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We discuss black hole spacetimes with a geometrically defined quasi-local horizon on which the 
curvature tensor is algebraically special relative to the alignment classification. Based on many examples 
and analytical results, we conjecture that a spacetime horizon is always more algebraically special (in 
all of the orders of specialization) than other regions of spacetime. Using recent results in invariant 
theory, such geometric black hole horizons can be identified by the alignment type II or D discriminant 
conditions in terms of scalar curvature invariants, which are not dependent on spacetime foliations. 
The above conjecture is, in fact, a suite of conjectures (isolated vs dynamical horizon; four vs higher 
dimensions; zeroth order invariants vs higher order differential invariants). However, we are particularly 
interested in applications in four dimensions and especially the location of a black hole in numerical 
computations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Black holes, which are exact solutions in general relativity (GR) 
(representing, for example, physical objects formed out of the grav-
itational collapse of fuel-exhausted stars), are characterized by the 
boundary of the region from where light can still travel to asymp-
totic null infinity, called the event horizon, which is usually iden-
tified as the surface of the black hole and relates its area to the 
entropy. The event horizon is essentially a global (teleological) ob-
ject, since it depends on the entire future history of the spacetime 
[1].

There has been much effort to give a general quasi-local de-
scription of a dynamical black hole [1,2]. Of particular interest 
are quasi-local objects called marginally trapped tubes (MTTs) or 
trapping horizons, and the special cases of dynamical horizons or 
future outer trapping horizons (FOTHs); in numerical work, these 
are also called apparent horizons. MTTs are hypersurfaces foliated 
by (closed compact space-like two-dimensional (2D) submanifolds 
without boundary) marginally trapped surfaces (MTSs) in which the 
expansion of one of the null normals vanishes and the other is 
non-positive. A dynamical horizon is a smooth 3D submanifold of 
spacetime foliated by MTSs such that the expansion of one future-
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directed null normal to the foliation vanishes, while the expansion 
of the other future directed null normal is negative (a FOTH has 
the additional condition that the directional derivative along the 
second null direction is negative).

A dynamical horizon is particularly well-suited to analyze dy-
namical processes involving black holes, such as black hole growth 
and coalescence. The area of a dynamical horizon necessarily in-
creases with time [1]. An explicit example of a dynamical horizon 
is given by the Vaidya spacetime which admits spherically sym-
metric MTSs [3,4]. For a given mass function, the Vaidya spacetime 
also provides explicit examples of the transition from the dynami-
cal to isolated horizons. If a hypersurface admits a dynamical hori-
zon structure, it is unique. However, because a spacetime may have 
several distinct black holes, it may admit several distinct dynam-
ical horizons. For dynamical horizons which are also FOTHs, two 
non-intersecting horizons generally either coincide or one is con-
tained in the other [1].

It is believed that closed MTSs constitute an important ingre-
dient in the formation of black holes, which motivates the idea of 
using MTTs as viable replacements for the event horizon of black 
holes [2]. Unfortunately, since the 2D apparent horizons depend 
on the choice of a reference foliation of spacelike hypersurfaces, 
MTTs and consequently trapping horizons and dynamical horizons 
are highly non-unique [5]. There have been some attempts to pro-
vide a physically sound criterion for selecting a preferred MTT such 
as, for example, in which the shear scalars along ingoing/outgoing 
null directions foliated by 2D spacelike surfaces vanish [6].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Realistic black holes interact with their environment and are 
consequently dynamical. The gravitational collapse leading to black 
hole formation is also a highly dynamical process. It is crucial to 
locate a black hole locally, which may not rely on the existence of 
an event horizon alone. A significant fraction of research in numer-
ical relativity aims at predicting with high precision the waveforms 
of gravitational waves generated in the merger of compact-object 
binary systems or in stellar collapse to form black holes. Compari-
son with templates played a crucial role in the recent observations 
of gravitational waves from black hole mergers by the LIGO Collab-
oration [7].

In numerical studies of time-dependent collapse, it is often 
more practical to track apparent horizons or trapping horizons [8]. 
In contrast with the event horizon, which is a global concept de-
fined using the global structure of spacetime, the apparent horizon 
is a quasi-local concept and is intrinsically foliation-dependent. In 
this paper we propose a foliation invariant and more geometrical 
approach, which is possible due to recent results in invariant the-
ory.

2. Scalar polynomial curvature invariants

The algebraic classification of the Weyl tensor and the Ricci 
tensor in arbitrary dimensions using the boost weight decompo-
sition [9] can be refined utilizing the restricted eigenvector and 
eigenvalue structure of their associated curvature operators [10], 
allowing for necessary conditions to be defined for a particular 
algebraic type in terms of a set of discriminants. A scalar poly-
nomial curvature invariant of order k (or, in short, a scalar polyno-
mial invariant or S P I) is a scalar obtained by contraction from 
a polynomial in the Riemann tensor and its covariant derivatives 
up to the order k. Black hole spacetimes are completely character-
ized by their S P Is [11]. In particular, we can use discriminants to 
study the necessary conditions in arbitrary dimensions, in terms 
of simple S P Is, allowing for the algebraic classification of the 
higher dimensional Weyl and Ricci tensor when treated as curva-
ture operators, for the spacetime to be of algebraic type II or D
[12].

For example, in 5D the necessary condition for the trace-free 
Ricci tensor, Sab = Rab − 1

5 Rgab , to be of algebraic type II/D is that 
the discriminant (S P I) 5

S D5 is zero, and the necessary conditions 
for the Weyl tensor to be of type II/D is that the S P Is 10

W Di (i =
8, 9, 10) vanish [12]. As an illustration, the 5D rotating black ring 
[13] is generally of type Ii , but on the horizon the discriminant 
5
T D5 of the trace-free part of the operator T a

b = CacdeCbcde vanishes 
(and 5

T D4 > 0), which signals that the spacetime is of Weyl type II
on the horizon.

We are primarily interested in the 4D case here. The necessary 
type II/D discriminant condition 4 D4 = 0 for the trace-free (s1 = 0) 
symmetric Ricci tensor S in 4D is [12]:

D ≡ 4 D4 = −s2
3(4s3

2 − 144s2s4 + 27s2
3)

+ s4(16s4
2 − 128s4s2

2 + 256s2
4) = 0, (1)
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Similar conditions hold for any trace-free symmetric tensor Tab .
The necessary real conditions for the Weyl tensor to be of type

II/D are [12]:
W1 ≡ −11W 3
2 + 33W2W4 − 18W6 = 0, (3)

W2 ≡ (W 2
2 − 2W4)(W 2

2 + W4)
2

+ 18W 2
3 (6W6 − 2W 2

3 − 9W2W4 + 3W 3
2 ) = 0, (4)

where
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tuCtu
v w C v wab. (5)

These 2 real conditions are equivalent to the real and imaginary 
parts of the complex syzygy I3 −27 J 2 = 0 in terms of the complex 
Weyl tensor in the Newman–Penrose (NP) formalism [14].

Alternatively we can use the discriminant analysis to provide 
the type II/D syzgies expressed in terms of the S P Is W i (i ∈ [1, 6], 
defined above) by treating the Weyl tensor as a trace-free oper-
ator acting on the 6-dimensional vector space of bivectors [12]
(however, these conditions are very large). More practical nec-
essary conditions can be obtained by considering the trace-free 
symmetric operator CabcdCebcd −2W2δ

e
a ; applying the discriminant 

analysis we find the coefficients of the characteristic equation are 
w2 = 8(W 2

2 − 2W4) (and similarly for w3, w4) and so the neces-
sary condition for this operator to be type II/D is given by equation 
(1) (with the si replaced by wi ).

The alignment classification can be applied to any rank tensor. 
To consider whether the covariant derivatives of the Ricci tensor, 
Rab;cd... , are of type II or D, we can use the eigenvalue structure 
of the operators associated with the derivatives of the Ricci cur-
vature and impose the type II/D necessary conditions. This can be 
repeated for the Weyl tensor and in arbitrary dimensions [15]. For 
example, for the covariant derivative of the Weyl tensor, Cabcd;e , 
in 4D we can consider the second order symmetric and trace-free 
operator 1T a

b defined by:

1T a
b ≡ Ccdef ;aCcdef ;b − 1

4
δa

b
1 I2 (6)

where 1 I2 ≡ Cabcd;eCabcd;e , and we have the corresponding 4th, 
6th, 8th order invariants 1 I4, 1 I6, 1 I8. Computing the coefficients 
of the characteristic equation we obtain 1s2 = − 1

2
1 I4 + 1

8
1 I2

2 (and 
similarly for 1s3, 1s4). The necessary condition for this operator to 
be of type II/D (of the form D ≡ 4 D4 = 0) is equivalent in form 
to the condition given in equation (1) with si replaced by 1si , and 
can be expanded out explicitly. For example, for the operator 1T a

b
defined above for the type D Kerr metric, the vanishing of 4

T D4
implies that Cabcd;e is of type D/II on the horizon.

It is known that differential invariants, constructed from S P Is 
in terms of the Weyl tensor and its covariant derivatives, detect 
horizons for several type D stationary solutions [16]. The construc-
tion of the class of Page–Shoom S P Is that detect the horizons of 
stationary black holes exploits the fact that on the horizon the 
timelike Killing vector becomes null and is, in fact, a generator of 
the horizon [17]. Noting that stationary horizons are a special case 
of weakly isolated horizons, the type II/D S P Is arising from the 
discriminant analysis of Cabcd;e vanish on the horizon, and it can 
be explicitly shown that the type II/D discriminants share common 
zeros with the Page–Shoom invariant W for the Kerr spacetime 
[18]. Similar results using Cartan invariants are possible [19].

3. Examples and motivation

There are many examples (some briefly discussed in this pa-
per, but see also [19]) that support the geometric conjectures to 
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follow. Indeed, all of the known exact black hole solutions are alge-
braically special of Weyl (curvature) type II/D on the horizon [20]. 
This led to an earlier conjecture that asserted that stationary black 
holes in higher dimensions, possibly with the additional conditions 
of vacuum or asymptotic flatness, must be of Weyl type D [20].

There is also motivation for the conjectures from analytical re-
sults. Quasi-local isolated horizons, which account for equilibrium 
states of black holes and cover all essential local features of event 
horizons [1], are essentially defined as a 3D null surface (submani-
fold) with topology S2 × R with an outgoing expansion rate which 
vanishes on the horizon. It follows that the null normal vector is 
a local time-translational Killing vector field on the horizon, and 
requires neither asymptotic structures nor foliations of spacetime. 
Every such Killing horizon is an isolated horizon [1]. In partic-
ular, this implies that the event horizon of the Kerr geometry 
is an isolated horizon. However, in general, spacetimes with iso-
lated horizons need not admit any Killing vector fields even in a 
neighborhood. In [21] it was proven that if a stationary, real ana-
lytic, asymptotically flat vacuum black hole spacetime of dimension 
D ≥ 4 contains a non-degenerate horizon with compact cross sec-
tions that are transverse to the stationarity generating Killing vec-
tor field then, for each connected component of the black hole’s 
horizon, there is a Killing vector field which is tangent to the gen-
erators of the horizon.

In the 4D case, and assuming the “mild energy condition” im-
plied by the dominant energy condition, the existence of an in-
duced degenerate metric tensor which locally acts as a metric ten-
sor on the 2D tangent space, and the induced covariant derivative, 
which constitute the geometry of a nonexpanding null surface, was 
demonstrated; this then leads to the conditions that on the non-
expanding weakly isolated horizon the Ricci and Weyl tensors are 
of type II/D [22]. This local result has been generalized to non-
expanding null surfaces in arbitrary dimensions (and the result is 
applicable to surfaces of any topology); indeed, it was shown that 
if the expansion of a null surface vanishes, then the shear must 
also vanish and a covariant derivative can be induced on each 
non-expanding null surface [23]. It can also be shown [18] that for 
any weakly-isolated horizon the Riemann tensor and the covariant 
derivatives of the Riemann tensor are of type II on the horizon.

We note that when a star collapses to form a black hole, the 
exterior of the black hole eventually settles down to a stationary 
state, most likely described by the Kerr metric. Despite what the 
interior of the black hole settles down to, this leads by continuity 
to the expectation that there will be a region of the interior near 
the horizon that should be close to the interior Kerr metric. Inside 
the black hole event horizon the Kerr metric has an inner horizon 
which is also a null surface. However, the inner horizon is unsta-
ble, so for a spacetime that begins close to the Kerr metric, the 
inner horizon should be replaced by something else, perhaps even 
a singularity [24–27]. There are a variety of analytic arguments, 
mathematical results, and numerical simulations that indicate that 
this singularity maintains the inner horizon’s character as a null 
surface [1,22].

This supports the notion that the horizon is smooth and unique 
at later times and, in principle, can be identified by algebraic/geo-
metrical conditions. It is possible that as we follow this unique, 
smooth surface back in time (during the physics of collapse or 
merger), this surface suffers a bifurcation and this surface is no 
longer unique or smooth (or even differentiable). But it is plausible 
that there exists a unique, smooth geometric horizon that shields 
all other horizons (or at least identifies the region of interest).
4. The geometric horizon conjecture

This consequently motivates us to conjecture that there is a ge-
ometrically defined unique, locally determinable, smooth (dynami-
cal) horizon on which the curvature tensor is algebraically special. 
In particular, this implies that a spacetime horizon is always more 
algebraically special (in all of the orders of specialization) than (all) 
other regions of spacetime. Such geometric black hole horizons can 
be identified and located by the type II/D conditions in terms of 
S P Is, which are not dependent on spacetime foliations. To state 
the conjectures, we will say a tensor T is nth-order algebraically 
special if T and all covariant derivatives of T up to order n are of 
algebraic type II or more special.

Conjecture Part I: If a black hole spacetime is zeroth-order algebraically 
general, then on the geometric horizon the spacetime is algebraically 
special. We can identify this geometric horizon using scalar curvature 
invariants.

This is the more practical part of the Conjecture and will hope-
fully be useful to numerical relativists who study the collapse or 
merger of real black holes, which are generically of general alge-
braic type away from the horizon. The conjecture might be qualita-
tively different for isolated and dynamical horizons. The issue then 
becomes one of finding effective ways to do computations.

Conjecture Part II: If a black hole spacetime is zeroth-order alge-
braically special (and on the horizon the spacetime is thus also alge-
braically special), then if the black hole spacetime is first-order alge-
braically general, then on the horizon the spacetime is first-order alge-
braically special. We can identify this geometric horizon using differen-
tial scalar curvature invariants.

If necessary, this can be repeated for higher order covariant 
derivatives. This is the more theoretical and analytical part of the 
Conjecture, and can be applied to exact solutions. Note that in 
general we may not wish that the covariant derivatives be alge-
braically special (i.e., of type II/D) to each order (i.e., of type Dk) 
on the black hole horizon, as this might be too restrictive.

Comments: The algebraic conditions expressed in terms of S P Is 
essentially define a geometric horizon. In order to make the def-
inition more precise, we need to focus on physical black hole 
solutions (both exact black hole solutions and generic physical col-
lapse and black hole coalescences) and in order to prove definitive 
results we need to append some physical conditions to the defi-
nition such as, for example, energy conditions, a particular theory 
of gravity (e.g., we assume GR; in principle some conditions may 
be different for different theories), and perhaps other asymptotic 
conditions. We also note that S P Is may not specify the geomet-
ric horizon completely in the sense that they may also vanish at 
fixed points of any isometries and along any axes of symmetry. 
However, we expect that the identification of a smooth surface for 
physical situtations is always possible. Unlike apparent horizons, a 
geometric horizon does not depend on a chosen foliation in the 
spacetime.

Although this conjecture is also intended to apply in higher 
dimensions [19], we are primarily interested in applications in 
4D, and particularly in numerical computations. Indeed, the above 
conjectures are, in fact, a suite of conjectures (isolated vs dynam-
ical horizon; 4D vs higher dimensions; zeroth order invariants vs 
higher order differential invariants). In physical problems with dy-
namical evolution the horizon might not be unique, or may not 
exist at all, and amendments to the conjecture may be necessary 
(e.g., it may be appropriate to replace the vanishing of invariants 
in the definition of a geometric horizon as an algebraically special 
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hypersurface, with the conditions that the magnitudes of certain 
S P Is take their smallest values).

In a sense the conjecture refers to “peeling properties” (of the 
geometrical curvature) close to the horizon. The curvature is of al-
gebraically special type II close to the horizon but it is plausible 
that, as gravitational wave modes (of algebraic types III and N) fall 
off more quickly to infinity, the horizon eventually settles down to 
be type D under some reasonable asymptotic conditions.

5. Discussion

The question of whether these definitions and conjectures are 
useful will have to be further evaluated. Although we have at-
tempted to support the conjectures with analytical results and 
practical examples (also see [18]), further work is required and 
perhaps additional refinement of the conjectures will be necessary. 
In particular, it is of primary importance to study geometric hori-
zons numerically in 4D in physically relevant asymmetric collapse 
and black hole coalescences.

Dynamical horizons: The conjecture is intended to apply to dy-
namical horizons. It is much more difficult to study dynamical 
horizons, but let us discuss some preliminary encouraging results 
[18].

Let us first consider the imploding spherically symmetric metric 
in advanced coordinates [14]:

ds2 = −e2β(v,r)
(

1 − 2m(v, r)

r

)
dv2 + 2eβ(v,r)dvdr + r2d�2

where m(v, r) is the mass function and β(v, r) is an arbitrary func-
tion. It is known that the unique spherically symmetric FOTH is 
given by the surface r − 2m(v, r) = 0, which is expansion-free.

Using the NP formalism, the Riemann tensor for any spherically 
symmetric black hole solution is found to be of type II/D on the 
horizon; i.e., at the algebraic level the Ricci tensor always detects 
the horizon [18]. However, the covariant derivatives of Ricci and 
Weyl will generally be of type I. Note that for this class of metrics 
the Ricci tensor cannot be globally type D unless m,v = 0, in which 
case the horizon is isolated.

Let us assume that m,v �= 0 and consider dynamical horizons. 
Since no field equations have been imposed, we need additional 
conditions. For the class of spherically symmetric metrics admit-
ting a geodesic-lined horizon which is a shear-free MTT [2], with 
the additional condition that the frame vectors normal to the sur-
face are geodesics, requires that the metric function β satisfies 
β,v = 0 [18]. It can then be shown that the Riemann tensor and 
its covariant derivatives for any spherically symmetric black hole 
solution with β,v = 0 are of type II/D on the horizon [18]. Hence 
the imploding exact Vaidya solution and the class of exact Tolman–
Bondi solutions admitting MTTs [8] satisfy the type II/D conditions 
on the horizon.

We next consider the Kastor–Traschen dynamical two-black-
hole solution [28], which describes two charge-equal-to-mass black 
holes in a spacetime with a positive cosmological constant. The 
spatial part of the metric is written in coordinates centered at 
each of the black hole positions (ri = 0, i = 1, 2) and represents 
a 3D infinite cylinder with 2D cross-sectional area of 4πm2

i , where 
m1 and m2 are the black hole masses. When the sum of the black 
hole masses does not exceed a critical mass, the black holes coa-
lesce and form a larger black hole.

At earliest times W1 → 0 as τ → −∞ (in these spacetimes 
τ ∈ (−∞, 0)), and there are two 3D geometric horizons enclos-
ing the 2 black holes. It is found [29] that W2 is identically zero, 
and the type II/D discriminant W1 vanishes on segments of the 
symmetry-axis, at the black hole coordinate locations ri = 0 and 
on an additional “dynamical” 2D (cylindrical) surface around the 
symmetry-axis (this 2D surface appears concurrently with the two 
3D black hole horizons in the center of mass plane). At the earlier 
stages of the coalescence the 2D surface has a finite cross-sectional 
radius (from the symmetry-axis), but at later stages this surface 
expands as the two black holes move toward one another. There 
is a measure of the black hole separation that can be introduced 
such that as τ → 0− this measure approaches zero as the two 
black holes merge [29] and the 2D surface forms around the two 
black holes, so that it is possible to identify the location of a geo-
metric horizon in the dynamical regime. As τ → 0− , W1 → 0 and 
in the quasi-stationary regime there will be a single 3D horizon; 
after merger the spacetime eventually settles down to a type D
Reissner–Nordstrom–de Sitter black hole of mass m1 + m2 (which 
is known to have a 3D geometric horizon [19]).

In addition, it is found that there are 3D surfaces located at a 
finite distance from the axis of symmetry for which the type II/D
discriminant for the trace-less Ricci tensor vanishes, and where 
the Ricci tensor is consequently of type II/D. There is also numer-
ical evidence for a minimal 3D geometric surface evolving in time 
where the invariant W1 locally takes on a constant non-zero min-
imum value. These results are suggestive and lend support for the 
existence of a geometric horizon in the dynamical regime in these 
exact spacetimes, but further analysis is necessary which will be 
presented in the future.

Computability: The calculation of gravitational wave signals in the 
theoretical modelling of 4D sources in the framework of GR is well 
understood [30]. In higher dimensions, numerical simulations of 
rapidly spinning objects have been studied [31]. Of course, if our 
ultimate aim is to provide potentially useful results for numerical 
relativists, computability is an important issue. In this regard us-
ing Cartan invariants in the NP approach is certainly an advantage. 
Indeed, we have already used the NP approach to address certain 
problems, proving its utility, and we aim to develop this further 
in future research [18]. As an illustration, in the 4D Kerr-NUT-
AdS metric [14] the cohomogeneity is 2D, and the Page–Shoom 
invariant W produces a degree eight, first order S P I that detects 
the horizon [17]. On the other hand, the two NP spin coefficients 
(Cartan scalars) ρ and μ, vanish on the event horizon, which also 
implies that the first covariant derivative of the Weyl spinor is of 
type D on the event horizon. These Cartan invariants are easier to 
compute than the related SPIs [19].
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