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Final-state interactions in three-meson decays are ofimglertance for various reasons. From
a close investigation of the corresponding Dalitz plots,magy learn something about meson—
meson scattering, a prominent example of recent years lleghgxtraction of pion—pion scat-
tering lengths from the cusp effect o — 371 decays. On the other hand, a precise analysis of
rescattering effects is of high importance to understaadithdamental transition operators driv-
ing the decays, due to the way they enhance and shape the giedmpilities. A low-energy
example for this occurs in the analysispf— 3 decays, which play a central role in precision
determinations of the light quark mass ratios. To obtairab& descriptions of final-state inter-
actions also at somewhat higher energies, one has to godegoturbative treatments and resort
to dispersion-theoretical analyses, which we demonsioathe examples of the decays— 3
andg — 37
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1. Introduction

A precise study of final-state interactions is increasingly becoming of highriarpoe for
our understanding of diverse aspects of hadronic particle decdnsy. dan be of significance for
various reasons: if final-state interactions are strong, they can signifiemhance decay probabil-
ities; they can significantlghapethe decay probabilities, most prominently through the occurrence
of resonances; besides resonances, also new and non-triigi@etiuctures can occur, such as
threshold or cusp effects; and finally, they introduce strong phasesginary parts, the existence
of which is e.g. a prerequisite for the extraction of CP-violating phases @k @ecays.

The relation to the low-energy effective theory of chiral perturbatiooth€ChPT) herein is
at least two-fold: final-state interactions may give access to obseryaieldicted by ChPT, as we
will illustrate below for the case of the cusp effectkn— 3 decays that yields information on
pion—pion scattering lengths; vice versa, rescattering effects may haeetmsidered to sufficient
accuracy in order to exploit the relation of experimental observablesittafuental parameters of
quantum chromodynamics as suggested by ChPT, and the geea$rr that gives access to light
guark masses is an example for that. Finally, there have been variors &ifextend effective field
theories to somewhat higher energies, including e.g. the lowest-lying vagtonances beyond
the pseudo-Goldstone bosons of ChPT; we will show in the last sectiowligprsion relations
incorporate strong, model-independent constraints also on the ddadagse resonances.

2. Cusp effect in K — 31T

In an investigation of the decay* — ", the NA48/2 collaboration at CERN has ob-
served a cusp, i.e. a sudden, discontinuous change in slope, in thespecérum with respect to
the invariant mass squared of then® pairdr”/dss, s3 = M2, , [1]. A first qualitative explanation
was subsequently given by Cabibbo [2], who pointed out th&t acan, simplistically speaking,
either decay “directly” into the®7°rr* final state, or alternatively decay into three charged pions
mht o, with arrh i pair rescattering via the charge-exchange process into two neutral pion
compare Fig. 1. The loop (rescattering) diagram has a nhon-analyticiegertional to

[ awm2 VE
Vi (Ss) =1 1—?’#, S > AMZ. | ivi(ss) =— f—l, Ss<AMZ. . (21)

and as the charged pion is heavier than the neutral one by nearly 4.6thef{then real) loop
diagram can interfere with the “direct” decay below tirerr threshold and produce a square-
root-like singularity atss = 4M2., the cusp visible in the experimentally measured spectrum [1].

K"

Figure 1: “Direct” and “rescattering” contribution to the dec&y" — m°rPmrt. The black dot marks the
charge-exchanggrt scattering vertex proportional to the scattering lengthlrashold.
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What is more, the strength of this cusp is proportional to the charge-egelmar scattering ampli-
tude at threshold, that is, to the combination of scattering Iemﬁhsa% (up to isospin-breaking
corrections), for which a very precise theoretical prediction existsB]investigation of this cusp
effect could therefore lead to a new method to determinertiiescattering lengths, provided a
theoretical framework can be devised that allows to match the precision détae

The aim of the development of such a theoretical representation & the3rr decay ampli-
tude is to parameterizedirectlyin terms of scattering lengths (and higher-order threshold parame-
ters) as well aK — 3rrtree-level coupling constants that replace the conventional, polynomial-typ
Dalitz-plot parameters. This is in marked contrast to ChPT, where the scgttengths are cal-
culated perturbatively in an expansion in quark masses, and more akin tfeetivy of hadronic
atoms [4], where a non-relativistic effective field theory (NREFT) isdutgerelate decay widths
and energy-level shifts to scattering amplitudes at threshold. A similar NREEDeen developed
for the analysis of cusp effects [5, 6, 7] (see also the review in [8])) the difference that rel-
ativistic recoil corrections are fully retained, and only particle-pair toveas neglected to avoid
mass-renormalization effects. The effective theory is then construsteddauble-expansion in
rirthreshold parameters (collectively denotedapyand a non-relativistic parametef |pr| /M.
This expansion has been performed completely ugtas*, ale® a%c*) [7], that is to two loops,
including the appropriate number of derivative interactions. Via two-Idfgees, the decay ampli-
tude even shows a sub-leading dependenca palthough with reduced precision.

Finally, radiative corrections have a surprisingly large impact on the sicaftength extrac-
tion from the cusp effect [9]: Coulomb-photon-exchange inside thegelapion loop in Fig. 1
modifies the analytic structure near threshold according to

V. (85) — 1V (5) — 5 10g(—VE (s3)) + - (2.2)

so while suppressed by the fine-structure constante? /41, radiative corrections induce a loga-
rithmic singularity near the charged-pion threshold, right where the sétysif the amplitude to
rirrrescattering is largest. Taking these into account, the NA48/2 collaboratiowl {10]

a8 — a4 = 0.2571+ 0.0048a1+ 0.0025ys1+ 0.001 4yt ,
a% = —0.024+ 0.013ta 0.009%ys1# 0.002yt , (2.3)

in an analysis oK* — = °1° decays, which agrees beautifully with the theoretical prediction
a3 — a3 = 0.265+ 0.004,a% = —0.0444+0.0010 [3]. Similar cusp effects have also been predicted
in other decay modes suchlés — 31°, n — 31° [6], andn’ — nr°r® [11].

3. Dalitz-plot parametersin n — 3m

With a representation for final-state interactions up to two loops at handdinglall effects
due to the different masses of charged and neutral pions, one may tng toHiether this can also
be used to investigate other decays into three pions. The special intetbstdecayn — 31
derives from ChPT: the decay violates isospin symmetry, and electrotiagffects have been
shown to be strongly suppressed [12, 13, 14], such that it offeenpally clean access to the
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quark mass differenas, — my. Indeed, at leading order in the chiral expansion, the amplitude for
the charged final statg — " 77 11° is given by

B(my — 3(s—
MO (s t,u) = (%F?){H M(%_E;T}, (3.1)
wheres= (P + Prr )2t = (P + Pro)%, U= (Prr+ + Po)?, 350 = S+t +U = M7 +3MZ. At first
order in isospin breaking, the corresponding amplitude for the neutedisiateny — 371° is given

by #n(s,t,u) = — (s t,u) — 4c(t,u,S) — #:(u,st). However, large higher-order corrections
render the extraction of the normalization of the amplitude, and therefordasfiation on the
light quark masses, from experimental data difficult; in order to do this tgliekearly one has to
achieve a very good description of the Dalitz plot distribution (compare dlsar ourrent theoret-
ical efforts in Refs. [15, 16]). The latter is, for — 3711, conventionally described as an expansion
around its center in terms of the normalized variables

t—u S—S 2 2
X= , =——., Z=X"+4+Y, Ry==-M,(M, —3My), 3.2
\@Rn y Ry )’2 n= 3 n(My ) (3.2)

defining the leading Dalitz plot parametexs, d, anda according to

(X Y) 2 = | AP {1+ay+byY +d@+...}, | (2P = |MP{1+20z+...} . (3.3)

In particular the neutral slope parametethas been a point of major concern over the last few
years, as shown in Fig. 2: while various very precise experiments gmbeautifully to a value

of o = (—31.7+1.6) x 1073, the parameter-free prediction in ChPT at one-loop is positive [18],
as is the central value at two loops [19]; a dispersive calculation match€dRad at least leads
to a negative sign [20]. Matching the NREFT tree-level couplings to oap-©hPT, we find the
following decomposition ofr [17]:

o = (+10.7ee+ 12.41-100p — 44.1p-100p— 6.Onigher— 0.6iso-breal) x 1073 = (—24.6+4.9) x 1073,
(3.4)

where higher-order corrections are estimated by single-channebldsgiom” resummation and
yield, besides differenttrr scattering parameterizations, the quoted uncertainty; higher orders
in isospin-breaking are very small. The NREFT power counting helps iexfilase seemingly
surprising numbers: as the one-loop contributions to the amplitude are ponadynary in this
scheme, one- and two-loop corrections appear at the same @tdég?), only higher loops are
suppressed; both are enhanced irersus the tree-level terms, which arés?). The total result is
marginally compatible with the experimental determination.

Finally, we wish to show the significance of the imaginary parts in the decay adgsditu
Expanding themplitudeqas opposed to their squared moduli) around the Dalitz plot center,

Me(%Y) = M{1+ay+byP+dX+...}, (D)= M{1+az+...},  (3.5)

comparison to Eq. (3.3) immediately demonstrates 2Red, b = |a]2 + 2Reb, d = 2Red, o =
Rea. The isospin relation betweew, and.#, then leads to [19]
1 a2 N 1 a?
a_Z<b+d—Z—(lm@)<Z(b+d—z>, (3.6)

IHere and in the following, for simplicity we neglect corrections induced teypion-mass difference, which are
meticulously traced in Ref. [17]. Numerical results shown here refgré@xact relations.
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Figure 2: Comparison of values for the slope parameterTop: theoretical predictions. Bottom: experi-
mental determinations. The gray shaded area is the pattitdegroup average. Figure taken from Ref. [17].

hence there is only aimequality between the Dalitz plot parameters of both channels. However,
the imaginary part ofiis generated purely by final-state interactions and thereby determined by
the same tree-level couplings that fix the real parts: we can reformulateldiion as [17]

1 2
o= 2 (b+ d— %) —%1(1+ %a)?, {3 =0.050+0.005, {»=0.225+0.003, (3.7)
with {3/, determined purely byt rescattering. The most precise experimental measurement of
the charged Dalitz plot parameters [21], however, is compatible §yith O or no imaginary part
in a at all, at clear odds with Eqg. (3.7). Our analysis therefore points toveasitgnificant tension

between the measured parameters of the two diffeyent3m final states.

4. Dispersion relationsfor w — 3mmand ¢ — 3t

When proceeding to three-pion decays of somewhat heavier mesorthdgesof the lightest
isoscalar vector mesonag) and ¢, it is obvious that perturbative treatments of final-state interac-
tions are doomed to fail, as the influence of theesonance is already significant)(or even falls
inside the Dalitz plot ¢). A method to resum rescattering effects between all three pions non-
perturbatively is given by dispersion relations. One starts by deconmptig@ramplitude (s,t, u)
according to

A (S,1,U) =i &yyqpnH Ph P pﬁoﬂ‘(s,t,u), (4.1)

wherenH is the polarization vector of the decaying/¢. Due to Bose symmetry, only partial
waves of odd angular momentum contribute; neglecting discontinuities ofd=higiher partial
waves,.Z (s,t,u) can be further decomposed &&s,t,u) = .7 (s) +.% (t) + % (u). The unitarity
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relation for.Z (s), assuming elastic final-state interactions, then leads to the following expressio
for the discontinuity of# (s):

discF (s) = 2i{.7 () +.7(5) } x B(s—4M2) x sindt(s)e %1 | (4.2)

where & (s) is the it P-wave phase shift. Were it not for tlirmomogeneitieﬁ(s), Eq. (4.2)
would correspond to the discontinuity equation of the vector form factbighwis solved by the
Omnes function

ey _ s [® o 0(S)
Ql(s) = exp{ HAM%dgg(g_S) . 4.3)
The functionﬁ(s) is given by angular averages ovér according to
a a 1/t 1
F(9)=3((1-2)Z)s), (2'F)(s) = E[ldsz (3(3s0—s+2x(9)) .
142 2 1/2/n 12 nA2 4M2
S = g(MV_'_‘?’MTT) ) K(S) =A (MV>M7T78) 1- s ) (44)

whereA (x,y,2) = x? +y? + 22 — 2(xy+ xz+yz), andMy is the mass of the decaying vector meson.
The angular integration including thes) function is non-trivial and generates a complex analytic
structure, including three-particle cuts due to the fact thand ¢ are unstable and decay [22].
The analog to the Omnés solution (4.3) are then integral equations involviiththogeneities

< dg sindl(s).Z7 (s
F(9) _Qi(s){a+f[AM%ng%é()'()j_(s))} , (4.5)

with the subtraction constamt The number of subtractions is chosen such that the dispersion
integral is guaranteed to converge.

Equations (4.4) and (4.5) can be solved iteratively: starting from an amnpiitnput function
Z(s), we can calculate the inhomogeneify(s) according to Eq. (4.4), from which a ne# (s)
is obtained from Eq. (4.5); the procedure is stopped once a fixed pioing gteration is reached
with sufficient accuracy. In the example discussed here, see Eq, {dedb¥ubtraction constant
works as an overall normalization factor of the solution; we match it to the pdettay width, but
note that anormalizedDalitz plot distribution is subsequently a pure prediction. While the result
is independent of the starting function, for the case at hand, we chB¢se= Qi(s) in order to
allow us to quantify crossed-channel effects (generated by the iteratiarplausible way.

Figure 3 shows the result of such an iteration for the degay 31T it converges fast, with the
third iteration already all but indistinguishable from the final result. Thestiffice to the starting
point of the iteration, the Omnés function without any crossed-chansettering, is however very
significant. The picture fow — 37T (not shown here) is qualitatively very similar, with convergence
reached even faster (after two iterations, see Ref. [22]).

The resulting Dalitz plots for bottv — 3rrand@ — 3mrare shown in Fig. 4, normalized by the
P-wave phase space factor, using the kinematical variatdady defined in analogy to Eq. (3.2).
Comparison to the experimental— 37t Dalitz plot of Ref. [23] shows that crossed-channel effects
improve the reduceg@? from 1.71...2.06 (with .7 (s) = aQl(s)) to 1.17...1.50; further improve-
ment and perfect agreement with the data can be achieved by introducaaigléional subtraction
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Figure 3: Successive iteration steps of real (left panel) and imagifrdght panel) part of the amplitude
Z (s) for @ — 3m. The vertical dashed lines denote the physical region ofi&uvay.
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Figure 4: Dalitz plots forw — 31 (left) and @ — 3 (right), normalized by the P-wave phase space.

constantin Eq. (4.5). The — 3rrandg — 3rrdecay amplitudes constructed in Ref. [22] have sub-
sequently also been used as input in a dispersive analysis of the trafmitiofactors as measured
in the decayso — 10—, @ — ¢ ¢~ [24].
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