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The frequency distribution function (f.d.f., in short) of finite- 

ly-spreaded crystal lattice system is well defined by the distribution 

function of eigenvalues of operator associated with the system. As to 

infinitely-spreaded lattice system, the f.d.f, is not necessarily obtain- 

ed by taking the limit of that in a corresponding finite system, because 

there does not exist, in general, such a limit in L2-space. However, 

the support of f.d.f, in finite system tends to that of spectral func- 

tion associated with the corresponding operator in infinite system. 

Furthermore, it is known that the support of spectral function is in- 

dependent of the choice of real-coordinate system adopted to obtain a 

representation of resolution of identity, and hence the spectra (sup- 

port of spectral function) is considered to be the quantities essential 

to the system. 

On the other hand, when we consider an ensemble of random lattices, 

the situation may be slightly simplified: the set of random variables 

concerned with the system can be assumed to be mutually independent from 

the physical point of view, so that one can define the f.d.f, of the 

ensemble itself, just as in regular system. In such a case, there ex- 

ists almost certainly a unique limit of the above-stated distribution 

function of eigenvalues in finite system in the stochastic sense. As 

for a single lattice system, however, there can not be found any reason- 

able f.d.f, in case of infinite system, without assuming the spacially 

translational invariance property of the system. In the present work, 

we confine ourselves to the spectra of infinite lattice system; it is 

left open to further investigation to find a f.d.f, for the system, 

which is reasonable. 

As to dimensionality of lattice systems, ASAHI [i] has handled 

a two-dimensional classical lattice with nearest neighbor interactions. 

He reduces a partial difference equation obtained from the equation of 

motion of the system to ordinary one having operator matrices, where he 

imposed a restriction on the system to be bounded in one direction, in 
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order to avoid complexities caused by the L2-space property in extending 

the system infinitely in the other direction. On the other hand, HORI 

& FUKUSHIMA [2] have also investigated impurity problems of the same 

lattice system by using certain matrices of order as high as the finite 

number of atoms arraying in y-direction. 

Henceforth the present author intends to make their results com- 

plete by extending the system to infinitely-spreaded system in both di- 

rections in case of bounded operators. The present discussion is con- 

cerned only with eigenfunction expansion associated with two-dimensional 

formally self-adjoint partial difference operators of the second order 

in x-direction and of any even order in y-direction. 

The present method is based on the spectral theory of singular 

formally self-adjoint ordinary differential operators, initiated by WEYL 

and STONE for the system of the second order, and completed by KODAIRA 

[3,4], and independently by TITCHMARSH [5]. Though the operator-coef- 

ficient difference equation is treated over a (pseudo-) Hilbert space 

originated by BEREZANSKII [6], the present discussion is performed along 

essentially with KODAIRA's method, partly in GOVINDARAJU's style [7]. 

A brief sketch of the present work is given as follows (For details, 

see [8]). 

Let us consider a square lattice with the nearest neighbor cen- 

tral force and non-central forces arriving at p site away from an atom. 

Then the basic equation describing this system is given by 

-M(x, y) ~2u (x, y) =K 1 (x, y) {u (x+l,y) -2U (X, y) +U (x-l, y) } 

(I) 
P 

+ = [iK2j (x,y) {u(x,y+j)-2u(x,y)+u (x,y-j) }, 
9 

where M(x,y) stands for the atomic mass at the integral point (x,y); 

-~<al<X<bl<+ ~, -~<a <y<b <+~ Introducing a vector ~ (x) = ( • • • ,u (x, y) = 2== 2= " 
u(x,y+l),- °')t, and infinite-dimensional matrices ~(x)=diag(---,M(x,y), 

ru 
M(x,y+I), ° °.), K l(x)=diag(''',Kl(x,y),Kl(x,y+l),''') and ~(x) whose y- 

the row is given by (..-,0,K ~(x,y),''',Ko~(x,y),K0(x,y),K21(x,y),''', 
2~ P ~ 

K2p(X,y),0,--') r with K0(x,y)=-2[j=iK2j(x,y), we can rewrite Eq. (i) in 

the matrix form 

(2) -~2~ (x) = [~(x) ] -i [~i (x) {~ (x+l) -2u (x) +u (x-l) }+~ (x) ~ (x) ] . 

A self-adjoint matrix ~x(X) is obtained from the matrix ~(x) by specify- 

ing the defining domain of ~(x) to be a subspace H x of a Hilbert space, 

which was discussed in the previous paper [9]. In many physical situa- 

tions, we can assume that the space H x is independent of x, in which 
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case we write simply ~(x) and H instead of ~x(X) and H x respectively. 

In more general setting, we deal with a formally self-adjoint 

operator with operator-valued coefficients given by 

(3) (LU) (x)=[Q(x)]-I [PI (x) U (x+l) +P0 (x) U (x) +PI (x-l) U (x-l) ] , 

where we have assumed that Q(x), Pl(X) and P0(x) are self-adjoint oper- 

ators on a Hilbert space H for every x, and that Q(x) and Pl(X) have 

inverses. In order to handle Eq. (3) by a method developed for ordinary 

difference equation [9], we have to introduce another Hilbert space, in 

which space operators in H may behave as scalars. For this purpose a 

pseudo-Hilbert space introduced by BEREZANSKII [6] would be suitable. 

Denote by L(H,H) the set of all bounded linear operators in H, 

and put H^=[bl L(H,H). If we define, following BEREZANSKII [6], a 
u x=a ! 

certain inner product and a strong operator topology on H0, we can see 

that the space H 0 becomes a Hilbert space, in which the elements of 

L(H,H) behave as scalars. Thus the operator L in Eq.(3) is regarded 

as a linear operator on the Hilbert space H 0 and U as an element of H 0. 

Now we consider the equation (LU) (x,£)=U(x,Z)£, where £=~EH, E H 

being the identity operator on H and 16C. Then we can construct a set 

of solutions Sj(x,£), j=l,2, of this equation under certain conditions, 

which we call a canonical system of fundamental solutions. 

If we impose real and self-adjoint boundary conditions at both 

boundary points, which are defined in the sense of strong operator to- 

pology in case where one or both of the boundary points are at infinity, 

then we can discuss the WEYL's classification of operators: we have four 

classes, limit point (or circle) case at a I and limit point (or circle) 

case at b I. In many physical systems of crystal lattices, the limit 

point case at infinity may occur. In the study of the effect of sur- 

faces of a crystal lattice, for instance, the operator L should be of 

the limit circle type at this boundary (surface). 

We can construct a characteristic matrix M(Z) in terms of the 

canonical system of fundamental solutions, and of the boundary conditions 

if necessary, to obtain the spectral function 

1 
(4) [pjk(l) ]=-lim --/ [M(p+~s)-M(p-iE) ]dp. 

E÷+0 2~i 0 

When the limit point case at point al(or bl) occurs, calculations of 

some factors in the elements of M(Z) become easier, because these factors 

are independent of boundary conditions. After constructing from L a 

self-adjoint operator X by specifying the defining domain ~0, we final- 

ly arrive at the following eigenfunction expansion formula by using ab- 
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stract theory of spectral decomposition of ~ and by solving a integro- 

difference equation: 

b ~ 2 

Y=al+l -~ j, 

Finally it is remarked that, in order to obtain the spectral func- 

tion, it is necessary to construct a canonical system or at least to 

know the behaviors of the solutions at boundary points. The application 

of this theory to physical system will be discussed in the future. Fi- 

nally we comment that, although the present work is concerned only with 

the partial difference equation of order 2 in x-direction, we can easi- 

ly extend the theory to the case of any even order. 
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