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How many futures on Finsler spacetime?
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Abstract. Some recent results by the author on the geometry and dynamics of Finsler
spacetimes are reviewed. It is shown that in Finslerian generalizations of general relativity
the number of predicted lightlike cones is two, one past and one future, as in general relativity.
This result is non-trivial as it can fail, for instance, in spacetime dimension two. It is also
shown that suitable versions of the reverse Cauchy-Schwarz and reverse triangle inequalities
hold on Finsler spacetimes. Finally, a long standing problem of Finslerian gravity concerns the
development of dynamical equations which imply a conservation law. We make some progress
following a recent proposal by the author according to which physical Finsler spacetimes have
affine sphere indicatrices of hyperbolic type.

1. Introduction
Although Finsler geometry is a quite venerable subject it is usually a good idea to remind
the reader what it is all about. Shiing-Shen Chern tried to popularize this theory publishing
an article entitled “Finsler geometry is just Riemannian geometry without the quadratic
restriction”. In fact Riemann suggested to consider spaces for which the arc-length of curves is
given by

∫
γ

√
2|L (x, ẋ)|dt where

L (x, v) =
1

2
gµν(x, v)vµvν , (1)

namely where g although positive definite depends on v and hence does not define a quadratic
form. Observe that the arc-length calculated with the above formula must be independent of
the parametrization, and so it is natural to require L to be positive homogeneous of degree two

∀s > 0, L (x, sv) = s2L (x, v). (2)

In this way gµν can be defined as the Hessian with respect to the velocities of L . In index free
notation we shall also write gv = gµνdxµ ⊗ dxν , gv : E 7→ T ∗M ⊗M T ∗M , E = TM\0, with a v
index to stress the dependence on the velocity. It can be easily shown, differentiating twice Eq.
(2) with respect to s, that gv cannot be extended to the whole TM while remaining continuous
otherwise it would be independent of v and we would be back to the Riemannian case. The
Finsler Lagrangian L is said to be reversible if L (x,−v) = L (x, v).

While it is true that Finsler geometry is obtained dropping the quadratic restriction on L ,
this fact does not really explain why this theory is interesting and why we should study it. After
all any theory could be made more general dropping some axiom. Instead, we want the theory
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to be simple and rich while being based on few axioms. The importance and naturalness of
Finsler geometry is better understood with the following observation:

Riemannian geometry gives each tangent space of a manifold the structure of a finite
dimensional Hilbert space; Finsler geometry gives each tangent space the structure of a
Banach space whose unit balls are strongly convex.

In this work we shall be interested in Lorentz-Finsler geometry which is obtained from
the above axioms replacing the positive definite signature of g with the Lorentzian signature
(−,+, · · · ,+). John Beem tried this option [1, 2] but could not establish the existence of two
cones, namely the fact that the set of timelike vectors at p ∈M

Ip := {v ∈ TpM\0 : L (p, v) < 0},

consists of two convex cones to be interpreted as the future and the past causal cones. Other
authors [3] that considered the causal aspects of the theory simply stipulated the existence of a
future timelike convex cone I+p where L < 0.

It seems that most authors working in Finsler geometry did not care very much of the
signature of the metric, as it was simpler to leave aside, at least temporarily, the difficulties
connected with the causal and geometrical interpretation of the theory. Also, they were
essentially looking for tensorial generalizations of the Einstein’s equations so they were not very
much concerned with the underlying geometry [4–10]. Actually, understanding the geometry
of the theory turned out to be very important since, as in Finsler geometry there are many
connections, there were several tensorial candidates for a generalization of Einstein’s equations
and their physical interpretation was not entirely clear.

The investigations by Beem confirmed that causality in Finsler space is non-trivial. Although
each connected component of the the timelike region Ip had to be a convex cone [1,2,11,12], he
found that Ip could consist of more than two convex cones. For instance, he gave the example
of a 2-dimensional spacetime R2 endowed with a Finsler Lagrangian

L (x, v) =
(v1)3v2 − v1(v2)3

(v1)2 + (v2)2
,

where Ip is independent of x ∈ M and has four convex cone components. Actually, Beem
believed to have found similar examples for higher-dimensional spacetimes [2], but his examples
can be shown to be incorrect since the metric has vanishing determinant at some point of the
slit tangent bundle.

In this work I shall outline further progress by the author which has shown that, at least
for reversible Lagrangians, Beem’s pathological examples can be found only in two dimensional
spacetimes. In the physical 4-dimensional spacetime, the Lorentzianity condition on gv implies
that Ip consists precisely of two convex cones. Thus, Finsler causality predicts that there is
just one future as desired. This is really a good news since the mathematical theory of Finsler
connections, sprays, exponential maps and convex neighborhoods has been developed using the
slit tangent bundle E = TM\0. We do not have to restrict the domain of L to a convex
cone thus we can use the standard theory of Finsler connections in the study of Lorentz-Finsler
geometry.

In our recent works we have also solved other problems. In fact we proved for the first time the
reverse Cauchy-Schwarz and reverse triangle inequalities for Lorentz-Finsler geometry. These
results are fundamental in many geometrical arguments. They have been used to establish that
lightlike geodesics locally maximize the Lorentzian length [13], a fact which implies by the usual
interpolation argument [14, Prop. 2.8] that any causal geodesic which is not an achronal lightlike
geodesic can be deformed to a timelike curve keeping endpoints fixed. Let us denote with Jαp
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a connected component of the set of causal vectors, namely the closed set of the slit tangent
bundle given by

Jp = {v ∈ TpM\0 : L (p, v) ≤ 0}.
Then the inequalities read as follows (V = TpM).

Theorem 1.1 (Finslerian reverse Cauchy-Schwarz inequality). Let v1, v2 ∈ Jαp then

−gv1(v1, v2) ≥
√
−gv1(v1, v1)

√
−gv2(v2, v2),

with equality if and only if v1 and v2 are proportional. In particular, if v1, v2 ∈ Jαp then
gv1(v1, v2) ≤ 0 with equality if and only if v1 and v2 are proportional and lightlike.

Theorem 1.2 (Finslerian reverse triangle inequality). Let v1, v2 ∈ Jαp then defined v = v1 + v2,
we have v ∈ Jαp and √

−gv(v, v) ≥
√
−gv1(v1, v1) +

√
−gv2(v2, v2).

with equality if and only if v1 and v2 are proportional. In particular, if v1 is timelike and v2 is
causal then v is timelike.

We also showed that the Legendre map is a diffeomorphism.

Theorem 1.3 (The Legendre map is a diffeomorphism for spacetime dimension n + 1 ≥ 3).
Suppose that dimV ≥ 3, then the map ` : V \0→ V ∗\0 defined by

v 7→ gv(v, ·) = ∂L /∂v

is a bijection and hence a diffeomorphism. Its extension to the whole V with `(0) := 0 is
a Lipeomorphism (locally Lipschitz homeomorphism with locally Lipschitz inverse). Moreover,
without any condition on dimension, it is always true that ` establishes a bijection between Jαp
and its polar cone

Jα∗p = {q ∈ T ∗
M\0 : q(v) ≤ 0, for every v ∈ Jαp }.

Since this results plays a role in the proof that Ip has two components we sketch the proof.

Idea of proof. Let V = TpM and let us introduce the equivalence relation on V \0 “v1 ∼ v2 if
there is s > 0 such that v1 = sv2”, namely let us regard V \0 as a radial bundle over a base Q
diffeomorphic to Sn. Analogously, let us introduce the quotient Q∗ of V ∗\0 with respect to the
radial directions. The map ` satisfies `(sv) = s`(v) for every s > 0, thus it passes to the quotient
to a map ˜̀: Q→ Q∗. Since Q and Q∗ are closed manifolds with the same dimension, ˜̀ is actually
a covering. Since Q∗ ∼ Sn is simply connected (here we use n ≥ 2) and Q ∼ Sn is connected
this covering is actually a homeomorphism. From here the proof is straightforward.

Lemma 1.4. Let dimV ≥ 3 and let L be reversible. Given any two distinct components Jα

and Jβ we have Jα ∩ (−Jβ) 6= ∅.

Idea of proof. The proof is by contradiction. Suppose that Jα ∩ (−Jβ) = ∅ then there is
a hyperplane W ⊂ V passing through the origin which separates Jα and J−β = −Jβ and
denoting with uα and uβ the points of tangency of the translations of W with the indicatrix
{v : 2L (p, v) = −1} which stays inside the cones

W = ker guα(uα, ·) = ker guβ (uβ, ·)

and from here it is easy to find s > 0 such that

guα(uα, ·) = gsuβ (suβ, ·)

contradicting the injectivity of the Legendre transform.
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Figure 1. The idea of Lemma 1.4.

We arrive at the final step of the proof

Theorem 1.5. Let dimV ≥ 3 and suppose that L is reversible, then Ip has two components.

Proof. Let Iαp be a component of Ip, and let I−αp = −Iαp be its opposite. Suppose that there is

another component Iβp with β 6= α,−α, then Iβ cannot intersect neither Iαp nor I−αp since the
components of Ip are disjoint, however it must intersect both of them. The contradiction proves
that there are just two components.

2. A proposal for a Finslerian gravitational dynamics
The variational principle

δ

∫
L (x, ẋ)dt = 0,

gives the geodesic equation
ẍµ + 2Gµ(x, ẋ) = 0,

where the spray is determined by

2Gα(x, v) = gαη
( ∂2L

∂xν∂vη
vν − ∂L

∂xη
)
. (3)

The geodesic equation determines the motion of free falling particles in the theory. As we
mentioned a lot of work was devoted to the study of the Finslerian generalization of Einstein’s
equations. The main difficulty is that of finding a divergence free stress-energy tensor, so as to
establish a suitable conservation law. This result has been obtained under additional conditions,
e.g. for spaces of constant curvature [6] or for spaces of scalar curvature [9].

Let us write Gαβ for ∂Gα/∂vβ and Gαβγ for ∂Gαβ/∂v
γ . Let us define

δ

δxµ
:=

∂

∂xµ
−Gαµ(x, v)

∂

∂vα
,

and

Γαµν(x, v) =
1

2
gαη
( δ

δxν
gηµ +

δ

δxµ
gην −

δ

δxη
gνµ
)
,

so that the spray (3) can be written 2Gα = Gαβγv
βvγ = Γαβγv

βvγ . The coefficients Gαβγ and
Γαβγ are examples of horizontal connection coefficients of a Finsler connection: the Berwald
connection in the former case and the Chern-Rund connection in the latter case.
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We assume that the mean Cartan torsion vanishes

Iγ :=
1

2
gαβ

∂

∂vγ
gαβ =

∂

∂vγ

(
ln
√
|det g|

)
, (4)

namely that for every x ∈M , the indicatrix {v : 2L (x, v) = −1} is an affine sphere of hyperbolic
type.

Remark 2.1. These spaces are really important, indeed using some standard results in affine
differential geometry [15] it is not difficult to show that they are equivalent to a pair given by
a distribution of convex sharp cones (the future light cones) and a volume form (the spacetime
measure).

Moreover, we assume that the space is Landberg, namely the Berwald horizontal derivative
is compatible with the metric (∇HBg = 0)

δ

δxµ
gαβ −Gναµgνβ −Gνβµgαν = 0. (5)

This condition is equivalent to Gαβγ = Γαβγ , that is, the Berwald and Chern-Rund connections

coincide. In particular we can simply write ∇H for the horizontal derivative. The HH-curvature
of the Berwald-Chern-Rund connection is

Rαβγδ =
δ

δxγ
Gαβδ −

δ

δxδ
Gαβγ +GαµγG

µ
βδ −G

α
µδG

µ
βγ .

Whenever needed we shall lower the first index to the left. Our suggestion [16] for the Einstein
tensor is

Eαβ :=
1

2
(R µ

α βµ +R µ
β αµ − gαβR

µν
µν), (6)

This tensor is symmetric and does indeed satisfy the conservation law (for a proof see [16])

∇Hβ (Eβαv
α) = 0, (7)

namely, the energy-momentum is conserved for all observers. Indeed, using a divergence theorem
due to Rund [17] for any section s : M → TM\0, and vector field Zγ(x, v)

∇s∗g · s∗Z = s∗(∇HC · Z) + s∗(IβZ
γ +

∂Zγ

∂vβ
)Dγs

β, (8)

where ∇s∗g is the Levi-Civita connection of the pullback metric s∗g(x) := g(x, s(x)), ∇HC is
the horizontal Cartan (or Chern-Rund) Finslerian covariant derivative and D is the non-linear

covariant derivative Dγs
β = ∂sβ

∂xγ +Gβγ (x, s(x)). Thus

∇s∗gγ (Eγα(x, s(x))sα) = s∗(
∂

∂vβ
(Eγα(x, v)vα))Dγs

β, (9)

which is the analog of the general relativistic almost conservation equation (Tαβuβ);α = Tαβuβ;α.

Remark 2.2. Concerning the problem of constructing dynamical equations for Finsler gravity
which imply a conservation law, Ishikawa wrote [8]

There have been several attempts to construct the Einstein tensor in a Finsler space
itself. [. . . ] However, it seems difficult or seems to be impossible to construct the
Einstein tensor according to this line of approach (by using the Finslerian Bianchi’s
identity).
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We have solved the problem though we had to impose some additional conditions, namely
Eqs. (4)-(5). We wish to remark a key idea which played an important role in our arguments.
Contrary to previous approaches we did not try to find a divergence free stress-energy tensor
but rather a divergence free energy-momentum current dependent on the observer. In fact, in
our opinion what really matters is the map v 7→ ξ where ξα(v) = −Eαβ (v)vβ. One can even try

to define the notion of dominant energy condition using this map (assume Λ = 0 for simplicity).
There are two inequivalent possibilities: (a) at every p ∈ M the map vα 7→ −Eαβ(v)vβ

sends the future causal cone J+
p to its polar cone (J+

p )∗, that is: for every v, w f.d.-causal,

−Eαβ(v)vβwα ≤ 0; or (b) the map vα 7→ −Eαβ (v)vβ sends J+
p into J+

p .

Let us end this work comparing our equations with previous proposals. Let Ric(v) =
Rαβαγv

βvγ . It can be observed that upon contraction with vαvβ our vacuum equation Eαβ = 0
gives

Ric(v) = 0. (10)

Since Ric(v) is positive homogeneous of degree two, Eq. (10) can also be rewritten

1

2

∂2Ric(v)

∂vα∂vβ
= 0 (11)

where the expression on the left-hand side is the Akbar-Zadeh Ricci tensor [18]. All authors seem
to agree on the validity of this equation in the vacuum case since it is implied by almost every
choice of dynamical equations that has been proposed so far, starting from the first proposal by
Horvath [4]. Not all authors obtained this equation from a tensorial generalization of Einstein’s.
Rutz [19], for instance, argued for its validity using an analogy based on the the Jacobi deviation
equation. Its consequences have also been explored by Li and Chang [20].
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