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Abstract

The proton structure function Fy(z,Q?) is measured in neutral current deep
inelastic scattering of 26.7 (ieV electrons with 820 GeV' protons at the HERA
collider using the ZEUS detector. The data sample, collected during the 1993
HERA running period, corresponds to an integrated luminosity of 0.515 pb™!.
Results are presented for 7 < 7 < 2560 Ge\'? and 1.5- 107! < r < 0.16. The
structure function F; is found to rapidly rise with decreasing r. T'he scaling
violations of £; are used to extract the gluon momentum deunsity of the proton,
G(z,Q%),at Q* =20 GeV? and 9- 107" < r < 0.96 - 1072, A substantial rise

of the gluon density is found at small »
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Introduction

Deep Inelastic lepton-nucleon Scattering (DIS) has played an important role
in the understanding of the structure of the matter. Qur current knowledge of
the constituent structure of the nucleon, as well as of the strong interactions,
has emerged, to a large extent, from fixed target DIS experiments over the
past thirty years. The first electron-proton collider, HERA, has opened a new
era in the field. Operating at a center-of-mass energy of 296 Ge\', HERA
has been able to probe the structure of the proton at a scale two orders of
magnitude smaller than the previous fixed target experiments.

This thesis presents a measurement of the proton structure function £
using the HERA data collected with the ZEUS detector «during the second
year of HERA operlxltion in 1993. A total integrated luminosity of 3.515 pb~!
is used. The measurement covers a wide kinematic region, for momentum
transfers between 7 and 2560 GeV?, and fractions of the proton momentum
carried by the struck constituent between 10-2 and 10°1. The results show a
strong rise of F, at low momentun fractions.

A review of DIS physics and the relevant parton model, the previous and
current experiments, and the most recent Parton Distribution Functions, is
given in chapter 1. An overview of the HERA accelerator and the ZEUS
detector is given in chapter 2. 'T'he Monte Carlo simulation is described in

chapter 3. The methods of reconstruction of the event kinematics are discussed
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in chapter 1. The event selection procedure is discussed at length in chapter
5, including the selection criteria necessary to improve the accuracy of the
reconstruction, and to suppress the various backgrounds. The electron energy
response, crucial for kinematic reconstruction using the final state electron,
is examined in chapter 6 along with a method to correct for the energy loss
of the scattered electron due to inactive material. The statistics and event
characteristics of the final sample are given in chapter 7. The F; extraction
method is described and the final results on F, are given in chapter 8. The
scaling violations of F; are used in chapter 9 to extract the gluon density of the
proton. The final results are discussed in chapter 10, while a brief summary

and future outlook are given in chapter 11.

Chapter 1

Review of Deep Inelastic Scattering

1.1 The Structure of the Nucleon

The first evidence for internal nuclear structure appeared in the early 1950s
from elastic scattering of electrons from the protor, an experiment performed
by Hofstadter and his collaborators at the linear electron accelerator at Stan-
ford.! The elastic scattering cross section was observed to drop sharply with
increasing momentum transfer, relative to that of a point charge. T'his implied
a diffused charge and magnetic moment distribution for the proton, with no
underlying point-like constituents.

In the early 1960s the bootstrap theory was developed, in an attempt to
understand hadronic interactions.? It assumed no fundamental particles and
considered each hadron as a composite of the others.

In 1961 Gell-Mann and Ne’eman independently proposed the “Eightfold
Way”, a scheme for classifying the hadrons according to their charge and
strangeness, using SU(3) symmetry.3

In 1964, Gell-Mann and Zweig independently introduced the notion of
quarks as the elementary constituents of hadrons.* The quarks were proposed

with three different types, called flavors, spin equal to % and fractional electric



charges, This model was found to reproduce the multiplet structures of all the
ubserved hadrons. Three (anti)quarks were required for (anti)baryons, and
quark-antiquark pairs for mesons. A new quantum number, color, appearing
in three states {'red’, ’green’, and 'blue’), was assigned to quarks, in order to
make the baryons’ wave functions consistent with the Pauli Exclusion prin-

A

ciple.® Although initially guarks were very suceessful as the building blocks
of unitary symmetry, the failure of numerous [ree-quark searches led to the
belief that they were merely mathematical constructs, without any physical
manifestation.

The introduction of quarks was followed by the development of “current
algebra”, a field theory that examined hadrons under the influence of weak
and electromagnetic interactions, and gave rise to several sum rules, derived
by Bjorken and others.

In late 1967 a long series of experiments on deep inelastic (i.e. large-
energy-loss) electron-proton scattering started at the Stanford Linear Acceler-
ator Center (SLAC).® The early results from these experiments featured two
unexpected effects: the deep inelastic cross sections were found to fall only
weakly with increasing momentum-transfer, and the deep inelastic Structure
Functions, which could be interpreted as the momentum distributions of the
proton constituents, depended only on the fraction of momentum carried by
the struck constituent of the proton. This second surprising feature in the
data, called scale invariance, was found following a suggestion by Bjorken. In
1969, he had predicted the scaling of the proton structure functions in the deep
inelastic region, on the basis of quark model current algebra calculations. ?

Bjorken’s scaling hypothesis and the early SLAC data led Feynman to

apply his parton model, a constituent model he had developed to explain
hadron-hadron inclusive interactions at high energies, to deep inelastic electron
scattering.® He assumed that the proton was composed of free point-like
partons, from which the electron scatters incoherently.

in an application of the parton model, Bjorken and Paschos identified the
partons with the spin-% quarks.® ‘They studied a system of three quarks,
commonly called valence quarks, in a background of quark-antiquark pairs,
known as sea quarks.

In a more detailéd description of the quark-parton model, Kuti and Weis-
skopf added to the constituent model of the nucleon the neutral gluons, the
field quanta responsible for the binding of the quarks. !¢

By 1973 Quantum Chromodynamics (QCD), a comprehensive theory of
quarks and gluons and their strong interactions, was constructed. I'he con
cept of asymptotic freedom!! provided an explanation for the inconsistency
between the 'free’ behavior of the partons during lepton scattering, where
short distances were probed, and the strong final-state interactions required
to account for the fact that no free quarks had ever been observed in the
laboratory. In non-Abelian gauge theories, like QCD, the effective coupling
which characterises the interaction between two particles, and which is a func-
tion of the distance between them, goes to zero as the separation becomes
very small (asymptotically zero). Thus, quarks and gluons seem to be effec-
tively free when probed at short distance. The infrared slavery mechanism,
on the other hand, provided the origin of the confinement of quarks in ’color-
less’ hadrons. '? When a quark and antiquark separate, their color interaction

becomes stronger, due to the interaction of gluons with one another, which



confines the color field lines of force between the ¢ and § into a tube-like re-
gion. If this color tube has a constant energy density per unit length, the
potential energy between the ¢ and § will increase with separation (i.e. lin-
early rising potential energy), as particles are produced. Therefore, quarks
and gluons can never escape.

‘I'he first deep inelastic electron-proton scattering results from SLAC, and
the introduction of the naive parton model, were followed by several fixed tar-
zet deep inelastic scattering experiments at major laboratories. SLAC exper-
iments continued to use electron beams, whereas muon and neutrino beams
of higher energies were used at CERN and FNAL. New, more precise data
showed logarithmic deviations of the scaling invariance for the proton structure
functions. !* These results were explained by the radiative QCD corrections,
generated by the gluons.

Throughout the 1980’s the nucleon structure functions were measured with
increasing precision over more extended kinematic regions. However, since the
center-of-mass energy at fixed target experiments is proportional to the square
root of the beam energy, fixed target DIS experiments are limited in their reach
to high momentum transfer and to small proton momentum fraction carried
by the struck quark.

Higher center-of-mass energies can be achieved at colliders, which can
therefore explore extended kinematic regions. Beginning in 1992, HERA has
stuclied deep inelastic scattering by means of collisions between electrons {or
positrons) and protons. ‘The measurement of the proton structure function
has been extended by the HERA experiments, H1 and ZEUS, to a new kine-

matic regime, reaching two orders of magnitude higher momentum transfers,

and two orders of magnitude lower proton momentum fractions, than the fixed

target experiments.

1.2 DIS - Definitions and Kinematics

Deep Inelastic Scattering (DIS) is defined as the scattering of a lepton from a
nucleon at high momentum transfer. At the HERA collider DIS is studied in
collisions between electrons or positrons and protons. The electron-proton in-
teraction is mediated by the exchange of a single vector boson. We distinguish
two classes of ep DIS events, depending on the exchanged particle:

{1) Neutral Current (NC) DIS events, for virtual photon or Z* exchange:
et 4poetX (1.1
(ii) Charged Current (CC) DIS events, for W2 exchange:
. =) .
E+p—ov X (1.2)

where X denotes the total hadronic system in the final state. ‘I'he Feynman
diagrams for NC and CC DIS events are shown in fig. 11.

In this thesis we restrict ourselves to the study of inclusive NC DIS scat-
tering, between unpolarized electrons and protons, for which the final electron
and hadronic final state are observed. The kinematics of such a process can be
described in terms of two independent variables. \e first define a number of
Lorentz-invariant independent variables and then can express the kinematics
in terms of any two of them.

We denote by ¢ the momentum 1-vector of the exchanged vector boson,

transferred from the electron to the proton, by & and &’ the {-vectors of the
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Figure 1.1: Feynman diagrams for N(" and CC DIS events.
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incident and scatteréd electron, respectively, and by £ the l-vector of the
proton.

The center of mass energy squared is given by:
s=(k+P)? (1.3)

The 4-vector ¢ of the virtual exchanged boson is space-like and its square
is a negative quantity. For convenience, we introduce the positive quantity Q?
as:

Q= —¢* = (k- ¥)? (1.4)

"The electron’s energy loss, transferred to the hadronic system, in the pro-

ton's rest frame is given by:
v=—t=[t-Elp, (1.5)

where E, £’ are the incident and scattered electron energies, respectively, and
M is the proton mass.
The scalar variable z, known as Bjorken-z, is defined as:

Q? Q
T PR PYY P
a7 -q My o

(1.6)
As shown below, z can be identified with the fraction of the proton’s momen-
Lum carried by Lhe struck guark.

The scalar variable y, which corresponds to the fraction of the energy lost

by the electron in the proton’s rest frame, is defined by:

P.g v .
- . 1.
V=TT [E]m (L7

The kinematically allowed region for both x and yis: 0 < r,y < 1.
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The variables r, y, Q7 and s are related bLy:
Q* = szy (1.8}
Finally, we define the invariant mass of the hadronic final state X by:
W3i=(P4+g) =M+ Q’(} ~1) (1.9)

T'he kinematic ranges for @? and W? are from zero to s.

1.3 NC DIS and Structure Functions

‘The assumption of a single-boson exchange implies that the cross section for
the deep inelastic ep scattering can be factorised into a leptonic tensor L,

contracted with a tensor at the hadron vertex W+ ! .
do ~ L, W*(q,p) (1.10)

For deep inelastic scattering at values of (* much lower than the square
of the mass of the Z° (Q? > M3), the electron-proton interaction is mediated
almost exclusively by the virtual photon. Thus, the Z° contribution to the
cross section can be neglected.

The lepton vertex is described by Quantum Electrodynamics (QED) and

its tensor is given by:
7
Ly, = 2Kk + Kok, + (7}9“,] (1.11)

At the hadron vertex, in order to obtain the cross section for the inclu-
sive process, we must integrate over all possible hadronic final states. The

current at the hadron vertex is parametrized by the hadronic tensor which

11

can be constructed out of ¢*¥ and the independent momenta ¢ and p. Anti-
symmetric contributions to H¥* are omitted, since their contribution to the
cross section vanishes when H'*” is contracted with the symmetric tensor L, .
The most general form of H/** contains five terms. However, neglecting the
parity-violating term and imposing current conservation at the hadron vertex
{g.W* = ¢, W* = 0), only two independent terms remain:
W*{q,p) = {-¢" + %qzlﬂ'u +[p* - lD—'-qul”][v” - E'fgrf”i -117”’: (1.12)
7 q q i
The inelastic structure functions, i1, are fimctions of two independent
Lorentz-invariant scalar variables that can be constructed from the 1-momenta
at the hadron vertex. We choose Q% and » as these variables.
Using the leptonic and hadronic tensors, and including the flux factor and
the final electron phase space, we calculate the inclusive cross section for inelas-
tic electron-proton scattering. In terms of laboratory variables, and neglecting

electron mass effects, the cross section is given by:

% = %‘{3%{11«’1(». Qf)msz(g) + 21-1.’1{”,(22)51112{5)]. (1.13)
where @ is the angle of the scattered electron.

The DIS physics is contained in the v and Q? dependence of the structure
functions Wy and W,.

In the deep inelastic region, where % and v are large, but Q?/v is fi-

nite, the structure functions W, and v, become functions not of (% and v

independently but only of the ratio r = Q?/2Mw:

MW (r,Q*) = Fi(x) {1.14)

vWo(u, Q) —  Fy(x). (1.15)
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‘The first evidence for scaling (i.e. Q*-independence of the structure func-
tions) came from the early DIS experiments at SLAC, as noted in section

1.1

1.4 The Naive Quark-Parton Model

According to the parton model, the proton is composed of free point-like con-
stituents, called partons, from which the electron scatters elastically and in-
coherently.

At high momentum transfer, Q2, the virtual photon is probing very short
clistance and time scales within the proton. The short distance scale justifies
the assumption of small, pointlike constituents. In the infinite momentum
frame of the proton, where }f;] » m, M (m being the mass of the parton),
each parton carries only a fraction z of the proton’s energy and momentum:
pi = 2(£,,0,0,—E,). [n this frame, relativistic time dilation slows down the
rate at which partons interact with each other. I'hen the short time scale
of the photon-parton interaction enables us to treat the struck constituents
as effectively free. We can then regard the deep inelastic scattering of the
electron from the proton as an incoherent sum (addition of probabilities, not
amplitudes) of elastic scatterings from single free partons within the proton.

Energy and momentum conservation at the parton vertex, assuming the
initial and final partons to be massless, results in:

Q?

o=p}=(p;+q)’=2z1’-q—o’:>z=;msz. (1.16)

where p; and p; are the intial and final 4-momenta of the struck parton, re-

spectively. Equation (1.16) shows that the scaling of the proton structure

13

functions {independence of ()?) can indeed be interpreted as a result of the
quasi-free electron-parton scattering process.

if partons have spin 1, the cross section for the electron- parton scattering
must resemble the ey scattering cross section:

~
= e e+ st use - L) ()

where e, m; are the electric charge and mass of the parton of type i, respec-
tively.

By comparing equations (1.13) and (1.17) we can extract the contributions
to W; and W; from one parton of type ;. Summing over the contributions
from all partons, 7, we obtain the total contribution from all partons, i.e. the

total structure functions of the proton, W', (»,(2?) and W(w, %), ur. according

to equations (1.14) and (1.15), ¥\ () and £5(r):

2k (x) = Fyr) (1.18)

£3(r) S errfi(e), (1.19)

where f;(z) represents the probability for a parton of type i to carry a fraction
z of the proton’s momentum.

Equation (1.18), called the Callan-Grouss relalion, ! is a direct consequence
of the assumption of spin-} quarks which couple to transversely polarised (A =
+1) virtual photons. Its experimental vertlicalion provided stroug evidence for
the ideatification of the partons with the spin-] quarks and antiquarks.

According to the quark-parton model the proton (neutron) is marle of three
valence quarks, vud (udd), and a distribution of quark-antiquark pairs, com-
monly called sea quarks: wu,, d,d,, s.3,, and so on. The latter become

dominant at low values of r.
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The (anti)quark distributions inside the proton (and neutron) should add
up to the total electric charge, strangeness and total momentum of the proton.
While the sum rules for electric charge and strangeness were experimentally
verified, providing further evidence for the parton-quark identification, the
momentum sum rule revealed that the quarks and antiquarks carry only half
of the proton’s momentum. This last result led to the introduction of neutral
partons which carry the remaining half of the proton’s momentum, and which

were identified with the gluons, the bosons that carry the color force in QCD.

1.5 QCD Parton Evolution

QCD produces interactions between quarks and gluons via the processes: g —
99, § — 49, ¢ — 9§, g — gg. Explicit calculations show that these processes
have a In{Q?) behaviour.

As Q% increases the photon acquires a higher resolution and starts to “see”
eachi quark as surrounded by a cloud of partons {quarks and gluons), which
share the proton’s momentum. Therefore, the probability of finding a quark
at small z (“soft” quark) increases with increasing Q?, while the probability
of finding a quark at high z decreases.

The Q? evolution of the quark and gluon densities is determined by QCD

through the Gribov-Lipatov-Altarelli-Parisi ((GLAP) equations 'S:

dq;(:r,Q’) _ 0'(Q2) 1dy

A z 2 y (% 2 ;
o = 2. y{P..(y)wty.fz)+lu,(y).q<y.o)l (1.20)

. 2 7 .
Brd) o) [Ef‘n(f)w(yﬂ’) + lf,,.(g)g(y,o’)] (121)
alr r ) N L R

2x

15

The coupling constant a, of the strong force is given in lowest order by

127
(33 — 2n,) log{Q?/AY)’

a,(Q%) =

where n; is the number of flavors and \ is the QUL parameter that sets the
boundary (for Q? > A?) at which a, becomes small’ and the perturbative
description in terms of quasi free quarks and gluons is justified.

The functions I’;(z/y) are called Splitting Functions. They give the prob-
ability that a partan (either gluon or quark) 1, with momentum fraction r,
originated from a parton j, with momentum fraction y, where x < y < 1.

In lowest order QCD the splitting functions are given by '*:

Pylz) = %(114,_2:) (1.23)
Pals) = (2 +(1=2P) (1.24)
Pylz) = %(H“z:z—)z) (1.25)
Pyl2) = 6(1i2+]“2+z(1—:)) (1.26)

where z = z/y. They are schematically drawn in fig. 1.2,
The logarithmic radiative QCD processes and their subsequent parton evo-
lution result in logarithmic scaling violations, i.e. the proton structure func-

tions are functions of both r and Q2.
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94 99

Figure 1.2: The lowest order Splitting Functions Py, Py, Py, Py,.
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1.6 General Form of the Structure Functions

At high Q? there is a probability that the vector boson exchanged between
the electron and the proton will be the Z°. In this case there is a third,

parity-violating term in the hadronic tensor:

vl o) = gy O POy, P g1, et
W*(q,p) = [-¢" +?]W1+[P"-?fl“llp e I3p"Ye=tewa =W
(1.27)

We then obtain the general form of the differential NC ep cross section:

& NC(x Axa? ] )
:Tg,p—) = :—g,ly’l}'s(I,Qz) +(1=9Fla Q) £y — P [2) 2 F3lx, Q1)

(1.28)
where the structure functions Fy, F;, x5 include both 5 and 2* exchange.
In lowest order QCD (where the spin-4 of the quarks dictates the absorption
of transversely polarised photons and results in the Callan-Gross relation, eq.

(1.18)) they are given by:
Froe,QY = FxQY)2e (1.29)
F2, QY = 3 AHQVrqs(e, QN + xis(, Q7)) (1.30)
J

3 BiQDzgs(x. Q%) — xgs(x, Q)] (1.31)
I

253 (2,Q%)

]

where q,(z,Q?), ¢,(z,Q?) represent the probability distribution for a quark
and antiquark, respectively, of flavor f, to be found in the proton.
The coefficients A;, By include +-exchange, Z° exchange, their interference

term, and are given by ':

AfQY) = €] = 2epres P2(QP) + (02 + ) + AIPHQY) (1.32)

By(Q%

- 2ea.a PZ(QY) + v e, PHQY). (1.33)



12(QQ?) is the ratio of the v and Z° propagators:

Q2

P2(Q%) = T

(1.31)

The neutral current vector and axial vector couplings are given by:

Tay — 2¢;sin? by
] = te—— 1.35
! sin 20y ( )

n

T3y
sin 20y (1:36)

ay

respectively, where Ty; denotes the 3rd component of the weak isospin (equal

to § for neutrino and (u,c,t) quarks and —} for electron and (d, s,6) quarks)
and By is the weak mixing angle,

In higher order perturbation theory there is a contribution to the cross sec-

tion from longitudinally polarised (A = 0) virtual photons. This contribution

is measured by the Longitudinal Structure Function F;:
Fulx, Q%) = Fol,Q%) - 20 Fi(z, Q7). (1.37)

In terms of the longitudinal structure function the NC ep cross section is

expressed in the form:

2. NCy % ~ 2
“L—sz& D WA Q) - P Fule ) F Vs Fa @, (139

with ¥y =12 (1 - y)%

19

1.7 QED Radiative Corrections

[n higher order perturbation theory the Born cross section for the ep interac-
tion is modified due to additional electroweak corrections. ‘These corrections
originate from the emission of additional real or virtual photons from either
the leptons or the quarks. Hence, they can be classified as lepton, quark, and
lepton-quark interference corrections.

The quark corrections can be absorbed into the quark distribution func-
tions, and the corrections from the interference between the lepton and quarks
are in general small. '”

The lepton corrections can be further classified into:

(a} virtual 4 and Z° corrections. They can be vertex corrections, self
energies of 4 and Z°, or 4 Z* mixing,

(b) emission of real photons. In the leading logarithm approximation.
the emitted photon can be collinear either with the initial or the final state
electron, in which cases we refer to “Initial State Radiation™ (1SR) or “Final
State Radiation” (FSR), respectively. There is a third contribution, called
“Compton scattering” (CS), which refers to a hard scattering of the electron
on a quasi-real photon originating from the proton.

We include radiative corrections in a factor 6, in the double differential
cross section for inclusive N(" deep inelastic ep scattering:
d*o¥Cle*p)  2za

dzdQ? Q1

[}’+fg(x.()z)—q'f1,(.r.Q’):F)’_rfg(.r.Qz)l(l+6,(2,Q’)).
(1.39)
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1.8 Low-x phenomena

In the low r region the nucleon is dominated by sea quarks and gluons, the
former originating from the ¢g splitting of the latter. Both the quark and
gluon distributions grow with increasing %, at fixed low z.

As discussed in section (1.5), the evolution of the parton densities with Q?
is predicted by perturbative QCD, which is applicable in the large Q* region
(Q* > Q?, @ = 4GeV?). The exact form of the equations that describe
the parton evolution depends on the accuracy of the treatment of the large
logarithms In{Q?) and/or In(1/z).

In the leading In{Q?) approximation only i leading logarithmic terms in
()? are kept in the perturbative expansion and the evolution equations take
the fornt of the GLAD equations.

However, in the limit r — 0 the /%, and I, splitting functions become
singular (see eqs. (1.25) and (1.26), where x/y = z — 0). This means that at
low r the terms that contain the singular parts 1/r hbecome important.

In the low r, large Q? region the terms In(1/r) and In(Q?) are comparable.
IKeeping the products of both large logarithms in the pertubative expansion
we arrive at the double logarithmic approzimation.'® In this approximation

the gluon distribution is given by :

G(r, Q") = 29(2,Q?) ~ exply/lnIn(Q?*/A%) In(1/=)} (1.40)

which predicts that the gluon (and consequently, also the sea quark) distribu-
tion at low r will grow faster than any power of In(1/z).
In the low r, moderate (? region, In{1/x) terms become larger than the

leading In(QQ?) terms. Here we apply the leading In(1/x) approrimation, where
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we resum the terms that contain leading powers of In(1/r) {and arbitrary
powers of 1n(Q?)). The summation is done by the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation,'® which is in effect an evolution equation in ..
When this equation is solved analytically, it results in a gluon distribution

function in the form of:
G, Q) = rg(x.QY) ~ 27 (1.41)

The growth of the parton densities with Q2, which is rapid at low z, results
in a steep increase of the DIS cross section. However, an unlimited increase
would violate the Froissart bound, which requires that the total cross section
must not grow faster than ln? .2 Such a violalion is prevented by parton
recombination and saturation effects. When the numbers of gluons and sea
quarks in the proton hecome very farge, at low o, they begin to overlap spa-
tially in the transverse direction and recombine via the processes gg — g and
99 — g. Hence, they can no longer be treated as free partons, as was required
by the QCD parton mocdel. This interaction of partons puts an end to the
growth of the parton densities in the low r limit, and the DIS cross section fi-
nally reaches its saturation (geometrical) limit, equal to = #%, K being a radius
parameter.

Quantitatively, the parton interaction introduces a nonlinear screening cor-
rection to the evolution equations. The modified evolution for the gluon den-
sity is expressed by the Gribov-Levin-Ryskin (GLR) equation ?':

a:g(zqu) _30,((22) tdy
nQ? ~ = fT

9 [3a,(Q1)) p dy
lvsty, @~ 1o [—Q_] f‘ “;[yy(y.Qz)l’.
(1.12)

The first {linear) term on the right-hand side is obtained from the GLAP
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equation for gluons [eq.(1.21)] by neglecting the quark contribution to the
gluon evolution (i.e. the £, splitting function) and by keeping only the most
singular term of the £’y splitting function, #’,, ~ 6/2, in the limit x/y = z — 0
(double logarithmic approximation). The second term represents the screening
correction, whose strength depends on the magnitude of the radius parameter
R. R is expected to be comparable to the hadronic radius (~ 5 GeV~!) for
a gludn saturation uniformly distributed in the nucleon, or comparable to
the constituent (valence quark) radius (~ 2 GeV~'} for gluons concentrated
around the valence quarks (“hot spots” model ).

The GLR equation is expected to be valil for I¥,,, < a,(Q?), where the
parameter W, is defined as the ratio of the total transverse area occupied by
the small-r gluons in a nucleon over the total transverse area of the nucleon,
T W, can be obtained from the ratio of Lhe coefficients of the second and

first terms on the right-hand side of equation (1.12):

o 2Trau(@Y)

aat = Ww(f,Q?)- (1.43)

The gluon distribution obtained from the GLR equation approaches the

parton saturation limit for z — 0 :

G2, Q%) = x¢"™ (£, Q%) = ﬁnzqz, (1.41)

which corresponds to W, = 1.
For W,; « 1 the parton evolution is described by the QCD parton model

without screening corrections.

1.9 DIS Experiments

1.9.1 Fixed Target DIS Experiments

As discussed in section (1.1), a number of fixed target DIS experiments at
SLAC, CERN and FNAL followed the first deep inelastic electron-proton scat-
tering results from SLAC. ‘They used electron, muou, or neutrino beams on a
variety of targets.

‘The SLAC experiments used electron beams with an energy range 3.65 <
E. <20 GeV, on hydrogen and deuterium targets.

The CERN experiments used either muon heams, with energies 100 <
E, <280 GeV (EMC, BCDMS, NMC, SMC), or ueatrino beams with energies
100 < £, < 280 GeV (CDHSW, WA2S, WASD), on deuterium, iron and neon
targets.

At FNAL, the CCFR experiment used a neutrino beam on an iron target,
with 30 < £, < 600 GeV', while the 1665 experiment used a muon beam of
190 GeV, on various t,a‘rgel,s.

A hydrogen target is used for the measurenient of the proton structure
function £7, whereas an additional deuterium target allows the measurement
of the neutron structure function F3. Heavy nuclear targets are used for the
measurement of the nucleon structure function, the averagr of the proton and
neutron structure functions. Finally, a neutrino beam enables the measure-
ment of the parity-violating .r Fy structure function, and hence, the extraction
of the valence quark distributions.

The center-of-mass energy at fixed target DIS experiments is given by:

V= im, b (1.45)
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which yields a maximum value approximately rqual to /s ~ 31 GeV, at the
highest FNAL v beam energy. The kinematic ranges of £ and Q? that can
be explored, limited by beam energies and the final lepton phase space, are:

1072 < £ < 0.9 and 0.1 < Q* < 200 GeV?.

1.9.2 DIS at HERA

HERA extends the measurement of the proton structure functions to lower
values of r and higher values of Q? than fixed target experiments.

‘I'he center-of-mass energy at the HERA ep collider is given by:
Vs =2 /E.E,. (1.16)

1 1992 and 1993 HERA operated with an electron beam of energy £, = 26.7
Ge\’ and a proton beam of energy £, = 820 (leV, producing a center-of-mass
energy equal o /5 = 296 GeV.

The maximum value of Q? that can be reached is equal to Q?,,, = s =
8.75 - 10* GeV'?, whereas the lower limit for N(' DIS events, in order for the
scattered electron to be seen in the detectors, is a few GeV'2. The kinematically
allowed region in = and Q? is bounded by y = 1. Thus, the measurable region
inrisl0*<r<l.

HERA started operation in 1992, with two major detectors, 2E('S and H1.
‘I'he first results on the measurement of the proton structure function F; were
based on 25 nb~! of deep inelastic electron-proton scattering data??.? In the
second year of operation, 1993, 20 times more data were accumulated (540
nb™').

HERA is able to reach two orders of magnitude smaller values of x and

Iw
v

two orders of magnitude higher values of ()? than fixed target experiments.
However, there is still no overlap in the (r,()?) phase space between HERA
and fixed target experiments, as can be seen in fig. 1.3.

This gap would be closed were HERA to run at reduced beam energies.
However, it is also ‘possible to close the gap even at present beam energies,
if the detection of the final state electron were feasible at smaller scattering
angles in the ZEUS and H1 detectors. This has been achieved in more recent
running by shifting the interaction point towards the direction of the proton
beam, and by new detector components at small angles around the beampipe
in the electron beam direction. In addition, a measurement of the proton
structure function at lower values of Q% is made by considering Initial State
Radiation events, where the real photon emitted from the initial state electron

effectively lowers the initial state electron energy.
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Figure 1.3: Kinematic regions in the (x,Q?) phase space covered by the 1993
HERA data and various fized target DIS experiments. They =1 isoline limits
the kinematically allowed region. The y = 0.01 isoline represents a y cut used

in the ZEUS analysis (see section 5.4).
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1.10 Parton Parametrizations

‘T'he Parton Distribution Functions (1’DF's) describe the sharing of nucleon’s
momentum among its coustituent quarks and glnons. Knowledge of PDF’s is
necessary for the p;arametrization of the nucleon’s structure functions and the
prediction of the c;'oss sections for present and future colliders. Although the
QCD parton model constrains the PDF’s, it provides no absolute predictions.
Thus, they have to he extracted from experimental data.

The Parton Distribution Functions are parametrized as a function of r
at a reference value Q® = Q2. These parametrizations are usually simple
functional forms, which satisfy QCLD and contain a number of free, adjustable
parameters. The initial quark and gluon distributions are evolved upward with
%, using the QCD GLAD equations (egs. (1.20}, {1.21)). This produces a
parametrization of the ’DFs at all & and Q? values, which can then be used
to characterize the structure functions and calculate cross sections. Since the
predicted cross sections must match all existing lepton-hadron awd hadron-
hadron data, a global fit is performed in order to determine the best values of
the initial free parameters of the 'DFs.

We will briefly summarize the characteristics of the most commonly used

PDF’s.

1.10.1 MRS parametrizations

The Martin-Roberts-Stirling (MRS) parametrizations are obtained from a
global next-to-leading order (NLO) QCD fit, including DIS data from BCDMS,
EMC, NMC and CCFR. Their starting % value is Q? = 1 GeV?,
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The NMC measurement of the Gottfried Sum Rule {(GSR) is incorporated

1

in the MRSD' parametrizations?! using a flavor asymmetric sea. The GSR

predicts the difference between the proton and neutron structure functions as:
V dz 1 25 o
lesn e/ - rmy = -/ dz(uy — i) + -/ de(a—d)  (1.47)
b 2 3/ 3Jo

A flavor symmetric sea (& = d) would yield: fcsp = 3. The NMC measure-

ment is?%;
08 dx
losp(NMC) = / ?(F{ — F7') = 0.227 £+ 0.007(stat) + 0.014(sys) (1.48)
0.001

which indicates that v < d. Hence, the initial sea-quark distributions at 2

for the MRSLD' parametrizations were given the form:

28 = 045-A {1.49)
2d = 04542 (1.50)
25 = 0.28 (1.51)

where S(z) is the total sea-quark distribution and A is a non-zero distribution
which reproduces the NMC data. The strange quark distribution is suppressed
compared to the @ and d distributions, according to experimental evidence
from CCFR.% The charm and bottom quark distributions are set to zero
at % and generated dynamically at higher (?, using the GLAP evolution
equations.

‘The gluon and sea quark distributions at low r are parametrised with the
same function: xf ~ z7*, at Q% = Q2. Since the pre-HERA data did not
restrict the value of A, the MRS group produced two sets of parametrizations
using two extreme values: the MRSDj, which has a constant gluon/sea distri-

bution, with A = 0, and the MRSD’ , with a singular gluon/sea, with A = %
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A subsequent parametrization of the MRS group, called MRSH, ¥ jncludes
the 1992 HERA data along with the previous fixed target experiments in the
global QCD fit. This set has also a singular gluon and sea quark distribution
at Q% =4 GeV?, with A = 0.3,

The 1993 HERA data, presented in this thesis, are incorporated in the
MRSA, MRSA' and MRSG sets.?® A preliminary form of the 1993 F; mea-
surement is included in the MRSA fit, which otherwise follows the line of
MRSH. The final 1993 results are used in the MRSA’ and MRSG sets. In
MRSA’ the usual assumption of the same singular behavior of the sea and
gluon distributions is made, with A = As = A, = 0.17. In MRSG the sea and
gluon exponents are allowed to vary independently, and the fit yields a steeper

gluon, Ay, = 0.30, and a flatter sea, Ag = 0.07.

1.10.2 CTEQ parametrizations

The CTEQ group (Coordinated Theoretical/Experimental I’roject on QCD)
also performs a NLO global QCD fit. They allow a flavor asymmetric sea, and
have a singular giuon behavior at low z: rg ~r 7%, at Q% = Q2.

The initial CTEQL parametrization ?° used data from BCDMS, KMC and
CCFR, with reference * value for the GLAP evolution equal to Q? = 1 GeV?,
and with Ay = 1. ‘There was no strange quark suppression: the u, d and s
distributions were parametrized independently.

The subsequent CTEQ2 set® includes the 1992 HERA data in the QCD
fit, starting at Q% = 1.6 GeV2% The strange quark suppression is incorporated
in the CTEQ2 set. The QCD fit yields a value of A, = 0.21.

The 1993 HERA data are included in the C'TEQ3 set,®! which starts the
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QCD evolution at Q? = 1.6 GeV? and yields \, = 0.33.

1.10.3 GRYV parametrizations

An alternative approach to Parton Distribution Functions is used by Gliick,
Reya, and Vogt. ¥

They start with valence-like parton (gluon, valence and & = d sea quark)
distributions, at a very low reference scale of Q2 = 0.3 GeV? and demand
zg(x,Q3) — 0 as z — 0. Strange, as well as charm and bottom, sea quark
distributions at Q2 are set to zero. All parton distribution functions are then
evolved to higher values of Q2 using the GLAP equations.

This dynamically generated growth of the 'DIs predicis a fast rise in /5
at low values of z.

‘I'he most recent set from the GRV group, called GRVH,? adopts a fac-
torization scheme in which the heavy quarks c, b,... are not included among

the intrinsic (massless) parton distributions in the proton.

il
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Figure 1.1: Various parametrizations of 1y as a function of & at Q* = 20
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Chapter 2

HERA and ZEUS

2.1 The HERA electron-proton Collider

HERA, the first electron-proton collider, is located at the DESY (Deutsches
Electronen Synchrotron) laboratory, in Hamburg, Germany. It is designed to
accelerate 30 (ieV electrons (or positrons} and 820 Ge\' protons, yielding a
center-of-mass energy /s = 314 GeV. Four interaction points are available:
two of them are occupied by the H1 and ZEUS letectors, the third is used by
the spin-physics fixed target experiment HERMES, while the fourth will be
occupied by the HERA-B detector, currently under construction. The layout
of the accelerator is shown in fig. 2.1, while its main parameters are listed in
table 2.1.

‘Fhe electrons are pre-accelerated with a linear accelerator (LINAC 11) and
then with the DESY il and PETRA I, reaching energies of 500 MeV, 7 GeV
and 11 GeV, respectively, before being injected into HERA. For the proton
beam, H™ ions are accelerated in a linac, then the electrons are stripped and
the protons are pre-accelerated with DESY I and PETRA !I, to 7.5 and 40
eV, respectively. From there they are injected into HERA.

Both beams are divided in bunches, in order Lo increase the frequency of the

—
14 GeV
elecirons

Figure 2.1: The HER .\ collider
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HERA parameters

Design values

1993

electron | proton electron | proton
Energy (GeV) 30 820 26.7 820
Luminosity (cm=%~?) 1.5.10% 1.8-10%®
Circurference (m) 6336
Magnetic Field (T) 0.165 1.65
Energy range {GeV) 10-33 300-820
Injection Energy (GeV) 14 10
Circulating Current (mA) 58 163 7-20 7-15
Number of bunches 210 81 +10 |R1 + 6
Time Between Crossing (ns) 96 96
Hourizontal Beam Size o, (mm) | 0.26 (0.29
Vertical Beam Size o, (mm) 0.07 0.07
Longit. Beam Size ¢, {mm) 0.8 11
Filling Time (min) 15 20 15 60
Energy Lost per Turn (MeV) | 127 1.4-1071°

Table 2.1: Design values of HERA parameters and 1998 running values,
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crossing per unit time. A small number of e/p-bunches, usually called pilot
bunches, are unpaired with each-other (i.e. do not collide) and are used to
estimate the background produced by interactions of the beams with residual
gas in the beam-pipe (see section 5.10.1). In the 1993 run there were 84
colliding e/p-bunches, 10 unpaired p-bunches, and 6 unpaired e-bunches.

The collision between the two beams occurs at zero crossing angle. The
z-width of the collision region is in principal determined by the length of
the proton and electron bunches. In practice, however, the collision region
is mainly determined by the proton bunch length, since this is mich greater
than the electron bunch length. In the 1993 run the root-mean-square of the
proton bunch length was about +20 cm.

[t should be noted here that HERA differs from all previous colliders in the
asymmetric beam energies, which boost the center-of-mass system towards the
proton heam direction, and the very small heam crossing interval (96 ns). The
first characteristic requires the H1 and ZEUS detectors to have asymmetric
geometry, while the second condition requires very fast trigaer anil read-out

systems.

2.2 The ZEUS Detector

The ZEUS detector® is a multi-purpose detector clesigned to achieve the best
possible energy measurement of electrons and jets in DIS Neutral Current
(NC) and Charged Current (CC) events. It is asymmetric along the beam
direction, to account for the boosted center-of-mass at HERA. It is a hermetic

detector (except for the beam-pipe hole), which is crucial for the study of CC
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evenls,

The ZEUS coordinate system is a right-hanided orthogonal coordinate sys-

tem with the origin at the nominal interaction point, the positive (negative)

z-axis in the proton (electron) beam direction, the positive x-axis towards the

center of the HERA ring, and the positive y-axis in the upward direction. The

polar angle @ of the scattered electron is measured with respect to the positive

z-axis, and the azimuthal angle ¢ is measured relative to the positive x-axis.

‘The layout of the ZEUS detector is shown in fig. 2.2. It consists of (pro-

ceeding outwards from the interaction point):

the lnner ‘T'racking System: Vertex Detector {VXD), Cental Tracking De-
tector (C'T'D), Forward and Rear Tracking Detectors (FDE'" and RTD),

and the magnetic coil (Solenoid);

the Calorimeter: Forward, Barrel and Rear Calorimeter (FCAL, BCAL
and RCAL):

the Hadron-Electron Separator (HES) {not shown in the picture);

the Backing Calorimeter (BAC), which absorbs and detects energy leak-

age of the Calorimeter:

Muon Detectors: Forward, Barrel and Rear Muon chambers (FMUON,
BMUON and RMUON);

the C5 counter and the Veto wall {not shown in the picture), which

detect particles entering the detector from the rear direction.

Luminosity monitor
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Figure 2.2: The ZEL'S detector.
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‘The ZEUS detector components used in this analysis are described in the

following sections.

2.2.1 The Inner Tracking System

The ZEUS tracking system consists of a set of cylindrical drift chambers in
the central region, called the Vertex Detector {VXD) and the Cental Track-
ing Detector (CTD), planar drift chambers and transition radiation detectors
{(FDT and TRD) in the forward region and a planar drift chamber (RID) in
the rear region. During the 1993 HERA run, only the central tracking system
(VXD and CI'D) was functioning.

The VXD is a cylindrical drift chamber placed immediately around the
beampipe, with a length of 160 cm, an inner radius of 88 mm and an outer
radius of 162 mm. During the 1993 data taking, it achieved a spatial resolution
of 50 um in the central region and 150 ym around the edges. It is used in the
event vertex reconstruction.

‘The CTD is also a cylindrical drift chamber surrounding the VXD. It has a
length of 240 cm, an inner radius of 17 cm, an outer radius of 85 cm, and covers
polar angles @ from 15° to 164°. It consists of 72 cylindrical drift chamber
layers, organized into 9 superlayers. During the 1993 data taking, the CTD
achieved a spatial resolution of 260 ym, yiclling a resolution in transverse
momentum a(p)/p = 0.005p & 0.016, for tracks that traverse all superlayers.
The CTD is used in the reconstruction of the tracks of charged particles, and,
along with the VXD, in the event vertex reconstruction.

‘The magnetic field, of 1.43 Tesla, is provided by a superconducting solenoid

that surrounds the CTD.

R1l]

2.2.2 The Calorimeter

The ZEUS calorimeter is a high resolution wranivm-scinlillator compensating,
calorimeter. It consists of alternating layers of depleted! uranium (at a thick-
ness of 1 radiation length = 3.3 nun), as absorber. and scintiltator (2.6 mm
thick), for readout purposes. The nse of nraninm helps to increase the response
to hadrons. The ratio of sciutillator thickness to absorber thickness has been
chosen so that the calorimeter has an equal response to electrons and hadrons
(¢/h = 1), and a high energy resolution for hadrons and jets. The measured
energy resolution of the ZEUS calorimeter is

o(E)/E = 0.35/\/(E), for hadrons

o(E)/E = 0.18/,/(E), for electrons.

The layout of the calorimeter is shown in fig. 2.3. It completelty surrounds
the tracking detect;)rs and the solenoid. Mechanically it is divided in three

overlapping parts, covering three polar regions:

o the forward calorimeter {(FCAL), covering polar angles

2.2° < 8 <39.9°,

|
.

e the barrel calorimeter (BCAL), covering polar angles

36.7° < 8 < 129.1°,
o the rear calorimeter (RCAL), covering polar angles
128.1° < 8 < 176.5°.

With the exception of holes of 20 x 20 cm?, in the center of FCAL and RCAL,
which are necessary to accomodate the HERA beampipe, the calorimeter is

hermetic.

! An alloy of 98.4% U238, 1 4% Xb, and less than 0.2% {795,
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‘Ihe structure of the three calorimeter parts is similar. They are subdi-
vided longitudinally into modules, which in turn are subdivided into towers
of approximate transverse dimensions 20 x 20 cm?. Each tower is segmented
longitudinally into an electromagnetic (EMC) and one (in RCAL} or two (in
FCAL and BCAL) hadronic (HAC1,2) sections. The EMC sections consist
of four 5 x 20 ¢cm? cells in FCAL and BCAL, and two 10 x 20 cm? cells in
RCAL. The HAC sections are cells on their own. Each calorimeter cell is read
out on two opposite sides by two photomultiplier tubes (I’MT's), to achieve a
more accurate position measurement within the cell. The EMC section has
a depth of approximately 25 radiation lengths (.X,), or | absorption length
(A). The total HAC sections in FCAL/BCAL/RCAL are 6, 4) and 3 deep,
respectively.

‘T'he calorimeter also provides accurate timing information. The total time
of a calorimeler section (F/B/RCAL) is obtained from an energy weighted
average of the times of all PMTs with energy deposits greater than 200 MeV.

The timing information is very useful for background rejection.
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2.2.3 The Hadron-Electron Separator (HES)

In oreler to achieve a more accurate electron identification and electron position
reconstruction, a plane of 3 x 3 cm? silicon diocles has been inserted at 3.3
vadiation lengths inside the RCAL. This device is called the Hadron Electron
Separator (HES) because at this depth electromagnetic showers give a large
signal in one or more HES diodes, while hadrons, which typically interact at

greater depths, behave like minimum ionizing particles in the HES.

2.2.4 The C5 Counter and the Veto Wall

"The 5 beam monitor is a scintillator counter positioned around the beampipe,
at z = ~3.15 m upstream of the interaction point. It is used to reject proton
beam-gas background events, and to measure the beam arrival times.

The Veto wall is an iron wall located at z = ~7.5 m upstream of the
interaction point. Its main main purpose is to protect the main detector from
beam halo particles accompanying the proton heam. ‘I'he iron wall has a
thickness of 87 cm and is covered on both sides with scintillator counters,

which are used to tag penetrating particles from background interactions.

2.2.5 The Luminosity Monitor and Measurement

‘The ep luminosity is measured by the luminosity monitor using the rate of the
hard bremsstrahlung photons produced in the Beithe-Heitler process ep —
¢'py. This process has been chosen because of its large and precisely known

cross section, and its well defined experimental signature.
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‘The luminosity monitor consists of two scintillator calorimeters that mea-
sure the scattered electron and the radiative photon, and are placed at z = ~35
m and z = —106 m, respectively. Both the scattered electron and the radiative
photon are emitted at very small angles with respect to the initial electron di-
rection. The LUMI-¢ calorimeter detects electrons emitted at scattering angles
8. < 6 mrad and with energies between 0.2£, and 0.9£,, £, being the elec-
tron beam energy. ‘The L1'MI-v calorimeter detects photons at angles 8, < 0.5
mrad. The sum of the energy deposits in the LUMI-e and LUMI-5 counters
is equal to the electron beam energy.

A significant background in the luminosity measurement comes from brems-
strahlung of the beam electrons on the residual gas in the beampipe, €4 —
¢/A<. The rate of this background is estimated using the electron pilot bunches:
the bremsstrahlung rate from the electron pilot bunches, is weighted with the
ratio of the total electron colliding bunch current to the electron pilot bunch
current, and the estimated rate of total electron-gas bremsstrahlung photons
is subtracted from the total measured rate of photons. 'he instantaneous (in-
tegrated} luminosity is obtained from the corrected rate (number) of photons,
using by the theoretical cross section of the Brithe-Heitler process.

The integrated luminosity delivered by HER A in 1993 was 1088 nb~=*, while
ZEUS wrote on tape 600 nb~'. Both the HERA delivered and ZEUS accumu-

lated luminosity during the 1993 running period are shown in fig. 2.4.
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Figure 2.4: HERA delivered and ZEUS accumulated tuminosity during the
1993 run.

2.2.6 Trigger and Data Acquisition Systems

ZELUS uses a sophisticated trigger and read-out system, to enable operation
with the very short beam crossing interval of HERA (96 ns). ep physics events
in the ZEUS detector are written to tape at a rate of a few Hz. However,
background from interactions of the proton beam with residual gas in the
beampipe has a much higher rate, on the order of 100 kHz, which has to be
reduced by the trigger system. In addition, background events from electron
beam-gas interactions, beam halo, and cosmic rays, have to be rejected. The
trigger system is organized in three levels.

‘I'he First Level Trigger (FLT) system is a hardware trigger, designed to
reduce the input rate below 1 kHz. Each detector component has its own FLT,

which stores the data in a pipeline, and makes a trigger decision within 2 s

after the bunch crossing. L'he decisions from the local FLTs are passed to the
Global First Level Trigger (GFLT), which decides whether to accept or reject
the event, and returns this decision to the com ponent reacout within 5 ps.

If the event is accepted, the data are transferred to the Second Level Trigger
(SLT), which is software-based and runs on a network of Transputers. It is
designed to reduce the rate below 100 Hz, using mainly timing cuts. Each
component can also have its own SLT, which passes a trigger decision to the
Global Second Level Trigger (GSLT). The GSLT then decides on accepting or
rejecting the event.

If the event is accepted by the GSLT, all detector components send their
data to the Event Builder (EV'B), which produces an event structure on which
the Third Level Trigger (TLY) code runs. The TLI is also software-based,
runs on a farm of Silicon Graphics CI’U’s, and is designed to reduce the rate
to a few Hz.

Events accepted by the TLT are written to tape.

The ZEUS trigger and data acquisition systent is shown in fig. 2.5.
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Chapter 3

Monte Carlo Simulation

Monte Carlo (MC) simulation is used to correct for reconstruction resolution,
detector and selection acceptance effects.

The MC sample used in this analysis has been produced with the following
generators.

HERACLES 4.1 is used to simulate neutral current deep inelastic ep
collisions. It includes first order electroweak radiative corrections.

The DIS NC cross section is generated using MRSD’ (see section 1.10.1)
as the input structure function, since it shows the best agreement with the
1992 HERA data.

In order to simulate the hadronic final state, a model for the QCD cascade
and a model for the hadronisation process are required. The QCD cascade
(i.e. development of the parton shower) is simulated using the Color Dipole
Model (CDM),% as implemented in ARIADNE 3.1,%" and includes Boson
Gluon Fusion (BGF). The Color Dipole Model treats gluons as radiation from
the color dipole formed between the struck quark and the proton remnant,
rather than from individual partons. I'he Boson Gluon Fusion process, where
it is possible that both a quark and an antiquark create one dipole each with

the remnant, is not satisfactorily described by the CDM, and has been added
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separately. ‘T'he hadronisation process is simulated using the LUND string
model, * as implemented in JETSET 6.3.% According to this model, as the
struck quark moves away from the proton remnant, the color flux tube, which
can be thought of as a massless relativistic string, is being stretched belween
the partons. Assuming uniform energy density, the potential energy stored in
the string increases, the string may break into shorter fragments, and hadrons
are formed by the {anti)quarks from adjacent breaks.

T'he output of the MC generators described above is a set of momentum
1-vectors of the final state particles. These are then passed through the sim-
ulation of the ZEUS detector, which is based on GEANT 3.13,1° and the
simulation of the ZEUS trigger system. Finally, the MC events are also passed
through the reconstruction program identical to the one used for the data.

‘T'he main DIS NC Monte Carlo sample consists of 300k events, correspond-
ing to an integrated luminosity of 738 nb~!. It has been generated with Q* > 4
GeV?, which is the lowest cutoff of the input structure function.

ln addition to the main DIS Monte Carlo, two other MC samples are used
for background studies and radiative corrections.

Approximately 150k photoproduction background events (see section 5.5.4)
have been generated with 0 < Q® < 2 GeV?, at high y (y > 0.6), using
the PY'THIA 56" program. They are used for statistically estimating the
photoproduction background in the final DIS sample (see section 5.10.2).

A sample of 100k DIS events with only the Born cross section included has
lreen generated with the LEPTO 6.142 program. It is used for correcting the

imeasured DIS cross section due to radiative processes (see section 8.3).
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Chapter 4

Reconstruction of Kinematics

4.1 Reconstruction Methods

An accurate reconstruction of the Lorentz-invariant variables r, y and Q% is
of crucial importance for the measurement of the proton structure functions.

In inclusive Neutral Current Deep Inelastic ¢p Scattering the final state
consists of the scattered electron and the final state hadron flow. The latter
originates from the fragmented struck quark, which produces the “current”
jet, and the remaining diquark, which gives rise to the “remnant” or *spec-
tator” jet. The scattered electron and the current jet emerge back to back
in azimuthal direction and balance each other in transverse momentum. The
remnant jet is emitted in the forward clirection (that of the initial proton},
and escapes mostly unobserved down the beam-pipe.

We denote by k. and k; the momentum 1-vectors of the initial and scattered
electron, respectively, P the {-vector of the initial state proton, and P’ the 1-
vector of the final state hadron flow. In the ZEUS coordinate system, where the
direction of the initial proton is defined as the positive z axis, and neglecting

all particle masses, the 1-momenta of the initial and final state particles can
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e written as:
k, £ E, £,
0 Esiné 0 Py,
k. = K- infcos ¢ P p= b .

0 Esinfsing 0 Py,
.y Kcos@ E, Pey

(1.1

where £, and E, are the energies of the initial electron and proton, respec-
tively, £, 8, ¢ are the energy, polar angle and azimuthal angle of the scattered
electron, and E} is energy of the total hadronic system, where a summation
over all particles in the final state is assumed.

In order to reconstruct the event kinematics we can use either the final
state electron, or the hadron flow, or both. In the first case we use the scat-
tered electron energy £ and polar angle 8. In the case of the hadron flow
we need to be careful that the extracted variables are independent of the fi-
nal state fragmentation and insensitive to particle losses along the forward
beam direction. The transverse momentum of the hadron system, fr,, and
the difference between the energy and the z-momentum of the hadron flow,
(£ = P ), satisfy these requirements. The remnant jet contributes very little
to the above variables, as it is lost in the direction of the beam-pipe. We can
then assume that the hadron flow (in effect, the current jet) can be described
by a massless object, whose energy £; and direction cos ¥ can be reconstructed
from the quantities (E — P,), and Pr,. In the naive quark model, E, and y
are the energy and polar angle of the struck quark.

The kinematics of the event, z, y and 7, are extracted using any two

of the four parameters that describe the final state electron and hadron flow,

{E£,8,E;,7}. The various reconstruction methods obtained from the possible
combinations have a different response to detector effects and vary in accuracy,
depending also on kinematic regions, as explained below. 'The methods used

in this analysis are iscussed in the following sections.

4.1.1 Electron method

Using the definitions of the Lorentz-invariant variables r, y, Q% and s (eqs.
1.4, 1.6, 1.7, 1.3), and the momentum 1-vectors from eq. {1.1), we obtain the

event kinematics in terms of the energy £ and the angle # of the final state

electron:
, 0
flee = 2EL(1 4 cos ) = 1K E cos® 5 (1.2)
. 2 p
Yetee = 1 — i(l —cosd) =1~ E sinzg (1.3)

2 ol &
- (2clt-. _ £ cos 2
Telee = =

(1.1)
3 Yeleo Ep Il - E[‘ billl g']

where s is given by eq. (1.16). We call this method of reconstruction the
Electron method.

Substituting either 8 or £ from eq. {1.4) into eq. {1.2). we obtain the equa-
tions of contours of constant scattered electron energy and angle, respectively,

for the electron method:

Lz (1-£)
Q¥ =, E) = T (4.5)
L
Q¥x,0) = — (4.6)

thp yan? 8
1+ E. tan® 3

The scattered electron energy and angle isolines in the (z, Q%) phase space are
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shown in fig. 1.1. The dashed lines represent lines of constant y values at 1.,
0.1 and 0.01. The resolution in = and (2% is in general good in regions of phase
space where the E and 8 isolines are close together, whereas for isolines far
apart, small errors in the measurement of £ and @ produce large uncertainties
in r and Q. As can be seen from fig. 4.la, the resolution of the electron
method is good for low values of z, which also correspond to low values of the
scattered electron energy E. At higher values of z, the energy isolines become
distant, which means that small errors in the electron energy measurement
produce large uncertainties in the determination of z. In fig. 4.1b the lines at
36.7° and 129.1° represent the boundaries between FCAL-BCAL and BCAL-
RCAL, respectively, The RCAL beam hole {for # > 176.5%) sets a lower
acceptance limit for Q? at approximately 2 GeV?. The resolution in Q?, as
determined from the electron angle 8, is independent of x, and becomes better
for higher values of Q%

‘I'he dependence of the reconstructed ... and Q%,. on the measurement

errors of the scattered electron energy I and angle & is given by:

A _ (1Y (AEY? 0 (1 01 \ove .
—~ _\J(;) (_I:,_) +[—tan§+(;—l)cot§] (A8) (1.7)

2y 2
A_QQ;“‘ = J (QEE) + ta.n’g- (A8)? (1.8)
elec =

As can be seen from eq.(4.7), the resolution in r is good for high y values,
whereas it deteriorates with decreasing y, due to the 1/y factor that amplifies

the error of the energy measurement. The resolution in Q? is good, except at
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Figure 1.1: Contours of constant scaltered eleciron (a) energy and (b} angle,

for initial electron and proton energres k., = 26.7GeV and £, = 820Ce .

large electron scattering angles 8, where the error in the angle measurement

becomes the dominant term in eq.(1.8).

4.1.2 Current Jet and Jacquet-Blondel mecthod

The event kinematics could in principle be reconstructed from the current
jet, which originates from the struck quark, using its energy £; and angle 7.
However, in order to avoid effects arising from the final state fragmentation,
the particle losses along the beam-pipe, and the separation between the current
and remnant jets, we use the quantities Pr, and (£ - P.),, as discussed in
section (4.1). The reconstruction method of the HERA kinematics based on
the above quantities was developed by Jacquet and Blondel. **

Since the remnant jet is lost in the forward direction of the beam-pipe, the



51

transverse momentum {1, and the difference (£ ~ 1%.),, of the hadron flow are

approximately equal to those of the current jet, I’r, and (£ — P, )i

Pry~ Pr; = £, sinq (1.9)
Z{E = L)~ (B~ P); = E{1 - cosy) = 2F, sin® % (1.10)
5 2
where:
Pra= (Y Pl + () Pu)? (4.11)
& A
and the sums over A run over all final state hadrons.
\We determine Q? at the hadron vertex:
Q' =—¢" = ~(I, - 2P)?, (1.12)

where P and P; are the 4-momenta of the struck quark and the current jet,
respectively.

Using the definition for y from eq.(1.7), we obtain:

E;i .37 _ YiE-I) i
yJB=E‘:Sln’§=T (113)
t'rom the electron method we calculate:
Qzltf(l - y"“f) = 1’%(1(: (1‘14)

A similar equation must hold for the hadron flow, because of conservation of

transverse momentum. Thus:

1)2 £? sin! -
2 Th ) !
= = - 4.15
Qs Y-y 1- E‘f-fs'mz% (1.15)
Finally, x5 is given by:
2 Ejcos® 2
rp= 2 _ CRLA (1.16)

syiz K, (l - % sin? %)
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The Jacquet-Blondel method does not make any assumption about the
internal structure of the proton. it also makes no distinction between hadrons
coming from different jets. Thus, it works equally weli for multijet events,
without any need for exact jet definition and separation.

‘The contours of constant scattered jet energy and angle for the Jacquet-

Blondel method are given by:

E
. ar (1 - = ) -
Qz(r, )= - _]“:%J_ (4.17)
14
LS
Q(r,,)_]+£lrot2% (1.18)

The scattered jet energy and angle isolines in the (r,()?) phase space are
shown in fig. 4.2, In contrast to the electron method, resolution in &, as
determined from the scattered jet energy, is good at high values of ¢, whereas it
deteriorates for lower x. On the other hand, the forward leam hole (4 < 2.2¢)
sets an acceptance limit for the measurement and use of the scattered jet at
high values of z and low values of y.

The dependence of z ;5 and Q% 5 on the measurement errors of the scattered

jet energy £; and angle 5 is given by:

r s l—y 2 1-

AQ} 2-y\* (AL :
_QQ};B:J(N_;z) (T,J) +[2C0t'}+lzq(‘0tJ ( ‘IP (120)

' 2 N7 N 12
i‘.{E:J( ! ) (%) +[—taui+ ”Ucotgl (A4) (1.19)

| b
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Figure 1.2: Conlours of constant scattered je! (a) energy and (b) angle, for

initial electron and proton energies £, = 26.7GeV and £, = 820GeV.

'I'he resolution in & for low y values depends only on the scattered jet
energy measurement. At high y, the resolution in £ becomes poor, due to the
1/(1 ~ y) factor, in contrast to the electron method. The ? resolution also
deteriorates with increasing y. The resolution in z is poor at both low and
high values of 7, whereas the resolution in Q? is affected by the error of the

scattered jet angle measurement only at low values of 4.

4.1.3 Double Angle method

In the Double Angle method, z, y and Q? are reconstructed using the scattering
angles 8 and + of the final state electron and the final state hadroun flow,
respectively. There is no direct dependence on energy scales.

The scattering angle ¥ of the struck quark is obtained from the hadronic
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flow measurement. [nverting eqs. (1.13) and (1.15) that give ys5 and Qg as
functions of £; and «, we obtain:

035(1 —ysB) — 1b3955
Qlp(l —ysp) + 1£2y3g

cosy = (1.21)

Substituting ysp and Q3 in terms of 7, and (£ — 1%), yields:

(Zh o, )2 + (X Py’l)z —(Lall~ P, ))1 4.22
(T PV + (S PV + (A E = 1)) (4.22)

The energy of the final state electron can be expressed in terms of the angles

cosy =

@ and y. Conservation of energy, longitudinal momentum, and transverse

momentum, on the quark level, result in the following relations:

sk, + L. =E+ E, (1.23)
Tk, - E, = Kcos® + £, cos (4.21)
Esinb = E, siny (1.25)

Using the above equations we obtain:

~ 2K, siny
sinf + siny — sin{6 + )

(1.26)

Substituting the scattered electron energy, £, from equation {1.26) in the
equations (4.2}, (4.3) and (4.4) that reconstruct Q?, y, and r according to the
electron method, we extract the event kinematics in terms of the scattering

angles & and :

2 2 sin (14 cos8) -
=1 _ - 2
Da *siny +sin@ — sin(8 +4) (4.27)

sind (1 ~ ‘
ypa = 1~ cos1) (1.28)

siny +sinf — sin(8 + +)
E, siny +sinf + sin(8 + %)

p 3= — 1.2
D4 E, siny +sin8 — sin(8 + 4) (1.9
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Although the determination of the angle 4 is based on hadronic energies,
it is only weakly affected by hadronic energy miscalibrations, since it involves

a ratio of energies.

4.2 Radiative events

QLD radiative processes shift the reconstructed kinematic variables, in addi-
tion to modifying the Born cross section. As discussed in section (1.7), the
largest radiative corrections otiginate from the emission of a real photon from
the initial or final state electron. Therefore, the shift in the reconstructed &,
y and Q? is larger when the kinematic variables are calculated at the lepton
vertex (i.e. using the electron method).

In the case of Initial State Radiation (ISR), a real photon of energy E,
is emitted from the initial state electron. Thus, the effective energy of the
incident electron becomes E, — E,, where £, is the electron beam energy. The
photon is emitted collinear with the beam electron and is usually lost in the
rear direction of the beampipe. A small number of these initial state pho-
tons (about 15%)** are detected by the photon calorimeter of the Luminosity
monitor.

In the case of Final State Radiation (FSR}, a real photon is emitted from
the final state electron. If E is the energy of the scattered electron as measured
in the calorimeter, the real energy of the outgoing electron at the lepton vertex
is £ 4+ E,. In most cases the final state photon is emitted at very small angles
relative to the scattered electron. Thus, the calorimeter-measured energy of

the latter effectively includes the energy of the emitted photon, and the effects

5%

of FSR on the kinematic reconstruction are relatively small.

For radiative events, the equations (1.2), (1.3) and (1.1) give only the ap-
parent reconstructed Q% ., Yuec and ... Substituting the effective energies
of the initial or final state electron in the above equations we obtain the true

2

reconstructed kinematics, Yraq and z,.4, for ISR or FRS events, respec-

rads
tively.
ISR :
21 =2UEe — E)E(] + cos8) (4.30)
Yrad = 1 — Z(Te:E_)“ - cosf) {1.31)
Q2 Ecost!
| _ rad _ _ .
Lead = Toad Youd = £ [1 ~ I3 25‘“]2(_’ N (132)
il Frad m E(—_—E - 3

With 8,a¢ = 4E,(E. - E,).

FSR :
Q%4 = 2E(E + EL)(1 + cos) (1.33)
E+ E,
Yeag =1— _—)1,—[;-'(1 ~ cosf) (4.34)
2 (E+ E,)cos? ¢
Frad = rad . i . (4.35)
T Srat¥rad E, [] - '-:%f» sin? %}

with s,.4 = 4, E..

By comparing the above sets of equations with eqs.(4.2), (4.3) and {4.1), we

2

conclude that %, is smaller or larger than Q2.

for ISR or F'RS, respectively.
However, y,4q is smaller than yee., and x,,q is larger than e, for both ISR

and FSR events.
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4.3 Smearing and Migration effects

Detector smearing effects on the measurement of the energies and angles of
the final state electron and hadron flow introduce additional shifts in the re-
constructed x, y and Q? compared to the true values. In order to investigate
the smearing of the kinematic variables due to QED radiative processes and
detector effects, we use the Monte Carlo sample, after it has passed through
the ZEUS detector simulation, and compare the reconstructed z, y and Q?
with the true values, which are calculated from the 1-momenta of the initial
and final state particles. The results for the initial Monte Carlo sample, before
any cuts are applied, are shown in fig. 1.3.

‘Ihe resolution in @? is better for the electron and double angle methods
than for the Jacquet-Blondel method. For all methods, it deteriorates in the
low-Q? region.

Since the variable z is calculated from Q% and y for all methods, the reso-
lution in z is determined mainly from the resolution in y.

For the electron method, the energy-loss of the scattered electron, mainly
cue to dead material in front of the calorimeter and secondarily due to pho-
ton radiation, yields a reconstructed y... value greater than the true y. The
effect becomes worse in the low-y region, and results in poor resolution in z,
especially at high-z.

For the Jacquet-Blondel reconstruction method, the y-resolution also de-
grades at low-y. In this region, the current jet is emitted at very low scattering
angles and gets lost in the forward beam-pipe, while the reconstruction picks

up calorimeter cell noise and treats it as hadronic energy deposits.

6l

For the double angle method, in the low-y region, the same effect (i.e.
calorimeter noise interpreted as hadronic flow, when the current jet is lost in
the beampipe) shifts the reconstructed angle 5 to higher values (towards the
rear direction), and yields reconstructed y values greater than the true ones.

‘I'he resolution plots from the final Monte Carlo sample, after all selection
criteria have been applied, are shown in chapter 7.

Due to the smearing of the kinematic variables, the number of recon-
structed events in a given bin in the (x, Q?) phase space differs from the number
of generated events in that bin. A fraction of the events generated in the bin
have migrated to adjacent bins, while a fraction of the reconstncted events
have migrated into the bin from adjacent bins.

‘The migrations for the three reconstruction methods. as extracted from
the whole Monte Carlo sample, before any selection criteria are applied, are
shown in fig. 1.4, In this figure, the phase space has been divided into the
z and Q bins that will be used in the #} extraction, as discussed in chapter
& The three dotted lines represent the y = 1.0.1, and 0.01 boundaries. The
large migrations at high-z for the electron method are consistent with the
poor resolution in z, at high z values, of this reconstruction method. For the
Jacquet-Blondel and double angle methods, the migration plots show the shift
in the y reconstruction towards higher y values, in the low-y region.

As it is evident from the resolution and migration plots, the Jacquet-
Blondel methed is the least favourable in terms of a reliable reconstruction
of the event kinematics. The electron and double angle methods are in prin-
cipal complementary in resolution in the low and intermediate ¢ regions, and

are both used in this thesis.
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The migrations for tie electron and double angle methods, extracted from
the final Monte Carlo sample (after the event selection), and for the (z.Q?)

bins where an F; value is reported, are shown in chapter &.
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Figure 1.4: Migrations from the generated to the reconstructed kinematic vari-
ables. in the {r,Q%) phase space, for the three reconstruction methods. No

selection criteria are applied.
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Chapter 5

Event Selection

The selection procedure for DIS NC data is discussed in this chapter. The
methods used to reconstruct the event vertex, identify the scattered electron,
reconstruct the impact point of the scattered electron and determine the an-
gle of the hadron system are described. The cuts necessary to select well-
reconstructed events are discussed. The sources of background to the DIS
data are described, and the selection criteria imposed to reduce the various

backgrounds are explained.

5.1 Vertex Reconstruction

The position of the event vertex influences the reconstruction of the scattering
angles of the electron and hadron system, and hence the reconstruction of the
event kinematics. The acceptance of the final DIS event sample also depends
on the event vertex, through the selection criteria applied to the variable ¥
and to the quantity (£ — P, 00), as is discussed in the following sections.
For most of the DIS NC events the vertex position is reconstructed us-
ing VXD and CTD information. The algorithm recognizes trajectories in the

CTD, extends them into the VXD, and fits them to estimate the event vertex
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position. The track Z-vertex distributions for both data and Monte Carlo sam-
ples, without analysis cuts, are shown in fig. 5.1a. The two distributions are
in good agreement. A gaussian fit to the peak of the data yields a root-mean-
square of £11.1 em. The actual Z-width of the collision region, as determined
by the root-mean-square of the proton bunch length, is about +20 em (see
section 2.1).

For 16% of the events, both the outgoing electron and the hadron system
are emitted at very small angles, and leave no tracks in the CTD. For these
events the position of the vertex is reconstructed using calorimeter timing.
‘The timing Z-vertex distribution for the data sample, without analysis cuts,
is shown in fig. 5.1b. A gaussian fit to the peak yields a root-mean-square of
+18.9 cm.

The difference between the generated and the track-reconstructed Z-vertex
distribution for Monte Carlo events is shown in fig. 5.1c. A fit to this distri-
bution yields a mean resolution for the vertex position reconstruction equal to
3.3 mm.

The efficiencies for vertex reconstruction using tracking and calorimeter

" Data - no cuts { DIS MC - no cuts]

Tracking vertex 83.5% 80.65%
CAL Time vertex 9.5%
no vertex 7.0% 19.35%

‘lable 5.1: Efficiencies for reconstructing the event verter for the whole data

and DIS Monte Carlo samples, before any selection criteria.
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Figure 5.1: The reconstructed Z-verter distributions from data and Monte
Carlo samples, without cuts. (a) The Z-verter distribution from tracking in-
formation. The shaded area gives the Monte Carlo distribution. the points
represent the data distribution, and the line is a gaussian fit to the data. (b)
The data Z-verter distribution from timing information. The line gives the
gaussian fit. (c) The difference between reconstructed and generated tracking

Z-vertexr for Monte Carlo.
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timing information, for data and Monte Carlo before selection cuts, are shown
in table 5.1. For data, the timing vertex is used if there is no tracking vertex
available. kor data events where a vertex cannot be reconstructed by either
method, the event vertex is set to zero (nominal beam interaction point). For
Monte Carlo events, the vertex is also set to zero if no tracking vertex is
available. The vertex reconstruction efficiencies for the final samples are given

in chapter 7.

5.2 Electron Identification

‘I'he identification of a scattered electron in the ZEUS calorimeter is based on
the difference in size (both in longitudinal and transverse dimensions) between
electromagnetic and hadronic shower clusters, and on the degree of isolation
uf clusters. An electron produces a shallow and narrow shower, with most of
its energy deposited in the EMC section of the calorimeter, and generally well
isolated from other energy deposits.

The calorimeter cells are first projected onto a spherical surface, centered
at the event vertex. EMC cells with energy greater than 1 GeV are defined as
seed cells, around which two concentric cones of different size are constructed.
For EMC cells, the half angles of the inner and outer cones are 8EMC = 250

inner

mrad and §EMC = 400 mrad, respectively, while for HAC1 and HAC2 cells

vuler

the equivalent angles are 811AC = 300 mrad and #'AS = 500 mrad. If two or
more seed cells are found within the cone of half angle 250 mrad, the highest
energy cell is considered to be the seed cell. All cells within the two cones are

considered as a single cluster and the clusters constructed in this way are the
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electron candidates.

For each electron candidate, a quality factor is caleulated. which is a com-
bination of the size of the cluster, the ratio of EMC to HAC energies, and the
degree of the cluster isolation. The calculation of this quality factor is based

on Lhe following quantities:

& energy imbalance between the energy calculated from the left and right

readout of the seed cell energy,
o energy weighted radius of EMC-inner-cone,
e ratio of EMC-outer-cone energy to EMC-inner-cone rnergy,
e ratio of HAC-inner-cone energy to EMC-inner-cone energy,

e energy in HACl-outer-cone,

energy in HAC2-outer-cone,

ratio of HAC2-outer-cone energy to EMC-inner-cone energy.

Only electron candidates that pass the cut on the quality factor are kept.
This cut has been determined from calorimeter testbeam data and stuclies with
Monte Carlo samples.

In addition, the electron candidates are required to pass the following cuts:
o energy of the electron candidate (EC) higher than 2 Ge\’;
o number of calorimeter cells belonging to EC cluster less than 35;

o energy imbalance of the EC seed cell less than 0.2;



o ratio of the HAC energy to the total energy of the EC less than 0.1,

where the total energy of an electron candidate is defined as the sum of the
energies of the EMC-inner, EMC-outer, HAC1-inner and HAC2-inner cones.

If more than one electron candidate remains after the ahove procedure,
the one with the highest energy is considered as the scattered electron of the
event,

In addition to the main electron finding algorithm described above (EF1),
a second one (EF2), based on neural network logic, ™ has been used for sys-
tematic studies.

The efficiency and purity of an electron finder are defined as follows:

number of correctly tdentified electrons

Efficiency =
number of true electrons

(5.1)

number of correctly identified electrons

Purity = n -
) number of identified electrons

(5.2)

where a correctly identified electron is an electromagnetic cluster that has both
been generated and identified by the electron finder as the scattered electron
of the event. The efficiencies and purities of both electron finders have been
studied using the DIS NC Monte Carlo sample, ** after the § cut (section 5.7)
and the bor cut (section 5.3) have been applied. The efficiency of EF1 is
between 40% and 60% at low scattered electron energies (5 GeV to 12 GeV),
between 80% and 90% for energies 12 GeV to 20 GeV, and 98% or higher for
scattered electron energies above 12 GeV'. The purity of EF1 is around 95% at

low energies, and better than 97% for energies above 12 GeV'. The efficiency of
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EF2 at 5 GeV is 70%, with a purity of about 96%. For energies greater than
12 GV, the efficiency of EF2 is about 90% or higher, and the purity is 98%
or better.

For low values of Lhe scattered electron energy, the current jet follows the
same direction as the scattered electron. T'he hadronic energy around the out-
going electron makes the electron identification both difficult and unreliable,
and results in poor efliciencies and purities of the electron finders. In order
to avoid this effect, events with scattered electron energy less than 5 GeV are

removed from the sample. This cut is referred to as the elcctron energy cut.

5.3 Electron Position Reconstruction

‘The impact point of the scattered electron is reconstencted using calorimeter
information. :

The center of the electromagnetic shower is obtainell from the 3 x 3 ar-
ray of calorimeter cells centered around the cell with the maximum energy
deposit. Due to the rectangular shape of the calorimeter cells, the position
reconstruction is different in the X and Y directions. The vertical position Y’
is determined from the energy leakage of the electron to the adjacent 3-cell
rows (strips) above (Eatinp,,) and below (£, ) the row that contains the

maximum energy cell (b'.;,,-,,mm):

Y=V bstriu., - E’“'F‘own
=% . ¥ £ T E .
sln,u_' SUFE ey St goun

(5.3)

The horizontal position X is reconstructed as the energy weighted mean of
the shower centers of the three 3-cell columns {modules). The shower center

of each module is determined from the energy imbalance between the signals
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from the left and right ’N'I's of each cell:

Ereye = Erigne
X=X, —
Elc[( + er_q-'d

(54)
‘the cells in the upper and lower strips contribute to the imbalance of the
relevant module only if they contain more than 2.5% of the energy.

The functions ¥, and X, for the RCAL are obtained by fitting parametrized
functions to the RHES (see section 2.2.3) electron position of the real DIS NC
data. Yor FCAL and BCAL, the functions are fit to testbeam data.

The difference between the reconstructed and generated polar and az-

imuthal angles of the scattered electron are shown in fig. 5.2. The resolution

in & is approximately 0.8°, while the resolution in ¢ is approximately 2.5°.
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Figure 5.2: The reconstruction resolutions for the angles of the scattered elec-
tron, for the DIS ¥C Monte Carlo, without any selection criteria applied. (a)
The difference between reconstructed and generated polar angle. (b) The dif-

ference between reconstructed and generated azimuthal angle.
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Figure 5.3: The RCAL beampipe effect on the reconstruction of the scaftered
electron. In (a) the fractional energy leakage and in (b} the resolution of the
scattered electron polar angle are plotted as a function of the reconstructed

distance around the RCAL beampipe. No selection criteria are applied.

In the region around the RCAL beampipe the reconstruction of the electron
impact position is poor, due to energy leakage into the beampipe hole. The
quantity 1 - E, .. /Eyen, where £, and L., are the calorimeter measured and
generated energies of the scattered electron, respectively, is plotted in fig. 5.3a,
as a function of R, = vVX? + Y? around the RCAL beampipe, for the whole
Monte Carlo sample, before any selection criteria are applied. If the maximum
energy cell is vertically adjacent to the beampipe, the upper or lower strip is
lost and the Y position reconstruction is significantly affected. The X position
reconstruction is affected for maximum energy cells horizontally adjacent to
the beampipe. This effect, however, is less pronounced than in the Y’ direction,

since the module (or cell) with the maximum energy deposit contributes the
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most to the X reconstruction. The effect of the RCAL beampipe on the
resolution of the scattered electron polar angle 8 is shown in fig. 5.3b. In
order to avoid the electron energy leakage in the beampipe hole and ensure
a reliable reconstruction of the electron scattering angle, the electron impact
position on the face of the RCAL is required to lie outside a square of half
side 16 cm around the center of the RCAL beampipe. This cut is referred to

as the bor cut.

5.4 Hadron Angle

When the current jet is emitted at very low scattering angles (i.e. in the low-y
region} and gels lost in the forward {proton} direction of the beampipe, the
calorimeter cell noise, misidentified as hadronic flow, shifts the reconstructed
angle y of the hadron system to higher values, as discussed in section 1.3. This
effect yields a poor resolution in ¥, and therefore, a poor resolution in y, in
the low-y region. This can be seen in fig. 5.1a, where the difference between
the generated and reconstructed angles is plotted for the whole NC DIS Monte
Carlo sample, before any selection criteria are applied.

This effect can be reduced by applying a cut on y;p (see section 4.1.2), when
using the Double Angle reconstruction method (see section 4.1.3), in order to
ensure sufficient hadronic activity in the calorimeter and a good reconstruction
of the angle +. The cut applied is ys5 > 0.04 and is referred to as the y;p cut.

‘T'he relative resolution of yp4 as a function of y;p for the whole MC sam-
ple is shown in fig. 5.4b. For y;p greater than 0.04 the resolution in yp4

considerably improves over that at low-y values.

75
%\0.1 ; : > a .
b ; .. B |
o008 B, (@) | 305 Pu - (v)
006 F * ¢ 2> - ,
& E *e < r - .
<10.04 F - 05 F -
E T : b
002 f 4 04 [ .
- " ‘_ L 0’
0 E - + C T
o ‘ +44 0.3 P Lan e
~0.02 | - A S
-0.04 | ; + 02 £
-0.06 F o 2
~0.08 F ; 3 :
Lo Bl b a o wn lauy (o RS NI SPEP I NI BT
002 004 006 008 0.1 002 004 006 008 01
Y Yia

Figure 5.4: The hadron angle v. (a} The resolution of the +-reconstruction,
as extracted from the NC DIS Monte Carlo, plotted as a function of yi5. (b)
The relative resolution of ypa, as extracted from the Monte Carlo, plotted as

a function of yyp. No selection criteria are applied.

5.5 Background Sources

5.5.1 Cosmic Ray / Beam Halo Muons

A cosmic ray muon background event is characterised by a large EMC energy
deposit, which mimics a scattered electron, very little activity in the rest of
the calorimeter, and a maximum of two tracks in the C'I'D. The difference in
time (see section 5.6) between the top and the bottom of the calorimeter, for
a cosmic muon event, should correspond to the transit time of muons.

In addition to the cosmic muon background, there are also beam-associated



76

halo muons. The main characteristic of this type of muon background event
is the difference from cell to cell in x and y positions, which should be quite
small.

Muon background events are recognized by an algorithm that first examines

the following quantities:

the total energy in the calorimeter,

the total number of calorimeter cells above threshold,

the number of calorimeter cells hit,

the maximum energy deposited in a cell,

the calorimeter energy deposited around the beam pipe,

the number of tracks in the CTD.

If an event is classified by these criteria as a possible muon event, the
algorithm imposes a second set of criteria. The most important of them are
the time difference between the upper and lower part of the calorimeter, for
cosmic muon events, and the difference in x and y positions between the hit

cells, for beam halo muon events.

5.5.2 QED Comptons

Elastic QED Compton background events,

€p — €pY, (5.5)

are characterized by two electromagnetic clusters in the calorimeter, one track

in the C'I'D, and no energy in the FCAL. T'hey are not simulated in the

Monte Carlo. Therefore, they have to be removed from the data sam ple. The

algorithm that identifies elastic QED Compton events searches for:
o two electromagnetic clusters in the calorimeter,
o total energy sum of the two clusters 15 GeV < £,,,. < 30 GeV,
¢ remaining energy in the calorimeter £,.,, < 1 Cev,
¢ maximum of one track in the CTD.

Inelastic QED Compton events are simulated in the Monte Carlo.

5.5.3 Beam Induced Background

A large source of background arises from interactions of the proton or electron
beam with residual beam-pipe gas, the protous having a larger cross section
than the electrons. The signature of the beam-gas events depends on the
interaction point.

Proton-gas events that originate downstream the detector (in the positive-
z direction towards the FCAL) do not enter the calorimeter and do not leave
a signal. Proton-gas events that originate inside the detector deposit large
amounts of energy in the FCAL and no energy in the RCAL, and they can
be removed by an energy-momentum-conservation cut, as will be discussed in
section 5.7. Proton-gas events that originate upstream the cetector (in the
negative z-direction, towards the RCAL) can be removed by timing cuts, as
will be discussed in section 5.6. Nevertheless, a small fraction of proton-gas

events escape the momentum-conservation and timing cuts. contaminating the
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final data sample. The rate of this remaining proton-gas background can be
estimated from the proton pilot bunches, as discussed in section 5.10.1.
Electron-gas events that originate downstream or upstream in the detector
either do not deposit any energy in the calorimeter, or can be removed by
timing cuts. However, electron-gas events that originate inside the detector
produce an event signature very similar to the nominal DIS events. These
background events contaminate the final data sample. ‘T'heir rate is small and

is estimated from the electron pilot bunches, as discussed in section 5.10.1.

5.5.4 Photoproduction

A large source of background to the DIS NC events, especially at high y values,

comes from photoproduction (’HP):
ep—e+ X, at Q=0 (5.6)
‘The total photoproduction cross section as measured by ZEUS* is:
Grat(yp) = 154 £ 16(stal.} £ 32(syst.) ub, (5.7)

at an average center of mass energy of 210 GeV.

‘The outgoing electron for PHP events is emitted at very low angles and
in most cases escapes undetected in the rear direction down the beampipe.
‘I'herefore, the PHP background is significantly reduced by requiring a de-
tected electron in the final state. However, some PHI’ events still remain in
the sample, because occasionally the electron-finding algorithm wrongly iden-
tifies an electron in the hadronic activity of the calorimeter. [f the falsely

identified electron lies around the FCAL beampipe, the event has a very high

T

reconstructed Y., and can be removed by applying a g, cut (section 5.8).
A part of the remaining PHP events are removed by momentum-conservation
considerations, as discussed in section 5.7. Nevertheless, a fraction of the pho-
toproduction background contaminates the final sample. This has to be esti-
mated and subtracted statistically using the PHP Monte Carlo, as discussed

in section 5.10.2.

5.6 Calorimeter Timing

The time that a particle hits a calorimeter cell is extracted from the PMT in-
forimation. An energy weighted average of the times of all cells, with energy ¢le-
posits greater than 200 MeV, in a particular calorimeter section (F/B/RCAL).
yields the total time of this section {tr, 1g, 1n).

The time offset of each individual PM'T is adjusted so that the calorimeter
cell time equals zero for interactions originating at the nominal interaction
point and at the nominal bunch crossing time. Therefore, for nominal ¢p
interactions, the difference tr — tp should equal zero. However, for a proton-
gas interaction that occurs upstream of the detector, the outgoing particles
reach the RCAL earlier than the FCAL, and the time difference tf — tg is
approximately equal to the time needed to travel twice the distance from
RCAL to the nominal interaction point {~ 11lns}). Thus, a cut applied on the
tr — tp distribution significantly reduces the proton-gas background. In fig.
5.5 the difference tr — tn is plotted versus {p, for DIS events accepted at the
DST (see section 5.9.2) level, after a timing cut o{ |ty = tn} < 8 ns has been

applied. The main peak represents the DIS events, whereas a small number
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of remaining proton-gas background events can be seen on the upper left side

of the plot. In order to remove this remaining background, a stricter cut of
[tr —tp| < 6ns (5.8)

is applied at the final selection level.

[n practice, the proton bunch length broadens the time distribution of the
FCAL, and hence, also the tr — tg distribution, for both ep and proton-gas
interactions. The time distribution of the RCAL for nominal ep intgractions
is affected only by the electron bunch length. However, for proton-gas interac-
tions, the tp distribution is also affected by the proton bunch length. There-
fore, it is broader than the tg distribution for ep interactions. This effect can
be used to remove the proton-gas background for events with a small energy

deposit in the FCAL, which does not allow a {5 measurement, by requiring:

|tr| < 6ns. (5.9)
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Figure 5.5: Measured time difference between FCAL and HCAL. versus the
RCAL time, for events accepted at the DST level. The main peak comes from
the DIS events. The small ezcess on the upper left side is due to proton-gas

events,



5.7 Momentum Conservation

Although ZEUS is a nearly hermetic detector, a large part of the proton rem-
nant jet, which is emitted at very low angles, escapes undetected in the forward
direction down the beampipe. In order to minimize analysis mistakes due to
this effect, the difference between the total energy of the event and the energy

in the z-direction is used. We define § as:
6= Eot— Poior = Y Ei(1 —coséy), (5.10)

where the sum runs over all calorimeter cells.
Conservation of £, and P,, during the interaction determines that §
must be equal to twice the energy of the initial electron, 2£,, for a completely

hermetic detector:
(bvlul - I): ot )!imxl = (Elvl - l)zlor)im'h'n! = (by + b‘r) - {h‘p - -Ee) = Zbe (511)

Although this is not exactly the case at ZELUS, the proton remnant jet con-
tributes very little to &, since it is emitted at very small, forward angles.

Therefore, for DIS events it is expected that:
§PI5 = oF, . (5.12)

In the case of ISR events, the initial electron energy K, is lowered to £, —E,,
where E., is the energy of the real photon which is emitted from the initial state
electron, as discussed in section 4.2. In most of the cases, the photon escapes
undetected in the direction of the beampipe, and the apparent (measured) §
peaks at lower values:

ISR~ o(p. — 1) (5.13)

upp
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In the case of photoproduction events, the scattered electron {of energy
E’) escapes undetected in the rear direction of the beampipe, vielding again a
lower & value:

PHP _ yp -
8217 =, - E. (5.14)
The 6 distribution for photoproduction Monte Carlo events (see section 5.10.2)

is plotted in fig. 5.6. Also plotted in this figure is the & distribution for the
standard DIS NC Monte Carlo events.
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Figure 5.6: The E;o — P; (o distribution for events accepted at the DST level.
The unshaded histogram represents the DS NC Monte Carlo events, The
shaded histogram represents the PHI? Monte Carlo events. normalized to the

DIS Monte Carlo luminosity.
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Finally, low é values are found for proton beam-gas events which occur
insice the detector, since they deposit a considlerable amount of energy in the
FCAL, but no energy in the RCAL.

In order to remove all three types of background, a lower cut on (£, —
I’ 1} is applied at various phases of the DIS selection procedure. Looser
vuts, of 200 and 25 GeV, that include the energy measured by the photon
calorineter of the Luminosity monitor, are applied at the early phases. At the
{inal selection phase, the lower cut is raised to 35 GeV, while the upper cut is

determined by eq. (5.12) (2-26.7 GeV +10o):

5 CGeV < § < 60 CGeV. (5.15)

5.8 Fake FCAL Electrons

in some cases, the electron finder incorrectly identifies an electron within the
hadronic activity around the FCAL beampipe. For the present HERA kine-
matic range, there is a high probability that these FCAL electrons are fake.
Most of them belong to photoproduction events, which have to be removed
from the data sample.

Since the reconstructed yer. of the events with the FCAL electron is fairly

high, these events can be removed by applying a e cut:

Yelee < 0.95. (5.16)

5.9 Data Selection

The selection criteria, most of which have been discussed in the previous sec-

tions, are summarized here.

5.9.1 Trigger

The DIS NC “Irigger is applied at three levels.

The First Level Trigger (FL1') requires a Jogical OR of three conditions:
o BCAL EMC energy greater then 3.1 GeV\’

o RCAL EMC energy, excluding the trigger towers around the RCAL

beampipe, greater than 2 GeV

e RCAL EMC e'nergy, including the trigger towers around the RCAL

beampipe, greater than 3.75 GeV
The Second Level Trigger (SLT}

e applies timing cuts of &ns on the FCAL and RCAL time, |t7| and [tal,

respectively, in order to further reduce the proton beam-gas background,
o rejects sparks in the calorimeter.
The Third Level Trigger (TLT - DIS NC filter)

e applies timing cuts, of 8ns, on |in|, {t], |tr —tr), and the global calorime-

ter timing |ig|,

e rejects cosmic and beam halo muons, using the online version of the

muon finder,
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® requires:
(Etot — Patar) + 2L, > 20 GeV, (5.17)
in the 1993 data taking a total of 2 x 10° events was recorded with the DIS
NC trigger.
5.9.2 DST

Events are written on the DIS NC Data Summary Tape (DST) if the following

requirements are satisfied:

o the event passes the TLT DIS NC filter

o stricter calorimeter timing cuts are passed: a cut of 6 ns is applied on
the RCAL time |tg|, and a cut of 8 ns is applied on the FCAL time |¢£|,

global calorimeter timing |tg|, and on the quantity |t — tg]

cosmic and beam halo mitons are not found, using the offline versions of

the muon finder

after removal of sparks, events must have an energy deposit in the

calorimeter

an electron is loosely identified, taking the logical OR of four electron

finders, with electron energy greater than 1 GeV
e astricter cut on the quantity (£, ~ £ 1) + 2£, is passed:

(Etot — P2 10) + 2£, > 25 GeV. (5.18)

After the DST filter, 3.1 x 10° events rematned in the DIS NC data sample.

P
-1

5.9.3 Preselection

The DIS NC events written on DS are further processed. in order to remove:
o events with an incomplete or malfunctioning detector,
e events with total energy in the calorimeter less than 2 GeV'.

After the preselection phase, the remaining data sample consists of 380,537
events, corresponding to an integrated luminosity of 545.63 nb~".
The DIS NC Monte Carlo is also processed through the preselection, re-

moving events with total calorimeter energy less than 2 Ge\".

5.9.4 Final Selection
‘The final selection criteria applied to the data are the following:

o Electron Energy cut: £ 2> 5 GeV
to ensure reliable electron finding and reduce photoproduction back-

ground;

o § cut: 35 GeV < (K = ) <60 GeV

to reduce ISR, photoproduction and proton-gas backgrounds.

o Box cut: | X.e| > 16 cm and [Yye.| 2 16 cm, in the RCAL

to ensure full containment of the electron shower:

® Yelec UL Yelec < 0.95

to reduce photoproduction background

o yyp cut: yyg > 0.04, only for the Double Angle method

to ensure good measurement of the hadron angle +:



o
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o timing cuts: |tp) < 6 ns and [tr — tp} < 6 ns

to reduce beam-gas background;

removal of events that have originated from the electron or proton pilot

bunches (see section 5.10.1);
o removal of remaining cosmic or halo muons;

¢ removal of QED Compton events.

All the above selection criteria, except for the timing cuts and the removal
of the pilot-bunch events, are also applied to the DIS NC Monte Carlo sample.
After the final selection, the data sample for the Double Angle method
consists of 11,513 events, while the sample for the Electron method consists
of 65,316 events. It should be noted, however, that the number of events for
the Electron method is modified by the electron energy corrections, discussed

in the next chapter. The final statistics is given in chapter 7.

5.10 Background in the Final Sample

The remaining background in the data sample, after all selection cuts have
been applied, cannot be identified on an event by event basis. It has to be
estimated and subtracted statistically, in each (z,Q?) bin used for the £
extraction. This remaining background originates either from non-colliding

beam interactions, or from photoproduction.

5.10.1 Non-Colliding Beam Background

Proton-gas or electron-gas events originate either from the proton/electron
pilot bunches (see section 2.1), or from the colliding proton/electron bunches,
when they interact with the residual gas in the beampipe.

Events identified by the bunch-crossing type as originating from the pilot
bunches are used to calculate the number of colliding beam-gas events that
survive all selection criteria and contaminate the fina) sample.

The number of p(e)-pilot bunch events that pass all cuts, in each {x,Q%)
bin, is multiplied by the ratio of the total current of colliding p(e) bunches to
the total current of p(e)-pilot bunch(es). The ratio of currents is 12.976 for
the proton beam and 7.848 for the electron beam. The result is an estimate
of the total number of p(e)-gas events that remain in the bin after the final
selection, and is subtracted from the number of events in the bin.

The estimated total number of proton- and electron-gas events in the final
sample, in all {z,Q?) bins, accounts for approximately 1% of the final data

sample. The details are given in chapter 7.
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5.10.2 Photoproduction Background

The largest background in the final DIS data sample is that from photopro-
duction.

‘The photoproduction background that remains in each {x,Q?) bin after
the electron energy cut, the y... cut, and the § cut, is estimated from Monte
Ctarlo.

‘The PHP Monte Carlo events are generated with the PYTHIA minimum
bias photoproduction generator, with generated y > 0.6. They are processed
through the detector and trigger simulation programs. the event reconstruction
program, and the full event selection procedure.

The photoproduction Monte Carlo event distribution is plotted versus
(Eey ~ Prior) in fig. 5.7, along with the nominal DIS NC Monte Carlo, be-
fore and after the electron energy cut and the g, cut. [t can be seen that
a number of photoproduction events with (£, — P, 1) greater than 35 GeV
remains after the two cuts.

[n order to statistically subtract the PHI background that contaminates
the final data sample, the number of photoproduction Monte Carlo events that
remain in a bin, after all selection criteria have been applied, is weighted to the
total luminosity of the data and subtracted from the number of data events in
the bin.

A total of 150k PHP events were generated, which corresponds to approxi-
mately 1/3 of the total data luminesity. The estimated photoproduction events
in the final data sample are not distributed uniformly over the (z,Q?) plane.
In the high y bins, the PHP background is as high as 5%, but for most bins it

amounts to only 1-2% or less. The final numbers of PHP background events,

9}

for both the Electron and Double Angle methods, are given in chapter 7.

A second method of ’HE background subtraction has also been used, for
the Double Angle method. In each bin, a combination of exponential and
gaussian curves is fit to the shape of the measured § distribution. before the
cut on § is applied. The PHI? background leve] estimated from the fit is about
50% higher than the one estimated fromi the PHI Monte Carlo However, this
difference is within the range covered by the various systematic checks on the

PHP background, as discussed in section &.6.
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Chapter 6

The Electron Energy Scale

6.1 Electron Energy Response

A reliable measurement of the energy of the final state electron is crucial for
the reconstruction of kinematics when using the Electron method ({sce section
1.1.1). The effect on the Double Angle methotd {see section 1.1.3) is much less
important, since it is relevant only for the selection cuts.

The electron energy respounse for the Electron method sample is shown in
fig. 6.1. There is a discrepancy of approximately 1% between the scattered
electron energy in the data and the Monte Carlo. The disagreement is mainly
attributed to inactive material in front of the RCAL, especially around the
RCAL beampipe, which is not fully simulated in the Monte Carlo.

The different electron energy response causes a discrepancy belween data
and Monte Carlo in the § distribution, as can be seen in fig. 6.2. It also causes
a disagreement in the reconstructed r.... y.. and Q2. between data and
Monte Carlo, as can be seen in fig. 6.3.

A method to correct for the energy loss of the scattered electron due to
inactive material, and hence make the use of the Electron method feasible, is

discussed in this chapter.
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6.2 Kinematic Peak

In order to determine the spatial structure of the electron energy loss in
the calorimeter, a sample of events with known scattered electron energies
is needed. The kinematic peak (KP) region provides such a sample. The KP
is a region of phase space where the mean scattered electron energy is almost
equal to the incident electron energy. This occurs at low values of y, indepen-
dently of ¢ and (%, as can be seen from eq. (1.3). The KP region is plotted
in fig. 6.4 as the region bounded by the electron energy isolines of 26 and 27.5

GeV', around the beam electron energy isoline of 26.7 GeV.
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Figure 6.4: (r,Q?) plane showing the shaded KNI’ area, bounded by the electron

energy rsolines al 26 GeV and 27.5 GeV.
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‘The KP region can be isolater with appropriate cuts. First, all cuts de-
scribed in the previous chapter, except for the yy5 cut. are applied, in order to
reject background and ensure a reliable reconstruction of the event kinematics.
The yyp cut is necessary only in the double angle method. to ensure adequate
resolution of the hadronic angle v, as discussed in section 5.1. A cut is then

made on Q},, which is required to lie between 10 GeV? and 100 GeV2.
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Figure 6.5: Mean electron energy versus yyg, after the * cut. for data {(solid

circles) and Monte Carlo (open circles) crents.

The mean scattered electron energy after the above selection is plotted in
fiz. 6.5, as a function of y;5. It is evident that the electron energy hecomes

independent of ysg, at low values of y. Thus, events in the KI” region can be
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selected by requiring y;5 < 0.03. In addition, this ys5 cut ensures that the
KI* sample does not overlap with the Double Angle sample (y;5 > 0.01 for
the Double Angle method).

Fig. 6.6 shows the generated Monte Catlo scattered electron energy distri-
bution for KP events. The scattered electron spectrum peaks sharply at the
electron beam energy. Therefore, the I(P sample can be used as a “test beam”

at 26.7 Ge\’ to determine the electron energy loss seen in the calorimeter.

-3

L

|

; |

° [ s v ar i Lau o | ) N J
16 " 0 22 24 20 ] >0

MC true Electron Energy ot KP (Cev)

Figure 6.6: Monte Carlo true clectron energy for the KP sample.
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6.3 Electron Energy Correction Method

6.3.1 Principle

In order to correct the scattered electron energy for energy loss due to inac-
tive material in front of the RCAL, we use the KP electrons to measure the
calorimeter response at 26.7 Ge\'.

The sample is binned in scattered electron impact position on the face
of the RCAL so that the average inactive material traversed by the electron
before reaching the RCAL is approximately constant in the bin {see section
6.3.3). The measured deviation of the scattered KNI’ electron energies from the
eleclron beam energy (£, ), measures the energy loss of a 26.7 GV electron
when it traverses the inactive material.

The observed shift is compared to test beam data' which provide the
energy loss of a 30 GeV electron as a function of the absorber thickness in front
of the calorimeter modules. Ln this way, a map of the inactive material in front
of the RCAL is produced. Consequently. test beam data, which provide the
energy loss of an electron as a function of its energy and the material depth,
is used to extract the corrected scattered electron energy from the calorimeter
measured energy and the calculated inactive material.

‘The energy corrections are applied both to data and Monte (arlo events.
Due to the inadequate description of the inactive material in front of the
rear beampipe in the ZEUS detector simulation, the electron energy loss seen
in the calorimeter is different for data and Monte Carlo events. Therefore,
the obtained maps of inactive material, and the subsequent electron energy

corrections according to these maps, are different for data and Monte Carlo.
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6.3.2 Energy Loss Parametrization

The test beam measurements *” for the response of the calorimeter to 30 GeV
electrons as a function of the absorber thickness and as a function of the elec-
tron energy for various absorber thickness are parametrized with the function:

T =1+ d(0.0037¢ ™ EETS +0.054e™ L L), (6.1)

mea»
where £,..,, and E,, are the calorimeter measured and corrected energies of
the scattered electron, respectively, and d is the absorber thickness, measured

in radiation lengths (r.l.). The function given in eq. (6.1) is plotted in fig. 6.7.
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Figure 6.7: Parametrization of the ratio E .., [ Loneas in eq. (6.1), as a function

of the material traversed {in radiation lengths) and of K,...,.

101

6.3.3 Bin Selection and Dead Material Map

The correction bins are chosen on the face of the RCAL so that the average
inactive material in front of the area covered by each bin is approximately
constant. In practice, however, the choice of bin size is limited by statistics.
The chosen bins are shown in fig. 6.8. T'hey cover a square of 110 cm on each
side centered around the RCAL beampipe. Qutside this correction square the
statistics is insufficient to implement the energy correction method.

The electron energy spectra in the chosen bins, for data and Monte Carlo
(shown in figures 6.9 and 6.10, respectively)} are fit with a gaussian with an
exponential tail.

The maps of the inactive material, which are extracted from the energy
loss in each bin, are shown in figures 6.11 and 6.12, for data and Monte Carlo,
respectively. ln the arca around the RCAL beampipe, the inactive material
extracted from the data is approximately 1 r.l. greater than the inactive

material in the Monte Carlo.
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Figure 6.8: The correction bins on the face of the RCAL. The solid area indi-

cates the beampipe hole. The shaded area indicates the bor cut of 16 cm.
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Figure 6.12: Inactive material around the RCAL beampipe, for MC.
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6.3.4 Electron Energy Correction

‘The electron energy correction is applied separately to data and Monte Carlo
events,

For data events, the scattered electron energy is corrected for energy loss
in the inactive material in front of the RCAL using the following procedure.
The impact point of the scattered electron, after being projected onto the
face of the RCAL, determines the correction bin (see fig. 6.8). The inactive
material d, that the electron has traversed before reaching the front of this
specific RCAL bin, is read from the map of the inactive material for data
(see fig. 6.11). The calorimeter measured energy, £,...,, and the thickness of
the inactive material, d (in r.L.), are inserted in eq. (6.1}, which provides the
corrected scattered electron energy.

The effect of the energy correction on the spectrum of the scattered electron
energy for data events can be seen in fiz. 6.13. The dashed line represents
the calorimeter measured electron energy before correction. The solid line
represents the corrected electron energy. The correction for the energy loss
in the inactive material shifts the scattered electron energy to higher values.
[n order to account for this effect, we raise the electron energy selection cut
from 5 GeV to 8 GeV. Since the scattered electron energy is included in the
6 = (Ejot — Prio) distribution, the upper cut on § is also shifted from 60
GeV to 65 GeV, in order to include the high energy tail of the distribution.
‘The data sample used for both histograms in fig. 6.13 has been obtained by
applying these higher cuts on corrected variables.

For Monte Carlo events, a similar procedure is followed. The impact point

of the scattered electron, projected onto the face of the RCAL, determines
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the correction bin (see fig. 6.8). The inactive material d, that the electron
has traversed before reaching the RCAL, is read from the map of the inactive
material for Monte Carlo (see fig. 6.12). The calorimeter measured energy,
Erieas, and the thickness of the inactive material, d {(in 1.1}, are inserted in eq.
{6.1), yielding the corrected scattered electron energy.

The effect of the energy correction on the spectrum of the scattered elec-
tron energy for Monte Carlo events can be seen in fig. 6.11. The dashed line
represents the calorimeter measured electron energy before correction. The
solid line represents the corrected electron energy. The dotted line gives the
true generated electron energy. The correction for the energy loss in the in-
active material shifts the electron energy to higher values, closer to the true
generated energy. However, the shift is smaller for Monte Carlo events than
for data events. This is expected, since the inactive material in the Monte
Carlo is approximately 1 r.l. less than the inactive material extracted from
the data, as shown by comparing figures 6.11 and 6.12. As is done for the data,
the electron energy and the upper § selection cuts are raised for the corrected
Monte Catlo events from 5 GeV to 8 GeV and 60 GeV to 65 GeV', respec-
tively. The Monte Carlo sample used for all three histograms in fig. 6.11 has
been obtained by applying these modified cuts to the corrected reconstructer

variables,
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Figure 6.13: tlectron energy distribution, for data events, before {dashed line)

and after (solid line) correction.
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Vigure 6.14:  Electron energy distribution, for Monte Carlo events, before
(dashed line) and after (solid line) correction. Also shown {dotted line) is

the true generated Monte Carlo scattered electron energy.
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6.3.5 Resolution Smearing in Monte Carlo

The energy resolution of the calorimeter is modified by the presence of absorber
in front of the calorimeter. The resolution ¢ as a function of the particle energy

E and the absorber thickness d, is given by:
o(E,d) =019 VE (1 4 a,), (6.2)

where:

04 = 0.02 27, (6.3)

Eq. (6.3) is obtained from a fit to test beam data, which provide the resolution
with and without absorber as function of the absorber thickness, 17

Thus, the 1 r.l. additional inactive material around the RCAL beampipe
yields a worse energy resolution for data events than for Monte Carlo events,
in addition to the lower data energies.

The effect can be seen in figures 6.9 and 6.10 for the KP sample. The peaks
of the electron energy are not only consistently lower in the data than in the
Monte Carlo, but also broader.

In order to account for this effect, the electron energy in the Monte Carlo
is smeared, bin by bin, after the energy correction. The smearing is done so
that o€ in each correction bin becomes equal to o4* in the corresponding
bin.

Fig. 6.15 shows the corrected electron energy for Monte Carlo events after
the MC resolution smearing (solid line). Also shown are the uncorrected elec-
tron energy (dashed line) and the true generated electron energy (dotted line).

The Monte Carlo sample used for all three histrograms has been obtained by
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applying the higher electron energy selection cut (8 GeV) to the corrected and

resolution-smeared reconstructed electron energies.

.”
£ {Gev)

Figure 6.15: Klectron energy distribution, for Monte Carlo events, before
(dashed line) and after (solid line} correction. Also shoun (dotted line) is

the true generated Monte Carlo scatiered electron energy.

6.3.6 Extension to the Whole Calorimeter

Outside the RCAL beampipe region, the KP sample does not provide enough
statistics to extract a map of the inactive material. Thus, the Monte Carlo es-
timate is used for the rest of the calorimeter. This estimated inactive material
was obtained by firing virtual Monte Carlo particles into the calorimeter, using
the ZEUS detector simulation code, in order to determine the path-integrated

inactive material traversed by the particles.
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6.3.7 Final Correction Results

The electron energy response, after the electron energy corrections have been
applied to both the data and Monte Carlo samples, is shown in fiz. 6.16. The
shaded area represents the corrected Monte Carlo energy with the smeared
resolution, while the dashed line gives the same distribution without smearing.
The points represent the corrected electron energy for data. The selection
criteria are similar to those used in fig. 6.1 (i.e. all cuts for the Electron
method have been applied). However, the values of the electron energy and 4
selection cuts are raised to 8 GeV and 65 GeV, respectively, as explained in
section 6.3.4. Fig. 6.16 includes events with the scattered electron anywhere
in the calorimeter, and with = and Q? over the whole {r.()?) plane.

The 6 distribution after the electron energy corrections is shown in fig.

2

elec

6.17, while the corrected r..., ¥etec and Q3. are plotted in fig. 6.18. The
selection criteria for these plots are the same as in fig. 6.16.
The electron energy resolution, as extracted from the difference between
generated and reconstructed electron energies for Monte Carlo events, is:
o(E) = 1.319 £ 0.006 GeV,
for uncorrected electron energies,
o(£) = 1.251 £ 0.005 GeV,
for corrected electron energies, without MC resolution smearing, and
o(E) = 1.861 £ 0.007 GeV',
for corrected electron energies, with MC resolution smearing.
The energy and event kinemalics distributions. as well as the statistics, for

the final data sample, after the modified selection criteria, are given in the

next chapter.
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Figure 6.16: Corrected electron energy distribution, for data (points) and
Monte Carlo (shaded histogram]} events, for the Electron method selected sam-
ple. The dashed line gives the corrected electron energy for Monte Carlo, with-

oul resolution smearing.
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Figure 6.17: Corrected § disiribution, for data (points) and Monte Carlo

{shaded histogram) events, for the Electron method selected sample.

113

2500
2250
2000
1750
1500
1250
1000

750

500

3500

3000
2500
2000
1500

1000

2500

2000

1500

1000

10 10°
Qe (GeV?)

1 10
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Carlo (shaded histograms) evenls, for the Electron method selected sample.
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6.3.8 Checking the Correction Method

‘'hree independent physics channels have been used to verify the accuracy of

the electron energy corrections within the correction square in the RCAL.

¢ Elastic QED Compton events. The final state of these events consists of
an eleetron and a photon, whose sum of energies (as measared by the

calorimeter) must be approximately equal to the electron beam energy.

¢ Diffractive (see section 7.3) DIS p events. Since these events have a clear
hadronic final state (the p), energy and momentum conservation yield
an estimate of the scattered electron energy, independently of the RCAL

energy scale.

ISR DIS events, with the radiative photon tagged by the luminosity -
detector. The energy of the radiated photon can be reconstructed using
calorimeter quantities, and compared to the energy measured by the

luminosity -detector.

All channels yield an accuracy of about 1% ** for the RCAL electron energy

corrections.

Chapter 7

The Final Sample

7.1 Electron method

The scattered electron energy, £, for the Electron methodl data and Monte

Carlo samples, is corrected with the energy correction method described in

2

¢, of each event are

the previous chapter. The variables &, r... yere. and
calculated using the corrected electron energy. I'he cuts on £ and & are raised
to 8 GeV and 65 Ge\' (upper cut), respectively, as explainer i section 6.3.1.

The resolution plots for Qf,", Teee and g1, ., extracted from the selected
Monte Carlo sample, are shown before correction in fig. 7.1 and after correc-
tion in fig. 7.2. Comparing the uncorrected distributions of fig. 7.1 with the
resolution plots of fig. 4.3 for the initial Monte Carlo sample, it is seen that the
selection criteria considerably improve the resolution of the kinematic recon-
struction, especially in the low-r, low-Q? region. Fig. 7.2 shows the resolution
plots for the corrected Q%,., et and yu.. distributions. The electron energy
correction worsens the resolution somewhat, since it accounts for additional
inactive material. The effect is more pronounced in the high-z, low-y region:

the higher corrected electron energy reconstructs r,. to higher values, and

Yeiec to lower values (see equations (1.3) and {1.4)).
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the selected Monte Carlo sample, after the electron energy correction is applied.
plied.
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‘The nuniber of events of the final data sample for the Electron method, as

well as the estimated background in the final sample, are given in table 7.1.

Electron method

Final sample

Data || 57,334
estimated e-gas bkgd 507 0.88%
estimated p-gas bkgd 223 0.39%%

estimated PHP bkgd 900 1.57%

‘Table 7.1: Statisttcs of the final date sample for the Electron method.

The vertex reconstruction efficiencies, using tracking and calorimeter tim-
ing information, for the final Electron method data and Monte Carlo samples,
are given in table 7.2. The corresponding efficiencies for the initial data and

Monte Carlo samples were given in table 5.1.

Electron method

Data - final { DIS MC - final

Tracking vertex 86.3% 90.1%
CAL Time vertex 11.7%
no vertex 2.0% 9.9%

I'able 7.2: Verter reconstruction efficiencies, for the final Electron method data

and Monte Carlo samples.
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Figure 7.3: Distributions of the scattered electron energy and polar angle, E
and 8, respectively, and the reconstructed ro,.. and Q3_, for the final Electron

method data (points) and Monte Carlo (shaded histograms) samples, after the

eleclron energy corrvection.
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Fig. 7.3 shows the scattered electron energy £, the scattered electron polar

2

angle 0, and the reconstructed z.. and Q7. , for the final Electron method
data and Monte Carlo samples. There is a good agreement between data and
Monte Carlo, in the electron energy and the kinematic distributions, after the
electron energy correction. The agreement is worse in the distribution of the
scattered electron polar angle. However, the effect is covered by a systematic
check on the electron angle (see section 8.6).

‘I'he impact point of the scattered electron, on the face of the RCAL, for
the final Electron method data sample, is shown in fig. 7.4. The fiducial cut

of 16 cm around the beam-pipe is clearly seen.
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Figure 7.4: The impact point of the scattered electron on the face of the RCAL,

for the final Electron method data sample.

7.2 Double Angle method

The electron energy response has only a secondary effect on the reconstruction
of the kinematics with the Double Angle method: it enters through the selec-
tion criteriaon £, § and ye.c. In correcting the electron energy, the amount of
inactive material outside the square of side 110 cm around the RCAL beampipe
has been estimated from Monte Carlo, rather than calculated from the energy
loss of the Kinematic Peak sample, due to limited statistics (see section 6.3.5).
Therefore, the corrections are less reliable for the rest of the calorimeter than
for the RCAL beampipe region. Since the effect of the electron energy response
is much smaller for the Double Angle method than for the Electron method.
the uncorrected £, § and v, are nsed in the event selection fur the Double
Angle method, for the whole calorimeter.

The resolution plots for Q3,,. rpa and .y, as extracted] [rom the final
Monte Carlo sample, are shown in fig. 7.5. T'he resolution in x in the low-r
region is worse in the Donble Angle method than in the Electron method, as
can be seen by comparing fig. 7.5 with figures 7.1 and 7.2. The effect of the
imposed ysp cut can be seen in the y resolution plot of fig. 7.5.

‘The number of events of the final data sample for the Double Angle method
is given in table 7.3, along with the estimated background in the final sample.

The efficiencies for the vertex reconstruction, using tracking and calorime-
ter timing information, for the final Double Angle method data and Monte
Carlo samples, are given in table 7.1, The corresponding efficiencies for the
initial data and Monte Carlo samples were given in table 5.1. The efficiencies

improve significantly after the event selection.
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The scattering angles of the outgoing electron and the final state hadron
system, together with the reconstructed rp4 and (4,, for the final Double
Angle method data and Monte Carlo samples, are shown in fig. 7.6. There

is a good agreement between data and Monte Carlo for the angle of the final

« 10%F < VE
P F 3 hadronic system, and xp4. The agreement is worse for the distribution of the
o r _
103 10" - polar angle of the scattered electron, which also affects the Q% , distribution.
E zf However, this effect is included in the systematic error for the electron angle
102} 10
: F (see section 8.6).
10 10}
3 3 Double Angle method
1 AR S I 10-‘- R I T Y Final sample
1 10 10¢ 10® 10* 10t 10 w02 a0 g
Q* true x true Data | 41,513
5 L estimated e-gas bkgd 216 0.59%
> _F estimated p-gas bkgd 108 0.26%.
10
3 estimated PHI bkgd 653 1.57%
10.2:r Table 7.3; Statistics of the final data sample for the Double Angle method.
10—! E
: Double Angle methol
-4, u A ul
10 e e e Data - final | DIS MC - final
10t 10 10?7 w0t v
y true Tracking vertex |  98.8% 99.7%
CAL Time vertex 0.6%
Figure 7.5: Kesolution of the Double Angle method in (3%, x and y, extracted no vertex 0.6% 0.3%

A Carlo sample,
Jrom the final Monte Carlo sample Table 7.4: Verter reconstruction efficiencies, for the final Double Angle method

date and Monte Carlo samples.
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Figure 7.6: Distributions of the final state electron and hadron system polar
angles, 8 and 5, respeclively, and the reconstructed zp, and Q%,, for the
final Double Angle method data (points) and Monte Carlo (shaded histograms)

samples.

7.3 Events with a Large Rapidity Gap

In regular deep inelas;‘tic electron-proton scattering, the proton breaks up, and
the incident electron scatters off a colored quark inside the proton. The color
transfer between the struck quark and the remnant of the proton results in the
production of the final state hadron system (current and remnant jets). The
remnant jet is emitted in the forward (proton beam) direction, and results in
considerable amounts of energy deposited around the FCAL beampipe.

However, there is a type of DIS event (first observed in the 1992 HERA
data*®) which exhibits very little activity in the forward direction (low FCAL
energies). This can be explained by the assumption that the virtual photon
scatters off a colorless object inside the incident proton. The proton remains.
in most of the cases, intact and is lost in the forward beampipe direction.

The Feynman diagram for this type of event is shown in fig. 7.7. In this
diagram, P represents the colorless object in the proton, off which the virtual
photon scatters. The squared 4-momentum transfer at the proton vertex is
denoted by ¢, while Q? represents the usual negative squared 1-momentum
transfer carried by the virtual photon, which is now measured only at the
electron vertex,

A selection method for this type of event is to impose a cut on the maximum

pseudorapidity fma.. The pseudorapidity of a hadronic cluster is defined as
7 = = Inftan(8,/2)), (7.1)

where 8, is the polar angle of the hadronic cluster. The cluster is required
to have an energy of at least 100 MeV. The maximum pseudorapidity of an

event, fm,y, is defined as the pseudorapidity of the hacronic cluster which is
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Figure 7.7: Feynman diagram of a Large Rapidity Gap event

closest to the proton beam direction.

The 944, distribution for the final Electron method data and Monte Carlo
samples is shown in fig. 7.8. There is an excess of data events with low values of
Nmax (1.€. events with an absence of hadronic activity in the forward direction},
which is not expected in the standard DIS Monte Carlo. These events, with a
large rapidity gap in the final phase space, are also called diffractive, because of
the clear separation between the final state proton and the photon dissociation.

If we impose a cut of 3,2 < 1.5 we find that the diffractive events account
for 6.2% of the final Electron method data sample, and for 6.5% of the final
Double Angle method data sample. However, since the F; proton structure
function corresponds to the inclusive DIS cross section, which is independent
of the form of the final hadronic state, the diffractive events are included in

the £; measurement.

Figure 7.8: The e distribution for the final Electron method data (points)
and Monte Carlo (shaded histogram) samples. The Monte Carlo sample is

normalized to the data.
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Chapter 8

Fy Extraction

8.1 Description of the method

‘T'he differential NC ep cross section is given, in its general form, by eq. (1.38).
At QF values below the square of the mass of the Z¢, the structure function
xFy is negligible and the structure functions F, and F reduce to their virtual
photon contributions only, #3 and £}, respectively. Then the differential cross
section is given by:

do  4zadl

T = el -y REQ) - @) B

Eq. (8.1) can be written in the form:

o Ara’(l -y +y*/2)

T = g @), (52)
where £} is given by:
212
12,0 = Filz,0) - TP Pt Q) 63)

Hence, the structure function #; can be extracted by first measuring the
differential cross section, and then applying Fy. corrections to £;.
‘The method is briefly outlined here. Exact definitions and values of vari-

ables and selection criteria are given in the following sections.
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In order to measure the differential cross section, we divide the data into
r and Q? bins. For each bin, we calculate a number of correction factors,
using the Monte Carlo sample: a smearing factor due to initial and final state
radiation, a smearing factor die to detector effects, and an acerplance factor.
A purity factor is also evaluated for each bin. Selection criteria are applied on
all the above factors, in order to determine the bins suitable for /3 extraction.
For each of those bius, the raw number of data events, alter the estimated
background has been subtracted, is correcied for smearing and acceptance
effects. Since the Monte Carlo includes radiative events, the measured number
of data events in eaf:h bin is also corrected to the Born cross section. The
corrected number of data events in each bin is converted to a differential cross
section, using the luminosity of the data and appropriate bin widths.

Subsequently, the differential cross section in each bin is weighted by the
factor W

zQ?

Wiz,Q") = g = Ty 77 (8.4)

in order to evaluate F}.

Finally, £} is corrected to £, using QCD calculations of Fy.
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8.2 Choice of (z,(}?) Bins

The bins in the z and Q? phase space are chosen according to the resolutions
in r and @2 Limited statistics determines the size of the bins at high Q2.

The resolutions in  and @2, for the Electron and Double Angle final Monte
Carlo samples, are shown in fig. 8.1. The relative differences between recon-
strtlctgd and generated z and 7 are plotted as functions of the reconstructed
quantities. For both the Electron and Double Angle methods the relative res-
olution in Q? is 25%, independent of Q. 'Thus, the same (? binning can
be used for both methods. Ihe relative resolution in z is around 20% for
both methods at intermediate values of r. At low values of x the Electron
method has a better z resolution than the Double Angle method. However,
the difference is rather small, due to the degradation of the energy resolution
caused by the inactive material in front of the RCAL (which is not completely
recovered by the electron energy correction), and to the additional smearing
of the energy resolution introduced in the Monte Carlo. Therefore, the same
binning also in x is used for both methods.

T'he chosen z and (? bins are given in tables 8.1 and 8.2, respectively. tor
each bin the range in z and Q? is given, along with the central r and Q? value
in the bin, Zienter and Q2,,.,. The cental values are used to denote the bins
in all the following sections, and are the z and Q? values where the final £} is
calculated. 1t has to be noted that Q2 ., is chosen to differ slightly from the
actual center of the Q? bins, so that the final £; results can be compared with

other experimental sets.
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Figure 8.1: Relative resolutions in x and Q? of the Electron and Double Angle

methods, as funclions of the reconstructed variables.



z range l z l Q? range enter

center
\12 \/2
1{7.0-15.0 -10-3 | 1.1 .10-1 (G | (GeV)
11 5 - 7 6

2 1.5-3.0-10-1]225. 10"
2 7 - 10 8.5

3]30-6.0-10*] 4.5 10"
3] 100- 14 12

4(]6.0-12.0 -10 | 9.0 -10~*

. 41 14 - 20

5(1.2-20.1073] 1.6 10 . 13
5 20 - 28 25

6 2.0- 36-10°{ 2.5 103
61 28 - 40 35

703.6-6.0-10-%| 4.8 102
7 40 - 56 50

8 || 6.0-10.0 -10~2 | 8.0 -107°
9l 10- 20102 | 1.5 .10 . % - R o
_ 2]
10§ 20~ 1.0 1072 | 3.0 -10-2 i B 125
10 || 160 - 320 250

111 4.0~ 8.0-107% | 6.0 -1072
11 3§ 320 - 610 500

12 1 8.0-16.0 -1072 | 1.2 -107!
12 {| 640 - 1280 1000

13 [ 1.6~ 32.10°' ] 2.1-10!
13 || 1280 - 2560 2000

14 { 3.2-10.0 -10~' | 6.6 -10™"
14§ 2560 -10000 5000

Table 8.1: Definition of the bins in x.
(able 8.2: Definition of the bins in Q2.
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8.3 Correction Factors and Bin Selection

A number of correction factors are evaluated for each (i, Q) bin, using the
Monte Carlo sample. Recall that the DIS NC Monte Carlo includes QED
radiative processes in the cross section, as calculated by HERACLES (see

section 3.1},

¢ Smearing due to QED Radiative processes
QED radiative processes shift the reconstructed kinematic variables, as dis-
cussed in section 4.2. For radiative Monte Carlo events, we denote by true
the generated kinematic variables calculated from the 1-vector momenta of
the particles at the lepton or hadron vertex, including the effects of QED ra-
diation, and by apparent the generated kinematic variables calculated from
the initial 4-vector momenta of the particles, without taking into account the
QED radiation. Then, the radiation smearing factor is defined as the ratio
of the true generated to the apparent generated number of DIS Monte Carlo

events in the bin that pass all selection criteria:

dN(MC, true, cuts)

RadSmr = TN (AT, apprcats)

(8.5)

¢ Smearing due to Detector effects
Detector smearing effects on the measurement of the energies and angles of the
final state particles shift the reconstructed kinematic variables, as discussed
in section 1.3. T'he ezperimental smearing factor is defined as the ratio of the
apparent generated to the reconstructed number of DIS Monte Carlo events

in the bin that pass all selection criteria:
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: NMC cuts
ExpSme = M Coapp, cuts)

Spai 2 K¢
dN{MC rec, cuts) (R6)

® Acceptance due to selection
The selection acceptance facior is defined as the ralio of the true generated
number of DIS Monte Carlo events in the bin to the true generated number of

events that remain in the bin after all selection criteria have been applied:

SelAcc = dN(MC, true, no cuts)
nelace= dN(MC, true, cuts)

(8.7)
Defined in this way, the Sel Acc factor is always greater than 1.

e QED Radiative corrections
QED radiative processes modlify the Born cross section, in addition to smearing
the kinematic variables, as discussed in section 1.7. In order to evaluate this
effect, we define the rediative correction factor as the ratio of the Born cross
section to the DIS Monte Carlo cross section in the bin. The latter includes
radiative processes. The ratio is calculated in terms of the true variables,

before any selection criteria are applied:

Lare  dN(Born, true,no cuts)

RadCor = .
acor Lgorn dN(MC, true,nocuts)

(8.8)

where Lasc and Lgo,, denote the integrated luminosity of the DIS MC sample
and the Born cross section MC sample, respectively. In order to evaluate the
Born cross section we generated a sample of 100k DIS events using LEPTQ

(see chapter 3), with only the Born cross section turned on.

¢ Purity

The quality of the reconstruction is evaluated in terms of purity, defined as
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the fraction of the Monte Carlo events reconstructed in a bin that were also

generated in the same bin:

dN(MC, true.and.rec, cuts)
dN(MC, rec.cuts)

Purity = (8.9)
Purity is by definition less than 1.

An F; value is calculated oaly in the (z,Q?) bins that satisfy the following

criteria:
0.5 < TotSmr = RadSmr - ExpSmr < 2 (8.10)
1 < SefAcc <2 (8.11)
Purity > 0.2 {8.12)
AN(MC,ree,culs) > 10 (8.13}
d¥(data,cuts) > 10 (8.14)

where the number of data events in the bin is considered after background
subtraction. A minimum number of MC events in the bin is also required, to
ensure a reliable evaluation of the bin correction factors.

For most of the selected (z, Q?) bins the TotSmr factor is around 0.8. The
SelAcc correction factors are close to 1 in most of the bins, except in the low-z,
low-Q? bins, where they become larger (around 1.5). Purity is low (30%-40%)
in the low-Q? or low-y bins in the Electron method. In the rest of the Electron
method bins and in most of the Double Angle method bins, purity is about
50%. Radiative corrections, which are important especially in the Electron
method, are of the order of a few percent in most of the selected bins, for both

methods.
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Figure 8.2: AMigrations of the Electron and Double Angle methods, in the
(x,Q%) bins that satisfy the bin selection criteria. The dotted lines represent

the y = 1,0.1,0.01 boundaries.

The migrations (see section 1.3) for the {(x.QQ?) bins that satisfy the above
criteria are shown in fig. 8.2. The length of the arrow is proportional to the
shift of mean reconstructed variables. The migrations for the selected bins
are much smaller than the migrations extracted from the initial Monte Carlo
sample, as can be seen by comparing fig. 8.2 with fig. 1.4. The Electron
method has somewhat smaller migrations than the Double Angle method in
the low-z bins, but the difference is minimized by the degradation of the
electron energy resolution caused by the inactive material in front of the RCAL.
In the high-r bins the poorer Electron methorl resolution in » causes larger

migrations.
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One more consideration about the bin selection for the Electron method
has to be taken into account. The electron energy corrections are less reliable
outside the RCAL correction square (see section 6.3.3), since the amount of
the inactive material for the rest of the calorimeter has been estimated from
Monte Carlo rather than calculated from the Kinematic Peak sample (see
section 6.3.6). Therefore, we choose to report an Electron method F; value
only for electron impact positions within the RCAL correction square, which
corresponds to Q? values less than 80 GeV?.

The correction factors for the selected bins are given in tables 8.3 and 8.4,
for the Electron and Double Angle Monte Carlo samples, respectively. The
number of Monte Carlo and data events in each bin, which are used in the
bin selection procedure, are given in tables 8.5 and 8.6, for the Electron and

Double Angle samples, respectively.

39
Electron method
Q? z RadSmr | ExpSmr | TotSmr | SelAcc | RadCor | Purity
{GeV?)
8.5 0.00023 0.81 1.27 1.07 1.79 1.01 0.45
0.00045 0.87 0.82 0.71 1.85 1.09 0.38
12 0.00045 0.82 0.92 0.75 1.27 1.01 0.41
0.00090 0.87 0.88 0.77 1.28 0.98 0.39
0.00160 0.96 0.85 0.82 1.38 0.96 0.25
0.00280 1.05 0.76 0.81 1.61 0.9 0.21
15 0.00045 0.83 1.12 0.92 1.38 (.96 0.49
0.00090 0.86 0.87 0.75 1.07 1.03 0.11
0.00160 0.91 0.93 0.85 1.07 0.90 0.33
0.00280 0.95 0.83 0.79 1.13 0.93 0.21
25 0.00015 0.85 1.15 0.98 197 0.92 0.52
0.00090 0.84 0.97 0.82 1.10 0.93 048
0.00160 0.88 0.91 0.83 1.03 1.03 0.40
0.002é0 0.92 0.9 0.87 1.03 0.94 0.32
35 0.00090 0.84 1.00 0.84 1.17 0.98 0.57
0.00160 0.87 0.91 0.81 1.03 1.02 0.47
0.00280 0.88 1.04 0.91 1.02 1.03 0.44
0.00480 0.98 0.89 0.87 1.4 0.99 0.28
0.00800 1.03 0.83 .85 117 0.85 0.20
0.01500 117 0.91 1.07 1.37 0.91 0.23

‘Table 8.3: Correction Factors for the Electron method selvcted (x,Q?) bins.
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Electron method

Q? z RadSmr | ExpSmr | TotSmr | SelAcc | RadCor | Purity

{GeV?)

50 0.00090 0.88 0.96 0.85 1.52 1.04 0.61

0.00160 0.86 0.99 0.85 1.04 1.02 0.55

0.00280 0.88 0.96 0.84 1.02 1.03 0.52

(.00180 0.91 0.93 0.87 1.01 0.85 0.35

{.00300 0.99 0.8%8 0.87 1.05 1.0t 0.25

.01500 1.09 0.91 0.99 1.20 0.9 0.25

- 65 0.00160 0.89 0.92 0.82 1.05 0.04 0.58

0.00280 0.84 0.94 0.79 1.01 1.13 0.52

0.00180 0.89 0.94 0.841 1.01 1.02 011

0.00800 0.96 0.79 0.75 1.01 1.05 0.30

0.01500 0.96 0.80 0.77 1.05 1.03 0.22

0.03000 1.13 0.86 0.98 1.19 0.87 0.20

0.06000 1.22 1.47 1.80 1.43 0.85 0.20

Table 8.3: Correction Factors for the Electron method selected (z,Q?) bins.
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Double Angle method
Q? z RadSmr | ExpSmr | TotSmr SelA:c_ RadCor | Purity
(GeV?)
8.5 0.00023 0.87 1.27 1.10 1.77 1.01 0.16
0.00045 0.97 0.83 0.81 1.85 1.09 0.13
12 0.00045 0.89 0.98 0.87 1.27 1.01 0.33
0.00090 0.98 0.79 0.77 1.28 0.98 0.39
0.00160 1.15 0.67 0.77 1.39 0.96 0.36
0.00280 1.31 0.76 1.00 1.92 0.91 0.12
15 0.00045 0.87 117 1.02 1.37 0.96 0.37
0.00090 0.95 0.83 .80 1.07 1.03 0.11
0.00160 1.04 0.76 0.79 1.06 0.90 0.40
0.00280 1.16 0.69 0.80 1.13 0.94 0.43
0.00480 1.36 1.01 1.37 1.90 1.00 0.37
25 10.00045 | 0.88 1.19 1.05 1.72 . 0.92 0.31
0.00090 | 0.90 0.97 0.87 1.0% 0.98 0.43
0.00160 0.99 0.87 0.86 1.03 1.03 0.42
0.00280 1.05 0.77 0.81 1.03 0.94 0.47
0.00480 1.24 0.78 0.97 1.11 0.92 0.45
35 0.00090 0.89 1.02 091 1.1 0.98 0.43
0.00160 0.95 0.93 0.88 1.02 1.02 0.13
0.00280 0.99 0.82 0.81 1.02 1.03 0.52
0.00480 1.13 0.73 0.82 1.02 0.99 0.44
0.00800 1.29 0.M 1.21 1.28 0.85 6.10

Table 8.4: Correction Factors for the Double Angle method selected (z,Q?)

bins,




Double Angle method

Q* x RadSms | ExpSmr | TotSmr | SelAcc | RadCor | Purity
{GeV?) '
50 0.00090 0.92 0.99 0.91 1.24 1.04 0.42
0.00160 0.89 1.01 0.90 1.04 1.03 0.46
0.00280 0.96 0.91 0.87 1.02 1.03 0.57
0.00480 1.02 0.80 0.82 1.01 0.85 0.52
0.00800 1.17 0.7 081 1.03 1.01 0.47
65 0.00090 0.81 0.84 0.63 1.93 LO7 0.26
0.00160 0.91 - 0.95 0.86 1.04 0.94 0.46
0.00280 0.92 0.99 0.91 1.00 1.13 0.56
0.00180 0.95 0.87 0.82 1.01 1.02 0.54
0.00%00 .11 0.69 0.76 1.01 1.05 0.46
0.01500 1.18 0.79 0.93 1.12 1.03 0.48

‘lable 8.4: Correction Factors for the Double Angle method selected (z,()?)

bins.
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Double Angle method
Q? z RadSmr [ ExpSmr | TotSmr | SelAcc | RadCor | Purity
(GeV?)

125 | 0.00160 0.90 (.86 0.77 1.35 1.00 0.55
0.00280 § 0.88 0.94 0.83 1.04 0.91 0.67
0.00480 0.92 0.96 0.88 1.01 0.95 0.61
0.00800 0.89 0.84 0.75 1.00 1.05 0.11
0.01500 1.13 0.97 L1 1.2 .92 0.52
0.03000 1.27 1.39 L.76 1.30 0.92 0.47

250 | 0.00480 0.89 1.00 0.89 1.10 1.24 0.65
0.00800 0.84 1.02 (.86 1.03 0.83 0.69
0.01500 0.93 0.90 0.81 1.02 0.95 .70
0.03000 1.06 0.65 (.69 1.00 1.02 0.51
0.06000 1.23 0.98 1.21 1.11 0.87 0.49

500 | 0.00800 0.98 0.89 0.87 1.61 0.61 0.66
0.01500 0.84 1.04 0.87 1.25 1.18 0.76
0.03000 0.91 0.99 .93 1.11 1.14 0.72
0.06000 1.06 0.76 0.81 1.09 0.81 0.55
0.12000 1.25 0.84 1.05 1.17 0.73 0.47

1000 | 0.01500 1.00 1.03 1.03 147 0.95 0.89
0.03000 f 0.93 0.88 0.82 1.59 1.17 0.76
0.06000 0.86 1.4 0.89 1.92 0.49 0.71
0.12000 1.21 0.50 (.61 1.38 1.48 0.36

2000 | 0.12000 0.88 0.67 0.58 L.AT 1.21 0.12

‘Table 8.4: Correction Factors for the Double Angle method selected (x,Q?)

bins.
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8.4 Measurement of the Cross Section

For each of the selected (z,Q%) bins, the number of estimated beam-gas
and photoproduction background events (see section 5.10) is subtracted from
the number of measured data events. The obtained number of background-
subtracted (bkg.sub) data events is corrected for smearing and acceptance
effects, using the TotSmr and SelAcc correction factors:

dN(MC, true,no cuts)

TotSmr - § =
otSmr - SelAce dN(MC, rec,cuts)

(8.15)

In addition, the number of data events is corrected back to the Born cross
section, using the radiative correction factor. T'herefore, the total correction

factor in each bin can be written as:

dN(Born, true,no cuts)
dN(MC(Had),rec, cuts)

TotCor = TotSmr - SelAcc - RadCor = (8.16)

The corrected number of data events in each (x,Q?) bin divided by the total
luminosity of the data yields the cross section o(z,Q?) in that bin. Using
appropriate bin widths, Az and AQ?, the differential cross section is then
obtained.

The number of Monte Carlo events, data events before and after back-
ground subtraction, and after bin corrections, as well as the calculated cross
seclion, in each (z,Q?) bin, are given in tables 8.5 and 8.6, for the Electron

and Double Angle methods, respectively.

Electron method
Q? z MC [ Data | Bkgd | Data | Data| o
(GeV?) meas. | estim. [ bkg.sub | corr. | (nb=1)
8.5 0.00022 || 3595 § 2097 254 1842 3569 | 6.51
0.00045 || 1708 | 2936 173 2762 3988 | 7.31
12 0.00045 [ 1686 | 2948 97 2850 2735 | 5.01
0.00090 |[ 1115 [ 3115 61 3050 2022 | 5.36
0.00160 [ 2226 | 1517 7 1509 1619 | 3.02
0.00280 |[ 1973 [ 1176 7 1168 1121 | 2.61
15 0.00045 |[ 2600 [ 1741 105 1635 1999 1 3.66
0.00090 [ 3814 | 2903 39 2863 2356 | 132
0.00160 [ 2316 | 1926 7 1918 1548 | 2.84
0.00280 |[ 2272 | 1514 15 1198 1255 § 2.30
25 0.00045 {[ 965 618 52 565 1001 1.84
0.00090 i 2227 [ 1611 28 1582 1386 | 2.54
0.00160 |[ 1610 [ 1317 0 1317 1154 | 2.12
0.06280C i 1552 [ 1275 7 1267 1072 | 1.97
35 0.00090 |[ 1454 | 1076 13 1032 993 1.82
0.00160 i 1246 | 910 19 890 759 1.39
0.00280 || 1159 | 1075 33 1041 994 | 1.82
0.00480 || 901 716 0 716 671 1.23
0.00800 § 690 | 521 ] 524 115 | 0.82
0.01500 {| 584 411 0 441 588 1.08
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Table 8.5: Statistics and measured cross section for the Electron method
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Double Angle method

Q? x MC | Data | Bked | Data | Data a

{GeV?) meas. ; estim. | bkg.sub | corr. | (nb~")

Electron method 85 [0.00022 | 3532 { 2017 | 221 | 1792 | 3535 | 6.48

o r | MC| Data | Bgd | Data |Data] o 0.00015 | 1181 | 2180 | 91 | 2385 |as71| 7.0
(GeV?) meas. | estim. | bkgsub | corr. | (ab-1) 12000045 | 1023 | 2113 | &1 | 2061 | 2301 .22
50 0.00090 || 666 | 518 2% 191 657 1.20 0.00090 [ 1076 [ 2370 K1 2335 2274 1.17
0.00160 I 758 | 566 8 557 505 0.93 0.00160 ) 2353 | 1136 )] 1136 H81 [ 272
0.00280 [ 1333 | 820 0 820 116 [ 2.71

0.00280 | 834 | 695
0.00480 il 626 | 573
0.00800 || 523 | 452 452 417 | 097
0.01500 {| 474 | 409 409 156 | 0.84
65 0.00160 | 543 | 389 14 374 305 | 0.56
0.00280 || 603 | 182 1 177 428 | 0.79

695 617 1.13
0.78

15 0.00045 |[ 2353 | 1227 39 1187 {1605 | 2.94
0.00090 || 3585 | 2136 26 2109 | 1848 | 3.39
0.00160 || 2474 | 1493 21 1471 1113 | 2.04
0.00280 | 2274 | 1128 6 1421 1190 | 218

o O o o
N
]
-
i3
o

0.00480 || 582 | 390 0 390 1011 § 1.86

25 0.00045 || 1027 | 641 38 602 1003 | 1.84

0.00480 {§ 470 | 408 0 108 350 | 0.64

0.00800 || 460 | 357 0 357 285 0.52 0.00090 || 2091 | 1387 31 1352 1258 231

0.01500 Il 524 | 399 0 399 132 | 061 0.00160 }j 1548 | 1018 8 1009 921 1.69

0.03000 || 330 | 200 0 209 210 0.39 0.00280 |[ 1675 | 1162 R 1153 01 1.66
0 0.00480 | 961 | 610 0 610 624 114

0.06000 | 135 | 101 101 221 | 041

. . 35 0.00090 |[ 1371 } 992 28 963 982 1.80
Table 8.5: Statistics and measured cross section for the Electron method

0.00160 f 1152 | 792 | 36 755 | 697 | 1.98
0.00280 || 1306 | 948 | 3 944 | 800 | 147
0.00480 | 972 | 716 | o 46 | 622 | 114
0.00800 || 141 | 312 0 312 | 12 | 076 J

Table 8.6: Statistics and measured cross section for the Double JAngle method




Double Angle method

Q? T MC | Data | Bkgd | Data |Data| o
(GeV?) meas. | estim. | bkg.sub | corr. | (nb™!)
50 0.00090 || 758 | 564 36 527 619 1.14
0.00160 || 710 | 541 7 533 515 0.95
0.00280 || 805 | 623 8 614 566 1.04
0.00480 }| 669 | 588 0 588 111 0.75
0.00800 {§ 554 | 419 0 419 365 | 0.67
65 0.00090 || 248 | 170 23 146 204 0.38
0.00160 || 521 | 395 22 RY P 315 | 0.58
0.00280 || 528 | 419 17 101 411 0.75
0.00480 || 479 | 376 0 376 317 0.58
0.00800 |t 454 | 350 0 150 282 | 0.52
0.01500 || 408 | 293 0 293 313 0.57
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‘Table 8.6: Statistics and measured cross section for the Double Angle method

Double Angle method
Q? x MC | Data | Bkgd | Data | Data o
{GeV?) meas. | estim. { bkg.sub | corr. | (nb~1)

125 0.00160 || 323 | 261 29 23 211 0.11
0.00280 || 620 | 532 58 473 37 0.68
0.00480 | 531 | 160 15 114 373 0.69
0.00800 [ 522 | 459 20 138 18 0.64
0.01500 || 501 | 361 i} 361 3n 0.68
0.03000 f{ 199 | 150 | 0 150 | 311 | 0.58
250 | 0.00480 || 178 | 169 21 147 177 0.33
0.00800 [ 228 | 159 13 145 105 0.19
0.01500 (| 302 | 248 12 235 1839 0.35
0.03000 || 308 | 238 0 238 167 0.31
0.06000 |[ 161 | 124 0 124 111 0.26
500 |0.00800 | 62 | 49 12 36 32 0.06
0.01500 || 101 79 0 79 101 0.19
0.03000 || 105 | 98 0 98 115 0.21
0.06000 || 108 [ 95 0 95 67 0.12
0.12000 { 62 RE 0 KE| 30 0.06
1000 | 0.01500 | 35 30 0 30 13 0.08
0.03000 || 33 18 0 18 27 0.05
0.06000 || 28 | 24 0 2 20 0.01
0.12000 || 28 | 27 0 27 15 0.08
2000 | 0.12000 || 12 11 0 11 12 0.02
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Table 8.6: Statistics and measured cross section for the Double Angle method
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8.5 From the Cross Section to F

"The differential cross section in each (x,Q?) bin is multiplied by the kinematic
factor W(x,Q?), given by eq.(8.1), in order to evaluate Fi(r,Q?) (see eq.
(8.3)). The factor W is calculated in a bin using the mean values ,ean, Yuean
and Q... in the bin.

lnAl.his way, the mean value of F} is calculated in each bin. It has to
be corrected to the Fj value at the point (r.ni., Q%) This is done by
evaluating a bin centering correction factor in each bin, given by the ratio of
the MRSD'. parametrization of F§ at the exact point {Leenter, Q% 1, ) to the
LEPTO calculated mean #3 in the bin. T'he dependence of the bin centering
corrections on the input parametrization MRSD’ is minimized by iterating
the whole procedure of the ¥} measurement, as explained later in this section.

After the bin centering corrections, the £3(r prer, Q2 value is extracted

center)

from the F}{Zienter, Q3 value using the F} corrections of the MRSD’

(T’Iltr)
parametrisation. The dependence of the ¥, corrections on the input parametri-
sation MRSD' is minimized by using £, corrections from different parametri-
sations as a systematic check {see section 8.6).

The statistical error on £, is calculated by considering the relevant statis-
tical errors of the data, DIS NC Monte Carlo and PHI* Monte Carlo samples
that have been used in the }; measurement.

The Fy correction factors and the central values of £, in each (x, 3?) bin,

together with the statistical and systematic errors on £, are given in tables

8.9 and 8.10, for the Electron and Double Angle methods, respectively.
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¢ Iterative method

The value of #3, obtained from the differential cross section. depends on
the input structure function that has been used in the DS NC Monte Carlo.
through the bin correction factors.

In order to minimize the dependence on this input, we evaluate an iteration
Juctor in cach (., Q%) bin, given by the ratio of the data to the Monte Carlo
cross section in the bin. Both cross sections are evaluated after the event

selection, using the reconstructed r and Q? (relevant for the \onte Carlo).

_ Layc  dN(data,cuts)

T Lawa dN(MC, rec, cuts) (8.17)

. B(,Q")

This ratio should be equal to 1, if the Monte Carlo described the data perfectly.
In practice, it varies from 0.6 to 1.5 in the selected bins (up to 50% deviations),
before any iteration.

Subsequently, the iteration factors R(x,Q?) are applied as weights to the
Monte Carlo events, but with the corresponding r and (J* taken as the true
generated values. The bin correction factors are reevaluated from the weighted
Monte Carlo, and the /] values obtained with the new correction factors are
much less sensitive to the input structure function. The factors R re-evaluated

after the first iteration deviate from unity only by a few per cent.

@ Test of the F; extraction method

The F; extraction procedure has been tested by using half of the Monte
Carlo sample as real data. The extracted £ in this case reproduces the
MRSD’_ structure function {within errors), that has been used as input to

the DIS NC Monte Carlo.
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8.6 Systematic Error on F,

The stability of the F; measurement is checked against all important quantities
used for the kinematic reconstruction, background reduction, and unfolding of
the £ value from the measured number of events. In each case, a change
is made to one quantity, the whole analysis is repeated, and the bin-by-bin
deviations in F; from the nominal central values are recorded.

‘The systematic checks on the F; extraction are the following:

o Llectron finding and Photoproduction background:
The whole analysis is repeated using the electron finding algorithm re-
ferred to as EF2 in section 5.2. The two electron finders have different
efficiencies and purities. In addition, they allow a different amount of
PHP background events to enter the final data sample. Therefore, the
use of a different electron finding algorithm is also a powerful systematic

check of the level of PHP background.

Electron Energy scale:

For the Electron method, the electron energy scale in the Monte Carlo
is changed by applying no additional resolution smearing (see section
6.3.5).

For the Double Angle method, although the kinematic reconstruction
does not depend on the electron energy scale, the selection criteria {cuts
on E, § and ye..) do, and thus also does the final data sample. In order

to check this, the analysis is repeated using corrected electron energies.

183

reliable electron finding and PHP background:
The cut on the electron energy is raised from & to 10 GeV for the Electron
method, and from 5 to 10 GeV for the Double Angle method, and the

analysis is repeated.

ISH, PHP and beam-gas backgrounds:

The lower & cut controls the radiative corrections, the photoproduction
background, and the ¢/p-gas background. In order to check the level of
these types of background events, the lower cut on 6 is varied from 35
GeV to 30 and 10 GeV, and the largest change is taken as the error in

each bin,

Electron Angle:

The analysis is most seasitive to the electron position uncertainty in the
region around the RCAL beam-pipe. In order to check this sensitivity,
the box cut is varied from the standard square box of side 32 cm to a
square box of side 31 cm for the Electron method, and to a rectangular
box of vertical side 36 cm and horizontal side 28 cm for the Double Angle
method. The different change of the box cut in the two methods is due
to the need in the Electron method to remain within the region where

the electron energy corrections have been measured.

Hadron Angle - only for the Double Angle method:
The ysp cut, which ensures a good measurement of the hadron angle 1,
is varied from 0.01 to 0.02 and 0.06, and the largest deviation is taken

in each bin.



o Verter
A vertex cut of 10 < Z,,, < 20 em is applied (no vertex cut is applied

in the nominal analysis).

o Uncertainty in the Unfolding method:

The analysis is repeated without any iteration.

o Uncertainty in the estimation of Fy:
£ is estimated using various PDF parametrisations (MRSD}, MRSDY_,
GRV(HO), CTEQ2), and the largest change is taken in each bin.

The systematic error on the £3 value in each (z,(Q?) bin is calculated
by adding in quadrature the deviations, which are caused by the systematic
checks, from the nominal F; value in the bin. However, not all systematic
checks are included in the calculation of the final systematic error, depending
on the reconstruction method.

In addition to the bin-by-bin systematic errors, there is an overall nor-
malisation uncertainty of 3.5%, originating from the luminosity measurement
(3.3%) and the first level trigger efficiency (1%). This normalisation uncer-
tainty is not included in the calculation of the bin systematic errors, since it

does not distort the shape of the distributions.

8.6.1 Electron method

The systematic error on the Electron method £; is caleulated from the follow-
ing systematic checks (SC):

SC1: different electron finder

SC2: electron energy scale

SC3: electron energy cut

SC4: 8 cut

SC5: box cut

SC6: vertex cut

SCT: no iteration

SC8: Fp estimation

It has to be noted here that by including both SC1 and SC3-1 we overes-
timate the systematic error on the PHI background, since using a different
electron finder (EF2) also provides a different estimate of the PHP background
events. However, the different efficiencies and purities of the two electron find-
ers also affect the whole #; unfolding. ‘Therefore, all three checks are included.

The systematic errors on radiative corrections, PHI> and heam-gas back-
grounds are also overestimated by including both SC2 and $C3-1, since the
different electron energy scale effectively changes the cuts on £ and §. How-
ever, in the Electron method, the electron energy scale not only affects the
event selection, but also is crucial for the kinematic reconstruction. Therefore,
all three checks are included.

The percentage deviations from the nominal ¥, value in each bin, for each

systematic check, are given in table 8.7,
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Double Angle method

‘T'he systematic error on the Double Angle method £ is calculated from the

following checks:

SCIL:
SC2:
5C3:
SC4:
SC5:
SC6:
SCT:
SC8:

different electron finder
eleciron energy cut

§ cut

box cut

yip cut

vertex cut

no iteration

F} estimation

locluding both SCI and SC2-3 leads to an overestimate of the PHI” back-

ground, as discussed for the Electron method.

‘T'he electron energy scale check is covered by SC2 and SC3, since it affects

the Double Angle analysis only through the electron energy and § cuts.

‘I'ie percentage deviations from the nominal £3 value in each bin, for each

systematic check, are given in table 8.8.
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Electron method

Q2
(GeV?)

5C1

s¢2

SC3

SC6

SCT

SC8&

0.00022
0.00045

0.0
1.61

2.50
0.66

1.05
0.00

0.26

1.16

10.87
6.07

0.99

0.22

0.00045
0.00090
0.00160
0.00280

1.62
0.73
0.50
3.16

0.54

1.28

5.38

11.63

0.00
0.00
0.00
0.00

0.10
1.16

0.10
12,93
3.76
6.65

0.20
0.00
0.00
0.00

15

0.00045
¢.00090
0.00160
0.00280

6.65
0.70
0.32
0.12

0.75
31.72
1.73
1.56

0.99
0.00
0.00
0.00

3.35
6.94
15.69
5.50

0.25
0.14
0.00
0.00

0.00045
0.00090
0.00160
0.00280

1.85
1.68
1.25
0.09

9.32
3.09
3.83
271

2.73
0.07
0.00
0.00

1.86

1.95

7.01
11.66

0.19
0.00
0.00
0.00

35

0.00090
0.00160
0.00280
0.00480
0.00800
0.01500

1.23
0.90
2.22
0.32
1.86
3.23

2.99
1.31
6.51
8.52
17.64
29.89

1.10
0.08
0.00
0.00
0.00
0.00

0.08
0.08
0.11
0.00
0.16

0.32
0.27

0.00

1.30
3.35
11.03
3.05
1.06

302

0.19
0.00
0.00
.00
0.00
0.00

Table 8.7: Systematic errors, in percent, for the Electron method.
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Electron method
Q? z SC1 | §C2 | SC3 | SC1 | SC5 [ SC6 | SCT7 | SC8
(GeV?)

50 0.00090 || 1549 | 3.81 [0.24 | 1.79 | 0.2 | 2.86 | 2.74 | 0.60
0.00160 || 5.17 ] 882 [ 0.08| 091 (0.15|1.14 | 1.29 | 0.15

0.00280 || 0.08 | 1.84 | 0.00 | 0.17 | 0.17 | 3.17 | 0.42 | 0.00

0.00480 |[ 3.02 | 1.69 [ 0.09 | 0.09 | 0.44 [ 551 [ 5.78 | 0.00
0.00800 {| 0.34 | 1412 [ 0.00 | 0.11 [ 0.23 ] 2.07 | 1.95 | 0.00

0.01500 || 0.58 | 12.23 | 0.15 | 0.00 | 0.29 | 6.55 | 5.97 | 0.00

65 0.00160 i 6.67 | 3.49 | 1.29 | 0.68 | 0.00 | 1.82 | 2.96 | 0.23
0.00280 [ 4.50 | 2.84 | 0.08 | 0.81 | 0.00 | .86 | 0.73 | 0.00

0.00480 | 0.37 | 16.16 | 0.00 | 0.09 | 0.37 | 1.39 | 5.36 | 0.00

0.00800 f{ 0.51 } 1.16 {1 0.00 ) 0.00 | 0.00 | 5.02| 0.00 [ 0.00
0.01500 || 0.77 | 15.41 | 0.00 | 0.00 [ 0.15 1 4.93 } 2.77 | 0.00

0.03000 [ 2.90 | 41.52 | 0.00 ] 0.00 | 0.00 | 6.25 | 12.95 ] 0.00

0.06000 |[ 3.39 [19.28 | 0.00 | 0.00 | 0.00 | 0.64 | 2.97 | 0.00

Table 8.7: Systematic errors, in percent, for the Electron method.

1

o

Double Angle method

Q2
(GeV?)

s

SC2

SC3

SC1

SCh

SC6

SCT

SC8

8.5

0.00022
0.00045

8.49
5.07

8.08
8.76

0.58
3.60

0.4}
0.49

0.99
0.16

0.00045
0.00090
0.00160
0.00280

2.63
2.77
0.24
0.30

5.60
3.91
2.06
0.45

1.53
319
0.60
1.64

0.25
1.03

14.80

0.17
0.00
0.00
0.00

15

0.00045
0.00090
0.00160
0.00280
0.00480

1.38
0.48
1.56
0.14
2.93

9.83
3.35
1.93
0.11

0.11
0.67
0.21
0.11
2.00

0.65
0.38
0.84
8.19
3.85

0.16
0.10
0.00
0.00
0.00

25

0.00045
0.00090
0.00160
0.0028¢
0.00180

1.67
6.67
0.79
0.93
317

.39
0.78
0.10
0.35
0.32

0.00
0.00

0.19
0.00
0.00
0.00
0.00

0.00090
0.00160
0.00280
0.00480
0.00800

6.90
3.61
1.97
1.09
2,16

0.00
0.00
0.00
0.00

0.36
0.15

1.08
0.19
0.21
0.12
0.00

1.76
738

14.62

0.36
19.23

0.20
0.00
0.00
0.00
0.00

Table 8.8: Systematic ervors. in pereent. for the Double Angle method.
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Double Angle method

Q? b4 SC1 | SC2 [ SC3 | SC1|SC5|SC6|SCT |SC8
{CeV?)

50 0.00090 | 13.83 | 13.06 | 8.83 | 0.19 | 0.00 | 2.24 [ 0.77 | 0.51
0.00160 || 3.26 | 0.78 | 1.79( 0.23 { 0.16 | 0.85 | 2.17 | 0.08

0.00280 | 2.56 | 0.09 [ 1.4 | 0.19 [ 0.19 | 0.95 | 0.38 | 0.00
0.00180 || 2.88 { 0.10 | 0.77 | 0.19 | 0.87 | 2.02 | 7.12 | 0.00
0.00800 | 1.10 | 0.00 {0.28 [ .00 [ 9.12 | 2.21 | 1.66 | 0.00

65 0.00090 || 4.68 | 18.23 19.58 | 0.00 | 0.00 | 3.75 | 5.12 | 1.37
0.00160 || 1.92 | 14.51 | 8.85 { 0.23 ] 0.00 { 0.08 | 0.62 | 0.3}

0.00280 | 6.56 | 0.09 | 2.620.00{0.00|1.75 | 2.10 | 0.00

0.00480 || 1.91 [ 0.00 | 0.96 | 0.00 | 0.00 | 3.51 | 0.21 | 0.00

0.00800 || 1.19 | 0.00 | 0.00 | 0.00 | 1.59 | 1.59 | 3.04 | 0.00

0.01500 {| 1.72 | 0.00 } 0.00 | 0.00 | 3.95 | 1.37 | 1.12 | 0.00

‘lable 8.8: Systematic errors, in percent, for the Double Angle method.
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Double Angle methocd
Q? z SC1 | SC2 [SC3{ SC1 |SC5| SC6 ) SCT | sCs
(GeV?)

125 0.00160 J| 11.45 | 6.32 [ 801 1.19 j0.00| 0.77 | 9.76 | 1.62
0.00280 || 5.38 | 933 [6.92( 0.29 | 0.00 | 3.27 | 0.19 | 0.29

0.00480 {| 0.91 | 0.30 | 0.20 | 0.00 [ 0.20 ] 1.01 | 1.52 | 0.10

0.00800 § 1.19 | 0.00 |0.70 | 0.00 | 0.20 | 1.00 | 6.66 | 0.00

0.01500 )} 1.23 | 0.15 | 0.77 | 0.00 [0.62 | 2.62 | 3.09 | n.00

0.03000 || 2.72 | 0.00 | 0.00] 0.00 | 368 3.27 |15.12|0.00

250 0.00480 § 19.60 | 20.37 [ 1.98 | 2.07 | 0.00 | 9.19 | 3.06 | 0.38
0.00800 {1 8.23 | 2.37 [ .71 ] 042 [0.00| 3.63 | 6.60 | 0.14

0.01500 (| 10.49 | 0.00 [ 151 [ 0.00 | 0.76 ] 045 1.66 | 0.00

0.03000 || 5.37 | 0.00 {0.81 | 0.00 [0.00| 1.31 | 2.18 | 0.00

0.06000 § 3.56 | 0.00 | 0.56 | 0.00 |3.38 [ 882 {33.02 | 0.00

500 0.00800 [ 75.30 | 27.60 | 7.88 | 3.55 | 0.00 | 5.65 | 7.10 | 0.39
0.01500 || 30.44 ] 0.00 | 3.91] 047 [0.00| 0.32 | 268 | 0.16

0.03000 || 2.77 | 0.00 | 219 2.77 [0.00 | 3.65 | 3.80 [0.15

0.06000 { 2.11 | 0.19 | 0.58 | 0.96 [ 1.80 | 1.15 | 23.99 [ 0.00

0.12000 || 4.23 | 000 (000 [ 163 [ L8[ 130 [ 9999 | 0.00

1000 | 0.01500 (| 58.82 | 12.79 { 1.61 | 2.24 [ 0.00 ] 0.00 | 952 | 0.37
0.03000 1| 22.80 | 0.00 | 0.00 ] 2.10 | 7.97 | 18.24 | 13.21 | 0.00

0.06000 || 9.05 | 0.00 348 { 14.15 [0.00 | 3.71 | 1.16 | 0.00

0.12000 || 2.88 [ 0.00 | 0.00{ 0.18 | 0.00{ 3.21 | 71.53 | 0.00

2000 |0.12000 || 1.97 | 0.00 | 0.00] 0.88 | 0.00 | 0.00 | 31.14 | 0.00

Table 8.8: Systematic errors, in percent, for the Double Angle method.
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8.7 Final Results on F

‘The final results on £, together with the statistical and systematic errors on
£3, in each (1, Q?) bin, are given in tables 8.9 and 8.10, for the Electron and
Double Angle methods, respectively. Also listed are the F; correction factors
in each bin.

T'he total error on F in each (z,(Q?) bin is obtained by adding the statistical
and systematic errors in the bin in quadrature.

In figures 8.3 through 8.6 the F, values from the Electron and Double
Angle methods, respectively, are plotted as functions of z at fixed Q? bins.
Various parametrizations for F; are also plotted for comparison. In figures
8.3 and 8.5 the Electron and Double Angle F; values are plotted together
with the MRSD’, MRSD;, MRSA and-CTEQ2 curves (see sections 1.10.1
and 1.10.2). In figures 8.4 and 8.6 the Electron and Double Angle £, values
are plotted together with the GRV(HO) (full curve) and the GRV'91 (dashed
curve) calculations. The latter takes in account the mass of the heavy quarks
¢ and & {see section 1.10.3). The ¥} values for Q? < &0 GeV? from both the
Electron and Double Angle methods are shown together in fig. 8.7.

Discussion of the +3 results, as well as a detailedt comparison of the F,

values with the various PDFs, follow in chapter 10.

Electron method

QI
(GeV?)

Fr

COIr.

Fy % stat £ svs

8.5

0.00022
0.00045

LO05T
1.011

1.193 £ 0.013 £ 0.337
1.370 £ 0.033 £ 0.116

0.00045
0.00090
0.00160
0.00280

1.022
1.004
1.001
1.000

1.499 % 0.036 £ 0.080
1.316 + 0.031 % 0.180
0.947 £ 0.031 £ 0.102
0.806 + 0.030 + 0.121

15

0.00045
0.00090
0.00160
0.00280

1.035
1.007
1.002
1.001

1.611 £ (.051 £ 0.151
1.372 £ 0.031 £ 0.110
1.205 £ 0.037 £ 0.199

N.R15 £ 0.023 £ 0.058

0.00045
0.00090
0.00160
0.00280

1115
1.020
1.005
1.001

1AT1 £ 0.083 £ 0217
1413 £ 0.017 £ 0.062
1.302 + 0.048 £ 0.110
1.076 £ 0.040 % 0.135

35

0.00090
0.00160
0.00280
0.00180
0.00300
0.01500

1.011
1.010
1.003
1.001
1.000
1.000

1511 £ 0.063 £ 0.073

—

226 £ 0.054 + 0.051

—

261  0.054 £ 0.165
0.951 £ 0.047 + 0.092
0.757 £ 0.041 £ 10.139
0.621 £ 0.039 £ 0.189

Table 8.9:

Fp corrections and final F; values, for the Llectron method.
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Double Angle method

Q? r by Fy £ stat =+ sys
{GeV?) corr.
Electron methorl 8.5 0.00022 | 1.057 | 1.322 £ 0.038 + 0.22]
Q, z £ £ + stat + sys 0.00015 J 1.011 { 1.191 + 0.031 % 0.130
(GeV?) Corr. 12 0.00045 § 1.022 | 1.179 £ 0.032 £ 0.083

0.00 . 973 + 0.025 + 0.05¢
50 | 0.00090 | 1.096 | 1.678 + 0.100 & 0.278 090 || 1.001 | 0.973 £ 0.025 £ 0.059

0.00160 || 1.022 | 1.315 + 0.073 £+ 0.137
0.00280 [l 1.006 } 1.200 + 0.062 + 0.044

0.00160 | 1.001 | 0.327 + 0.028 £ 0.050
0.00280 |f 1.000 | 0.669 + 0.030 + 0.108

! . ! 03! 2 . (127
0.00180 [| 1.002 | 1.127 + 0.065 + 0.008 15 ] 000015 § 1.035 § 1231 £ 0.001 & 0.127
00090 [f 1.007 | 1.0 029 + 0.06

0.00800 1 1.001 | 0.870 = 0.056 < 0.125 0.00090 §f 1.007 | 1011 £ 0.029 + 0.061
- . N

0.01500 I 1.000 | 0,686 = 0.016 < 0.101 0.00160 § 1.002 | 0.831 £ 0.027 £ 0.023

002 1.00 .720 £ 0.02: 062
65 0.00160 |} 1.039 | 1.323 + 0.089 £ 0.111 0.00280 o P 000

0.00280 || 1.010 | 1.231 £ 0.076 + 0.091 _ | 0:00450 [[1.000 | 0.649 = 0.042 = 0.066
000480 | 1.003 | 1083 + 0,073  0.185 25 [ 0.0005 | 1.115 | 1557 + 0.080 £ 0.110
000800 | 1.001 | 0.780 = 0.055  0.010 0.00090 || 1.020 | 1.289 + 0.045 % 0131
0.01500 {| 1.000 | 0.619 + 0.043 = 0.107 0.00160 |[ 1.005 | 1.015 £ 0.011 + 0.032
0.03000 | 1.000 | 0.448 + 0.040 % 0.107 0.00280 i 1.001 | 0.861 = 0.033 % 0.031
0.06000 {| 1.000 | 0.471 + 0.062 + 0.093 0.00480 | 1.000 | 0.631 & 0.033 + 0.066

35 | 0.00090 | 1.041 | 1478 + 0.062  0.149

Table 8.9: £1 corrections and final Fy values, for the Electron method.
. 0.00160 { 1.010 | 1.053 £+ 0.019 £ 0.050

0.00280 [ 1,003 | 0.966 £ 0.041 £ 0.029
0.00480 }f 1.001 | 0.827 + 0.010 £ 0.068
0.00800 [l 1.000 [ 0.650 + 0.018 4 0.162

Table 8.10: £ corrections and final ¥y values, for the Double Angle method.



Double Angle method

Q?
(GeV?)

4

Fy

corr.,

F; £ stat £ sys

50

0.00090
0.00160
0.00280
0.00480
0.00800

1.096
1.022
1.006
1.002
1.001

1.562 & 0.08% £ 0.330
1.288 £ 0.071 £ 0.058
1.053 £ 0.056 + 0.032
L0410 £ 0.059 £ 0.084
0.721 £ 0.047 £ 0.069

65

0.00090
0.00160
0.00280
0.00480
0.00800
0.01500

1.183
1.039
1.010
1.003
1.001
1.000

1388 £ 0.141 £ 0.307
L300 £ 0.088 + 0.223
L1111 £ 0.076 & 0.087
0.911 £ 0.065 + 0.039
0.756 + 0.051 £ 0.030
0.582 + 0.045 + 0.036
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Table 8.10: #y, corrections and final ¥, values, for the Double Angle method.

Double Angle method

QI
(GeV?)

T

Fy

corr.

F; £ stat & sys

125

0.00160
0.00280
0.00480
0.00800
0.01500
0.03000

1.195
1.043
1.011
1.003
1.001
1.000

1.355 £ 0.117 1 0.248
1.066 + 0.065 + 0.141
0.993 £ 0.064 £ 0.044
0.891 + 0.058 = 0.062
0.606 + 0.042 + 1.026

(1.571 £ 0.062 = 0092

250

0.00180
0.00800
0.01500
0.03000
0.06000

1.058
1.015
1.003
1.001
1.000

1.306 £ 0.115 £ 0.397
0.717 £ 0.076 £ 0.089
0.661 £ 0.057 £ 0071
0.596 £ 0.051 £ 0036

0533 £ 0061 + 0.131

500

0.00800
0.01500
0.03000
0.06000
0.12000

1.082
1.015
1.002
1.000
1.000

0.761 £ 0.158 £ 0.618
0.634 £ 0.095 + 0.195
0.685 £ 0.096 £ 0.047
0.521 £ 0.073 £ 0.128
0.307 £ 0.066 + 0.312

1000

0.01500
0.03000
0.06000
0.12000

1.081
1.011
1.002
1.000

1.071 £ 0.266 + 0.655
0477 £ 0.110 £ 0.155
0.431 £ 0.120 + 0.076
0.555 + 0.150 + 0.398

2000

0.12000

1.001

0.156 + 0.190 + 0.112

‘Table 8.10: ¥y corrections and final F;
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values. for the Double Angle method.
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Chapter 9

The Gluon density of the Proton

9.1 F, scaling violations and the Gluon

The scaling of the proton structure functions (i.e. independence of Q?) is valid
only in the naive Quark-Parton Model. In QCD, the quark densities in the
proton, and thus also the proton structure functions, evolve with Q?, as a
result of the interactions between quarks and gluons: gluon bremsstrahlung
from quarks, and quark pair production from gluons. This has been discussed
in section 1.5 and is shown in fig. 9.1, where the £ structure function is
plotted as a function of 2, at various, fixed values of .

The Q? evolution of the quark densities, q/(z, Q?), is determined by the

GLAP evolution equation (1.20):

dgg(z, Q%) _ofQ) [ fidy, = ; tdy,, ro
dlnQ? [f ;lw(y)q;(y.Q’H/r 71.,,(y)g{y,Q) (9.1)

2z

For single photon exchange, the structure function £ is given by:
Fy(2,Q%) = 3 ¢} [zqs(2,Q") + 2,2, Q)] (9:2)
!

as can be deduced from equations (1.30) and (1.32).
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Figure 9.1: #) values, ertracted with the Double Angle method, plotted as
function of Q* at fized z. The error bars represent the statistical and systematic
errors added in quadrature. Also shoun are the MRSD. (full curve) and

MRSDy (dashed curve} parametrizations.

17T
Thus, the Q7 evolution of £3, in Leading Order (LO) QCD. is given by
dnd) - odd) [/ Y k.Y
+254 [ 2Ertswen| o

where the splitting functions Pg(x/y) and £p,(x/y) give the probability that
a quark with momentum fraction r originated from a quark or gluon with
momentum fraction y, where r < y < 1 (see section 1.5).

In the above equations, g{x, Q?) is the gluon density of the proton, defined
such that g(r,Q?)dz gives the number of gluons in the proton with a momen-
tum fraction between z and r + dr. ‘Uhen, the gluon momentum density is
given by:

Glx, Q%) = xglx. Q7). (%.4)

At low values of z, r < 1072, the quark pair production from gluons
dominates over the gluon bremsstrahlung from quarks in producing the Q?-
evolution of the quark densities®® (i.e. the second term on the right-hand
side of equations (9.1) and (9.3} becomes dominant). This fact can be ex-
ploited to extract the gluon density of the proton from the measured slope
dF3(z,Q%)/d1n Q? of the proton structure function £

Two approximate methods, one proposed by Prytz and another by Ellis,
Kunszt and Levin (EKL), are used here in order to determine the gluon dis-
tribution at Q@ = 20 GeV2. A global QCD fit to £, using the full Next to
Leading Order (NLO) GLAD evolution equations, has also been perfomed. 3
The result of the fit agrees well with the results of the two approximate meth-

ods.
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9.2 Prytz method

The Prytz method, proposed in LO®? and NLO,* completely ignores the
quark contribution to the £ scaling violations. Thus, the Q?-evolution equa-

tion of £, in LO, takes the form:

dFyz, Q? 2
;l(:Q(g ) ~ (Q 92"// d‘/ 37 me( )G(Vuoz) (9.5)

The splitting function P is given in lowest order by eq. (1.24):
1
Fyl2) = 5( + (1 - 2, (9.6)

where 2 = xrfy.
Then

Fy(2) = Pp(1 - 2), (9.7)

which means that F,(z) is symmetric around z = 1/2.
Substituting Pp(z) into eq. (9.5), converting the integral over y to an
integral over z, making a variable substitution from z to 1 — z, and summing

over four flavors {n; = 4), eq. (9.5) becomes:

dFy(r, Q%) ., 50.(Q%)
dn@Q? T 9% /o “i=

Q’)(z +(1-2)")dz (9.8)

The integral in (9.8) is performed approximately. For this purpose, the

gluon momentum density is expanded as a Taylor series around z = 1/2:

(;(l—f—z)zc(z— )+(z——)G(z-é +(2~%)ZC"(Z=%)+.,. (9.9)

Inserting this expression into eq. (9.8) and approximating the upper limit of
the integral (o 1 (justified for small ), the second term of the integral vanishes

due to the symmetry of /,(2) around z = 1/2. The third term gives only a
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small contribution compared to the first one, and is neglected. Thus. eq. (9.8)

finally becomes:
dFy(,QY)  10a (@), .
dnQ? s 2

(9.10)

Eq. (9.10) relates the gluon momentum density of the proton at a given
point z to the logarithmic slope of F; at /2.

Neglecting the quark contribution to dF3/d1n ()? leads to an overestimate
of the extracted gluon density. However, at ? = 20 GeV'? and for 2 < 10-2
the quark contribution amounts to only 5-8%.* On the other hand, the o?
correction to the LO result reaches 35% in this kinematic region {quark con-
tribution neglected). ®® Including the NLO correction, the stuon momentum

distribution for four flavors in the M3 scheme takes the form:

; iz ]a, dba(x, Q%) o, /17 )
G2, Q) = 10/27 + 7.960,/47  dIn()? 2/3 +3.5Rn,/-17."\ (2,.Q%)
(9.11)

The correction function N(r/2,Q?) has been estimated ¥ using the MRSD"
and MRSD;, parametrizations. At Q% = 20 GeV'? and in the r range used in
this analysis, 9-107* < r < 0.48 - 102 (see section 9.1), the two parametriza-
tions give almost the same results for :¥.

The Prytz formula (9.11) has been compared>® to the exact NLO result
(F2 term included) of the MRSD' and M RSD) calculations. At Q? = 20

GeV? eq. (9.11) was found to be accurate at the level of 10%

9.3 EKL method

The EKL method * is based on a solution of the GLAI evolution equations

in moment space. ft is implemented is LO, NLO and NNL,
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A functional form of x~=° is assumed for both the proton structure func-
tion #; and the gluon momentum density of the proton G. Then the scaling

violation of ¥, takes the form:

CUBT) _ prro)s(a, @) + POalg(n,QY), (92
nQ?
with ,
%(z,Q%) = 2713;@ (9.13)
and
<e)>= 4—”’9:% {9.14)

where ny, and ny, denote the number of quarks with electric charges 2 and 3,
respectively. For four quark flavours the mean square quark charge < f: > is
equal to 5/18. PFF and PFG are functions of a,. In the MS scheme they are
given by:

PFF(uo) = auphT + a2l +adpfT 4 0(al) (9.15)

PF(uwo) = a,pf¢ + alp{ + a}pf¢ + O(a)) (9.16)

The coefficients pf¥ and pf¢ depend on the parameter wy, whose value has to
be extracted from the data.
‘I'he gluon momentum density of the proton can be deduced from eq. (9.12).

For four flavours, it takes the form:

18/5  [dFa(z,QY
PFO(wp) | dInQ?

Gz, Q2 = 3’9(2101) = - PFF('*'O)FZ(za QZ) (917)

As it can be seen from equations (9.12) and (9.17), the quark contribution
to the &3 scaling violations is included in the EI(L method, in contrast to the

Prytz method.
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It also has to be noted that eq. {9.17) refates the gluon momentum density
of the proton at a given point x with the logarithmic slope of £, at the same

value z, in contrast to the ’rytz method.

9.4 Extraction of the Gluon density

We choose to extract the gluon density of the proton at Q? = 20 GeV2, In order
to determine the F; slope, the four x bins (xr = 0.0009,0.0016,0.0028, 0.0018)
that have data both below and above Q? = 20 GeV? are used. Since the
Electron F; values are only extracted in a limited kinematic region, the Double
Angle F; values are used here.

In each of the selected x bins, the structure function £} is fit with a linear

function of the form:
Fo(z,Q%) = a(x) + b(x) In(Q?/20 Ge\'?), (9.18}

The fit parameters a and b represent the F; value at * = 20 Ge\'? and the

logarithmic slope of £, respectively:

alr) = (e, QF = 20 GeV?) (9.19)
d}.‘ p 2
bx) M‘{’::Q‘z ) (9.20)

In order to obtain the central values of a and & and their statistical errors,
the central values of F; with only their statistical errors are fit. In order to
obtain the systematic errors of a and b, each set of the systematically shifted
¥, values (see section 8.6), with their statistical errors, is fit separately. In
this way, 8 different sets of the fit parameters are obtained. ‘The positive

{negative) deviations from the central values of a and b are added in quadrature
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to determine the positive (negative) systematic error of the fit parameters. ‘T'he
linear fits of the £; values in the four z bins are shown in fig. 9.2. The values
of the fit parameters and their statistical and systematic errors are listed in

table 9.1.

z | Fa2,Q* = 20GeV?) | dFy(z)/dInQ?

0.0009 118 +0.0250% | 041 4 0.04¥392

0.0016 |  0.94+0.02:3% | 0.27 4003129

0.0028 ||  0.80:0.01%393 | 0.23 £ 0.02+3%2

00048 | 06700233 | 0.22 +00343%

Table 9.1: Central  values,  statistical and  systematic errors
of Fa(x,Q* = 20 GeV?) and dFy(z)/d1n Q?, obtained from linear fits to the
Double Angle F, values, for the four selected © bins, according to eq. (9.18).

Substituting the values of £3(z,Q? = 20 GeV?) and/or diy(x)/dIn Q?,
as obtained from the fit, into equations (9.10), (9-11) and (9.17), the gluon
momentum density of the proton is extracted at Q? = 20 GeV? and at the
four selected r values. For the Prytz method, eq. (9.10) provides the LO
result, while eq. (9.11) gives the gluon momentum density in NLO. For the
EKL method, the LO and NLO results are olstained retaining the terms up
to O(a,) and Ofa}) in equations (9.15) and (9.16), respectively. For both
methods the value of a,(Q? = 20 GeV?) = 0.203 £ 0.010 is used. For the EKL
method, the parameter wo is set to wp = 0.4, which agrees with the result of
the global fit to the GLAP equations, as mentioned in section 9.1.

The extracted gluon momentum density of the proton, at Q2 = 20 GeV?,
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Figure 9.2: £ values, oblained with the Double Angle method. plotted as fune-
tions of Q* at fired x, together with the lincar fils using eq. (9.18).
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t

is plotted in figures 9.3 and 9.4, in LO and NLO, respectively. The inner

error bars represent the statistical errors, while the outer error bars give the

statistical and positive/negative systematic errors added in quadrature. ST
In ‘addition to the experimental systematic errors discussed above, there g [
are also theoretical systematic uncertainties, not shown in the figures. The g 3 n
[ Q* = 20 GeV*
error on a, yields a variation of £6% for both methods in LO and NLO. For i
the EKL method, the results are very sensitive to the choice of wy. Varying wo o ® Prytz LO
from 0.3 to 0.5 results in a 40% increase of zg(x,Q?). For the l’ryt.z method, [ 4 EXL LO (w,=0.4)
recall that neglecting the quark contribution to the ¥ scaling violations results Br
in a 5-8% overestimate of the gluon density, and that the methed is found to 0
be accurate at a 10% level, as discussed in section 9.2, el
‘T'he discussion of these ;esults for the gluon distribution in the proton . 15 L
follows in chapter 10. . .
10 ? t +
. iy
L Ly el NS | A s
. . 10! 107 1072 107"

Figure 9.3: The gluon momentum density of the proton as « function of z at
Q% = 20 Gel? extracted from the Fy scaling violations using the I'ryt: and
EKL methods in LO. The inner error bars represent the statistical errors. The
outer error bars represent the statistical and (erperimental) systematic errors

added in quadrature.
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Figure 9.4: The gluon momentum density of the proton as a function of z at
Q% = 20 GeV? extracted from the £y scaling violations using the Prytz and
EKL methods tn NLO. The inner ervor bars represent the statistical errors.
The outer error bars represent the statistical and (ezperimental) systematic
errors added in quadrature. Also shown are the MRSD' (full curve) and

MARSD, (dashed curve) gluon parametrizations.
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Chapter 10

Discussion

10.1 The Proton Structure Function F

The 1993 HERA data extend the measurement of F; to lower values of r and
both higher and lower values of (? compared to the 1992 data. The higher
luminosity of the 1993 run has reduced the statistical errors by a factor of
2.5 compared to the 1992 measurement, while better understanding of the
detector, reconstruction and unfolding methods has led to smaller systematic
errors by a factor of 50% or more.

The most striking feature of the measured proton structure function £ is
its strong rise with decreasing r, which is in contrast to the almost constant
behaviour of F3 at larger values of z. The rise is steeper in the lower (? values
but it persists for Q? up to 500 GeV2. It was first observed in the 1992 HERA
data and is confirmed with the 1993 data presented in this thesis.

The expected logarithmic scaling violations of F; are confirmed for the first
time in the new region of low r and high Q* with the 1993 HERA data, as
shown in fig. 9.1.

The use of the Electron method in the £, measurement is first made fea-

sible in the 1993 analysis. In most of the (r,Q?) bins, the Double Angle and
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Electron &3 values agree with each other within errors (see fig. 8.6). In some of
the low-Q?, low-z bins, the Electron method values lie higher than the Double
Angle values using the uncorrected electron energies for event selection cuts.
‘I'he disagreement is caused by the electron energy corrections, which shift the
scattered electron energy to higher values. Using corrected electron energies
for event selection cuts in the Double Angle method results in agreement with
the Eléctron method. In all Q? bins, the F; values from the two methods
find the same slopes, as functions of z. The Lwo analyses are independent in
the sense that the selected samples (although overlapping), the reconstruction
methods, and the systematic effects are different. The agreement between the
two methods is a powerful systematic check of the results. However, since the
Electron method is implemented only in a limited kinematic region, and the
degradation of its resolution due to inactive material is not completely recov-
ered after the electron energy corrections, we clicose the Double Angle results
as the final F; values.

Before comparing the measured }; values with the various Parton Distri-
bution Functions (see section 1.10), it must be noted that for values z > 10-2,
where a large amount of fixed target DIS data exists, all parametrizations
agree with each other. It is HERA that offers the unique possibility of distin-
guishing among the vartous PDFs, at low z. The comparison of our final F;
values with the PDFs available at the time of this analysis is shown in figures
8.1 and 8.5.

In fig. 8.1 our results are compared with the PDFs that follow the con-
ventional fitting procedure (see section 1.10). At the lowest values of Q?,

MRSD”, which has a singular gluon and sea quark distribution as z — 0
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at Q* = QF = 1 GeV?, and MRSDj, which has a constant behaviour, span
our data. At @ = 35 GeV? and above the data agree with the MRSD’
curves. The MRSA parametrization, which has a singular (but softer than
the MRSD) gluon, and which has included the 1992 and some preliminary
1993 HERA data in the GLAP fit, reproduces well the final 1993 results at
Q? =25 GeV? and above. [n the lowest (? bins it lies slightly above our data.
The CTEQ2 parametrization, which has also included the 1992 HERA data
in the GLAP fit, has a singular glion, and starts the QCD evolution from a
low reference value of Q7 = 1.6 GeV'?, agrees well with the 1993 data at all
values of (2.

In fig. 8.5 our final #; values are compared with the GRV' parton dis-
tributions, which are generated radiatively from a valence-like input. The
GRV(HO) curves, which treat all quarks as intrinsic massless partons, lie
above our data in the four lowest Q% bins, The GRV91 parametrizations,
on the other hand, which take in account the mass of the heavy quarks {c, b),

lie closer to the data.

10.2 The Gluon density of the Proton

The scaling violations of 3, confirmed for the first time with the 1993 HERA
data in the low-z region, 1.5- 1071 < r < 1072, are used to estimate the gluon
momentum distribution in the proton.

The scaling violations become larger as & decreases, as can been seen from
the increasing slope of £3, dF3(x,Q%)/dIn Q?, with decreasing z. in fig. 9.2.

The gluon momentum density in the proton is found to rapidly increase
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as r decreases from 1077 to 9 - 10", as can be seen in figures 9.3 and 9.1.
This rapid increase of the gluon density with decreasing = is in accord with
the steep rise of F; at low z, since the sea quark distributions, generated by
the gluons, dominate the F; structure function at low values of r.

‘I'he extracted gluon distribution clearly favors the singular gluon behaviour
of MRSD, rather than the constant gluon of MRSDj, as can be seen in fig.
9.4. 'The latter lies lower than the lower limits of our ecror hars.

‘The results from the two approximate methods userl to extract the gluon
distribution from the F; scaling violations are in good agreement. This indi-
cates that the different approximations made by the two methods are justified.
In the P'rytz method, the quark contribution to the £ scaling violations was
completely neglected in the low-z region relevant to this analysis. The gluon
momentum density, however, was not assumed to behave as any specific func-
tion. In the EKL method, on the other hand, the quark contribution was
included, but a specific singular functional form was assumed for zg(z, Q?).
The results justify the choice of the functional form and confirm that the F;

scaling violations at low z are dominated by gluons.
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Chapter 11

Summary and Outlook

The 1993 HERA data, corresponding to an integrated luminosity of 0.515
pb=!, have been used to measure the proton structure function F{e, QY in
the region 7 < Q? < 2560 GeV? and 1.5- 10°* < r < 0.16. The scaling
violations of £ have been used to extract the gluon momentum density of the
proton, G(z,Q?), at Q* =20 GeV? and 9-10~' < r < 0.96 - 10~2,

The structure function F; is found to rapidly rise with decreasing x. The
gluon distribution also shows a substantial increase at small xr. The GLADP
evolution equations are found to adequately describe the scaling violations of
F; in the kinematic region measured.

The low-z region in DIS has been an exciting area of theoretical specu-
lations (before and after the start of HERA data) and experimental HERA
results. However, there are important questions that still need an answer, The
region of validity of the GLAP evolution equations, as opposed to the limit
where the resummation of the large In(1/x) terms becomes important (in the
double logarithmic approximation and the BFKL equation) has to be clari-
fied. Whether parton recombination occurs, the scale at which it starts, and
the way it approaches the saturation limit (uniformly or concentrating around

“hot spots”) has to be determined.
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The 1991 and 1995 HERA data, in conjunction with new ZEUS detector
components at very small angles around the beam-pipe, extend the kinematic
region 1o even lower values of x and Q2. The 1991 F; measurement reaches
values of z as low as 6 - 10~* and values of (}? as low as 2 GeVZ2 The 1995
measurement is expected to reach values of (7? less than 1 GeV2. The explo-
ration of this new low-z, low-Q? region may provide some answers to the open
questions mentioned above.

‘I he upcoming measurements of the £3 proton structure function in the
low-0Q? kinematic region will also close the gap between HERA and the DIS
fixed target experiments.

In addition, the higher statistics of the 1991 and 1995 HERA data will
rnable a measurement of the gluon density of the proton with methods other
than the scaling violations of £; (i.e. jet rates, J/y production), providing a
crucial check of the gluon results presented here.

Deep tnelastic ep Scattering has proved to be a powerful tool in exploring
the structure of the proton in the last thirty years. HERA has extended our
knowledge in a completely new regime, and will continue doing so in the near

future.
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