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ABSTRACT 

The sp(6,R) algebra of the nuclear symplectic model is extended to 
wsp(6,R) = w(3) ~ sp(6,R) by including the electric dipole operator 
among the generators. Labels characterizing the wsp(6,R) irreducible 
representations (irreps) are defined, and the branching rule for 
wsp(6,R) D sp(6,R) is determined. Two bases of a wsp(6,R) lrrep 
carrier space are constructed and used to calculate matrix 
representations of the wsp(6,R) generators. Flnallg the choice of a 
physically relevant wsp(6,R) irrep is reviewed. 

1. INTRODUCTION 

Over the past few years, the sgmplectic model, based upon a 
r~n'Compact Sp(6,R) group, has proved an appropriate framework for a 
I~a~-body theory of nuclear collective motion, and has found various 
~PPlications in light and heavy rotational nuclei [1]. Since the monopole 
and quadrupole mass tensors belong to the sp(6,R) algebra, the model can 
COrrectly predict the position of the giant isoscalar monopole and 
qUadrupole resonances, as well as the corresponding transition strengths. 
It (:an also reproduce the low-energy collective states and the transition 
PrObabilities between them without effectlve charges. 

Unfortunately, the giant isovector dipole resonance, which ls the 
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best known and most thoroughly investigated giant resonance, does not 
fal l  so easily wi th in the scope of the model because the latter does not 
contain the electric dipole operator among the generators of its dynamic31 
group. To eliminate this undesirable feature, an extension of the 5p(6,R) 
model to a WSp(6,R) one was suggested some years ago by Rowe and 
lachello [2]. However, Rowe and Iachello's idea was pursued no further, 
unti l  quite recently the same extension of 5p(6,R) was independently 
considered again [3,4]. The purpose of the present talk is to review the 
main results of Refs. 3 and 4. 

2. THE wsp(6,R) ALGEBRA 

To define the algebra of the Sp(B,R) model, one f i rs t  replaces the A 
nucleon coordinates and momenta x~s, P~s, i = 1,2,3, s = 1,2,...,A, by Jacobi 
coordinates and momenta x~s, P~s, i = 1,2,3, s = 1,2,...,A, then one 
eliminates the centre-of-mass motion by restr ict ing the range of index 
to s = 1,2,...,n, where n= A - l ,  and finally one introduces boson creation 
and annihilation operators ~is, ~,is, associated with the latter: 

"qis = (x~s - i p is)/~2 , ~is = (xis + i p i s ) /~ ' 2  , i=1,2,3, s=l,2,...,n. (1) 

In terms of T1 is and Zis, the sp(6,R) generators are given by 

n 

s : l  

n 

s=l 

n 

E~j = ~.. ~ s  Zjs + (n12) 6Li , i,j - 1,2,3, (2) 
S--I 

where EU, i, j = 1,2,3, span the u(3) subalgebra. 
The electr ic dipole operator and its corresponding momentum 

operator are given by 

~; = T.' (x;,' _ × ; ) ,  (p; = ~" (p~,, _ p;) ,  (:3) 
S S 

where the primed summations run only over the 7 proton coordinates and 
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momenta, and X;, P; are the components of the centre-of-mass coordinate 
and momentum respectively. They can be rewritten as 

= -~ (BT + B;)/,,/2 , 0" i = -i'5 (Bti- Bi)l,,/'2, (4) 

in terms of some new operators 

n 
g!=~-1 T t3~Tli~ , B~=~-I 

s=l 

n 

t3s ~is ' 
S=l 

(5) 

Here "d = [Z(A-Z)] 112, and the operators t3s, s = 1,2,...,n, are obtained from 
the standard isospin operators t~s, s = 1,2,...,A (with eigenvalues *1/2 and 
"1/2 for neutrons and protons respectively) by the Jacobi transformation. 

The operators B~, and B; satisfy boson commutation retations, and 
therefore, together with I, span a w(3) Heisenberg-Weyl algebra. Moreover 
they are vector operators with respect to sp(6,R). Hence, by adding the 
Operators Bit, Bi, and l to the sp(6,R) generators, we obtain the semidirect 
sum algebra w(3) +3sp(6,R), that we denote by wsp(6,R). 

3. IRREDUCIBLE REPRESENTATIONS OF wsp(6,R) 

In the realization (2), (5), all the wsp(6,R) irreps have a lowest 
Weight state (LWS) I Q>, defined by 

E;i I~> =~ . . i  I£t> , Eij I£~> =0 (i>j) , D,j IQ>=O , (6a) 

I n >  = o , (6b) 

Where 0 is a shorthand notation for £~1~z£~3, and [~1-n/2, £~2-n/2, ~3-n/2] 
is Some partition into non-negative integers. From (6), it follows that the 
state I~> is the LW$ of an sp(6,R) irrep <£~>, satisfuing the additional 
condition (6b). The same labels £~ may therefore characterize the wsp(6,R) 
irrep built on it. We shall denote this wsp(6,R) irrep by <<£~>> to 
distinguish it from the sp(6,R) irrep <£~> with the same LWS. The irrep 
((~>> can be alternatively characterized by the eigenvalues of three 
Casimir operators 63, 66, and 69, of degree 3, 6, and 9 in the wsp(6,R) 
generators respectively. 

The reduction of a wsp(6,R) irrep into a direct sum of sp(6,R) irreps 
has been studied by the raising operator technique. The raising operators 
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Ri, i = 1,2,3, for wsp(6,R) ~ sp(6,R) are defined bg 

a i IQ 6}> = Ni((e,(e i) I(~ (el> , (7) 

where I(} (e> denotes a state in the carrier space of <<(}>>, which is the 
LW5 of some sp(6,R) irrep characterized bg <(e>, Ni((e,(e l) is some 
normalization coefficient, and (olj = (o j .  Sj~. These raising operators have 
been explicitlg constructed and their normalization coefficient calculated. 
For such purposes, two different methods have been used: the f irst one is 
the method developed bg Bincer to determine shift operators for the 
unitarg, orthogonal, and sgmplectic algebras [5]; the second one is a new 
technique based upon the converse procedures of shift operator contraction 
and expansion [6]. From such work, the following branching rule for 
wsp(6,R) ::) sp(B,R) has been obtained: 

oo C~1 Q2 
T. T. E) <(e> . (8) 

~1=~1 ~2=~2 L03=~ 3 
Note that in (8), there are no multiplicities. 

4. BASES OF wsp(6,R) AND MATRIX REPRESENTATIONS OF THE GENERATORS 

Two bases have been constructed in the <<~>> carrier space. The 
first one is the monomial basis, whose states are defined bg 

I~ (~) I(: I> : { ?, (kij() -I/2 [(1+4Sij) -I/2 DTj]KU} 
t<.J 

x { ]] (ill)-112 (BDli) l£ t (£~)> , (9) 
I 

where kij (i.<j) arx:l ~i run over all non-negative integers and (~) over all 
Gel'f and patterns of the u(3) irrep [~]. The states (9) do not belong to 
definite u(3) nor sp(6,R) irreps. The second basis is the sp(6,R) :) u(3) one, 
whose states are defined by 

r 1 ph 
lP.(D*)xl(}(e>jt (10) 

where P,¢.(D t )  is a poignomial in D~j characterized bg a given u(3) lrreP 
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[P} = [elvzv3] and a given row (', the square bracket denotes a coupling of 
the u(3) irreps [e] and [~] to an irrep [hi = [hlhzh3] and row (, p 
distinguishes between repeated irreps [hi, and o<, is some coefficient. For 
(, we may choose either a Gel'rand pattern (h) or the angular momentum L, 
its component ME, and some multiplicity label }<. 

Since both bases (9) and (10) are not orthonormal, the corresponding 
matrix representations of the wsp(6,R) generators have been determined in 
two steps. First the recursion relations satisfied by the overlap matrices 
or both bases have been established. Second, the matrix elements of the 
Wsp(6,R) generators between a basis state and a dual basis one have been 
calculated. For such purpose, it is convenient to use a boson realization of 
wsp(6,R), generalizing a well known boson realization of sp(6,R) [7]. The 
former is defined in terms of two independent sets of boson creation and 
annihilation operators aTj = a~i, al j  = a j i ,  and b~, bi (i,j = 1,2,3), and of 
Some intrinsic u(3) generators E°j (i,j = 1,2,3), commuting with the boson 
Operators, and only acting in the carrier space of the u(3) irrep [£}]. In 
matrix notation, it is given by 

bt~=a  t , B tp=b  t , ED = a t a  + b t b  ÷ E° , 

I)D = a (a ta  - 51) ÷ a(btb ÷ E °) ÷ ( ~ t  + l~O)a ÷ ~b , (11) 

B~= ~ t a +  b . 

This is a Dyson boson realization since the Hermiticity properties of the 
generators are not preserved. 

S' APPLICATIONS TO NUCLEI 

In applications to nuclei, not all the mathematically realized 
Wsp(6,R) irreps are physically relevant. Pauli principle indeed Imposes 
SOme additional conditions. In the lowest approximation, we may restrict 
OUrselves to a single wsp(6,R) Irrep, namely that containing the sp(6,R) 
Irrep corresponding to the lowest approximation of the symplectic model. 
For closed shell nuclei, for instance, this wsp(6,R) lrrep has the closed 
Shell state as LWS; it is characterized by Q1 = Qz = ~3 = Q or, in EIIlott's 
notations, by Noo = 3~ and CXooJJoo) = (oo). Here Noo, ;koo, and JJoo are 
respectively defined by Noo = Z~ £2~, %00 = ~I - ~z, JJoo = ~z - £~3. The 
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lowest two sp(6,R) irreps belonging to <<Noo (00)>> are characterized by 
<Noo (00)> and <Noo+l (10)>, and are of opposite parity. In Ref. 3, the 
reduced matrix elements of the dipole operator between basis states of 
these two irreps have been determined in the case of 160 for which Noo = 
69/2. 

In conclusion, we have shown that the Sp(6,R) model can be extended 
to deal with giant dipole transitions. The techniques needed to perform 
dynamical calculations in the extended model are now available, and it is 
hoped that such calculations wil l  be performed in a near future. 
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