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Abstract. In this paper, we have investigated a spatially homogeneous locally rotationally symmetric
Bianchi type-I space-time with cosmological term Λ in presence of perfect fluid distribution in f (R,T )
gravity theory. We have derived explicitly the field equations of the theory and obtained the exact solution
of field equations by employing a periodic varying deceleration parameter, which is a unique feature of the
model. We have also performed the analysis of the model such as the equation of state parameter, pressure,
energy density, density parameter and jerk parameter which are significant in the discussion of cosmology.
Some physical and geometrical properties of the model have also been discussed along with the graphical
representation of various parameters. We obtained the presence of quintessence and phantom regions based
on chosen parameters. It is observed that the deceleration parameter exhibits a smooth transition from early
deceleration to late time acceleration of the universe and oscillate based on chosen parameters. We have
observed that the presented model is compatible with the recent cosmological observations.

1. Introduction
In cosmology, the late-time accelerated expansion of the universe has been a major subject of

investigation. Modified gravity approach is one of the best ways to explain the cosmic acceleration
and ultimate fate of universe. It seems attractive to explain the phenomena of dark energy and late-
time acceleration. Hence, the modified theories of gravity is attracting currently several researchers to
investigate dark energy (DE) models. Among these geometrically modified theories, f (R,T ) theory has
attracted a lot of attention of many cosmologists and astrophysicists in recent times because of its ability
to explain several issues in cosmology and astrophysics [1, 2]. The evolution of the universe from early
deceleration to late time acceleration is effectively described by f (R,T ) theory of gravity. The f (R,T )
modified theory of gravity developed [3], where the gravitational Lagrangian is given by an arbitrary
function of the Ricci scalar R and the trace T of the energy-momentum tensor. It is to be noted that
the dependence of T may be induced by exotic imperfect fluid or quantum effects. They have obtained
the gravitational field equations in the metric formalism, as well as, the equations of motion of test
particles, which follow from the covariant divergence of the stress-energy tensor. They have derived
some particular models corresponding to specific choices of the function f (R,T ).

In this theory, the interactions of matter with space-time curvature become a well motivation to
consider cosmological consequence with different matter components [4]. Some cosmological models
in f (R,T ) gravity were reconstructed [5] where it was proved that the dust fluid reproduced ΛCDM.
Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time cosmological models have explored [6, 7].
FRW cosmological model in f (R,T ) gravity have been investigated along with perfect fluid matter and
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linearly varying deceleration parameter with magnetized strange quark matter and Λ [8, 9]. Moreover, a
periodic time varying deceleration parameter (PVDP) has been introduced [10] in order to account for an
oscillating cosmological models with quintom matter. Since these models are very natural to resolve the
coincidence problem due to periods of acceleration [11]. Some Bianchi space-time have studied [12,13].
Cosmological models and solar system consequences of the theory have reconstructed [14]. The Bianchi
type-I cosmological model have studied in [15, 16]. Dark energy Bianchi type-I cosmological models
have been explored [17]. Aspects of anisotropic cosmological models were studied [18]. Recently, the
investigation from the transition of deceleration to acceleration [19].

Various researchers have studied locally rotational symmetric (LRS) Bianchi-type models. An
inhomogeneous LRS model investigated by [20, 21], which was later continued [22–28]. In this study,
we have explored the LRS Bianchi type-I space-time in f (R,T ) theory of gravity. On the other hand,
the cosmological term Λ has an important role in the study of the accelerating universe, and which is
also a candidate for dark energy. The cosmological constant in the gravitational Lagrangian is a function
of the trace of the stress-energy tensor, and consequently the model was denoted Λ(T ) gravity. It was
argued that recent cosmological data favor a variable cosmological constant, which are consistent with
Λ(T ) gravity, without the need to specify an exact form of the function Λ(T ) [29, 30].

The investigation of Bianchi-type models in modified or alternative theories of gravity is another
interesting topic of discussion. Perfect fluid solutions using a Bianchi type-I space-time in scalar tensor
theory have been explored [31]. With the above motivation, we have investigated a class of LRS
Bianchi type-I model with variable Λ term within the framework of f (R,T ) gravity theory by choosing
f (R,T ) = R+ 2 f (T ), where f (T ) = λT , and λ is an arbitrary constant. The paper is organized as
follows. The field equations in f (R,T ) gravity are derived in section 2. In section 3, we present the
metric and field equations. The solution of the field equations has been explored in section 4. In section
5, some physical and geometrical properties of the model are also investigated. Finally, conclusions are
given in section 6.

2. Field equations in f (R,T ) theory of gravity
The f (R,T ) theory of gravity is one of the important modifications of general theory of gravity proposed
[3]. Here in this theory, the gravitational Lagrangian is described by an arbitrary function of the Ricci
scalar R and the trace T of the energy-momentum tensor Ti j. Following [3], let us consider the action of
the form in the units 8πG = 1 = c

S =
1
2

∫
f (R,T )

√
−gd4x+

∫
Lm
√
−gd4x, (1)

where g is the determinant of the metric tensor gi j, f (R,T ) is the function of Ricci scalar, R and trace of
energy-momentum tensor, T and Lm represents the matter Lagrangian density. The energy-momentum
tensor of the matter is defined as

Ti j =−
2√
−g

δ (
√
−gLm)

δgi j , (2)

so that trace T = gi jTi j.
Considering Lagrangian density Lm of matter depends only on the metric tensor components gi j,

equation (2) becomes

Ti j = gi jLm−2
∂Lm

∂gi j . (3)

Varying the action S mention in equation (1) with respect to the metric tensor components gi j, the field
equations of f (R,T ) gravity can be written by [3] as

fR(R,T )Ri j−
1
2

f (R,T )gi j +(gi j�−∇i∇ j) fR(R,T ) = Ti j− fT (R,T )Ti j− fT (R,T )Θi j, (4)
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where � ≡ gi j∇ j∇i ≡ ∇i∇i is d’Alembert operator, fR(R,T ) =
∂ f (R,T )

∂R , fT (R,T ) =
∂ f (R,T )

∂T and ∇i
denotes the covariant derivative.

The expansion tensor Θi j is given by

Θi j =−2Ti j +gi jLm−2gαβ ∂ 2Lm

∂gi j∂gαβ
. (5)

For the perfect fluid, the energy-momentum tensor Ti j is given by

Ti j = (ρ + p)uiu j− pgi j, (6)

where ui = (0,0,0,1) is the four velocity in co-moving coordinates which satisfies the conditions
uiui = 1 and ui∇ jui = 0. Here ρ is the energy density and p the pressure of the fluid. Moreover,
the matter Lagrangian is not uniquely specified. So, the source term is described as a function of the
Lagrangian matter through different choices of it. Here we choose the matter Lagrangian as Lm = −p,
so that equation (5) becomes

Θi j =−2Ti j− pgi j. (7)

Since the field equations in f (R,T ) gravity also depend on the physical nature of the matter field (through
the tensor Θi j), for each choice of f , we obtain several theoretical models. Among these, we assume
f (R,T ) gravity as suggested by [3]

f (R,T ) = R+2 f (T ), (8)

where f (T ) is an arbitrary function of trace T . Using equations (7) and (8) into (4), we have obtained

Ri j−
1
2

Rgi j = Ti j +2 f ′(T )Ti j +
[
2 f ′(T )p+ f (T )

]
gi j, (9)

where a prime denotes derivative with respect to the argument.
We also wish to consider the following choice of f (T )

f (T ) = λT, (10)

where λ is an arbitrary constant.
Using equation (10) in (9) and re-arranging, the field equations become

Ri j−
1
2

Rgi j = (1+2λ )Ti j +(2p+T )λgi j. (11)

Let us recall Einstein’s equations with cosmological constant on the right side,

Ri j−
1
2

Rgi j = Ti j−Λgi j. (12)

By comparing equations (11) and (12), and taking the coupling parameter λ to be small, we see that an
effective cosmological parameter as a function of T may be defined in f (R,T ) as

Λ = Λ(T ) =−(2p+T )λ = (p−ρ)λ . (13)

For this correspondence further details of it given [29]. Thus, we can also regard this form of f (R,T )
theory for the case f (R,T ) = R+ 2λT for a perfect fluid as equivalent to general relativity with an
effective cosmological parameter.
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3. Metric and field equations
We consider the spatially homogeneous and anisotropic LRS Bianchi type-I spacetime as

ds2 = dt2−A2dx2−B2 (dy2 +dz2) , (14)

where A and B are functions of cosmic time t only.
The energy-momentum tensor for a perfect fluid is taken as:

Ti j = (ρ + p)uiu j− pgi j. (15)

Now assuming the co-moving coordinate system, the field equations (11) for the metric (14) with the
help of (15) can be written as

Ä
A
+

B̈
B
+

ȦḂ
AB

= ρλ − (1+3λ ) p, (16)

2
B̈
B
+

Ḃ2

B2 = ρλ − (1+3λ ) p, (17)

Ḃ2

B2 +2
ȦḂ
AB

= (1+3λ )ρ−λ p, (18)

where dot denotes ordinary differentiation with respect to cosmic time t.
From equation (16) and (17) we get

Ä
A
− B̈

B
+

ȦḂ
AB
− Ḃ2

B2 = 0. (19)

Integrating equation (19), we obtain
Ȧ
A
− Ḃ

B
=

c1

AB2 , (20)

where c1 is a constant of integration.
We define the following physical parameters for the LRS Bianchi type-I model: The average scale

factor a and the volume scale factor V are defined as

a =
3
√

AB2, V = a3 = AB2. (21)

The average Hubble parameter H is given in the form

H =
ȧ
a
=

1
3
(H1 +H2 +H3) =

1
3

(
Ȧ
A
+2

Ḃ
B

)
, (22)

where H1 = Ȧ
A , H2 = H3 = Ḃ

B are the directional Hubble parameters along the respective axes. The
physical quantities of observational interest in cosmology, which are the expansion scalar θ , the shear
scalar σ2 and the average anisotropy parameter Am, are defined as

θ = ui
;i = 3H =

Ȧ
A
+

2Ḃ
B
, (23)

σ
2 =

1
2

(
3

∑
i=1

H2
i −3H2

)
=

1
3

(
Ȧ
A
− Ḃ

B

)2

, (24)

Am =
1
3

3

∑
i=1

(
∆Hi

H

)2

=
2
3

σ2

H2 , (25)

where ∆Hi = Hi−H and Hi for i = 1,2,3 are directional Hubble’s parameters in the directions of x, y
and z respectively.
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4. Solutions of the field equations
We can observe that the field equations (16)–(18) are a system of three independent differential equations
with four unknowns, namely A, B, p and ρ . Hence, in order to solve this inconsistent system we require
some additional conditions to get viable cosmological model with determinate solutions.

Periodically varying deceleration parameter
The deceleration parameter (q) in cosmology is a measure of the cosmic acceleration of the universe’s
expansion and is defined as

q =−1− Ḣ
H2 , (26)

where the overhead dots denote derivatives with respect to cosmic time. It is the geometrical parameters
through which the dynamics of the universe can be quantified. Many researchers have used a constant
deceleration parameter to obtain the solutions of the model which gives a power law for the metric
potentials [32–35].

Based on the late time cosmic speed up phenomena with a cosmic transit from a phase of deceleration
to acceleration at some redshift (z). It can be a speculate signature flipping of the deceleration parameter.
Geometrical parameter such as jerk parameter is usually extracted from observation of high z supernova.
However, the exact time dependence of these parameter is not known to a satisfactory extent. In the
absence of any explicit form of parameters, many authors have used parametrized forms especially
that of the deceleration parameter to address different cosmological issues. Many parametrized forms
of deceleration parameters such as linearly and quadratic varying deceleration parameter are studied
by [36]. A special law of variation of Hubble parameter in FLRW-spacetime, which yields a constant
form of deceleration parameter [37–39]. This law of variation for Hubble’s parameter is valid for slowly
varying deceleration parameter models [32, 40].

Linear parametrization of the deceleration parameter shows quite natural phenomena toward the
future evolution of the universe whether it expands forever or ends up with Big rip in finite future. Such
a parametrization has been used frequently by [41, 42]. It is to mention here that the general dynamical
behavior can be assessed through the values of the deceleration parameter in the negative domain.
While de-Sitter expansion occurs for q = −1, accelerating power-law expansion can be achieved for
−1 < q < 0. A super-exponential expansion of the universe occurs for q <−1. There is an apprehension
in determining the deceleration parameter but from observational data most of the studies in recent times
constrain this parameter in the range −1≤ q < 0 [43–45].

Considering in view the signature flipping nature of q, we assume a periodic time varying deceleration
parameter [10].

q = h1 cosk1t−1, (27)

where h1 and k1 are positive constants. Here k1 decides the periodicity of the periodic varying
deceleration parameter and can be considered as a cosmic frequency parameter. h1 is an enhancement
factor that enhances the peak of the periodic varying deceleration parameter. This model simulates a
positive deceleration parameter q = h1− 1 (for h1 > 1) at an initial epoch and evolves into a negative
peak of q =−h1−1. After the negative peak, it again increases and comes back to the initial states. The
evolutionary behavior of q is periodically repeated. In other words, the universe in the model starts with
a decelerating phase and evolves into a phase of super-exponential expansion in a cyclic history.

Integration of equation (27) and assuming constant of integration equal to zero yields the Hubble
function becomes

H =
k1

h1 sink1t
. (28)

Using equation (28) and ȧ = aH, we get Ḣ =−h1H2 cosk1t. The scale factor a is obtained by integrating
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the Hubble function in equation (28) as

a = a0

[
tan
(

1
2

k1t
)] 1

h1
. (29)

where a0 is the scale factor at the present epoch and taking a0 = 1.
From the above equations (28) and (29), we obtain volume of the scale factor V and expansion scalar

θ as

V =

[
tan
(

1
2

k1t
)] 3

h1
, (30)

θ =
3k1

h1 sink1t
. (31)

The redshift z is given by

z =
1
a
−1 =

[
tan
(

1
2

k1t
)]− 1

h1
−1. (32)

From equation (32), we obtain

t =
2tan−1

[
(z+1)−h1

]
k1

. (33)

Integrating equation (20)

A
B
= c2 exp

[
c1

∫ dt
AB2

]
= c2 exp

[
c1

∫ [
tan
(

1
2

k1t
)]− 3

h1
dt

]
, (34)

where c2 is integration constant.
From equations (20), (21) and (34), the values of metric potentials are

A = c
2
3
2

[
tan
(

1
2

k1t
)] 1

h1
exp

[
2c1

3

∫ [
tan
(

1
2

k1t
)]− 3

h1
dt

]
, (35)

and

B = c
− 1

3
2

[
tan
(

1
2

k1t
)] 1

h1
exp

[
−c1

3

∫ [
tan
(

1
2

k1t
)]− 3

h1
dt

]
. (36)

where c1 and c2 are integrating constants.
The metric (14) can now be written as

ds2 = dt2− c
4
3
2 a2 exp

[
4c1

3

∫
a−3dt

]
dx2− c

− 2
3

2 a2 exp
[
−2c1

3

∫
a−3dt

](
dy2 +dz2) , (37)

where a =
[
tan
(1

2 k1t
)] 1

h1 .
By using equations (28), (35) and (36), we obtain the value of directional Hubble parameters for our

model as

H1 =
k1

h1 sink1t
+

2c1

3

[
tan
(

1
2

k1t
)]− 3

h1
, (38)

H2 =
k1

h1 sink1t
− c1

3

[
tan
(

1
2

k1t
)]− 3

h1
. (39)
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The shear scalar (σ2) and anisotropy parameter (Am) become

σ
2 =

c1

3

[
tan
(

1
2

k1t
)]−6

h1
, (40)

Am =
2c1

9k2
1
[h1 sin(k1t)]2

[
tan
(

1
2

k1t
)]−6

h1
. (41)

5. The physical and geometrical properties of the model
In this section, we will discuss the physical and geometrical properties of the model which are important
for descriptions of cosmology. From the above equations (28), (31), (38) and (39), it can be noticed that
Hubble parameter, scalar expansion and directional Hubble parameters diverge at t = nπ

k1
, where n is a

positive integer including zero and they all tend to constants as t→∞. The directional Hubble parameters
differ from H by certain dynamical parameters. It can be mentioned here that the anisotropy condition,
i.e., σ2

θ 2 6= 0 as t→ ∞, when c1 6= 0. If c1 = 0, our model becomes isotropic and shear scalar vanishes.
It can be observed from equation (30) that the spatial volume is zero at t = 2nπ

k1
for n is a positive

integer including zero. It suggests that the universe starts evolving with zero volume at t = 2nπ

k1
, i.e. it has

the big bang scenario. It can be observed that the average scale factor is zero at the epoch t = 2nπ

k1
. Within

the time frame, the scale factor increases with cosmic time whereas the Hubble parameter decreases with
cosmic time. However, the evolutionary behavior of the scale factor is governed by a tangent function
and that of the Hubble parameter is governed by a sine function. Hence the model has a point type
singularity [46]. As t→ ∞, both the metric potentials A and B tend to infinity. It shows that the universe
expands constantly at later times.

An equivalent present epoch can be derived from redshift relation given in equation (32) as t =(
8n+1

k1

)
π

2 , where n is a positive integer including zero. Therefore, it is possible to express the deceleration
parameter of equation (27) in terms of redshift. In figure 1, we have shown the evolutionary aspect of the
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Figure 1: Plot of deceleration parameter q versus cosmic time t for h1 = 0.5, h1 = 1, h1 = 1.5 and
k1 = 0.5.

deceleration parameter as a function of cosmic time for three different domain of the parameter h1 namely
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h1 = 0.5, h1 = 1 and h1 = 1.5. The periodic nature of the periodically varying deceleration parameter
is clearly depicted in this figure. Figure 2 shows the plot of deceleration parameter q versus redshift z.
The evolutionary behavior of the periodically varying deceleration parameter is affected by the choice
of the parameter h1. Hence, the deceleration parameter oscillates in between h1− 1 and −h1− 1. For
h1 = 0, deceleration parameter becomes a constant quantity with a value of−1 and can lead to a de-Sitter
kind of expansion. For 0 < h1 ≤ 1, it varies periodically in the negative domain and provides accelerated
models. However, for h1 > 1, q evolves from a positive region to a negative region showing a signature
flipping at some redshift z. It is interesting to mention here that, the transition redshift depends on the
choice of the parameter h1. This can be constrained from the cosmic transit behavior and transit redshift
z. Figure 2 shows the behavior of deceleration parameter versus redshift z for different values of h1. It
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Figure 2: Plot of deceleration parameter q versus redshift z for h1 = 0.5, h1 = 1, h1 = 1.5 and k1 = 0.5.

may be noted that for h1 = 0.5 and 1 the model exhibits completely accelerating universe while h1 = 1.5
exhibits a smooth transition from decelerated phase to the accelerated phase of the universe. It may be
seen that the model enters the accelerated phase for h1 = 1.5 at z ≈ 0.71. This is quite in accordance
with recent cosmological observations [19, 47–49]. In the event of non-availability of any observational
data regarding cosmic oscillation and corresponding frequency, we consider k1 as a free parameter. Here
in this work, we are interested for a time varying deceleration parameter that oscillates in between the
decelerating and accelerating phase to simulate the cosmic transit phenomenon. In order to assess the
dynamical features of the model through numerical plots, we assume a small value for k1, say k1 = 0.5.

The physical properties of the model from the assumed dynamics of the universe with a periodic
varying deceleration parameter helps us to study the energy density and pressure of the universe. From
equations (16), (17) and (18), we can get the energy density ρ and pressure p of the fluid as

ρ =
(5λ +2) Ḃ2

B2 +(4+11λ ) Ȧ
A

Ḃ
B −λ

(
Ä
A +3 B̈

B

)
2
(
(1+3λ )2−λ 2

) , (42)

p =
(λ +1) Ḃ2

B2 +(1−λ ) Ȧ
A

Ḃ
B +(1+3λ )

(
Ä
A +3 B̈

B

)
2
(

λ 2− (1+3λ )2
) . (43)

Applying the corresponding metric potentials and their derivatives, for a periodic varying deceleration
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parameter as defined in equation (27) we get the density ρ and pressure p of fluids as

ρ =
k2

1 (3+2λ (3+h1))
(
tan
(1

2 k1t
))−2 (sec

(1
2 k1t

))4

4h2
1

[
(1+3λ )2−λ 2

]
−

λk2
1
(
sec
(1

2 k1t
))2

2h1

[
(1+3λ )2−λ 2

] − (1+4λ )c2
1
(
tan
(1

2 k1t
))− 6

h1

3
[
(1+3λ )2−λ 2

] ,

(44)

p =−
k2

1 (1+2(1+3λ )(1−h1))
(
tan
(1

2 k1t
))−2 (sec

(1
2 k1t

))4

4h2
1

(
(1+3λ )2−λ 2

)
−

(1+3λ )k2
1
(
sec
(1

2 k1t
))2

2h1

(
(1+3λ )2−λ 2

) −
(1+4λ )c2

1
(
tan
(1

2 k1t
))−6

h1

3
(
(1+3λ )2−λ 2

) .

(45)

The cosmological parameter Λ obtained from equation (13) as

Λ =

[
3 Ḃ2

B2 +5 ȦḂ
AB + Ä

A +3 B̈
B

]
(1+2λ )λ

2
(

λ 2− (1+3λ )2
) . (46)

Substituting corresponding metric potentials A and B with their respect derivatives, we get

Λ =

[
k2

1 (3−h1)
(
tan
(1

2 k1t
))−2 sec4

(1
2 k1t

)
+ k2

1h1 sec2
(1

2 k1t
)]

(1+λ )λ

2h2
1

(
λ 2− (1+3λ )2

) . (47)
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Figure 3: Plot of energy density ρ versus cosmic time t for k1 = 0.5 and c1 = 1.
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Figure 4: Plot of pressure p versus cosmic time t for k1 = 0.5 and c1 = 1.
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Figure 5: Plot of cosmological constant (Λ) versus cosmic time t for k1 = 0.5 and c1 = 1.

A signature flipping behavior of the deceleration parameter fixes h1 to be greater than 1 (see figure 2).
In view of this, one may take λ as a free parameter with positive values only. Here, we have considered
three moderate values, λ = 0.4, 1 and 1.6 for numerical calculations of the dynamical parameters.

Figure 3 represents the behavior of energy density ρ versus cosmic time t. It can be seen from the
graph that it decreases as the cosmic time increases. In this case we take the values of the parameters
h1 = 0.5, 1, 1.5, λ = 0.4, 1, 1.6, k1 = 0.5 and c1 = 1. For the above choice of parameters the energy
densities are positive throughout the evolution of the model. It is observed that the energy densities are
always positive and decrease with increasing cosmic time in the model. The evolutionary trend of the
energy density is not changed by a variation of λ , rather an increase in λ simply decreases the value of
ρ at a given time.

Figure 4 describes the behaviour of pressure versus cosmic time t. It shows that the pressure p of the
universe is an increasing function of cosmic time t, which begins from a large negative value and tends to
zero at present epoch. As per the observation, the negative pressure is due to dark energy in the context
of accelerated expansion of the universe. Hence, the behavior of pressure in our model is agreed with
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Figure 6: Plot of equation of state parameter (ω) versus cosmic time t for k1 = 0.5 and c1 = 1.

this observation. Here, pressure is a negative quantity at the present epoch in a given model. The choice
of the parameter h1 and λ has some effects on the evolutionary trend. In general, lower value of λ results
in a pressure curve that lies to more negative values.

The equation of state (EoS) parameter can be obtained in a straightforward manner from Eqs. (44)
and (45) as

ω =
p
ρ
=
−3k2

1 (1+2(1+3λ )(1−h1))X−2Y 4−6k2
1h1 (1+3λ )Y 2−4c2

1h2
1 (1+4λ )X

−6
h1

3k2
1 (3+2λ (3+h1))X−2Y 4−6k2

1λh1Y 2−4h2
1c2

1 (1+4λ )X
−6
h1

, (48)

where X = tan
(1

2 k1t
)

and Y = sec
(1

2 k1t
)
.

The behavior of EoS parameter (ω) versus cosmic time t for our model is depicted in figure 6 for the
chosen constant parameters h1 and λ . It may be observed that the model starts in quintessence regions
for h1 = 0.5, 1, and λ = 1.4, 1 which varies in the same region. In this case, the EoS parameter remains
within the quintessence region with a value close to ΛCDM model in late times. However, the model
for parameters h1 = 1.5 and λ = 1.6 starts in high phantom region and lies in the same region which a
dark energy-driven accelerated phase (ω <−1) which is consistent with the current observational data
of the universe [50]. It may be noted that the equation of state parameter became influenced by the
parameters of h1 and λ . Moreover, the EoS parameter exhibits an oscillatory behavior in both regions.
One interesting feature of the equation of state parameter is that, it does not acquire any singular values
during the cosmic cycle within time frame. Since the periodic varying deceleration parameter does not
have singularity, the same thing also occurs in the EoS parameter. In these constructed model, the EoS
evolves with cosmic time which is more evident in the reconstruction history of the dynamical dark
energy based on recent data sets [51, 52].
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We can obtain the density parameter (Ω) for the present model as

Ω =
ρ

3H2 =
(3+2λ (3+h1))

3
[
(1+3λ )2−λ 2

] − 2λh1 sin2 (1
2 k1t

)
3
[
(1+3λ )2−λ 2

]
−

(1+4λ )c2
1h2

1
(
tan
(1

2 k1t
))−6

h1 sin2 (k1t)

9k2
1

[
(1+3λ )2−λ 2

] . (49)

It can be expressed as a function of redshift (z) as

Ω =
(3+2λ (3+h1))

3
[
(1+3λ )2−λ 2

] − 2λh1

[
(z+1)2h1 +1

]−1

3
[
(1+3λ )2−λ 2

]
− 4(1+4λ )c2

1h2
1 (z+1)6+2h1

9k2
1

(
1+(z+1)2h1

)2 [
(1+3λ )2−λ 2

] . (50)
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Figure 7: Plot of density parameter (Ω) versus redshift (z) for k1 = 0.5 and c1 = 1.

Figure 7 represents the behavior ofΩ versus redshift z. It can be seen that it increases as the universe
evolves. Here we have chosen the constant values (c1 = 1, k1 = 0.5, h1 = 0.5, 1, 1.5 and λ = 0.4, 1, 1.6)
such that we arrive at Ω approaching 1 for small values of h1 and λ . Hence, the density parameter shows
that in agreement with the observational data of the universe. Moreover, with the cosmic evolution, Ω

decreases with cosmic time. The density parameter, at a given redshift, is observed to have lower value
for higher values of λ .

Model of the universe close to ΛCDM can be described using the cosmic jerk parameter j, a
dimensionless third derivative of the scale factor with respect to the cosmic time [53]. The value of
the jerk parameter is constant for a flat ΛCDM model. The jerk parameter j which shows the deviation
of a model from the ΛCDM in our case is given by

j =

...a
aH3

= q(1+2q)− q̇
H

= h2
1
(
cos2 (k1t)+1

)
−3h1 cos(k1t)+1. (51)
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For small value(s) parameters h1 near to zero, then the jerk parameter becomes approach to 1 which
explains the time evolution of the ΛCDM model.

6. Conclusions
In this paper, we investigated a spatially homogeneous locally rotationally symmetric Bianchi type-I
space-time in the presence of perfect fluid cosmological model within the framework of f (R,T ) theory
of gravity by following the works of [3], choosing f (R,T ) = R+2 f (T ), where f (T ) = λT . To obtain an
exact solution of the model, we assumed periodically varying deceleration parameter. We examined the
model by looking at cosmological parameters as the followings: the deceleration parameter is assumed
to be periodically varying declaration parameter and its graphical representation with respect to cosmic
time is shown in figure 1. It can be observed from figure 2 that for h1 = 1.5 the model describes a
smooth transition from early deceleration to the present accelerated phase of the universe. It may also be
seen that the model exhibits transition at z≈ 0.71 which is quite in accordance with recent cosmological
observations [54–56]. But from the figure 2, it can be observed that the universe completely lays in
the accelerating phase for h1 = 0.5 and 1. The energy density (ρ) of universe is positive decreasing
functions of cosmic time (figure 3). The energy density of the model positive throughout the evolution
of the Universe and approaches to zero for large values of cosmic time t. The evolution of the universe
in model for the pressure p versus cosmic time t is shown in figure 4 with different values of parameters
h1 and λ , with constants k1 and c1. The pressure has negative values for the model which shows that the
universe is accelerated expanding for late times. Similarly figure 5 shows the cosmological parameter Λ

versus cosmic time becomes approaching to zero at late times. Hence our model is in excellent agreement
with observational constraints providing that the present value of Λ is chosen [57]. The dynamics of the
universe is studied through the equation of state parameter. As it is shown in figure 6, for the values of
h1 = 0.5, 1 and λ = 0.4, 1 the equation of state parameter ω lies in quintessence region which an EoS
parameter that more likely approaches to ΛCDM model at late times, while for h1 = 1.5 and λ = 1.6
larger values of the phantom behavior is attained in the near future. An interesting consequence of the
present model is that it allows both quintessence and the phantom like behaviour for free parameters.
From figure 7, we can conclude that for smaller values of the parameters h1 = 0.5 and λ = 0.4, the
density parameter approaches to 1 which describes the flatness of universe which confirms the present
cosmological data of the universe. It can be seen that the density parameter Ω increases with respect
to redshift as the universe evolves. We have seen that for small value(s) of h1 approaching to zero, the
jerk parameter becomes approximately equal to 1 which indicates a flat ΛCDM model. Therefore, it is
concluded that the findings support the current accelerating expansion of the universe.
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