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ABSTRACT 

In order to calculate high-energy high-momentum transfer processes 

for particles described by composite fields one needs to know some uni- 

formity properties of the external particle vertex function. We examine 

such vertex function in a scalar theory in six dimensions in the case in 

which anomalous dimensions are realized. We start from the result that, 

in a certain class of renormalizable theories, the vertex function for 

three fundamental fields is dominated by short distances. This is used 

to prove that the convolution of the composite particle vertex function 

with the direct and crossed renormalized skeleton graphs is consistent 

only if such a vertex function is also dominated by short distances. 
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1. INTRODUCTION 

A-major theoretical problem is whether high-energy high-momentum trans- 

fer phenomena are related to short distance behavior of field theory1 when the 

external particles are kept on shell. Such a question is related to the concept 

of dimensional scaling. 2 Some results have been obtained recently with regard 

to a particular on-shell process -i. e. , the form factor -for particles described 

by fundamental fields with anomalous dimensions. 3 In fact, it has been found3 

that in a class of renormalizable field theories the inhomogeneous term (mass 

insertion) of the Callan-Symanzik equation for the three-point vertex function is 

negligible at high momentum transfer even if two of the particles are kept on 

shell. It follows directly that in such field theories the form factor at high 

momentum transfer is dominated by short distances -i. e. , we have the simple 

dimensional result (with anomalous dimensions). If the external particles are 

composite objects (described by composite fields), as probably the hadrons are, 

the problem appears to be more complicated. The reason is that the structure 

of the vertex function of the composite field changes abruptly when one goes on 

shell. 4 This feature compels one to work directly on the pole of the external 

particle. What is needed is the residue of the vertex function of the composite 

field decaying into its constituent at the pole of the external particle; once this 

is known the convolution of such external vertices on a irreducible kernel repre- 

senting the scattering of fundamental constituents gives the on-shell amplitude. 

Some characteristics of such vertex function are directly known from dimen- 

sional analysis which fixes the strength of the leading high-cone singularity. 

Some valuable information is also supplied by conformal invariance5 which 

appears to be valid on the light-cone in theories with anomalous dimensions, 6 

fixing the weight of the leading light-cone singularity. On the other hand such 
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information is insufficient to allow calculations of asymptotic on-shell ampli- 

tudes 2 more stringent uniformity hypotheses being necessary in order to 

‘recover, for example, the dimensional scaling results. In the present paper 

we shall essentially be concerned with these uniformity properties which play 

such a crucial role in on-shell computations. As one has to work on the 

composite particle pole it does not seem possible to apply directly perturbation 

techniques and we shall have to resort to the expansion in terms of skeleton 

graphs. 8 The model we shall examine here is a field theory with anomalous 

dimensions; it seems that this situation should be somewhat simpler than the 

asymptotic freedom case. 9 In order to avoid dealing with spins or with the 

complicated topology of $4 we shall work with a scalar field in six dimensions 

with trilinear coupling. 10 Thus the treatment applied in the attractive domain 
n 

of an ultraviolet stable point in (+3),, if it exists, or better should be considered 

as a guideline to more realistic theories like Yukawa in four dimensions or 

possibly to asymptotically free field theories. 

In Section II, after recalling why uniformity properties are necessary for 

computing asymptotic behaviors of on-shell amplitudes, we ask ourselves which 

kind of uniformity properties can be expected in a vertex function. In doing this 

we examine the conformal contribution to the vertex function and to its discon- 

tinuity. This analysis even if not necessary for the treatment of Section III 

indicates which are the objects related to the vertex function for which simple 

uniformity properties ban be expected; these are the vertex functions (or residues 

thereof) from which the external renormalized propagators corresponding to 

elementary fields have been removed. 11 The study of such objects is performed 

in Section III by using the skeleton graph expansion of the renormalized theory. 

We start from the result3 that in a class of field theories the vertex function of 
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three fundamental fields, truncated in all three external propagators, is 

domin@ed by the short distances - i. e. , has the same power behavior when 

‘one, two, or three of the squares of the external momenta tend to infinity. It 

is shown that such a property imposes restrictions on the spectral function of 

the parametric representation of the vertex function which is going to play the 

key role in the subsequent developments. Then we consider the convolution of 

the composite particle vertex function with the direct exchange and crossed 

renormalized skeleton graphs. The results are as follows: If one starts from 

a truncated vertex function of the composite particle dominated by short dis- 

tances then by using the restrictions on the spectral functions of the vertices 

appearing in the skeleton graphs one ends up with a consistent result. On the 

other hand if one starts with a vertex function not dominated by short distances, 

the convolution both with the direct exchange and the crossed renormalized 

skeleton graphs turns out to be inconsistent with the initial vertex function, in 

the sense that the iterated vertex function, as the square of one external mo- 

mentum goes to infinity (the square of the other momentum being kept constant) 

decreases faster than the initial vertex function. Expressed in different words, 

if one should start with a vertex function not dominated by short distances, after 

a finite number of iterations with the above mentioned skeleton graphs, one 

would settle down to a vertex function dominated by short distances. 

II. GENERAL DISCUSSION OF VERTEX FUNCTIONS 

As mentioned in the introduction, a rather detailed knowledge of the vertex 

function of the external particles is needed in order to calculate asymptotic 

behaviors of on-shell amplitudes. Due to the relevance of this fact we want to 

recall it in a simple example. Consider the graph of Fig. 1, which contributes 

to the elastic form factor with all the internal scalar fields taken as canonical 
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for the sake of illustration. The contribution of such a graph to the asymptotic 

form factor is an integral of the type4 

g(z, t) g(z’, t’) dzdt dz’dt’ do(l-cr2)L+1 
2 

(1-z’) (l-z)-+ m 2 - J$- +.t(l+o) 4- V(l-o!) 1 M-1 
(2.1) 

where M and L are the mass and the angular momentum of the external particle 

and m is the mass of the particle propagated in the loop. g is the Deser-Gilbert- 

Sudarshan spectral function 12 of the (nontruncated) vertex function of the 

external particle4 the dimension of whose field we shall call A. Dilatation 

invariance tells us that g(z, t) behaves for large t like 

That is, 

A L 

g@,t> - t 
-7+-z 

g(z) (2.2) 

and thus short distances give to (2.1) the contribution 

AeL 

/ 

da! dz dz’ g(z) g( z’) (14X2) 2 
M2 A-l 1 

(2.3) 2 
(1-z’) (14~~) f m - 7 

Conformal invariance, which is realized on the light-cone in theories with 

anomalous dimensions, 6,13 fixes the asymptotic weight g(z) which in this simple 

example turns out to’be 

A+L 1 -- 
(l-z2) 2 2 . 
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Such a restriction14 gives for the asymptotic behavior of (2.3) (-q2)lsA, which 

is theJimensiona1 rule. On the other hand if the restriction 

gtz,t) < (1-z) A-2 h(t) (2.4) 

is violated in any finite interval of t the dimensional scaling result is invalidated. 

Thus the information given by the conformal invariance even if valuable at 

the leading light-cone level is insufficient to guarantee the validity of the dimen- 

sional scaling rule as a priori it does not give any bound on the conformal 

breaking terms. Equation (2.4) is the kind of uniformity we were speaking about 

in the introduction and it would actually follow from the assumption that the 

vertex function from which the two elementary propagators have been removed 

has the same power behavior when one or both of the external momenta squared 

go to infinity. 

In order to gain some insight into the structure of the vertex function we 

shall consider the conformal contribution to the vertex function and to its 

discontinuity. What we develop here is not strictly necessary for the treatment 

of Section III but it will be of help in pointing out which are the simple features 

one can look for in a vertex function. The conformal covariant (nontruncated) 

vertex function has the form 

I- aA PBrC 6(1-~-p--y) da! dP dy /3y -4; CYY -9; C@ 1 R 
(2.5) 

where 

R= 
dl+d2+d3 

2 -D’ , A=- 
d2+d3-dl 

2 +D -- 2 1 

(2.6) 

B=- dl+d3-d2 D 
2 +- 2 -1 , c=- dl+d2-d3 D 

2 +-- 2 1 . 

- 

dl, d2, d3 are the dimensions of the fields and D the dimension of space-time. 
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The noteworthy fact is that if dI, d2, dg are all larger than 2 2 then Eq. 

(2.5) &as the asymptotic behavior 

(-q2)R P-7) 

irrespective of whether one, two or all three of the arguments -qT, -qi, -9: 

go to infinity. This fact is directly checked on (2.5) where one sees that in the 

above described situation the limit is simply calculated by pulling out the argu- 

ment, as the left over integral is convergent. On the other hand, in a conformal 

theory, one can remove one (or more) external propagators by changing in 

expression (2.5) the related dimension d into the llshadowt’ dimension l5 D-d. 

As either d or D-d is bigger than i the rule follows: the simple object - i. e. , 

the function which behaves asymptotically with the same power behavior irre- 

spective of the number of external square moments q2 which are taken to 03 - 

is given by the (nontruncated) vertex function from which those external propa- 

gators are removed, which corresponds to fields of dimension < $. Thus the 

simple object (i. e. , with uniform asymptotic behavior) is obtained by truncating 

the external propagators corresponding to elementary fields. It has to be 

stressed that this is simply a result of the purely conformal invariant theory, 

which does not contain any indication about the conformal breaking terms. It 

appears however that the vertex function truncated in the elementary external 

fields should be the simplest object to be studied. 

The next point about which the conformal covariant vertex function throws 

light is the following. Let u’s consider the discontinuity of the vertex function 

(Eq. (2.5)) in one external leg, e. g. , qi. (This has to be considered as the 

analogue of the residue of the vertex function at the pole corresponding to the 
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external particle. ) How does such discontinuity relate to the original vertex 

fu.nctiQn, with particular regard to the large qt and/or large qi behavior ? 

In order to calculate such a discontinuity let us write Eq. (2.5) in the form 

V = [;l& id" dy (l-~~)~+l+~ (1-~~+4y)-'~-~-~-~-~ yR+l+A+B (l+z,A (l-,,B 

2 l-!-z 1 
R 

-92-F -9iY (2-W 

The discontinuity in qi (clearly for qi > 0) is due to the argument of the square 

bracket getting negative and is given by 

/ / 

co 

Disc V = const dz 2 
dY (1-z ) 

R+C+l (lqz2+ ,y)-2R-3-A-B-C 
2 

q3 YO 

Y R+l+A+B(y-yo)R (l+z)A (l-z)B cq;)R 

where 

1 2 l-z 2 1+z 
Yo = 2 93 1 -91 y- -92 2 I 

(2.9) 

(2. 10) 

If one now examines the behavior of Disc V for large q: and qi one sees that 
2 

93 
the behavior is 

2 R const q3 o/ (y,)- (l-z2)R+C+1 (l+z)A (l-z)B ds 

= con& (q~~c+l/ t-q;? -q~~~cel (1-Z2~c+1(1+Z)A(1-Z~ dZ 

(2.11) 
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This is the same as the light-cone of the simple vertex function if d3 < $ , in 

- .which-case we have, defining < = y 
1 
-4; /3 - qi a! 

I 

/m[’ a [-q; c@ +t}R [-q; p -9; CY]-‘-’ S.(l-a!-@ da! dfl 
0 

J 

-C-l 
(1-z2pc+1 (1+z? (1-z,B [-qq 9 -4; +} (2.12) 

On the other hand, for d3 > % we have a light cone singularity with exponent R 

which is completely different from Eq. (2.12). This is the phenomenon of 

shadow singularities, 16 mentioned in the introduction, which makes the wave 

function at the pole of a composite particle quite different from the off-shell 

vertex function. 

Going back to Eq. (2. ll), one also notices that the right-hand side behaves 

2 -C-l 
as (-ql) when -9; - 00 irrespective of whether -4: also goes to 00 or stays 

constant, only if 

R+ l+B = d2 -q>o (2.13) 

That is, the discontinuity of the vertex function may possess a uniform asymp- 

totic behavior only if it is truncated in the external propagators corresponding 

to elementary fields. 

Summing up, while for d3 < 2 2 the discontinuity of the vertex function in 

qt has the same light-cone as the vertex function itself, for d3 > $ (composite 

external field) even the nature of the light-cone is different. The difficulty out- 

lined above cannot be formally circumvented by considering the vertex function 

truncated in the external propagator of the composite field as such vertex func- 

tion changes nature at the value of the physical mass. 
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As a result, if the external fields are composite and one is interested in 

-on-shell phenomena one has to examine directly the residue at the pole of the 

’ vertex function. This is what we shall do in the next section. 

III. CONVOLUTION OF THE VERTEX FUNCTION 

WITH THE RENORMALIZED SKELETON GRAPHS 

In this section we shall consider the convolution of the vertex function with 

the direct exchange skeleton graph (Fig. 2a) and with the crossed skeleton graph 

(Fig. 2b). As explained in the introduction we shall consider a scalar theory 

of the type ($3)6 (renormalizable) and we shall treat the situation with anomalous 

dimensions. The propagators and vertices appearing in Fig. 2 are the re- 

normalized propagators and dressed vertices of the exact theory. Thus the 

propagators will have the representation 

P tt) - t 
d-3 

(3.1) 

(3.2) 

for large t. d is the dimension of the field and d> 2 as 2 is the canonical value 

for a scalar field in six dimensions. Following Mack 17 we shall assume the 

restriction d < D/2 = 3 on the dimension of the fundamental field. The lower 

bubble represents the vertex function of the composite particle, i. e. , the 

residue at the pole of the composite-elementary-elementary vertex function, 

with the two elementary renormalized propagators removed. Such a vertex 

function shall be described by the DGS12’ l8 representation 

r= 
+4m2+t 1 (3.3) 
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We shall indicate with A the dimension of the composite field and with M the 

.mass&f the composite particle, M < 2m, and we shall bound ourselves to zero 

’ angular momentum. We recall that the dimension A of the composite field is 

subject to a kinematical restriction 19 which follows from the demand that the 

vertex with three external composite fields should be convergent. Such a 

restriction is A < y and thus in our own case we have A < 4. These kinematical 

bounds on the dimensions d and A will play an important role in the following. 

According to the dimensional rule (3.3) behaves for large q: and qi (both 

large) as 

-d-$+ 3 
(s2) 

which corresponds to 20 

Gtz , t) - G(z) t 
-d-G + 3 

(3.4) 

for large t. 

In the discussion which follows we shall be interested in the case in which 

-9; becomes very large while -4; is kept constant. The vertex connected with 

ql will be described by the representation 18 

co 

/ 

f(a’, P’,y ‘, t’) 6 (l-a’-P’-y’) do’ dp’ dy’dt’ 
(3.5) 

0 
-q; p’ -qfy’ +tf+ L2 1 

Such a representation has been proved by Nakanishi 18 to all orders perturbation 

theory (as the DGS representation is proved) and will be accepted here. 

L is a mass satisfying 18 

L2 > Em2 
3 (3.6) 
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Again the dimensional rule tells us that such a vertex function behaves for 

4;, qg 4;, all large, as 

corresponding to 

f(o!‘,P’, y’,t’) N t’ 
++3 

f(a’, P’, Y’) (3.7) 

for large V. 

On the other hand the vertex connected with q2 (where qi = const) will be 

described by the representation (A. 15) of Appendix A, which is analogous to the 

DGS representation and whose spectral function will be called F(z”, t”). 

We shall consider first the graph of Fig. 2a. The integral corresponding 

to it is performed using the Feynman parametrization shown in Fig. 3a, and 

we get the expression 

I -9; [6 P+y’r,c] - 9; @ -P2py+Ctt+t 
[ 

aa!+tptyy+t’Tpt”~+ 

+ m2(cr+a+y+4[) + L2(7-j+l) II 
-3 

(3.3) 

which has to be integrated over the six Feynman parameters a! ,8 yq c[ multi- 

plied by the G-function 6(1-X), 2 being the sum of such parameters, and also 

has to be integrated over the spectral functions of the three propagators and of 

the three vertex fun&ions. 

C is given by 

c = c2-bpt-y-t~ f &-+q(o!‘+p’) (3.9) 
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while 

- - 

(3.11) 

To examine such integrals consider an expansion of the spectral functions 

G(z,t), f@‘,P,y’,t’), Ftz”,t”) in decreasing powers of t (see Appendix A). 

G(z) t) = t 
-d-$+3 

G(z) + t -el G1(z) I- . . . 

f(o!‘,fi’,y’, t’) = t’ 
++3 -9 f(o!‘,P’,y’) + t’ fI(o!‘, P’,y’) + . . . (3.12) 

F(z”, t”) = t” 
++3 

F(z”) + t 
-6’; 

FI(z”) + . . . 

We now exploit the result3 that the truncated three-point function corre- 

sponding to three elementary fields is dominated by short distances, i. e., has 

the same dimensional power behavior irrespective of the number of external 

square moments taken to infinity. It is shown in Appendix A that such a property 

implies the following restrictions on the spectral functions 

/ 

-3d.3 
x 2 f(a!‘, /3’, y’) 6(1-a’+‘-~‘) da’ dfi’ dy’ < 03 (3.13) 

* 

/ 
(l&Z”) 

-++3 
F(z”) dz” < 00 (3.14) 

where x stays for either cz, p, or y and similar relations follow for fI(a’, P,y) 

and FI(z) (see Appendix A). Analogously, the assumption that the vertex 
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function (3.3) be dominated by short distances corresponds to 

- .+1 

/ 

-d-++ 3 
dz (l&Z) G(z) dz < to 

-1 
(3.15) 

and a similar relation for G1(z). 

The contribution to the integral of Fig. 2a of the leading terms in (3.12) and 

of the leading behavior of the spectral function of the propagator is 

+ L2(n+5) II 
3-d-$ 

(3.16) 

which has to be integrated over the three functions G(z), f(ol’, p’, y’), F(z”). 

What we shall now prove is that if the three-elementary-field vertex function 

is dominated by the short distances, i. e. , if (3. 13) and (3. 14) are valid and if 

we start with a composite-elementary-elementary vertex function (3.3) also 

dominated by the short distances, i. e. , if also (3.15) is true, then the asymp- 

totic behavior of the graph of Fig. 2a for -9: - 00, (-qi = const) is 

(3.17) 

i.e., also the result of the integration is dominated by the short distances. To 

prove this we have simply to prove that 

/ 

3-4 d+A 
da@%4 dol dc W-z), W-Y)~-~ (rlL3 2 5 

-2-4 d+$-6 
C 

(oe~‘Jd-~ (3.18) 

integrated over the spectral functions G(z), f(a! I, /3’, y’) , F(z”) is convergent. 

The proof of this fact is given in Appendix B and it relies on the convergence of 
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integrals (3.13), (3.14), and (3.15) and on the fact that due to the d-function 

6(1-X)not all of the six Feynman parameters crPm@ can go to zero at the 

same time. 

The contributions of,nonleading terms are dealt with in a similar way. In 

fact (3.18) is replaced by a,n analogous integral in which the powers of the six 

Feynman parameters are replaced by not lower powers and the remaining is 

replaced by 

~~-~{-q~(f$+y~qC) -qgcUy -P2Dr + C[m2(cc+p+Q) + L2R+L--#-B 

(3.19) 

with B > t+ d - 3. Keeping in mind that P2 < 4m2, we have 

C[m2(a+p+y+[) + L2(q+S)l - P2 $7 > const C 

from which we can majorize (3.19) with 

const C 
d-+6 

(+-wm (3.20) 

which can now be subject to the same treatment as (3.18)) keeping in mind 

inequalities (A. 5, A. 14). 

Thus, starting from the ansatz that the truncated vertex function for the 

composite particle is dominated by short distances, we have shown that also 

the iteration through the renormalized skeleton graph Fig. 2a is dominated by 

short distances. ’ 

Actually it is possible to show that an ansatz for the vertex function I’ which 

is not dominated by the short distances is inconsistent. To prove this let us 

consider a spectral function G(z) t) such that at some level (leading or not leading) 

it has a contribution t -e G’(z) with G’(z) - (1-22)X with -1~ x < d+ G-4. It 
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implies through (3.3) an asymptotic behavior for -4: - co , -9: = const 

4 

( 1 - 4; 
-x-l 

(3.21) 

with -x-l > 3-d-G. What one proves is that the- iteration of such contribution 

due to twe G’(z) through the graph of Fig. 2a gives a vertex function J?’ which 

for -9: - m decreases quicker than (3. Zl), thus proving the inconsistency of the 

ansatz . The proof goes as follows: Integrating over the spectral parameters 

we obtain instead of Eq. (3.16) 

2-dI 2-d2 3d4 

/ da! dpdy q + dg 6(1-Z) Q da P 
2-d3 - - 

dPy tir2 
4 

3d5 

CM2 
4 d6 -- 

@I 5 
T+A-4 

@H 

where diAd for i=l,2,3 and djLd for j=4,5,6. 

H = CBm3 -qt(cp+y’nC!) + 

with B > d+$- 3. H can be majorized by 

x+1-3-1-A -x-l-A 
C (3.23) 

provided -x-l-A> -B. (Always true for A not too large. ) 

In Appendix B we prove that if A < min (;, d-t) the replacement of H by 

(3.23) in (3.22) gives rise to a convergent integral which proves our assertion. 

In a completely similar way one deals with the crossed skeleton graph 

shown in Fig. 2b. The graph is easily evaluated by generalizing Symanzik 

cutting rules 21 to the situation where dressed vertices are present, described 

by the representation (3.5). 
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The Feynman parametrization is shown in Fig. 3b. The vertices, except 

those Connected to P and q2, are parametrized by parameters bearing the same 

index as the corresponding parameter n . For example, the vertex corre- 

sponding to 71 is represented by 

/ 

fMll> 021>~l,tl) W-oll--021-~l) doll do21dYldtl (3.24) 

Then the graph of Fig. 2b is simply given by 

(3.25) 

which has to be integrated over the spectral functions of the vertex functions and 

propagators. Generalized Symanzik rules give, for C and for Al, 

c = ~1(~3+~4+65+66) + (41,(ti4+fi5+ii6) + di,(~,+E,+a,) + (Ty4((y5+E6) 

A1 = ~l&2(‘y3+(Y4+c?5+(1’6) + ii2G46, + $~3~5 (3.26) 

and the G’s are the combinations directly read from the graph of Fig. 3b. For 

example, * 

9 = a1 + Qvl+ 93773 

(3.27) 

- 

l-z 
o5 =Q5f(r52r72+2t 
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The leading contribution at short distances for example is obtained from (3.25) 

by replacing the exponent -5 with 3 -G-d and replacing C2 with 

(3.28) 

The assertion that the graph of Fig. 2b for -9: - 00, -qi = const, behaves 

like 

2 3-d-+ 

( > -91 

amounts, as far as this contribution is concerned, to proving the convergence 

of 

6 (l-Ea-Z7 -6 -C) c 
d-4-6 3-d-$ 

(A 1+ rlr f) (3.29) 

once integrated over the spectral functions of the five vertices. The proof is 

given again in Appendix B and is quite similar to the treatment of the simpler 

skeleton graph of Fig. 1. Similarly, one can prove the inconsistency of an 

initial vertex function not dominated by short distances. 

Summing up, in this section we have shown, starting from the short dis- 

tance dominance of the vertex function for three elementary fields, that a 

composite particle vertex function is consistent with the convolution over the 

direct and the crossed renormalized skeleton graphs only if it is also dominated 

by short distances. 
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IV. CONCLUSIONS 

&this paper we have examined a uniformity property of the vertex function 

*of composite particles which is essential for computing large momentum trans- 

fer on-shell phenomena. What one needs to prove is that the asymptotic behavior 

of such vertex function truncated in the external propagators corresponding to 

elementary fields, has the same asymptotic behavior when one or both of the 

square of the external momenta are taken to infinity. We have studied the case 

in which anomalous dimensions are realized, which appears simpler to tackle 

than the asymptotic freedom case. To avoid complication with spins we have 

examined a scalar structure in six dimensions and trilinear coupling. We start 

from the result of Shei that for a class of renormalizable field theories 

(excluding gluon and gauge theories) the truncated vertex function of three 

elementary fields is actually dominated by short distances. This result implies 

restrictions on the spectral functions of vertex of three elementary fields. Using 

such restrictions we prove that the iteration of the composite particle vertex 

function with the direct exchange and crossed renormalized skeleton graphs are 

consistent with the initial vertex function only if such a vertex function is 

dominated by short distances, i. e., if it has the same asymptotic behavior 

when one or two of the external momenta square are taken to infinity. This is 

exactly the property needed in on-shell calculation. 
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APPENDIX A 

I&his appendix we shall examine the implication on the spectral functions 

bf the dominance of the short distances in the vertex functions. We start with 

the DGS representation of the truncated vertex function of the composite particle 

G(z,t) dt dz 
2 l+z 

-q22 +4m2+t 1 
Developing G(z) t) in decreasing powers of t 

G(z, t) = G(z) t-e+GI(z) t -el + . . . 

with e<el . . . . we have for the leading contribution 

/” cfz G(z) c -q1y--q2T 2 l-z 2 1+z +4m2 1 -6 dz 

-1 

(A. 1) 

(A- 2) 

(A. 3) 

If we impose that for -qF --cm, qi = const, (A. 3) behaves like 
-8 

we must 

have 

+1 

I” 
G(z) (l-z)-’ dz < 03 (A. 4) 

-1 

For the lower contributions obtained by replacing in (A. 3) G(z) with GI(z) and 
-8 

e with el, the requirement of an asymptotic behavior less or equal to ( ) -qy 

gives 

G1(z) 5 const (l-z) e-1 
(A. 5) 

In the case considered in the text 8 = dt- $ - 3. 

In the expansion (A. 2) the power of t with exponent less than -1 should be 

interpreted as distribution, i. e. , defined through partial integration in (A. 1)) 

or more rigorously after extracting from G(z, t) the powers corresponding to 

the scaling behaviors higher than - 1 one should work with the remainder of the 
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spectral function G+z , t) which satisfies 

- 4\ 

/ GL(z,t) dz dt < ~0. (A. 6) 

The requirement of the short distance dominance now imposes that the integral 

of GL(z , t) multiplied by (l-z)-*+’ should be finite as can be seen by expanding 

G+z, t) in increasing powers of (l-z), i. e. , y (l-~)~ f,(t). A similar remark 
o! 

applies to the ensuing treatment of the off-shell vertex function. 

We consider now the off-shell truncated vertex function of three elementary 

fields Eq. (3.5) 

We develop again f(a! , p, y , t) in decreasing powers of t 

-% 
f(a,p,Y,t) = f@,P,Y) t-6 + f1@,P,Y) t + - * - 

The fact that 

/f(q%~) 6(1-a-P-y)dcrdpdy[(-q~+m2)a! + (-q;+m2)P 

+ (l-q:+ m2)y + L2- rn21B6 

and qi = m2, qi = m2, behaves like imposes 

f(Q, P,Y) cc6 6(1-o-p-y) da!dpdy < 00 

(A. 7) 

(A. 8) 

(A. 9) 

(A. 10) 

and similar relations with 01 replaced by p or y . In the case considered in the 

text 
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For the lower singularities we must have that 

which gives 

F(o) < const a! 6-l (A. 12) 

where 

Thus 

(A. 11) 

(A. 13) 

/ 
CL?+’ fl(o, ,8,r) S(l-or+y) da! dpdy < 03 (A. 14) 

It is seen through direct majorization that Eqs. (A. lo), (A. 14)) impose also 

the short distance dominance of the vertex function for -9: - 00, 4; and 9: 

constant less than m2. 

If we keep qi = const 5 m2, as we shall use in one vertex in the text we can 

transform (A. 7) into 

/ [(-q2+m2) l+y(yql+;l +L2-m2+t,j lA* 15) 

which is obtained through the substitution % = -& and t” = [t+r(m2-q~)l(a+r)-1. 

We know from the previous treatment that (A. 15) behaves for -9: - 03 2 
(or -ql 

and -qi - m) like (-c$)-” and such a representation can be subject to the same 

treatment as the DGS representation (A. 1). 
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APPENDIX B 

We shall prove first the convergence of (3.16) integrated over the spectral 

‘functions G(z) f(a!‘, ,8’,y’) F(z”) subject to the restrictions (A. 4, A. 5, A. 10, 

A. 14). We have to exploit the fact that not all of the Feynman parameters 

aBySrl!z, can go to zero at the same time. 

c = c.Y+p+y-qq+?J ((I!‘-@‘) = 1-ny’ 

1. Forny’ < i we can majorize as follows 

C 
de+-6 3-G-d 

c$J+Y%cl 2 const (y’r]) 

P* 1) 

(B-2) 

2. For ny’> i implies 7~ > 3 we can majorize 

d++ -6 -3 
C 5 const o+@-y+{+ (B* 3) 

The convergence of the integral containing (B. 2) is proved by using the inequality 

(a,b, c,d all > 0) 

ta+b) 
-c-d -c -d <a b (B-4) 

on the two terms appearing inside the square bracket. 2-d a! da! (and p 2-d d@) 
3d t -- 

carry a power 3-d, c 2 4 3d dc F(z”) dz” a power ~-3 and < 
$r-d-4 

d5 g(z) h 

a power $‘+d-3. 
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1-z” We have for the Q! +-CT term: 

I 

A d -TfF’” -d++=d-$> 0 

as d> 2 and A < 4 due to the kinematical restrictions. l-z For the term p+ [ - 2 

we have instead: 

A d --Z+z+3-d+ 2 A+d -3= $0 . 

The integral of (B. 3) is convergent as 

- 3 -f- 3(3-d) -I- $ +d-3+2($d-3)=-3+d+$> 0 , 

We examine now the situation in which the input spectral function G(z) t) has 

a G(z) or Gl(z) behaving like 

G(z) - (1-z2)x for 1~1-1 (B. 5) 

with -l<x< d+% -4. The left-hand side of (B. 2) is replaced now by Eq. (3.23), 

i.e., 

x+1-3-1-A 
I 

-x-l-A 
C (B-6) 

Following the previous treatment we have 

1. For nyl < i 

C x+-l-3+A {Gp+y’qct-x-l-A 

-$+3- 
( const (7’~) 

[& 1-;“)(p+5 Gj-x-1-A++3-c . 

P 
2-d’ dp carries at least the power 3-d, while .$y now only x+1. Thus 

-x-l-A -I- + -3+3-d+x+l= -A+d 2’O if A<; 
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1-z” andfor a+%~ we have 

-x-l-A++3+3-d++-3=2d-3-x-1-A 

which is positive for 

2d- 3 - x-1-A > d - $ - A>O, 

i.e., for A<d-2. 

2. For qyl > i we ma joriz e 

cx+l-3+A j--p +y,T qx-1-A -3 
5 const 

whose convergence has been already discussed. 

We consider now the proof of the convergence of (3.29) once integrated over 

the five reduced spectral functions G(z) F(z”)f(oll, 021,yl), f(or22, CYST, CX~~), 

f(043’ @-13’ @63 ). Again we exploit the fact that not all Feynman parameters 

can vanish at the same time, For example, for o3 > const we majorize 

C 
d+$-6 3-d-$ 

-3+&d+, 

1 +a! 2 +cii 5 +a! 6 
2 2 

A d 
-- -- -‘ZfZ-E 

A 

@2+a22712+t5 > 

-3+7-e 

which through relation (B. 4) gives rise to a convergent integral. 
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One deals similarly with the other CY’S. With the parameters n2n3t[ one 

notice?? that having, e. g. , n2 > const implies (through the definitions of the Ei 

‘and keeping in mind that CV~~+~~~-I-CY~~= 1) that either c2, (II, or o?, are > const, 

which reduces the treatment to the previous cases. For nl > const we have 

for y1 > l/2 

which using the same technique as above is proved to give rise to a convergent 

integral. For y15 l/2 we must have either cy21 > l/4 or czll > l/4 and we 

are back to either G1 > const or c2 > const . 
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FIGURE CAPTIONS 

- 
1. Elementary example showing the relevance of the different asymptotic 

regions in the vertex function. 

2. Iteration of the vertex function through the -direct exchange and crossed 

renormalized skeleton graphs. 

3. Feynman parametrization of the graphs of Fig. 2. 
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