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Abstract

The Af—pK~7t decay is the first baryon decay which opens itself up to a Dalitz plot type analysis.
However, unlike the previous Dalitz analyses on charm mesons, the baryon analysis involves particles
with non-zero spin, and thus we are no longer dealing with a simple two dimensional problem, but
a five dimensional problem. Using conventional and Neural Network techniques, we have optimized
the significance of our A, signal. Then we modeled our background and acceptance in five dimensions
and used the Helicity Formalism outlined by Jacob and Wick [Jac 59] to model the signal density.
Ultimately, we used MINUIT to optimize the 34 coefficients needed to describe the decay.
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Preface

0.1 Personal Note

As I look back over the past 20 years, I am forced to reflect upon the journey I have taken to get
my doctorate. When I was in high school, I could picture myself eventually getting my Ph.D., but
by the time I graduated from college, I couldn’t picture it anymore because I was burned out from
being a student. Years of bad work habits had taken their toll on me, and now I thought I was
ready for the “real world”. So I struck out to conquer the world of teaching. Boy, was I unprepared.

As a high school teacher, I saw myself mastering the art, and eventually moving my way up
to running a school. (Is that really “up”?) Ah, the best laid plans of mice and men. Although
teaching was not as rewarding as I thought it should have been, I look back upon those days (being
several years removed) and have very fond memories. T have no regrets being a teacher and for me,
it was the best thing I could have done. I learned more than I taught.

Teaching served me best by preparing me for being a student (again?) because it gave me several
lessons for my move to the other side of the desk. I developed an eagerness to learn. Until graduate
school, I'm not sure that I ever really pursued an academic topic for any length of time just because
I wanted to learn. But I found that the more I taught and delved into a topic, the more fascinating
it became, especially in physics. Knowledge begat a thirst for more. It is said that the Sirens in
The Odyssey lured men to their deaths by singing all of the knowledge of the world. More and
more, I saw myself falling hypnotic under their spell.

Teaching also provided me with a role model. I saw a wide range of students’ abilities and
motivations. Besides learning to appreciate students for who they were and not the grades they
made, I learned the characteristics that I felt I should have. In essence, I learned what a student
should be.

Lastly, teaching gave a frame of reference. Teaching has many highs and lows, and very little in
the middle - at least for me. As I worked on my dissertation, and hit low moments, I could always
say to myself, “At least I don’t have to grade.” or “At least, I don’t have to deal with parents”.
Yes, the highs of my dissertation work don’t match the highs of the teaching, but they do come
more frequently.

Overall, this whole journey toward the Ph.D. has been a roller coaster ride of frustrations and
excitement, but what an intellectual journey it has been. And now that it is done (or near done),
I'm very proud of my work and am glad to be here.



0.2 The Sections of the Dissertation

Chapter

Comments

1

Justification the benefit of the research.

2

Talk about the theory of charmed baryon decay and how it is different
from the other decays.

Basics of Neural Networks, and why they offer a better way of analyzing
data.

Explanation of the detector and the components, how they work, and
how we get the information that we know.

Description of reconstruction, filtering, stripping, and substripping
phases of data selection.

Discussion the final criteria for event selection culminating in the data
sample that I analyzed.

The signal density that I fit using MINUIT.

The acceptance and background models that I used.

The results I got for my fit.

Systematic errors associated with my analysis.

Conclusions of the research.

Table 0.1: Overview of the chapters.
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Comments

The list of the members of the E791 Collaboration.

The parameters used to describe each Release 7 event.

The criteria for the stream A and stream B strips.

The criteria for the KSU substrip.

Exploration of the D’s that were cut from the data set.

The advantages of constraining the fit.

A test of the fitting procedure.

A \? comparison of the acceptance and the data vs. the modeled fit.

The results of the fits with simple assumptions.

bnlEaniBesiNel ke Nes| iwiR@lResiie=

A \? comparison of the acceptance and the model that was tweaked
to match the two dimensional scatter plots.

Detail about the mysterious spin %— particle

==

The numbers used in calculating the numbers used to calculate the
systematic errors from the Cerenkov counters.

Partial exploration of other topics.

Table 0.2: Overview of the appendices.

If You Want to Know More

For information on the following topics, please look at literature indicated.
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Topic Bibliographic Reference

Breit-Wigner [Ast 88, Cor 75, Fra 94, Koc 80, Nag 76, Pil 79, Wat 63]

Detector (E791) [Ait 98, Ama 93, App 86, Bar 87, Bra 96, E791, Les 96,
Per 95]

Detector (General) | [Cha 84, Cus 84, Fer 91, Hei 96, PDG 98, Pei 92, Sau 92]

Dalitz Analyses [Ait 97, Anj 93, Kal 64]

E791 [Ait 98, Ama 93, Bar 87, Bra 96, E791, Kwa 95, Pur 96,
Tri 93, Yos 96]

Experiments [App 92, PDG 98]

Helicity [Bjo 89, Hab 94, Jac 59, Per 87, Per 74, Pil 67, Pur 96|

A, [Anj 90, App 92, Bas 81, Boz 93, Kor 91, Kwa 95, PDG 98,
Pur 96]

Latex [Bue 90, Lam 94, Shu 94|

Mathematics [Fro 79, Jam 81, PDG 98, Row 66]

Neural Networks [Alc 93, Bea 91, Bis 95, Pet 93, Smi 93]

Theory [App 92, Dha 96, Dun 98, Fre 68, Gla 91, Iva 98, Kor 94,
Kor 91, PDG 98, Per 87, Per 74, Pil 67, Upp 94]

Table 0.3: Sources for specific topics.

0.3 Basics for the Non-physicist

This section is for the novice to physics. If you are a physicist, then skipping this section will not
affect the continuity of the rest of the paper. If you are unfamiliar with the terms, please see the
Glossary on page 220. Also note that AT — ptK~7 refers to the decay mentioned but also to its
charge-conjugate decay, A7 — p~"K*n~ where “+” and “-” refers to the charge of the particle.

In essence, this dissertation explores the short and happy life a parent particle: A., read as
“Lambda ¢”, and its three daughters: p (proton), K (kaon), and 7 (pion). This transformation is
written as AT — pTK 7. As the parent decays (falls apart and re-forms) into its children it can
take several paths. In some cases the parent decays straight into the three children (a nonresonant
decay), and sometimes it decays into two particles, one of which is unstable (called a resonance)
which in turn decays into two particles. This can be written, in the case of a K resonance, as
AF — K*O(—> K-71)p*. Regardless of the path, we start with one particle and end up with three.

To analyze the data, we will take the p,K, and 7 and work backwards to determine information
about the A.. If the K and 7 came from a K™ then the reconstructed mass of K should be near
the mass of a K*U, and this will be seen as a darker ban in the two dimensional projections. See
figure 9.2 on page 72. The dark ban in “actual 2 v. 1”7 is ~0.803 (GeV/c?)? = m¥_ which translates
to mg, = 0.896 GeV/c? which is the mass of the K.

When we are done, we will have determined which resonances are present and how often they
occur.

In order to create A.’s, one needs enough energy (the A., in one sense, is a little bigger than two
protons), but since it is not a very common particle, one needs so much energy that some of the
energy will become A.’s. To create this energy, high energy physicists have designed two basic kinds
of experiments. One is to slam common particles (like protons and electrons) into other particles
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coming right at them - a colliding beam experiment; and the other is to slam a particle into a fixed
target - a fixed target experiment. ET791 is the latter kind, in which pions were slammed into a
platinum and carbon target, which is, in essence, a whole lot of nucleons (protons and neutrons).

After the pions hit the nucleon, there is so much energy in the collision, that it starts to coalesce
and form particles. Some of these particles are A.’s which then continue on their path into the
detector.

Detectors are various machines designed to detect certain characteristics of a charged particle.
Note that the particle needs to be charged to be detected directly. Neutral particles are detected
when they decay into charged particles or when they interact with another particle and charged
particles emerge. Some detectors are designed to determine the path the particle takes (e.g. a bubble
chamber), some are designed to determine the mass or energy of the particle (e.g. calorimeter), and
some are designed just to count the number of a particular kind of particle (e.g. a Geiger counter).
It is also interesting to note that detectors need to be quite large to detect particles that are too
small to be seen by the naked eye. For example, the E791 detector (see figure 4.2 on page 27 for a
schematic drawing of the detector) is about 23 meters (75 feet) long.

Since every experiment is short of money, these detectors can not be placed everywhere. So they
are placed where physicists can get the most information for the least amount of money. Also, since
so many particles fly by at once, there is a whole lot of information which is collected and sorted
later.

From all this information, some educated guess work is needed to eliminate background (that
which is useless to the analysis at hand). For example, one of the detectors (the Cerenkov detector)
determines the probability that a particle is a proton, kaon, or pion. We identify the possible kaon
by its charge, then look at its Cerenkov probability. If the probability that the suspected kaon is
actually a kaon is ~0.01, then most likely that particle was misidentified. We would throw that
event out.

Another issue is how long the A. will survive before decaying. This, however, is not as simple as
one might think. How long it lives depends on the reference frame of the observer. Without going
into too much detail about relativity (see [Fre 68] for a good introduction), suffice it to say that
the particle lives longer in the lab frame (i.e. from our point of view) than it does from its own
reference frame, also known as its rest frame (from its point of view). In its own rest frame, the A,
lives, on average, 0.206 ps (= 0.206x107'%2 s = 0.000000000000206 seconds), and therefore it will
travel ~62 microns (0.0025 inches) before decaying. In the lab frame, assuming the A. is traveling
at 0.999¢ (0.999 times the speed o f light), this translates to living for 4.5 ps and traveling 1.4 mm.
The bottom line is that the A, will most likely not be detected but its daughters will be.

When reconstructing, we wanted to find as many A.’s as possible. So we found all particles
which seem to have decayed into three particles. We then made an educated guess as to which
might be a p, K, or 7, assuming the oppositely charged particle is a kaon and of the remaining two
particles, assuming the one with the greater Cerenkov probability of being a proton actually is the
proton. Thus, the remaining particle is assumed to be a w. Then using each particle’s momentum,
we calculated what their parent’s mass must have been. From this, we had a lot of possibilities as
can be seen in the upper left hand figure on page 43. After a series of cuts, we managed to whittle
this huge number of events into a set of events which obviously contained a A, as can be seen in
figure 6.5 on page 46.

The rest of this paper, is my exploration of the experimental data and what it means.
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Chapter 1

Introduction

Since the discovery of charm particles in 1974, a great deal of study has been made of them, especially
concerning charm mesons[PDG 98]. Although there has been study of charm baryon lifetimes and
branching fractions, this body of work is not as extensive as the work on charm mesons.

However, there is a considerable amount of information to be found from the study of charm
baryon decays, such as the relative importance of exchange and spectator diagrams.*In charm meson
decays, the exchange diagrams are inhibited at the quark level, because of helicity and form factor
suppression, but this is not necessarily the case for the charm baryon decay. This inhibiting would
cause the charm meson lifetime to be longer than the charm baryon lifetime, as has been seen
experimentally. As will be seen later in the dissertation, in the decay Al — pK~7" (and charge
conjugate decays which are implied throughout this dissertation), the nonresonant pKr decay, and
the resonant pK*O and A(1520)7 two-body decays can be described by both the spectator and
exchange diagrams. However, another significant branch is the two-body decay to ATTK~ which
can only occur via the exchange diagram. Thus, not only are the charm baryon lifetimes expected
to be shorter than charm meson lifetimes, but we expect to find a significant fraction of pK= 7™
decays via the A" resonance.

This dissertation also offers a new and better technique for measuring branching fractions.
Although measurements of charm baryon branching fractions are difficult even in the copious modes
such as AT — pK~7", E791 offers the first experiment with sufficient statistics to do it well. Also,
a proper analysis is far more sophisticated than previous researchers have tried[Bas 81, Boz 93].
This is because charm baryons carry spin and may be polarized upon production; also, their decay
products always include a baryon with spin. Most three-body decay analyses study structure in the
two-dimensional space of decay product energies, as in the Dalitz plot analysis, but the spin effects
just described require five kinematic variables for a complete description. While this complicates
the analysis, it affords greater sensitivity to the parameters of interest. This analysis also offers the
chance to determine the polarization of the A. concurrently with the other fit parameters given a
convenient choice for the polarization axis. This analysis is the first to use all of these effects and,
as such, is unique.

*The exchange diagram describes a decay in which a W mediator is emitted in the transformation of a quark and
absorbed by another quark which then transforms. The spectator diagram refers to a decay in which the W decays
into a quark and antiquark. See figures starting on page 2 for examples of each kind of diagram.



Chapter 2

Theory of Decay

2.1 Decay of A7 — pK 7™
As mentioned in the Introduction, the A. decay can be described by exchange and spectator dia-

grams. As A. decays it can take several paths as seen below in figures 2.1 - 2.7. When reading the
figures, note that time travels from left to right (just follow the arrows).
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Figure 2.1: An exchange diagram for AT — pK~ 7™ nonresonant decay.
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Figure 2.2: A spectator diagram for AT — pK~ 7" nonresonant decay.
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Figure 2.4: A spectator diagram for A} — K*O(—> K~nT)p resonant decay.
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Figure 2.5: An exchange diagram for AT — AT¥(— prt)K™ resonant decay.
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Figure 2.6: An exchange diagram for A} — A(1520)(— pK™)n resonant decay.
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Figure 2.7: A spectator diagram for AT — A(1520)(— pK~)r™ resonant decay.

2.2 Helicity Formalism

In conducting any analysis involving particle interaction, one must first choose an appropriate
basis in which to operate.[Hab 94] The traditional basis states involve simultaneous eigenstates of
J2, J,, L%, and S? or simultaneous eigenstates of L2, L,, 52, and S,.*It is also relatively simple to go
between one and the other through the use the Clebsch-Gordon coefficients. However, a different
basis - the helicity basis - has certain advantages over the two previously mentioned, in that the
helicity states are

1. invariant under spatial rotations,

2. invariant under a boost in the direction of the particle’s momentum (therefore, we can work
in the rest frame of the A.), and

3. convenient for describing both massive and massless particles.

In this basis state, one can construct simultaneous eigenstates of fz’ J,, Ay and Ay where A is
the helicity operator (with eigenvalue \) defined by

A=S-p (2.1)

where p = the direction of the particle’s linear momentum. As implied in equation 2.1, helicity is
just the component of the spin in the direction of the particle’s linear momentum.

2.2.1 Two Body Decay
Generalization: A—BC

If particle A decays into two particles, B and C, which can also be written as A—BC and seen in
figure 2.8, then the differential decay rate, dT", can be written using Fermi’s Golden Rule[PDG 98]

*J = L+ S is the total angular momentum operator of the particle with eigenvalue j, .J, is the projection operator
of the total angular momentum on some arbitrary z-axis with eigenvalue mj, L is the orbital angular momentum
operator with eigenvalue 1, L, is its projection operator on the z-axis with eigenvalue my, S is the intrinsic spin
operator of the particle with eigenvalue s, and S, is its projection operator on the z-axis with eigenvalue ms.
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(2m)*
2M
where M is the mass of the parent particle (which is constant in our case after the mass constraint
is enforced), d®, is an element of n-body phase space, and and M is the transition amplitude.
With an appropriate set of coordinates for phase space, which in the case of this analysis is two
two-body masses and three decay angles (as can be seen in more detail in chapter 7), d®, can be
constant within the kinematic boundaries. Thus dI' can be expressed as

dl = |IM[*dd, (2.2)

dl ~ |M[* = [(f|Tf)[* = [(BC|T|A)[” (2:3)

where T' = the transition operator, and [(BC|T|A)|? is the probability that A will decay into BC.
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Figure 2.8: A view of the decay A—BC in the A rest frame.

In the rest frame of A, let my be the projection of the spin of A, j,, along the z-axis. We denote
the spin part of |A) as [jama). In the rest frame of A, B is traveling in the (g, ¢p) direction, and
thus C must be traveling in the (7 — g, ¢p + 7) direction. If the helicities of B and C are A\g and
Ac, then we can denote the spin part of |BC) as |#gdpAgAc). Thus, we can write

(f|Ti) = (OspsABAc|T|jama) (2.4)

Since (fpppABAc| is not an eigenstate of J? or J,, we need to construct a relationship which can
relate |BC) in its plane wave helicity state, |0gppApAc), to its spherical wave state, |JMAgAc). As



seen in [Per 74, p.228], this can be written as

2J+1

|OsdpABAC) = Z DJMAI(QbB, 08, —¢B)|[JMABAC) (2.5)

where \; = the total helicity of B and C = Ag — A¢, and J and M = the total angular momentum
and its projection of |BC). If we combine equations 2.4 and 2.5, we get

2J—|—1

(fIT]3) Z

DﬁAl(QﬁBv O, —¢B) (IMABAc|T|jama) (2.6)

Since angular momentum must be conserved, J = jy and M = my, and thus

(FITI) = | 22D, (68,0, ~6m) A Ac | Thna) (2.7

where |A\| < [ma|. DI* (6,60, —¢) is the rotation matrix where

ma A
Dy (6,0, —¢) = e ™ (mle | A)e IO (2.8)

— e im-Nogi (f) (2.9)

where dJ_, (0) is a d-matrix which can be found in [PDG 98].
Therefore equation 2.7 becomes

. 2ja 41 im
(FITli) = | e 0oy () (nAc| Tima) (2.10)

Since (AgAq|T|i) is just some transition constant, it can be absorbed into the initial coefficient
and the following simplification is produced:

Al ~ aygrge ™A~ *1>¢Bd1;;m (6s) (2.11)

where ay,) is the complex coefficient for that decay amplitude. Note that ay,a. is implicitly a
function of jx, and thus we could have written the coefficient as ai‘;AC, but since j, is a constant,
we chose not to write it for convenience. Also note that o, is not dependent on my, because it
was fixed in equation 2.7.

If we want the full differential decay rate for all combinations of the spin projection of A and
helicities of B and C, equation 2.11 becomes

dl’ ~ Z Z |a)\B)\Cei(mA—A1)¢BdJIﬁsA 1(9B>|2 (2.12)

mA ABAg
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1+
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K*O 1~ Table 2.1: Particles, spins, and parities for the example decay.
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p 2
—x0
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my, | Ac | A | At amplitude
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1 1 1 i(—1-1)p_o 13 _ oo 12
1 1 1 1(__+‘l)¢—*0 % _ %
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Table 2.2: Possible helicity combinations.




Example: AT — K*Op

If A — pK*U, dI" would be calculated by the following means. First we need to establish the spins
and parities of the particles, as can be seen in table 2.1.
Then looking at all 12 helicity combinations we get table 2.2.

Therefore,
1 6o 1k
dl' ~ faydi, (fgo)] +|a;0e¢f<°d;%(9§*o>|2
+ |O‘f§0d§%(9ﬁ0>| —|—|047%716 Kodz_%(eﬁ*oﬂ
. 1
+ oo w0d? 1 (O0) P+ lagod?s s (Bo)

2.2.2 Three Body Decay
Generalization: A—B(—DE)C

In the case of three body resonant decay, such as A—B(—DE)C,
T ~ |(DE| T, [B)(BC|T |A) (2.13)

(BC|Ty|A) is calculated the same as way as in section 2.2.1. In order to calculate (DE|Ty|B),
note that in a particle’s rest frame, its helicity state coincides with its spin state, therefore if we
analyze (DE|T,|B) in B’s rest frame and set the z’-axis to be in the (0p, ¢p) direction, we can treat
Ag = mj,. Therefore

2' +]. i _ ]
(DE|Ty|B) = \/%e A6=22)20 g8 (0p) (ApAg|T2|B) (2.14)

which, when combined with equation 2.10 and simplified by combining constants and coefficients,
yields equation 2.15.

AL~ > S |3 anpretaprge™aAomeiln=dongin  (9o)diB | (6p,)[? (2.15)

mMA AcApAE AB

where A\; = A\g — A¢, (0B, ¢p) describes the direction particle B is going after the first decay in A’s
rest frame with the z-axis perpendicular to the plane of production, and Ay = Ap — Ag, (fp, ¢p)
describes the direction particle D is doing after the second decay in B’s rest frame with the z’-axis
in the (0p, ¢p) direction, and jg is the intrinsic spin of the resonant particle. See figures 8.1 and 8.2
for an example of the definition of these angles in the case of AT — K (= K~7n")p.

Simplifying the written expression for equation 2.15 by setting

EBmadsAcADAE = OaprcMaprge MATAPBEl A0 giA | (9 dB | (6 (2.16)

yields

dl’ ~ Z Z | ZgB)mA,)\B,AC,)\D,)\EP (217)

mMA AcADAE AB



In order to account for the ill-defined mass of the resonant particle, a relativistic Breit-Wigner
amplitude multiplies each term, so equation 2.17 becomes

dF ~ Z Z | Z BW(mB>€B,mA,)\c,)\D,)\E |2 (218)

mMA AcApAE AB

where mg is the two body mass of the resonant particle.
If there is more than one resonance, then equation 2.18 becomes

dl' ~ Z Z | ZZBW(mB)fB,mA,AC,AD,/\E 2 (2.19)

mA A\cA\pAg A B

Example: A} — K (= K-7+)p

For example, if AT — K (= K 7n")p, dI’ would be calculated in a similar fashion to above,

noting that K and 7 are both spin 0 particles, so the summation over their helicities becomes greatly

simplified, as well as ay,\, = @agr, = Qoo Which can be absorbed into an overall coefficient.
Applying the simplifications, equation 2.18 reduces to

dI' ~ Z Z | Z BW(mK*o)a)\E*O)\pei(mAc*A1)¢§*o+i()\§*o)¢l<d§ (QE*())ng*O (9K>|2 (2‘20>

ma. A1 )\E*oo
mMA. )\p )\E*O

AC D K*O
m | Ao | As | A amplitude

T
% % 1 % a%1el¢Kd§% (QE*O)d%o (6x)

. T
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% _% 1 % forbidden
T
sl 0 3 a_%od%(eg*o)d(l)o(gli)
. T
TR I I aiéilel(%*o—modzi% (O0)d" 15 (Fk)
T
N I I R e_l(cﬁ_*o—w)di%% (60)d},(0k)
T
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_ % % 1 _% forbidden
_% _% 1 % forbidden

4 T
_% _% 0 % O[_%Oeild)ﬁ*odi%%(ei*o)déo (0K>

I
_% _% 1 _% a_%_leﬂd)Kdi%,%(QE*O)dI*IU(QK)

Table 2.3: Possible helicity combinations.

Therefore,

1 (Qﬁ*o)d%o(eK) +

2

Al ~ [BW (mpeo)ay e d

MENIE
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Adding other resonances to the equation is done in the same manner where the two body mass
is incorporated into a relativistic Breit-Wigner amplitude which multiplies each term. Finally, to
analyze this decay, we would fit for the « coefficients.

2.3 Parity Conservation

In parity conserving decays, the relationship between the coefficients can be expressed as

(_1>3D+5E*]‘B

QApAp = NBNIDNEX _Ap—Ag (2.21)

where 7 is the intrinsic parity of the particle.

Although the initial A. decay is a weak decay and parity is not conserved, the secondary decay is
strong, therefore parity is conserved. Using the parity relationship in equation 2.21, we can deduce
that

Do = (1) IR onenc e y, g (2.22)

More specifically, this reduces to
o = (1) D) (D (e, ag = @oaag = Qoo (2.23)

Although, parity conservation does not reduce the number of coefficients in the K*Op resonance
mode, it does in the case of the ATT K~ decay mode. Since AT — pr™, equation 2.21 becomes

Q{)\p)\ﬂ_ e (_1>Sp+57r*jA++nA++npn7ra7)\pi)\7r (224)
aar, = (—1) 7072 (F1) (1) (= 1)a_y,_». (2.25)
Oz)\p)\7T = Oz_)\p_)\7T (226)

Thus, the number of parameters needed to describe this decay mode is four instead of eight.
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2.4 Polarization of the A,

Polarization, Pa, of the decay can also be incorporated into the analysis. If the polarization axis is
chosen to be perpendicular to the plane of production (as can been seen in figure 8.1 on page 55),
then the spin-density matrix (= 3(1 4 & - P)) is represented by
1 1+P, P,—1iP,
2\ P,+iP, 1-P,

However, because of parity conservation, if the polarization axis is chosen perpendicular to the
plane of production, P, and P, must be 0, therefore there is only one polarization component and
Py, =P,

So, equation 2.19 becomes

drr ~ %(1 + Pr) Xreapas | 2B BW(mB)gB,%,AC,)\D,)\EP
1
2

+ 5(1 = Pa) Zacrprs | 2B BW(mB)gB,—%,AC,)\D,)\EP (2.27)
2.5 Breit-Wigner Formula
In order to account more accurately for the shape of the resonance, as mentioned previously, a

Breit-Wigner distribution is needed. Given the decay mode A, — r(— AB)C, the relativistic shape
with centrifugal barrier factors is determined by the equation[Fra 94]

FA Fr
i . . 2.28
(—2lpc|lpal) mg —m? — imol, -

where F?
Fr = Fo(g 2L+1@ﬂ (229)

qo my ‘Fr2 (qO)
for resonance r at the reconstructed two body mass m,, with the momentum of a daughter particle
in the resonant particle’s rest frame ¢ (and ¢ when m, = my), and with resonant mass and width
mo and Iy as found in [PDG 98]. Using this convention, we set the Breit-Wigner amplitude for the
nonresonant decay to be 1.0.

F, is the strong coupling factor at the appropriate decay vertex, and is in the Blatt-Weisskopf
form: F, = 1 (L=0), F, = (1 + R?¢*)~*/2? (L=1), and F, = (9 + 3R2¢*> + R%¢*)"'/? (L=2). For
R,, the range of the strong interaction, we used R.o = 3.4 (GeV/c?) '[Ast 88], Ra++ = 5.22
(GeV/c?)~HKoc 80], Ragis20) = 6.29 (GeV/c?)~H{Wat 63], and Ry, = 5.07 (GeV/c?)~'[Pil 67].

This shape includes the centrifugal barrier at the lower end of the resonance mass spectrum
and the high energy solutions at the upper end. For example, in the decay A*T — pr™, the lowest
mass of the A™" is the sum of the masses of the p and 7, which is 1078 MeV. As the resonant
mass approaches this limit, there is less and less energy available to overcome the potential barriers
within the A™*, thus the shape mass spectrum of the resonant particle must be altered from the
Breit-Wigner shape.
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2.6 Fit Fractions

After the parameters have been fit, fit fractions need to be calculated. Since this is a coherent
analysis, the fit fraction for resonance r in this specific analysis is calculated by

fEmA,)\p|BW(mr)§r,mA,)\p|2 dl_"
T | X8 BW(mg)Epman,|? dZ

F.= (2.30)

where [ d¥ indicates an integration over phase space.

2.7 Branching Ratios

Once the fit fractions of the decays have been determined, the branching ratio is useful to calculate,
in order to compare to previous results listed in [PDG 98]. Since isospin is conserved in strong
interactions, the branching ratios need to take into account the summation over isospin space. For
this, one can use the Clebsch-Gordon coefficients.

The isospins of the particles involved in this analysis can be seen in table 2.4.

particle | T | Q | B | S | I3
A, 0j1[1]0]3
K" [L]lofo[-1]!
At S 2]1]0] 3
A(1520) JO [0 [ 1T ][-1]0
pt |s|1]1]0]2
K- [2]-1]0]-1]-3
 J1]1]0]o0]1

Table 2.4: Particles and isospins (I). Q is the charge of the particle in units of e,
B is the baryon number, S is the strangeness number, I3 is the projection of the

isospin.
For example, in the decay K 5 K- 7, the initial state has I—% and 13—— The final state is
a direct product of |[I = 3,I3 = —3) and | = 1,13 = 1), which can be written in terms of the total

isospin states as
1 1 1
——>—>\/2/3|§—§>|11 1/ |—— |10) (2.31)

[sospin conservation implies that 2/3 of the time K™ will decay to K-7+ and 1/3 of the time it will
decay to K 7. Therefore the branching fraction of A* — pK ' will be 3/2 times more than the fit
fraction for K — K~7+, because 1/3 of the time A¥ — pK " will be followed by K" — K .

Going through the same logical process, it can be determined that the branching ratio for
A} — K-A*TT is the same as the fit fraction for AT — K~AT(— prt), and for Af — 7 A(1520)
is 2 times the fit fraction for A} — 77A(1520)(— pK™).
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Chapter 3

Neural Networks

3.1 Introduction

Another tool we used in the analysis was the Neural Network. Once a reasonable data sample had
been selected, as will be discussed in chapter 6, we applied the data to a Neural Network (Neural
Net or Net, for short) for the final data selection. This chapter discusses briefly how Neural Nets
work and how we used them. We refer the reader to [Bea 91, Bis 95, Smi 93] for more detail.

Neural Nets can be used for many applications, including curve fitting, probability density
estimation[Alc 93], and classification. Since my use of Neural Nets is solely for classification, we
will concentrate on this aspect in my descriptions below.

Neural Nets offer the advantage of being able to look in N-dimensional space and optimize based
on linear combinations of the input data. To use them, one would do the following steps:

1. create an input vector,
2. design the Neural Net architecture,
3. train the Net, and

4. test data using the trained Net.

3.2 Creating the Input Vector

The input vector is as large as is needed to describe an event. For example, if we wanted to
determine the difference between the A. — pKm signal events and background events, we would
decide what we needed to describe each decay, because all we have prior to running the Net is a
lot of three body decays, some of which are signal and some are background. We could choose the
lifetime of the parent or the Cerenkov probability of the assumed kaon. In the end, we chose 14
parameters to describe the event.*Once the input vector is established, we have defined the size of
my phase space. In my case, we are working in 14 dimensional phase space. This means that the
Neural Network is looking at a 14 dimensional coordinate system.

*The specifics of the 14 parameters can be found on page 42, but knowing what they are at this point is not
essential.
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By defining each event in this phase space, the Neural Net will be able to analyze this space and
to determine which parts of it belong to one class and which parts belong to another. This takes
place during training, which will be discussed later.

For example, if a vector, Z, represents an event, where ¥ = (x;, X, ..., X,,) for n characteristics
of the event, a Neural Network may determine that when x;+x5 is high and x3-x4 is low, the input
vector belongs to one particular class but if x;+2*x, and 3*x3-1.2*x, are both high then the input
vector belongs to a second class. In other words, the Neural Net finds the best combination of
parameters and calculates a formula which best separates the classes. This offers a tremendous
advantage over conventional data selection techniques, which forces the user to look at only one or
two variables at a time. For the conventional analyzer to match the work of the Neural Net, he
would need to know which linear combinations are significant or be able to look at more than two
dimensions at a time, and that would take either incredible insight or looking over thousands of
plots looking for the right combination. And this task becomes even more monstrous as the number
of parameters increases.

3.3 Designing Neural Network Architecture

Architecture refers to how the Net is set up, from the number of layers to operations performed
at each layer. The Neural Network has three basic layers: an input layer, a hidden layer, and an
output layer. The known data goes into the input layer, and the answer comes out of the output
layer. The hidden layer is the key to the whole process. It allows the Net to split phase space into
disjoint regions so that items from a single class do not have to be near each other. In helping
this process, there are also weights, biases, activation functions, error functions, and an updating
methodology. Please, see figure 3.1 for a diagram of the Neural Net process.

Feed Forward OUt.pUt. \oyler

Figure 3.1: The basic structure of a Neural Network with I-J-K architecture. The
data flows up when processing an event and the weight corrections flow backward
after each epoch during training.
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3.3.1 The Input Layer

The input layer is as big as the input vector. In my case the input layer has 14 nodes (or data
sites).

3.3.2 The Hidden Layer

The next step is to determine the number of hidden nodes and layers of hidden nodes between the
input parameters and the output node(s). Most applications just need one layer of hidden nodes,
and it has been shown that there is no application for which more than 2 layers is needed.

With one layer, a collection of hyperplanes will be found which differentiate the different classes
of events. These hyperplanes can be thought to be the locus of points where there is a 50/50 chance
of being in one category or another. With two layers, a collection of hypersurfaces are found.
These have the advantage of being able to form contours around certain regions in phase space.
The disadvantage is the increase in computation time needed with the increase in the number of
weights, and the increased possibility of training to statistical fluctuations.

3.3.3 The Output Layer

For classification purposes, there should be one fewer output node than types of classes. In other
words, if the Net is being trained to differentiate between two classes (also known as binary clas-
sification) then there is only one output node. The output value will ideally be either 0 or 1, for
our purposes. If the proper activation function is chosen then the output value will indicate the
probability that the event is in class 1. In other words, if the output value for an unknown event is
.34, then it has a 34% chance of being from the class with a value of 1 and a 66% chance of being
from class 0.

3.3.4 Weights and Biases

Between any two nodes in consecutive layers, there is a weight value, w;; and wy; in figure 3.1.
The number of weights determines the complexity of the dividing hyperplanes and surfaces. For
example, for a 4 - 7 - 1 Neural Net (4 input nodes, 7 hidden nodes in a single hidden layer, and 1
output node) there would be 4x7 + 7x1 = 35 weights.

Also, for each node not in the input layer there is a bias, w;y or wyg, which is added to the
value coming into that node. For example, in the 4 - 7 - 1 net, there would be 7 + 1 = 8 biases.
This would bring the total of variables in the configuration to 35 4+ 8 = 43 variables. Note that the
biases can be considered weights with an input of 1.0.

Therefore, the 4-7-1 architecture would give us the power to match the data to a 43 variable
non-linear equation. In the beginning of the training, these values are arbitrarily set, and the
training consists of updating the weights to match the data.

The direct effect of the weights and biases is that they affect the actual value that is inputed
into the hidden and output nodes. Looking at figure 3.1, there are several lines leading to each
hidden node. This indicates that the value inputed into each of these nodes is a linear combination
of the values leaving the nodes of the previous layer. More specifically, the input into node h; is
Efzowuxi.
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3.3.5 Activation Functions

The previous section discussed the value entering a node, but what exits the node is important to
the understanding of the output, and key to the output’s interpretation is Bayes Theorem.

Bayes Theorem

Bayes Theorem constructs a probability relationship between different classes of information. If
there are two classes of information, C; and Csy, then the probability that an arbitrary event is in
class Cy is P(Cy). Since this probability is based solely on the frequency that C; tends to occur,
this is called a “prior probability”. Given a class C; with a set of events &, the probability that we
could select Z from C; is P(Z|Cy). This is called the “class conditional probability”. Given an event
Z, the probability that it belongs to C; is P(C;|¥), and this is called the “posterior probability”.
Bayes Theorem states, for a two class problem, that

, P(&]C1)P(Ch)
P(C||¥) = — — 3.1
() = BEEYPIC) + PECHPICY) (3.1
The Activation Function
Taking equation 3.1, and dividing top and bottom by P(Z|Cy)P(Cy), we get
- 1
P(Cl|$) = P(Z]C2)P(Cs) (3.2)
L+ p@e)r@)
If we let -2x = ln(%) then Bayes Theorem reduces to
(@ 1 (3.3
r)=-———-— :
J 1+ exp(—2x)

This offers several distinct advantages. Using exp(-2x), means that the input range from
(—00, 00) is mapped onto the range (0,1). Secondly, if x = the input into a node, then g(z) would
represent the posterior probability as an output, which means that the output could be interpreted
as a probability of an event being in class Cy. Although there are other activation functions which
can be used, equation 3.3 is sufficient for my purposes.

3.3.6 Error Functions

When training the Net, there needs to be some way to adjust the weights and biases so that the
Net better reflects the problem at hand. Crucial in this adjusting is the choice of the error function.
The error function should match the purpose of the training, which accurately implies that there
are as many equations as there are applications.

If the Net is being trained to distinguish between two classes, then an appropriate error function
can be found starting with this purpose. Ultimately we want to determine if ¥ is part of C; or Cy
(P(C1]Z) and P(Cq|)). Since P(Cy|Z) + P(Cq|Z) = 1, then if y=P(C,|Z) as found by the Net then
1-y = P(Cy|Z). If we are training the Net so that y =t (= 0 or 1 in most binary classification
problems), then the probability of getting either target value is p(t|Z) = y'(1-y)'~".
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If there are n events then the maximum likelihood of a data set reaching its target values is
L, (y,)™ (1 — y,)' 7. We want the Net to optimize this but it is easier to minimize the negative
logarithm. Thus we produce the error function to minimize as

E=FE(x,)=%{— (1 —t,)In(1l —y,) — tuln(y,)}. (3.4)

3.3.7 Updating

Once an output value has been found for each of the events during the training phase (i.e. after
each epoch), the weights at each node need to be updated in an attempt to minimize the error
function. This is done by propagating the error backwards through the Net in order to minimize
the error. After each epoch, this is done, so that the Net will differentiate between the classes better
and better.

In general, each hidden node receives an input, a; = ¥;w;;x;. The effect that node has on the
error of a particular event, E,,, is

OE, OE, du;

= 3.5
Bwﬁ Baj 8U}ji ( )
Let ¢;, = %5;. Since ;jj = x;, equation 3.5 becomes
oF
=4, 3.6
aw]_i ]x ( )
Therefore, we can update the weights by

There are of course, other ways to propagate the error back through the Net for updating. The
sophistication of the technique depends on the programmer and the power of the computer. For
example, in some cases it is inadvisable to adjust the weight as much as equation 3.7 suggests - as
may be the case if the error function is fluctuating greatly with small adjustments to the weight. A
learning rate can be added. This could ensure that the weight is adjusted faster in the beginning
of the training and less later on as the Net approaches a convergence. In this case, equation 3.7
becomes

Various other terms can be added to control the rate at which the weights are changed. In this
analysis, we used Rprop updating, which used the method described in equation 3.8 except the
learning rate was different for each weight depending how “well” the actual weight is doing. Please,
see [Pet 93, p.6-7] for more detail and additional references.

3.4 Training the Neural Network

When training the Net, one must put in information which is known. The Net will devise a
mathematical formula which separates the classes and keep the formula for later use. The known
information we used came from two sources. The signal events were from Monte Carlo. The
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collaboration created seven million idealized signal events which we sent through a simulation of
the detector. We assumed that whatever survived was indicative of the real signal events. For
background, we took the events in the wings of the real data, i.e. those events more than 3¢ from
the A. mass.

When we trained the Net, we programmed the Net to try and devise a formula which would
produce an output of 1.0 for the MC events, and an output of 0.0 for the background events. If we
chose the input vector well enough then the Net would come up with a clear separation between
the two classes, but in reality, there is a lot of cross over and some signal events are confused as
background and vice versa.

3.4.1 Validation Set

One of the big problems with using Neural Nets is knowing when to stop training. Although
updating improves performance, the training session programs the Net to differentiate between two
known classes of data. If trained too much, then the statistical fluctuations start to be treated as
normal. This problem of overfitting can be minimized with the use of a validation set. It is a set
of known data which is not used for training. By testing it occasionally, one can determine if the
fitting is general enough, and not specific to the set of training data.

3.5 Testing the Neural Network

After training is done, we are able to put in an unknown event and decide if the event is signal or
background. If the event is signal then the output should be close 1.0, and if the event is background,
the output should be close to 0.0. Ultimately, as will be discussed later, we chose that 0.94 to be
the cut off from background to signal.

3.6 An Example of Using the Neural Network

If we want to classify the two data samples seen in figure 3.2, we would create a two dimensional
data vector, corresponding to the two dimensional data.

Using a 2-20-1 architecture and Rprop updating, we trained the net using 1500 class 0 data events
and 1500 class 1 data events. For a validation set we used 456 events from each set. Updating of
the weights took place after each training session, where a training session consisted of using the
entire training set. A measure for the progress of training can be seen by points where the output
= 0.5. Because we are looking at data which should have an output of 0.0 or 1.0, an output of
0.5 would be the boundary between the classes. See figure 3.3 for scatter plots of the evolution of
the boundaries. These figures were created by generating random points within the confines of the
plot, and testing the output. If the output were greater than 0.496 and less than 0.504, then the
point was plotted. As one can see, the boundaries evolved over time until the optimum boundary
was reached.

The updating process is designed so that the error on the training decreases. The error on the
validation set is not necessarily going to decrease. We would want to stop the training at the point
at which the error on the validation set is no longer improving. See figure 3.4 for a comparison of
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Figure 3.2: The two classes of data being used in this example.

the training and testing errors. Notice in the figure that the two errors are close to the same, but
there is a slight increase in the validation set error, which was at its minimum at epoch 225.
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Figure 3.3: The evolution of the boundary between the classes. The points plotted
have an output value between 0.496 and 0.504. Note the squiggle near the center of
the 400 epoch plot which indicates a noticeable training to a statistical fluctuation.

21



0.8
0.7
0.6
0.5

error

o
~

(@]
o HH‘HH‘HH‘\H\‘HH‘HH‘HH‘HH‘HH;

50 100 150 200 250 300 350 400
epoch

100 150 200 250 300 350 400
epoch

o\\‘\\\\
(@)
O
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Chapter 4

E791: A Continued Study of Heavy
Flavors

The run of the E791 experiment took place at the Tagged Photon Lab (TPL) facility in the P-
East fixed target experimental area at Fermilab, in Batavia, Illinois from July 1991 to January
1992.[Les 96, Per 95] During the course of this run, 20 billion pion-nucleon (7N) interactions were
recorded, including 200,000 reconstructed charm events. This charm data sample was the largest
in the world until recently. The analysis of the data collected is still continuing and probably will
for another couple of years.

4.1 Introduction

In this chapter, I discuss the beam, the target and the E791 Spectrometer - the detector used in
this experiment.*In order to find as many charm particles as possible, the detector had three main
goals:

1. To find the primary and secondary vertices,
2. To determine the path and momentum of each particle, and

3. To calculate the probability that the identity of each final daughter particle is an electron,
muon, pion, kaon, or proton.

The identification of the parent particles (both neutral and charged) would be done preliminarily
during reconstruction and more specifically during the individual analyses.

4.2 The Beam

The source of the A s starts with 800-900 GeV /c protons (as energized by the Tevatron) being aimed
at a 30 cm thick Beryllium target. About 2 trillion protons per spill were allocated to the TPL.

*The E791 detector is just an updated version of the detector used in the previous Fermilab experiments: E516
(1979), E691 (1985), and E769 (1988). The main upgrade is the increased number of silicon microstrip detectors
used in tracking and the improved data acquisition system.
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The shower of particles which was produced in the collision was then separated into positively and
negatively charged particles by magnets, then filtered by its momentum and collimated by another
magnet to produce a 94% pure beam of 500 GeV/c 7~ ’s which was then guided down the TPL
beam line - about 40 million per spill (which lasted about 23 seconds). As the 500 GeV/c 7~ beam
approached the target, it passed through eight planes of proportional wire chambers far upstream
from the target and six planes of silicon microstrip devices near the target, which were used to track
the beam. See table 4.1 for details of the devices used to track the beam. In the language of E791,
X refers to the west, X’ also refers to west but slightly shifted, Y refers to up, and Z refers to the
north (also the direction of the beam). The xz-plane was parallel to the floor of the lab. See figure
4.1 for another display of the orientations of the planes.

PWC PWC SMD SMD
Assembly 1 | Assembly 2 | Assembly 1 | Assembly 2
number of planes 4 4 3 3
number of instrumented
wires/strip 64 64 384,384,448 | 448,416,416
view ordering XY, XMW | XY X', W Y, X, W’ W'Y, X
wire/strip spacing 1.0 mm 1.0 mm 25/50 pm | 25/50 pm
z position (cm) -3117 to -1212 to -80.25 to -33.16 to
-3114 -1209 -74.52 -29.48

Table 4.1: The details of the Proportional Wire Chambers (PWC) and Silicon
Microstrip Detectors (SMD) in the beam tracking mechanism. This information
was taken from [Les 96, Per 95].

The beam stayed well collimated along the z-axis, with a Gaussian spread in the X direction of a
mean=+o of -0.240.2cm and a spread in the Y direction of -0.740.2cm. The spread in the xy-plane
was -0.3+0.3 mrad and in the yz-plane, 0.940.1 mrad.

4.3 The Target

After passing through these planes, the beam hit the circular target foils which consisted of one
~0.5 mm thick platinum foil, followed by four ~1.6 mm thick industrial diamond foils, with a ~15
mm center to center distance between the foils. See table 4.2 for details on the target. The relatively
large spacing between the foils allowed for greater reconstruction of the short lived charmed particles
which decay prior to the last foil. Ultimately, the 7= beam had ~2% chance of interacting with any
of the targets. Although not done in this dissertation, the different atomic masses of the targets
also allowed for study of the charm cross section dependence on nuclear targets.

After interacting, the 7N produced a shower of particles which passed through 17 planes of
SMD’s, used to measure the tracks downstream of the primary vertex. The particles would then
pass through a series of two PWC’s, 35 DC’s and two dipole magnets used to measure the momentum
and slopes of the tracks.
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45°

Figure 4.1: The orientations and views of the detector pieces. Z goes into the page.

foil number 1 2 3 4 5
material Pt C C C C
z position (cm) -8.191 | -6.690 | -5.154 | -3.594 | -2.060
thickness (mm) 0.52 1.57 | 1.57 | 1.53 1.58
proton interaction length (%) | 0.584 | 0.589 | 0.586 | 0.582 | 0.582
diameter (cm) 1.61 | 1.37 | 1.38 | 1.37 | 1.36
radiation length (%) 169 | 12 | 12 | 12 | 12
density (g/cm3) 21 3
atomic mass 195 12

Table 4.2: The details of the target. This information was taken from [Les 96,

Per 95].
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4.4 The Detector

The spectrometer[Ait 98, Ama 93, E791] consisted of several components (see figure 4.2 for the
schematic):

1. Twenty-three planes of silicon microstrip detectors (SMD) split between upstream and down-
stream of the target,

2. Thirty-five planes of drift chambers (DC),

3. Eight proportional wire chambers (PWC) split between upstream and downstream of the
target,

4. Two magnets,

5. Two segmented gas threshold Cerenkov detectors,
6. Two Calorimeters: hadronic and electromagnetic,
7. Steel Plate,

8. Two planes on scintillation counters, and

9. One plastic scintillator.

The SMD, DC, and PWC were used for tracking charged particles; the Cerenkov detectors were
used for identifying particles; the magnets, in conjunction with the DC’s were used for determining
momentum; the calorimeters were used for measuring energies; and the plastic scintillator was used
for detecting muons.

Two Cerenkov detectors mixed in with the above were used to identify y, e, 7, K, and p in the
6 - 60 GeV/c range.

After this, the tracks passed through two calorimeters: the first being a SLIC used to determine
the EM energies, and the second being a hadrometer used to determine the hadronic energies.

After the calorimeters, came a steel plate to stop all particles except muon’s which were detected
by the plastic scintillator (muon wall) at the end.

4.4.1 Silicon Microstrip Detectors

The Silicon Microstrip Detector (SMD) is one of the most important parts of E791. The SMD is
key in reducing the amount of background in the analysis. Since the primary focus of the SMD is
to determine the vertices, it allows us to eliminate any track that does not come from a well defined
vertex. With the 6 SMD’s prior to the target and 17 downstream from the target, an unprecedented
accuracy and precision in locating vertices was achieved.
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Figure 4.2: E791 Spectrometer.
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Design

The SMD works under the basic principle that semiconductors will conduct in the presence of a
moving charged particle. As the charged particle goes by it allows the high energy electrons in the
semiconductor to jump the energy gap in to the conducting zone. Thus a current is induced, and
a particle is detected.

With many layers of SMD planes placed behind one another at different angles, if a single
charged particle goes through, its path can be detected. However, many charged particles pass by
the SMD’s in a short amount of time. Later, when reconstructing the events, physicists must study
all the SMD wires which detected an event. Using combinatoric techniques, in combination with
information determined downstream, a picture as to the number of particles and their paths can be
sketched out. See section 5.1.1 for more detail on this technique.

Specifics

The planes of SMD’s were constructed as an array of reversed biased p-n junctions. Each SMD
was 300 pum thick, and the planes were arranged in groups of three oriented so that a near exact
location could be determined. The orientation in the xy plane put two SMD'’s at a right angle to
one another and the third was set so that it was 20.5° from one and 110.5° from the other as seen
in figure 4.1. See table 4.3 for more detail on the SMD configuration.

plane | z-position(cm) | strip spacing(um) | number of strips | view
7 0.670 25;50 688 Y
8 1.000 25;50 688 X
9 1.931 50 512 X
10 3.015 50 512 Y
11 6.684 50 512 Vv
12 11.046 50 884 Y
13 11.342 50 884 X
14 14.956 50 884 Vv
15 19.915 50 1000 X
16 20.254 50 1000 Y
17 23.878 50 1000 Vv
18 27.558 50;200 864 Vv
19 31.848 50;200 864 X
20 34.548 50;200 864 Y
21 37.248 50;200 864 X
22 39.948 50;200 864 Y
23 45.508 50;200 864 Vv

Table 4.3: The details of the silicon microstrips. The table was taken from [Per 95].

Overall, the geometric acceptance was ~100 mrad, the efficiency of all 23 planes was 83% - 99%,
and the spatial resolution ranged from 7 - 15 pum.

28



4.4.2 Drift Chambers

The Drift Chamber (DC)[Hei 96] operates under the basic principle that a charged particle traveling
through a gas will ionize that gas. The released electrons will then travel, if the DC is ideal, to
the nearest anode wire. If those electrons can be detected, several important characteristics of the
initial charged particle can be determined, such as its presence, and its energy and position.

Design

In order to perform its chosen task, the DC must have an anode wire surrounded by a cathode.
Once the ionized electron is released, it will, in an absence of a stronger potential, tend to latch onto
the nearest positively charged ion. Therefore, a potential must be present in the chamber, in order
to cause the ionized electrons to drift toward an anode wire for detection. Once the charged particle
travels through the detector and releases the electrons, the electron travels toward the anode, it will
in turn ionize more gas, and a shower of electrons is created, all of which will ideally drift toward
the anode.

Setting the initial time, ty, by a triggering mechanism, the DC can time how long it takes for
the rest of the shower to reach it (at time t). Fortunately, electron drift velocity is reasonably well
known for particular gases, and therefore, based upon the time it takes for the shower to travel, an
initial position can be determined.

There are, of course, complications to this. It is possible that the drift velocity is not constant
through the DC, ultraviolet photons are released, or the wire has deposits built up on it through use.
However, these problems can be minimized by an appropriate choice of gas, care of the detector, or
thorough study of the DC prior to its intensive use.

Like the PWC’s, the resolution of the position of the particle can be influenced by t-tq. If the
drift time is long, then the errors on the time are less significant and the position is better known.
But this means increased dead time before the next particle can be detected. A shorter drift time
will shorten the dead time, but add to the imprecision of the position. Although, the choice of gas
influences these factors, position problems can be further reduced by several planes of DC.

By having the wires in the planes at angles to each other, three dimensional coordinates can be
determined.

Momentum can also be determined by the DC in conjunction with the magnets. The magnets
are oriented so that the charged particle’s path will bend in the xz-plane. Using a simplistic model,
if we know the strength of the magnet, B, and the charge of the particle, q, then by looking at
how much the path of the particle deviated (calculated by the radius of curvature, r) when passing
through the magnetic field, the momentum, p, of the particle can be determined by p = qrB.

Specifics

The 35 DC planes were split into four modules, each consisting of one to four assemblies, each of
which was made from three or four planes. See table 4.4 for more detail on how the DC’s were
organized. The gas used was a mixture of 89% Ar, 10% C and 1% CF,. The spatial resolution of
the DC’s ranged from 250 - 350 pm, which is two times better than that of the PWC and 20-40
times worse than that of the SMD.

There was a problem with excess ionization at the point where the beam hit the DC. As the
time of the experiment went on, this created a drop in efficiency for certain parts of the DC. This
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problem area is referred to as the DC hole. As time went on this hole increased in size. This was
treated by incorporating this hole into the analysis of the data.

DC group D1 D2 D3 D4
dimensions (cm) 160 x 120 | 230 x 200 | 330 x 200 | 550 x 300
view ordering X, XUV X, UV X, UV X, UV
number of planes 8 12 12 3
number of channels 1536 2400 1952 416
U and V cell size (cm) 0.446 0.892 1.487 2.97
X cell size (cm) 0.476 0.953 1.588 3.18
z-position first plane (cm) 142.49 381.43 928.14 1737.99
z-position last plane (cm) | 183.66 500.80 1047.10 | 1749.42

Table 4.4: The details of the drift chambers. The table was taken from [Per 95].

4.4.3 Proportional Wire Chambers

The PWC’s are also used for tracking and are similar in principle to the DC’s. They offer the
advantage over other tracking devices by being relatively easy to use and to maintain.

Design

Sets of parallel wires are set up perpendicular to a plane of another parallel set of wires with the
opposite potential. The PWC’s are filled with a gas that ionozes after the passage of a charged
particle. If this occurs, the ions drift towards charged wires causing a pulse which is detected.

Although timing can be alos determined with PWC’s, greater timing resolution can be found
using the DC’s so this is not an issue.

Specifics

The two downstream PWC planes were placed at z=120.4cm and z=162.9cm. They had a wire
spacing of 2.0mm, a gas composition of 82.7% Ar, 17% CO0,, and 0.3% freon. They were oriented
to determine the y position of the particles. This in conjunction with the magnets would be used
for determining the momentum of the particle. The resolution of the PWC’s was 600 pm, which is
40-80 times worse than the resolution for the SMD’s and twice the resolution of the DC.

4.4.4 Analysis Magnets

The magnets were copper coil magnets which provided a transverse boost of 212 MeV /c and 320
MeV /c, respectively. See table 4.5 for a more detailed look at the magnets.

4.4.5 Gas Cerenkov Detectors

The Cerenkov detectors[Bar 87] are based on the principle that when a charged particle travels
through a gas faster than photons can, it will produce its own light. Since the speed of a photon
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M1 M2
z-position front (cm) 222.5 566.9
z-position center (cm) 273.5 617.7
z-position back (cm) 324.1 668.5
aperture (cm?) 183.2 x 81 | 182.9 x 85.6
length (cm) 101.6 101.6
current (A) 2500 1800
[ B,(0,0, z)dz (gauss-cm) | 711,097 1,077,242
pr kick (MeV/c) 212 324
maximum strength (kG) 5 7

Table 4.5: The details of the magnets. The information was taken from [Les 96,
Per 95].

(whose speed in a vacuum is ¢) in a gas with index of refraction n, is ¢’ = £, the particles threshold
speed, v, and the angle at which its radiation is emitted, 6 (0§ = cosil(%’)), are dependent on the
gas. So if the properties of the gas are well known, then particle identification becomes possible,
which is fortunate because that is the primary purpose of the Cerenkov detector.

In E791, there are two detectors (C1 and C2 in figure 4.2) with different gases in each. Thus,
if a particle emits light in one and not the other, there is a strong clue as to the identity of the
particle. Thus, with an increased accuracy in the identification of electrons, muons, pions, kaons,
and protons, there is an increased identification of charmed particles over the background. Since
charm particles decay predominantly into strange particles, such as the K mesons and hyperons
(such as A and ¥) which, in turn, quickly decay into protons and pions, it is essential that the
detector have the capacity to discriminate between these daughter particles.

Design

The two most essential parameters in the effectiveness of the Cerenkov detectors are the gas compo-
sition and mirror segmentation. The gases chosen for the two detectors are nitrogen (n=1.000290)
and a mix of nitrogen and helium (4:1) (n=1.000086), where the indices of refraction were calculated
for a particle of wavelength 3500 Angstroms and STP environment. The radiation emitted by a
charged particle is predicted by the equation:

AN 1 dA
Ay _ gm/ (1- WTQ(A)MA)V (4.1)

where dd—lf = the number of photons per unit length; o = 1/137; n(\) = index of refraction at the
wavelength, \; f = P/E where P and E are the momentum and energy, respectively, of the charged
particle; and €(A) = the detector efficiency at A.

Therefore, a proton with a momentum of 40 GeV/c would approximately produce 13 pho-
tons/meter in the first detector. Since the first detector is 3.75 m long this would mean that under
an ideal situation, it would count 49 photons. But once correct efficiencies and wavelength de-
pendencies are taken into account, we would only detect ~15 photons. Note that with the second

detector at its lower index of refraction, a 40 GeV /c proton would not generate any photons.
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The mirror segmentation was designed to minimize identification confusion. The radius of the
light cone is characterized by the following equation:

R = Ltan(0) (4.2)
sin(f) = —71 1/2
) = (1~ ) (4.3

Therefore, for our 40 GeV/c proton, the predicted radius is approximately 3.1 cm. Although
this information is not used in the threshold detectors, like those used in the experiment, in the
same way as the ring-imaging detectors, the radius is useful for determining the appropriate size of
the mirrors.

Specifics

See table 4.6 for a detailed look at the Cerenkov counters.

C1 C2
length (m) 3.7 6.6
number of mirrors 28 32
gas mixture 100% No | 80% He, 20% N,
5= (n-1) 200x 10 °| 86x10°°
pion momentum threshold (GeV/c) 5.8 10.6
kaon momentum threshold (GeV/c) 20.5 37.6
proton momentum threshold (GeV/c) 38.9 71.5

Table 4.6: The details of the Cerenkov counters. The table was taken from [Per 95].

4.4.6 Calorimeters

There are two basic types of calorimeters[App 86]: hadronic and electromagnetic. Although they
are designed for different particles, their overall purpose and operating principles are the same.
The purpose of a calorimeter is to measure the energy of a particle. The basic principle is that a
particle enters the calorimeter and produces a shower and the total light output is proportional to
the incident particle’s energy.

Design

As the shower is detected, several characteristics can be measured. As implied above, the total
energy of the shower is measured, which is proportional to the energy of the particle. But also
measured are the width of the shower, which is related to the particle’s momentum, and the position
of the shower, which is obviously related to the particle’s position.

With both calorimeters, the particle’s identification can be narrowed down as well. Since hadrons
will dump most of their energy in the hadronic calorimeter and the photons, electrons and positrons
will dump most of their energy in the electromagnetic calorimeter, both pieces of information can
be used to eliminate the non-hadrons.
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Specifics

The electromagnetic calorimeter was a SLIC which is short for “segmented liquid ionization calo-
rimeter”. See table 4.7 for detail on the SLIC and table 4.8 for detail on the hadrometer.

u channels | v channels | y channels
number of channels 109 109 116
orientation -20.5° +20.5° 90°
number of layers 20 20 20
single channel width (cm) | 3.17/6.35 | 3.17/6.35 | 3.17/6.35
channel length (cm) 260 260 244
view ordering U VvV)Y
upstream z-position (cm) 1866.
downstream z-position 1962.
active area (cm?) 488 x 244
total radiation length 21.5
total interaction length 2.07
energy resolution (2£)? ~ (LLE2)2 4+ (11.5%)?
position resolution (cm) 0.65

Table 4.7: The details of the SLIC. The table was taken from [Per 95].

X channels | Y channels
number of channels 66 76
number of layers 36 36
single channel width (cm ) 14.5 14.5
view ordering XY
absorber thickness (cm) 2.54
total interaction length 6
upstream z-position (cm) 1973.
downstream z-position (cm) 2131
active area (cm?) 490. x 270.
energy resolution A% %

Table 4.8: The details of the hadrometer. The table was taken from [Per 95].

4.4.7 The Trigger

There were two triggers for data collection in the E791 spectrometer. The first trigger was placed
near the target and used to determine if there was anything to detect. More specifically, there had
to be a 7~ detected upstream of the target and at least four charged tracks downstream from the
detector. This decision took 160 ns.

The second trigger was based on the calorimeter measurements. Since the transverse energy for
charm particles is greater than the transverse energy for lighter particles, the trigger was set to go
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if the transverse energy exceeded 4.2 GeV. The transverse energy was calculated by summing the
total energy found by both calorimeters weighted by sinfl, where # is the angle between the beam
direction and the line connecting the target to the collector on the calorimeter.

In order to remove multiple beam pions in a single event, all events with a total energy greater
than 700 GeV were thrown out. Of the events which were recorded, 90% satisfied both triggers.

4.4.8 Data Acquisition

The incident pions interacted with a target nucleon about every 25 us. About half of these met the
trigger requirements, so a recordable incident took place every 50 us. The digitization process took
~50 ps, so there was about 50% dead time.

An event segment was typically 2.5 kB in size and written to the 8mm tapes in a bank of 42
Exabyte tape drives and 54 ACP 1 processors. A 640 MB buffer allowed writing during the next
event. Overall the acquisition averaged 9.6 MB/s.

When done, there were 20 billion events stored on 24,000 8mm tapes at 2.2 GB per tape.
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Chapter 5

Event Reconstruction

The reconstruction and analysis of the data took place in several steps: reconstructing, filtering,
stripping, substripping, and microstripping. The reconstruction and filtering were done at 4 farms
throughout the western hemisphere, and the remaining stages were done at individual machines.
The purpose of the reconstruction phase was to get a sense of what happened and to establish
the parameter values for each event. There were two formats for these values, called within E791
“Release 57 and “Release 77. See appendix B for the listing of the Release 7 data structure. These
releases contained the same basic information, but organized it differently according to how the
data were to be used in analysis. The subsequent steps were designed to reduce the number of
events for easier analysis. See table 5.1 for the number of events at each stage in the process.

Process Tapes Events
Raw Data 24,000 | 20 billion
Reconstruction/ Filter | 7,500 | 4 billion
Strip: Stream A 2,000 | 1.2 billion
Strip: Stream B 2,000 | 800 million
Substrip (KSUSS) 33 20 million
Microstrip 1 2,271

Table 5.1: The number of tapes and events at each stage in the selection process.

5.1 Reconstructing and Filtering

All events were partially reconstructed based on the certain parameters, then filtered. Events
which survived the filter were then fully reconstructed. Reconstruction included reconstructing the
tracks, finding the primary and secondary vertices, analyzing the calorimetry and Cerenkov data,
and identifying muons.

5.1.1 Track Reconstruction

Tracks were first reconstructed using the software package STR which used the SMD hits. The
first set of SMD’s which was placed upstream of the target were used for beam reconstruction, and
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the SMD’s downstream from the target were used for post-interaction tracks. The SMD tracking
algorithm fit straight lines to the hits in each view using a minimum Y? fit. Each line of flight
required four hits in each of the X and Y views and three hits in the V view.

If a track was found in the SMD’s, then this path was extended to the DC. The track was
considered good if it lined up with D3 hits in all three views. Since the particles were deflected by a
magnet in the xz-plane, the Y view was used for identifying a good track. A final decision as to the
actual path was determined if the good track also went through D1 and D2 hits in all three views.
Since not every track is properly detected or more likely some particles decay after one region and
before another, a classification system, as can be seen in table 5.2, was developed to catalog the
tracks.

region | hits
0 SMD’s
1 D1 Table 5.2: The regions used for identifying tracks.
2 D2
3 D3,D4

The track category was determined by 2!, where i = the region where the hits occurred. For
example, if a track was detected in only regions 0 and 1, then it was a category 3 track. Obviously
category 15 tracks would be the most reliable.

If an event were detected in region 0 and another region, it was called in E791 a SESTR
track. After reconstructing the SESTR tracks, the remaining tracks, called ESTR tracks, were then
reconstructed. Note that about a third of the category 3 tracks were later found to be false tracks
found by the tracking algorithm and were later discarded.

5.1.2 Vertex Reconstruction

After reconstructing the SESTR tracks, the vertices were determined. In determining the primary
vertex, the tracks were followed upstream. If two tracks came from the same point (or as close as
possible) at a target foil, then it was considered to be a primary vertex. Then other tracks were
added as long as the y? / degree of freedom stayed reasonably low. Tracks which were not linked
to a primary vertex were considered to have come from a secondary vertex and were reconstructed
as such, as long as the y? per degree of freedom stayed low.

Once the vertices had been determined, the SDZ, the distance between the primary and sec-
ondary vertices divided by their errors in quadrature, and DCA, the distance of closest approach
between a track and a vertex, could be calculated. Both of these variables would be involved in the
filtering criteria.

5.1.3 Cerenkov Reconstruction
The process for particle identification was a 3 step process.
1. Calculate the measured amount of radiation in each mirror,

2. Predict the number of photoelectrons expected from a particle of a given mass in that mirror,
and

36



3. Determine the particle identification probabilities.

Number of Photoelectrons
The measured number of photoelectrons (NMEAS) produced by the light off mirror £ is found by:

ADC), — PED
NMEAS, = SkP =5 i (5.1)
k

where ADC is the actual number of photoelectrons measured, PED is the number of background
photoelectrons, and SPEP is a measure of the gain for that mirror.
The total number of photons measured is N = >, NMEAS,.

Predicted Number of Photoelectrons

In predicting the average number of photoelectrons (NPRED), one must take into account the
geometry of the detector F&° - which factors in mirror angles, gaps between the mirrors and the
mirror that is actually used - as well as F™! - a parameter dependent on the amount of radiation
emitted which is dependent on the mass and velocity of the particle - and average number of
photoelectrons for the specific mirror PE. This prediction can be formalized in the equation:

NPREDmass,track,mirror = HMm,t,k = F, etk X Fx%(ﬁ) X ﬁk (52)

Particle Identification
From the above calculations, we can determine the compound Poisson PDF.

N

Pmt(N M?b> N'

—(L+bu) ™ 1/”><H (1 + gb) (5.3)

where 11 =7, ; = Sl 4; and the width parameter, b = by, ; = S04 115, , /T2, . Which is a measure
of deviation of this distribution from a pure Poisson Distribution.

From this PDF, we calculate a consistency probability for each detector:
PC1l,,; = P(NMEASc, i,b) and PC2,,;, = P(NMEASco, j1,b). From these and an a priori
likelihood*, A,,, that a particular particle is produced in this collision, we calculate the overall
Cerenkov probability, CPRB,,, for hypothesized mass, m, and track, ¢, to be

PC1,,; x PC2,,; x A,
CPRB2,,, = : : 5.4
S, PClyy X PC2,y X Ay (5:4)

5.1.4 Filtering

After partial reconstruction, an event passed the filter if it had a primary vertex and satisfied one
of the following criteria:

1. a secondary vertex with a good separation from the primary vertex,

“For this analysis the a priori probabilities were 0.02, 0.01, 0.81, 0.12, 0.04 for u, e, w, K, p respectively.
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2. a K; or A from the ESTR tracks, or

3. a ¢ from two SESTR. tracks.

See table 5.3 for the specific criteria used in the filtering selection process.

Filter

Requirement

Cut Made

Survival

SMD Vertex

well separated
secondary

SDZ > 6 for two prongs
SDZ > 4 for three or more prongs

9%

ESTR

vertex

presence of K,

track y?/DOF < 5
0.5 < track momentum < 500
DCA of two tracks < 0.5cm
0.470 GeV < M(rt7) < 0.520 GeV
in region 1
0.465 GeV < M(rt7~) < 0.525 GeV
in region 2

presence of A

track y?/DOF < 5
0.5 < track momentum < 500
DCA of two tracks < 0.7cm
1.106 GeV < M(pr~) < 1.125 GeV
in region 1
1.100 GeV < M(rt77) < 1.130 GeV
in region 2

9%

presence of ¢

track y?/DOF < 5
0.5 < track momentum < 500
DCA of two tracks < 0.5c¢m
Joint Kaon Probability > 0.05
1.015 GeV < M(KTK™) < 1.025 GeV

1%

Table 5.3: The specifics of the filtering process.

5.2 Stripping

As the data which survived the filter were fully reconstructed, it was tagged based upon certain
characteristics of the event. In all there were sixteen different categories of events, of which, the
first nine tags sent the event into Stream A, and the last seven tags sent the event into Stream B.
In general, the difference between the streams is that stream A events are possible charm events
and stream B events are not considered possible charm events. We used stream A events in my
analysis (with the exception of the A’s we used as a proton source in my exploration of the Cerenkov
probability systematic errors in chapter 10). See appendix C for the list of tags used. Stripping

reduced the amount of information down to 2000 tapes.
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5.3 Substripping

Analysts at this point substripped the data one of two ways: the grand canonical substrip (GCSS)
or the Kansas State University substrip (KSUSS). Since we used the KSUSS, we will discuss it and
not the GCSS. For the details of the cuts used, see appendix D.
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Chapter 6

Final Event Microstrip Selection and
Signal Optimization

After reconstructing, filtering, stripping and substripping the data from the E791 experiment, we
were left with enough data to fill 33 tapes. Given these 33 KSUSS tapes from the experiment, we
made the following loose cuts to pare the number of events to 392,742 events (which fit onto 1 tape):

1. the decay vertex must have 3 decay tracks,

2. the Cerenkov probability of the identified kaon being a kaon > 0.13,

3. the Cerenkov probability of the identified proton being a proton > 0.05, and
4. the reconstructed A, mass must be between 2.18 and 2.58 GeV/c2.

We determined which of the three tracks was a kaon by assuming that the track with the opposite
charge of the other two was the kaon. Of the remaining two tracks, we assumed the track with the
greater probability of being a proton was the proton, and the remaining track was the pion.

From this group of events, we added some more loose cuts:

1. every daughter track must be from category 3,7, or 15,

2. every vertex, when reconstructed minimizing the transverse y2, must be good with \? per
degree of freedom < 10.0, and

At this point, we checked to see if we could extract any more A.’s from the data from the two
prong vertices. Starting with 100,000 reconstructed MC events, we assumed that some of the two
prong vertices were actually from the A. — pKm, but were misfit. For each of these two track
vertices, we added all of the other tracks (with y? < 8.0) from the event, one at a time, to the two
prong vertex. If this newly formed vertex had y?/DOF < 8.0, we plotted the reconstructed pKm
mass. See figure 6.1 for the display of the reconstructed masses. With ideal MC data there was a
peak, but considering the amount of background present, we assumed that it would be much worse
for the real data events, and this line of exploration was stopped.

We also pared the number by cutting data from the mid-plane region where our Cerenkov
counters had no mirrors and a poor efficiency[Yos 96]. This translates specifically to cutting any
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Figure 6.1: Reconstructed masses of Monte Carlo data extracted by adding a third

track to all two prong vertices.
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event in which the proton had a 70% probability or greater of being a proton and the slope in the
y direction of the track was between -0.0021 and 0.007 was cut. We had 228,900 events, of which
133,305 were within the mass range of 2.18 and 2.38 GeV/c?.

We also generated 7 million Monte Carlo A, — pKr events uniformly distributed in phase space.
*This process pared the number of MC events to 226,865. Sending these events through the above
cuts pared the number to 31,361 events within the mass range 2.18 and 2.58 GeV/c?, of which
26,718 events were less than 2.38 GeV/c%.

For the sake of optimization, we looked at events only within the mass range of 2.18 and 2.38
GeV/c?. (The events with the reconstructed mass between 2.38 and 2.58 GeV/c? could be used
later to look for the decay = — pKm. See appendix M for a display of the findings.) We optimized
the projected significance using a Neural Net based on the following variables (as suggested by
Simon Kwan[Kwa 95)):

1. JC, the joint Cerenkov probability for the proton being a proton and the kaon being a kaon,

2. SDZ, the distance between the z-coordinate of the primary and secondary vertices divided by
their errors in quadrature,

3. DIP, the distance between the primary vertex and the line of flight of the reconstructed A. in
the xy-plane,

4. PT2DK, the sum of all the p3 of all the secondary tracks with respect to the flight path
(as determined by a line of flight from the primary vertex to the secondary vertex) of the
reconstructed A,

5. PTBAL, the absolute value of the pr of the vector sum of all the secondary tracks with respect
to the flight path of the reconstructed A,

6. SIGMA, the number of standard errors the secondary vertex is from the closest target foil
edge,

7. TAU, the calculated proper lifetime of the reconstructed A,

8. RAT(3), the ratio of the distance in the xy-plane of the decay track from the secondary vertex
to its distance in the xy-plane from the primary vertex (there is one value for each track),

9. RATMIN, the minimum of all the above ratios,
10. RATIO, the product of the above three ratios,
11. CHISQS, the \? per degree of freedom for the secondary vertex, and

12. CHISQP, the y? per degree of freedom for the primary vertex.

*Of these, 5 million were generated at Fermilab in release 5 mode. The remaining 2 million were generated in
release 7 mode at University of Mississippi and University of South Carolina. All events were generated with half
assuming the target nucleon was a proton and half assuming a neutron. They were also generated so that an equal
amount of MC data was reconstructed using each of the DC holes. The 7 million events were then filtered and
stripped. The stream A events were sent to USC for KSU Substripping. There was no essential difference in all the
data sets which were generated.
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Since the KSUSS applied a restriction that SDZ > 6.0 and PTBAL < 0.4 we also cut any events
which violated these boundaries. See figures 6.2 and 6.3 for the real and MC data after the above
cuts and reconstructed as pKn, KK, and Knr.

ID 1 - D 2
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Figure 6.2: Reconstructed masses of real data before Neural Net and D mass cuts.

The last cut we made before using the Neural Net, was to eliminate the D resonances. There
are three decays which are more likely to be reconstructed as false AT — pK~ 7" than other decays.
They are

1. Dt 5 KfK—rn*
2. DT = K nfrt

3. D - K*K-n+t
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Figure 6.3: Reconstructed masses of Monte Carlo data before Neural Net and D

mass cuts.
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To avoid confusion in later analysis, we cut all events whose reconstructed KK7 mass was within
the mass range of 1.85 to 1.89 GeV/c? and 1.95 to 1.99 GeV/c? and whose reconstructed Kmm mass
was within the range of 1.85 to 1.89 GeV/c?. See appendix E for the display and more discussion
of the D mass cuts.

This gave us 108,366 candidate decays (see figure 6.4 for the mass plot of the candidates) and
19,348 Monte Carlo decays with which to work.
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RMS 0.5699E-01
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Figure 6.4: Mass(pK) of the real data set after filter, strip. KSU substrip, good 3-
prong vertex and track cuts, Soichi cuts, SDZ and PTBAL cuts. It has a significance
of 5.970. There are 998+167 signal events and 107368+366 background events
assuming that the peak is Gaussian and the background is quadratic.

To optimize the significance of our A. signal, we sent both the reconstructed real data and the
reconstructed Monte Carlo data through the same cuts mentioned above. We then fit the real
data to a Gaussian peak and a quadratic background and established that the signal initially has a
significance of 5.97¢ with 998 + 167 signal events and 107,368 background events.

Given this, for our optimization, we set the signal region to be from 2.26 GeV/c? to 2.32 GeV /c?
and the background region to be outside this. We then trained a Neural Network with a 5-20-1
architecture with Rprop updating (page 18). For training, we used 12,912 MC events and 12,912
real background events. For a validation set we used 4,260 of each type of event and stopped
training when the error on the validation set stopped decreasing steadily.

After training was complete, we determined the Neural Net cut to be the one which optimized

Ns

T The number of signal events, ng, was estimated by ny, = 998 initial signal events x efficiency

of MC."Background, ny,, was estimated by performing a binned quadratic fit on the surviving events
in the wings and integrating over the signal region. From these estimates, it was determined that
the optimum NN cut should be 0.94 which predicted 632 signal events, 451 background events in
the signal region and a significance of 19.20. Applying this cut, 2271 real events survived (see figure
6.5 for the mass plot of the final data set) which corresponded to 886.4+43.4 signal events and

Y998 came from the fit on the data prior to using the Neural Net. See figure 6.4 for the histogram of the data
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1384.1448.8 background events and a significance of 20.40. See table 6.1 for detail on significance

and alternate ways of calculating it.
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Figure 6.5: (left) Mass(pKn) of the real data set before Neural Net cuts and (right)
after. It has a significance of 20.40. There are 886+43 signal events and 1384
background events assuming that the peak is Gaussian, the background is quadratic
and the number of signal and background events are variables.
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Background — Quadratic | Linear
4 Number of Events
Allowed to Float 20.40 2320
Not Allowed to Float 22.60 26.50

Table 6.1: The significance of the fit depending on the technique of fitting. As
the background model simplifies, from quadratic to linear, the significance goes
up. And also, as the more dramatic effect can be caused by setting the number of
background events from a floating variable (as in the 6 variable case) to a number
directly dependent on the total number of events minus the number of signal events
(as in the 5 variable case).

Applying this cut to the reconstructed Monte Carlo, 11,454 MC events survived with a signifi-
cance of 99.40. See figure 6.7 for a mass plot of the surviving reconstructed MC.
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Figure 6.7: (left) Mass(pKn) of the MC data set before Neural Net cuts and (right)
after. It has a significance of 990. There are 10510+106 signal events and 944
background events assuming that the peak is Gaussian, the background is quadratic

and the number of signal and background events are variables. The central mass is
2.287 GeV /c? with o = 7.65 MeV/c?.

Refer to figures 6.8 and 6.9 for a look at the final data sets (real and MC) reconstructed as other
reflections.

Also note that if we varied the Neural Network cut, we would get the histograms as seen in
figure 6.10. The common structure to the nine plots indicates that the cut we used is not a bizarre
statistical fluctuation. Note that the cut of 0.94 does not produce the most significant data set, but
it does produce the largest predicted significance for a data set.
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Figure 6.8: Reconstructed masses of real data after the Neural Net cuts are made.
The shaded region is the region cut by the D mass cuts. This data set was produced
by running the 19,763 events, which were in the D mass range and cut, through the
Neural Net cut. The 2137 events of the 19,763 which survived are in the shaded
region. These events are not used in the analysis. The larger outline is the total of
the D region (2137 events) and the final data set (2271 events).
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Chapter 7

The Signal Density

For the final fit, we used the fitting software, MINUIT, to perform an extended maximum likelihood
fit. The likelihood was assumed to have the form

2
mL=SIng - (1 In [271 rea] + M) , (7.1)
i 2 2npred
where 7nppeq = ns + 1, and ngs are the predicted and observed number of events, respectively, and
L; is the likelihood of each event defined by a joint probability density in the five-dimensional space
of decay kinematics and the one-dimensional space of m,xx.
The likelihood for an individual event is given by:

nS — — nb —
G S(E)A() + — 2 Qm) B(E) 72
where .
G(m;) = elmizmol 1070 5 Gaussian description of the A, mass peak with normalization Ng,

NgovV2r
S(Z;) = signal density,
A(Z;) = acceptance,
Q(m;) = Lrhi (mi=2.28) +bq (mi=2.28)° _ quadratic description of the background with normalization
Q
(2

Ng
N,

ST

) = background density, and

(miy, m33, cos(6,), p, Grcr) = the vector which describes each event. It is defined more specif-
2.38 2.38

ically for this problem in chapter 8. The normalizations fixed [ Gdm = 1.0 and [ Bdm = 1.0
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To find the signal density, S, we used the helicity formalism as described in chapter 2, and
outlined more explicitly in [Pur 96]. As seen previously as equation 2.27,

AU~ (14 Pa) Zaeapas | 2 BW(mB>€B,%,>\C,)\D,)\E|2
+ %(1 — Py) Yacooprs | 2B BW(mB)SB,f%,)\C,AD,AEP (7.3)

for the decay A—B(—DE)C.
We used the relativistic Breit-Wigner amplitude (previously seen in equations 2.28 and 2.29) for
the decay mode A, — r(— AB)C,

&1@3

L FACFF
m3 —m2 —imgl,

(7.4)
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where

2
T, =To(— q >2L+1 mo F7(q) (7.5)
G0 me F2q)

for resonance r at the reconstructed two body mass m,, with the momentum of a daughter particle
in the resonant particle’s rest frame ¢ (and g when m, = my), and with resonant mass and width
mo and Ty as found in [PDG 98]. Using this convention, we set the Breit-Wigner amplitude for
the nonresonant decay to be 1.0. The Breit-Wigner amplitude squared was normalized numerically
within the MINUIT fit.

Deriving &g myap ep s fOF several resonances yields tables 7.1-7.4[Pur 96]. Because two of
the three daughter particles are spin 0 particles, the problem simplifies greatly. Also note that the
number of coefficients in tables 7.2 and 7.3 are reduced to two because of parity conservation.

m| Ap Amplitude
T : T .
3| 3 Eye P}y (B0)dly (B)e™s + Bae'Pad} | (6o} df(0 )=
22 2 2
1 . I l 0 — /
14 EgewEsd;%(e w0)db, (65 + E4eZ¢E4d2 (9_*0)d1 INCATR
3| 3 EleubEld2 %%(9 o) dlg (B )e RO ¢K) + E2€l¢E2d2% %(HE*O)O%U(H%)
. 1 ’
|| Bse®Pad? yy (O0)dfy (O )e R0 + E461¢E4di__ (-0 )d 1B e~
22
Table 7.1: Amplitudes for A*(% ) = (K*O(I*) K7t p (%+) decay mode.
m| Ap Amplitude
: T 3 : T 3 ) ;
VL R, (00 ) a3, 0)) + Faetnd_ (are)dE (B Oare
22 22 2 22
; 3 3 :
1] .1 Flez¢F dz, (QA ) 2 (9/ ) il b4 F262¢F2d1 (9A++)d2 - (9/ )61¢A++
2 2 23 32 2 —373 P
5| 5 | Faemd? s (Oase)dly (0))e 0ot + F261¢F2d2 1 (Oars)d? 1, (6] )e
22 2 2 2 22
: 3 3
‘% ‘% F1€Z¢F1d21;(9A++) i ;(9;) Gatt=2p) 4 F2€Z¢7de2 1_1(Oa+s)d?._1(0))
22 2 2 2 2 2 2
Table 7.2: Amplitudes for A+(% ) = (A++(%+) — prt)K~ decay mode.
m| Ap Amplitude
: I 3 : T 3 ; ;
% % Hlezdml d;% (9/\(1520)>d§% (9/ ) + H262¢H2d1 (9/\ 1520))di%%(9;})61(%(1520)*%)
: T 3 ) 3 :
5 |75 | (el (Bagow )] (6)e O+ Hze%d%_%l(emm>d3%_%d(9;>e’%52°>>
_% % H, et li%%(eA (1520) )3%(9 Je —idA(1520) | HQemszz (9/\(1520))033%%(9/2)6—@;’
_% _% (Hle“le i%%(eA 1590 >d§ %(9/> e~ HPn(1520)—Fp) 4 Hzeszszi__E(QA 1520)>di%_%(9;)>)

Table 7.3: Amplitudes for A+(% ) = (A(1520)(2 ) — pK™)n T decay mode.

The method used to find the acceptance and the background are outlined in chapter 8.
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m | Ap | Amplitude
1 _4 PN,
2 g | No_e™ Table 7.4: Amplitudes for nonresonant Aj({r) — pK~ 7+ decay mode.
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Chapter 8

Acceptance and Background Model

Once the final data set was established, we used the constrained data for the models, i.e. we
constrained the pK7 reconstructed mass to be the A, PDG mass value.

Using the surviving A, Monte Carlo as acceptance and all events more than 3.00 from the mean
of the peak as background (see figure 6.6), we then set out to model these distributions. We used
the frame of reference to be the A, rest frame with the x-axis being the direction the A, traveled
in the lab frame, the z-axis to be the polarization axis as defined by the cross product of the beam
axis and the x-axis, and the y-axis to be the z-axis cross the x-axis. See figures 8.1 and 8.2 for the
coordinate system used. Note that the polarization axis is perpendicular to the production plane
and is the reference from which we determine the orientation of the A. spin. For each of these
events, we established (by the convention established in [KKor 91]) the independent variables to be:

1. m?(Kn),
2. m?(pm),

3. the cosine of polar angle, 0, of the momentum of the daughter proton relative to the polar-
ization axis,

4. the angle, ¢,,, between the x-axis and the xy plane projection of the momentum of the daughter
proton, and

5. the orientation angle, ¢y, of the plane with K7 daughter pair relative to the plane of the
daughter proton and the polarization axis.

8.1 Phase Space

The phase space is defined by the allowed values of the above kinematic variables. In order to
account for the shape of this phase space in the analysis, it becomes essential to be able to model
it. This can be done in two ways. One way is to use the points used in the truth tables of the 7
million generated MC events. The other way is to assume that the phase space is evenly (uniformly)
distributed within the allowed limits of the above variables and to generate quickly a set of random
points within this range. This second method is referred to as “fast Monte Carlo”. In order to
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kaon + pion

Figure 8.1: A — pKm in A. rest frame. (6, ¢,) define the proton direction in the
A rest frame. Note that the xy plane is the plane of production.

Plane containing the proton
and the A, polarization axis

z 27— Pn
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Figure 8.2: A. — pKr in A rest frame.
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show that these methods are equivalent, we used 1 million fast MC points and 1,000,126 truth table
points*, binned them in the one dimensional projections and compared them. See figure 8.3 for the
comparison of the one dimensional projections.

= = 2 I
20000 E 20000 E w -
10000 10000 [ B
:‘ I ‘ I | ‘ L1 O :‘ I ‘ L1 ‘ L1 O 7‘ L1 ‘ [ | ‘ L1
05 1 1.5 0.5 1 1.5 05 1 1.5
(a) mass?(Km) (GeV/c?) (b) mass?(Kr) (GeV/c?) (c) mass*(Km) (GeV/c?)
E E 2
20000 [ 20000 [ . E
10000 f 10000 f F
O B L1 ‘ L1 L1 ‘ O E 1 L L ‘ L L1 L ‘ O o1 L L ‘ L L L L ‘
2 3 2 3 2 3
mass®(pr) (GeV/c?) mass’(pm) (GeV/c?) mass’(p7) (GeV/c?)
20000 F 20000 2
10000 E 10000 E 1B
O :\ L L L ‘ L L L L O :\ L L L ‘ L L L L O :\ L L L ‘ L L L L
—1 0 1 —1 0 1 —1 0 1
cos(d,) cos(,) cos(t,)
20000 E 20000 E 2 E
10000 [ 10000 1 E
O :\ L ‘ I ‘ L1 O :\ L1 ‘ [ ‘ L1 O :\ L ‘ I I ‘ L1
0 2.5 5 0 2.5 5 0 2.5 5
@p @p @P
20000 E 20000 E 2 E
10000 E 10000 E T
O :\ I ‘ I N | ‘ L1 O :\ I ‘ I R | ‘ L1 O :\ I ‘ I I ‘ L1
0 2.5 5 0 2.5 5 0 2.5 5
gﬂKﬁ @Kﬂ WK'N

Figure 8.3: (a) The one dimensional projections of the fast MC phase space, (b)
The one dimensional projections of the truth table MC phase space, and (c) the
result of dividing the contents of each bin of (a) by the content of the respective
bin in (b).

As can be seen in figure 8.3, the ratio of the two samples is near 1.0 in all cases. From this we
assume that the use of either set is valid.

With these fast MC points, we can model the shape of phase space. Later in this dissertation,
when we refer to “uniform phase space”, we are referring to this distribution of 1 million points.

“These truth table points are from the Release 7 MC generations produced at USC.
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The boundaries of phase space are defined kinematically in [PDG 98], but in reality, the bound-
aries are blurred, by the resolution of the detector. In order to offset these resolution problems ,
we constrained the reconstructed pKm mass to be the PDG value of the A.. This forced all of the
reconstructed data points to be within the same phase space. See appendix F for more justification
of constraining the events.

8.2 Modeling

8.2.1 K-Nearest-Neighbors: Basics

For modeling the five dimensional distribution of acceptance (background), we used the K-nearest-
neighbors technique as outlined in [Bis 95]. To find the probability density at a point in phase
space, we would find the minimum spherical volume which encompassed the fixed number, K, of
points. We then estimated the unnormalized probability density to be K divided by the volume.
This technique is based on the following line of reasoning:

The probability, P, that an event & which is drawn from some unknown density function, p(Z),
will fall in a region of space, R, can be described mathematically as

-

P:/Rp(a:’)df’ (8.1)

If we independently draw N data points from p(¥), the probability, Pr(K), that K of them will
fall within R can be expressed as

N!

Prifl) = =

PE(1 — PN K (8.2)

where the mean fraction of points falling in R is <I{/N> = P. The variance around this point is
< K/(N—P)>>=P(1—P)/N. As N — oo, the variance drops to zero and

P~ K/N (8.3)

Assuming p(Z) is continuous and varies little in R, equation 8.2.1 can be approximated by

-

p= /R p()di =~ p(T)V (8.4)
where V' = the volume of R and ¥ is some point lying in R. Equating 8.2.1 with 8.2.1, gives us
p(¥) ~ K/NV (8.5)
If the density is unnormalized, equation 8.2.1 can be reduced to

p(f>unnormalized ~ K/V (86)

Choosing to fix the number of points, K, or the encompassing volume, V', is a matter of the
user’s choice. For this dissertation, we chose to fix the number of points.
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8.2.2 Implementation

To implement this method, we first reduced the bias in each dimension. In other words, we linearly
transformed all data sets so that each dimension of the uniform phase space had a mean of 0.0 and
a standard deviation of 1.0. For example, let & be one decay event, where ¥ = (0.89, 2.42, 0.12,
1.98, 5.97). After transforming it, ¥ — a3 = (-0.43, 0.57, 0.21, -0.64, 1.56).

Next, we found the distance in this transformed space from every point in the acceptance
(background) set to each point in the set of real data points (those from the experimental data set
which survived all of the cuts). The 4 nearest-neighbors were 0.43, 0.47, 0.49, and 0.54 from 7.

We then found the volume needed to enclose each nearest-neighbor by seeing how many randomly
generated points were within the corresponding distance and phase space and scaling the number
to the volume which encompassed the generated points. For i, the volumes which encompassed
the 4 nearest-neighbors were 0.069, 0.10, 0.12, and 0.20.

The last step in the K-nearest-neighbors method was to establish the optimum value of K. We
did this by setting up a measure of closeness. Our measure was the sum of the absolute value of
differences in each bin of the five histograms of the acceptance (background) and its model when
normalized to the same value. by doing this we found that K = 4 for acceptance and background.
We ran the 100,000 fast MC points through this process followed by the real data points. Again,
for the case of 77, this would correspond to an estimated unscaled acceptance of 4/0.20 = 19.97,
and since the transformation of coordinates was linear, this is also the unnormalized probability
density of .

A comparison of the model as found by this technique and the acceptance (background) can be
seen in figures 8.4 and 8.5.

8.2.3 Tweaking

At this point, the correlations between the variables is incorporated into the estimated probability
densities. Our next step is to tweak each probability for greater accuracy. To do this, we tried to op-
timize the one dimensional projections of the model, i.e. we minimized the total absolute difference
between each bin in the acceptance (background) histograms and the model. This optimization is
similar to before, except we added a new histogram and assumed that the corrections can ignore
the correlations.

The new histogram is for m?(pK). Our justification for using it is as follows: In three body
decay, it really does not matter which 2 pairs of daughter particles we pick for analysis, since the
third pair is directly related to the first two. In our case

m?(pK) = m?(pKr) + m?(p) + m*(K) + m?(x) - m*(pr) - m*(Kn).

Also, if we assume the variables are uncorrelated then the probability can be factored. For
example,

A= A(mi,, m2,. cos(0,), 6y Oice) = Ar () As(m2,) Ay (cos(8,)) As () As (Fcr)

But since the choice of pairs to use is arbitrary, A;(mg,) is just as significant as Ay(m? ) which
is just a significant as As(m’), so we can rewrite A to be:

fTechnically, this is not an acceptance, but it is proportional to acceptance. In order to find the true acceptance,
we would need to know the number, N, of MC points which were generated. Since this value is the same for every
location in phase space, there is no need to incorporate it into the formula at this point. All the densities will be off
by the same factor and this will be taken care of when the density is normalized later.
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Figure 8.4: Acceptance. (a) The one dimensional projections of the surviving
Monte Carlo divided by uniform phase space, (b) The one dimensional projec-
tions of the surviving Monte Carlo divided by uniform phase space after smoothing
with HSMOOPF, (c¢) The model of the acceptance as found by the nearest-neighbors
technique, (d) the difference between the real acceptance and the model.
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A=Ay (mf,)5 Ay (m2,)5 Ag(m2i) 5 Ag(cos(8,)) Aa(dp) As (ficr)

This offers the advantage of one more piece of information used for accuracy.

We then scaled each probability so that the model would be normalized to the same value as
the acceptance (background). In the case of ¥, the K-nearest acceptance needed to be multiplied
by 0.311, thus making the initial estimated acceptance to be 6.20.

Looking a figures 8.4 and 8.5, one can see that the nearest-neighbor technique smoothed out
some of the fluctuations seen in column (a).*Because some of the fluctuations are real (as opposed
to statistical), we refrained from tweaking our acceptance and background to match the smoothed
projections.

We adjusted by multiplying each weight by the ratio of the size of the corresponding histogram’s
bin for the acceptance (background) to the model. Note that &’s acceptance changed from 6.20 to
5.93. See figure 8.6 for a look at the effect of the tweaking on the acceptance.

After several corrections, we achieved a result in one dimensional projections of the data and
model which matched very well (see figures 8.7 and 8.8 for the comparison of the one dimensional
projections), and two dimensional projections which matched reasonably well. See figures 8.9 and
8.10 for a comparison of the two dimensional projections. Notice that the discrepancies in the one
dimensional projections are too small for the naked eye, while the basic two dimensional structures
are still modeled well.

The measure of difference for acceptance dropped from 24.02 after just using the nearest-neighbor
technique to 0.016 after tweaking the results. The measure of difference for background dropped
from 62.46 after just using the nearest neighbor technique to 0.060 after tweaking the results. For
a two dimensional y? comparison of the acceptance to model, see appendix H.

8.3 Confidence

Comparing multidimensional data sets can be tricky. The classic one dimensional comparison tests,
like the \? test or the Kolmogorov-Smirnov tests do not translate well to multi-dimensions. There
is one test however which is suited for such a task: The Permutation Test as described by F. James
[Jam 81].

As F. James describes it, the permutation test allows for a comparison between two multidi-
mensional data sets with the freedom to use any distance metric. Given two sets which one wants
to compare, one makes a choice of metric, which defines a distance between these two sets. After
finding this distance, the two sets are combined to form a larger set which is then split randomly
into two new mixed sets.!The idea of the method is that if the two original sets are indeed drawn
from the same underlying density then the mixed sets will also be drawn from the same underlying
density. Therefore, one finds the distance between these two mixed sets and compares it to the
original distance. If this distance is larger (or smaller, depending on the choice of metric) than the
original, there is some indication that the two original sets are from the same underlying distri-
bution. By combining and mixing these sets several times and counting the number of times the

"Exploring whether some of those fluctuations are more than statistical, we looked at whether or not they came
from the cutting of the D resonances as described in chapter 6. Our study can be seen in appendix E.

§ An illustration of this would be to start with a deck of cards which is divided into two sets. one set could be the
black suits and the other the red suits. After finding a way of measuring the difference between these two stacks, the
cards are shuffled randomly, then split into two new stacks, where each new stack is a mix of red and black suits.
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distance exceeds the original, one can get a picture of a confidence level for the hypothesis.

If the two original sets are known to be from identical underlying densities then one expects
that this procedure will yield a 50% confidence level because of the random nature of the selecting
events for the mixed sets.

In our application of the permutation test, we chose our distance metric to be the average
number of points from the set 2 within a radius of 0.2 units of each tested point of set 1. The
dimensions were scaled from 0.0 to 1.0. If the sets are completely separate, then for a small enough
radius, there would be, on average, no points from set 2 within this radius of any point in set 1. As
the two sets are mixed, the average number of points should increase. Therefore, in our case the
confidence is measured by the percent of the distance below the original distance.

To find our distance between the two sets, we used every point from the “real” set and the
“modeled” set. Next, we mixed the two sets, as prescribed, split them into 2 sets, and chose 18
points randomly from set 1. We then proceeded to find the average number of points from set 2
within 0.2 units of each of these 18 points from set 1. If this distance were less than the initial
distance, the confidence increased. We mixed, chose and measured 500 times, and then produced
the confidence for this 500 cycle run. We then did the above nine more times and looked at the
distribution of confidences, from which we found an overall average confidence as well as a standard
deviation.

See table 8.1 for the confidences that we calculated. In this table, “v. uniform” refers to
comparing the actual distribution to a uniformly distributed set of fast MC points. The label “v.
uncorrelated model” refers to the comparison of the actual distribution to a model which assumed
no correlation between the variables. The label “v. model” refers to the comparison of the actual
distribution to the model as seen in figures 8.7 - 8.10. The label “v. self” refers to a comparison
of the actual data set with itself. To do this, we randomly assigned each point into one of the two
sets. We insured that the sets were of the same size by looking at a pair of points at a time.

Real Acceptance(%) | Background (%)
v. uniform 6.8+1.0 19.0£3.2
v. uncorrelated model 22.3+£2.6 30.0£3.0
v. model 51.4+3.8 51.1+£2.9
v. self 51.0£2.0 53.4+4.5

Table 8.1: The confidences for the acceptance and the background.
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Chapter 9

The Fit

We fit the data with the probability density function of chapter 7 using the physics software,
MINUIT. The equation was normalized numerically using 100,000 uniformly distributed phase space
points.

We fit the data with the following resonances:

Fit 1: Nonresonant, K-, and A++

Fits 2a and 2b: Nonresonant, K*O, ATt and A(1520)

Fit 3: Nonresonant, K*O, ATt A(1520), plus the mass plot fit parameters
outlined in chapter 7

Fit 3p: Nonresonant, K*O, AT A(1520), plus the mass plot fit parameters out-

lined in chapter 7 and three values of polarization to match increasing
values of pr.

While fitting, the amplitude parameters of the fit were numerically normalized. For Fit 1, we did
not fit the A(1520). For Fits 1, 2a, and 2b, we fixed the mass plot parameters to their PDG values,
thereby excluding the width dependence on xp. Please, see table 9.1 for the central masses and
widths used in during the fitting process. For Fit 3, we added the reconstructed m,k. parameters
to the fit, and for Fit 3p, we added the pr dependence on the polarization of the A,

When we fit the data, we had to choose a variable to be a reference. All the phases had to be
relative to a single phase, and all the magnitudes to a single magnitude. For fits 1 and 2a, we chose
to fix one of the K amplitudes. For fits 2b, 3 and 3p, we chose to fix a nonresonant amplitude.

9.1 Search for Resonances
For the Fits 1, 2a, 2b, and 3, see appendix I.

9.1.1 Fit 3p: Nonresonant, K*O, ATt A(1520), plus the mass plot fit
parameters and polarization as a function of pr.

Fits 1, 2a, and 2b (in appendix I) were good for getting a feel for which modes were present.
However, the proper fit should include additional factors. One of these factors is that the errors in
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Particle | Mass (GeV/c?) | Width (MeV/c?)
A 2.2896 9.888
K" 0.8961 50.50
ATt 1.2309 111.0
A(1520) 1.5195 15.60
b 0.9383
K 0.4937
m 0.1396

Table 9.1: The masses and widths used for each of the particles in the analysis.
These values, except for the A., were given by the [PDG 98]. The A. mass and
width were found by a MINUIT fit on the final data set, and these values were used
in Fits 1, 2a, and 2b, only. Fits 3 and 3p used the mass and width calculated for
that fit.

the mass plot fit needed to be propagated throughout the fit, so the mass plot fit was incorporated
into the process (as seen in Fit 3). Also, it had been noticed within the Collaboration that the
width of the A, depended on xp (also seen in Fit 3). This, too, was incorporated. A further
consideration is the polarizations dependence on the transverse momentum|[Dha 96]. Taking this,
too, into account makes Fit 3p the most accurate of these fits.

In order to determine if there is a relationship between the polarization of the A. and the
transverse momentum, pr, of the A., we broke the data set into three divisions of pr so that
roughly the same number of events were in each division. The boundaries of these bins and the
number of events in each can be seen in table 9.2.

bin 1 2 3
pr range (GeV/c?) [ 0.00 - 0.71 | 0.71 - 1.24 | 1.24 - 5.21
pr (GeV/c?) 0.45 0.96 1.80
Number of events 758 757 756

Table 9.2: Information on the bins of pr.

For a one dimensional projection comparison of the model and data, see figure 9.1. For a two
dimensional comparison, see figure 9.2. Again, one can see the K™ and the A** resonances. The
A(1520) resonance seems to be there, but its presence is still not as obvious from the plot. The
breakdown of the contribution from each of these modes in the model can be seen in figure 9.3.
Again, we subtracted the one dimensional projections of the model from the real data projections
and We divided these by phase space. The results of this subtraction can be seen in figures 9.4 and
9.5. A plot of the Fit 3p values of polarization can be seen in figure 9.6.

Note that since the mass plot fit was included the projection of the fit has changed from figure
6.5 (p.46). The new projection of the mass plot with the new values can be seen in figure 9.7.
The increase in the number of signal events can be attributed to the increase in the width of the
Gaussian from 9.89 MeV /c? to a function depepdent on zp.

There is also another comparison of this fit in appendices H.2 and H.3. Appendix H.2 contains
a two dimensional y? comparison for the full mass region, and appendix H.3 contains a two dimen-
sional y? comparison for just the signal region, as defined as a reconstructed A. mass from 2.265
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GeV/c? to 2.315 GeV/c?. See figure 6.6 for a visual of this region.

Also note that the K in the real data is slightly more prominent than in the model, as seen
in figure 9.2. This can be explained by the fact that the width of the K™ in the real data is 20%
narrower than the PDG value[PDG 98], as will be explained in section 9.3.

The Breit-Wigner resonance formula we used is the corrected formula as is seen in equations
2.28 and 2.29
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9.2 Statistical Results

In the tables below, the variable ¢ represents the phase of the decay with respect to one of the
nonresonant amplitudes which was assumed to have ¢ = 0.0 and a magnitude of 1.0.

In table 9.4, FCN refers to the function value found by MINUIT. It has only a relative meaning,
in that it is the value that MINUIT is minimizing. It is presented for those who want to draw a
conclusion. Y2 refers to the \? fit found for each of the dimensions used in the fit, as defined in
chapter 8.
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Terms Parameter Value
pK ™ (890) B 0.52+ 0.17
o5, 1.014 0.48
E, 0.20+ 0.10
OB, 2.35%+ 0.67
Es 0.21+ 0.10
oYoR 3.46+ 0.42
E, 0.16+ 0.10
OB, 5.29+ 0.55
ATH(1232)K~ F 0.17+ 0.07
Or 4.984 0.41
F 0.38+ 0.13
Or, 4.88+ 0.40
A*(1520)7r* H, 0.18+ 0.09
O, 5.93+ 0.52
H, 0.20+ 0.07
O, -0.06+ 0.55
Nonresonant A\ 0.46+ 0.26
PN, 3.48+ 0.54
N, 1.00
OGN, 0.00
N_y 0.18+ 0.15
ON_, 0.75+ 0.71
N__ 0.94+ 0.45
ON__ 1.134+ 0.36
Polarization (bin 1) P, 1 0.15+ 0.21
Polarization (bin 2) Py o -0.22+ 0.25
Polarization (bin 3) P.s -0.67+ 0.15
# Signal Events ng 946.22+ 38.38
# Background Events ny, 1324.284+ 43.01
Background Quad Term bq -0.98+ 10.51
Background Linear Term by 1.34%+ 0.48
Mass,, (GeV/c?) my 2.29+ 0.00
Widthy, (MeV/c?) oy 20.08+ 4.77
Widthy, (MeV/c?) Oc 9.28+ 0.55

Table 9.3: The result of the MINUIT fit. Note that the width of the A, peak = o
= 012ZF + 0.
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Fit 3p
FCNiotal 12485.87

X2 mi, 43.3
ISk mfm 43.4
X mix 58.2
2 cos(6,] 39.3 Table 9.4: The result of the MINUIT fit. x? sum; was found by taking 2 the sum
% Dp 41.4 of the first 3 values plus the sum the of the next 3. Each of the first 6 y?’s was
XQ L O 126 found by comparing the model and real histograms spread out over 50 bins.
2 sumy 219.9

x> - m(pKr) 63.8
X2 suMmiotar | 283.7
DOFotal 268

The values which are displayed in table 9.3 along with the covariant matrix generated by MI-
NUIT, give us the fit fraction for each decay, as seen in table 9.5. The errors on fit fraction k were

calculated by Ej = /> %%V}j where f = f(Z) = the fit fraction (as described in equation 2.30

on page 13), x; is the i’ element of #, and V;; is an element from the covariant matrix.

Mode Fit 3p (%)

—*0

K 19.5+2.6
ATT 18.0£2.9
A(1520) RESI

Nonresonant | 54.8£5.5

Table 9.5: The Fit Fraction with statistical errors for the decay A. — pKn from
the MINUIT fit.

9.3 A Comment on the K Width

The width of the K™ is well established with a PDG value of 50.5 MeV. To see the effect of the
resolution of the detector on this width, we weighted the surviving reconstructed MC by a signal
density assuming only a K™ resonance. The Breit-Wigner amplitude used the truth table values
associated with each event. We then fit the resulting peak in the m(Km) projection with a an
unbinned MINUIT fit using the reconstructed m(Kr). See figure 9.8 for the unconstrained mass
and the constrained mass. The width for the unconstrained masses was 51.3+0.4 MeV and for the
constrained masses was 51.1+0.4 MeV.

We also ran Fit 3 with the K" mass and width floating. The converged value for the mass was
0.8934+0.003 GeV and the width was 40.84+7.0 MeV. This may be due to a statistical fluctuation.
Other possibilities include poor modeling of the acceptance near the K mass, but this does not seem
likely looking at the top 8 plots in figure 8.9 on page 65. There may also be possible interference
effects with the nonresonant components, but this seems unlikely given the total fit fraction is
around 100%.
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Figure 9.8: Projection of K™ with fit using unconstrained (left) and constrained
(right) masses.

Because the width is so well established and the constrained width is not too far off of the
accepted value, we used the PDG values in our fits.

9.4 A Comment on the A(1520) Width

Looking at figures 9.1 - 9.3, it may seem that the A(1520) width is too narrow. The PDG value
is 15.6 MeV, but the questions arises as to whether that is what we should use. To see the effect
of the resolution of the detector on the width, we weighted the surviving reconstructed MC by
a signal density assuming only a A(1520) resonance. The Breit-Wigner amplitude used the truth
table values associated with each event. We then fit the resulting peak in the m(pK) projection
with a an unbinned MINUIT fit using the reconstructed m(pK). See figure 9.9 for the unconstrained
mass and the constrained mass. The width for the unconstrained masses was 17.1 MeV and for the
constrained masses was 16.7 MeV.

We also ran Fit 3 with the A(1520) mass and width floating. The converged value for the mass
was 1.46+0.03 GeV and the width was 172440 MeV. This may be due to a weak A(1520) signal or
the presence of an unknown resonance.

Given these findings we concluded that the constraining counterbalanced some of the resolution
problems of the detector and reconstruction. Also, since the floated width was far too large, we
used the PDG value for the width.

9.5 The Search for Other Resonances

As seen in figures 9.1 (p.71) and 9.5 (p.75), there seems to be some other resonance in the low pK
mass phase space. To explore this region, we decided to look for a particle with a mass within the
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Figure 9.9: Projection of A(1520) with fit using unconstrained (left) and constrained
(right) masses.

range of 1.5 GeV - 1.7 GeV, a width on the order of 100 MeV, and a decay mode — NK. Two such
candidates are A(1600) and $(1660). See table 9.6.

Particle | J© | PDG mass range (GeV) | PDG width range (MeV)
A(1600) | I 1.560-1.700 50-250
©(1660) | 17 1.630-1.690 10-200

Table 9.6: The PDG values for two potential resonances.

To search for these resonances, we floated the mass and width of an unnamed spin %Jr particle.
This was done with and without the A(1520) resonance (just in case its presence in the formula was
hiding another resonance).

We also searched for a spin %_ resonance, by floating the mass and width of the particle with
and without the A(1520) was present. See appendix K for more detail on these models as well as
the possible resonance of A(1405) which has a center of mass below the pK threshhold but whose
upper tail extends into the pK mass range.

Overall, there is weak (if any) evidence of any specific additional resonance present in the decay.

However there is evidence of something else in the low pK mass range, as discussed in appendix K.

9.6 Confidence

Subjecting the models to the permutation test used on the acceptance and background, we found
the following confidence levels found in table 9.7. In this table, “uniform” refers to a comparison
of the model to a uniformly distributed set of points; “real” refers to a comparison of the model to
the actual distribution of 2,271 points; and “self” refers to a comparison of the half of the model
to the other half when split randomly into two equally sized sets.
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model vs. | Fit 3p (%)
uniform 12.1+1.3
real 54.1+£3.3
self 52.842.8

Table 9.7: The Confidence of the MINUIT fit using the permutation test described
earlier. In this table, “uniform” refers to a comparison of the model to a uniformly
distributed set of points; “real” refers to a comparison of the model to the actual
distribution of 2,271 points; and “self” refers to a comparison of the half of the
model to the other half when split randomly into two equally sized sets.
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Chapter 10

Systematic Errors

In any analysis of data, there will be more errors than just statistical. The purpose of systematic
errors is to explore potential problems in the modeling of the data. For example, the acceptance
was based on the surviving reconstructed MC. If the detector simulation strayed from how the real
detector operated, this would cause a problem in the acceptance model and the subsequent fitting
procedures. Note that all systematic errors were calculated using fit 3p.

Given this, we considered two types of systematic errors to explore: acceptance related and
background related. The acceptance related systematic errors stem from the Cerenkov probabilities,
the production model, the DC hole parameters, and the affect of tweaking. In these cases, we looked
at the difference in appropriate data and MC parameters, and weighted the surviving reconstructed
MC to account for the difference. Once weighted, we recalculated the acceptance, and redid the
fitting procedure.

The background systematic errors possibly stem from the straight cut of the DT and Dy decay
reflections. When done, we determined that problems with the background were already taken into
account in the initial fitting.

After redoing Fit 3p with the new acceptances, we estimated the effect of the systematic error
by the change in the central value for the fit fractions. After all the scenarios were studied, the
total systematic error was the sum in quadrature of the individual changes from Fit 3p. The fit
fractions for each of the fits seen in table 10.1 can be seen in table 10.2. The total systematic error
can be seen in table 10.3.
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Fit 3p Cerenkov Production DC hole 2D Tweak
Eq 0.524+ 0.17 0.514+ 0.18 0.52+ 0.19 0.57+ 0.26 0.51+ 0.18
O, -1.01+ 0.48 5.334 0.47 5.204 0.47 5.284+ 0.48 5.324 0.49
Es 0.20+ 0.10 0.194+ 0.10 0.214+ 0.10 0.22+ 0.12 0.20+ 0.10
OB, 2.35+ 0.67 2.46% 0.66 2.324 0.65 2.494 0.66 2.294 0.73
Es 0.214 0.10 0.194 0.09 0.20% 0.10 0.26% 0.13 0.19+ 0.09
oYoR 3.46+ 0.42 3.584+ 0.45 3.49+ 0.44 3.61+ 0.45 3.47+ 0.47
E, 0.16+ 0.10 0.144+ 0.09 0.184+ 0.10 0.20+ 0.12 0.17+ 0.09
OB, 5.294+ 0.55 5.35+ 0.58 5.344+ 0.53 5.384+ 0.54 5.304 0.54
F 0.174+ 0.07 0.174+ 0.07 0.174+ 0.08 0.20+ 0.10 0.15+ 0.07
Or 4.98+ 0.41 5.024+ 0.40 4.97+ 0.41 4.96+ 0.43 5.104 0.44
E 0.384+ 0.13 0.364 0.13 0.39+ 0.14 0.444+ 0.20 0.37+ 0.13
OF, 4.88+ 0.40 4.90+ 0.40 4.82+ 0.40 4.81+ 0.43 4.86+ 0.42
H, 0.184 0.09 0.194 0.10 0.18%+ 0.10 0.184+ 0.11 0.18% 0.08
ou, 5.93+ 0.52 5.98+ 0.53 5.984+ 0.52 6.03+ 0.57 5.884+ 0.51
H, 0.204+ 0.07 0.204 0.07 0.21+ 0.07 0.22+ 0.09 0.184+ 0.07
O, -0.06+ 0.55 6.27+ 0.56 6.21+ 0.54 6.29+ 0.54 6.23+ 0.58
Ny 0.46+ 0.26 0.434+ 0.25 0.51+ 0.28 0.54+ 0.36 0.484+ 0.27
DN,y 3.484+ 0.54 3.52+ 0.56 3.43+ 0.52 3.60+ 0.54 3.51+ 0.54
\ 1.00 1.00 1.00 1.00 1.00
OGN, 0.00 0.00 0.00 0.00 0.00
N 0.184 0.15 0.184 0.15 0.21+ 0.16 0.32+ 0.22 0.14+ 0.14
ON_, 0.754+ 0.71 0.824+ 0.71 0.69+ 0.64 1.01£ 0.55 0.61+ 0.86
N__ 0.94+ 0.45 0.93+ 0.48 0.95+ 0.47 0.99+ 0.60 0.91+ 0.44
ON__ 1.13+ 0.36 1.20+ 0.37 1.134+ 0.36 1.18+ 0.38 1.10+ 0.38
P, 1 0.154+ 0.21 0.144+ 0.21 0.14+ 0.21 0.12+ 0.20 0.11+ 0.22
Py.o -0.22+ 0.25 -0.224+ 0.25 -0.244+ 0.25 -0.25+ 0.23 -0.25+ 0.26
Pa.s -0.67+ 0.15 -0.66+ 0.15 -0.69+ 0.15 -0.67+ 0.16 -0.71+£ 0.14
ng 946.224+ 38.38 | 951.28+ 38.55 | 956.084+ 38.52 | 912.56+ 37.83 | 918.55+ 37.43
ny 1324.284+ 43.01 | 1319.22+ 43.05 | 1314.43+ 42.91 | 1357.944+ 43.30 | 1351.964 42.82
bq -0.98+ 10.51 0.11+ 10.68 1.39+ 10.82 -8.22+ 9.61 -7.51£ 9.61
by 1.34+ 0.48 1.34+ 0.48 1.354 0.49 1.39+ 0.46 1.31+ 0.46
Mg 2.294+ 0.00 2.294+ 0.00 2.294 0.00 2.294 0.00 2.294 0.00
o1 20.08+ 4.77 20.38+ 4.84 19.75+ 4.79 21.04+ 4.80 19.604 4.65
Oc 9.284+ 0.55 9.35+ 0.55 9.42+ 0.56 9.07+ 0.55 9.14+ 0.54

Table 10.1: The parameter values from the MINUIT fit for Fit 3p and each system-

atic study.
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Mode Fit 3p | Cerenkov(%) | Production(%) | DC hole(%) | 2d Tweak(%)
kP 19.5+£2.6 18.9£2.7 19.5£2.7 21.24+3.0 19.842.8
AT 18.0£2.9 16.8+£2.8 18.1£2.9 20.5%3.3 17.3£2.9

A(1520) 7.7£1.8 8.3x1.9 7.6£1.8 6.8+1.7 7.3£1.8

Nonresonant | 54.8+5.5 59.945.8 54.9+5.7 51.6%6.5 55.7£5.8

Table 10.2: The fit fractions for the decay A. — pKn from the MINUIT fit.
Mode Ckv(%) | Prod(%) | DC hole( %) | 2d Tweak(%) | Syst Error (%)

pK* 0.6 0.0 +1.7 +0.3 1.8
ATTK™ -1.2 +0.1 +2.5 -0.7 2.9
A(1520)7* | +05 | 0.1 +0.9 0.4 11
Nonres +1.1 +0.1 -3.2 +0.9 3.5

Table 10.3: Deviations from the fit 3p fit fractions for the Systematic Errors.
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10.1 Estimated Cerenkov Probabilities

To determine the effect of the Cerenkov probabilities of the kaons and protons on the final fit,
we needed to determine the difference between the probabilities in MC and real data. It had
already been determined in the collaboration that there was a dependence in the probabilities on
the momentum (p) and transverse momentum (pr) of the particles.

So we first looked at p and pr in the background subtracted real data of each type particle
to determine the bins for pr. (We were trying to create bins which would have roughly the same
number of data points.) We then found as pure a source of kaons and protons as we could find
to determine the efficiency of the Neural Network cut on the respective Cerenkov probability. We
then let the total weight of the Cerenkov probabilities be the product of the kaon weight and the
proton weight.

Once this product was established, we normalized the weights to an average of 1.0. We then
recalculated the acceptance using the nearest-neighbor technique but instead of dividing 4 by the
volume required to encompass those points, as was described in chapter 8, we divided the weighted
sum by the volume. With this new acceptance, we ran our base fit through the analysis and
recalculated the fit fractions with errors.

10.1.1 Kaons

Given the third row from figure 10.1, we selected 3 bands in pr which contained roughly the same
number of events. See table 10.4 for the numbers used. We then looked at reference [Bar 87] for
appropriate bands for p. These bands were selected by the momentum at which the two Cerenkov
detectors would start to identify a new particle. See figure 10.2 for a visual of the bands.

pr (GeV/c) | 0.0-0.4 | 0.4-0.6 | 0.6-
p (GeV/c) | 6-10 | 10-15 | 15-20 | 20-25 | 25-35 | 35- |

Table 10.4: The bands used for binning the events by p and pr.

Once the bands were established, we needed a kaon source. Using a sample of D — Knw, we
cleaned it up using DIP and PTBAL*cuts of 0.0029 cm and 0.1624 GeV/c, respectively, which
reduced the data set to an estimated 20,000 signal events. See figure 10.3 for a display of the
reconstructed Knn’s before and after the cuts.

To determine the weights needed for the new acceptance, we had to look at the efficiencies
of the Cerenkov probability cuts on the A. MC data in each bin of p and pr. Looking at figure
10.4, we found a third order polynomial curve to model the way the data were cut. Note that the
probabilities start at 0.13.

Therefore, we looked at the Kaons from the D source and calculated how many K’s survived by
a hard cut at 0.13 and a weighted cut corresponding to the curve. In other words, if the kaon has
a pr greater than 0.6 GeV/c, a p between 25 GeV/c and 35 GeV/c, and a probability of 0.5, then
it was assumed that the efficiency for that event was ~0.70. Using this technique we established a

*As defined earlier on page 42 with an adjustment from A. to D, DIP is the distance in the xy-plane between the
primary vertex and the line of flight of the reconstructed D and PTBAL is the absolute value of the pr of the vector
sum of all the secondary tracks with respect to the flight path of the reconstructed D
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Figure 10.1: Kaons from A. data. Row 1: Full real data set. Row 2: Background
data scaled up to 1384 events (as predicted by MINUIT). Row 3: Background

subtracted real data.
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Figure 10.2: The boundaries of the bins chosen displayed on background subtracted
Kaons from A. data.

weight for any event within a particular band of p and pr. Note that if the weight based on the
fitted polynomial greater than 1.0 the weight was set to 1.0, and if less than 0.0, the weight was set
to 0.0. See tables L.1-1..12 in appendix L for the progression of results, and tables 10.5-10.7 for the

final efficiencies. The weights for the surviving MC were then averaged to 1.0.
The error on the efficiencies is Ae = \/% where € is the efficiency of the cut and N is the
number of events prior to the cut. The error on the ratio is the errors of the efficiencies added in

quadrature.
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Figure 10.4: The effect of the Neural Net cut on the Kaon Cerenkov probabilities
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p and pr.
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pr (GeV)

p (GeV) | 0.0-04 | 0406 0.6-
6-10 | 0.33£0.03 | 0.43£0.03 | 0.26£0.03
10-15 | 0.46+0.02 | 0.58+£0.02 | 0.45+£0.02
15-20 | 0.5320.02 | 0.56+0.02 | 0.59£0.01
20-25 | 0.40+0.02 | 0.53£0.02 | 0.58+0.01
25-35 | 0.30+0.02 | 0.43+£0.02 | 0.54+0.01
35- | 0.2240.02 | 0.27+0.01 | 0.24+0.01

Table 10.5: Efficiency of the NN cut on real — Knr data within the m(Kn7) of
1.84 GeV/c? - 1.92 GeV/c2.

pr (GeV)

p (GeV) | 0004 | 0406 0.6-
6-10 0.26£0.03 | 0.36£0.04 | 0.28+0.04
10-15 | 0.39%£0.03 | 0.57£0.03 | 0.46£0.02
15-20 | 0.51£0.03 | 0.5240.02 | 0.59+£0.02
20-25 | 0.37£0.03 | 0.4940.02 | 0.55%0.02
25-35 | 0.29£0.02 | 0.38+0.02 | 0.48£0.01

35- 0.134+0.01 | 0.13£0.01 | 0.1240.00

Table 10.6: Efficiency of the NN cut on MC — Knr data within the m(Kn7) of
1.84 GeV/c? - 1.92 GeV/c2.

pPr (GGV)
p (GeV) 0.0-0.4 0.4-0.6 0.6-

6-10 1.26+£0.19 | 1.194£0.16 | 0.924+0.16
10-15 1.1840.10 | 1.02+0.06 | 1.00%0.06
15-20 1.034+0.07 | 1.07£0.06 | 1.00+£0.04
20-25 1.0940.10 | 1.07£0.07 | 1.05+0.04
25-35 1.0640.09 | 1.14£0.07 | 1.12+0.03

35- 1.60£0.17 | 2.03£0.14 | 2.00%0.08

Table 10.7: The ratio of the real data efficiency to the MC data efficiency.
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10.1.2 Proton’s

Given the third row from figure 10.5, we selected 3 bands which contained roughly the same number
of protons from the real A. data events. See table 10.8 for the numbers used. See figure 10.6 for a
visual of the bands.

pr (GeV/c) [ 0.0-0.6 | 0.6-0.9 [ 0.9-
p (GeV/e) | 6-20 | 20-30 | 30-40 | 40-50 | 50- |

Table 10.8: The bands used for binning the events by p and pr.
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Figure 10.5: Protons from real A. data. Row 1: Real data from full data set. Row 2:
Background data (from wings) scaled up to 1384 events (as predicted by MINUIT).
Row 3: Background subtracted real data.
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Figure 10.6: The boundaries of the bins chosen displayed on background subtracted
protons from real A. data.

Once the bands were established, we needed a proton source. For this, we selected the decay
mode, A — pr. fSee figure 10.7 for the plot of the reconstructed pr. The requirements that we
applied to the proton and pion tracks were:

1. ¥ <5.0
2. 0.5 GeV/c < p < 500.0 GeV/c

3. total charge = 0.0

W

.3 < jeatsg < 15

ot

. 1.08 GeV/c? < mp_pr < 1.16 GeV

6. Mg .. is outside range of 0.49 GeV/c? - 0.51 GeV /c?

The last item is to eliminate the possible K — 77 reflections in the data.

To determine the weights needed for the new acceptance, we had to look at the efficiencies of the
Cerenkov probability cuts on the data. Looking at figure 10.8, we found a third order polynomial
curve to model the way the data were cut in each bin of p and pr. See tables L.13-L.24 in appendix
L for the progression of results, and tables 10.9-10.11 for the final efficiencies.

The error on the efficiencies is Ae = \/# where € is the efficiency of the cut and N is the
number of events prior to the cut. The error on the ratio is the errors of the efficiencies added in

quadrature.

"The real data came from the tape internally labelled LA1068 which had been produced at the University of
Mississippi. For MC, we generated our own.
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Figure 10.8: The effect of the Neural Net cut on the Proton Cerenkov probabilities
as demonstrated by the MC A. data.
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pr (GeV)

p (GeV) 0.0-0.6 0.6-0.9 0.9-
6-20 0.27£0.00 | 0.46£0.00 | 0.60+0.01
20-30 | 0.50+£0.01 | 0.69£0.01 | 0.734£0.01
30-40 | 0.60+£0.01 | 0.74£0.01 | 0.82£0.01
40-50 | 0.70+£0.02 | 0.79£0.01 | 0.88+0.01

50- 0.66+0.02 | 0.76+0.02 | 0.76£0.01

Table 10.9: The efficiency of NN cut on the protons from Real A — pw data within

the mass range of 1.1056 GeV/c? - 1.1264 GeV/c2.

pr (GeV)

p (GeV) 0.0-0.6 0.6-0.9 0.9-
6-20 0.17£0.00 | 0.37£0.01 | 0.504+0.01
20-30 | 0.39£0.01 | 0.53+0.01 | 0.60£0.01
30-40 | 0.46%+0.02 | 0.52£0.02 | 0.6440.02
40-50 | 0.4840.03 | 0.58+£0.03 | 0.65£0.03

50- 0.32£0.05 | 0.52£0.04 | 0.47+0.02

Table 10.10: The efficiency of the NN cut on the protons from MC A — p7 data

within the mass range of 1.1056 GeV/c? - 1.1264 GeV/c.
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pr (GeV)

p (GeV) 0.0-0.6 0.6-0.9 0.9-
6-20 1.5940.03 | 1.24+£0.03 | 1.20£0.03
20-30 | 1.284+0.03 | 1.29£0.04 | 1.2240.03
30-40 | 1.30+£0.05 | 1.44+£0.07 | 1.27£0.04
40-50 | 1.46+£0.10 | 1.37£0.08 | 1.3440.05
50- 2.08£0.35 | 1.45£0.12 | 1.61+0.08

Table 10.11: The ratio of the efficiencies from the NN cut of the Real A — px data

to the MC data.
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10.2 The Production Model

To explore the production model, we looked at the Feynman x (zr) and the square of the transverse
momentum (p%) of each decay. We first found xr and p% for each of the 2,271 final decay events and
the 11,454 MC events used for modeling the acceptance. From the final decay events, we plotted the
projection of these variables for the 940 events used to model the background, scaled these events to
simulate the 1,384 background events calculated by MINUIT, and subtracted the background from
the full sample. We then smoothed the background subtracted and MC projections and found the
ratio of background subtracted to MC for each bin. See figure 10.9 and 10.10 for the projections of
the above explanations. The large bin size for p% was chosen to avoid statistical fluctuations.
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Figure 10.9: p3 and zp for A.. Row 1: Real data. Row 2: Background data scaled
up to 1384 events (as predicted by MINUIT). Row 3: Background subtracted real
data. Row 4: Surviving reconstructed MC.
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Figure 10.10: p% and xr for A.. Row 1: Smoothed background subtracted real data.
Row 2: Smoothed MC. Row 3: The ratio of normalized background subtracted real
data to normalized MC.
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The weight used for the 11,454 events was the product of the size of the corresponding bin for
each event in each projection. The weights were then averaged to 1.0. We then recalculated the
acceptance using the nearest-neighbor technique but instead of dividing 4 by the volume required
to encompass those points, as was described in chapter 8, we divided the weighted sum by the
volume. With this new acceptance, we ran our base fit through the analysis and recalculated the
fit fractions with errors.
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10.3 DC hole Parameters

In order to explore the effect of the drift chamber (DC) holes* , we looked at all the surviving
reconstructed MC to see the survival rate as a function of the hole. See figure 10.11 for a histogram
of the relationship between the hole parameter and the survival rate. Since an equal number of MC
were generated with each hole parameter the relative number of surviving MC is the same as the
relative efficiency for each hole. We then used the events from the first two holes and used it to
model the acceptance using the nearest-neighbor technique again.

[~ 1D 2
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— Mean 2.816

250@ j RMS 1.400

2000 | ]
1500 |
1000 |
500 |

O :\ l ‘ Ll 1 ‘ Ll 1 | ‘ Ll 11 ‘ Ll 1 | ‘ L

1 2 3 4 5
hole

Figure 10.11: The number of surviving reconstructed MC by DC hole.

fThere was a problem with excess ionization at the point where the beam hit the DC. As the time of the experiment
went on, this created a drop in efficiency for certain parts of the DC. This problem area is referred to as the DC
hole. As time went on this hole increased in size. This was treated by incorporating this hole into the analysis of the
data. See page 30.
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10.4 Tweaking

When adjusting the acceptance model to match the one dimensional projections, we ignored the
possibility of adjusting to match the two dimensional projections. Unsure of the potential effect
of this new adjustment, we treated it as a possible systematic error. We, therefore, tweaked the
K-nearest-neighbor model to match the two dimensional projection if each projection was binned
in a 12x12 histogram. we then reran the fit with this new acceptance model. See appendix J for a
x? comparison of the surviving reconstructed MC (the acceptance) and the new model.

10.5 Reflections in the Background

One of the early cuts made was to remove the D reflections from the data set. After all the cuts
were made, did these reflections still seep their way into the analysis?

10.5.1 ¢

Looking for a common D resonance of ¢, we created figures 10.12 - 10.14. Although ¢ appears to
have a small peak as seen in figure 10.12 (as it is not seen in figure 10.13), these decays are mostly
seen in the the wings, noted by their diminished presence in figure 10.14. With approximately 20
¢’s in the final data set, we would expect, assuming they are in the background, that there would
be around 6 ¢’s in the signal region, which there seem to be. Thus, we assume that this reflected
resonance is already taken into account in our background model.
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m(KK) (GeV/c?)

Figure 10.12: The KK mass from the final real data set.

10.5.2 K"

Looking for K™ in the signal region, we looked for the K5 in the signal region, the wings, and all
of the data set. Fixing the K™ mass and width, we projected the data set onto the K7 mass axis
and fit the a Breit-Wigner resonance and quadratic background to the plots. From this MINUIT
predicted 278+33 K in the signal region, 58+24 in the wings, and 339+41 in the total set. See
figure 10.15. 58 K" in the wings would correspond to 85+35 in the total sample and 27 in the
signal region. This would indicate that the number of K™ which are part of the signal is 251. Based
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Figure 10.13: The KK mass from the surviving reconstructed MC set.
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Figure 10.14: The KK mass from the signal region of the final data set.
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on the fit fraction in the model, there should be 232436 K™s. This also indicates that the number
of K'%s in the signal region is less than a ¢ and therefore should be taken into account properly by
the background model.
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Figure 10.15: K™ as seen in the signal region, the wings, and the combined signal
region and wings.

10.5.3 A**(1232)

We also looked for A**(1232) in the background but referring to figure 10.16, none can be see in
the wings (the middle plot).
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5
0 8]
Real signal m (GeV) pr Real wings m (GeV) pr Real m(GeV) pr

Figure 10.16: ATT as seen in the signal region, the wings, and the combined signal
region and wings.
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Chapter 11

Conclusion

Our final fit fractions can be found in table 11.1.

Mode Fit Fraction (%)
pK " (890) 19.542.6+1.8
ATH(1232)K~ 18.0£2.942.9
A(1520)7" | 7aE18E11
Nonresonant 54.8£5.5£3.5

Table 11.1: The decay fractions for AT — pK~7" with statistical and systematic
errors from the final fit.

In addition to the nonresonant decays, the pK*O and the ATTK~ modes definitely exist with
significant branching fractions. This demonstrates that the exchange diagram contributes signifi-
cantly in charm baryon decays. The fit prefers a A(1520) contribution at around the 3 o level. We
also allowed for the A(1600) and 3(1660) resonances in our data and found no significant evidence
for either of them. We did find that the fit favored a spin %7 particle with a mass of 1.565 GeV/c¢?
and a width of 332 MeV/c?, but there is no known particle with this description. We also found
some evidence for the upper tail of the A(1405) (— pK) but believe a higher statistics experiment
can comment more conclusively.

Comparing our branching ratios (not fit fractions - see section 2.7 for the difference) to previous
experiments, as seen in Table 11.2, one can note that the the NA32 values are similar to ours.
Although we used a more sophisticated approach to the problem, this decay does not demonstrate
much interference, as is also demonstrated by the fit fractions in Table 9.5 adding up close to 100%.

Mode E791 NA32[Boz 93] | ISR[Bas 81]
pK " (890) | 0.2940.04-+0.03 | 0.3579:9°+0.03 | 0.42+ 0.24
ATH(1232)K~ | 0.1840.0340.03 | 0.127905+£0.05 | 0.4040.17
A(1520)7 | 0.1540.0440.02 | 0.097593+0.02
Nonresonant | 0.5540.0640.04 | 0.567005+0.05

Table 11.2: Branching ratios relative to AZ — pK~7t. The NA32 and ISR values
were calculated from the projections only and do not include the phase uncertainty.
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Appendix B

E791 Data Summary Tape Format
Version 7 for Farm Release 7

November 1993
ENDCOMM

DST Version 7 10
Bank & Packing Source Variable

1)HEADER: 9
/runid/ run_number  RUN NUMBER
/scaler791/event_number EVENT NUMBER HI
/scaler791/event_number EVENT NUMBER LO
/dst/ idstvn DST TABLE VERSION NUMBER
/analys_info/filter_vsn Filter Code Version
/scaler791/spill_number SPILL NUMBER
/scaler791/time_in_spil TIME IN SPILL HI
/scaler791/time_in_spil TIME IN SPILL LO

/dst/ dsterr PACKING ERROR
2)TRACKS: 33

/tracks/ ntrk TRACKS (N)

/tracks/ ierpm2 LINKED SMD TRACKS
/risort/ incer TRACKS IN CERENKOVS
/risort/ incal TRACKS IN CALORIMETERS

/rilsort/  linked,nstubsLINKED SMD CAT 3,7,15,28;0
/strint/  nx,nyview STR TRACKS
/strout/ nv,n3view STR TRACKS

/tracks/ dof DEGREES OF FREEDOM
/tracks/  q,jcatsg Q & JCATSG
/tracks/ xis CHI SQUARE
/risort/  xisqvx VX CHI SQR CONTR
/rlsort/  sorted XINTERCEPT R1
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/risort/
/risort/
/risort/
/tracks/
/etrxcm/
/risort/
/risort/
/etrxcm/
/etrxcm/
/etrxcm/
/risort/
/strout/
/ricand/
/ricand/
/etrxcm/
/risort/
/ricand/
/ricand/
/ricand/
/ricand/
/strout/
3)NEUTRAL
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
4)PHOTONS:
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/
/calsum/

sorted
sorted
sorted

pp
errtrx(15)
sermat
sermat
errtrx(11)
errtrx(12)
errtrx(13)
xissmd
iuniq3
rlcand_chi
ricand_dof
errtrx(14)
ndfsmd
ricand_par
ricand_par
ricand_par
ricand_par
iuniq3
HADRONS:
nhadn

ical

jcal
iuscal
pécal
decal

xcal

ycal

zcal

dxcal
dycal
probha

nfoton
ical
jcal
iuscal
pécal
decal
xcal
ycal
dxcal

DXDZ R1
YINTERCEPT R1
DYDZ R1
Q=1/P

DQ

ERR MAT DIAG

ERR MAT OFF-DIAG
ERR MAT MOM-CORR
ERR MAT MOM-CORR
ERR MAT MOM-CORR
CHI SQUARE FROM SMD
UNIQUE HITS

REFITTED SMD CHI SQUARE

REFITTED SMD DOF
ERR MAT MOM-CORR

SMD DEGREES OF FREEDOM

STUBS XINTERCEPT R1

STUBS DXDZ R1
STUBS YINTERCEPT R1
STUBS DYDZ R1

STUBS UNIQUE HITS
12

NEUTRAL HADRONS (N)
PARTICLE TYPE
PARTICLE INDEX
CALORIMETER FLAG
ENERGY

ERROR IN ENERGY

X CENTROID

Y CENTROID

Z CENTROID

ERROR IN X CENTROID
ERROR IN Y CENTROID
HADRON PROBABILITY
12

PHOTONS (N)
PARTICLE TYPE
PARTICLE INDEX
CALORIMETER FLAG
ENERGY

ERROR IN ENERGY

X CENTROID

Y CENTROID

ERROR IN X CENTROID
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/calsum/
/calsum/
/calsum/
5)PIZERDS:
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/
/pizout/

dycal
testb
testc

npiz
igmpiz
icomp
itpiz
prpiz2
ampiz
dmpiz
pépiz
pépiz
pépiz
depiz
dthpi
dphpi
iqualpiz

6) VERTICES:

/vtxpar/
/tkpars/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/vtxpar/
/tkpars/

nvert
ntkvtx
chvtx
Xyzvtx
Xyzvtx
Xyzvtx
errvtx
errvtx
errvtx
ndfofvtx
CovvVtx*
CovvVtx*
covvtx*
itkvtx

7)PARENT TRACKS:

/parent_tr
/srtprt/
/xitrk/
/parent_tr
/parent_tr
/parent_tr
/parent_tr
/parent_tr
/parent_tr
/srtprt/

num_parent
numpc?2
numxitrk

typ_prnt (ip)

pjcatsg(ip)

num_dtrs (ip)
idx_trax(ip)
typ_dtr(id,i
idx_dtr(id,i

iptpc2

ERROR IN Y CENTROID
RATIO OF 2 LOWEST ENERGIES
CALCULATED U POSITION

14

PI ZEROS (N)

POINTER TO PHOTONS
COMPETING PI ZEROS

PI ZERO TYPE

PAIR QUALITY

MASS

ERROR IN MASS

X MOMENTUM

Y MOMENTUM

Z MOMENTUM

ERROR IN ENERGY

ERROR IN DECAY PLANE ANGLE
ERROR OUT-OF-PLANE ANGLE
PI ZERO QUALITY

14

20*xNPRI+NSEC (N)

VERTEX TRACKS (M)

CHI SQUARE

X POSITION

Y POSITION

Z POSITION

ERROR IN X

ERROR IN Y

ERROR IN Z

DEGREES OF FREEDOM

XY ERR / (X ERR * Y ERR)
XZ ERR / (X ERR * Z ERR)
YZ ERR / (Y ERR * Z ERR)
POINTER TO SMD TRACKS

34

NUMBER OF PARENTS (N)
NUMBER WITH PCATSG=2 (N2)
NUMBER OR HYPERON TRACKS
HEP ID OF PARENT

REC ID OF PARENT

DECAY MULTIPLICITY (M)
POINTER TO TRACKS

HEP ID OF DAUGHTERS
POINTER TO SMD TRACKS
POINTER TO PARENT
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/parent_tr pdtr_ml
/parent_tr pdtr_ml
/parent_tr pdtr_ml
/parent_tr pdtr_ml
/parent_tr pdtr_ml
/parent_tr pdtr_ml
/parent_tr parvtx
/parent_tr parvtx
/parent_tr parvtx
/parent_tr pardca
/xitrk/

/xitrk/ xitrk_par(2)
/xitrk/ xitrk_par(3)
/xitrk/ xitrk_par(4)
/xitrk/ xitrk_err
/xitrk/ xitrk_err
/xitrk/ xitrk_chi
/xitrk/ xitrk_eff
/xitrk/ xitrk_qual
/xitrk/ xitrk_dof
/xitrk/ xitrk_fnd
/xitrk/ xitrk_uniq
/xitrk/

/xitrk/ xitrk_flg
8)BEAM TRACKS:
/beamout/ nbeam
/beamout/ btracks
/beamout/ btracks
/beamout/ btracks
/beamout/ btracks
/beamout/ bchisq
/rilsort/  nbhcod
/beamout/ Dberr
/beamout/ berr
/beamout/ berr

9) CERENKOV :

/risort/ incer
local

/ckvid/ cprb2
/ckvid/ cprb2
/ckvid/ cprb2
/ckvid/ cprb2
/ckvid/ cprb2

xitrk_par (1)

PX OF DAUGHTER
PY OF DAUGHTER
PX OF DAUGHTER
PY OF DAUGHTER
PZ OF DAUGHTER
PZ OF DAUGHTER 2
VERTEX X POSITION
VERTEX Y POSITION
VERTEX Z POSITION
VERTEX DCA

X INTERCEPT

X SLOPE

Y INTERCEPT

Y SLOPE

ERR MAT DIAG

ERR MAT OFF-DIAG

CHI SQUARE

EFFICIENCY

QUALITY

DEGREES OF FREEDOM
NUMBER OF HITS FOUND
NUMBER OF UNIQUE HITS

= NN -

xitrk_to_prntPOINTER TO PARENT

POINTER TO R1CAND
11

BEAM TRACKS (N)

NOT USED

BEAM X INTERCEPT
BEAM X SLOPE

BEAM Y INTERCEPT
BEAM Y SLOPE

CHI SQUARE
10*SMD+PWC HITS
ERR INTERCEPT

ERR SLOPE

ERR CROSS TERMS

7

TRACKS ACCEPTED (N)
POINTER TO TRACKS
PROBABILITY ELECTRON
PROBABILITY MUON
PROBABILITY PION
PROBABILITY KAON
PROBABILITY PROTON
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10) CALORIMETRY:

/risort/ incal
local

/calsum/  ical
/calsum/  jcal
/calsum/ iuscal
/calsum/  kevb11l
/calsum/ esl
/calsum/  ehdm
/calsum/  decal
/calsum/  emprob
/calsum/  probmu
/calsum/ xcal
/calsum/  ycal
/caldst/  secmom
/caldst/ ehmin
/caldst/ iuvwid,hadco
/caldst/ caldx
/caldst/  caldy
11)MUQON:

/mutrks/ mucands
/mutrks/  nmutrk
/mutrks/  mupadx
/mutrks/  mupady
/mutrks/  mutdcx
/mutrks/  mutdcy
/mutrks/ eslicu
/mutrks/ eslicv
/mutrks/  eslicy
/mutrks/  ehadx
/mutrks/  whadx
/mutrks/ fthadx
/mutrks/  ehady
/mutrks/  whady
/mutrks/  fthady
12)MISCELLANEOUS:
/cam791/ muon_front
/cam791/ muon_back
/cam791/ muon_back
/esum791/ esum
/esum791/ esum
/esum791/ esum
/esum791/ esum

/etrig_recal/et

18

TRACKS ACCEPTED (N)
POINTER TO TRACKS
PARTICLE TYPE

PARTICLE INDEX
CALORIMETER FLAG

BIT PATTERN

ENERGY IN SLIC

ENERGY IN HADROMETER
ERROR IN TOTAL ENERGY
EM PROBABILITY

MU PROBABILITY

X CENTROID

Y CENTROID

2ND MOMENT OF ENERGY DISTR
HADROMETER VIEW ENERGY
2% IUVWID+HADCONG

TRACK TO SHOWER X SEPAR
TRACK TO SHOWER Y SEPAR
15

NUMBER OF MU CANDIDATES (N)
POINTER TO TRACKS
POINTER TO X PADDLES
POINTER TO Y PADDLES

X PADDLE TDC VALUES

Y PADDLE TDC VALUES
CANDIDATE SLIC U ENERGY
CANDIDATE SLIC V ENERGY
CANDIDATE SLIC Y ENERGY
CANDIDATE HADR X ENERGY
CANDIDATE HADR X WIDTH
HADR FRONT/TOTAL ENERGY
CANDIDATE HADR Y ENERGY
CANDIDATE HADR Y WIDTH
HADR FRONT/TOTAL ENERGY
26

FRONT MUON LATCH

BACK MUON LATCH-HI

BACK MUON LATCH-LO

BEAM SPOT ADC
INTERACTION ADC

ET ADC

ETOT ADC

ET RECALCULATED
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/etrig_recal/etot

/tag_count/itagbit

/tag_count/jtagbit (1)
/tag_count/jtagbit (2)
/tag_count/jtagbit (3)
/tag_count/jtagbit (4)
/tag_count/jtagbit (5)
/tag_count/jtagbit (6)
/tag_count/jtagbit (7)
/tag_count/jtagbit (8)
/tag_count/jtagbit (9)
/tag_count/jtagbit (10)
/tag_count/jtagbit(11)
/tag_count/jtagbit (12)
/tag_count/jtagbit (13)
/tag_count/jtagbit (14)
/tag_count/jtagbit (15)
/tag_count/jtagbit (16)

ETOT RECALCULATED

MASTER TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG
SUB TAG

BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
BITS
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Appendix C

Strip Criteria

This appendix was written by Arun Tripathi on Aug 17, 1999[Tri 93]. The wording is Arun’s, thus
“I” does not refer to George Fox. The rest of this appendix is verbatim with some mild format
adjustments.

sk sk o ok ok ok sk skok ok ok o ok kK
PURPOSE of this document is to list all the cuts used by the

REL 6 strip code for each tag for STREAM A and B. Stream A contains
tags 1 through 9 and STREAM B contains tags 10 through 16. The
information is listed in the following sequence:

Tag Number

The Code that is used to get this tag

Author of the code (if this information is available)
What the code does.

The cuts used.

>k 3k 5k >k >k %k 5k Xk %k 5k 5k %k %k k Xk

There is one logical called ITPOK that is used to make some

simple cuts that is used by several of the following routines. I will
describe what ITPOK does here in the begining so that I don’t have to
do it over and over again.

ITPOK(I): ITPOK is a logical, and its argument I is the vertex number
from the vertex list. It is set to TRUE if and only if all of
the following conditions are satisfied. It is set in the
routine call TAG_CUTS.F:

1. Number of tracks at the vertex .gt. O.

2. Number of tracks at the vertex .le. MAXITF( = 35 in
release 6).

3. Track category of each track at the vertex .ge. 3.
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4. Charge of each track at the vertex .ne. 0.
5. Momentum of each track at the vertex .gt. O.
6. Track chi-square ( XIS ) for each track .le. 6.5.

In what follows, if the reference to ITPOK is made, it will be
understood that all the above mentioned cuts ( most of which
are trivial) are being made.

>k 3k 5k >k >k 5k 5k >k %k 5k >k %k %k k & %k k

Tag Number: 1
Code: TAG_RASV2.F
Author: Ai Nguyen
Purpose: Tag 2-prong candidates from the vertex list. There is a
mass window cut, so that it is not suitable for
unconstrained decays.

Cuts:

1. Number of tracks at the secondary vertex = 2.

2. ITPOK .eq. TRUE

3. Charge of secondary = 0.

4. Pt-balance of the secondary .le. 1.0 GeV.

5. SDZ .gt. 5.

6. Invariant mass of the vertex .gt. 1.7 GeV, where the

invariant mass is calculated based on KPi, PiK, pipi,
and KK hypotheses. If any of these hypotheses gives an
invariant mass greater than 1.7 GeV, the event is saved,
if conditions 1 through 5 are also satisfied.

Tag Number: 2
Code: TAG_RASC3.F
Author: Ai Nguyen
Purpose: Tag 3-prong secondaries from the vertex list.
Cuts:
. Number of tracks at the secondary vertex = 3.
. Absolute value of the charge of secondary vertex = 1.
ITPOK .eq. TRUE.
. Pt-balance of the secondary .le. 1.0 GeV.
SDZ .gt. 5.
. Proper decay time .1t. 5.0 ps. The proper decay time is
calculated assuming that the parent of the vertex was
a D+(-).

O WN -

Tag Number: 3
Code: TAG_RASV4.F
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Tag

Tag

Author: Ai Nguyen
Purpose: Tag 4-prong secondaries from the vertex list.
Cuts:

1. ITPOK .eq. TRUE

2. Number of the tracks at the secondary vertex = 4.
3. Charge of the secondary vertex = 0.

4. Pt-balance of the secondary .le. 1.0 GeV.

5. SDZ .gt. 5.

Number: 4

Code: TAG_NPRONGS.F

Author: Ai Nguyen

Purpose: Tag 5- and higher prong secondaries from the

vertex list.

Cuts:

1. Number of tracks at the secondary .gt. 4.

2. ITPOK .eq. TRUE.

3. SDZ .gt. 5.

4. Abs(dztarg) .gt. 0.1 cm, for targets 1 to 5;
Abs(dztarg) .gt. 0.5 cm, for target # 6, i. e. the
interaction counter.

Number: b5

Code: TAG_LEP.F

Author: Penny K.,Pauline G., Arun T.

Purpose: Tag All-prong semileptonic secondaries from the vertex
list.

Cuts:

1. There must be at least one Rel 6 Muon or at least one

track with EMPROB .gt. 80 in the vertex.
2. ITPOK .eq. TRUE
3. SDZ .gt. 5.

The above three cuts are common to all vertices. Now in
addition:

If the vertex is two-prong then:

a. Ptbalance .1t. 1.5 GeV.

b. Chi-square of impact parameter w.r.t. the primary for
each track .gt. 6.0.

On 3- or higer prong vertices, only cuts 1, 2 and 3 are
applied.
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Tag Number: 6

Tag

Code: TAG_M_2ND.F

Author: Jean Slaughter, Ai Nguyen

Purpose: Tag events with multiple secondaries from the vertex

list. Would be useful for beauty-studies.

Cuts:

1. ITPOK .eq. TRUE

2. At least two secondary vertices must be present.

3. SDZ .gt. b.

4. Number of tracks at the secondary vertex .le. IERPM2
( the total number of all SMD tracks).

5. Number of tracks at the secondary vertex .le. MAXITF
( = 35 for Rel 6).

6. The distance of the Z-position of the secondary vertex
must be at leas 3.5 sigma(in Z-position) away from the
edge of the nearest target.

7. M-min .gt. 1.5, where M-min is calculated as described
below:

For each secondary vertex, the invariant mass is
calculated assuming that all the tracks at the vertex
are pions. Then the Minimum Parent Mass ( M-min) is
calculated for each vertex assuming that the missing
neutral was a pion too.

8. NCANDS .gt. 1., where NCANDS is the number of secondary
vertices satisfying conditions 1 through 7 described
above.

Number: 7

Code: TAG_PROTON.F

Author: 7

Purpose: Tag secondary vertices (from vertex list) with a
proton or anti-proton in it.

Useful for study of Baryons.

Cuts:

If there is any track in the secondary vertex(all-prong)
for which CPRB2 for being a kaon is less than 0.12 and that
for being a proton is greater than 0.9, then the event is
saved. In other words,

IF (CPRB2(track,4).1t.0.12).and. (CPRB2(track,5).gt.0.9)
then save the event.
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Based on the charge of the track, protons and anti-protons
are tagged seperately.

Tag Number: 8
Code: SELECT_PAIR.F
Author: Simon K.
Purpose: Selects a pair of tracks at least one of which has to be
an identified K or Proton. It does not use the
vertex list.

Cuts: (Based on input from Simon)

1. A track is defined as K if:

K prob > 0.13 if track momentum .1t. 40 GeV.
K prob > 0.1 1if track momentum .gt. 40 GeV.

2. A track is defined as Proton if P prob > 0.1.

3. Once a track pair is found, such that at least one of
them is a K or P, a vertex is formed. There is a SDZ cut
on this vertex:

SDZ > 5 if the pair is Kpi
SDZ > 3 otherwise (eg. KK, KP etc)

4. There is a cut on the ratio of the product of the impact
parameter of the tracks w.r.t. the secondary and that
w.r.t. the primary vertex, i.e.
ratio = product(ip wrt secondary)/product(ip wrt primary)
ratio < 0.1 for Kpi pair
ratio < 0.12 otherwise

5. Vertex chisquare .1t. 7.

Tag Number: 9

Code: TAG_DI_LEP.F

Author: Ai Nguyen

Purpose: Tag di- and multi-lepton events with certain mass cuts.

It does not use the vertex list.

Cuts: (Based on input from Ai Nguyen)

1. A muon is anything tagged by the Rel 6 muon
reconstruction code. An electron is a track passing the
following momentum dependent EMPROB cut:

0 <p <6 GeV EMPROB > 89
6 <p <9 GeV EMPROB > 90
9 < p < 15 GeV EMPROB > 85
15 < p < 20 GeV EMPROB > 81

p > 20 GeV EMPROB > 85

2. If any two lepton candidate track pair mass (mumu, mue,
ee, regardless of net cahrge) exceeds 1.5 GeV, then set
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tag bit 9 and keep the event. In case of Muons, there
must be at least 2 muons present in the event.

%k >k 3k 5k >k >k 3k 5k >k %k 5k 5k %k %k 5k 5k %k 3k 5k >k %k 5k 5k >k %k 5k >k %k 5k >k %k 5k >k >k 5k >k %k %k 5k >k >k 5k >k >k %k %k >k %k %k %

STREAM B
This stream contains Tags 10 through 16.

Tag Number: 10
Code: TAG_PHI.F
Author: Sharon
Purpose: Looks for phi-resonance using Cerenkov and mass cuts.
Does not use vertex list.
Cuts:
This routine looks for a KK pair by looping over all the
tracks and forming an ivariant mass for all two-K

combinations.

1. XIS(track) .1lt. 5.0

2. Track momentum .le. 500 GeV

3. Jcatsg(track) .ge. 3 .and. Jcatsg(track) .le.1b

4. At least two good tracks, as defined by the previous

three cuts.

. The total charge of the two tracks should be O.

6. Cprob(K) .gt.0.12 for both the tracks and at least one
track must have Cprob(K) .gt. 0.13. In addition, the
product of K-Cerencove probabilities ( cprb2), for the
the two tracks .ge. 0.05.

7. The minimum distance between the two tracks .1t.0.005 Cm

8. Invariant mass for KK combination should lie within 0.01
GeV of the Phi mass ( 1.0194 GeV).

o1

Tag Number: 11

Code: SELECT_B.F

Author: Mike Halling

Purpose: Tags B-candidate events using vertex list. Assumption is
that the B decayed to a charm meson plus all charged

tracks and that both the B decay vertex and the charm

decay vertex are in the vertex list.

Cuts: ( Based on input from Mike Halling)

1. The B vertex is the one with middle Z-position.

2. SDZ ( B to D vertex seperation in sigma) > 5
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3. 2 < mass(B) < 10 GeV/C
4. dip < 100 micro-meters ( for the B vertex).
5. D vertex minimum mass < 2.5 GeV.

Tag Number: 12
Code: TAG_SLAMBDA.F
Author: Committee for Stripping Lambdas
Purpose: Tags events with Lambdas.
Cuts: ( Based on input from Cat James)
Routine find_sestr_lm, called in tag_process, does a
list-driven search for Lambdas, and loads them into the
parent_tracks common. Routine tag_slambda searches
parent_tracks for SESTR Lambdas and applies additional
cuts. The list below just itemizes the cuts from both
routines.

Release 6 cuts:

Select 2-prongs from the vertex list.

Each track in the pair must satisfy ——-
0.5<track momentum<500 GeV
Track is category 3,7,15
track chisqg<b

Then the pair of tracks must satisfy ---
opposite charge
SDZ>7 (track pair is NOT removed from primary)
PTB>0.2 GeV
ABS(Vee vertex - closest target) < O.lcm
1.108<mass of parent<1.125

Stiff daughter track is '"not pion" ---
For momentum<=10GeV, CPRB2(pion)<0.83
For momentum>10GeV, CPRB2(pion)<0.40
Momentum of lambda parent > 5 GeV

Stiff daughter is boosted back into the parent CM, and the
cosine of the angle between CM daughter vector and boost
direction is found (function DECYNG)
ABS(cosine)<0.98

Tag Number: 13
Code: TAG_LAMBDA.F
Author: Committee for Stripping Lambdas
Purpose: Tags events with ESTR Lambdas ( at least one).
Cuts: Based on input from Cat James
Routine find_estr_vs, called in tag_process, does a
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candidate-driven search for Lambdas, and loads them into
the parent_tracks common. Routine tag_lambda searches
parent_tracks for ESTR Lambdas and applies additional cuts.
The list below just itemizes the cuts from both routines.

Release 6

Loop over IERPM2+1 to NTRKS....each track must satisfy --
0.5<track momentum<500 GeV
Track is category 3,7,15
track chisq<b

There must be at least two such tracks

Then the pair of tracks must satisfy ---
opposite charge
DCA of the secondary (TWOLF) < 0.7cm
10cm < Z secondary < 200cm
1.108<mass of parent<1.125

Stiff daughter track is '"not pion" ---
For momentum<=10GeV, CPRB2(pion)<0.83
For momentum>10GeV, CPRB2(pion)<0.40
Momentum of lambda parent > 5 GeV

Stiff daughter is boosted back into the parent CM, and the
cosine of the angle between CM daughter vector and boost
direction is found (function DECYNG)
ABS(cosine)<0.98

Tag Number: 14
Code: TAG_KSLM_2ND.F
Author: Attanagoda Santha
Purpose: Tags events with a K-short or a Lambda, and another
sestr secondary vertex. The secondary vertex is
required to have more than two tracks.
Uses vertex list.
Cuts:

Tag Number: 15
Code: TAG_AKSS_DO.F
Author: Attanagoda Santha
Purpose: Tags events with DO decays into modes with a K-short.
Cuts:

Tag Number: 16

Code: TAG_MULTI_KS.F
Author: Attanagoda Santha
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Purpose: Tags events with multiple K-shorts.
Cuts:
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Appendix D

Kansas State University Substrip
Criteria

This file describes the tagging cuts used by the FCNC MICRO STRIP.
The name of the file is MICRO_STRIP_CUTS.TXT and can be found in
""witchey/misc/" area.

Nick Witchey MAY-27-1994

DO -> 2 prong
2 Tracks
|[P] < 500 Gev
Zprim < -0.35cm
Q=20
Pt Balance < 0.4 Gev
SDZ > 8.0
Life Time < 5.0 ps
ITPOK = .TRUE.
Tracks are ordered according to K ckv prob.
Mass and COS(theta) cut are used together since COS(theta) is
mass dependent:
(Mass > 1.7 Gev).and. (Cos(theta) < 0.995)
KpipiKpipiKK
mieemumumi e e
D+ -> 3 prong

3 Tracks

IP| < 500 Gev
Zprim < -0.35 cm
lQl =1
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Pt Balance < 0.35 Gev

SDZ > 8

Life Time < 5.0 ps

Distance of Closet Approach < 0.01 cm
ITPOK = .TRUE.

First track is the off signed charged track the remaining two are
ordered according to K ckv prob.

Mass > 1.7 Gev:

KpipiKKpiKpiK

pi pi pi mu pi mu mu mu pi

e pleeepliempl

e plmumue pi mupie

Ds -> 3 prong

3 Tracks

|[P|] < 500 Gev

Zprim < -0.35 cm

Ql =1

Pt Balance < 0.35 Gev
SDZ > 8

Life Time < 3.0 ps

Distance of Closet Approach < 0.01 cm
ITPOK = .TRUE.

First track is the off signed charged track the remaining two are
ordered according to K ckv prob.

Mass > 1.7 Gev:

K KKKKpiKpiK

pi pi pi mu K mu mu mu K
eKeeeKemK

e KmumueK muKe

DO -> 4 prong

4 Tracks

[P| < 500 Gev

Zprim < -0.35 cm

1Ql =0

Pt Balance < 0.45 Gev
SDZ > 7

Life Time < 4.0 ps
Distance of Closet Approach < 0.012 cm
ITPOK = .TRUE.

Tracks are ordered by K ckv prob for the 1st three hypothosis

then ordered by alternating charge but as close to K prob as
possible. The ordering will be +-+- or —+-+, were the first
particle ALWAYS has the greatest K prob. The second has the
highest K prob of OPPOSITE sign of the first and so on.
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Mass > 1.7 Gev:
K pi pi pi pi K pi pi pi pi pi pi

K pipiK pi K K pi pi pi mu mu
mu mu pi pi mu pi pi mu pi mu mu pi
pi piee e e pi pi pli e e pi
e pi pi e pi pi e mu pli pi mu e
e mu pi pi mu e pi pi e pl pi mu
mu pi pi e pli e mu pi pi mu e pi

/\c -> 3 prong

3 Tracks

IP| < 500 Gev

Zprim < -0.35 cm

1l =1

Pt Balance < 0.4 Gev

SDZ > 6

Life Time < 2.0 ps

Proton CKV prob > 0.05

ITPOK = .TRUE.

First track is the off signed charged track the remaining two are
ordered according by Proton ckv prob.

Mass > 1.9 Gev:

KPpiKpiPmuPmu

mu mu P e P e eelP
e P mu mu P e e mu P
mu e P

J/Psi —> e+ e— ; mu+ mu-

Loop through pairs of opposite signed tracks with EMPROB > 70
Mass Trkl Trk2 > 2.5

Loop through Rel 6 muon candidates.

Mass Mul Mu2 > 2.5
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Appendix E
The Missing D™ and D

With a hard cut made to remove the resonances:
1. D - KK«
2. DY = K 77", and
3. Df - KK ™,

one may wonder as to the effect of these missing pieces.
Referring to figures E.1 and E.2, one can see the removed parts.
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1000 £
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500
250

o B Wi b
1.7 18 19 2 2.1

m(Knm) (Gev/c?)

Figure E.1: Reconstructed masses of real data which were removed from the data
set by the D cut.

We sent this data set through the trained Neural Net and applying the cut of 0.94. See figure
E.3 for the mass plot.

The Monte Carlo results can be seen in figure E.4

We then looked at the acceptance from the MC data set and the background from the wings of
the real data set. Figure E.5 shows the one dimensional projections of the data set with the D’s,
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Figure E.2: Reconstructed masses of Monte Carlo data which were removed from
the data set by the D cut.
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Figure E.3: Real data cut by the D cut: (left) Mass(pKn) of the real data set
before Neural Net cuts and (right) after. It has a significance of 10.70. There
are 383+36 signal events and 1753 background events assuming that the peak is
Gaussian, the background is quadratic and the number of signal and background
events are variables.
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Figure E.4: MC data cut by the D cut: (left) Mass(pKn) of the MC data set
before Neural Net cuts and (right) after. It has a significance of 61.70. There
are 4123+67 signal events and 607 background events assuming that the peak is
Gaussian, the background is quadratic and the number of signal and background
events are variables..

figure E.6 shows the one dimensional projections of the data set with the D’s cut out (these can
also be seen in chapter 8), and figure E.7 shows the one dimensional projections of the combined
sets.

Note that the gaps which appear in the peak of ¢ proton acceptance in figure E.6 are matched
by a peak in the corresponding plot in figure E.5, as is also shown by the lack of gaps in figure E.7.

129



06 F [ F T 2 =
oa b g I 0a F ]2 0 [ e
02 f 0.2 0.2 [
o Bloiiliiiit, o bt Foy A
0.5 1 1.5 2 3 3 4
m?(GeV?) K m*(GeV?) pr m?(GeV?) pK
1.5 [ | =
TE 0.4 F
05 [ 02
T o B Dt 0y P S
0 1 0 2.5 5 0 2.5 5
cos(®9) proton @ proton
2 F 4
1 I 2
0 ELovuiliiiiii] o Bl B T
0.5 1 1.5 2 3 3 4
m*(GeV?) K m*(GeV?) pr m*(GeV?) pK
2 E : 4 F ra—; H
3 F F kr]
N 2 b
05 1 E E
0 o by 0 PRI B, Sl O’\\\\‘\\\\‘\\
-1 4] 1 0 2.5 5 0 25 5
cos(¥) proton @ proton @ Km

Figure E.5: Acceptance and Background of the DT and D, resonances which had
been cut by the D cut. The top 6 plots are the one dimensional projections of the
Acceptance normalized to the number of reconstructed MC seen in the above figure,
and the bottom 6 plots show the one dimensional projections of the Background
normalized to the number of background events seen in one of the above figures.
All projections were divided by uniform phase space.
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Figure E.6: Acceptance and Background of the optimized data set with the DT
and Dy resonances removed. The top 6 plots are the one dimensional projections
of the Acceptance and the bottom 6 plots show the one dimensional projections of
the Background. All projections were divided by uniform phase space. Note that
these plots are the same as seen in the Acceptance and Background chapter.
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Appendix F

The Constrained Fit

For the final analyses, we used a constrained fit for the momenta of the p, K, and 7. By constrained
fit, we mean that the momenta were adjusted so the reconstructed mass of the A. is the PDG value.
This eliminated the problem of the drifting of phase space as a function of the A. mass, and it
brought the various calculated values closer to reality. In other words, it compensated for some of
the smearing caused by the resolution of the detector.

From the momenta, we calculated m%_ and mlzm. Using these values as a coordinate, we com-
pared the truth table values of the surviving reconstructed Monte Carlo to their corresponding
reconstructed unconstrained and constrained values. For comparison we evaluated the distance
from the truth table value to the reconstructed values. See figure F.1 for the comparison.

Further evidence can be seen in the reconstructed widths of the various resonances. See figures
9.8 (p. 81) and 9.9 (p. 82). In both cases the constrained width was closer to the PDG width than
the unconstrained width.
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Figure F.1: The absolute distance from the Truth Table Dalitz plot coordinate to
reconstructed coordinate for the surviving reconstructed MC.
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Appendix G

The Test of the Fitting

G.1 Introduction

This chapter discusses our exploration of how well the fitting mechanism was constructed. It is not
testing the validity of the physics, only the validity of the results from the MINUIT fit. To test
this we need to generate Monte Carlo events which would simulate a decay with a certain resonant
substructure going through a detector with a certain acceptance.

G.2 Generation

We first generated 9,042,568 fast Monte Carlo events, calculated a realistic signal density for each
event, and used the elimination method to reduce that number to 2,000,000 events. The signal
density is realistic in that we used fit parameters which came from a previous fit to real data. For
the signal density, we assumed a nonresonant decay in addition to K™ and A+* resonant decays.
The parameter values we used are found in table G.1.

From here we calculated the acceptance of each event assuming the 5 dimensions (as described in
chapter 8) are uncorrelated and again used the elimination method to reduce the number of events
to 83,481 events which should simulate A. — pKm going through a detector with some acceptance.

G.3 Full fit

If the fitting mechanism were correct, then using these 83,481 points as real data points, we should
be able obtain the original parameter values. Sending these events through the MINUIT fitter that
was used to determine the parameters, we got the results seen in table G.2. Note that we fit the
data twice, starting from different points and arrived at the same final values.

See figure G.1 for a comparison of the projections of final sample and the fit obtained.

G.4 Further Testing

We then split this full set into 200 sets of 417 mutually exclusive events, 100 sets of 834 mutually
exclusive events, and 50 sets of 1669 mutually exclusive events. We MINUIT fit each set and found
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Mode Variable | fit
K B 0.20
oFE, 1.00
B, 0.54
o Fs 2.46
Es 0.65
oFE3 3.00
Ey 1.00
OFE, 0.00
ATT F 0.75
oF, 2.83
F, 1.02
oF, 3.49
Nonresonant + + 0.39
o3 3.10
+ - 0.36
X 1.73
-+ 1.47
4| 227
- - 0.41
O__ 2.30
Polarization o -0.23

Table G.1: The parameter values used to generate a test sample for A, — pKr.
Using the signal density which came from these, we reduced the number of events
from over 9 million events to 2 million events.
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Mode Variable fit
K? E, 0.189 + 0.013
oE 0.931 + 0.080
Es 0.529 + 0.019
oFEs 2.488 + 0.068
Es 0.684 + 0.019

¢E; | 2.764 £ 0.067

E, 1.0
¢, 0.0
ATF Iz 0.826 £ 0.019

oF} 2.756 + 0.048
E 0.969 4+ 0.017
OF, 3.412 £+ 0.057
Nonresonant + + 0.409 + 0.040
Oy 2.860 £+ 0.119
+ - 0.378 4+ 0.027
D1 1.769 £ 0.083
-+ 1.493 + 0.022
O+ 2.160 4+ 0.051
- - 0.362 4+ 0.017
O__ 2.158 + 0.059
Polarization « -0.242 £+ 0.018

Table G.2: The result of the MINUIT fit on the 83,481 events.
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the average parameter value and average error. We then compared these averages to the values
determined by fit the full 83,481 event sample. See table G.3 for a comparison of the parameter
values, and see table G.4 for a comparison of the errors produced. For the histograms of the fit
parameters and their errors see figures G.2-G.7.

Average from sets
Mode Variable | 200 100 50 | Full fit
K" B 041 | 0.28 | 0.22 | 0.19
0B, | 270 | 1.81 | 1.43 | 0.93
FEs 0.70 | 0.62 | 0.57 0.53
oFEy 2.75 | 2.54 | 2.53 2.49
FEs 0.65 | 0.64 | 0.66 0.68
oFs 2.73 | 2.59 | 2.73 2.76
Ey 1.00 | 1.00 | 1.00 1.00
oFE, 0.00 | 0.00 | 0.00 0.00
ATT F 1.01 | 0.93 | 0.87 0.83
oF} 2.76 | 2.71 | 2.77 2.76
F, 1.00 | 0.96 | 0.96 0.97
oF, 3.39 | 3.40 | 3.43 3.41
Nonresonant + + 0.86 | 0.68 | 0.53 0.41
by | 292|302 333 286
+ - 1.00 | 0.66 | 0.49 0.38
Oy 2.33 | 2.02 | 1.88 1.77
-+ 1.39 | 1.40 | 1.44 1.49
4 227 | 2.11 | 2.16 2.16
- - 0.52 | 0.43 | 0.41 0.36
O__ 245 | 2.14 | 2.19 2.16
Polarization « -0.39 | -0.36 | -0.29 | -0.24

Table G.3: The average parameter values as found in the MINUIT fit. Note that
the average from the 200 sets is actually an average of 193 sets, because 7 sets would
not converge properly.
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Average from sets

Mode Variable 200 100 50

mean | RMS | mean | RMS | mean | RMS
—x0

K E; 0.55 | 042 | 0.17 | 0.16 | 0.12 | 0.10
ok, 1.34 | 2.02 | 093 | 1.74 | 0.71 | 1.45
E, 0.40 | 0.37 | 0.21 | 0.17 | 0.14 | 0.14
oLy 097 | 1.21 | 0.71 | 0.72 | 0.51 | 0.35
E; 0.47 | 0.31 | 0.26 | 0.25 | 0.15 | 0.16
oLs 1.11 | 1.29 | 0.78 | 0.83 | 0.52 | 0.54
Ey 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
oLy 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

AT F 0.37 | 0.33 | 0.21 | 0.21 | 0.14 | 0.14
oF 0.74 | 098 | 0.51 | 0.61 | 0.37 | 0.35
F 0.40 | 0.58 | 0.20 | 0.19 | 0.13 | 0.13
oF, 0.80 | 1.10 | 0.60 | 0.77 | 0.44 | 0.42

Nonresonant + + 1.44 | 0.72 | 0.94 | 047 | 042 | 0.27
oy 1.74 | 1.53 | 1.44 | 1.27 | 1.16 | 1.12
+ - 1.25 | 0.93 | 0.77 | 0.50 | 0.25 | 0.20
Oy 1.19 | 1.54 | 1.13 | 1.10 | 0.63 | 0.59
-+ 0.47 | 0.54 | 0.26 | 0.27 | 0.17 | 0.16

4 0.73 | 1.02 | 0.55 | 0.62 | 0.40 | 0.32
- - 045 | 0.39 | 0.20 | 0.17 | 0.13 | 0.12
O__ 089 | 1.20 | 0.62 | 0.72 | 0.42 | 0.44

Polarization o) 0.27 | 0.34 | 0.21 | 0.24 | 0.14 | 0.15

Table G.4: The average errors found from the MINUIT fit and the RMS value from
the spread of the parameter values. Ideally, the average error should equal the RMS
value.

139




10 jb‘flﬂ
O L1
—1
Polarizatn
10 g—wﬂl

O CLrld ’-LL‘\-IJ-LWL
0.0132.159%.5065

NonRs+—phi

10

x-

0 PP
0.0043.0268.0496

10

%n

ul L1

0
0.27813.2466.2139

KxQbx+2phi

28

10 &

o
ChT 1 Lmﬂmﬂr

0
0.1672.9825.7983

Dit+-+z1phi

20
10

10

50
25

*; | | L\n\n\rJr
0 2.5
Nonres++

(@]

Delta++2z2

b
W%
C L1 ‘ L1

0728.1768.2807

NonRs++phi

5 >
. -
e 2
L mrﬂhr

0
0.1542.9245.6948

J‘HH‘HH

NonRs—+phi

0
0.0118.17846.5455

KxObx+ Tphi

‘Eiries

. “J”JJ% v
0.0226.0216.0196

2726
1,298

10

Kx0bx—23phi

] 8
Enffles 183

mal ﬂ MF

0
0.0673.1165.1651

10

Dit++z2phi

40

20 i

o 0
0

20 ?ﬂ

0
0

40 H B

O | | ‘ I |
0 2.5
KxObarx+2
A P——
F rﬂ 5

0

O %—\ | I r—\‘r
0 7

Delta++2z1

Figure G.2: The results from the MINUIT fit of the 200 sets. The solid line repre-
sents the initial value used to generate the data sample, and the arrow represents

the values from the fit of the 83,481 events.

140



40
20

(@)

KxObarx—23

50
25

50

L 50 #- 25
\\J.‘ O’:-L.L\\\‘\\\ O

O
O T
O T

5 0 5

Dit+-+z1phi Delta++2z2 Dit++z2phi

40
20

50
25

50

40
20

(@)

(@]

B B

5 . 193

il Masn 0.904p
| bl —n ‘ | ol

0 5

Nonres+—

AT

Nonres——

% 7
Brvies
Veon g

]\LL\ Ll

0 2.5

KxObarx—+2

Delta++2z1

Figure G.3: The errors from the MINUIT fit of the 200 sets. The solid line represents
the error from the full fit times the square root of the number of sets(193), and the
arrow represents the RMS value from the spread of values on the previous page.

141



- B o= b b e o E
N I
o %\\\\ HJ-:—I_H( O | | WTF\W 1 O q\\\\ | \\H’V E\ | MH‘H\ [
—0.8990.33482 301 0 2 0.1643.1437/6.123 0 2
Polarizatn Nonres++ NonRs++phi Nonres+—
— - o 100 = B 100 F Y N
1o F 10 & ‘”@ s 10 = i;‘é & 1o - J[E S
5 ] Sl ﬂﬁj
O 7\ [T ﬂﬂﬂ\ L0 O C \Hrj\‘ L ﬂ’mr O ﬁﬂ | ‘ ﬂTFH ‘F F | | ’-\H-"_LHH ‘F
0.0306.1418.2533 0 2 2 4 0 1
NonRs+—phi Nonres——
B R < i 10 ¢ T
10 = ENE 10 @ = = ‘mﬂ o S
AN Mg A
0 %HWW\ i 0 Eili HmmﬂﬂrHF 0 ol L P
0.0884.9338.7792 0.0913.157/6.2233 0 1
NonRs——phi KxObx+ Tphi KxObarx—+2
- T 8 - T F ey B .
10 E ey P 10 E By b5 5 = Belll - ohnes 10 & LEWS Gz
5 B 5 B - Wh 5 E L{L
O Fm | ‘ | !J-‘HHH’ O I [ ‘ 10 O %ﬂ\ | 1 FWL O E\ \HJ\ [ Lo
0.5272.6914.8547 0 1 2 4 0 1
KxObx+2phi KxObarx—23 Kx0bx—23phi Delta++z1
10 ; B = Bl 10l
1 mE¥i
0 el 14 1Mlnear d 0 SRR 0 ;\JLHLJWHHHM
0.8162.869@.9227 0 1 1.1728.72186.2699
Dit+-+z1phi Delta++2z2 Dit++z2phi

Figure G.4: The results from the MINUIT fit of the 100 sets. The solid line repre-
sents the initial value used to generate the data sample, and the arrow represents
the values from the fit of the 83,481 events.
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Appendix H

Two Dimensional y2 Comparisons

H.1 Acceptance

This chapter compares the two dimensional acceptance plot found on page 65.
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H.2 Fit 3: Full Mass Range

This section compares the final fit (as seen on page 72) over the full mass range.
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H.3 Fit 3: Signal Region

This section compares the final fit within the signal region. The scatter plot can be seen in figure
H.11.
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Appendix I

Simple Fits of the Data

I.1 Simple Search for Resonances

I.1.1 Fit 1: Nonresonant, K*O, and At

In my search for resonances, we opted to start with resonances which we felt sure were there. As
can be inferred from the section title, we searched for the Nonresonant, K resonant, and A*T
resonant modes. The comparison of the model to the data in one dimensional projections can be
seen in figure I.1. The comparison in two dimensional projections can be seen in figure 1.2. Judging
from the projections of the real data in figure 1.1, one can clearly see the K™ resonance which is
spiked and the A™" resonances which is seen as a bump. The general fit is also evident figure 1.2,
where the K band is seen in the first eight plots, and the hole in “4 v 3” is in both the model and
actual. The breakdown of the contribution from each of these modes in the model can be seen in
figure I.3. In order to determine if there is a missing resonance in this fit, we subtracted the model
from the real data projections and looked at the difference divided by phase space. See figures 1.4
and L.5 for the projections of the differences. There initially appears to be a resonance in the pK
projection. Note that the Breit-Wigner formula that we used was %, implying that we did
not take the centrifugal barrier into account.
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I.1.2 Fit 2: Nonresonant, K*O, A*TT, and A(1520)

With the hint of a pK resonance from the last fit, the question arises of what resonance should be
included in a subsequent fit. we opted to add the A(1520) resonance. Although a narrow resonance,
it has been seen in a previous analysis[Boz 93], so it seemed a logical choice. Other potential
resonances are explored in section 9.5.

For a one dimensional projection comparison of the model and data, see figure 1.6. For a two
dimensional comparison, see figure [.7. Again, one can see the K™ and the A** resonances. The
A(1520) resonance seems to be there, but its presence is not as obvious. The breakdown of the
contribution from each of these modes in the model can be seen in figure 1.8. Again, we subtracted
the one dimensional projections of the model from the real data projections and we divided these
by phase space. The results of this subtraction can be seen in figures I.9 and 1.10. Note that the
Breit-Wigner formula that we used was %, implying that we did not take the centrifugal
barrier into account.

Also note that fit 2a and 2b produced the same projections, so we presented fit 2b in this section.
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Note that the first 3 histograms are mass and not mass?. The addition of the
A(1520) accounted for some the discrepancies in the low pK mass range.

176




I[.1.3 Fit 3: Nonresonant, K*O, AT, A(1520), plus the mass plot fit
parameters

The previous fits were good for getting a feel for what which modes were present. However, the
proper fit should include some other factors. One of these factors is that the errors in the mass
plot fit needed to be propagated throughout the fit, so the mass plot fit was incorporated into the
process. Also, it had been noticed within the Collaboration that the width of the A. depended on
xp. This, too, was incorporated. Thus, fit three is most accurate of these fits.

For a one dimensional projection comparison of the model and data, see figure I.11. For a two
dimensional comparison, see figure [.12. Again, one can see the K™ and the A+ resonances. The
A(1520) resonance seems to be there, but its presence is still not as obvious from the plot. The
breakdown of the contribution from each of these modes in the model can be seen in figure 1.13.
Again, we subtracted the one dimensional projections of the model from the real data projections
and We divided these by phase space. The results of this subtraction can be seen in figures I.14
and 1.15.

The Breit-Wigner resonance formula we used is the corrected formula as is seen in equations
2.28 and 2.29
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Figure 1.15: Projections of the real data minus Fit 3 and divided by phase space.

Note that the first 3 histograms are mass and not mass?.
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I.2 Statistical Results

In the tables below, the variable ¢ represents the phase of the decay with respect to one of the K°
amplitudes (for Fits 1 and 2a) or with respect to one of the nonresonant amplitudes (for Fits 2b
and 3) which was assumed to have ¢ = 0.0 and a magnitude of 1.0.

In table 1.2, FCN refers to the function value found by MINUIT. It has only a relative meaning,
in that it is the value that MINUIT is minimizing. It is presented for those who want to draw a
conclusion. 2 refers to the \? fit found for each of the dimensions used in the fit, as defined in
chapter 8.
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Mode Vrbl Fit 1 Fit 2a Fit 2b Fit 3
K" E, 1.00 1.00 0.37+ 0.05 0.344 0.04
b, 0.00 0.00 3.554+ 0.83 0.454+ 0.80
E, |0.31+0.26 | 0.43+ 0.17 | 0.16% 0.07 0.144 0.06
¢p, | 1.794 1.21 | 2.234+ 1.17 | 5.774 0.68 2.794 0.68
E; |0.53+ 0.16 | 0.37+ 0.17 | 0.14% 0.06 0.144 0.06
¢p, | 1.88+ 0.86 | 2.53% 1.04 | 6.08% 0.56 2.85+ 0.53
E; |0.064+ 0.14 | 0.05+ 0.14 | 0.02+ 0.05 0.044 0.05
¢p, | 3.194 2.33 | 3.89+ 4.54 | 1.164 2.59 4.57+ 1.41
ATTK- Fy 1052+ 0.15 | 0.61+ 0.13 | 0.23+ 0.06 0.194 0.05
Gp, | 3.924 0.75 | 4.444 0.98 | 1.714 0.29 4.97+ 0.30
F, ]0.56+ 0.13 | 0.50+ 0.13 | 0.18+ 0.05 0.184 0.04
¢r, | 5.46% 0.66 | 5.55+ 0.72 | 2.82+ 0.35 6.234+ 0.38
A(1520)7F H, 0.00 0.144 0.16 | 0.05+ 0.06 0.05+ 0.05
b, 0.00 1.02+ 1.57 | 4.57+ 1.12 4.48+ 1.04
H, 0.00 0.484+ 0.08 | 0.184+ 0.04 0.164 0.03
D, 0.00 3.934+ 0.79 | 1.194 0.30 1.23+ 0.32
Nonresonant N,, | 0.08+ 0.53 | 0.36+ 0.36 | 0.13+ 0.14 0.10+ 0.16
On,, | 6.22+ 4.78 | 6.214 1.42 | 3.48+ 0.99 3.964+ 1.19
N,_ | 2.964 0.33 | 2.68+ 0.34 1.00 1.00
On,_ | 2.37+ 0.68 | 2.74% 0.82 0.00 0.00
N_, | 0.15+ 0.53 | 0.16+ 0.36 | 0.06+ 0.14 0.01+ 0.57
On . | 1.84% 2.47 | 3.054 2.44 | 6.60+ 2.14 1.31+ 3.32
N__ | 0.174 0.58 | 0.544 0.49 | 0.20+ 0.21 0.114 0.21
dn__ | 6.18+ 5.18 | 4.98+ 0.94 | 2.25+ 1.06 2.464+ 1.85
Polarization P,. | 0.034 0.16 | -0.084 0.14 | -0.084 0.14 | -0.09+ 0.14
# Signal Evnts 1, 886.40 886.40 886.40 950.71+ 38.35
# Bgrnd Evnts 1y, 1384.10 1384.10 1384.10 | 1319.79+ 42.87
Bgrnd Quad Term | b, -12.67 -12.67 -12.67 -0.10=+ 10.60
Bgrnd Linear Term | b 1.32 1.32 1.32 1.334+ 0.48
Massy, (GeV/c?) mg 2.29 2.29 2.29 2.294 0.00
Widthy, (MeV/c?) | o 0.00 0.00 0.00 20.27+ 4.88
Width,, (MeV/c?) | o. 9.89 9.89 9.89 9.334+ 0.56

Table I.1: The result of the MINUIT fits. Note that Fit 2a is the same as Fit 2b
except for the fixed variable. The mass and width of the resonances used in the fits
were those given by the PDG. In Fit 3, the width of the A, peak = 0 = oyzp + 0.
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Fit 1 Fit 2a Fit 2b Fit 3
FCN, 21086.43 | 21042.35 | 21042.35
FCN, -8515.95 | -8515.95 | -8515.95
FCNiotal 12571.61 | 12526.40 | 12526.40 | 12494.78
2 19.8 36.7 36.7 35.9
7w, 471 12.8 12.8 10.9
2 mgK 64.2 53.3 53.3 59.0
\? i cos(6,) 37.2 37.4 37.4 36.6
2 oy A8 43.2 43.2 0.1
2 dxn 172 16.9 16.9 154
2 sum; 233.5 216.0 216.0 212.6
DOF, 231 227 227
2 m(pKn) 58.9 58.9 58.9 64.5
2 1 sumyotal 292.4 274.9 274.9 277.1
DOFotal 275 271 271 270

Table I.2: The result of the MINUIT fit. x? sum; was found by taking % the sum
of the first 3 values plus the sum the of the next 3. Each of the first 6 y?’s was
found by comparing the model and real histograms spread out over 50 bins. FCN;
and DOF; are the MINUIT FCN value and the degrees of freedom, respectively,
for the fit without the mass plot fit. FCN5 is the MINUIT FCN value for the mass
plot separately. Fit 3 incorporated the mass plot fit and the A, width dependence
on xp into the total fit, therefore there is no FCN;, FCNy, or DOF;.

The values which are displayed in table I.1 along with the covariant matrix generated by MI-
NUIT, give us the fit fraction for each decay, as seen in table [.3. The errors on fit fraction k were

calculated by Ey = /S L4y, where f = f(7) = the fit fraction (as described in equation 2.30
i A;

on page 13), x; is the i’ element of 7, and V;; is an element from the covariant matrix.

Mode Fit 1 (%) | Fit 2a (%) | Fit 2b (%) | Fit 3 (%)

—*0

K 19.5+£2.6 | 18.9+£2.5 18.9£2.5 | 17.9£2.5
AT 16.4£3.3 | 17.7£3.1 17.7£3.1 | 15.94£2.8
A(1520) 7.3£1.7 7.3£1.7 6.7£1.6

Nonresonant | 62.4+4.7 | 54.4£5.0 54.4+5.0 | 57.6£4.8

Table 1.3: The Fit Fraction with statistical errors for the decay A. — pKm from the
MINUIT fit.

I.3 Confidence

Subjecting the models to the permutation test used on the acceptance and background, we found
the following confidence levels found in table I.4. In this table, “uniform” refers to a comparison
of the model to a uniformly distributed set of points; “real” refers to a comparison of the model to
the actual distribution of 2,271 points; and “self” refers to a comparison of the half of the model
to the other half when split randomly into two equally sized sets.
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model vs. | Fit 1 (%) | Fit 2a (%) | Fit 2b (%) | Fit 3 (%)
uniform | 10.1£1.8 | 10.74+1.3 11.1£1.3 | 10.7£1.6
real 50.5£1.7 | 50.441.3 49.3+1.4 | 51.1£1.8
self 52.5+2.0 | 52.1£1.8 52.0£1.4 | 49.9£2.5

Table I.4: The Confidence of the MINUIT fits using the permutation test described
earlier. In this table, “uniform” refers to a comparison of the model to a uniformly
distributed set of points; “real” refers to a comparison of the model to the actual
distribution of 2,271 points; and “self” refers to a comparison of the half of the
model to the other half when split randomly into two equally sized sets.
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Appendix J

Two Dimensional Tweaking

J.1 Two Dimensional Tweaking

Tweaking the nearest-neighbor acceptance to match the 2 dimensional distributions yields the
results laid out over the next several pages. Note that we broke the plots into a 12 x 12 grid for
matching. See figure J.1 for a scatter plot comparison.
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Appendix K

Spin %_

K.1 The Mysterious Spin %_ Particle

We fit the data with a nonresonant, K*O, AT and a spin % particle resonance with a floating mass
and width. See tables K.1 and K.2 for the converged mass and width.

1 L ;spin — %+ 3
0 m = 1.561£0.025 GeV/c? | 1.56540.021 GeV/c?
[ = 0.337+£0.113 GeV/c? | 0.33240.086 GeV/c?
FON = 12418.75 12394.03
1 m = 1.54040.021 GeV/c? | 1.595+0.016 GeV /c?
[ = 0.30540.128 GeV/c? > 0.500 GeV/c?
FCN = 12415.41 12396.25

Table K.1: Mass and width and MINUIT FCN value for the labeled spins and parity
in a model of A, — pKr with pK _, A*+K~, nonresonant, and a spin 1 particle +

7w modes of decay.

l+

1=

J L ;spin —
0

2

m = 1.52240.015 GeV /c?

[' = 0.21040.050 GeV/c?
FCN = 12393.56

2

1.58140.028 GeV/c?

0.460+0.112 GeV /c¢?
12380.28

m = 1.56440.015 GeV /c?
T > 0.500 GeV/c?
FCN = 12403.33

1.58940.018 GeV /c?
> 0.500 GeV/c?
12386.17

Table K.2: Mass and width and MINUIT FCN value for the labeled spins and parity
in a model of A, — pKn with pro, A++K~, A(1520), nonresonant, and a spin 1
particle + © modes of decay.

For the subsequent displays, we chose to use the fit without the A(1520) and with the spin %_
and L = 0.

194



Mode Fit 3 (%) | Fit 4 (%)
pK"(890) | 19.5+2.6 | 19.3+3.0
ATT(1232)K~ | 18.0£2.9 | 16.7+3.0
A(1520)xT | 7.7£1.8
spin 3 40.1£7.2
Nonresonant | 54.8+5.5 | 65.0+6.9

Table K.3: The decay fractions for A} — pK~n" with statistical errors from the
final fit 3 and 4 (L=0, spin = 17).
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Figure K.1: The one dimensional projections of the new fit and real data.
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K.2 A(1405)

There is also some evidence that the excess in the low pK mass range may be due to the upper
tail of the A(1405) resonance. Taking one dimensional projections of the data and subtracting
background, correcting for acceptance, and dividing by phase space, we get the plots seen in figures
K.2 and K.3. As can be seen in these plots there is an upward trend in the low pK mass range
which can not be explained away by statistical fluctuations. Thus, there is some evidence that the

upper end of the A(1405) resonance is contributing to the A. decay.
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Taking this one step further, we fit the parameters with the 7A(1405) resonance mode present, as-
suming a relativistic Breit-Wigner without centrifugal barrier corrections. As explained in [PDG 98],
there is still some debate as to the correct shape to use in describing this resonance, especially above
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Figure K.2: One dimensional projections of A, — pKn data after background sub-
traction, and acceptance and phase space corrections.
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the pK threshold. See table K.4 for the listing of the parameters, table K.5 for a y? comparison,
and table K.6 for the fit fractions with this resonance mode present. For purposes of comparing, all
of the models below used the naive relativistic Breit-Wigner.
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Mode Vrbl Fit 3 Fit 4b Fit 4c
pK " E, 0.36+ 0.05 0.37+ 0.05 0.41+ 0.07
br, 3.65+ 0.74 3.77+ 0.60 4.31+ 0.60
By 0.17+ 0.07 0.20+ 0.05 0.24+ 0.05
b, 5.68+ 0.67 0.71+ 0.46 0.25+ 0.56
Es 0.13+ 0.06 0.01+ 0.29 0.08+ 0.09
b, 6.09+ 0.58 2.70+ 3.37 7.11+ 0.96
E, 0.02+ 0.05 0.00+ 0.03 0.00+ 0.23
b, 1.044 2.11 5.43+ 4.37 547+ 4.72
ATTK Fy 0.23+ 0.05 0.23+ 0.05 0.27+ 0.06
or, 1.674 0.27 1.564 0.28 1.634 0.26
F, 0.18+ 0.05 0.16+ 0.04 0.14+ 0.05
bF, 2.85+ 0.32 3.17+ 0.34 3.11+ 0.34
A(1520)7 H, 0.05+ 0.06 0.07+ 0.05
b, 4.61+ 1.10 3.29+ 0.74
H, 0.18+ 0.03 0.14+ 0.03
b, 1.204 0.29 1.334 0.32
A(1405)7+ G, 0.22+ 0.04 0.15+ 0.09
ba, -0.964 0.43 5.24+ 0.54
Go 0.25+ 0.05 0.38+ 0.07
TN 3.28+ 0.32 2.60+ 0.33
Nonresonant Nis 0.13+ 0.13 0.35+ 0.14 0.33+ 0.12
Onyy | 3424 1.04 -1.674 0.48 3.93+ 0.49
N, 1.00 1.00 1.00
O, _ 0.00 0.00 0.00
N_, 0.07+ 0.14 0.00+ 0.15 0.23+ 0.13
on . | -0.07+ 1.74 5214 4.91 0.27+ 0.66
N__ 0.20+ 0.20 0.45+ 0.15 0.57+ 0.18
dn__ | 237+ 1.01 3.29+ 0.33 2.89+ 0.37
Polarization Py, -0.09+ 0.14 -0.334+ 0.15 -0.084 0.14
# Signal Evnts n, | 951.25+ 38.34 | 966.914+ 36.64 | 960.01+ 36.61
# Bgrnd Evnts n, | 1319.25+ 42.86 | 1303.59+ 40.97 | 1310.49+ 41.11
Bgrnd Quad Term | b, 0.05+ 10.62 3.97+ 1.40 2.35+ 1.40
Bgrnd Linear Term | by 1.334 0.48 1.324 0.46 1.334 0.46
Massy, (GeV/c?) | my 2.29+ 0.00 2.29+ 0.00 2.29+ 0.00
Width,, (MeV/c?) | o 20.384+ 4.87 20.34+ 4.81 20.46+ 4.78
Width,, (MeV/c?) | o 9.31+ 0.55 9.34+ 0.54 9.27+ 0.53

Table K.4: The result of the MINUIT fits.

O1ZF + Oc.
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Fit 3 Fit 4b Fit 4c
FCNiotar | 12494.74 | 12429.86 | 12457.65
X2 imi, 35.8 26.9 32.8
X iml 43.9 41.5 43.4
7l 58.1 146 51.8
\? : cos(B))] 36.9 37.4 37.7
X’ oy 40.2 39.6 39.5
2 brn 45.6 42.9 433
2 sum; 2144 195.2 205.7
DOFotal 270 266 270

Table K.5: The result of the MINUIT fit. x? sum; was found by taking % the sum
of the first 3 values plus the sum of the next 3. Each of the first 6 y2’s was found
by comparing the model and real histograms spread out over 50 bins.

Mode Fit 3 (%) | Fit 4b (%) | Fit 4c (%)
K7 18.5+3.7 | 17.844.1 19.74+4.8
ATT 17.2+4.1 | 15.6+4.2 15.94+4.9
A(1520) 7.1£2.1 4.841.8
A(1405) 21.6+£6.4 28.0£6.7
Nonresonant | 55.44+2.2 | 65.1+4.7 62.7+6.3

Table K.6: The Fit Fraction with statistical errors for the decay A. — pKx from
the MINUIT fit.
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Appendix L

Cerenkov Systematic Error Data Tables

L.1 Progress of Kaon Efficiencies

pPr (GGV)

p (GeV) | 0.00.4] 0.40.6 | 0.6
6-10 632.00 | 435.00 | 253.00
10-15 | 930.00 | 719.00 | 938.00
15-20 | 810.00 | 755.00 | 1263.00
20-25 | 648.00 | 698.00 | 1383.00
25-35 | 830.00 | 1104.00 | 2665.00

35- 866.00 | 1715.00 | 7447.00

Table L.1: Kaons from real D— Krr data within the m(K7) range of 1.84 GeV /c¢?
- 1.92 GeV/c2

pr (GeV)

p (GeV) | 0.0-04 [ 0.4-0.6 | 0.6-
6-10 546.00 | 266.00 | 71.00
10-15 | 497.00 | 366.00 | 205.00
15-20 | 352.00 | 284.00 | 251.00
20-25 227.00 | 206.00 | 235.00
25-35 283.00 | 286.00 | 407.00

35- 297.00 | 526.00 | 1437.00

Table L.2: Kaons from real D— Krr data outside the m(Kz7) range of 1.84 GeV /c?
-1.92 GeV/c?.
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Table L.3: Background subtracted Kaons from real D— Krm data within the

pPr (GGV)

p (GeV) [ 0.0-0.4] 0.4-0.6 | 0.6
6-10 | 268.00 | 257.67 | 205.67
10-15 | 598.67 | 475.00 | 801.33
15-20 | 575.33 | 565.67 | 1095.67
20-25 | 496.67 | 560.67 | 1226.33
25-35 | 641.33 | 913.33 | 2393.67

35- | 668.00 | 1364.33 | 6489.00

m(Kzm) of 1.84 GeV/c? - 1.92 GeV/c?.

Table L.4: Kaons from MC D— Knrr data within the m(Knr) of 1.84 GeV/c? -

1.92 GeV/c2.

Table L.5: Kaons from MC D— Krr data outside the m(Knr) of 1.84 GeV/c? -

1.92 GeV/c2.

Table L.6: Background subtracted Kaons from MC D— Krm data within the

pPr (GGV)

p (GeV) | 0.004 | 0.406 | 0.6-
6-10 210.00 | 157.00 | 161.00
10-15 379.00 | 396.00 | 569.00
15-20 396.00 | 424.00 | 844.00
20-25 379.00 | 453.00 | 909.00
25-35 594.00 | 917.00 | 1899.00

35- 1154.00 | 2279.00 | 7889.00

pPr (GGV)

p (GeV) | 0.0-0.4]0.40.6[ 0.6
6-10 36.00 | 11.00 | 11.00
10-15 47.00 | 22.00 | 16.00
15-20 31.00 | 29.00 | 23.00
20-25 24.00 | 22.00 | 18.00
25-35 50.00 | 48.00 | 51.00

35- 107.00 | 187.00 | 534.00

pr (GeV)

p (GeV) | 0.0-0.4 | 0406 | 0.6
6-10 186.00 | 149.67 | 153.67
10-15 347.67 | 381.33 | 558.33
15-20 375.33 | 404.67 | 828.67
20-25 363.00 | 438.33 | 897.00
25-35 560.67 | 885.00 | 1865.00

35- 1082.67 | 2154.33 | 7533.00

m(Knrr) of 1.84 GeV/c? - 1.92 GeV/c2.
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pPr (GGV)

p (GeV) | 0.0-0.4]0.4-06] 0.6
6-10 | 11859 | 127.94 | 58.62
10-15 | 332.66 | 325.06 | 391.96
15-20 | 348.20 | 361.27 | 700.08
20-25 | 223.79 | 321.08 | 754.72
25-35 | 225.32 | 427.02 | 1357.59

35- | 166.71 | 418.39 | 1681.59

Table L.7: Surviving Kaons from real D— Knr data within the m(Knr) of 1.84
GeV/c? - 1.92 GeV/c? after NN cutcuts.

pr (GeV)

p (GeV) [ 0.0-04 | 0.406] 0.6-
6-10 44.48 | 27.38 8.89
10-15 87.02 | 72.88 | 42.45
15-20 67.03 | 64.32 | 75.15
20-25 36.61 | 39.24 | 73.87
25-35 45.30 | 51.09 | 93.25

35- 33.70 | 74.31 | 192.88

Table L.8: Surviving Kaons from real D— Knr data outside the m(Knrw) of 1.84
GeV/c? - 1.92 GeV/c? after NN cutcuts.

pr (GeV)

p (GeV) | 0.0-04 [ 0.4-0.6 | 0.6-
6-10 88.93 | 109.69 | 52.70
10-15 274.65 | 276.47 | 363.65
15-20 | 303.51 | 318.39 | 649.98
20-25 199.38 | 294.91 | 705.47
25-35 195.12 | 392.96 | 1295.42

35- 144.24 | 368.85 | 1553.01

Table L.9: Background subtracted Surviving Kaons from real D— Kz data within
the m(Knr) of 1.84 GeV/c? - 1.92 GeV/c? after NN cutcuts.

pr (GeV)

p (GeV) | 0.0-04 [ 0.406] 0.6
6-10 53.21 | 55.90 | 43.87
10-15 146.36 | 225.08 | 258.64
15-20 198.18 | 223.08 | 500.80
20-25 141.40 | 222.04 | 498.52
25-35 169.87 | 350.32 | 915.24

35- 152.90 | 301.30 | 931.49
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pr (GeV)

p (GeV) [ 0.0-04 ] 0.40.6 | 0.6-
6-10 6.24 3.45 1.81
10-15 16.89 | 10.41 | 6.76
15-20 9.96 16.54 | 13.80
20-25 10.68 | 10.37 | 8.73
25-35 12.86 22.40 | 21.40

35- 10.11 | 22.11 | 47.95

Table L.11: Surviving Kaons from MC D— Kzn data outside the m(Kn7) of 1.84
GeV/c? - 1.92 GeV/c? after NN cutcuts.

pr (GeV)

p (GeV) | 0.0-04 [ 0406 ] 0.6
6-10 49.05 | 53.60 | 42.67
10-15 135.10 | 218.14 | 254.13
15-20 191.54 | 212.06 | 491.60
20-25 134.28 | 215.13 | 492.70
25-35 161.30 | 335.39 | 900.97

35- 146.16 | 286.56 | 899.53

Table L.12: Background subtracted Surviving Kaons from MC D— Krr data
within the m(Kn7) of 1.84 GeV/c? - 1.92 GeV/c? after NN cutcuts.
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L.2 Progress of Proton Efficiencies

pPr (GGV)
p (GeV) | 0.006 | 0609 | 00
6-20 55372.00 | 21692.00 | 7983.00
20-30 9589.00 | 7817.00 | 6149.00
30-40 2868.00 | 2961.00 | 3223.00
40-50 811.00 | 1097.00 | 1427.00
50- 399.00 782.00 | 1457.00
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Table L.13: The number of protons from Real A — pr data within the mass range
of 1.1056 GeV/c? - 1.1264 GeV/c?.




pPr (GGV)
p (GeV) | 0.006 | 0.609 | 0.9
6-20 11289.00 | 1676.00 | 497.00
20-30 1341.00 | 551.00 | 353.00
30-40 339.00 | 216.00 | 135.00
40-50 121.00 97.00 | 76.00
50- 73.00 94.00 | 106.00

Table L.14: The number of Background protons from Real A — pm data outside
the mass range of 1.1056 GeV/c? - 1.1264 GeV/c2.

pr (GeV)
p (GeV) | 0.0-0.6 0.6-0.9 0.9-
6-20 51405.59 | 21103.13 | 7808.38
20-30 9117.84 | 7623.41 | 6024.97
30-40 2748.89 | 2885.11 | 3175.57
40-50 768.49 1062.92 | 1400.30
50- 373.35 748.97 | 1419.76

Table L.15: The number of Background subtracted protons from Real A — pm data
within the mass range of 1.1056 GeV/c? - 1.1264 GeV/c?.

pPr (GGV)
p (GeV) | 0.0-0.6 | 0.609 | 0.0
6-20 21100.00 | 4849.00 | 2373.00
20-30 2894.00 | 1428.00 | 1642.00
30-40 947.00 | 536.00 | 842.00
40-50 277.00 | 250.00 | 412.00
50- 98.00 158.00 | 550.00

Table L.16: The number of protons from MC A — pr data within the mass range
of 1.1056 GeV/c? - 1.1264 GeV/c?.

pPr (GGV)

p (GeV) | 0.0-0.6 | 0.6-0.9 | 0.9-
6-20 7052.00 | 1022.00 | 583.00
20-30 | 1098.00 | 434.00 | 470.00
30-40 347.00 | 169.00 | 274.00
40-50 102.00 | 69.00 | 156.00

50- 53.00 73.00 | 226.00

Table L.17: The number of Background protons from MC A — pr data outside the
mass range of 1.1056 GeV/c? - 1.1264 GeV/c2.
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pPr (GGV)

p (GeV) | 0.0-0.6 | 0.609 | 009
6-20 18622.27 | 4489.92 | 2168.16
20-30 2508.22 | 1275.51 | 1476.86
30-40 825.08 | 476.62 | 745.73
40-50 241.16 | 225.76 | 357.19

50- 79.38 132.35 | 470.59

Table L.18: The number of Background subtracted protons from MC A — pr data
within the mass range of 1.1056 GeV/c? - 1.1264 GeV/c?.

pPr (GGV)

p (GeV) | 0.0-0.6 | 0.609 | 0.9-
6-20 14092.36 | 9925.62 | 4729.83
20-30 4677.40 | 5338.37 | 4461.11
30-40 1672.82 | 2180.50 | 2626.15
40-50 546.66 | 851.20 | 1240.01

50- 250.75 | 576.80 | 1085.30

Table L.19: The number of Surviving protons from Real A — pr data within the
mass range of 1.1056 GeV/c? - 1.1264 GeV/c? after NN cutcuts.

pr (GeV)
p (GeV) | 0.0-0.6 | 0.6:0.9] 0.9-
6-20 1062.46 | 547.56 | 219.29
20-30 295.32 | 278.22 | 200.62
30-40 91.60 101.91 | 79.76
40-50 30.76 31.21 37.38
50- 10.93 27.56 35.89

Table L.20: The number of Surviving protons from Real A — pr data outside the
mass range of 1.1056 GeV/c? - 1.1264 GeV/c? after the NN cutcuts.

pr (GeV)

p (GeV) | 0.006 | 0.609 | 0.0
6-20 13719.06 | 9733.23 | 4652.78
20-30 4573.64 | 5240.62 | 4390.62
30-40 1640.63 | 2144.70 | 2598.13
40-50 535.85 840.23 | 1226.87

50- 246.91 567.12 | 1072.69

Table L.21: The number of Surviving background subtracted protons from Real
A — pr data within the mass range of 1.1056 GeV/c? - 1.1264 GeV/c? after the
NN cutcuts.
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pPr (GGV)
p (GeV) | 0.00.6 | 0.60.9 | 0.9
6-20 3372.65 | 1754.74 | 1138.46
20-30 | 1095.33 | 753.41 | 956.58
30-40 425.11 | 281.09 | 532.11
40-50 130.86 | 142.62 | 262.11
50- 33.18 80.07 | 255.05

Table L.22: The number of Surviving protons from MC A — pr data within the
mass range of 1.1056 GeV/c? - 1.1264 GeV/c? after the NN cutcuts.

pr (GeV)

p (GeV) | 0.0-0.6 | 0.6-0.9 | 0.9-
6-20 676.23 | 254.23 | 171.86
20-30 | 329.27 | 210.71 | 220.34
30-40 135.23 | 98.16 | 151.15
40-50 43.94 | 35.22 | 81.82

50- 22.57 | 30.51 | 97.90

Table L.23: The number of Surviving background protons from MC A — pm data
outside the mass range of 1.1056 GeV/c? - 1.1264 GeV/c? after the NN cutcuts.

pr (GeV)
p (GeV) [ 0.00.6 | 0609 | 0.9
6-20 3135.06 | 1665.41 | 1078.07
20-30 979.64 | 679.38 | 879.16
30-40 377.60 | 246.60 | 479.01
40-50 115.43 | 130.25 | 233.37
50- 25.25 69.35 220.65
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Table L.24: The number of Surviving Background subtracted protons from MC
A — pr data within the mass range of 1.1056 GeV/c? - 1.1264 GeV/c? after the
NN cutcuts.



Appendix M

Further Study

The amount o

between polar

f physics which can come from this research is not limited to the bulk of this disserta-
tion. Other area of exploration include looking for other baryon decays, exploring the relationship

ization of transverse momentum, or looking for CP violation.

M.1 Looking for =. — pKnr

Once the cuts
for the two de
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were established, we looked for =. — pKmr, in order to determine the decay fraction

cays. See figure M.1.
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Figure M.1: (left) Mass(pKm) of the Real data set before Neural Net cuts and
(right) after. It has a significance of 3.070. There are 64421 signal events and
1464 background events assuming that the peak is Gaussian and the background is
quadratic.
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M.2 The Effect of Transverse Momentum and Feynman-x
on Polarization

In order to determine if there is a relationship between the polarization of the A. and the transverse
momentum, pr, of the A, we broke the data set into three divisions of pr so that roughly the same
number of events were in each division. These results can be seen in chapter 9. If we broke the
pr distribution into 4 bins with the boundaries seen in table M.1, we get the polarizations seen in
figure M.2.

bin 1 2 3 4
pr range (GeV/c?) | 0.00 - 0.60 | 0.60 - 0.95 | 0.95 - 1.43 | 1.43 - 5.20
pr (GeV/c?) 0.38 0.77 1.17 1.95
Number of events 568 568 568 567

Table M.1: Information on the bins of pr.

Breaking the data set into bins of pr and zp (as seen in table M.2.

L zp/pr — | 0.00-0.71 | 0.71-1.24 | 1.24- 5.21
Pr = 0.45 0.96 1.80
~0.12- 0.06 | -0.03£0.41 | -0.30+0.49 | -0.87+ 0.18
(Tp = 0.01) 249 255 254
0.06 - 0.12 | 0.4540.62 | -0.77+0.45 | -0.5640.29
(T = 0.09) 258 246 253
0.12- 0.59 | 0.04%0.38 | -0.0140.44 | -0.44+0.42
(Tp = 0.19) 251 256 249

Table M.2: Polarization in the 9 bins of zy and pr. The number under the polar-
ization is the number of events in that particular bin.

M.3 CP violation

In theory, CP violation can be checked using this helicity technique, however statistics prevents any
meaningful contribution. By dividing the data sample into A, and A., one can look for patterns.
See table M.3 for a listing of the parameters. Note that the FCN value as found by MINUIT are
similar for each of the similarly polarized data sets. Although the lower FCN value, for example,
for the A, fit indicates the better fit, those FCN values are close enough to make me wonder if there
is even a better fit. (The Breit-Wigner amplitude used is the uncorrected relativistic formula seen
in equation 2.28.)
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Figure M.2: The polarization of the A. as a function of the A.’s transverse momentum. The vertical
bars represent the error as found by MINUIT. They are placed at the average pr value for that
region. The horizontal bars represent the standard deviation of p from the mean for each particular
bin. The dotted line represents the value of the polarization when it was assumed constant for all
data events.
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A. A. A A
FCN 6130.550 6130.956 6402.190 6404.198
E; 0.18£ 0.10 0.47£ 0.09 0.51£ 0.28 0.15£ 0.11
Om, 2.68+ 0.81 0.14=£ 0.55 1.214+ 0.86 2.94+ 0.73
Ey 0.11+ 0.07 0.16£ 0.10 0.00£ 0.36 0.22£ 0.10
OR, 0.00£ 0.72 5.78+ 0.91 4.74+ 4.69 6.25£ 0.55
E; 0.08=£ 0.06 0.22£ 0.08 0.43£ 0.21 0.12+ 0.14
O, 6.94+ 0.92 -0.95£ 0.42 6.08£ 0.57 3.54+ 1.12
Ey 0.15+ 0.07 0.09£ 0.07 0.43£ 0.22 0.45£ 0.15
o, 1.71£ 0.56 0.87+ 0.71 2.40+ 0.70 4.45+ 0.59
Fy 0.14£ 0.08 0.27+ 0.08 0.00£ 0.24 0.30£ 0.09
Or 1.94+ 0.44 1.97£ 0.27 0.83£ 4.69 5.21£ 0.50
F, 0.13£ 0.06 0.23£ 0.09 0.55£ 0.27 0.25£ 0.13
OF, 2.19+ 0.77 3.39+£ 0.42 0.71£ 0.76 2.66£ 0.43
H, 0.02£ 0.04 0.16£ 0.07 0.27£ 0.17 0.24=£ 0.09
Om, 4.75£ 1.98 3.84+ 0.64 5.27£ 0.71 1.024+ 0.47
H, 0.10£ 0.05 0.12£ 0.06 0.29£ 0.15 0.15£ 0.10
O, 0.71%+ 0.66 1.534+ 0.48 0.10+ 0.78 2.284+ 0.74
\ 0.36£ 0.35 0.08£ 0.13 0.96£ 0.59 0.53+ 0.31
ON, 4.16£ 1.03 3.124 1.47 2.31£ 0.83 4.42+ 0.49
I\ 1.00 1.00 1.00 0.14£ 0.18
ON,_ 0.00 0.00 0.00 3.31£ 1.13
N_, 0.17£ 0.13 0.00£ 1.34 0.32£ 0.28 1.00
ON_. 1.66+ 0.64 2.80£ 5.07 4.61£ 0.82 0.00
N__ 0.12£ 0.12 0.74%+ 0.54 0.97+ 0.53 0.54=£ 0.33
ON__ 1.65£ 0.76 4.00£ 0.65 0.69£ 0.61 2.91+£ 0.59
Pa -0.73+ 0.23 0.50£ 0.22 -0.53£ 0.16 0.24+ 0.23
ne | 488.14% 26.91 | 487.20+ 25.76 | 422.68+ 25.33 | 427.64+ 26.94
n, | 638.36E 29.57 | 639.30+ 28.55 | 720.82% 30.65 | 715.86+ 31.84
bq -6.01£ 14.01 -6.03£ 1.41 -10.61+ 1.41 | -8.79+ 13.48
by 1.83+ 0.68 1.83% 0.60 0.96£ 0.56 0.94=£ 0.63
mg 2.29+£ 0.00 2.29+£ 0.00 2.29+£ 0.00 2.29+£ 0.00
0l 11.72+ 6.62 11.38£ 6.50 21.89+ 6.62 21.86% 6.59
Oc 9.05+ 0.77 9.02+ 0.75 8.98%+ 0.77 9.12£ 0.80

Table M.3: Parameter values for A. and A..
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Glossary

Acceptance

Anode

Background

Baryon

Boson

Charge

Dalitz Plot

E791

This is the phase space which is allowed by the physics and the
detector. It is simulated by the surviving reconstructed Monte
Carlo.

This is a positively charged wire. It is used in detectors to
attract drifting electrons. See section 4.4.2 on page 29 for a
more specific application.

This is anything that is not what I want to study. It is the
weeds of physics. It is simulated in this paper by data that is
not under the signal region. See figure 6.6 on page 46 for the
part of the data used for background.

An elementary particle that is comprised of three quarks or three
antiquarks. It, therefore, has a half-integral spin. For example,
A., ATT. Also, because it has quarks, it will interact with the
strong force and thus it is considered a hadron.

A particle or group of particles with an integral spin. Photons
(light) and mesons are bosons.

A fundamental characteristic of a particle, which causes other
charged particles to interact. It is symbolized by a + or -: For
example, an electron has a charge of -1, and a proton has a
charge of +1. In these units, all particles have integral charges,
except for quarks, which have fractional charges.

A display of three body decay used when studying meson decay.
It is similar to the 1 vs. 2 plots in my analysis on page 72

The name of the experiment which supplied the data. It was
conducted at Fermilab from 1991 - 1992. See appendix A for
the list of the members of the Collaboration. See chapter 4 for
more detail on the equipment used.
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Energy

Fermilab
Fermion

Fit Fraction
Hadrons
Helicity

Ion

Lepton

Mass

Meson

MINUIT

The property of a system that is the measure of its capacity to
do work. It is very important in the study of particles because it
is a conserved quantity, i.e. the total energy of a closed system
stays the same. It is often used interchangeably with the term
“mass” in high energy physics, though this can lead to confu-
sion if uninitiated. In the equation E=mc?, the only difference
between mass and energy is a constant. However, that mass,
m, is a relativistic mass, which is different from an objects rest
mass. In the equation E? = m2c* + p?c?, m is the rest mass, i.e.
the mass an object has when at rest relative to the measuring
device. The units of energy in this dissertation are electron volts
(eV). Because an eV is very small, a more typical unit is a GeV
= giga electron volt = 1 billion electron volts.

A research facility in Batavia, Illinois, where the experiment
E791 was conducted.

A particle or group of particles with a half integral spin. Fro
example, leptons and baryons.

The percent that a decay goes through a certain resonance. See
chapter 11.

A particle which is affected by strong interactions, i.e., a particle
made of quarks or gluons (that which binds quarks).

The spin projection of a particle relative to the direction of its
linear momentum.

A charged particle or group of particles. The detectors can only
directly measure the existence and properties of ions. Neutral
particles (as opposed to ions) are only measured by the daughter
particles which come from them.

An elementary particle with nonintegral spin (a Fermion) and
no quarks (doesn’t interact with the strong force). Known lep-
tons are electrons (e), muons (u), tau (7), their corresponding
neutrinos (v) and antiparticles.

A property of matter - though there is an effective mass for any-
thing with energy. It is, under certain circumstances, equivalent
to energy. Units in this paper for mass are GeV/c% If ¢ (the
speed of light) is set equal to 1, then the unit is GeV.

An elementary particle made of a quark and antiquark. For
example, K'', D. It, like a baryon, is a hadron.

Physics software. Used for minimizing transcendental equations.
It can maximize the joint probability of a function, p, by min-

imizing the -2*In(p). This is known as a maximum likelihood
fit.
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Momentum

Monte Carlo

Particle
Phase Space

Polarization

QCD

Quark

Resonance

Spin

Tevatron
Vertex

A property of a moving particle. This is another important
property because it is conserved in any reaction. From the linear
form and the mass of a particle, the energy can be found by E?
= m?c* + p?c?. There are two kinds of momentum: linear and
angular. Angular momentum at the particle level is usually
made up of the orbital momentum and the intrinsic spin.
Monte Carlo (MC), in general, refers to any randomizing pro-
gram. In high energy physics, it refers to the creation of ideal
data randomly chosen, in order to simulate a physical process.
For example, the MC created for this dissertation, was the ideal
case of AT decaying into pK~7". This ideal data was then sent
through a simulated detector in order for me to know like what
the real A./’s look.

An object too small to see.

A multidimensional space in which the coordinates are defined
by the important parameters of the problem. It is the regions
where physics can happen.

The property of a particle which signifies how the particle’s spin
is oriented relative to a common reference frame.

Quantum Chromodynamics. The theoretical basis for predicting
any reaction which involves quarks.

A fundamental particle. The building blocks of hadrons (mesons
and baryons). It is an essential ingredient in all strong interac-
tions. There are currently six known quarks: u (up), d (down), s
(strange), ¢ (charm), b (bottom or beauty), and t (top or truth).
An extremely short lived (~ 10723s) elementary particle which
appears in some particle decay. Looking for these is part of the
dissertation.

An intrinsic property of a particle. If the particle has an integral
spin (0,1,2,3,...) the particle is a boson. If it has a half integral
spin (%, %, ...) it is a fermion.

The facility at Fermilab used for accelerating protons.

The point at which new particles are formed, either by decay or
by collision. In this dissertation, there are primary vertices - the
point at which the pion beam hit the target nucleon creating a
shower of particles - and secondary vertices - the point at which
one of the products from the primary vertex decays, for example
A, — pKrr.
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