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Introduction 

In these notes , I discuss some attempts to describe the cl!evellope1!1t of 

hadron final states in e + e- annihilation events ll>Sing. QCD. A few featm11res 

(barely visible at available energies} of this deve l"'P"1'ent are amenablle· lt<J 
a precise and formal analysis in QCD by means of pe·rturbatirnc• the<Jry. lfor 

the mos t par t ,  however ,  existing theoretical mett:l�ods are quite inadle<!i""'lte! 

one must therefore simply try to identify tt:he dl-iimam;t physical p.l:ten<0melilla 

to be expected from QCD , and make estll!att:es of dne:i.r effects , vi.th the hop·e 

that results so obtained will provide a good appro�::illliatimn to eventllLal'c ex
act calculations . In so far as such estllma�es are necessa�y� pre�ise �r..uan-

titative tests o f  QCD are precluded . On the ott:her handl , if QC!Ji is ass11l!med 

correc t ,  then existing experimental data may be \JJ:SE•«f to inve•stigate its be

havior in regions not yet explored by theoretical llJleaums . 
These notes make brief excursions into Ema.!!l� t:tC•pics: some :lfmnr1ther ex

planation and details may be found in Refs . [ l , Z ,J] . 

+ -
The Stages of an e e Annihilation Event 

In QCD perturbation theory , an ,,+" - amtlhi lati�on ev<>nt is initiated J:r.y 
* 

the decay of the virtual photon (y ) into a quark "'"' an antiquark. If tliE<> 

QCD coupling constant were zero , then the q,q "oul<il propaga:lte fJreely It«> in

finity , and woul i therefore be procluced on their m.ass shells. In fact , the 

q , q  need propagate only for a finite time before h•teractilillg. or radiating, 

and may therefore be produced with a d.istributtion of i1!llvariantt mmsses (in) , 
usually peaked at low values , but with a pffiler-l<E'ii' tail extendling up to. the 

kinematic limit µ =  Q imposed by the mass Q (:= k) of the y
" . Large ini

tial quark invariant masses should be dissipated predominantly by radiation 

of gluons : the outgoing q , q  should emit gllnons alt a rate decreasing 

roughly inversely with (proper) time , thereby col!Wertiirng their inwar:ilimlt 

masses into transverse momenta of the produced glmms , and spread:i.rng their 

energy and color into a cone of finite aperture. The emitted gb1mns illla:J 
also have invariant masses up to those of their parent q1lllarks , anmd! lbteire<:e 

may themselves radiate more gluons (and occasioru.:IJLy , anot:fuieJr 'I� pair) , 

generating a cascade or shower of parl:ons , as illlustratedl :i.Jlll l!"ig. ll. l!lku

ever, even in perturbation theory � such free emmissJLons ca:rnmat ccn"timiue Ullll

ch<!cked forever : as the invariant masses of the part:ons ·oeccme "11J1iat]l, lbiad!t 

reactions in which emitted part:ons reint:eract: rit:h their piuellllts: or other 

ambient partons should become increasingly iJma>ortaut. !Elventuallly , these 

reactions , tog<!ther, perhaps , with qualitative1y m,,_ phemmena not visible 



in perturbation theory , should cause the system of partons to condense into 
color singlet hadrons . The magnitude of the critical invariant mass µc ' 
below which free perturbative emissions no longer dominate is presumably 
determined by the masses of hadrons , and by the renormalization group in
variant mass A (which gives the position of the infrared Landau divergence 
in the leading log effective coupling constant a (µ2 ) � l/S  log (µ2/A2) ) .  s 0 
Phenomenological comparisons (mentioned below) suggest that µc is probably 
of order 1-2 GeV , and give some hints on the transformation of a system of 
partons below this critical mass into hadrons . As the mass Q of the origi
nal y* ( c .m . s .  energy in the e+e- collision) is increased , the extent of 
the period during which free perturbative emissions dominate should corre
spondingly increase :  at sufficiently high energies phenomena occurring be
low µc should become irrelevant .  However , it will turn out that for most 
purposes , the residual effects decrease slower than O (µc/Q) , and are by no 
means negligible compared , for example,  with O (a (Q2 ) )  hard gluon emissions s 
at presently available energies (Q � 35 GeV) . 

A parton off-shell by an amount � µ will typically survive without ra
diating ("decaying") for a proper time T � l/µ [ F .  l ]. The transverse momen-

2 2 tum between its "decay" products is kinematically bounded by kT � µ At 
very early time s ,  gluons may be emitted with large transverse momenta O (Q) , 
leading to clearly separated additional parton "j ets" . As discussed in the 
next section, the partons produced in each "decay" tend to have much 
smaller invariant masses than their parents , and thus tend to survive for 
much longer times before decaying themselves . Partons emitted at later 
times must therefore be progressively much more closely collinear with 
their parent partons , and their existence should thus affect the final an-
gular distribution of  energy over smaller and smaller regions . 

In so far as the par tons emitted in each decay tend to have much 
smaller masses than the decaying parton , their energies may remain of the 
same order as the energy (mass) of the decaying parton . Typically , the en
ergies of partons emitted by the decays of partons with invariant masses 
� µ decrease only logarithmically with µ ( c . f .  "scaling violations" in 
<z> ) ; their average wavelength therefore remains for a long time 0 ( 1/Q) . 
On the other hand , the distance traveled by the decaying partons � l/µ . 
Hence , the distance between successive emissions soon typically becomes 
much larger than the wavelengths of the decaying or emitted partons : thus 
the amplitudes for successive emissions should not interfere appreciably . 
Hence , so long as the energy of an emitted parton is sufficiently large ,  
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but its invariant mass is not too close t o  the mass of its parent , i t s  decay 

should be independent of its production, and the spectrum of its decay prod

ucts well described by an independent classical probability distribution. 

This point is crucial in simplifying the discussion on the development of 

parton final states below. Any gluons with � � Q urust be emitted very soon 
* 

after the y decay and must arise from very short-lived virtual quarks , typ-

ically with µ � Q � i"rl . The wavelengths of these virtual quarks (and the 

gluons they radiate) are therefore no longer than their decay paths : inter-

ference between ampli tudes for successive gluon emissions , or radiations 

from q and q ,  could thus be important . Explicit calculation of the first 

gluon emission to O (a5) in perturbation theory suggests , however , that such 

effects are numerically insignificant . On the other hand , at very large 

times , quantum mechanical interferences are undoubtedly crucial : the orga

nization of the final state into color si'nglet hadrons with definite masses 

may be viewed as resul ting from destructive interference between the ampli

tudes for producing illegal final states . 

The Leading Pole Approximation 

In the classical approximation discussed above,, the development of a 

shower (or jet)  of partons is described by a sequence of independent "de

cays" of off-shell partons into partons with smaller invariant masses . To 

leading order in as ( t ) dt / t ,  it is sufficient to consider only (quasi-) two

body "decays" .  Then the probability for a parton of type j 0  to have an in

variant mass squared in the range u2 = t ->- t + dt and to "decay" into par
tons of types j 1 , j 2 carrying (roughly) fractions z and (1-z) of its longi

tudinal momentum is given by 

( 1) 

if the invariant masses of the final partons are sufficiently small that 

the "decay" is kinematically allowed , and .D(t , z) = 0 otherwise . The 

(Altarelli-Parisi [ 4 ] ) distributions P (z) for the various possible O (as) de

cays are [ F . 2 ]  

P G (z) q->-q 

2 
C (

l+z ) (2) q 1-z 



- ( l-z+z2 ) 2 
p G-+GG 

( z )  - 2C
G 

( 
z ( 1-z)  

) 
' 

where the color "charges" are given by C = (N2-l) / (2N ) = 4 / 3 ,  C
G

= N = 3 .  
q c c c 

The probability for each decay is uniform in azimuthal angle . The t which 

appears as the argument of the effective coupling in ( 1 )  is O (t ) : its ex-

act value will be discussed b elow. As explained below ,  the z in ( 1 ,  2) is 

identified as the E + 1 t 1  fraction of each daughter parton with respect t o  
* 

its parent (as measured in the y rest frame [ F .  3 ] ) .  In the rest frame o f  

the decaying parton , 2z-l is roughly t h e  cosine o f  t h e  angle between the 

spin direction of the decaying parton and the (oppositely-directed) momenta 

of its decay products : the parton decays are riot isotropi c .  (The spin of 

the decaying parton depends on its momentum with respect to i ts parent , and * 
ultimately with respect to the original y . )  

The differential cross-sections for multiparton production obtained by 

suitable application of the probabili ties ( 1 , 2) to all possible decay 

chains could , in principle , also be found by explicit evaluation of all the 

contribut ing high order Feynman diagrams . The results of the latter exact 

(but intractably complicated b eyond O (a2 ) )  approach must agree with the ap-
s 

proximation , at least to leading order in a
s

d t / t  for each emission . How-

eve r ,  the probab ilistic interpretation o f  the resul ting differential cross

section as 
·
a s equence of independent "decays" will not in general be mani

fes t :  individual diagrams apparently involving interference between dif

ferent decay chains may appear to b e  important . To es tablish the probabil

istic interpretation directly from individual diagrams , one must use par

ticular gauges , in which the gluon spin is explicitly constrained to be 

orthogonal to its momentum , at leas t when the gluon approaches its mass 

shell , thereby preventing propagation of unphysical gluon polarization 

s tates . This is achieved in an axial gauge , for which the gluon polariza

tion tensor is �µv (k) = -gµv + (kµnv+kvnµ) /k . n+O (kµkv) ,  where n is a fixed 

four-vector , to which the gluon spin is approximately orthogona l .  Then the 

decay probab ilities ..&(t , z) may be calculated from explicit diagrams involv

ing " incoming" off-shell partons (but , in the leading pole approximation, 

with on-shell outgoing partons ) : interference diagrams are explicitly rel

egated to nonleading order in a
s

d t/ t .  (Corrections t o  the leading pole ap

proximation O (a
s

d t / t
0

) probe details of the off-shell extrapolation; in 

calculating these , one must consider explicitly the "decay" by which the 

off-shell parton was generated . )  Different choices for the gauge vector n 
share the leading pole contribution differently among the various radiating 

partons : for example , if n is chosen nearly along the momentum of some 

parton , then the diagrams involving radiation from that parton will give no 

leading pole contribution [ F . 4 ] . To obtain directly the probabili ties 
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(1 , 2) , one must choose n away from the momenta of  radiating partons : the z 
appearing wil l  then be E + ! P l fractions evaluated in the rest frame of n .  
Of course , the sum o f  all diagrams regardless o f  gauge reproduces leading 
pole results obtained by applying the probabilities ( 1 ,  2) for radiation 
from all possible partons . 

As discussed 
becomes inadequate 
other means . This 

above , the " leading pole approximation" ( 1 , 2 )  undoubtedly 
when t <;; µ2 : the later development must be treated by c 
limitation also affects the z distributions in ..&(t , z) , 

which become inaccurate when z approaches 0 or 1 too c losely .  Consider the 
decay of a parton 0 into two partons , 1 and 2 .  For the z o f  the final par
tons to be maximal ,  they must have zero invariant mass . In this case , par
ton .L has z1 = (E1+ !-P1 l l / (E0+ !-P0 ! J  = 2E1 / (E0+ ! -P0 ! ) .  By energy conserva
tion , E = E - E2 ,; E ,  and hence z1 ,; 2E / (E + 1 -P l l=  1 - (E - IP l /E + I p  l l 1 0 0 0 0  0 0 0 0  
= 1 ·- t / (i.2Q2) ,; 1 ,  where z is the E + J-P !  fraction for parton 0 with re-o 0 0 
spec t to the original y* momentum. Since we require t � µ2 , the minimum 0 c 
"z loss" for ( 1 , 2 )  to remain accurate is � µ2 /Q2 : the soft divergences in c 
P (z) for g luon emission are always avoided . 

The c lassical and iterative nature of parton evolution for Q � µ >> µc 
makes this phase of jet  development eminently suited to investigation by 
Monte Carlo methods . The parton showers shown in Fig . 1 were generated 
using a Monte Carlo computer program [ 2 ], taking Q = 200 GeV , µc = 1 GeV , A =  

0 . 5  GeV . Virtual partons were drawn to travel for a proper time �T � l /�E 
� l / (E- !P l l before radiating . Note that al l  parton traj ectories are curved 
by the semilogarithmic scales used to display the events . 

The parton showers in Fig . 1 resulting from the "decay" of a high in
variant mass parton are in many respects analogous to electromagnetic show
ers , initiated by the entry of a high-energy electron or photon into matter 
[F . 5 ] . In the latter case ,  the initial particle is on its mass she l l ,  but 
is repeatedly "poked" off shel l  by interactions with nuclei and generates a 
shower by successive Bremsstrahlung radiation and pair production. Eventu
ally , when the energies of produced e ,y fall below s.ome fixed critical 
value , interactions with ambient atomic electrons (ionization losses) be
come important , so that free radiation , as described by probabilities anal
ogous to ( 1 , 2) , no longer dominates . The radiation from an accelerated , 
and hence off shell , e lectron may be found direct ly by solution of classi
cal electrodynamics equations with suitable boundary conditions . The ex
plicit simulation of photon emissions may be considered as a Monte Carlo 
solution of these equations . For the QCD case ,  however , the classical 
equations are much less tractable , and Monte Carlo methods become almost 
obligatory . The primary reason for this is that gluon decays cause parton 
showers to have a much more dendritic structure than their QED counter-
par t s :  this extra cas cading means , f o r  example , that t h e  gluon potential 



at a point samples sources not only on the surface ,  but also throughout the 
volume of its past light cone (hence a "pulse" of gluon radiation will be
come dispersed , even propagating through the vacuum) . 

Perturbative Corrections to the Leading Pole Approximation 
0 * 

To O (as ) ,  the y decay is described by the two-body decay probability 
j} _(q2 , z) = O (a/Q2) .  At O (a ) ,  terms describing emission of one gluon y+qq s 
must be added . In the leading pole approximation , the relevant quark decay 

* is independent of the y decay , and the differential cross-section is given 
2 2 by the product j}y�q (Q , z)j}q�G ( t , z1) dt = O (a/Q asdt/t) . However , when 

the invariant mass It of the virtual quark approaches its kinematic maximum 
� Q ,  correc tions O (a/Q2 a dt/Q2) may become important , and invalidate the s 
independent emission approximation . Such corrections may be included by 
introducing a three-body y

* 
decay probability JJ3 

-G (Q2 , t ; z1z2) defined 
* - y+qq 

simply as the piece of the complete y + qqG differential cross-section not 
* accounted for by the successive independent two-body decays y + qq , 

q
* 

+ qG . The contribution of JJ3 to integrated cross-sections is typi-y+qqG 
cally 0 (1/log (t ) ) relative to the dominant independent decay term 
j}y+qqj}q�G· It turns out that with the identification for z made here (see 
above) , Jf3 _G is identically zero away from z = 1. However ,  if one con-y+qq * 
siders the decay of a scalar photon y5 , then the independent two-body decay 
term remains as for a vector photon , but the three-body decay term becomes 
3 2 4 JJys+qqG(Q , t ; z1 , z2)dt  a/Q 4as/3rr dt (where z1 , z2 refer to q ,  q ,  respec-

tively, z1 2 < 1, and t is the q , q invariant mass) . Even at the kinematic 
boundary t

'
+ Q2 , JJ _j} Gdt = a/Q2 Ba / 3rr dt/Q2 , so that the three-body 

Y5+qq q� s 
decay term provides a rather small correction away from the end point , and 
the sharp cutoff assumed for the two-body decay probabilities is adequate . 

Just as for y* + qqG ,  the approximation of successive independent two
body parton decays may receive significant corrections when a parton pro
duced in the first decay does not have an invariant mass much smaller than 
its parent . To account for these corrections , one may again introduce a 
three-body decay probability j}� . . .  ( t , t ' ; z1 , z2 ) [ F . 6 ] . The exact dif-

J o7.l lJ 2] 3 * 
ferential cross-section for production of n partons by y decay is then 
given by a sum of terms : the first results from (n-1) independent two-body 
decays ; the second from one three-bodJ decay and (n-2) two-body decays ; the 
final term represents a single n-body 'decay .  I n  most cases , the successive 
terms in this series should be progressively much smaller ; the first term, 
corresponding to the simple leading pole approximation should then provide 
an adequate estimate for the complete differential cross-section . Observ
able properties of the parton f inal s tate are given as integrals of this 
differential cross-section. It appears that the results obtained by using 
the leading pole approximation for the differential cross-section but 
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keeping the exact kinematic boundaries agree (apart from overall normaliza
tion discussed below) well with relevant regions of available complete ex
plicit: calculations [ F .  7 ) ,  suggesting that .lJ3 may indeed be neglected . 
Note that in many discussions (e . g . , [ 12 ] )  of the "leading log approxima
tion" ,. further kinematic approximations are made on integrating the leading 
pole approximation differential cross-section ( typica1ly , all interdepen
dence in the limits of t and z integrations is ignored , and the µc cutoff 
is implemented only in t ,  but not z, integrals ) .  The results of this pro
cedure are often inaccurate : a good estimate of the differential cross
section is wasted by maltreatment of the kinematic limits of integration . 
Inclusive observables in the parton final state (e . g . , single parton energy 
or � distributions , or H2 distributions) often receive divergent contribu
tions close to the kinematic boundaries at each order in as (e . g . , 

2 2 2 k O(aslog (kT/Q ) )  ) terms arise in the relative transv•2rse momentum distri-
bution of the leading q , q ,  which dominates the l-H2 distribution) . When 
summed to all orders in as using the leading pole approximation , the con
tributions exponentiate to provide "radiation damping" at the kinematic 
boundary (e . g . , the relative transverse momentum distribution between the 
leading q ,q becomes � exp (-a log2 (ki/Q2) ) ,  as discussed in Ref . [ l ] ) .  All B3 

s 2 2 contributions are formally 0 (1/log (t/A ) )  relative to the .fJ leading pole 
terms ( in practice they appear to have small coefficients) :  since perturb
ative methods apply only when t � µ2 >> A2 , this factor probably ensures c 
small })3 contributions in the relevant region. In addition , multiple decay 
probabilities corresponding to "Bose-Einstein correlations" between gluons 
should be suppressed by powers of l /Nc because a larger number of colors 
gives a smaller probability for a set of gluons to be indistinguishable.  
Note that for small t ,  the two body decay probabilities J)(t , z) receive 
O (m2dt/t2) corrections from finite light quark current masses , and presum
ably suffer 0 (µ2dt/t2) "higher twist" corrections from the onset of hadron c 
formation . 

I now discuss the origin and form of the effective coupling a (t) s � 2 l/$0log (t/A ) appearing in the decay probabilities J)(t , z) of eqs . ( 1 , 2 ) . 
The B(t , z ) give leading pole approximations to the probabilities for two-
body decays of off-shell partons , summed over all subsequent interactions 
of the decay products . All parton interactions receive virtual corrections 
which exhibit ultraviolet divergences ; such divergences may be renormalized 
by a subtraction at an invariant mass µR . Renormali,,ed quantities , such as 
the physical coupling constant as (µ�) ,  depend on the value of this renor
mali,,ation mas s :  different choices for µR leave measurable cross-sections 
unchanged by altering contributions from explicit virtual corrections so as 

2 to cancel the changes in as (µR) . At O (as ) '  the probability for the decay 



q
*

_.,,G � a  (µ2) /t P (z)  At O (a2 ) ,  the decay probability receives its 
. " s R q-7<1G . s 

leading corrections from the diagrams [ F . 8 ]  

+ + + (3)  

(a ) ( b )  ( a l ( b )  
In (3a) , the outgoing gluon is not on its mass-shel l ,  but may have an in

variant mass t '  up to the kinematic limit tmax 
� z ( l-z) t  imposed by the 

mass of the decaying quark. The total correction due to diagrams ( 3a) is 

roughly 

tmax , 1-o J .<!_\.- J [P
G-+GG ( z ' ) +PG-7<j

_ (z ' ) ] d z '  
0 t 0 q 

2 
tmax 

as (µR) log (-0-) [ 2 logo+(2F-33) ] .  

In diagram ( 3b) , the final gluon must be on-shell , so that the result does 

not depend on t it serves simply to cancel the divergences from ( 3a) , 
max * yielding total correction to the q � qG decay probability 

2 2 2 
� (1 + as (µR) /6n (2F-33) log ( tmax/µR) J  where µR is the renormalization mass 

introduced in subtracting the divergences of (3b) . In hig!1er orders , the 

dominant diagrams involve several virtual corrections followed by real pair 

production: the diagrams form a geometric series whose sum is 
2 2 -1 2 (1 - as (µR) /6n (2F-33) log (tmax/µR) )  � as (tmax) /as (µR) . Hence the total 

probability for the decay q* + qG , summing over all subsequent fates for 
2 the produced q ,G � a  (t ) / t  P G ( z) .  If µR is chosen to be tmax ' then s max q+q 

explicit higher order diagrams will provide no (leading pole) corrections 

to 1Jq+qG (t , z) : all such corrections will have been included implicitly in 

the effective coupling as ( tmax) [ F . 9 ] .  

The argument tmax of as ( tmax) appearing in the decay probabilities 

( 1 , 2) is roughly the relative transverse momentum (squared) between the 

products of the parton decay . If a ( t )  rather than a (t  ) were used in s 
3 s max 

l){ t , z) then the three-body decay probabilities 1J ( t1 , t2 ; z1 , z2) would con-

tain O (a2log ( z ( l-z ) ) )  terms which become large near the kinematic boundary : s 
such terms are summed and accounted for by use of a (t ) in the two-body s max 

2 decay probabilities . In obtaining the usual form as ( tmax)�1/e01og ( tmax/A ) 

from the diagrams (3) , one assumes that intermediate gluons may have arbi

trarily small invariant masses . As discussed above , the l){ t , z) used in the 

calculation become inaccurate for t � µ2 : to be consistent with the treat-c 
ment of real emissions , one should assume that no parton may have an 
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invariant mass <;; µ . In this case , the higher order corrections imply a 
� c � 2 2 form [ F . 10 ]  cxs (t) � l/S0

log ( ( µ+µc) /A ) :  this freezes at a 'large fixed 
value for small t, and does not diverge at the Landau point t � A2 For 
some purposes , this behavior is analogous to providing an effective mass 

�· µc for gluons . (Note that the exact form of the corrected decay proba
bilities could in principle be obtained by Monte Carlo integration over all 
possible final states accessible from each decay considered : the procedure 
i s ,  however , quite unwieldy , and probably unnecessary in view of the small 
changes expected (see below) . )  

In addition to the logarithmic O (a2 ) terms from (3) accounted for by s 
use of ex (t) , there are also constant , nonlogarithmic O (cx2) terms which s s 
provide contributions to both two- and three-body decay probabilities . The 
values of these terms depend on the renormalization prescription used : 
arbitrary constant terms may be removed with the divergences in (3b ) : 
whenever divergences , such as those in (3b) , are subtracted (renormalized) 
away , a nondivergent remainder is in general lef t .  This remainder may be 
removed by redefinitions of "bare" parameters , such as the coupling con-
stant ex s The value of cxs to be inserted into the Lagrangian is , of 
course , not known a priori (and , in fact ,  must be divergent to cancel the 
divergences in the perturbation series) , but may be determined by fitting 
theoretical calculations to experimental data. The fitted numerical value 
for as will depend on the remainder removed (in such a way that the output 
experimental prediction used for the fit remains unchanged) .  The value of 
the remainder is thus determined by the "renormalization prescription" used 
to remove the divergences , and to define physical parameters such as cxs . 
Theories such as QCD possess the properties of being renormalizable and in
frared factorizable, whose meaning is that the number of distinct diver
gences (due to large and to small momentum configurations) at a given order 
in perturbation theory is limited : once prescriptions have been devised 
and applied to subtract these divergences in a limited number of processes , 
definite parameter-free physical predictions may be obtained for any other 
processes to the same order in perturbation theory [ F . 11 ] . Hence the 
"value of cxs" to be used in <H2> (or <thrust>) in e+e- annihilation at a 
given order could be deduced (in principle) , for ,example , from the experi
mental e+e- total cross-section. If ,  say , both processes are calculated 
only to O (cxs ) ,  then higher order terms in each perturbation series will 
l'ead to O (cx;) errors in the predictions . Such errors can be corrected for 
by modifying the cxs to be used by a calculated 0 (1l;) correction , thereby 
absorbing the higher order terms into the numerical value of cxs . Of 
course , the correction wil l ,  in general , be different for different pro
cesses . Note that all renormalization prescriptions introduce some renor
malization mass µR : the logarithmic dependence of cx8 on µR was discussed 



in the preceding paragraph. To O (a2) ,  all nonlogarithmic terms can be acs 
counted for by using effective µR differing by numerical factors determined 
from explicit O (a2) calculations in different processes : this procedure s 2 fails, however , beyond O (as ) .  

As a simple, but revealing, example of higher-order nonlogarithmic 
corrections to parton production, I consider the QED-like processes 

(4) 

which modify J) G ( t , z) . Diagrams with only this structure may be selected q+q 
by taking the formal limit that the number of fermion flavors goes to in-
finity . Then a simple calculation [ S ]  reveals multiplicative corrections 

k k to the lowest-order P G (z) of the form Ek! (-1) (4Fa /9n) � (k) 
k k 2 q+q k s 

(+(4iFas/9n) n 6 (-µR) '  k even) , where k is the number of loops . The basic 
origin of the embarrassing O (k !ak) terms is with the Landau singularity . s 
The fermion vacuum polarization corrections to a gluon propagator with in-
variant mass l[:Z may be summarized (in the limit F + 00) by the leading log 

- 2 2 2 2 2 effective coupling a (p ) = a  (µ ) / [ l- (4Fa (µ ) /9n),log (p /µ ) ] .  Then the s s s t 2 - 2 finite part of the diagrams (4) involves roughly l d(p ) as (p ) ,  which in-
troduces Ek ! (-a )k . The alternating sign in these corrections makes them s 
formally amenable to Borel summation (with result -sesEi(�) , s 
(9n/4Fa ) ) .  However , if the integral over p2 had run over the Landau sins 
gularity (at A2 � µ2exp (-S /g2 (µ2) ) ,  where the denominator in the leading 0 
log a (p2) vanishes) ,  then all terms would have had the same sign , and no s 
reordering would allow the divergence as k + oo to be removed . This behav-
ior occurs in , for example, corrections to gµ - 2 due to multiple electron 
loops in QED [ 6 ] . In QCD (forsaking the limit F + 00) , the Landau singularity 
A2 is at small , rather than large , invariant masses : in a purely perturb
ative calculation (with no µ imposed) , the p2 integration in evaluating , c 
for example, corrections to parton decay probabilities runs across the sin-
gularity , and O(k !ak) terms are expected . As discussed in the preceding s 
paragraph , any corrections would be irrelevant if they could be absorbed 
universally by a change of renormalization prescription. Unfortunately , 
diagrams requiring the same renormalization may or may .not involve integra
tion over the Landau singularity, so that the corrections cannot be ab
sorbed universally . (Perhaps by defining separate "Landau divergent" and 
"Landau convergent" as , this particular class of corrections could be 
avoided. )  

SS� 
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At low orders , corrections , e . g . , O (nk/k ! ak) or O (nkak) may be impor-s s 
tant [ 7 ]. Such terms arise in comparing processes with incoming and outgoing 
partons or spacelike and timelike Q2 (some are visible in (4) if µi < 0) , 

and result from unitarization corrections : for some external kinematic 
configurations , intermediate lines may reach their mass shells , thereby 
sampling the second term in the propagator l / ( t-iE) = l/t + ino (t) B (t ) . 
Clearly such terms are usually associated with logarithms , and may then 
mathematically be obtained by changing signs in arguments of logarithms , 
(unitarity specifies the relevant Riemann sheet) according to the signs of 
external kinematic invariants .  Hence they may often be summed in parallel 
with the logarithms , usually forming exponential or geometric series 
[F . 12 ] . 

Despite these indications , one might hope that on summing all diagrams 
to a given order in a , tolerable corrections would result . Even if each 
di.agram gave O ( (a /n)f) [ F . 13 ]  (as would be obtained if its internal loop s 
integration was uniform up to kinematic and renormalization cutoffs) with 
random sign , the total would be O (� ak) since the number of diagrams is c s 
O (k ! ) .  (Indications from ge-2 in QED that diagrams tend to cancel [ 8 ]  are 
probably accidental ,  since individual gauge invariant diagram sets may grow 

� akk !  (as in the example discussed above) , and available QCD calculations s 
(e . g . , [ 9 ] )  reveal mainly constructive , rather than destructive arrange-
ments of signs , and large numerical coefficients . )  The large observed 
value of as means that higher order terms in the perturbation series will 
not become small for many orders before eventual divergence (as they pre
sumably do in QED) and reliable truncation of the (perhaps asymptotic) per
turbation series becomes impossible. In the face of these apparently insu
perable difficul ties , I shall use only the lowest order .&( t , z) , with the 
hope that , as appears phenomenologically for the case of very high orders 
in QED perturbation theory , the correction terms will eventually conspire 
to be small .  To  make some allowance for higher order corrections , I allow 
an arbitrary normalization correction to as ' but assume the lowest-order 
kinematic structure [ F . 14 ] . (For µ c >> A ,  this corresponds simply to 
treating A as a free parameter , unconstrained by other determinations of - * 
a . ) Note that existing higher order calculations (e . g . , for qq ->- y X) B 
have found large corrections only in the lowest-oTder kinematic configura
tion : the next order calculations will , however , undoubtedly exhibit large 
corrections to any kinematic configuration accessible at the lower order . 

The Structure of Parton Final States 

By using the leading pole approximation discussed above , and assuming 
that high<!r order corrections may alter the overall normalization but not 



the kinematic structure of the "decay" probabilities .&(t , z ) , one may trace 
the development of parton final states in e+e- annihilation until the in
variant masses of the partons are degraded below the critical mass µc . As 
mentioned above , the use of Monte Carlo methods [ 2 ]  allows exact account of 
kinematic constraints to be taken , yielding in many cases important correc
tions to results found by "asymptotic" analytical techniques (e . g . , [ 12 , l ] ) . 

Figure 2 shows the mean total multiplicity of partons produced before 
the cutoff µc as a function of Q, with A taken as 0 . 5  GeV . For smaller µc ' 
more partons are radiated before the evolution is curtailed . Note that the 
detailed quantitative behavior of the parton multiplicity is somewhat sen
sitive to the details of .the imposition of the µc cut [ F . 15 ] :  qualitative 
features are , however , entirely insensitive . Nearly all the partons are 
gluons : the curve for mean q + q multiplicity with µc = 1 GeV given in 
Fig . 2 indicates that in this case , an average of one secondary quark per 
event is achieved only at Q � 100 GeV . (Note that only three quark f lavors 
are considered , since only these may be excited by the momentum transfers 
� µc which dominate the development of the parton final state . )  The re
sults in Fig . 2 approach slowly the asymptotic form [ 11 ,  1 2 ,  l ]  
<n> � exp [ 2 . 3 (�og (Q2/A2) - /iog(µ2 /A2) ) ]  when Q � 100 GeV. <n +-> at as-c 2 2 q q 
ymptotic Q should lag <nG> only by a power of log(Q /A ) :  at accessible 
energies , however , the suppression is numerically large . In QED , the as
ymptotic multiplicity distributions are of the Poisson form (so that 
fk = <n ! / (n-k) ! >  - <n>k = 0) : a sequence of photons is emitted indepen
dently from an off-shell electron line , typically with energies much lower 
than the electron energy so that kinematic correlations are absent . In 
QCD , however , each emission changes the color of the radiating parton, de
stroying the independence. Moreover , the much larger total multiplicity is 
dominated by radiation of gluons from low energy gluons : kinematic corre
lations are therefore significant , and the multiplicity distributions devi
ate from the Poisson form (asymptotically [ 12 ,  14] , P (n) � f (s+n) /f (s )An/n ! 
with A � 1 ,  and the constant s depending on the cutoff prescription. The 
dispersion ./:n2>-<n>2/<n> of the distribution remains roughly constant over 
the Q range shown in Fig . 2 (with a value � 0 . 31 for µc = 1 GeV) , rather 
than decreasing � l/l<D> as for a Poisson distribution. 

For Q � µc ' no gluons are emitted , so that the quark energy distribu
tion is simply D (z) = o ( l-z) , where z = 2E/Q . As Q increases , progres-q 
sively more gluons are emitted , and the quark energy spectra soften . Fig-
ure 3 shows the mean fractional energy carried by gluons <EG/Q> as a func
tion of Q .  The percentage of events in which no gluons are emitted above 
the critical invariant mass µc is also marked , and decreases rapidly with 
increasing Q. The standard _leading log approximation often used to 
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Spacetime Development of Typical Parton Showers 

(Q = 200 GeV, /Le = I GeV, A=0.5 Ge\/ ) 
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Fig . 1 :  Spacetime development of typical parton showers initiated by decay 
of a virtual photon with invariant mass Q -= 200 GeV , traced until 
each parton has invariant mass below the critical µ = 1 GeV, and 
with A =  0 . 5  GeV, generated using the Monte Carlo c6mputer program 
of Ref . [ 2] . 

Mean Parton Multiplicity 35 
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Fig . 2 :  Mean multiplicity o f  partons produced in the decay o f  a virtual 
photon with invariant mass Q by radiation from virtual partons 
with invariant masses ;<> µc . The dashed line gives the multiplic
ity o f  quarks and antiquarks . The parton production cross
sections were estimated by a leading pole approximation, with 
A =  0 . 5  GeV. 



estimate the evolution of moments of the z distributions is obtained from 
the leading pole approximation ( 1 ,  2) by making the kinematic approximation 
that all emitted partons are collinear with their parents , but nevertheless 
formally allowing the invariant mass of each emitted parton to run up to 
the mass of its parent . The leading log approximation for the 
a quark energy spectrum o ( l-z) at t = µ2 up to t = Q2 gives 

evolution of 

c (
a (Q2))0 .  62 

<EG/Q> � 0 . 64 ( 1  - _s __ 2_ ) ; 
"s (µc) 

(5) 

this form is compared with the complete result (for µc = 1 GeV) in Fig . 3. 
The effects of the kinematic approximations fall off only rather slowly 
with Q ,  mainly because of the importance of multigluon emissions , in which 
each gluon has only a small fraction of the total available energy Q .  At 
asymptotically large Q, <EG/Q> tends logarithmically from below to the 
"equilibrium" value 16/2 5 ;  the final limit is independent of µc or A ,  but 
is approached more rapidly for smaller µc/A .  For most of the curves in 
Fig . 3 ,  the a (t ) in the decay probability ( 1 )  was approximated by a ( t) 

2 s s 
l/S log (t/A ) ,  with A = 0 . 5  GeV . However , as discussed above , the choice 0 2 
a (t) � a  ( [ /z ( l-z ) t+µ J ) should account for subleading log higher order s s c 
corrections (with a momentum-independent subtraction scheme used for renor-
malization) : the result for µc = 1 GeV with this form shown in Fig . 3 sug
gests that these corrections are quite insignificant . Changes in the over
all normalization of "s due to higher order corrections alter the <EG> in 
roughly the same manner as changes in µc . 

Each off-shell parton "decay" imparts a relative transverse momentum 
k2 � z ( l-z) t between its products . If the transverse momentum distribu-T 
tions in the individual "decays" had finite variance ,  then the central 
limit theorem implies that the resulting total � distribution should be 
roughly Gaussian. In fact , the power law � distributions in each decay 
implied by the dt/t factor in the decay probability give rise to a power 
law tail in the average single parton � distributions measured with re
spect to the initial q , q  directions , as illustrated in Fig . 4 .  (This is 
mathematically analogous to the tail of the (Moliere) multiple Coulomb 
scattering transverse momentum distribution for electrons traversing mat
ter . )  The results in Fig . 4 are all for µc = 1 GeV , A = 0 . 5  GeV : a larger 
µc removes small kT partons , but does not affect "hard" partons with 
� � µc ' and thus increases the <�> .  

As discussed above , partons emitted a t  early times typically have 
large transverse momenta with respect to their parents , but because of the 
form of the decay probabilities ( 1 ,  2 ) , partons emitted later are progres
sively more collinear with their parents . This ordering leads at suffi
ciently high Q to considerable clustering in the angular distribution of 
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Fig .  3 :  Mean fraction o f  total energy :Ln decay o f  a virtual photon with 
mass Q carried by gluons . The production of partons by leading 
pole approximation cross-sections has been truncated when their 
invariant masses fall below the cutoff µc: ·  The percentage of  
events in  which no  gluons were emitted above this cutoff is  
marked . Results obtained by  using approximate collinear kinemat
ics ( the usual " leading log approximation" ) are also shown . The 
consequences of a modification of the effective coupling constant 
as (t) for parton "decays" discussed in the text are shown . 

Fig . 4 :  Transverse momentum distributions for single partons produced in 
the decay of a virtual photon with mass Q with respect to the pri
mary qq pair direction . Parton emissions were truncated by the 
cut µ = 1 GeV . c 



energy for the parton final state [ F . 16 ] .  Figure 5 shows the distribution 
of partons in the northern hemisphere of a reasonably typical simulated 
event at Q 100 GeV , with µc = 1 GeV , A 0 . 5  Ge\I . (The original quark 
was directed towards the north pole . The event displayed in Fig . 5 is 
somewhat more isotropic than the average . )  The angular clumping of the 
partons is evident . Observables which are sensitive to the angular distri
bution of energy in the final state only at large angular scales should 
probe only the total momenta of the clumps , and be insensitive to the pre
cise distribution of the momenta between their individual constituent par-
tons (F . 17 ] .  Since typically the angle between a pair of par tons produced 
by the decay of a parent with invariant mass µ is � µ/ (Qz) (where z is the * 
fraction of the original y energy carried by the parent) ,  observables 
which probe the final state energy distribution in angular bins of width 
� e should be sensitive only to decays with µ � 8Qz . In as far as the 
final formation of hadrons affects only invariant masses µ � µc 
(= 0 ( 1  GeV) ) ,  so the distribution of hadronic energy over angular scales 
e » µc/ (Qz) should reflect the structure of the parton system. A conve
nient set of observables for measuring the final state angular energy dis-
tribution is given by [ F . 18 ]  ( 15 ]  

H = l 1-Pi l 1-Pj I P9, (pi . pj ) 9, - i , j  Q2 (6) 

where the sum runs over all final particles , including the case i j .  For 
a final state consisting of j ust  two massless particles ( e . g . , y* 

+ qq) ,  
H29, = 1 ,  H2Hl = 0 ,  while for an isotropic final state,  H9, = 0 ( 9,  > O) . 
The H9, are the coefficients in a Legendre expansion of the energy correla-
ti on [ 1 5 ,  17 ] between two point detectors as a function of their relative 
angle . For high 9, ,  the Legendre polynomials may roughly be approximated by 
P9, ( cos� ) = e ( l � l -1/9,) + (-1) 9,e ( l rr-� l -l/9-) , so that the H9, lump together 
systems of partons subtending angles � 1 / 9, ,  and probe the evolution of the 
final s tate only at µ P 0?/ 9, .  Figure 6 shows <H2> a s  a function of Q for 
various µc with A =  0 . 5  GeV . At low Q, no emissions are possible above µc ' 
and H2 � 1 .  As Q increases , the effects of the cutoff µc decrease � µc/Q 
( this linear behavior reflects the linearity of H2 in final particle mo
menta n�cessary to ensure infrared finiteness) . At high Q ,  <H2> approaches 

2 the result <H2> � 1 - 1 . 4  as (Q ) f F . 19 ]  obtained by treating only the first 
emission in perturbation theory . (As discussed above , however ,  higher or
der terms may modify the normalization of a (Q2 ) . )  A small O (a2) deviation s s 
remains even at high Q .  Note that <H2> reaches its asymptotic form at much 
lower Q than did <EG> ' mainly because multigluon effects are suppressed by 
O (as) rather than 0 (1/log (l/as) ) .  The distributions l/cr dcr/dH2 for µ c = 
1 GeV at various Q are given in Ref .  2 .  The log (l-H2) / ( l-H2) divergence at 
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Fig .  5 :  

Northern Hemisphere of a Parton Final State 
(Q• IOO GeV, l" c ' i  GeV, A • 0. 5  GeV) 

Distribution of partons in the northern hemisphere of a reasonably 
typical y* decay final state with Q ;  100 GeV , µc ; 1 GeV . The 
sizes of the dots are roughly proportional to the energies of the 
partons they represent . The original quark produced in the y* de
cay was directed towards the north pole ; its final position is 
marked with a cross . All other partons are gluons . The lines 
drawn between the parton directions describe the parton color in
dices . The event shown is somewhat more isotropic than the aver
age ; the values of some shape parameters for it are given. 
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Fig. 6 :  Mean values of the shape parameters H z  and H3 (defined b y  eq . 6)  
for parton final s tates from the decay of a virtual photon with 
mass Q ,  and with cutoff µ c . Results obtained by considering only 
a single gluon emission at O (as ) with µc ; 0 are also shown . 



O (as ) exponentiates to provide "radiation damping" at H2 + 1 when higher 
order emissions are summed . Figure 6 also shows the behavior of <RB> when 
µc 1 GeV, and the form of <RB> at O (as) in perturbation theory . RB is 
more sensitive to later emissions than H2 • Typically , at large JI, ,  the ef
fects of successive emissions on <HJ/,> decrease as (a log

2Jl,)�while the cutoff s 2 2 2 provides O (Jl,µc/Q) corrections . As JI, + 00 ,  <H > + <EE�/Q > - µ /Q <n> . JI, i ]_ 
The emission of a single gluon deflects energy in an event from the 

q , q  line . Emission of two or more gluons spreads energy outside a plane . 
The deviation of a final state from coplanarity may be measured , for exam-
ple, by [ 15 ] 111 - l IP" . l l P- . 1 1 Pk l /Q3 (p . .  p . . xi\> 2 [ F . 20 ] .  

i , J  \ k  ]_ . J * ]_ J 
If the quarks proauced in the y decay were exactly on-shell and mass-

less ,  then their angular distribution with respect to the original e+, e

direction would be ( 1  + cos2e ) . When the quarks are off-shell , their orig
inal angular distribution becomes instead roughly ( l+( l-2 (t1+t2) /Q

2) cos2e ) ; 
the gluons radiated remain roughly uniform in azimuth with respect to the 
e+, e  direction [ 15 ] .  

Beyond Free Emission 

The approximation of free (and independent) parton emissions used in 
the previous section becomes inaccurate when the invariant masses of the 
partons in an event have fallen so low that the rate of emissions from them 
no longer dominates over the rate of interactions between them. Above , I 
have simply truncated all radiation at this critical point , parametrized by 
a critical parton invariant mass µc . However , for an accurate description 
of even the most inclusive experimental measurements at available Q, it is 
essential to venture beyond the critical point , and model the final forma
tion of hadrons . 

The first simplifying assumption which I shall make is that the cross
section for production of a given final hadron state involves only an inco
herent sum over parton states at the critical point . This is in keeping 
with the free emission approximation for parton production , which provides 
cross-sections for parton configurations at the critical point : it sug
gests that interferences between different parton states which are trans
formed into the same hadron state [ F . 21 ] should vanish. The processes of 
hadron formation are taken to be sensitive only to the probabilities , and 
not the amplitudes , for the possible configurations of the parton system. 
As a simple, but somewhat inappropriate analogue , consider a reaction in 
which many e+, e- , y are produced : the assumption requires that interfer
ences between processes in which a given positronium atom arises from an 
e+e- system and an e+e-y system should cancel . This occurs in so far as 
the amplitudes for population of the various states of the interfering sys
tems have random phases (as would follow from classical free emission) . 
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A further (bu t to some extent related) assumption is that the evolu
tion beyond the critical point depends only on the local structure of the 
parton system over small spacetime volumes at the critical point .  Hence , 
suitable sets of partons at the critical point will evolve to form hadrons 
independently , and irrespective of the processes by which they were pro
duced . For example , I shall below often assume that low-mass color singlet 
clusters of partons present at the critical point condense directly into 
hadrons , independently from each other. If the formation of hadrons does 
not occur in some such local and universal manner , there seems little hope 
of ob taining useful predictions from QCD without very detailed knowledge of 
the structure of hadrons . If , even at high Q ,  the whole parton system at 
the critical point acted cooperatively to generate the final hadrons , then 
the d isposition of partons could be largely irrelevant , and perturbative 
parton production above the critical point would be rendered invisible .  I 
shall entirely neglect this possibility ,  and will assume that the processes 
of hadron formation act universally and locally : the precise constitution 
of the independent parton systems is , however , unknown ; several possibili
ties will be discussed below. 

For some purposes , it may , at sufficiently large Q, be adequate to 
make the approximation that each individual parton in the final state 
(rather than , say , each color singlet cluster of part:ons) "decays" indepen
dently into hadrons . (This approximation fails to account for color con
servation , and therefore must be violated eventually . )  I t  is conventional ,  
for example , t o  define "fragmentation functions" which describe inclusive 
hadron spectra in parton decays . In this approximation, the function 
F h ( z , µ2) gives the probability for a hadron of type h to carry a fraction p-+ 0 
z of the (roughly) longitudinal momentum of the parton p ,  whose invariant 
mass is less than µ0 . If the perturbative evolution of the final state is 
truncated when all parton invariant masses fall below µ2 , then some inclu-o 
sive properties of the final hadron state may be found by taking each par-
ton to decay according to a suitable F ( z , µ2) .  In this case ,  changes in Q 0 
affect only the perturbative evolution : the decay of the parton system be-
low � 2 may be described by the same F ( z , µ2 ) ,  regardless of Q2 • Thus the 0 0 
approximation allows the change ("scaling violations")  in single hadron in-
clusive energy spectra as a function of Q to be estimated without expJ_icit 
knowledge of the processes of hadron formation . The approximation fails , 

2 however ,  when µ0 and Q are small enough that many pairs of partons at µ0 
have invariant masses � µc ' and therefore may act cooperatively in forming 
hadrons , thereby necessitating introduction of a further j oint two-parton 
fragmentation functions· F h C/ , z1 , z2) .  Since only the Q variation of 

P1P2-+ o 
the single hadron distributions is required , such cooperative hadron 



formation processes are irrelevant unless they depend on Q .  Hence , the ef
fects of processes such as 

( 7 )  

in which a parton acts cooperatively with the last gluons which it radiated 
before reaching µ0 are accounted for by use of the physical fragmentation 
functions for the radiating parton . On the other hand , for example , the 
process 

(8) 

leads to q2-dependent 0 (µ2;q2 ) ( "higher twist" ) corrections . The probabilc 
ity for parton 2 in (8) to be emitted in a kinematic configuration which 
which allows partons 3 and 4 to have an 

2 2 2 2 2 � µc/ (µ 1 (z3+z4) ) ,  or formally � µ c/Q • 

proportional to the j oint fragmentation 
2 2 fore roughly of order µc/kT for hadrons 

invariant mass � µ decreases c 
The higher twist corrections (8) 

function FqG+h (µ� ; z1 , z2) are there
of transverse momentum kT with re-

spect to the direction of parton 1 .  The most important higher twist cor
rections plausibly result when parton 1 is the original q or q .  In this 
case , the s ingle hadron transverse momentum spectra receive corrections 
O (a µ2/k2) ,  yielding O (a µ2/Q2 ) higher twis t  corrections to the Q develop-s c -, s c 
ment of single hadron energy spectra . (Numerically , the O(a  ) suppression 

2 s 2 may be more than compensated for by the smallness of <k.f> relative to Q 
Note that higher twist corrections to energy spectra should become more 
important for lower energy hadrons at a given Q2 . )  The dominant ,  leading 
pole piece of the cross-section for the decay of parton 1 in (8) into 2 ,  
3 ,  4 corresponds t o  independent emissions o f  1 ,  2 ,  3 ,  4 .  As discussed in 
the previous section, there are "subleading log" correction terms , some of 
which depend on the process by which parton 1 was created ( e . g . , spin 1 or * 
spin 0 " y " decay) : hence higher twist corrections will be no more univer-
sal to different processes than are subleading log corrections [ 18 ] . Note 
that in models (such as that discussed below) which describe the complete 
formation of hadrons from independent parton systems , higher twist terms 
are automatically present,  and their nonuniversal nature accounted for by 
the form of corrections to leading pole parton decay probabilities . As 
discussed at  the beginning of this section , the apparently plausible 
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assumption is nevertheless made in such a model that processes such as ( 8) 
cannot interfere with processes in which the gluon 4 is absent .  

In addition to single hadron inclusive spectra , fragmentation func-
tions may also be used to describe multihadron spectra [ 1 2 ,  13 ] .  However , 
the different hadrons may arise either from the decays of separate partons , 
or as some of the decay products of a single parton . The possibility of 
the latter contribution requires introduction of new multiple fragmentation 
functions F h h (µ2 , z1 , z2 , . . .  ) which may be determined only from ex-p-?- 1 2 · . . . .  0 
periment . This contribution may be removed by requiring that no hadron 
pairs considered have invariant masses � µ2 , and therefore all must have 0 
originated from distinct partons . Nevertheless , the fragmentation function 
approach to multihadron spectra is increasingly affected by higher twist 
corrections , and is rendered largely impractical by the prohibitive number 
of parameters to be determined from experimental data . A more complete dy
namical model for hadron formation is therefore required (which implicitly 
provides estimates for fragmentation functions ) .  

The mechanisms for parton production discussed above were based on 
perturbation theory . However , it is possible , especially when a (µ2 ) � 1 ,  s 
that partons may be produced by effects not visible in perturbation theory 
(e .. g . , O (exp (-1/as) ) ) . (Note that such effects cannot be classified by a 
twist expansion : their coefficient functions as well as operator matrix 
elements would not be amenable to perturbative treatment . )  In a uniform 
QED electric field (corresponding to a potential V (r) = l s  J r) , e+e- pairs 

-?-with transverse momenta Pr with respect to the field direction 
ated spontaneously at a rate [ 19 ]  � exp (-211 (m;+ l"Pr l 2l / J es J ) .  

are gener
+ -An e e pair 

in the uniform electric field separated by a distance d has a potential en-
2 I _,_  1 2 1/2  I I ergy 2esd; for d ;;,: (me + Pr ) /2 es , this potential energy exceeds the 

energy necessary to generate a real pair . The energetically favored state 
containing a real pair is reached by quantum mechanical tunneling , but at 
an exponentially small rate . The O (exp (-1/e) ) result for this rate exhib
its an essential singularity at e = 0 ,  and therefore cannot be obtained by 
any perturbation expansion about e = O .  The presence o f  real pair produc
tion eventually results in shielding , so that a uniform electric field can
not be maintained for an infinite time . In QCD , uniform color magnetic as 
well as electric fields are unstable [ F . 22 ] ,  because the gluon magnetic mo
ment deviates from the Dirac value . The dominant higher-order perturbative 
corrections to the decay rate may be accounted for by the replacement of 
the coupling constant in the exponential by the effective coupling "'g( I .Pr I )  
(appropriate for scattering of the pair from the potential) . With this 
form, the rise of the pair production rate at small Pr would be damped for 

Pr � A . 



The results for spontaneous nonperturbative pair production in uniform 
fields also hold for separating point charges in 1 + 1 - dimensional QED or 
QCD (where VCoulomb (r) � r) [ 20 ] , or in 3 + 1-dimensional QCD if as yet 
unknown effects concentrate color flux into a tube between the separating 
q , q  [ 19 ] . If instead , the color electric field is taken to have the per-
turbative dipole form resulting from a static qq pair separated by a dis
tance a ,  then the potential difference between two points � 2gr/a2 for 
r << a; again spontaneous pair production should occur , at a rate 
� exp (-n (pi+m2 )a2/ (g (l/a) g (pT) ) )  for /(pi+m2) � l/ (g2a) (and vanishing with 
a higher power in the exponent for larger pT) .  If the q ,q sources (and 
hence the field generated by them) were indeed static , then the only source 
of pairs would be such nonperturbative spontaneous production. However , in 
practice , the q ,q are accelerated at the y* decay point , and then move rap
idly apart ,  generating a time-dependent field usefully parametrized by ele
mentary gluon excitations and resulting in the perturbative pair production 
discussed extensively above . Note that pairs produced in the latter manner 
exhibit power-law, rather than exponential , damping in Pr · Perturbative 
parton production will modify the field in which nonperturbative tunneling 
may occur. Typically , at late times , newly-emitted gluon pairs will pro
vide sites for spontaneous production with small a and thus high fields . 
Any spontaneously-produced gluons will be very closely collinear with the 
separating gluons ; they would form a polarization cloud , which would bleach 
the color of the high momentum gluons , and reduce their reinteraction 
cross-section [ F . 23 ] .  Their effects will probably be important ,  however ,  
only long after the free emission approximation has failed . 

The spontaneous nonperturbative production of partons discussed above 
occurs by tunneling from a state containing j ust  the field to a state con
taining , in addition , a parton pair ,  but having the same energy as the 
original state . The exponent in the tunneling probability is (minus) the 
action associated with the classical propagation of the partons through the 
field in imaginary time. As well as those which lead to additional parton 
production , there may also occur tunneling processes between identical 
states , which serve to alter the amplitude for the persistence (propaga
tion) of the state. For example , the parton propagators receive 
O (exp (-2n/as ) )  corrections from processes in which tunneling occurs by way 
of an instanton solution to the (sourceless) classical field equations . 
Such correc tions are presumably O (exp (-2n/a (µ2) ) )  � O ( (A2/µ2) 4) and there-s 
fore almost certainly irrelevan t .  

It  is very difficult t o  make realistic estimates on  the failure of the 
free parton emission approximation .  Certainly the simple cutoff µc o n  the 
invariant mass of individual partons used above is an oversimplification: 
presumably invariant masses of pairs of partons are also involved . (Since 
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qma l l i nvarian t mRss pHrton pairs often artse frnm decay of a single small  
i nvariant mass parton , thesP pr0srripti ons are at leas t roughly P']uiva
lent ) . In addition , the cutoff will not be sharp : the approximation will 
progressively become more inaccurate. (This behavior could perhaps be pa-
rametrized by choosing the value of µc for each parton from a distribution , 
rather than taking a fixed value . )  Nevertheless , the mere and undoubtedly 
correct assumption that the parton invariant masses determine the validity 
of the approximation already has the important consequence that hadrons 
form after a time � l/µ  in the rest frame of the original q ,q and there-c

2 * 
fore at a distance � Q/µc in the y rest frame . Hence , as suggested by 
Fig . 1 ,  the longitudinal extension of the parton system before hadron for-* 
mat.ion increases with Q .  The locus o f  points in the y rest frame at which 
hadrons form is roughly a cylinder of length � Q/µ;: and breadth � l/µc . If  
the high invariant mass q , q  were produced by a high pT interaction in a nu
cleus , then hadrons should form only far outside the nucleus , and therefore 
no additional secondary hadron production should occur in the nucleus . The 
similarity of high pT j et production from nucleons and nuclei observed ex
perimentally [ 2 1 ]  supports this picture . If inst.,ad , hadrons formed at a * 
fixed time in the y c . m . s . , then different structure would be expected . 
In this case , hadron formation would occur roughly on the surface of a * 
sphere (with r � l/µf ) in the y rest frame . Moreover ,  this alternative 
(which violates the locality assumption necessary to justify consideration 
of partons ) implies a cutoff µc � � on parton invariant masses which as
ymptotically yields no scaling violations in single hadron spectra . 

The first corrections to the free emission approximation presumably 
arise within perturbation theory from the increasing importance of reinter
actions . After many emissions , the density of partons in some regions of 
phase space will become so high that invariant mas:;es of pairs of partons 
are often smaller than the invariant masses of other individual partons . 
In this case , the rate of exchanges between the partons will exceed the 
rate of radiation from a single parton, and the fr,ee emission approximation 
wil l  fai l .  This effect occurs to some extent for a f inal state containing 
many e+e- or e p pairs in QED. At firs t ,  reinteractions result in energy 
loss through Bremsstrahlung ; finally , when the invariant masses of the 
pairs fall below the masses of the Coulomb bound states , many of the 
charged particles combine into neutral atoms (c . f .  recombination in a cool-
ing plasma , e . g . , in the early universe) . (Note that the structure of a 
normal positronium or hydrogen atom depends crucially on the nonzero mass 
of the electron : when m -.- 0 the "atom" becomes either infinitely extended e + -
[ F . 2 4 ]  (Za � 1) or generates e e pairs until  its charge neutralization ra-
dius � 0 (Za � 1 ) . It is not clear whether the nonzero current u , d  masses 
are crucial in the dynamics of hadron formation; their kinematic effects 



will be mentioned below: their importance may be gauged by differences be-* * * 
tween hadron systems produced in W decay (from T � W vT ) and y decay at a 
given Q .) In QCD , the increase of the effective coupling at large distances 
presumably leads to reinteractions which ultimately collect all partons 
into color singlet bound states . The invariant mass µc below which such 
effects dominate is perhaps determined by the point at which a (µ2) � 1 ,  s 
(c . f .  the critical charge for zero radius atoms in massless QED mentioned 
above) and is therefore plausibly a few times A .  
Hadron Formation 

According to the assumptions discussed at the beginning of the previ
ous section , reinteractions below the critical point affect only local sets 
of partons . The minimal groups of partons which may form hadrons indepen
dently are color singlets . A color singlet system is defined to transform 
according to the trivial representation of SU (3) c . Even if a system has 
zero eigenvalues of the two commuting generators of SU (3) c , it will not in 
general be a color singlet ( c . f .  a state with j .z = 0 need not have total 
angular momentum 0) . To determine , for example , whether a qq system is 
a color single t ,  one must know not only its total "color magnetic quantum 
numbers" (T 3 , T8) ,  but also the amplitudes for the possible arrangements of 
the quark "color magnetic quantum numbers" (c . f .  the state (ui:;+dd) //2 has 
I =  0 while (u;:;-dd) //2  has I = l ;  both have I3 = 0) . In the free emission 
approximation for parton production , the "color magnetic quantum numbers" 
are conserved at each vertex ; the phase of the amplitude for each emission 
is random , so that the final partons are statistically distributed among 
the possib le SU (3) c representations . Hence , for example,  a color neutral 
( i ..e . , with zero color magnetic quantum numbers) qq pair produced has prob
ability 1/2  to be in an SU (3) c singlet or an SU (3) c octet , respectively . 
Similarly,  a color neutral GG pair has probability 1/6 to be a color 
singlet (in the limit Nc � 00 ,  g2Nc fixed , a vanishingly small fraction of GG 
pairs are color singlet� . One might perhaps imagine that final state in
teractions would mould the amplitudes for different parton states so as to 
produce particular color representation configurations : such effects would 
violate the locality assumed , and wil l  therefore be ignored here . 

There are several distinct classes of color singlet parton systems 
which may be considered . Firs t ,  one might collect all color singlet sys
tems at µ c delimited by a quark and an antiquark [ 22 ] . . Unfortunately , the 
very low multiplicity of secondary qq pairs at realistic Q (evident in 
Fig . 2) causes such qqGG . . .  systems to have masses � Q (although at truly 
asymptotic Q/µc ' their masses should become O(µc ) [ 22 ] ) ; in this case ,  the 
final hadron production would not be local. A second scheme for color 
singlet identification consists in forming the minimum invariant mass color 
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singlet qqGG • •  or GGG • •  clusters at µ . The gluon systems in this case of-c 
ten have rather large masses , because of the low probabilities for color 
neutral gluon systems to be color singlets .  In a third scheme , on which I 
concentrate here , each gluon at µc is forcibly split into a qq pair . Each 
quark carries one of the spinor color indices of the gluon ; every quark is 
connected by a group theoretical string to its color conjugate antiquark, 
so as to form a color neutral pair . The formation of color singlet systems 
from these color neutral qq may be estimated by combining with probability 
1/2 pairs of color neutral qq systems which arise from splitting of a com
mon gluon ancestor ( i . e . , the pairs qq1 , q1q where q1q1 originate from 
forcible splitting G ->- {j1q1 of a "final" gluon are amalgamated into a sin
gle color singlet system with probability 1/2) . The prescription of split
ting each gluon to a qq pair may perhaps be regarded as the assumption that 
any gluonium mesons formed decay infinitely quickly into qq mesons . (This 
assumption contradicts the Nc ->- ro indication of narrow gluonium states , but 
is supported by the experimental absence of narrow gluonium states . )  With 
this prescription , the mass spectrum of color singlet parton systems is 
very strongly damped (� µ-l or µ-2) ,  and very nearly independent of Q [ 2 ]  
(except at µ �  Q where the spectrum i s  usually infinitesimal) , yielding a 
mean color singlet mass <µc£> � 2µc . (Recall that in the parton production 
model of Ref . [ 2 ] , the "final" partons produced from parents with µ � µc 
were taken to be on their mass shells ; if this assumption were relaxed, 
then <µci> � 5µc ' yielding rather massive clusters .  If clusters were re
quired to be color neutral ,  but not color singlet , then <µc£> � l . 2µc . )  Of 
course , while these clusters represent essentially the minimal parton sys
tems which can form hadrons independently , it is certainly possible that 
several such clusters may often act cooperatively , for example, if their 
j oint invariant mass is below some fixed µ��x . In splitting gluons into qq 
pairs , I arbitrarily choose the momenta of the quarks to be uniformly dis
tributed over the allowed range (no results are sensitive to this choice) 
and to have flavors u, d ,  s with equal probabilit ies . Just as the color 
representations of the parton clusters can be determined only statisti
cally , so also their total angular momenta are not determined ( the cr2 for 
each parton could be traced, but the orbital angular momentum is entirely 
undetermined) .  Nevertheless ,  I shall below approximate the clusters to de
cay isotropically in their rest frames , thereby implicitly assuming zero 
total angular momenta . 

If indeed the local color singlet parton clusters described above are 
formed by reinteractions below µc ' one must then determine how each cluster 
should decay into hadrons . The discussion above assumes that the clusters 
may have arbitrary masses . Perhaps , however , each cluster may instead rep
resent a definite meson resonance , with discrete mass . The energy levels 



of "atoms" bound by nonconfining potentials always become dense close to 
ionization. A "cooling" e+e- pair may thus be treated classically until it 
lies in the energy band just below the ionization limi t ;  then the atom cas
cades by quantum mechanical radiation into the ground state of definite 
discrete energy . For a confining potential , all the energy levels are dis
crete,  suggesting that "atoms" must be directed immediately into discrete 
levels . This phenomenon must be described by quantum mechanics and would 
contravene the locality assumption made above . Nevertheless , in a second 
quantized treatment,  the higher levels may decay to lower ones : then the 
widths of the excited levels may increase faster than their spacings , so 
that the higher levels merge , effectively yielding a continuous energy 
band . (This phenomenon occurs for a hydrogen atom in 2-dimensional QED . )  
This possib ility may well b e  realized for meson resonances : in a constitu
ent model ,  their level density rises � (m/m )P , while phenomenologically 0 
their widths r � 0 . 1  m. In this case , the available meson (or cluster) 
masses essentially represent a continuous band : clusters formed in the 
band may then decay to light mesons with definite masses [ F . 25 ] .  (The 
smoothness of the e+e- cross-section above Q � 1 GeV suggests that the band 
of allowed cluster masses extends down to Q � 1 GeV . )  The decay properties 
of the clusters may to some extent be estimated from measured meson reso
nances , together with low-energy e+e- annihilation final states [ F . 26 ] .  

All evidence suggests that quasi-two-body decays are universally dominant . 
For clusters below � 1 . 5  GeV , an adequate model is to allow decay into 
pairs " of the lowest-lying O+ , 1- , l+ , 2+ mesons , with equal matrix elements 
for each final spin state (so that the decay branching ratios are deter
mined by the available phase space) . This scheme yields a roughly linear 
increase of multiplicity with mass ( for µc£ � 1 . 5  GeV) , apparently as an 
accidental consequence of the properties of the low-lying mesons . Strange 
meson production is suppressed simply by the larger K mass and by the 
larger number of rr than K produced _ in decays of low-lying meson resonances .  
The approximate constancy of the total multiplicity in e+e- annihilation 
from � 1 . 5  GeV up to � 4 GeV suggests that clusters with masses in this 
range decay directly to pairs of light mesons , without cascading through 
clusters of intermediate mass .  (Quantum numbers usually leave only one 
quasi-two-body decay channel open to the known meson resonances , preventing 
determination of the mass distributions for their decay products [ F . 2 7 ] . )  
The decay products of low mass clusters are thus taken to have masses com
parable to their parents . As the cluster masses increase , the product 
masses remain unchanged , so that the decay momenta increase . This behavior 
provides a rather smooth transition to the parton decays at larger invari
ant masses , where daughter partons have much smaller masses than their par
ents (see eqs .  ( 1 ,  2 ) ) . In as far as the free emission approximation 
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describes the decay of clusters with suff iciently large mass t o  lighter 
clusters , the value of the parameter µc should be irrelevant : changes in 
µc over a certain range would simply assign a different fraction of the 
hadron production process to the free emission stage and to the phenomenol
ogical cluster decay stage , leaving the results unchanged . In practice , 
however , only rather small changes in µc exhibit this behavior . 

The model defined above purports to describe all features of e+e- an
nihilation f inal states . A comprehensive investigation will be reported 
elsewhere [ 3 ] ; here I make only a few very brief comments . As discussed 
above , a crucial feature of the mode l is that it exhibits the locality of 
hadron formation necessary to justify use of QCD perturbation theory at 
early times . Previous models (e . g . , [ 15 ,  25 ] )  have failed dismally in this * 
respect :  they typically take each produced parton with energy E in the y 
c .m . s .  to decay into hadrons like one jet  of an e+e- event with Q = 2E in 

* the original y c .m . s .  (usually as parametrized by the Field-Feynman model 
[ 26 ] ) .  In this way , the invariant mass of the hadron jet  resulting from 
the parton decay is � !Aff: the energy of the parton in the c .m . s .  of the 
complete event is crucial in determining its decay to hadrons , and the lo
cality postulate is totally violated . For this reason, any detailed agree
ment between such models and experimental data should in no way be con
strued as support for QCD . 

The measured mean charged multiplicity in e+e- annihilation is roughly 
constant at smal l  Q ,  increasing from � 3 at Q = 1 . 5  GeV to � 4 at Q = 5 
GeV . At higher Q ,  <nch> increases rapidly , becoming � 6 at Q = 10 GeV and 
� 12 by Q = 30 GeV [ F . 28 ] . This increase presumably reflects the rapid 
rise in parton multiplicity at high Q evident in Fig . 2. Given that the 
quasi-two-body cluster decay model described above reproduces the observed 
<nch> for Q "'  2 GeV , the <nch> obtained at higher Q agrees with data to 
within about 30% for any µc in the range 1-2 GeV (with A =  0 . 5-0 . 8  GeV) . 
Almost any plausible cluster decay model suggests <nch>/<n> � 0 . 6 .  The 
hadron multiplicity distributions should roughly follow the parton ones , 
and be broader than Poisson at high Q .  Single hadron energy spectra at 
Q '3 4 GeV are also in adequate agreement with data so long as µc "' 2 GeV (a 
10% softening in <z> between Q = 10 GeV and Q = 30 GeV is expected) . 
Whereas in the original Field-Feynman model ,  the charge-weighted z distri
butions for each j et were essentially monotonic , they exhibit considerable 
oscillations in the present model ,  especially at small z ,  although the 
charges of very high z hadrons still reflect thos<2 of the original quark 
(c . f .  [ 2 7 ] ) .  The transverse momentum spectra of single hadrons obtained 
are roughly in accord with the experimental data so long as µc "' 2 GeV (the 
< pT> increase slowly with µc as for partons ) . (Note that , for example , at 



Q = 10 GeV , <pT> measured with respect to the sphericity axis is about 10% 
larger than that with respect to the original qq direction ; in the former 
case , consideration of charged hadrons alone effects an � 10% reduction in 
<pT> . )  Note that the <pT> rises slowly with increasing Q ,  in contrast with 
the roughly constant behavior implicit in the Field-Feynman model . Shape 
parameters , which measure the large-scale angular distribution of energy in 
the final state , provide an important probe of the processes of hadron pro
duction . Recall that successive partons emitted tend to be progressively 
more collinear , so that only the first few emissions can have a significant 
effect on the "shapes" of the events . If µc is small , then the hadron 
clusters formed typically have small masses , and release little transverse 
momentum in their decays ; hence the final hadrons are concentrated along 
the directions of the first few emitted partons , and the shape parameters 
for the final states are close to those obtained in low-order perturbation 
theory . Experimental results for shape parameters indicate that actual fi
nal states are much less lumpy , strongly suggesting µc � 1 GeV (note that 
an increased effective a (Q2) resulting from large higher-order corrections s 
could account for the observed <Ht> but not the Ht distributions) . With 
such values for µc ' <µct> � 2 GeV : the hadrons from decays of different 
clusters thus overlap considerably in phase space (hence analysis methods 
used to extract properties of clusters in multiparticle production in low 
pT hadron collisions [ 28 ]  could not discern these "superclusters" , but 
only the lighter clusters resulting from their decays) . 

Extensions 

For simplicity , I have considered above only quarks with vanishing 
rest masses (all partons nevertheless receive effective masses O (µc) from 
their finite propagation) . Small quark masses introduce O (m2dt/t2 ) (or 
possibly O ( (m2/t ) (l-O (as ) ) dt/t ) )  mass corrections to the quark decay proba
bilities in eq . ( 1 ,  2 ) ) .  (These are a species of higher twist corrections ; 
the mass insertions responsible for them are analogous to the insertions of 
extra collinear gluons responsible for 0 (µ2dt/t2 ) higher twist  terms . )  

2 c 
When t < m , the quark decay probabilities are kinematically constrained to 
vanish . For the O (as ) process y* 7 QQG (Q denotes a heavy quark) , a very 
good approximation to the exact differential cross-section is provided by 
using the usual mQ = 0 ..&Q�G ( t , z ) for t > m� but setting ..&Q�G ( t , z) = 0 for 
t � m� ( z is , as always , interpreted as the E + J p J fraction , thus account
ing for Nachtmann scaling corrections ) .  I t  seems likely that this pre
scription will also be satisfactory for multiple gluon emissions . Note 
that in the effective coupling as (1) ,  the available t is �ow � ( t-m� ) ,  
rather than � t .  For t close to mQ , the product Q in a Q 7 QG "decay" 
will  have small velocity relative to its parent ,  so that reinteractions 
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will be  important . Thus the free emission approximation in this case 
should fail when t "' (mQ+µ ) 2 : the effective µ cutoff for emissions from c c 
heavy quarks should therefore be µQ 

� (mQ+µ ) .  For m2 << t ,  the production 
- * * c c -of a QQ pair from y or G should be suppressed relative to qq production 

by a factor v/2 (3-v2) = 1 - O (m4/t2) where v = � 4m2/t  is the relative 
velocity of the outgoing Q , Q .  fy->QQ ( t , z )  and .&G->QQ ( t , z) should thus be �e
duced by this factor for t > 4mQ , and set to zero below threshold t < 4mQ 
(as t decreases , the angular , or equivalently , z distribution for the decay 
flattens slowly , becoming isotropic ( i . e . , flat) at threshold) .  Just above 
threshold , the produced Q , Q  have small relative velocity , and thus undergo 
extensive final state interactions . At O (as ) ' gluon exchange in y

* 
+ QQ 

gives 60/0 "' 4rms/ 3v.  In higher orders , the cross-section exhibits iso
lated peaks at the positions of QQ resonances below threshold for (Qq) (Qq ) 
meson production , and further resonant peaks j ust above threshold . Note 
that such effects are probably less important for G'� + QQ than for y * + QQ 
because in the former case ,  the QQ cannot bind into a hadron because of 
their color.  Nevertheless,  in all cases , the peaks and valleys in the 
cross-sections should average out when smeared over a range � µ2 around 

2 c 
t = 4mQ , and the lowest order result should suffice . In the prescription 
for forming color singlet parton systems described above , each gluon at µc 
is forcibly split into a light qq pair : this proces s ,  if it occurs at all,  
is undoubtedly not of perturbative origin, and one may guess that heavy QQ 

2 2 production by it would be suppressed by � exp (-mQ/ (1�sµc) ) .  Hence secondary 
QQ pairs should be generated only at the perturbative stage , and thus be 
rare.  

Heavy quarks should eventually combine with light quarks and gluons to 
form color singlet clusters with masses � mQ + 3µc . These clusters should 
then decay into (Qq) mesons and light hadrons , with branching ratios deter
mined approximately by available phase space ( just as for light mesons , 

* 
"D " as well as "D" production should probably be included explicitly , 
thereby accounting correctly for n

* 
+ Dy decays : for very heavy Q ,  (Qq) 

meson masses and branching ratios may presumably be estimated from poten
tial models) . The ground state (presumably pseudoscalar) (Qq) mesons will 
then decay weakly ( the lifetimes for these weak decays are much longer than 
the time necessary for the decaying meson to form, and they should there
fore be treated separately) . The decay may proceed either through separate 
Q + q ' w (* ) decay of the heavy quark , or for purely hadronic modes , by W 
exchange with the spectator q .  With the first mechanism, the w(* ) is pro
duced roughly uniformly (isotropic) in z; its subsequent decay to a fermion 
pair may be approximated as independent , and described by the distribution 
( for t << �) .&W+ft ( t , z)dt  � g2/16�2 tdt/� (z2+(1-z) 2) ,  with the various 
flavors of quarks and leptons weighted with mixing angles according to 



their appearance in the weak current . When mQ � �· real W production is 
permitted ; the relevant decay probabilities are analogous to those for G 
(or y) production. The second decay mechanism may be effective for purely 
hadronic modes ; its relative importance may depend on the charge of the de
caying (Qq) meson . The final q ' q" pair generated by this mechanism is iso
tropic in the (Qq) rest frame : the various possible quark flavors are 
weighted by the requisite mixing angles . Other decay modes ,  such as (Qq) + 
q ' Gq or (Qq )0  + GG probably have very small branching ratios . The partons 
emitted in (Qq) decays may be off-shell , and thus radiate , producing had-* 
rons as in y decay . Note that heavy lepton decays may be treated analo-
gously to the first mechanism for (Qq) decays . 

Below threshold for (Qq) (Qq) production , (QQ) resonances (e . g . , � .  T ;  
denoted generically � )  should b e  produced in y* decay . The lightest such * -
resonance presumably decays mainly to GGG , GGy , or y (+ qq) ; radiation from 
these partons may be treated as described above . (Note that the gluons in 
the decay � + GGG are distributed almost uniformly in the available phase 
space . )  Excited (QQ) mesons may decay either to lower-lying (QQ) s tates , 
or directly to lighter partons ; the branching ratios may be estimated from 
potential models . For � .  a cutoff µc � 1 . 5  GeV permits almost no radiation 
from the GGG produced , and usually combines them into just one hadron clus
ter ; this then decays identically to the single hadron cluster produced by * 
y decay with Q = m� . Of course,  in the model described here , both quark 
and gluon " fragmentation functions" are completely determined . 

The hadron clusters discussed in the previous section are taken to de
cay into light meson pairs according to available phase space.  For clus
ters with masses above � 2 GeV , baryon pair production is also possible. 
To be consistent with other assumptions , no suppression of baryon pair pro
duction beyond phase space restrictions should be introduced . Then , at as
ymptotic Q ,  <np/nn> should tend slowly to a constant determined by 
m /<µ R,> .  p c * In addition to gluons , virtual quarks produced in y decay may also 
radiate real or virtual photons , and , if they have sufficiently large 
masses , real or virtual W± , z0 , and perhaps Higgs (H) particles .  The prob
abilities for photon emission are j ust as for gluon emission (after the re
placement 4/3 a (t) + a  = a) . Direct photon production in the decays of s em 
the hadron clusters may probably be ignored . Just as outgoing or incoming 
quarks may emit gluons , so also incoming e+ , e- may emit photons . Most of 
the resulting electromagnetic radiative corrections may be treated by the 
direct Monte Carlo methods discussed above and in Ref . [ 2 ] . 

In the discussion above , the polarizations of quarks and gluons have 
not been traced explicitly .  It is simple to include spin-dependent decay 
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probab i lities [ 4 ] , b u t  the likely presence of orb i t al angular momentum in 
clus ter formation makes deduction o f  f inal hadron polarizations d i f f i cult . 

In this paper , I have concentrated on hadron production in e+e- anni
hilation . Processes which involve partons in the ircitial s tate may b e  
treated b y  largely analogous methods . The valence c uarks i n  incoming had
rons may plausib ly be taken to be dis tributed in thE! hadron rest frames , 
for example , Gaussian (c . f .  nonrelativistic harmonic: oscillator wavefunc
tions ) in all four momentum components so as to havE! a mean invariant mass 

� µi . (There is no dif ficulty in boosting this momE!lltum probability dis
tribution . )  Prior to interactions involving high invariant masses Q (e . g . , 
absorption of a highly spacelike vir tual photon (deep inelas t i c  scat ter-* 
ing) , or production of a highly timelike y (Drell-Yan process ) ) ,  these 
nearly on-shell partons may radiate ( small timelike invariant mas s )  par
tons , and themselves attain progressively more spacelike invariant masses 
(up to - iQ) . The probab i li ties for these decays are , in the free indepen
dent emission approximation ,  essentially the same as those f or the decays 
of timelike invariant mass partons considered above , with suitab le reinter
pretation of z .  (The optimal argument t of a (t) becomes - - ( 1-z)  l t l / z s 
rather than - z ( l-z ) t ,  as in the timelike cas e ;  hence O (a2) contributions s 
to the decay probab i l i t ies in the two cases d i ffer by 0 ( logz) terms . )  The 
emitted gluons and "sea quarks" may be considered to provide extra cons t i t
uents of the incoming hadrons : their momentum distributions will as usual 
"evo lve" as Q2 / µ �  increases . Note that with this model ,  the "cons tituent" l 
partons will exhibit a distribution of transverse momenta with respect to 
the incoming hadron direction . Af ter the hard scat tering , remaining par
tons may be o ff-shel l  with t imelike invariant masses up to Q, and may ra-* diate j u s t  as in y decay . Partons from the ini tia l hadrons which do not 
participate in the hard scat tering should preserve thei r  original momenta 
(roughly collinear with the incoming hadrons) unt il they are combined with 
other partons in the formation o f  color s inglet hadron clus ters . The model 
outlined here should allow d iscuss i on o f  all high-t ransverse momentum had-
ron processes [ 29 ]  . Comparison with results from triggered experiments 
wil l ,  however , require nontrivial importance sampling in theoretical Monte 
Carlo calculations . One may speculate that the methods used to describe 
high transverse momentum scat terings between incoming partons could also b e  
applied to low transverse momentum multipart i cle production processes . The 
incoming valence partons would exchange a smal l  momentum, with a cross
section given by one-gluon exchange , but with its Coulomb s ingularity at 
small Q2 regularized for Q2 � µ� , by the presence of additional partons l 
from the incoming hadrons , which shield the color of the valence quarks at 
dis tances � l/µ1 . This small momentum transfer , say O (A ) , causes the in
coming high-energy (but nearly on-shell) partons to be "poked" off shell to 



invariant masses � 11\S, where IS is the c .m . s .  energy in the parton colli
sion .  These off-shell partons would then radiate j ust like partons with * 
the same invariant masses produced in y decay . At sufficiently high s ,  
the transverse momentum distribution o f  the final hadrons should therefore 
broaden . 

Acknowledgments 

I am grateful to R. D. Field and G. C. Fox for their contributions to 
various aspects of this work (especially Monte Carlo computer programs) .  
I am also grateful to several experimenters at PETRA for discussions re
garding their data and its analysis , and to A. E. Terrano for comments on 
the manuscript of these notes . 

Footnotes 

[F . l ]  The configuration space propagator for a zero rest mass particle 
whose invariant mass is required to exceed µ2 is given by 

[ F . 2 ]  

[ F  . 3 ] 

= tl s i (µ l r l ) ,  
I r ; 

where si (x) is the complementary sine integral , which goes through 
its first zero at x � 1 . 9 .  

For comparison , with scalar quarks , but vector gluons , P G (z)  = qs�s 
Cq2/ (l-z) , while for spinor quarks , but scalar gluons , the soft di-
vergence disappears , and P G (z)  = C ( 1-z) / 2 .  (For these cases , q� s q 
a ( t )  should also be modified . )  s 
In the limit E + 00, this becomes the light cone momentum fraction 
p+, and is Lorentz invariant . 

[ F . 4 ]  With this choice , z becomes E + p. n/ ln l  fraction : some radiated 
partons will then travel backwards with respect to their parent par
tons , thereby populating the region of phase space usually associ
ated with emissions from the impotent parton (with p // n) . A table 
of the explicit contributions from individual diagrams in different 
gauges is given in the second paper of Ref . [ l ]  Note that in the 
"planar" gauge n = q with no kµkv or nµnv term , the lowest-order in
terference diagram vanishes exactly ,  rather than being qimply sup
pressed : perhaps this behavior continues in higher orders . 

[ F . S ]  As mentioned in the final section of these notes , the analogy with 
electromagnetic shower development is even closer for hadron produc
tion by low-pr scatterings of high-energy incident partons . 
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[ F . 6 ]  

[ F .  7 ]  

[ F  . 8 ] 

[F . 9 ]  

In the operator product expansion approach , integrals over JJ3 
-G y->qq 

provide O (as) corrections to the coefficient function . Integrals 
over the J?: . . provide the leading log anomalous dimensions , and 

J o-+J 1J 2 3 much of the subleading log anomalous dimensi ons . JJ. . . . com-
Jo -+J lJ 2J 3 pletes the subleading log anomalous dimensions . 

The differential cross-sections for y
* 

_,. qqC:G , y
* 

_,. qqq ' q ' are 
given in Ref . [ 30 ]  ; the O (as ) loop corrections to y

* 
_,. qqG neces-

sary for a complete treatment are under inve,stigation [ 31 ]  • 

Log (t)  terms from vertex corrections cancel those from quark self
energy insertions by the axial gauge Ward identities . 
In leading log approximation estimates , it is often convenient to 
account for virtual corrections to parton propagation as possible 
off-shell parton decay modes , thereby introducing a negative (usu-

2 a lly divergent) 6 ( 1-z) telm in the P (z) . If µR tmax ' then the 
resulting P (z) satisfies f P (z)dz = 0 ,  so that the sum of probabil

o 
ities for all possible fates of the off-shell parton explicitly 
sums to one . 

[F . 10 ]  The form is very similar t� that obtained for massive electrons in 
QED , or for massless electrons in a magnetic field , or confined 
within a finite volume . 

[F . 11 ]  These subtleties are not usually visible in the treatment o f  QED 
with massive electrons . The reason is that a particular renormal
ization prescription (momentum space subtraction at q2 0) is 
overwhelmingly convenient , because it causes all higher order terms 
in a to vanish exactly in the low-energy limit for various pro
cesses ( e . g . , Compton scattering) , so that measurements of these 
processes may determine the precise value of a to be used in this 
renormalization scheme , without the need to calculate higher order 
terms in the perturbation series . To deduce a in this scheme from 
other processes ( e . g . , g2 - 2) requires explicit calculation of 
higher order terms before comparison with experiment . (The Thomson 
limit of ye _,. ye is exactly 8/3 (a/m) 2 , but g - 2 contains higher e 
order terms a/2"IT ( l-0 . 66 a /7r- . • •  ) . )  Note ):hat in massless QED , the 
removal of infrared divergences from incoming ey . • •  composites 
again spoils the simple scheme . In QCD , all such low energy limits 
of perturbation theory are entirely irrelevan t ,  since the theory 
has a strong coupling in that domain . 

[ F . 12 ]  As discussed in the final section of these notes , in processes in-* * 
volving initial hadrons (e . g . , y N _,. X or NN _,. y X) , the incoming 



partons initially have small invariant masses O (µc ) .  As they ap
proach the collision , they may radiate timelike invariant mass par
tons , and themselves acquire progressively more spacelike invariant 
masses , up to O (Q2) (where Q is the momentum transferred in the * 
hard scattering ; typically y momentum) . In most cases , the tmax 
ap'pearing in as (tmax) will be positive , as in radiation from time
like mass final partons , and so no O (n)  terms should be introduced 
between the two cases . Consider,  however , the emissions from in
coming partons just before the hard scatterin$ . 

!
Integrating these 

- 1 02 1 
over available phase space typically gives � !2 dt/t 

1
12 1 

dx/x 
2 

I 
2 1 2 

µc - Q It 
� log (- Q /µc ) .  On the other hand , the virtual exchanges which 
ca2cel the infrared divergence at µ + 0 give roughly 
Q 1 2 2 2  c 2 2  2 -!2 dt/t � dx/x � -log (Q /µ ) ,  yielding a total �log (Q /- l o l  ). 
µc Q /t c 

Clearly , comparisons between - rates for hard scatterings of incoming 
partons involving positive Q2 ( e . g . , NN + y*X) will differ from 
those with Q2 < 0 ( e . g . , y*N + X) by O (asn) terms . (The exponen
tiation of the corresponding double log series demonstrates that 
such terms sum to a correction � exp (casn) where c is the color 
charge of the incoming partons . )  For outgoing partons , the real 
emission term becomes � log2 C l o

2 1 /µ2) ,  again allowing some O (n) c 
differences with incoming parton processes . However , away from the 
hard scattering , the sign of Q2 has no O (n) effect on corrections 
to decay probabilities . Nevertheless ,  the decay probabilities for 
incoming and outgoing partons may differ by O (nas ) terms . For out
going partons , imposition of the cutoff µc prevents any intermedi
ate partons from reaching their mass shells . Incoming partons pre
sumably have a spread of invariant masses with variance O (µc) ,  ex
tending both to timelike and spacelike values . If an incoming par
ton begins with timelike invariant mass , it must pass t = 0 before 
reaching spacelike mass :  between radiations it may propagate on 
shell ,  thereby introducing O (asn) terms , not present for outgoing 
partons . It seems likely that this effect is a consequence of the 
infinite life of incoming hadrons , and is not an artifact of the 
initial parton mass spectrum considered . 

[ F . 13 ]  One possible method for estimating the contributions of multiloop 
diagrams would be to consider the diagrams in the limit that the 
spacetime dimensionality n = 4 - £ + 0, so that no loop integrals 
remain , and the diagrams at a given order must merely be counted : 
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unfortunately , the numerical results of this "approximation" are 
not even close to those obtained when n = 4 .. Another , more hopeful, 
but more complicated , method of approximation consists of perform
ing a hyperspherical (Gegenbauer) expansion on each propagator (see 
[ 10 ] ) , but retaining only , say , the zeroth (spherically symmetric) 
term (e . g . , in n =  4, l / ( p . q ) 2 

+ l/ I P l l q l MLn f l p l / l q l , l q l / l p l ] ) .  
Then loop integrals reduce to scalar integrals over ! P l , etc . , but 
with quite complicated integrands . For the � 3 diagram ---([}-- the 
method gives 3/2 compared to the exact result 3/2 � ( 3) . Note that 
the contributions from large Gegenbauer ind1�x terms fall off like 
l/£N , where N � (number of loops ) .  Another possible approach would 
be direct numerical evaluation of Euclidean momentum integrals : 
the necessary Monte Carlo integration would , however , be very time 
consuming because of the canceling divergent integrands . 

[ F . 14 ]  This approach would , of cou�se,  fail in the (seemingly unlikely) 
event that the constant factors systematically changed from one 
emission to the next .  

[ F . 15 ]  I n  particular , the multiplicity depends on the assumption (dis
cussed below) that "final partons" which can radiate no further be
cause of the µc cut have zero invariant mass (rather than masses 
� µ ) • c 

[ F . 16 ]  Thus the fractal dimensions of the sets of points representing 
the directions of parton momenta are much smaller than 2 . (The 
angular structure of the events :is not ,  in fact ,  not exactly self
similar - the effective fractal dimension changes logarithmically 
with the angular scale considered . )  These results should be con
trasted with those for electromagnetic showers in matter initiated 
by very high energy electrons or photons . In that case , transverse 
momenta are imparted predominantly by Coulomb scattering from nu
clei : the maximum � from each collision is � /EA (where A is a 
fixed mass determined by the inverse nuclear size) ; since the ener
gies of shower particles decrease only very slowly , there is no 

+ 
clumping in the final state , and the momenta of the e- ,y are spread 
roughly uniformly. (This behavior is evident in extended air show-
ers initiated by high energy cosmic rays . )  

[ F . 17 ]  Clearly observables with this property must be linear in the ener
gies of collinear sets of partons (so that sphericity does not 



qualify) . Such observables are formally classified as "infrared" 
finite" , since divergences appearing in their mean value from decays 
with kr + 0 cancel just  as in the total cross-section o. (The final 
phase space is weighted uniformly in the calculation of o ;  it is 
s lightly , but continuously , corrugated in the calculation of the 
average values of infrared finite observables . )  

[ F . 18 ] H2 is related to the eigenvalues A1 , A2 , A3 of the matrix [ 16 ]  
a b I+ I I+ I 2 2 2 -T b = �  p . p . / p . I �  p . by (A1+A2+A3) 

- l/3 (2H2+1) . (The exis-a 1 1 1 1 1 1 
tence of this relation was suggested to me by R .  K .  Ellis . )  Thrust 
T = Max [ E (p . . n) 6 (p . . n) /E [ p. [ ]  is given roughly by {fi} i i i i i 
T � (1±0 . 1) ( l+�/2 .  The H2£+l are zero for events with inversion 
symmetry . For a final s tate consisting of three massless particles 

2 H3 = 10/9 (1-H2) . In practical experiments where only incomplete 
hadronic final states are measured ,  missing energy may be corrected 
for by dividing each measured H£ by the observed H0

: missing momen
tum significantly affects H2£+l ' but may perhaps be corrected for by 
boosting to the measured rest 
(6) H = 1 - E m2/E� = 1 -' 0 i l 

frame . Note that with the definition 
2 E l/y1. for a complete final state con-

i 
taining massive particles . 

[ F . 19 ] The complete form, retaining a small mass µG for the gluon is [ l ]  
2 <H2> = 1 - 2as/ 3n (4n -33-12n(µG/Q) + . . .  ) .  

[F . 20 ]  For a planar event rr1 = 0 ,  while for an isotropic event, rr1 = 2/9 .  
In general ,  2/9 (1-4H2) � rr1 � 2 / 9 ( 1-H2)

2 . In terms of the eigen
values Ai ' rr1 = 6>- 1>-2>-3 . H2 ;;,; 1/4 for planar events . 

[ F . 21 ]  As would lead , for example, to terms proportional to the sum 
E [ e . e . [ of quark changes rather than Ee� in the total y* decay . . 1 J i 1 

�i�th ( the former terms appear only at O (a3) in perturbation s 
theory) . 

[F . 22 ]  The decay widths may b e  obtained a s  the imaginary part o f  the "vac
uum" energy density p .  For massless quarks and gluons , first-order 
calculations suggest that p � a  (E2+B2) [E2+B2 J ;  Re [ p ]  therefore s 
has an absolute minimum at E = B = 0 ,  indicating that the usual vac-
uum with E = B = 0 should be stable. I am grateful to J. Sapirstein 
for discussions regarding these points . 

[ F . 23 ]  The separating gluons presumably interact by virtual gluon exchange . 
Self-energy corrections to the virtual gluon propagator yield an 
effective coupling which results in antiscreening of the charges . 
Spontaneous nonperturbative gluon production can roughly be consid
ered as real production of the pairs responsible, through 
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fluctuations in the exchanged gluon field . It is therefore possi
ble that produced real pairs may also antiscreen the separating 
gluons, thereby increasing, rather than decreasing the reinterac
tion cross-section . 

[ F . 24 ]  The effective QED coupling a (i/) � l/log (A
2
/µ2

+m:) (A""1lleexp (-l/et) ) 
strengthens the usual l/r Coulomb potential at r <( l/A,  and if 
me 0 screens the potential for r � l/A .  A deeply bound state 
with a0 l/A may therefore exist (but be totally unobservable in 
practical systems) . 

[ F ,, 25 ]  The probabilities for formation of clusters with different masses 
may perhaps be estimated from the total e+e- annihilation cross
section at that mass ,  thereby providing a weighting for each event,  
which may possibly be used to infer the behavior of the high energy 
total cross-section . 

[ F . 26 ]  Note that below s , c  threshold , the photon is dominantly I = 1 ,  
G = +; final states consisting o f  an odd number o f  pions are there
fore suppressed . This effect is the result of interference between 
y

* 
+ uu and y

* 
+ dd amplitudes , and cannot be obtained by classical 

considerations . It results in a considerable enhancement in the 
fraction of charged hadrons produced at small Q ,  and must be cor
rected for in comparisons of models with experimental charged mul
tiplicities . 

[ F . 27 ]  I n  any confining potential ,  the spontaneous nonperturbative parton 
production discussed above should occur (as in Za � 1 atoms ( e . g . , 
[ 2 3 ]  ) ,  typically leading to low-mass decay products . On the other 
hand, the statistical bootstrap model [ 2 4 ]  favors unsymmetrical 
decays , with constant energy release , and one light , one heavy , 
produc t .  It thus implies <�adrons> « Q ,  in gross disagreement 
with data. 

[ F . 28 ]  For this and other experimental e+e- annihilation results ,  see the 
contributions from PETRA groups to this conference . 
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