinations which violate the lepton number in four
units but without building the operators explicitly nor
checking for redundancies.
However, in the past few years, there has been remark-

able progress in the counting of operators, using the Hilbert
series [15–18]; see also [19–23] for earlier works on this
topic. This technique is not only very elegant and simple to
use, but it can also be applied to an arbitrary model, with an
arbitrary symmetry group (see, for example, [24–26]).
Using it, the authors of [18] computed the number of
SMEFT operators up to dimension 15.
Despite these advantages, the computations performed

in the Hilbert series method are very different from those
performed in what I will call the traditional method,
which consists of simply multiplying all fields in all
possible ways and retaining those combinations which
are invariant under the action of all relevant symmetry
groups—usually the Lorentz and gauge groups. The
choice of the word traditional in this context is justified
by the fact that historically the allowed Lagrangians terms
have been found in this way.
There are two complications to this latter approach. One

of them is also present in the Hilbert series method, and it
is related to operators with derivatives: they are problem-
atic mainly because some combinations of these operators
are redundant (under some assumptions), and it would
therefore be desirable to remove them. But it turns out that
the ideas used to handle this issue in Hilbert series
computations [16,18] work equally well when adapted
to the traditional method of taking all invariant fields
combinations.
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For this reason, the main focus of this document will be
the other complication, which arises when there are
repeated fields in an operator. The simplest example in
SMEFT is LLHH, which generates neutrino masses when
H acquires a vacuum expectation value. For n copies of
the field L, one might have thought that such a term is
parametrized by n2 complex numbers. However, this is not
true: the coupling matrix κ in flavor space appearing in the
expression κijLiLjHH is symmetric (κij ¼ κji), so the term
is parametrized by just nðnþ 1Þ=2 complex numbers. This
is purely a consequence of the quantum numbers of L and
H, as I will discuss in detail later on. It is easy to find more
complicated examples, such as

NcNcNcNc and QQQL; ð1Þ

where Nc represents right-handed neutrino fields (they do
not exist in SMEFT), which are gauge singlets. While the
dimension of these terms (six) is still quite small, it is
nontrivial to derive the number of independent couplings
associated with each, assuming nX flavors of the field
type X ¼ Nc;Q; L.1

Fortunately, these two complications can be handled in a
systematic way. This makes it possible to count operators in
models such as SMEFT, up to high mass dimensions, using
the traditional approach mentioned earlier. In fact, besides
the number of operators, it is also possible to extract the
symmetry of coupling tensors (such as κ above) under
flavor index permutations; in some cases, this is a piece of
extra information which cannot be inferred from the
number of operators.
It is also noteworthy that the traditional method

described in this work seems to be computationally
competitive with the Hilbert series approach. The authors
of [18] provided the number of each type of SMEFT
operator up to dimension 12 plus the total number of
operators with dimensions d ¼ 13, 14, and 15. Up to now,
these results had only been cross-checked by other means
up to d ¼ 8. However, with the method explained in this
work it was possible to count all types of SMEFToperators
up to dimension 15 in a couple of hours, using a standard
laptop (all numbers given in [18] were reproduced).
Existing Mathematica code [27,28] was modified to make
such calculations possible for any model, and such code is
publicly available at the web address renatofonseca.net/
sym2int.php.
The remainder of the text is structured as follows:
(i) Section II describes the notation and the conventions

adopted in this work.
(ii) Section III is devoted to the problem of repeated

fields in interactions, suggesting a way of system-
atically dealing with these cases.

(iii) Section IV discusses the problem with derivatives,
and how they can be handled by using and adapting
the solutions proposed in [16,18].

(iv) Section V contains a discussion of several topics
related to the counting of operators of an effective
field theory. The ideas mentioned in Secs. III and IV
were implemented in a computer code, and some of
the results obtained with it are presented here and in
Appendix.

(v) A summary is available at the end.

II. NOTATION AND CONVENTIONS

The method discussed in this work can be applied to
any effective field theory; nevertheless, SMEFT will often
serve as an example. Its Lagrangian is invariant under the
SUð3ÞC × SUð2ÞL ×Uð1ÞY gauge group and the restricted
Lorentz group.2 For all practical purposes the algebra of
this latter group can be taken to be the same as the one of
SUð2Þl × SUð2Þr so its representations are given by pairs
of non-negative half-integers ðjl; jrÞ. The only caveat to
keep in mind is that complex conjugation flips these
numbers: ðjl; jrÞ� ¼ ðjr; jlÞ. In particular, the representa-
tions (0,0), ð1

2
; 0Þ, ð0; 1

2
Þ, and ð1

2
; 1
2
Þ correspond to a scalar, a

left-handed Weyl spinor, a right-handed Weyl spinor, and a
4-vector, in this order. A field strength tensor F μν trans-
forms under the Lorentz group in the same way as the
antisymmetric part of the product of two 4-vectors, i.e.,��

1

2
;
1

2

�
×

�
1

2
;
1

2

��
A
¼ ð1; 0Þ þ ð0; 1Þ: ð2Þ

Note that F μν is a real field so the three components
transforming as (0,1) are the complex conjugate of those
transforming as (1,0). I will refer to the part transforming
as (1,0) simply with the letter F and the other part as
F� (so F μν ¼ F þ F�). A subscript might be added to F to
identify with which of the gauge factor groups it is
associated.
All SMEFT operators are combinations of the fields

shown in Table I, their conjugates, and their derivatives
(which need to be covariant). There are three copies (or
flavors) of each fermion field, but we may just treat this
number as a variable n.
Finally, concerning conventions, it is worth noting that

sometimes the word operator is used in reference to
different things:
(1) It might refer to the different gauge and Lorentz

invariant contraction of fields, with the flavor indices
expanded. In that case the lepton Yukawa inter-
actions LiecjH

� correspond to 9 complex operators,

1The answer is
n2
Nc

12
ðn2Nc − 1Þ and nQnL

3
ð2n2Q þ 1Þ.

2The word restricted here refers to the fact that time-reversal
(T) and space-inversion (P) transformations are not included.
This group is usually denoted by SOþð1; 3Þ.
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or 18 real ones. That is the meaning I will use for the
word operator (which might be real or complex).
With this understanding, there are 3045 dimension
six real operators in SMEFT (546 of which violate
the baryon number) [8,18].

(2) An alternative view is to see some groups of
operators such as the lepton Yukawa interactions
LiecjH

� as a single structure which I will call a
(Lagrangian) term; they can be thought of as
operators with the flavor indices unexpanded. With
this terminology, SMEFT can be written with just 84
real terms of mass dimension six [7].

(3) The most general interaction of some combinations
of fields cannot be written in the Lagrangian as a
single term. In other words, a single coupling tensor
κij��� with indices ij � � � contracted with the field
flavors is not enough. That is what happens, for
example, with the fields Q�L�QL: a minimum of
two term κðαÞijklðQ�

i L
�
jQkLlÞðαÞ, α ¼ 1, 2 are needed.

We may refer to each collection of terms associated
with acommonproductof fields as a typeof operator.3

There are 72 real types of operators with dimension
six in SMEFT.

III. OPERATORS WITH REPEATED FIELDS

A. The problem

If there are no derivatives nor repeated fields, the
counting of operators of a certain type χð1Þχð2Þ � � � χðmÞ is
straightforward:

(i) Based on the quantum numbers of the fields, we may
calculate the number t of independent gauge and
Lorentz invariant contractions of their components.

Each yields one term. These contractions can be
found systematically with the method of weights
[29,30] or, in the case of special unitary groups, with
the tensor method (see for instance Chap. 4 of [31]).

(ii) Each term is associated with
Q

m
i¼1 ni operators,

where ni is the number of flavors of the field χðiÞ.
(iii) The number quoted above corresponds to real

operators if conjugating the set of fields fχðiÞg yields
back this very same set, i.e., fχðiÞg� ¼ fχðiÞg;
otherwise there are

Q
m
i¼1 ni complex operators in

each term (which is the same as saying that there are
2
Q

m
i¼1 ni real operators).

So, in the absence of derivatives and repeated fields, there
are ct

Q
ni real operators of type χð1Þχð2Þ � � � χðmÞ, where

c ¼ 1 if fχðiÞg� ¼ fχðiÞg and c ¼ 2 otherwise. For exam-
ple, there are 2n4 ¼ 162 (for n ¼ 3) real operators of
type Q�L�QL.4

The above is straightforward to compute. Nevertheless,
repeated fields complicate this analysis significantly (the
problem with derivatives will be discussed in the next
section).
Let us start by taking a close look at the type of

operator LLHH, which is not associated with n2 complex
operators, but rather with nðnþ 1Þ=2 as pointed out
earlier. Given that L and H are both doublets of SUð2ÞL,
there are two possible contractions: ðLLÞ1ðHHÞ1 and
ðLLÞ3ðHHÞ3. In one of them, the two L’s are contracted
together as a singlet of SUð2ÞL, and the same happens
with the Higgs fields. The other possibility is for the L’s
and H’s to contract as triplets. Crucially, the singlet
contraction of two doublets is antisymmetric, while the
triplet contraction is symmetric. Since there is only one
copy of the Higgs field, we retain only the latter. If we
now introduce flavor indices and a parameter tensor κ, we
obtain the term

κijðLiLjÞ3ðHHÞ3: ð3Þ

This is the same as κijðLjLiÞ3ðHHÞ3 so, renaming the
dummy indices i and j, we can also write it as
κjiðLiLjÞ3ðHHÞ3. We then conclude that only the sym-
metric part of κ is relevant,5

κij ¼ κji: ð4Þ

Such a matrix has nðnþ 1Þ=2 complex degrees of
freedom.
Now let us go beyond SMEFT for a moment in order to

consider what would happen to the type of operator LLHH

TABLE I. SMEFT field content. All operators are built from
them, their conjugates, and their derivatives. The number of
fermion flavors n, which is 3, will often be left unspecified.

SUð3ÞC SUð2ÞL Uð1ÞY SUð2Þl × SUð2Þr # flavors

Q 3 2 1
6

ð1
2
; 0Þ n

uc 3̄ 1 − 2
3

ð1
2
; 0Þ n

dc 3̄ 1 1
3

ð1
2
; 0Þ n

L 1 2 − 1
2

ð1
2
; 0Þ n

ec 1 1 1 ð1
2
; 0Þ n

H 1 2 1
2

(0, 0) 1
FG 8 1 0 (1, 0) 1
FW 1 3 0 (1, 0) 1
FB 1 1 0 (1, 0) 1

3So each operator type is defined by the number of occurrences
mi of the various kinds of field χi in the model (¼ Q; uc; dc;… in
SMEFT). For these purposes, a derivative may be considered as a
field, so we should just count them.

4The list of fields is self-conjugate, fQ�; L�; Q; Lg� ¼
fQ�; L�; Q; Lg, so c ¼ 1. On the other hand, there are two ways
of making the SUð2ÞL contractions of the fields, so t ¼ 2.

5One could add an antisymmetric part to this matrix κ, but it
would not affect the Lagrangian. So it is pointless to do so.
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if there were multiple copies of the Higgs field. For that
purpose we may add flavor indices to H, noting that now
the contraction ðLLÞ1ðHHÞ1 is not null so we can have
two terms:

κð1ÞijklðLiLjÞ1ðHkHlÞ1 þ κð3ÞijklðLiLjÞ3ðHkHlÞ3: ð5Þ

It should be clear from the discussion so far that the tensors
κð1Þ and κð2Þ have symmetries:

κð1Þijkl ¼ −κð1Þjikl ¼ −κð1Þijlk; ð6Þ

κð3Þijkl ¼ κð3Þjikl ¼ κð3Þijlk: ð7Þ

As a consequence, κð1Þ and κð3Þ contain

½nðn − 1Þ=2�½nHðnH − 1Þ=2� ð8Þ

and

½nðnþ 1Þ=2�½nHðnH þ 1Þ=2� ð9Þ

complex parameters, respectively (nH being the number of
Higgs copies). But do we need two terms as in expression
(5)? The answer is no; there is no such need. Take a single
term O formed from a linear combination of Oð1Þ ≡
ðLLÞ1ðHHÞ1 and Oð3Þ ≡ ðLLÞ3ðHHÞ3:

O ¼ α1Oð1Þ þ α3Oð3Þ ðα1; α3 ≠ 0Þ: ð10Þ

We can recoverOð1Þ andOð3Þ fromO by (anti)symmetrizing

the flavor indices,Oð1Þ
ijkl¼α−11 O½ij�½kl� andO

ð3Þ
ijkl¼α−13 OðijÞðklÞ,

and therefore we can write

κijklOijkl ð11Þ

instead of expression (5). Nevertheless, the tensor κ is
not fully generic, as it contains only nnHðnnH þ 1Þ=2
independent complex parameters (the sum of the number
of parameters in κð1Þ and κð3Þ). In fact, we may write

κ ¼ α−11 κð1Þ þ α−13 κð3Þ ð12Þ

or, alternatively, κ canbedescribedas themost general tensor
with the symmetry κijkl ¼ κjilk.
Returning to SMEFT, an identical situation happens

with the type of operator L�L�LL: four SUð2ÞL doublets
can be contracted in two different ways [6], but only one
term is required [7], and it is associated with a total of
n2ðn2 þ 1Þ=2 ¼ 45 complex operators [8] (this last expres-
sion is the same as the one presented before in relation to
LLHH, for the special case where nH ¼ n).

These examples highlight the following points:
(i) The symmetry of the coupling tensors κ is deter-

mined by the quantum numbers of the fields in
each term.

(ii) From the symmetry of the coupling tensors we may
derive the number of independent operators.

(iii) Unlike the number of independent operators, the
number of terms is an ambiguous quantity since it is
possible to merge multiple terms into a single one.
To get around this ambiguity, we may always focus
on writing a Lagrangian with a minimal number
of terms.

(iv) Merging terms might seem convenient, but there is a
drawback to doing so: it may become more com-
plicated to understand the structure of the associated
coupling tensor κ.

In order to derive the symmetry of the coupling tensors
under permutations of indices, we may consult tables such
as in [29] which list the permutation symmetry of products
of representations. For example, in the case of SUð2Þ it is
well known that

2 × 2 ¼ 1A þ 3S; ð13Þ
with the subscripts indicating that each component in the
product is either symmetric (S) or antisymmetric (A) under
a switch of the two doublets.6 However, such tables might
not be enough: consider, for example, the product of four
scalar SUð2Þ doublets. There are two invariant contractions
because the product of four doublets contains two singlets:

2 × 2 × 2 × 2 ¼ 1þ 1þ � � � : ð14Þ
Are these singlets symmetric or antisymmetric?
Mathematically, the answer is clear but it might be some-
what confusing if one is unaware of this type of compli-
cations: the singlets are neither (completely) symmetric nor
antisymmetric. Let us go back to Eq. (13); as far as
subscripts are concerned, all we need to know is what
happens to each summand in the right-hand side under the
permutation of the two doublets. The permutation of m
objects forms a discrete group of sizem! usually denoted by
Sm, and in the particular case of S2 everything is very
simple. There are two elements in the group, the identity e
(do nothing) and a (transpose the two objects), with a2 ¼ e.
There are also only two irreducible representations, which
are both one-dimensional: the trivial/symmetric one (S)
under which x ↦ x, and the alternating/antisymmetric
representation (A) under which x ↦ ð−1Þπx, where
ð−1Þπ ¼ þ1 if π ¼ e and ¼ −1 if π ¼ a. In other words,

6To be explicit, it is well known that if ð21; 22ÞT and ð201; 202ÞT
are two doublets, then the combination 212

0
2 − 222

0
1 is SUð2Þ

invariant, while ð21201; 1ffiffi
2

p 212
0
2 þ 1ffiffi

2
p 222

0
1; 222

0
2ÞT transforms as a

triplet. Switching the two doublets flips the sign of the first
expression, while the triplet remains unchanged.

RENATO M. FONSECA PHYS. REV. D 101, 035040 (2020)

035040-4



the action of the group S2 can always be translated into
signs �1: in Eq. (13) the singlet 1 transforms under S2 as
the alternating representation, while the components of the
triplet 3 transform trivially.
In the case of Eq. (14) we must find out what happens

to its right-hand side under arbitrary permutations of
the four doublets, so we must deal with the irreducible
representations of the S4 group. It turns out that the singlets
in Eq. (14) transform as an irreducible two-dimensional
representation of S4. To better grasp the significance of this
statement, let us see these two SUð2Þ-invariant contractions
of four doublets explicitly. We can write them as follows:

cð1Þ ¼ ϵijϵkl2i2
0
j2

00
k2

000
l ; ð15Þ

cð2Þ ¼ ϵikϵjl2i2
0
j2

00
k2

000
l ; ð16Þ

where the subscripts take the value 1 or 2 (these are doublet
indices unrelated to flavor) and ϵ is the Levi-Civita tensor.
Note than even though there arem! permutations which can
be performed on m objects xi, all of them can be obtained
through successive applications of only two of them: x1 →
x2 → x1 and x1 → x2 → x3 → � � � → xm → x1. So, let us
consider in the following what happens to cð1Þ and cð2Þ
under the changes 2 ↔ 20 and 2 → 20 → 200 → 2000 → 2. It
is rather easy to see that�

cð1Þ

cð2Þ

�
2↔20

¼
�−1 0

−1 1

�
·

�
cð1Þ

cð2Þ

�
; ð17Þ

�
cð1Þ

cð2Þ

�
2→20→200→2000→2

¼
�
1 −1
0 −1

�
·

�
cð1Þ

cð2Þ

�
: ð18Þ

No change of basis cðαÞnew ¼ BαβcðβÞ will simultaneously
diagonalize the two matrices above, so cð1Þ;ð2Þ form an
irreducible two-dimensional representation of the permu-
tation group S4. As a consequence, in this case the effect of
permuting the doublets cannot be reduced to a simple
matter of signs �1.
We now introduce flavor, so there will be two sets of

indices: the gi will stand for group indices, while flavor
indices will be called fi. For scalar doublets ϕ with
multiple flavors we should write down two terms:

ðκð1Þf1f2f3f4
cð1Þg1g2g3g4 þ κð2Þf1f2f3f4

cð2Þg1g2g3g4Þϕf1
g1ϕ

f2
g2ϕ

f3
g3ϕ

f4
g4 ; ð19Þ

where cð1Þ;ð2Þg1g2g3g4 represent the tensors in front of the doublets
in Eqs. (15) and (16). As for κð1Þ and κð2Þ, they are tensors
containing free parameters, and there is some symmetry
associated with them, which is yet to be determined.
Instead of writing down all the indices in Eq. (19)

explicitly, we may use the shorthand notation

κðαÞffgc
ðαÞ
fggϕ

ffg
fgg ; ð20Þ

where repeated indices are summed over. We know two
things:
(1) ϕffg

fgg is symmetric under equal permutation of the f

and g indices, i.e.,ϕπffg
πfgg ¼ ϕffg

fgg for anypermutationπ;

(2) cðαÞπfgg ¼ Pðπ−1ÞαβcðβÞfgg, where the two-by-two matri-
ces Pðπ−1Þ can be obtained, for any π, from the
product of the two matrices in Eqs. (17) and (18).7

It follows that

κðαÞffgc
ðαÞ
fggϕ

ffg
fgg ¼ κðαÞπffgc

ðαÞ
πfggϕ

πffg
πfgg ¼ κðαÞπffgPðπ−1ÞαβcðβÞfggϕ

ffg
fgg ;

ð21Þ
so

κðαÞπffgPðπ−1Þαβ ¼ κðβÞffg or equivalently

κðαÞπffg ¼ ½PðπÞT �αβκðβÞffg: ð22Þ

To be explicit, 
κð1Þf2f1f3f4

κð2Þf2f1f3f4

!
¼
�−1 −1

0 1

�
·

 
κð1Þf1f2f3f4

κð2Þf1f2f3f4

!
; ð23Þ

 
κð1Þf2f3f4f1

κð2Þf2f3f4f1

!
¼
�

1 0

−1 −1

�
·

 
κð1Þf1f2f3f4

κð2Þf1f2f3f4

!
: ð24Þ

These are the only constraints on the parameter tensors κð1Þ

and κð2Þ, so these objects can be seen as the most general
tensors which satisfy the above equations. It is not very
useful for our purposes to find their exact form, which is
basis dependent in any case (κð1Þ and κð2Þ would change

under a redefinition cðαÞnew ¼ BαβcðβÞ). However, just as with
the LLHH type of operator, it would be interesting to
know how many operators there are in expression (19) or,
in other words, how many independent entries there are in
the κðαÞ tensors. The answer, which is n2ϕðn2ϕ − 1Þ=12 for nϕ
flavors of ϕ, depends only on the fact that the cðαÞ (and
consequently the κðαÞ as well) transform under the two-
dimensional representation of S4. We shall discuss below
how to compute these numbers.

7The inverse permutation of π, π−1 (π−1∘π ¼ id), appears here
rather than π itself for the following reason, which is not
important for the present discussion. Strictly speaking, for each
α the numbers cðαÞfgg are not a tensor but rather the components of a
tensor in some basis jeg1eg2 � � � egmi≡ jefggi. In other words, the

tensors are CðαÞ ¼ cðαÞfggjefggi. Under a permutation π, the basis of

the tensors changes, jefggi → πðjefggiÞ ¼ jeπfggi, so πðCðαÞÞ ¼
cðαÞfggjeπfggi ¼ cðαÞ

π−1fggjefggi. However, we know that this result

must be a linear combination of the CðαÞ, PðπÞαβCðβÞ, and

therefore we conclude that cðαÞπfgg ¼ Pðπ−1ÞαβcðβÞfgg.
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There is one last remark to be made about this example.
It might have seemed that we need to write down two terms
as shown in expression (19), but it is easy to see that they
can be merged into a single one. That is because we may
write one of the cðαÞ as a function of the other, with the
indices permuted. In particular, from Eqs. (17) and (18) it

can be inferred that cð2Þg1g2g3g4 ¼ cð1Þg1g3g2g4 or, in a shorthand

notation, cð2Þπ23fgg ¼ cð1Þfgg. Using the fact that ϕπffg
πfgg ¼ ϕffg

fgg ,
we obtain that

ðκð1Þffgc
ð1Þ
fgg þ κð2Þffgc

ð2Þ
fggÞϕffg

fgg ¼ ðκð1Þffg þ κð2Þπ23ffgÞc
ð1Þ
fggϕ

ffg
fgg

≡ κmerged
ffg cð1Þfggϕ

ffg
fgg : ð25Þ

Note that κmerged is not a completely generic four-index
tensor since it has only n2ϕðn2ϕ − 1Þ=12 independent entries,
rather than n4ϕ.

B. The permutation group of m objects

These examples highlight the fact that in order to list
operators and terms in the Lagrangian, it is important to
have an understanding of the permutation group Sm. As
such, I will briefly review here some of its properties.
The irreducible representations of Sm can be labeled by

the different ways in which the number m can be parti-
tioned. For example,

4 ¼ 3þ 1 ¼ 2þ 2 ¼ 2þ 1þ 1 ¼ 1þ 1þ 1þ 1; ð26Þ

so there are five partitions f4g, f3; 1g, f2; 2g, f2; 1; 1g, and
f1; 1; 1; 1g, and these can be identified with the five
irreducible representations of S4. It is common to depict
the partition λ ¼ fλ1; λ2;…g of m (symbolically λ ⊢ m)
with λ1 boxes in a row, followed by λ2 boxes in a second
row, and so on, such that

P
i λi ¼ m and λiþ1 ≤ λi. These

are called Young diagrams. For example,

ð27Þ

The product of Sm representations can easily and efficiently be decomposed in irreducible parts as in this example:

ð28Þ

To perform such decomposition, for Sn or any other
finite group, it suffices to know the group’s character
table.8

There are two other important properties of the irreduc-
ible representations λ of Sm which are worth mentioning.
First, the dimension of λ can be calculated with the famous
Hook length formula [34],

dðλÞ ¼ m!Q
uhðuÞ

; ð29Þ

where u represents each box of the Young diagram of λ and
hðuÞ is equal to the number of boxes to the right of u plus
the number of boxes below u plus 1:

ð30Þ

The second important property of a partition λ is the
following. A semistandard Young tableaux with shape λ is
obtained by filling the Young diagram of λ with natural
numbers up to some limit n (possibly repeating these
numbers) in such a way that the numbers increase along
each column, and they do not decrease along rows. For
example, in the case of λ ¼ f2; 2g and n ¼ 3 there are six
possibilities:

ð31Þ

The number of semistandard Young tableaux with a shape λ
using numbers up to n can be calculated with the Hook
content formula (see [35]),

8Readers interested in knowing more about this are referred to
group theory textbooks (for instance [32]). It is worth noting that
specific techniques can be applied to the Sn family of groups (see,
for example, [33]). In any case, one can also use precalculated
character tables or readily available computer codes, such as
GROUPMATH’s function SNCLASSCHARACTER[LAMBDA, MU]
which calculates the character of the class MU in the irreducible
representation LAMBDA.
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Sðλ; nÞ ¼
Y
u

nþ cðuÞ
hðuÞ ; ð32Þ

where u represent each box of the diagram, hðuÞ was
mentioned earlier, and cðuÞ is equal to the column number
minus the row number of u:

ð33Þ

As an example, notice that f2; 2g is the two-dimensional
representation of S4, dðf2; 2gÞ ¼ 2, and furthermore
Sðf2; 2g; nϕÞ ¼ n2ϕðn2ϕ − 1Þ=12 using formula (32). As
we have seen, this last expression corresponds to the
number of quartic operators which can be build with nϕ
scalars ϕ transforming as doublets of SUð2Þ.

C. Permuting the indices of tensors

Consider now a tensor Ti1i2���im where each index goes
from 1 to some numbers n. It is well known to mathema-
ticians that the nm components can either be referenced
with them indices ði1; i2;…; imÞ or alternative by just three
special indices ðλ;α; jÞ,

Ti1i2���im ↔ Tλαj: ð34Þ

Rather than trying to write explicitly the components of
Tλαj as a function of those of Ti1i2���im , it is more illuminat-
ing to describe the nature of the three new labels. The first
one (λ) can be any partition of m, the second one (α) takes
values from 1 to Sðλ; nÞ, and the last one (j) goes from 1 to
dðλÞ. The reader will correctly infer from here that the
following identity holds:X

λ⊢m
dðλÞSðλ; nÞ ¼ nm: ð35Þ

For a fixed α, Tλαj transforms as the irreducible represen-
tation λ of Sm when the ix indices are permuted,

Ti1i2���im!
π
Tπði1i2���imÞ; ð36Þ

Tλαj!π ½PλðπÞ�jj0Tλαj0 ; ð37Þ

where PλðπÞ stands for the matrices of the irreducible
representation λ of Sm. This means that the tensor T
contains Sðλ; nÞ irreducible representations λ of Sm (one
for each value of α).
All the above is true for any tensor. It is interesting now

to consider the particular scenario where there is not just
one tensor but rather a list of tensors Tð1Þ

i1;…;im
; Tð2Þ

i1;…;im
;…;

TðdðμÞÞ
i1;…;im

such that

TðaÞ
πði1;…;imÞ ¼ ½Pμðπ−1Þ�abTðbÞ

i1;…;im
ð38Þ

for some partition μ ofm; the ϕ4 interactions we considered
earlier are the motivation to study this kind of lists of
tensors [see text just below Eq. (20), where the T’s were
called c’s]. Note that the P matrices can always be made
unitary and real, so let us assume for simplicity that they do
have these properties. With the ðλ; α; jÞ indices it is easy to
see what is the most general form of the above list of
tensors; it must obey the constraint9

½PλðπÞ�jj0TðaÞ
λαj0 ¼ ½PμðπÞ�baTðbÞ

λαj; ð39Þ

and so, according to Shur’s lemma from group theory, the

components of TðaÞ
λαj are nonzero only if λ ¼ μ and j ¼ a,

plus their value is independent of j,

TðaÞ
λαj ¼ TðαÞδλμδaj: ð40Þ

The TðαÞ are free numbers; they are the free parameters in
the most general list of tensors TðaÞ subjected to the
constraint in Eq. (38), and there are Sðμ; nÞ of them since
the index α can go from 1 to this number.
There is one final aspect of lists of tensors with

permutation symmetries which is worth looking at, as it
will be relevant for the counting of the minimum number of
terms in an effective field theory. Consider again a list of
tensors which obeys Eq. (38) for some partition μ of the
integer m (μ ⊢ m). This relation states that if we have all

the TðaÞ
i1;…;im

, we can reproduce the effect of swapping the

indices ix by just making linear combinations of the TðaÞ
i1;…;im

with the indices ix unchanged. What is noteworthy is that

the opposite is also true: the values of TðaÞ
i1;…;im

can bewritten

down as a linear combination of Tð1Þ
πði1;…;imÞ for different π

(the same is true if we used Tð2Þ or any other component of
the list of tensors). This is a consequence of the orthogon-
ality relations among the entries of the unitary (and real)
matrices PμðπÞ of an irreducible representation:

TðaÞ
i1;…;im

¼ dðμÞ
m!

X
π∈Sm

PμðπÞ1aTð1Þ
πði1;…;imÞ: ð41Þ

The precise form of this last expression is not particularly
relevant; rather, it suffices to keep in mind that all the
entries of any of the tensors TðaÞ can be obtained from the
entries of a single one of them (Tð1Þ for example), given that
there is the relation (38). However, we have started with a
list of tensors TðaÞ which, under permutations, transforms
as an irreducible representation μ of Sm. It is helpful to

9Since Pμðπ−1Þ is unitary and real, ½Pμðπ−1Þ�ab ¼ ½PμðπÞ�ba.
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consider what happens if instead of μ we had a reducible
representation which is a direct sum ðμ1Þr1 þ ðμ2Þr2 þ � � �
of distinct irreducible parts μi repeated ri times. It turns out
that if each μi appears at most once in this sum (ri ¼ 0 or
1), then it is possible to pick a single combination of the
TðaÞ and generate all TðaÞ from it as we did before with Tð1Þ.
On the other hand, if there are μi which appear more than
once, maxðriÞ linear combinations of the TðaÞ are needed in
order to generate all of them via permutations of the
i1;…; im indices.10

In summary, two important facts stand out from this
discussion about tensors:
(1) A list of tensors TðaÞ which transforms under some

irreducible representation μ when its indices are
permuted [see Eq. (38)] has Sðμ; nÞ independent
entries, where n is the number of values each of the
tensor indices can take. For multiple irreducible
representations μi, the number of independent
entries is given simply by the sum of the num-
bers Sðμi; nÞ.

(2) A list of tensors TðaÞ which transforms under a direct
sum of irreducible representations μi, where each μi
is repeated ri times—ðμ1Þr1 þ ðμ2Þr2 þ � � �—can be
reconstructed from just a few of the TðaÞ. Specifi-
cally, only maxðriÞ linear combinations of the TðaÞ
are needed for that.

These two observations can be used to count the number of
operators and the minimum number of terms in an effective
field theory.

D. Application to operators with repeated fields

We are now in a position to go back to the discussion of
operators with a repeated field χ which has two indices: a
group index g and a flavor index f going from 1 to some
number n. The product of m χ ’s is either completely
symmetric (if χ is a boson) or completely antisymmetric (if
χ is a fermion),

χf1g1 χ
f2
g2 � � � χfmgm ≡ χffgfgg ¼ ð�1Þπχπffgπfgg : ð42Þ

In the Lagrangian, the fgg indices contract with some

numeric tensors cðαÞfgg determined from group theory, while

the ffg indices contract with a parameter tensor κðαÞffg (such
as the Yukawa matrices in the Standard Model). The extra α
index is needed because there might be more than one cfgg
contraction allowed by the model’s symmetries. We then
have the expression

L ¼ � � � þ κðαÞffgc
ðαÞ
fggχ

ffg
fgg þ � � � : ð43Þ

The numerical tensors cðαÞfgg always obey a symmetry

relation of the type

cðαÞπfgg ¼ ½Pðπ−1Þ�αβcðβÞfgg; ð44Þ

where the P matrices form a representation (perhaps
reducible) of the permutation group Sm, and they can be
made real and unitary. As a consequence we see that the

parameter tensor κðαÞffg possesses the following symmetry:

κðαÞπffg ¼ ð�1Þπ½Pðπ−1Þ�αβκðβÞffg: ð45Þ

The product ð�1ÞπP is itself a representation P̂ of Sm, so
we can write

κðαÞπffg ¼ ½P̂ðπ−1Þ�αβκðβÞffg: ð46Þ

This representation P̂ can be decomposed into irreducible
representations μ ⊢ m of Sm: P̂ ¼Pμ⊢m rμμ, where rμ is

the multiplicity of μ in P̂.11 The main point of the earlier

discussion on tensors is that κðαÞffg contains

X
μ⊢m

rμSðμ; nÞ ð47Þ

free parameters, so this is the total number of operators, and
furthermore they all can be written with

maxðrμÞ ð48Þ

terms.12 These comments apply to operators χm with a
single type of field χ; however, the generalization is trivial
for cases where there are more fields, χmχ0m0

χ00m00 � � �
(namely the above considerations apply separately to each
group of repeated fields).
The fact that generally there is more than one group

index g is not a problem either. For example, the Standard
Model fields carry an index from each of the four groups
SUð3ÞC, SUð2ÞL, SUð2Þl, and SUð2Þr. These indices
contract with some symmetry PC, PL, Pl, and Pr so, taken
together as a single index g, the relevant matrix P is given

10These linear combinations of the TðaÞ must be carefully
picked; otherwise more than maxðriÞ might be needed in order to
generate the full set of tensors TðaÞ.

11As mentioned earlier, the notation μ ⊢ m means that μ ¼
fμ1; μ2;…g is a partition of the integer m (so the sum of the μi
adds up to m). Therefore

P
μ⊢m represents a sum over all

partitions μ of m.
12Those μ’s having a Young diagram with more rows than the

available flavors (n) should not be considered in this last
expression; they are too antisymmetric and as a consequence
they are not associated with any operator [Sðμ; nÞ ¼ 0].
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by the Kronecker product PC ⊗ PL ⊗ Pl ⊗ Pr, and P̂ ¼
ð�1ÞπPC ⊗ PL ⊗ Pl ⊗ Pr.
Take the operators of type QQQL: there are

nLnQð2n2Q þ 1Þ=3 of them for nQ;L flavors of the fields
Q, L, and they can all be written with one term. These two
conclusions can be obtained by tracking the permutation
symmetry of the contraction of theQ’s, as shown in Table II
(L is not repeated, so it is pointless to track its permutation
symmetry, which is trivial). In particular, the color indices
of the Q’s contract antisymmetrically (f1; 1; 1g), while the
SUð2ÞL indices are contracted with the mixed symmetry
f2; 1g as we shall see in Sec. V.13 The same is true for the
SUð2Þl part of the Lorentz group. Since the Q’s are left-
handed fields, we could either ignore entirely the group
SUð2Þr or alternatively notice that three singlets of SUð2Þr

contract trivially in a symmetric fashion (f3g). Finally, we
should take into account that these are fermionic fields, so
they anticommute (f1; 1; 1g). The full symmetry under
permutations of the QQQ contractions is given by the pro-
duct of these S3 representations (f3g × f2; 1g2 × f1; 1; 1g2),
which decomposes into the irreducible components f3g þ
f2; 1g þ f1; 1; 1g. Note that there are four different ways to
contractQQQL [due to the existence of two differentSUð2ÞL
contractions as well as two different contractions of the
Lorentz indices], and indeed we see that dðf3gÞ þ
dðf2; 1gÞ þ dðf1; 1; 1gÞ ¼ 1þ 2þ 1 ¼ 4. However, we
do not need to write down four terms in the Lagrangian:
since each irreducible representation of S3 appears only once,
we infer that a single term is enough. Furthermore, the total
numberofoperatorsof the typeQQQL is givenby thenumber

ð49Þ

For nQ ¼ nL ¼ 3, this adds up to 57 complex operators [8].
Historically, the dimension six baryon number violating
operators were written as six terms in [1,2], although it is
possible to do so with only four [3]. In the particular case of
QQQL type operators, they were written as two terms in [1]
and in [7]14 but, as stated above, these operators require only
one term. Notice that Fierz identities were not used to reach
this conclusion; spinors and any other field with Lorentz
indices are viewed as representations of an SUð2Þl × SUð2Þr

group, and in turn this group is treated in exactly the sameway
as the gauge group.
Consider another example: the interaction of four

right-handed neutrinos mentioned in the introduction
(NcNcNcNc). Each neutrino transforms as a doublet of
the SUð2Þl group (which is part of the Lorentz group),
and we have seen that the two invariant contractions
of four doublets have a permutation symmetry f2; 2g.
Furthermore, the components of the Nc’s are anticommut-
ing fields, so there is a total antisymmetry f1; 1; 1; 1g to be
taken into consideration. Overall, under permutations, the
NcNcNcNc interactions have a symmetry

ð50Þ

meaning that for n flavors there are

TABLE II. Permutation symmetry of the quark fieldsQ inQQQL-type operators (since there is just one L, there is
nothing noteworthy about it). The four possible contractions of these fields transform under S3 permutations of the
Q’s as the sum of irreducible representations f3g þ f2; 1g þ f1; 1; 1g (f2; 1g is a two-dimensional representation of
S3, so in total we do have four contractions). As explained in the text, from this information we can readily conclude
that there are 57 QQQL operators, which can all be written as a single term in the Lagrangian.

QQQ L

SUð3ÞC □

SUð2ÞL □

SUð2Þl □

SUð2Þr □

Grassmann □

Total symmetry □
5 ¼ □

13L is an SUð2ÞL doublet, soQQQmust transform as a doublet
as well. Furthermore, the product of three SUð2ÞL doublets (one
for each Q) decomposes as 2þ 2þ 4, and the pair of 2’s in this
sum transforms as the two-dimensional representation f2; 1g
under S3 permutations. This particular case is discussed at the
beginning of Sec. V.

14In the third arXiv version of this paper, only one term is used.
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ð51Þ

complex operators of the form NcNcNcNc, which can all
be written down as a single Lagrangian term. This operator
counting matches the one obtained in [36] by other means.
More generally, using the same arguments, one concludes
that the interactions of 2m right-handed neutrinos have a
permutation symmetry

f2; 2;…; 2g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

; ð52Þ

and so there are

S
�
f2; 2;…; 2g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m

; n

�
¼
� n!ðnþ1Þ!

m!ðmþ1Þ!ðn−mþ1Þ!ðn−mÞ! n ≥ m

0 n < m

ð53Þ

complex operators of the type ðNcÞ2m, which again can all
be written down as a single term in the Lagrangian (for a
fixed value of m).

IV. OPERATORS WITH DERIVATIVES

A. Handling operator redundancies

The values of a function and the value of its derivatives
do not need to be correlated in any way, so a field ψ and its
spacetime derivatives ∂nψ can be treated as different fields
altogether. There is, however, one problem: some operators
obtained in this way might be redundant (let us call them
O0

i ), and two Lagrangians differing by such operators will
be equivalent.
Faced with this situation, one should work with classes

of equivalent Lagrangians CL ¼ fLþ αiO0
i g rather than

individual Lagrangians. But these CL are rather abstract
constructions, so it might be better to look at redundancies
in effective fields theories as a linear algebra problem. For
a given model, the Lagrangian can be viewed as a vector
in a vector space spanned by some z operators O1;O2;…;
Oz, yet there might exist r combinations O0

i ¼
P

j rijOj

which are null for practical effects. Hence, there are only
z − r meaningful operators O=0

i ¼
P

j mijOj which can be
selected in more than one way, as long as the block matrix�

r

m

�
ð54Þ

has full rank.
Given r, the choice of matrixm is not unique, but there is

a particularly simple possibility: we start with mij ¼ δij
and for each row R of r (let us call it rR) a line M of m
(mM) satisfying the condition rR ·mM ≠ 0 is removed.

In practice, this corresponds to looking at the operators Oj

appearing in the redundancy
P

j rRjOj and dropping one of
them from any further analysis (as if we were solving the
equation

P
j rRjOj ¼ 0 for one of the Oj’s).

This way of selecting nonredundant operators will
always work when there is a single redundancy; however,
repeating this simple procedure for multiple redundancies
might be problematic, so these more complicated scenarios
require caution.15 Reference [37] is particularly relevant for
this linear algebra view on operator redundancies.
Two types of potentially redundant operators are often

considered: (1) those which are zero when the classical
equations of motion (EOM) of the fields are applied, and
(2) those which are a divergence of a vector field (∂μOμ).
Both of these kinds of operators can be ignored only under
some assumptions, whose merits will not be assessed in this
work. Rather, I will just mention what needs to be done if
one wants to factor out these operators. The solution to
these problems was already given in the papers [16,18]; the
following two subsections elaborate on the proposal in [16]
to remove EOM redundancies, and they also contain a
discussion of a simple adaptation to the procedure men-
tioned in [18] for factoring out operators of the type ∂μOμ.
It should be stressed at this point that derivatives in a

gauge theory always appear through the combination
∂μ þ igTaAa

μ ≡Dμ, where Dμ is the well-known covariant
derivative. For this reason, all derivatives should be seen as
being covariant. However, because ½Dμ; Dν� can be written
down with field strength tensors F μν, in order not to
overcount operators one should only consider the com-
pletely symmetric part of Dμ1Dμ2 � � � applied to some field
ψ , in which case the Dμ’s can be seen as commuting with
each other—just as normal partial derivatives. To highlight
that the term igTaAa

μ is not important, in this work the
symbol ∂μ will be used instead of Dμ.

B. Equations of motion

It can be shown that the classical equations of motion of
a field χ can be used to reduce the number of non-
renormalizable operators in an effective field theory
[38,39]. That is because nonrenormalizable operators
proportional to the quantity

δL4

δχ
− ∂μ

δL4

δð∂μχÞ
ð55Þ

15As an example, consider three operators O1;2;3. If there is a
redundancy O1 þO2 þO3, we might deal with it by dropping
the operator O3, in which case we would consider that the space
of all nonequivalent Lagrangians is generated by O1 and O2. If
there is a second redundancy −O1 þO2 þO3, one cannot drop
O3 (since we have done so already), but more importantly we
cannot simply drop O2 either, and say that O1 alone generates all
nonequivalent Lagrangians. That is because the vectors O1 þ
O2 þO3, −O1 þO2 þO3, and O1 are not linearly independent.
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or its derivatives, where L4 is the renormalizable part of a
Lagrangian, do not affect the S-matrix. The standard
approach to these redundancies is to remove the operators
with the highest number of derivatives [the second term in
expression (55)], since these can be traded by other
operators with fewer derivatives [the first term in expres-
sion (55)].
The authors of [16] pointed out that these redundancies

due to the equations of motion are best seen if we
decompose the field derivatives ∂iχ into irreducible repre-
sentations of the Lorentz group.16 For example, the
16 second derivatives of a scalar ϕ transform under
SUð2Þl × SUð2Þr as

∂2ϕ ¼ ð0; 0Þ þ ð0; 1Þ þ ð1; 0Þ þ ð1; 1Þ; ð56Þ

but apart from (1,1) (with nine components), these irre-
ducible representations of the Lorentz are redundant. The
reason is the following. The parts (0,1) and (1,0) are
antisymmetric under permutation of the two derivatives,
so they can be written with the field stress tensors,
½∂2ϕ�ð0;1Þþð1;0Þ ∝ Fϕ, so we should discard them. On the
other hand, the equation of motion of ϕ equates ½∂2ϕ�ð0;0Þ ¼
□ϕ to terms without derivatives so, if we follow the rule of
keeping terms with as few derivatives as possible, only the
(1,1) part of ∂2ϕ needs to be kept.
All four first derivatives of ϕ which transform as

∂ϕ ¼
�
1

2
;
1

2

�
ð57Þ

are to be kept as well, but in the case of a left-handed
fermion ψ the situation is different. The eight components
of ∂ψ transform as

∂ψ ¼
�
1;
1

2

�
þ
�
0;
1

2

�
; ð58Þ

yet the equations of motion of ψ relate ½∂ψ �ð0;1
2
Þ to a quantity

with no derivatives, so we should keep only ½∂ψ �ð1;1
2
Þ.

Adding one more derivative, in analogy to the scalar case,
we should worry only about ½∂2ψ �ð3

2
;1Þ.

This procedure works well not just for Hilbert series
calculations [16] but also for the more straightforward
approach to operator counting being described in this work.
In practice, the EOM degeneracies are taken into account
by introducing a tower of new fields representing the
nonredundant parts of ∂χ; ∂2χ;…; ∂iχ, for every standard
model field χ. They have the same gauge quantum numbers

as χ but different Lorentz representations. Since we
are expanding significantly the number of fields in the
effective field theory, this has the adverse effect of
increasing the computational complexity of the calcula-
tions. Nevertheless, the procedure to handle the equations
of motion is conceptually very simple.
In any case, one must know what are the components of

the field derivatives to be kept. For a generic field χ we just
saw that there are two considerations to have in mind:

(i) We want only the ∂iχ components which cannot be
written with field strength tensors; hence they
correspond to those components which are com-
pletely symmetric under permutations of the deriv-
atives. We may represent them by the expression
f∂igχ which, in general, transforms as a reducible
representation of the Lorentz group—for exam-
ple, f∂4gϕ ¼ ð2; 2Þ þ ð1; 1Þ þ ð0; 0Þ.

(ii) Some components of f∂igχ are also redundant for
another reason. If we represent the equation of
motion of χ with the notation

h∂xχi ¼ � � � ðx ¼ 1 for fermions and x ¼ 2

for bosonsÞ; ð59Þ
the operator h∂xχi and its derivatives should also be
discarded.

However, there is a difficulty with this two-stage reduction
of operators: we cannot just take the irreducible Lorentz
representations in f∂igχ and remove all those in ∂i−xh∂xχi,
because some of the latter components are antisymmetric
under permutations of the derivatives, and therefore can be
written with the field strength tensor F μν. So in reality the
terms to be retained are

½∂iχ�keep ¼ f∂igχ minus the components in

½∂i−xh∂xχi�all ∂’s sym: contracted: ð60Þ
Figuring out what are the components of ∂iχ to keep is not
a trivial exercise; it turns out that for a scalar ϕ ¼ ð0; 0Þ, a
left-hand fermion ψ ¼ ð1

2
; 0Þ and a field strength tensor

F ¼ f1; 0g (recall that F ¼ F þ F�) only the highest spin
component should be retained, i.e.,

½∂iϕ�keep ¼
�
i
2
;
i
2

�
; ð61Þ

½∂iψ �keep ¼
�
iþ 1

2
;
i
2

�
; ð62Þ

½∂iF�keep ¼
�
iþ 2

2
;
i
2

�
: ð63Þ

The rest of this subsection discusses this result (see
also [40]).
Let us consider first a scalar ϕ. It is not hard to show that

16The exponent i in a derivative refers to the product of ∂ ×
∂ × � � � with i factors. Similarly, ∂2 ¼ ∂ × ∂. The exponent only
refers to a spacetime index if a Greek letter is used (∂μ for
instance).
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f∂igϕ ¼
�
i
2
;
i
2

�
þ
�
i
2
− 1;

i
2
− 1

�
þ
�
i
2
− 2;

i
2
− 2

�
þ � � � : ð64Þ

On the other hand, in order to calculate the Lorentz
transformation properties of the components ∂i−2h∂2ϕi
which need to be removed, we may want to apply the i − 2
derivatives in a completely symmetric way:

f∂i−2gh∂2ϕi ¼
�
i
2
− 1;

i
2
− 1

�
þ
�
i
2
− 2;

i
2
− 2

�
þ � � � :

ð65Þ

It is then tempting to subtract these Lorentz irreducible
representations from the ones in Eq. (64) and conclude that
the only nonredundant piece of f∂igϕ is the one trans-
forming as ði

2
; i
2
Þ. The last statement is true, but one should

keep in mind that this argument only works because none
of the components of f∂i−2gh∂2ϕi is proportional to F μν;
in other words, all components of f∂i−2gh∂2ϕi have a part
which is completely symmetric under all permutations of
all i derivatives.17

For derivatives of a left-handed fermion, the transfor-
mation properties under Lorentz transformations are as
follows:

f∂igψ ¼
�
iþ 1

2
;
i
2

�
þ
�
iþ 1

2
− 1;

i
2
− 1

�
þ
�
iþ 1

2
− 2;

i
2
− 2

�
þ � � �

þ
�
i − 1

2
;
i
2

�
þ
�
i − 1

2
− 1;

i
2
− 1

�
þ
�
i − 1

2
− 2;

i
2
− 2

�
þ � � � ; ð66Þ

f∂i−1gh∂ψi ¼
�
iþ 1

2
− 1;

i
2
− 1

�
þ
�
iþ 1

2
− 2;

i
2
− 2

�
þ � � �

þ
�
i − 1

2
;
i
2

�
þ
�
i − 1

2
− 1;

i
2
− 1

�
þ
�
i − 1

2
− 2;

i
2
− 2

�
þ � � � : ð67Þ

Assuming again that all components of f∂i−1gh∂ψi are, at
least in part, fully symmetric, the only nonredundant
component of ∂iψ is ðiþ1

2
; i
2
Þ, with maximum spin. This

is the only part of the right-hand side of Eq. (66) which
remains after subtracting the right-hand side of Eq. (67).
Finally, we have to consider what happens to derivatives

of field strength tensors F . As before, one might try to
compute the irreducible Lorentz representations associated
with the components f∂igF (let us call these components
ALL) and remove those which appear in the equations of
motion f∂i−1gh∂F i (we may call this set of components
EOM). The trouble is that in some cases the iþ 1

derivatives in f∂igF and f∂i−1gh∂F i18 are not contracted
in a fully symmetric way (they form a set AS). Given that all
derivatives are in reality covariant, these f∂igF compo-
nents can be written with two or more field strength tensors

F , so they are redundant. We wish to calculate the elements
of ALL which are neither in EOM nor in AS, but this is
complicated by the fact that these last two sets intersect (see
Fig. 1). The number of elements of each set, as a function of
i, is the following:

6Sðfig; 4Þ ¼ ðiþ 3Þðiþ 2Þðiþ 1Þ ð#ALLÞ; ð68Þ

Sðfi; 1; 1g; 4Þ ¼ ðiþ 3Þðiþ 1Þi
2

ð#ASÞ; ð69Þ

4Sðfi − 1g; 4Þ ¼ 2ðiþ 2Þðiþ 1Þi
3

ð#EOMÞ: ð70Þ

The sets EOM and AS cannot be disjoint simply from the
fact that #ASþ #EOM can be larger than #ALL. Up to
large values of i, it is possible to check explicitly that the
intersection of EOM and AS contains

ðiþ 1Þiði − 1Þ
6

½#ðAS ∩ EOMÞ� ð71Þ

elements, and from here we can conclude that there are

2ðiþ 3Þðiþ 1Þ f#½ALLnðAS ∪ EOMÞ�g ð72Þ

components of f∂igF which are not redundant. The
maximum spin components, transforming under the
Lorentz representation ðiþ2

2
; i
2
Þ þ ði

2
; iþ2

2
Þ, are certainly

17We know that the two derivatives in h∂2ϕi ¼ ημν∂μ∂ν are
contracted symmetrically, and so are the remaining ones in
f∂i−2g (obviously). Therefore the ðiþ 1Þ!=½3!ði − 2Þ!� compo-
nents of f∂i−2gh∂2ϕi transform as a representation fi − 2g × f2g
of the group Si−2 × S2 under permutations of the derivatives.
From this information alone, one cannot conclude that under
permutations of the bigger group Si ⊃ Si−2 × S2 all these com-
ponents transform as a fully symmetric representation fig (it is
conceivable that they could also transform as fi − 1; 1g or
fi − 2; 2g).

18Note that F already contains one derivative.
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not contained in either EOM nor AS, and they are precisely
2ðiþ 3Þðiþ 1Þ in total. Hence, one can conclude that these
are the only components of f∂igF to keep.

C. Integration by parts

There is another kind of operator redundancy. The action
is calculated by integrating the Lagrangian density over
all spacetime, so what matters are not the operators O
themselves but rather their spacetime integral. If O is a
divergence, O ¼ ∂μOμ, and the value of Oμ drops to zero
fast enough at large distances/times, then by the divergence
theorem Z

M
Od4x ¼ 0; ð73Þ

where M is some infinitely large volume of spacetime.
Putting aside the possibility that the above integral might
not always vanish, operators of the form O ¼ ∂μOμ should
be discarded. This is often seen as an integration by parts

redundancy: if the sum of two operators Oð1Þ
μ and Oð2Þ

μ is a

total divergence, an integration by parts reveals that Oð1Þ
μ is

equivalent to −Oð2Þ
μ .

We may track the operators which are total derivatives by
introducing a dummy field D in the effective field theory
representing total derivatives, so that operators of the form
Dð� � �Þ should be factored out. However, some of these
latter operators are redundant [18], because there are linear
combinations of them which add up to zero. Unfortunately,
it does not seem easy to detect these relations among
operators which are total divergences.
Nevertheless, the authors of [18] managed to count them

with the Hilbert series method and conformal field theory;
they also offered an interesting interpretation of their
calculation which does not rely on these particular

theoretical tools. It goes as follows, using the language
of differential forms. The redundant operators O ¼ ∂μOμ

are associated with those differential 4-forms ωð4Þ;red which
are exact, meaning that they are the differential of some
3-form ωð3Þ: ωð4Þ;red ¼ dωð3Þ. Nevertheless, one cannot
simply consider all ωð3Þ because the differential of some
3-forms is identically zero, i.e., dωð3Þ;red ¼ 0. In turn,
according to Poincaré’s lemma, these “redundancies of
the redundancies” are associated with all those 3-forms
which are the differentials of a 2-form ωð2Þ: ωð3Þ;red¼dωð2Þ.
This recursive argument goes on, but it eventually stops
because of the dimensionality of spacetime (four) when we
reach 0-forms, which are pure functions.
Let us rephrase this argument in the language of opera-

tors. In general, a differential i-form ωðiÞ can be written as

ωðiÞ ¼ Oμ1μ2���μidx
μ1 ∧ dxμ2… ∧ dxμi ; ð74Þ

where Oμ1μ2���μi is a completely antisymmetric tensor under
an exchange of indices; to highlight this fact, from now on
square brackets will be applied to its indices. Applying the
differential operator 4 − i times to ωðiÞ yields

d4−iωðiÞ ∝ ∂μ1∂μ2 � � � ∂μiO½μ1μ2���μi�dx
0 ∧ dx1 ∧ dx2 ∧ dx3:

ð75Þ

If i > 1, the expressions ∂μ1∂μ2 � � � ∂μiO½μ1μ2���μi� are iden-
tically zero, but even so it is crucial that we keep track of
them. Consider the set fOg of all scalar operators allowed
by the model’s symmetries, as well as the set of all
operators fO½μ1μ2���μi�g with i ¼ 1; 2; 3; 4 free spacetime
indices, which are completely antisymmetric under the
exchange of these indices. The nonredundant operators are
those in the set

fOgnðf∂μOμgnðf∂μ∂νO½μν�gnðf∂μ∂ν∂ρO½μνρ�gn
f∂μ∂ν∂ρ∂σO½μνρσ�gÞÞÞ: ð76Þ

In summary, all linear combinations of the operators fOg
are nonzero, but we wish to remove the degeneracies
f∂μOμg. Unfortunately, this last set includes some oper-
ators which are identically zero, hence the need to include
the remaining sets in expression (76), containing only null
operators. If all we want is to count the number of
nonredundant operators up to some dimension d, then
the result is19

FIG. 1. The set of all f∂igF components (ALL) includes
components which are redundant due to antisymmetric contrac-
tions of the iþ 1 derivatives (set AS) and/or due to the equations
of motion (set EOM). In order to remove these redundancies and
obtain the truly important f∂igF components (gray part of the
diagram), one must understand which elements of ALL are in both
AS and EOM. (For i ¼ 6, the diagram shown here faithfully
represents the relative size of the sets and their intersections.)

19In four-dimensional spacetime, there is a one-to-one corre-
spondence between the operators Oμ and O½μνρ� with the
same dimension, as well as between the operators O and
O½μνρσ�. Therefore expression (77) is the same as ð#Odim≤dÞ−
ð#Odim≤d−1

μ Þ þ ð#Odim≤d−2
½μν� Þ − ð#Odim≤d−3

μ Þ þ ð#Odim≤d−4Þ.
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ð#Odim≤dÞ − ð#Odim≤d−1
μ Þ þ ð#Odim≤d−2

½μν� Þ − ð#Odim≤d−3
½μνρ� Þ

þ ð#Odim≤d−4
½μνρσ� Þ: ð77Þ

Each of the five numbers in this sum can be calculated by
directly counting how many operators there are with the
indicated transformation property under the Lorentz group:
Under SUð2Þl × SUð2Þr, an operator with no subscript
must transform as (0,0), while those with the subscripts μ,
½μν�, ½μνρ�, and ½μνρσ� transform as ð1

2
; 1
2
Þ, ð1; 0Þ þ ð0; 1Þ,

ð1
2
; 1
2
Þ, and (0,0), respectively.

Alternatively, one can avoid handling operators which
are not scalars by introducing the derivative D as a stand-
alone field as mentioned earlier, with all the expected
properties, except that it anticommutes (making it a
Grassmann field). With this dummy field,

#Odim≤d−1
μ ¼ #ðDμOμÞdim≤d; ð78Þ

#Odim≤d−2
½μν� ¼ #ðDμDνO½μν�Þdim≤d; ð79Þ

#Odim≤d−3
½μνρ� ¼ #ðDμDνDρO½μνρ�Þdim≤d; ð80Þ

#Odim≤d−4
½μνρσ� ¼ #ðDμDνDρDσO½μνρσ�Þdim≤d; ð81Þ

where the O’s are assumed not to contain any D. Due to
these identities, it becomes necessary to track only the
scalar operators up to dimension d, and expression (77)
now reads

X4
i¼0

ð−1Þið#Odim≤d with iD0sÞ: ð82Þ

Note that this only works if D is a Grassmann field, as the
subscripts ½μν � � �� of the operators in expression (77) are

completely antisymmetrized. In fact, ifD was a commuting
field, then DμDν � � �O½μν���� would be identically 0.
As an example, Table III lists all types of operators with

four derivatives and four gauge invariant scalars S. From
the permutation symmetries of S, ∂S, and ∂2S, we can
compute that there are the following numbers of operators,
assuming n flavors of S (see Sec. III):

#O ¼ 1

12
n2ð11n2 þ 12nþ 13Þ ðoperators with 0D’sÞ;

ð83Þ

#Oμ ¼ 1
6
n2ð7n2 þ 3nþ 2Þ ðoperators with 1DÞ; ð84Þ

#O½μν� ¼ 1
2
n2ðn2 − 1Þ ðoperators with 2D’sÞ; ð85Þ

#O½μνρ� ¼ 1
6
n2ðnþ 1Þðnþ 2Þ ðoperators with 3D’sÞ;

ð86Þ

#O½μνρσ� ¼
1

24
nðnþ 1Þðnþ 2Þðnþ 3Þ

ðoperators with 4D’sÞ: ð87Þ

It follows that there is a total of 1
8
nðn3 þ 2n2 þ 3nþ 2Þ

operators of the generic form ∂4S4.
Crucially, in order to arrive at this counting, one must be

able to compute the permutation symmetries shown in
Table III. This can be done as discussed previously, and to
demonstrate it consider, for example, the operators of the
type ð∂SÞ4. The field ∂S is gauge invariant, but it trans-
forms under the Lorentz group SUð2Þl × SUð2Þr as a
bidoublet. We have already seen that the SUð2Þ invariant
contractions of four doublets transform under S4 permu-
tations as f2; 2g (see also the next section), hence this
statement holds for both SUð2Þl and SUð2Þr. Taking into

TABLE III. Relevant types of operators of the generic form ∂4S4, where S is a scalar with trivial gauge quantum
numbers. As explained in the main text, their total number is obtained by counting the operators with no D’s and
subtracting those with one D. However, this naive operation subtracts too many operators. To compensate for this,
one must put back the operators with twoD’s, remove those with threeD’s, and finally put back those with fourD’s.

#D’s Operator type Symmetry of the fields ðS; ∂S; ∂2SÞ
0 SSð∂2SÞð∂2SÞ

Sð∂SÞð∂SÞð∂2SÞ
ð∂SÞð∂SÞð∂SÞð∂SÞ

1 DSSð∂SÞð∂2SÞ
DSð∂SÞð∂SÞð∂SÞ

2 DDSSð∂SÞð∂SÞ
3 DDDSSSð∂SÞ
4 DDDDSSSS
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account these two groups, we conclude that the contrac-
tions of the four ∂S’s transform under the representation
f2; 2g × f2; 2g, and this product decomposes into the sum
f4g þ f2; 2g þ f1; 1; 1; 1g of S4 irreducible representa-
tions, in agreement with Table III.
As a second example, we shall look into those operators

of type DDSSð∂SÞð∂SÞ. The two D’s must contract
symmetrically because there is just one copy of this dummy
field. Each D is a bidoublet of SUð2Þl × SUð2Þr, so we are
looking at the product ð1

2
; 1
2
Þ × ð1

2
; 1
2
Þ ¼ ð1; 1ÞS þ ð0; 0ÞS þ

ð1; 0ÞA þ ð0; 1ÞA. Given that D is a Grassmann field, we
infer that DD transforms as ð1; 0Þ þ ð0; 1Þ. Therefore
ð∂SÞð∂SÞ must transform as either (1,0) or (0,1)—these
are two valid possibilities, and crucially in both case the
∂S’s contract antisymmetrically. The S’s always contract in
a symmetric way (after all, S is a Lorentz and gauge
invariant field); therefore we deduce that for the two
possible contractions of the Lorentz indices, the relevant
permutation symmetry of ðS; ∂SÞ is ðf2g; f1; 1gÞ.

V. DISCUSSION OF THE ALGORITHM
AND SOME RESULTS

A. Implementation in a computer code

The approach described in this work makes it possible to
count operators of an effective field theory, and also to
extract some extra information about them. However, in
order to implement it, for a representation R of some Lie
group G one must be able to decompose the tensor product
Rm ¼ R × R × � � � × R into irreducible representations of
G × Sm. It is not enough to know the decomposition of such
products into irreducible representations of the Lie group
G alone.
There is a widely known technique involving Young

tableaux to extract this information when G is a special
unitary group SUðpÞ and R is its fundamental representa-
tion. Any SUðpÞ representation can be labeled by a
partition or a Young diagram, much as the representations
of the permutation group, with two caveats:
(1) Columns with p rows can be ignored, so two Young

diagrams differing only by such columns stand for
the same SUðpÞ representation;

(2) Diagrams with more than p rows are not associated
with any SUðpÞ representation.

If R is the fundamental representation of SUðpÞ, it turns out
that the tensor product Rm ¼ R × R × � � � × R decomposes
into the sum of all representations λλ of the group SUðpÞSm
(λ is a partition of m with at most p rows). For example, in
the case of four SUð2Þ doublets, λ can be f4g, f3; 1g, or
f2; 2g, so we obtain the decomposition

2 × 2 × 2 × 2 ¼ 5f4g þ 3f3;1g þ 1f2;2g; ð88Þ

because the partitions λ ¼ fλ1g and λ ¼ fλ1; λ2g corre-
spond to the ðλ1 þ 1Þ- and ðλ1 − λ2 þ 1Þ-dimensional

representations of SUð2Þ, respectively. Note that f4g,
f3; 1g, or f2; 2g are irreducible representations of S4 with
dimensions 1, 3, and 2, respectively. So on the right-hand
side of Eq. (88) there is a total of 1 × 5þ 3 × 3þ 2 × 1 ¼
16 ¼ 24 components, as expected. One can alternatively
express the product of four doublets as

2 × 2 × 2 × 2 ¼ 5þ 3þ 3þ 3þ 1þ 1; ð89Þ

but in doing so we are erasing critical information
from Eq. (88).
When discussing previously the QQQL operator, it was

stated that the SUð2ÞL indices of the Q’s transform as
f2; 1g under S3 permutations. I will now mention two
proofs of this statement. On the one hand, we just saw that
the two singlets in the product of four doublets of SUð2Þ
transform as f2; 2g under S4. However, in QQQL we are
dealing with three equal doublets (Q) plus a fourth doublet
(L) which is a distinct field. We therefore do not care about
all 4! ¼ 24 permutations of the four doublets but rather we
are only interested in the six permutation of the subgroup
S3 × S1 ⊂ S4. It turns out that the irreducible representation
f2; 2g of S4 transforms as f2; 1g × f1g when restricted to
this subgroup, or simply f2; 1g if we ignore the trivial
S1 group.
An alternative method of arriving at this conclusion is to

repeat the decomposition show in Eq. (88), but this time for
three doublets only. With the same arguments as before, we
get that

2 × 2 × 2 ¼ 4f3g þ 2f2;1g: ð90Þ

Each of the three doublets here stands for one of the Q’s,
and in order for QQQ to form an SUð2ÞL invariant with L,
which is also a doublet, we must select only the doublet
contraction of QQQ, which transforms as f2; 1g under S3
permutations.
The tight connection between SUðpÞ and the permuta-

tion group which was just mentioned is all that is needed to
count operators of some models (including SMEFT).
However, it is worth pointing out that this type of decom-
position can be calculated for any representation of any
group, including discrete ones. The LIE program [41] does
this efficiently for any simple Lie group, referring to it as a
computation of a plethysm. The algorithm described in
LIE’s manual was implemented in the SUSYNO package for
Mathematica [27]. This latter program also contains several
other functions related to Lie algebras and the permutation
group Sn.

20 The first version of the SYM2INT package [28]
uses them to list the operators without derivatives (nor field

20The group theory part of this code has recently been
separated and enlarged in a separate package called GROUPMATH
[42]. All the computations involving Lie groups and/or the
permutation group Sn which are mentioned in this work can
be performed with it.
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strength tensors) of any effective field theory. This can be
done up to some arbitrary mass dimension. Adapting the
solutions in the literature [16,18] to tackle the problems
inherent to derivatives, the latest version of SYM2INT can list
automatically all operators in an effective field theory,
including those with derivatives and field strength tensors.

B. Comparison with other methods
and computer codes

All SMEFT operators up to dimension 15 were counter
and characterized in the way described here in under two
hours on a standard laptop computer (details of these results
can be found below, at the end of this section). All the
numbers and expressions given in [18] (and in the accom-
panying data files) were successfully reproduced with the
alternative method described here.
Two other noteworthy codes should be mentioned. The

first one is DEFT [37]: rather than just calculate the number
of operators and their symmetries, this code works with
the actual operators, performing the gauge and Lorentz
index contractions explicitly. Dealing with operator
redundancies associated with derivatives then becomes
a linear algebra problem. Having the operators written
down explicitly is clearly something very useful for model
builders, and it opens up several possibilities, such as of
implementing in different ways the operator redundancies
discussed previously. One downside of the more ambi-
tious scope of DEFT is that it takes more time to perform
these calculations—as a point of reference, the authors of
[37] were able to calculate SMEFT up to dimension eight
for one fermion generation, which corresponds to roughly
a third of the number of SMEFToperators up to dimension
six, with three generations.
The second noteworthy code is BASISGEN [43]. It counts

operators, and does so with the basic approach of multi-
plying all fields together, and retaining only the gauge and
Lorentz invariant solutions. This is essentially the same
method of counting operators as the one described in this
paper and implemented in SYM2INT (this was called the
traditional method in Sec. II). However, repeated fields are
handled differently, and this has significant impact on the
computational time for models with multiple flavors.
Instead of n flavors of a field ψ , BASISGEN considers n
distinct fields ψ ;ψ 0;ψ 00;…, with the same quantum num-
bers, meaning that flavor indices are expanded. From this
perspective all fields have a single flavor so, referring back
to the discussion in Sec. III, one only needs to retain the
completely symmetric contractions of repeated fields.
Because each entry of the flavor tensor in front of a term
is evaluated separately, the computational time of this
approach increases sharply with the number of flavors.
Concerning derivatives, BASISGEN deals with the integra-
tion-by-parts redundancies in a way which is different than
the one described in this work; however, it is likely that the
two methods are equivalent.

C. Information beyond the number of operators

It is possible to track each field flavor separately, both
with the traditional method described here (see also [43])
and with the Hilbert series method (this leads to a so-called
multigraded Hilbert series). However, doing so is very time
consuming; therefore in the following I will analyze the
information which can be extracted from both methods
when the field flavor indices are not expanded.
The Hilbert series approach counts operators of a certain

type for an arbitrary number of generations n, telling us, for
example, that there are nðnþ 1Þ=2 operators of the type
LLHH. At first sight, the traditional method might seem to
yield more information: it computes that the n × n flavor
matrix κij in κijLiLjHH is symmetric; i.e., it transforms
under the irreducible representation of S2.
This implies that there are Sðf2g; nÞ ¼ nðnþ 1Þ=2 oper-
ators of this type, so the second result (the permutation
symmetry) implies the first one (the operator counting). But
does it contain more information? For this particular
example, the answer is no: there is no extra information
in the permutation symmetry because from the number of
operators as a function of n it follows that κ is necessarily a
symmetric matrix.
More generally, we can frame the discussion as follows.

The traditional method provides the symmetry of the para-
meter tensors as a sum

P
λ⊢m rλλ of irreducible represen-

tations λ of some permutation group Sm, each with
multiplicity rλ. From here one can always calculate the
total number of operators as a function of the number of
flavors n,

#operatorsðnÞ ¼
X
λ⊢m

rλSðλ; nÞ; ð91Þ

while the Hilbert series method provides only the function
#operatorsðnÞ.21 Knowing the left-hand side of this expres-
sion, is it possible to retrieve the integer coefficients rλ? In
simple cases it is. The quantity Sðλ; nÞ is a polynomial
function of n of degree m (because λ is a representation of
Sm, hence it is a partition of m), with no constant term,
which we can express as

Sðλ; nÞ≡Xm
i¼1

Sλini: ð92Þ

We can obtain the rλ coefficients from #operatorsðnÞ in
Eq. (91) if and only if all the polynomials Sðλ; nÞ for
different partitions λ of m are linearly independent. In turn,
this is the same as requiring that all rows of the S matrix
above are linearly independent. With either two or three
repeated fields (m ¼ 2 or 3), the expressions

21The number of flavors n should be seen as a variable here;
otherwise #operatorsðnÞ becomes just a number and some
information given by the Hilbert series method is lost.
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Sðf2g; nÞ ¼ nðnþ 1Þ
2

; ð93Þ

Sðf1; 1g; nÞ ¼ nðn − 1Þ
2

; ð94Þ

Sðf3g; nÞ ¼ ðnþ 2Þðnþ 1Þn
6

; ð95Þ

Sðf2; 1g; nÞ ¼ ðnþ 1Þnðn − 1Þ
3

; ð96Þ

Sðf1; 1; 1g; nÞ ¼ nðn − 1Þðn − 2Þ
6

; ð97Þ

imply that Eq. (91) is reversible, since the matrices

S ¼
 

1
2

1
2

− 1
2

1
2

!
m¼2

;

0
BB@

1
3

1
2

1
6

− 1
3

0 1
3

1
3

− 1
2

1
6

1
CCA

m¼3

ð98Þ

are invertible. Therefore, whenever a field appears repeated
at most 3 times in an interaction, the Hilbert series method
provides the same information as the traditional method.
But for m > 3 the rows of matrix S are never linearly
independent: this can be seen just by counting its columns
(m) and its rows [equal in number to the distinct ways pðmÞ
of partitioning m]. The function pðmÞ (called the partition
function) becomes bigger than m starting at m ¼ 4,
increasing almost exponentially for very large m, so for
four or more fields, the traditional method does provide
some extra information which is not obtainable with the
Hilbert series method described in the literature. For
example, there is one linear relation among the Sðλ; nÞ
for m ¼ 4, namely

Sðf3; 1g; nÞ þ Sðf2; 1; 1g; nÞ ¼ 3Sðf2; 2g; nÞ
½¼ n2ðn2 − 1Þ=4�: ð99Þ

Therefore, from the fact that there are n2ðn2 − 1Þ=4
operators of type dcdcdcdcðdcÞ�ðecÞ� in SMEFT it is
impossible to infer what is the S4 symmetry of the four
dc’s; it might be 3f2; 2g or f3; 1g þ f2; 1; 1g (it turns out to
be the latter case, so one Lagrangian term is enough to write
down all these operators). This is the smallest SMEFT
operator where the issue arises, and it has dimension nine,
so it is fair to say that the extra information given by the
traditional method is either minimal or nonexistent at all,
unless the dimension of the operators is fairly large.

D. Counting terms with derivatives

Another important point worth mentioning is that the
permutation symmetry of operators with derivatives is
unclear, due to the integration-by-part redundancies.

Consider the example in Table III with the operators of
the kind ∂4S4, where S is a scalar field which does not
change under gauge transformations. There are operators
with symmetries S2 × S2, S2 × S1 × S1, and S4 depending
on where the derivatives are applied (these are the operators
with 0 D’s in the table), and one must cross out some of
them due to redundancies which have other permutation
symmetries (they are associated with the operators with one
or more D’s). It is hard to access what is the overall per-
mutation symmetry of what remains after this subtraction.
In fact, just as with the Hilbert series method, it is not even
clear if any of the three types of operators—SSð∂2SÞð∂2SÞ,
Sð∂SÞð∂SÞð∂2SÞ, and ð∂SÞð∂SÞð∂SÞð∂SÞ—can be com-
pletely crossed out; hence one cannot tell how to distribute
the four derivatives over the four S scalars. At least not
without extra considerations.
In light of this complication, one might simply compute

the total number of operators and ignore all other infor-
mation since one cannot make good use of it. However,
there is perhaps a better alternative where less information
is thrown away. For simplicity, consider the operators with
only two derivatives and m scalar singlets S: there are
ð∂SÞ2Sm−2 operators, with a symmetry f2gð∂SÞ×fm−2gðSÞ,
and redundancies D½ð∂SÞSm−1� with a symmetry f1gð∂SÞ×
fm − 1gðSÞ. So, we need an m-index parameter tensor κ to
multiply/contract with the ð∂SÞ2Sm−2 operators, and it must
have a f2g × fm − 2g permutation symmetry, with those
components transforming as f1g × fm − 1g removed. The
number of nonredundant operators must be

Sðfm − 2g; nÞSðf2g; nÞ − Sðfm − 1g; nÞSðf1g; nÞ

¼
�
0 if n ¼ 1
nðm−3Þðmþn−3Þ!
2ðm−1Þ!ðn−2Þ! if n > 1

: ð100Þ

However, we can go beyond this counting exercise and,
roughly speaking, subtract the f1g × fm − 1g representa-
tion of S1 × Sm−1 from the f2g × fm − 2g representation of
S2 × Sm−2. Notice that these two representations can be
found inside the following Sm representations exactly once
in all cases:

f2g × fm − 2g ⊂ fmg; fm − 1; 1g; and fm − 2; 2g;
ð101Þ

f1g × fm − 1g ⊂ fmg and fm − 1; 1g: ð102Þ

Therefore, only the components of κ transforming as fm −
2; 2g under Sm permutations survive.22 And indeed it is

22Not all of them though: only those which transform as f2g ×
fm − 2g under S2 × Sm−2 permutations. From the comments
made in Sec. III one can infer that this corresponds exactly to 1 in
dðfm − 2; 2gÞ ¼ mðm − 3Þ=2 components of κ transforming as
fm − 2; 2g under Sm permutations.
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straightforward to check that the result in Eq. (100) is the
same as Sðfm − 2; 2g; nÞ, using formula (32).
In this way, even in the presence of derivatives, it is still

possible to obtain some permutation symmetry information

of the operators with the redundancies removed. For
example, in the more complicated case of operators of
the kind ∂4S4 (see Table III) it turns out that the non-
redundant operators are associated with the S4 representa-
tion f4g þ f2; 2g, and indeed the total number of
nonredundant operators in this case is

Sðf4g; nÞ þ Sðf2; 2g; nÞ ¼ 1

8
nðn3 þ 2n2 þ 3nþ 2Þ:

ð103Þ

Finally, it is worthwhile to discuss the number of terms
(as defined in Sec. II) associated with operators with
derivatives. In the absence of derivatives, the symmetry
of the contraction of the fields can be expressed as a sumP

λ rλλ of irreducible representations λ of the relevant
permutation group, with rλ representing the multiplicity
of λ. We have seen already that these operators can be
expressed with t ¼ maxðrλÞ terms, and no less.
Integration-by-parts redundancies complicate this calcu-

lation for operators with derivatives. Nevertheless, one can
easily establish bounds on the minimal number of terms t:

(i) t cannot be smaller than the number of operators
when considering only one generation of fields
(n ¼ 1).

FIG. 2. Cumulative number of real operators, terms, and types
of operators in SMEFT (as defined in Sec. II) up to a given
dimension. Kinetics terms are ignored. Due to the presence of
derivatives in some operators, the number of required Lagrangian
terms cannot be determined exactly, but fairly stringent bounds
(narrow green band) can be set on this quantity.

FIG. 3. Cumulative number of real operators, terms, and types of operators up to a given dimension in three models with different
gauge symmetries—SUð3Þ × SUð2Þ × Uð1Þ, SUð5Þ, and SOð10Þ. The fermion and scalar content of each model is analogous (details
can be found in the main text). As the symmetry group is enlarged, the number of operators, terms, and types of operators is reduced, as
expected.
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(ii) t does not need to be larger than the number of
irreducible representations of the permutation group
obtained after the procedure described a few para-
graphs earlier.

(iii) t also cannot exceed the number of terms needed to
write all interactions if integration-by-parts redun-
dancies are ignored.

For example, there is only one operator of the kind ∂4S4 if
there is only one flavor of S, so t ≥ 1. On the other hand,
ignoring the redundancies in Table III, one could write all
operators with three terms, so t ≤ 3. Finally, the ∂4S4

interactions are associated with the f4g þ f2; 2g permu-
tation symmetry (two irreducible components), and there-
fore t ≤ 2. In summary, these operators require either one
or two Lagrangian terms (1 ≤ t ≤ 2).

E. Application to specific models

The approach described in this work can be used to
characterize individual interactions of a model. However, it
would not be instructive to present here an exhaustive
analysis of this kind. Instead, I will show some summary
data of the interactions up to dimension 15 of three models:
(a) the SMEFT; (b) an SUð5Þ model with the left-handed
fermion representations 3 × 5̄þ 3 × 10 and a scalar trans-
forming as a 5; (c) an SOð10Þ model with the left-handed
fermion representations 3 × 16 and a real scalar trans-
forming as a 10. These two latter models were picked to
illustrate the effect of an enlarged symmetry group on the
number of interactions, so the only fermion and scalar
representations of SUð5Þ and SOð10Þ which were selected
are those which contain the Standard Model fields.
The total number of real operators, terms, and types of

operators up to dimension d ¼ 2;…; 15 in these three
models is represented graphically in Figs. 2 and 3. Exact
numbers can found in Appendix. In the case of SMEFT, the
number of operators up to dimension 15, as well as the
number of types of operators up to dimension 12 agree with
the results obtained with the Hilbert series method in [18].
As mentioned earlier, the minimum number of terms

which are needed to write down all operators can be
calculated exactly for terms without derivatives. If there
are derivatives, with the considerations made in this work it
is only possible to derive bounds on this number. One can
see from Figs. 2 and 3 that these bounds are fairly strict.
Furthermore, the lower limit is close to (but never below)
the number of operators in each of the models if they had a
single fermion family.

VI. SUMMARY

Operators in an effective field theory can be counted with
the Hilbert series method. This technique, which requires
the computation of some integrals, is very different from
the one historically used in particle physics of simply
multiplying together a model’s fields in all possible ways,

and retaining the combinations which are invariant under
all relevant symmetries (such as the ones associated with
the Lorentz and gauge groups). However, such a seemingly
straightforward approach—which we may call the tradi-
tional method—is complicated by the fact that many
operators have repeated fields, as well as derivatives.
This work describes a systematic and efficient way of

addressing the problem of repeated fields. Derivatives can
be handled with simple adaptations of the techniques
known to work for the Hilbert series method. With these
two difficulties solved, it becomes possible to count all
operators of an effective field theory up to a high mass
dimension, without relying on the Hilbert series technique.
The traditional method is potentially useful for various

reasons. An obvious one is that it makes it possible to cross-
check results obtained in other ways. For example, the
operators of the SMEFT were previously counted up to
dimension 15 with the Hilbert series technique, but in the
literature there was only confirmation of these numbers up
to dimension eight. With the procedure described in this
work, it is possible to verify the number of operators up to
dimension 15, for an arbitrary number of fermion families.
Another interesting feature of the traditional method is

that it provides more information beyond a simple operator
counting. Among other things, the extra information can be
used to count systematically the minimum number of
Lagrangian terms required to encode a model’s inter-
actions. For instance, it indicates that all QQQL operators
in SMEFT can be written down as a single term in the
Lagrangian (in the past, this was not always clear), while
the significantly more complicated interactions with twice
as many fields, of the type Q6L2, need 11 terms.
The method described in this work was implemented in

the program SYM2INT, which can readily be used to
calculate the above operator properties in any field theory.
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APPENDIX: ADDITIONAL DATA

The exact number of operators, terms, and types of
operators for the three models described in Sec. Vare given
here in Tables IV–VI. Kinetic terms were not taken into
account. Furthermore, note that any complex operator (plus
its Hermitian conjugate) can be written as two real ones,
and vice versa; the numbers in the tables below refer to real
operators, terms, and term types.
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TABLE IV. Number of real operators, terms, and types of operators in SMEFT (as defined in Sec. II). Kinetics
terms—of the kind ∂∂ϕϕ, ∂ψ�ψ , and FF—are not taken into account. The number of operators up to dimension 15
shown here, as well as the number of types of operators up to dimension 12, agree with [18].

Dimension # operators # terms # types of operators

2 1 1 1
3 0 0 0
4 55 7 7
5 12 2 2
6 3045 84 72
7 1542 36 32
8 44807 1025 to 1102 541
9 90456 628 to 852 296
10 2092441 15769 to 18345 2868
11 3472266 12726 to 19666 1898
12 75577476 266031 to 343511 11942
13 175373592 266802 to 457898 9824
14 2795173575 4669533 to 6717444 43158
15 7557369962 5599846 to 10567408 42206

TABLE V. Number of real operators, terms, and types of operators in an SUð5Þ model with the left-handed
fermion representations 3 × 5̄þ 3 × 10 and a scalar transforming as a 5.

Dimension # operators # terms # types of operators

2 1 1 1
3 0 0 0
4 31 5 5
5 12 2 2
6 549 32 23
7 432 20 16
8 8761 332 to 387 101
9 12392 242 to 352 80
10 252626 4459 to 5720 302
11 431670 3990 to 6770 288
12 7159650 68577 to 99666 743
13 15425382 74252 to 142748 834
14 215670831 1139503 to 1850054 1651
15 544121758 1449420 to 3067252 2056

TABLE VI. Number of real operators, terms, and types of operators in an SOð10Þ model with the left-handed
fermion representations 3 × 16 and a real scalar transforming as a 10. It can be shown that such a model does not
have operators with an odd dimension.

Dimension # operators # terms # types of operators

2 1 1 1
3 0 0 0
4 13 3 3
5 0 0 0
6 170 17 14
7 0 0 0
8 1639 110 to 131 48
9 0 0 0
10 31059 977 to 1440 124
11 0 0 0
12 648654 11319 to 19765 257
13 0 0 0
14 14694065 152402 to 302812 472
15 0 0 0
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The reader will notice from Table VI that the SOð10Þ
model with left-handed fermions in the spinor representa-
tion 16 and a scalar in the vector representation 10 does not
seem to have operators with an odd dimension. It can be
shown analytically that this is indeed the case. Let us call
n16, n16� , n10, and nD to the number of 16’s, 16*’s, 10’s, and
derivatives D in a given interaction (for all practical
purposes, here F ¼ D2). Then Lorentz invariance requires
that n16 þ nD and n16� þ nD are both even numbers, while
from the conjugacy classes of the SOð10Þ representations

we also conclude that n16 þ n16� must be even, and 2n10 þ
n16 − n16� must be a multiple of 4. It follows that the
operator dimension

d ¼ 3

2
n16 þ

3

2
n16� þ n10 þ nD ¼ ðn16 þ n16� Þ

þ ðn16� þ nDÞ þ
1

2
ð2n10 þ n16 − n16�Þ ðA1Þ

must be even.
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