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1. Introduction

It is appealing to quantize and regularize General Relativity (GR) by discretizing space-time.
For Euclidean space-times, this approach was suggested by Regge (for a review, see [1]). The
Causal Dynamical Triangulation (CDT) approach of [2] constructs causal manifolds only. This
leads to greater stability and is rather promising. In CDT the basic simplexes are fixed, but the
coordination number of vertices is variable. I here consider another approach that discretizes causal
Lorentzian manifolds of indefinite metric by a lattice with fixed coordination but variable light-
like separations. It is more closely related to the continuum theory and the lattice integration
measure essentially is dictated by the local SL(2,C)structure group. A possible starting point is
the continuum action of the first order Hilbert-Palatini formulation of GR with a cosmological
constant,

SHP =
1
l2
P

∫
M

eα ∧ eβ ∧ [Λ
6

eγ ∧ eδ −Rγδ (ω)]εαβγδ , (1.1)

where the scale lP =
√

32π`P is proportional to the Planck length `P =
√

Gh̄/c3. Phenomenologically[3]
the cosmological constant Λ in natural units1, is rather small with λ = Λl2

P ∼ 6×10−120.

The one-forms eα in Eq.(1.1) are the Einstein-Cartan co-frames, eα = eα
µ dxµ , (1.2)

and Rαβ (ω) is the so(3,1) curvature two-form, Rαβ (ω) = dω
αβ +ω

α
γ ∧ω

γβ (1.3)

with connection ωαβ = −ωβα . The Hilbert-Palatini action of Eq.(1.1) does not depend on the
frame and is even defined if the co-frame is not everywhere invertible.

The formulation in terms of co-frames differs from one by frames in that it is polynomial
in all fields and depends on the signed invariant volume element. The Lagrangian of Eq.(1.1)
is proportional to det(eγ

µ) rather than |det(eγ

µ)| and changes sign under improper (local) Lorentz
transformations. The action of Eq.(1.1) is classically equivalent to the Einstein-Hilbert action only
for orientable manifolds with det(eγ

µ) > 0 everywhere. The remaining local internal symmetry of
this oriented model is SO(3,1) and causality restricts it to the connected component SL(2,C) .

Eq.(1.2) and Eq.(1.3) suggest to associate with each node n ∈ ΛΛΛ of a four dimensional hy-
percubic lattice ΛΛΛ a local inertial system and a set of co-frames that represent the Minkowski
displacements to neighboring events along each of four (forward) directions. As for an ordinary
gauge theory, an SL(2,C) -matrix in the fundamental representation defines parallel transport (of a
spinor) between two adjacent sites and is naturally associated with a lattice link.

Formulations such as this suffer from a number of drawbacks compared to purely geomet-
rical ones, but enjoy some merits as well. Although not manifestly diffeomorphism invariant, it
for instance is relatively straightforward to ensure causality by restricting to (forward) light-like
displacements at each node: a configuration then is a set of consistent light-like displacements
between causally connected nodes. We discuss some of the issues of such a formulation below
and sketch solutions to some of them. Many interesting problems are as yet unsolved and will be
considered elsewhere.

1h̄ = c = lP = 1 in natural units and the Minkowski metric η = diag(1, . . . ,1,−1).
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2. Null lattice formulation

We would like to construct a Lorentzian lattice model with metric signature (+,+,+,−), an
SL(2,C)structure group and causal dynamics whose action in the classical limit h̄→ 0 is given by
Eq.(1.1) . The null-vector associated with an oriented link [n,µ] of this lattice is represented by an
anti- hermitian 2×2 matrix Eµ(n) that can be interpreted as the line integral,

Eµ(n) = l−1
P

∫
C (n,µ)
σαeα = σαEα

µ (n) , (2.1)

along the null geodesic C (n,µ) in forward direction from the event at n to the event n+ µ of
the Lorentzian manifold. Here {eα ;α = 1, . . . ,4} is a local co-frame of one-forms and {σα ;α =

1, . . . ,4} a fixed basis of anti-hermitian 2×2 matrices. The engineering dimension of the integral
is absorbed by lP and all variables of the lattice model are dimensionless. The Planck length
here is treated on the same footing as the fundamental constants h̄ and c. The only dimensionless
coupling is the cosmological constant λ = Λl2

P ∼ 6× 10−120. Contrary to ordinary field theories,
the critical (UV) limit of the gravitational theory here is linked to its infra-red limit: as the UV-
cutoff is removed and the number of sites increased, λ must be tuned so that the size of the universe
described by the lattice approaches a finite limit in physical units of lP. The cosmological constant
in this sense can be viewed as a Lagrange multiplier for the average 4-volume of the universe.

Under local SL(2,C) transformations, the Eµ(n) transform homogeneously,

Eµ(n)−→ g(n)Eµ(n)g†(n) with g(n) ∈ SL(2,C) . (2.2)

On this space of (anti-)hermitian matrices, the SL(2,C) invariant real scalar product is,

A ·B :=−1
2 TrεAT

εB = 1
2 TrεA∗εB ∈ R (2.3)

where XT is the transpose and X∗ the complex conjugate of the (anti-)hermitian matrix X . ε =(
0 1
−1 0

)
is an SL(2,C) invariant. Note that the second form of the scalar product in Eq.(2.3) is

invariant under A,B→ gAg†,gBg† for all g ∈ SL(2,C) , regardless of whether A and B are anti-
hermitian. Although no explicit choice[4] is required, we for convenience2 specify the basis of
anti-hermitian 2×2 matrices {σα ;α = 1,2,3,4} to be,

σ1 =
(

0 i
i 0

)
, σ2 =

(
0 −1
1 0

)
, σ3 =

(
i 0
0 −i

)
, σ4 =

(
i 0
0 i

)
. (2.4)

————————–
An Example: A null co-frame for Minkowski space
That a causal manifold is described by linearly independent null vectors may surprise and it is
reassuring to see this for ordinary flat Minkowski space.

A set of (forward) null co-frames that describes ordinary Minkowski space for instance is,

eMink
1 = (−1,1,1,

√
3), eMink

2 = (1,−1,1,
√

3), eMink
3 = (1,1,−1,

√
3), eMink

4 = (−1,−1,−1,
√

3) .
(2.5)

2This basis distinguishes σ4 from the three traceless, ~σ , generators of the su(2)-algebra [σα ,σβ ] = 2ε(αβγ4)σγ .
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These are the co-frames in a coordinate system S′ related to ordinary Minkowski space-time with
metric ηab = diag(1,1,1,−1) by the coordinate transformation 4x′1 =−x1+x2+x3+x4/

√
3, 4x′2 =

x1−x2+x3+x4/
√

3, 4x′3 = x1+x2−x3+x4/
√

3,4x′4 =−x1−x2−x3+x4/
√

3. The transforma-
tion preserves orientation with det(ea

µ) = 16
√

3 > 0. As required by Eq.(2.13) components of the
metric in this coordinate system are negative semi-definite – in this case gµν = ea

µηabeb
ν = −4 for

µ 6= ν , vanishing for µ = ν .
A Lorentz-transformed and scaled co-frames provides an equivalent descriptions of flat Minkowski

space by a null-frame. Note that for flat space-time, lattice null-vectors are simply proportional to
the co-frames EMink

µ (n) = aσαeα Mink
µ with some global lattice constant a that may be associated

with the coarseness of the triangulation.
————————-
The anti-hermitian matrices Eµ(n) corresponding to null vectors in the forward light cone are

singular. They may be represented[4] by complex bosonic 2-component spinors3 ξ A
µ ,A = 1,2,

EAḂ
µ (n) = i(ξµ ⊗ξ

∗
µ)

AḂ = iξ A
µ (n)ξ

∗Ḃ
µ (n) , (2.6)

where ξ ∗µ is the complex conjugate spinor. There is no summation over the repeated index4 µ on
the right-hand-side of Eq.(2.6). The (charge-)conjugate spinor χc is defined as, χc

A := χBεBA. The
spinor ξµ(n) and its conjugate ξ c

µ(n) transform inversely under SL(2,C) ,

ξ
A
µ (n)−→ gA

B(n)ξ
B
µ (n) ⇔ ξ

c
µA(n)−→ ξ

c
µB(n)g

−1B
A(n), for g(n) ∈ SL(2,C) . (2.7)

A spinor may be compared to another by parallel transport along links of the lattice to a
common node. This parallel transport is provided by matrices Uµ(n)≡U [n,µ] in the fundamental
representation of SL(2,C) . Every oriented link [n,µ]∈ΛΛΛ thus is associated with a parallel transport
matrix as well as a spinor. On a hypercubic null-lattice with N nodes there are altogether 4N
spinors and 4N parallel transport matrices. Under the g(n)∈ SL(2,C) structure group, the transport
matrices transform as,

UA
µB(n)→ gA

C(n)U
C
µD(n)g

−1D
B(n+µ) , (2.8)

and it is consistent with Eq.(2.8) to define,

U [n,n′] =U−1[n′,n] . (2.9)

Eqs. (2.7), (2.8) and (2.9) imply that SL(2,C) invariants of this lattice model are (closed) loops
of products of transport matrices and (open) strings of them bookended by spinors,

C(r)(n1,n2, . . . ,nr) := TrU [n1,n2]U [n2,n3] . . .U [nr,n1] , (2.10a)

O(r)
µν(n0,n1, . . . ,nr) := ξ

c
µ(n0)U [n0,n1]U [n1,n2] . . .U [nr−1,nr]ξν(nr) . (2.10b)

Observables are sums of products of these invariants and of their complex conjugates. The
lattice action correspondiong to Eq.(1.1) may be constructed from the short invariants,

fµν(n) := ξ
c
µA(n)ξ

A
ν (n) = ξ

A
µ (n)εABξ

B
ν (n) =: O(0)

µν(n) , (2.11a)

Vµνρσ (n) :=−i f ∗µν(n) fνρ(n) f ∗ρσ (n) fσ µ(n) , (2.11b)

χµνρσ (n) := ξ
c
µA(n)U

A
ρB(n)U

B
σC(n+ρ)ξC

ν (n+ρ +σ) =: O(2)
µν(n,n+ρ,n+ρ +σ) . (2.11c)

3EAḂ
µ (n) is a Lorentz vector that transforms as an sl(2,C) tensor in the ( 1

2 ,
1
2 ) representation.

4Only diagonally related repeated indices, i.e. A↗A and B↘B, are automatically summed over.
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The 6 complex quantities fµν(n) =− fνµ(n) are constrained by,

Pf( f (n)) = f12(n) f34(n)+ f13(n) f42(n)+ f14(n) f23(n) = 0 . (2.12)

fµν(n) thus is given by only 10 real parameters. Four are overall phases of the spinors[4] on which
the metric does not depend (see Eq.(2.15) below). The remaining 6 are the spatial lengths,

`2
µν(n) =−2Eµ(n) ·Eν(n) = TrεET

µ (n)εEν(n) = | fµν(n)|2 ≥ 0 , (2.13)

where Eqs. (2.6) and (2.11a) have been used. The components of the metric tensor in this coordinate
system thus are negative semi-definite and satisfy triangle inequalities. The (signed) local invariant
4-volume is given by,

V (n) =
1
48 ∑

µνρσ

ε(µνρσ)Vµνρσ (n) = detEα
µ (n) , (2.14)

and the metric is singular only if one of its off-diagonal components vanishes.
Requiring invariance under local U(1) phase transformations of the spinors,

ξµ(n)→ eiφµ (n)ξµ(n) and ξ
∗
µ(n)→ e−iφµ (n)ξ ∗µ(n) , (2.15)

further constrains physical observables to locally conserve four separate spinor numbers. Physi-
cal observables with vanishing local spinor numbers depend only on the combination of spinors
that form the anti-hermitian co-frames of Eq.(2.6). There is no obvious reason for requiring this
Abelian gauge symmetry. It could be accidental and emerge at low energies only. However, this
symmetry appears to play an essential rôle in constraining lattice configurations to ones that are
triangulations of manifolds.

3. The Manifold condition

While it may be plausible that any causal Lorentz manifold may be triangulated by a null-
lattice, it is equally clear that a given configuration of spinors in general will not describe a trian-
gulated manifold. This is for instance evident if one considers the null-frames of Minkowski space
of Eq.(2.5) with a site-dependent proportionality constant. However, one can derive conditions for
a spinor configuration to represent a triangulated causal Lorentz manifold. Somewhat surprisingly
I find that any (oriented) spinor configuration that satisfies,

Pf[ f̃ (n)] = 0 and V (n)> 0 , ∀ n ∈ ΛΛΛ ,where

f̃µν(n) := fµν(n−µ−ν) = ξ
A
µ (n−µ−ν)εABξ

B
ν (n−µ−ν) , (3.1)

appears to describe a causal manifold. The converse also seems to hold: any (oriented) causal mani-
fold can be triangulated by a spinor configuration that satisfies Eq.(3.1). Although SL(2,C) invariant,
Eq.(3.1) is not invariant under the local Abelian U(1)4 symmetries and the proper statement is that
a set of spinor phases can be found so that (3.1) holds, only if the corresponding configuration
of null-vectors describes a discretized causal manifold. Eq.(3.1) evidently is a crucial ingredi-
ent of the formulation, but is still under investigation and a detailed proof will only be presented
elsewhere.
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4. Regularization

We so far have not regularized the triangulation of a causal Lorentz manifold. Nothing pre-
vents the model from describing an arbitrary ’small’ portion of the manifold with an exorbitant
number of nodes. To construct a sensible continuum limit, a lattice cutoff that governs the coarse-
ness of the triangulation is required. I suggest to use a cutoff that depends on the signed local
4-volume of the lattice at site n defined in (2.14), i.e. by for instance requiring that,

V [n]≥ ε
4 > 0 ,∀n ∈ ΛΛΛ . (4.1)

Here the dimensionful length a = εlP. Eq.(4.1) not only regulates the model in a diffeomorphism
invariant fashion, but simultaneously eliminates the notorious sign problem of the HP-action. Of
course, exponential or other "softer" cutoffs may be used instead. This modification of the local
lattice integration measure should allow one to study the limit ε4→ 0 while adjusting the number
of sites N and the dimensionless coupling λ (eps,N) of the theory. Whether such a critical limit
exists, remains to be seen.

5. Localization of SL(2,C) to the compact structure group SU(2)

Another peculiar feature of a lattice theory of this type not found in ordinary LGT’s is that its
SL(2,C)structure group is not compact. Although the (infinite) volume of this structure group still
formally cancels in expectation values of SL(2,C) -invariant observables, one is formally dividing
infinite factors. This is bound to be a rather unstable procedure and it seems advisable to partially
localize SL(2,C) to a compact subgroup and arrive at a well-defined (finite) lattice measure.

The partial “gauge fixing” corresponds to choosing local inertial systems at each node with
certain (physical) characteristics. We propose to localize to the compact SU(2)⊂ SL(2,C) rotation
group of local Lorentz transformations.

Consider the local SU(2)-invariant Morse function constructed from the SL(2,C) -transformed
spinors of a site,

Mξ [g(n)] = ∑
µ

ξ
†
µ(n)g

†(n)g(n)ξµ(n) = ∑
µ

τ
(g)
µ (n) . (5.1)

which is the sum of the positive time components τ
(g)
µ of the SL(2,C) -transformed null vectors.

Considered as a function of the SL(2,C) -transformation, g(n) the Morse function of Eq.(5.1)
clearly is a function of SL(2,C)/SU(2) only and is bounded below. Decomposing g∈ SL(2,C) in a
hermitian and a unitary component, both of unit determinant, g = uh,with h = h† = exp−i~v ·~σ ,u∈
SU(2), extrema of the Morse function M are characterized by,

0 =−i∑
µ

ξ
†
µ(n)~σ ξµ(n) . (5.2)

The solution of (5.2) is unique modulo SU(2), because the Hessian matrix H,

Hi j(n) = δi j ∑
µ

τµ(n) , (5.3)

is stictly positive. It vanishes only if ∑µ τµ = 0, that is when all null-vectors of a node vanish.
The solution to Eq.(5.2) therefore is the unique absolute minimum of the Morse potential (modulo
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local spatial rotations). The constraint Eq.(5.2) may be implemented by local Lagrange multipliers
or can be used to eliminate the dependence on one of the four null vectors at each site. Either way,
the Hessian of Eq.(5.3) is positive and (det[H] = ∑µ τµ(n))3 may be included in the local measure.

6. Discussion and some more speculation

We considered the construction of a hypercubic null lattice with SL(2,C)structure group. In
this model the light-like displacements between adjacent nodes are associated with spinors and
SL(2,C) transport matrices. The coordination of the lattice itself is hypercubic but is used only for
labeling events. Any spinor configuration that satisfies the constraints of Eq.(3.1) appears to cor-
respond to a causal manifold. The SL(2,C) -invariant observables of this theory were constructed
and an invariant UV-regularization of the model was suggested in Eq.(4.1). The non-compact
SL(2,C)structure group of this model was localized to the compact SU(2) subgroup of spatial ro-
tations by a Morse construction. The Hessian of this localization is positive definite and unique
(modulo SU(2)), and does not suffer a Gribov problem. The description of Minkowski space by a
co-frame of null vectors in Eq.(2.5) incidentally satisfies the gauge condition of Eq.(5.2). The most
important issue not touched in this article, is whether the formulation admits a critical continuum
limit.

The advantage of such a formulation may be that invariance under SL(2,C)severely constrains
the lattice integration measure. It essentially is uniquely determined by the transformation prop-
erties of the field content. Without continuation to Euclidean space the HP-action is purely imag-
inary and not suitable for conventional Monte-Carlo simulations. However, complex Langevin
equations[5] are a promising tool for numerically investigating such models.
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