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One of the main new tools made available in constructive field 

theory by the Euclidean revolution of 1971-73 is the approximation of 

scalar field theory by Ising models and the resulting correlation ine- 

qualities. There has been quite active development of this line in the 

past year and our goal here is to review some of these developments. 

While we will have something to say about the basic ideas of the Ising 

approximations, we will suppose that the reader has some previous ex- 

posure to them, either from the original papers [Guerra, Rosen, Simon 

(1973) and Simon, Griffiths (1973)] or from the pedagogic reviews [ 

Simon (1974 b,c) or the contributions of Guerra, Rosen, and Simon to 

Velo-Wightman (1973)]. 

§I. The Basic Framework 

The basis of the Ising methodology is two approximations: the 

lattice approximation [Guerra, Rosen, Simon (1973)] and the classical 

Ising approximation [Simon-Griffiths (1973)]. Rather than state precise 

technical results, we paraphrase the original results in two metatheorems 

below. By a "generalized Ising model" we mean a finite collection of 

random variables ("spins") whose Joint probability distribution has the 

form 

exp(+ [ )d~l(x l) .d~n(X l) i<J aijxixj "" 
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for measures ~i on R. By a "classical Ising model", we mean a model 

where each "spin", x i can only take the values ±l. If each aij ~0, 

the model is called "ferromagnetic". 

Metatheorem I (the "lattice approximation") Any P(¢)2 Euclidean 

field theory is a limit of generalized ferromagnetic Ising models and 

if P is even, each vi is even. 

Metatheorem 2 (the "classical Ising approximation") Any P(¢)2 

Euclidean field theory with P(X) = aX 4 + bX 2 - ~X is a limit of ferro- 

magnetic classical Ising models with d~i(x i) = D i exp(+ciwxi)[6(xi+l) 

+ ~(xi-l)] for suitable positive constants Di, c i. 

Remarks i. As noted in the original papers, these theorems extend 

formally to three and four space-tlme dimensions; (for three dimensions, 

see below). 

2. The classical Ising approximation proceeds in two steps. 

One first passes to the lattice approximation and then approximates the 

spins of the lattice approximation by classical Islng spins. The latter 

part is O.K. in three or four dimensions so the removal of "formal" in 

Remark I is only a question of convergence of the lattice approximation. 

3. We have not been too explicit about what we mean by"limit". 

What is critical is that the Euclidean fields are limits of positive 

linear combinations of spins in a way that allows one to immediately 

extend any multilinear inequality ("correlation inequality") from the 

spin systems to the field theories. 

There have been several extensions of the general formalism 

in the past year: 

Theorem I.i [Park (1974)] The lattice approximation converges for the 

finite volume, free boundary condition (¢4) 3 field theory. 

2 2 2 
Theorem 1.2 [Dunlop-Newman (1975)] The (¢i + "'" + Cn ) field theory 

in two dimensions is a limit of ferromagnetic magnetic "spin" systems 

where the spins take values on the n-i dimensional sphere (i.e. plane 

rotor if n=2 ; classical Heisenberg if n=3). 

Theorem 1.3 [Guerra-Rosen-Simon (1975)] The P(¢)2 lattice approxi- 

mation in a box with periodic or Neumann boundary conditions is conver- 

gent. 
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Remarks I. Thus far, Park's result has found no applications. This 

situation should change with the control of the infinite volume (¢4) 3 

theory (see Osterwalder's contribution to these proceedings). It would 

be useful to have Park's result extended to Dirlchlet boundary conditions. 

2. Dunlop-Newman have also proven Lee-Yang theorems for n=2,3 

rotors [the n > 0 case is under active investigation (H. Mahler ( 

private communication))] and thus one has analyticity of the pressure 

in certain multicomponent field theories. 

3. The box lattice approximation with periodic B.C. of course 

has spins coupled at opposite boundary points. Neumann B.C. involves 
I 2 

dropping a term ~(q-q') from the action for any pair of nearest 

neighbors with q in the region and q' out (for comparison, with 

Dirichlet B.C., one only drops the -qq' term). 

4. Baker (1974a) has also discussed the Neum~nn lattice theory 

(which he unfortunately calls "free boundary conditions"). 

5. Correlation inequalities between Dirichlet and Periodic states 

have been exploited by Guerra, Rosen, and Simon (1974) [see §5, below]. 

§2. Some New Correlation Inequalities 

Many of the recent applications of correlation inequalities in 

field theory have made use of inequalities proven in the past year and 

a half and, in turn, many of these inequalities have been proven by 

authors interested in field theory applications. The three new classes 

of inequalities are: 

Theorem 2.1 [Lebowltz (1974)] In a classical ferromagnetic Ising model 

with positive external field (i.e. dV i = Die+Uixi[6(xi+l) + 8(xi-1)] 

for any finite sets A and B: 

(-I) IC[+Iol T(C,L;AkC,BkD) ~ 0 
CcA~Dc-B 

C~A ; DcB 

(-i Icl T(C,D;AkC,B\D) ! 0 

where 

T(C,D;E,F) = <S CAD> <S EAF> - <S C> <S D> <S E> <S F> 
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with S C = ~ S.. 
i g C m 

Theorem 2.2 [Newman (1975a)] Let A be any set. Let ~ be a family 

of partitions of A into two disjoint subsets AI,A 2 so that any par- 

tition of A into pairs (or if #(A) is odd into pairs plus one one- 

element set) is a refinement of some {AI,A2}~ ~. Then, in any classical 

ferromagnetic Ising model with positive external field: 

A A 
<oA> _< ~ <o 1><o 2> 

{AI,A2}~ ~ 

Theorem 2.3 [Cartier (1974), Percus (1974), Sylvester (19747] Define 

u by: 
n 

~n 7] Un(ii'''''in) = ~l'''~Dn <exp(~lqil+'''+~n~in ~i=O 

Then, in any zero field ferromagnetic classical Ising model: 

u6(il,...,16) h o 

Remarks i. Lebowitz inequalities are usually written in terms of "Percus 

variables" and look simpler in that form. 

2. The rather complex condition on ~ in Newman's inequality 

is not only sufficient for the inequalities in question to hold but 

also necessary in that should ~ not obey that condition, there are 

Islng ferromagnets where the inequality fails. 

3. By the "dummy spin trick", one need only prove Newman's ine- 

quality in zero field with #(A) even. Newman does this by a graphical 

expansion. 

4. If #(A) is even, Newman's inequalities imply by induction 

[Newman (1975a)]: 

< A> < ~ <qilJl>...<oinJn> 

-- pairings 

where the sum runs over all ways of writing A as n disjoint pairs 

(and a similar inequality by the dummy spin method if #(A) is odd). 

Earlier Glimm-Jaffe (1974b) have proven an inequality of this form from 

Lebowltz inequalities but with a constant of order n! in front of the 

sum. 

5. The GKS inequalities assert that in positive field u I ~ 0, 
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u 2 ~ 0 and GHS imply that u 3 ~ 0 ; Lebowitz' inequalities imply 

u 4 ~ 0 at zero field. It is conjectured that U2n(-l) n+l ~ 0 at zero 

field. 

6. As of yet, no application of u 6 ~ 0 is known. Feldman ( 

1974) has remarked that the general inequality U2n(-l) n ~ 0 at zero 

field would yield a proof of a mass gap result that has now been proven 

by Spencer using alternate means (see §5). 

7. These inequalities all extend to ¢4 Euclidean field theories 

(and the first two to ¢4 ~¢ theories) if ~i is replaced by ¢(xi). 

~3. Construction of States 

Most of the recent applications of the Ising approximation in field 

theory have extended trends set by the very earliest applications (Guerra, 

Rosen, Simon (1973), Simon, Griffiths (1973), Nelson's contribution to 

Velo-Wightman (1973), and Simon (1973, 1974a)) which in turn followed 

trends set by the applications of correlation inequalities in statistical 

mechanics. 

One of Griffiths' original applications of his inequalities was to 

prove the existence of the infinite volume limit for the correlation 

functions of a spin system. Nelson extended this idea to construct an 

infinite volume P(@)2 theory for P = even poly - UX (the half- 

Dirlchlet state). Gllmm and Jaffe (1974 b) have recently combined cor- 

relation inequalities with the cluster expansion (see the contribution 

of Glimm, Jaffe, and Spencer to Velo-Wightman (1973)) to construct an 

infinite theory for these P ("weak coupling boundary conditions") which 

they then show is Nelson's state. One advantage of this construction 

is that it provides a proof of :¢J: (j ~ deg P) bounds for Nelson's 

state. These bounds have been used by Glimm-Jaffe (1973) and by FrShlich 

(197~b). 

§4. Dominati0n by the Two-Point Function 

One of the earliest results obtained using Islng methods in field 

theory [Simon (1973)] asserts that in any P(¢)2 theory the mass gap 

is determined by the falloff of the truncated two-point Schwinger function. 

Newman (1975a) has found a new proof of this for even ¢4 theories. 
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For as a special case of his inequalities (Theorem 2.2), he considers 

A = {l,...,n; l',...,m'} with n+m even, his inequalities include: 

(l...n l'...m') < (l...n) (l'...m') 

+ [ (lj') (l...i...n l'...j...m') (*) 
i,J 

which implies the stated falloff. 

Glimm and Jaffe (1974b) have shown that the two-point function 

dominates more than Just rate of falloff. Using Lebowitz' inequality 

<¢(Xl) ..¢(Xn)> which include: inductively they prove bounds on S n 

Theorem 4.1 [Glimm-Jaffe (197~b)] In any ¢4_ ~@ field theory, for 

any positive f l , . . . , f n  

0 ! Sn(f I . . . .  , fn  ) ! 2n-l(n-!) ! I l f l l I  - - .  I lfnll  

where IIfll = S2(f,f) I/2. 

Remarks I. Letting IIIfllI = s2(IfI,Ifl) I/2 one has that 

ISn(fl,...,fn)l < 2n-l(n_l)! lllflII[ ... lllfnlIl 

2. The 2n(n-l)! in these bounds can be replaced by [~ 

(see theorem 4.3 below). 

3. The bound in Remark I is precisely of the form needed to be 

able to recover the Minkowski region according to the (revised) 0ster- 

walder-Schrader axioms [Osterwalder-Schrader (1975)]. 

4. Formally, these bounds hold in four dimensions. To be of 

use there, S 2 must be a distribution at coincident (i.e. an L I function 

). It is order by order in perturbation theory which is suggestive 

that it will be also in the actual theory. 

Newman (1975 a,b) has extended Theorem 4.1 in two different ways: 

Theorem 4.2 (Newman (1975b)) In any @4 + a¢2 _ ~¢ (~0), field theory, 

for any positive test function, f: 

1 s2T(f,f)7 <e@(f)> ~exp[Sl(f ) + 

where 
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S2T(x,y) : S2(x,y) - Si(X)Sl(Y) 

Theorem 4.3 (Newman (1975a)) In any even ¢4 theory: 

0 < S2n(Xl,...,X2n) < [ S2(Xil, . .S 2 -- -pairs Xjl) " (Xin'XJn) 

Remarks I. The proof of Theorem 4.2 is surprisingly short and simple 

considering its detailed information. Let F(~) = £n<e~¢(f)>. Then 

GHS directly implies that d3F/d~ 3 ~ 0 for all ~ > 0! Since F(0) = 0, 

F'(0) = Sl(f) and F"(0) = s2T(f,f) we immediately find that 

! 2 
F(~) < ~Sl(f ) + ~ s2T(f,f) 

2. Theorem 4.3 is Just the translation of one of Newman's 

inequalities to field theory (see Remark 4 in §2). There are also 

inequalities for ¢4_~¢ theories. 

3. Theorem 4.3. has a rather dramatic sounding restatement: the 

Schwinger functions of any ¢4 theory are dominated by those of the 

generalized free field with the same two-point function. 

4. Theorem 4.3 is quite directly an extension of Theorem 4.1 

improving the constant in front of the product of norms. Theorem 4.2 

implies bounds on Sn(f) via two remarks. First, by GKS and I<A>I 

<IAI>,G(~) ~ <eU#(f)> obeys IG(~)I < G(I~I). Next, Cauchy estimates 

on the entire function G(~) implies bounds on G(m)(0). 

5. (This remark is due independently to the author and J. Fr~hllch 

) In one sense, Theorem 4.2 is a very impo~tant improvement of Theorem 

For, if $2 T has very weak falloff properties (and such 4.1. falloff 

is to be expected if ~ > 0 ; see §5 below; also note that ¢ bounds 

for some ~ > 0 implies ¢ bounds for ~ = 0 by GKS) then Theorem 

4.2 implies that 

<exp(¢(hO X(0,T) ))> ! e x p ( c T )  

T 
at least under some weak regularity assumption on S 2 at the coincidence 

singularity. Modulo technical details, it is a basic result of FrShllch 

(1974a) (see Simon (1974b) for additional discussion) that such bounds 

imply C-bounds in the sense of Glimm-Jaffe (1972). 
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§5. Mass Gap and Spectral Results 

Cluster expansions and Bethe-Salpeter equations have proved a power- 

ful tool for studying the mass spectrum in weakly coupled (and large 

fugacity) theories (see Glimm's contribution to these Proceedings). 

Thus far, correlation inequalities have provided the only tool for 

studying these questions in the strong coupling regime where they provide 

much less information than is available in the weak coupling regime. 

Some new information on these questions has been obtained in the past 

year: 

Theorem 5.1 [Guerra, Rosen, and Simon (1974)] There is a mass gap (i.e. 

0 is ~ an isolated simple eigenvalue of the Hamiltonian) in any (a~ 4 + 

b~2 - ~)2 field theory with ~ # 0. 

Theorem 5.2 [Spencer (1974)] In any even (~4)2 theory, the first 

excited even state has an energy at least twice as large as the first 

excited state. 

Remarks I. These extend earlier results which used correlation inequali- 

ties, namely those of Simon (1974a) and of Gliram, Jaffe, and Spencer 

(their contribution to Velo-Wightman (1973)) respectively. 

2. Theorem 5.1 follows Ising model arguments of Lebowitz and 

Penrose (1974). The main difficulties are technical ones involving 

boundary conditions. 

3. By even state, we mean one obtained by applying an even 

number of fields to the vacuum. In more physical terms, Theorem 5.2 

asserts that in a (~4)2 theory there are no even "G-parity" bound 

states (at least, below the two-particle threshold). 

4. Spencer's proof of Theorem 5.2 uses Lebowitz inequalities 

and a very clever trick. Newman (1975a) has a simple proof using his 

inequality (*) quoted in 4. For, if n and m are even, the sum in 

(*) has exp(-2mt) fallbff if the prime and unprimed indices are sepa- 

rated by Euclidean time, t. 

§6. "Couplin$ Constants" Variation 

Another subject of considerable interest involves monotonicity and 

smoothness information about physical parameters (mass, vertex functions 
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at special points, etc.) as functions of bare "coupling constants" 

(bare mass, bare coupling constant, etc.). The earliest applications 

of correlation inequalities by Guerra, Rosen, and Simon (1973) include 

a statement of this type, which in one form says that in a P(¢)2 theory 

a2mX2m + ... + a2X2 (even P), the physical mass is monotone wi~h P(X) 

increasing as a 2 increases (with a2m,...,a4, m 0 fixed). Recently, 

Glimm and Jaffe, in a series of papers [Glimm, Jaffe (1974a,c,d,e); see 

Guerra, Rosen, Simon (1974) for an additional critical index result] 

have proven a large number of such bounds and bounds also on critical 

exponents. We quote an example: 

Theorem 6.1 (Glimm-Jaffe (1974a)) For fixed m 0 and I, let m(~) 

(i¢4 I 2 theory. Then for c > denote the physical mass of the + ~@ )2 c 

(the critical value where the even theory stops possessing a mass gap) 

m(c) is Lipschitz continuous and for ~ > ~' > ~ : 
c 

m(~) 2 - m(~,) 2 < (~- ~') 

Remarks i. If m(~) were differentiable, the GRS result quoted above 

says that dm2/dq > 0 and the Glimm-Jaffe results say that dm2/da < i. 

2. if m(~) + 0 as ~ ÷ ~ [Baker (1974b) has announced a 
c (~_~C)i/2 closed related result], then one has that m(~) ~ 

~7. The :cos ~:2 Theory 

I would llke to briefly describe some recent work of Fr~hlich (1975) 

which doesn't fit into either the general topic of my talk or of Glimm's 

talk but which I feel should be mentioned at this conference. Fr~hl!ch 

has constructed a :cos %:2 theor~a(quantized~ (massive) slne-Gordon 

equation) or more accurately the | dv(~)[:cos(a~+n(~)):] theory where 

n is a function, v a signed measur~ and one needs ~ < ~ for the 

finite volume and small coupling theories and ~ < 4/~ for the strongly 

coupled theories. The introduction of a new beast to the zoo of two- 

dimensional field theories (and a beast which is non-renormalizable in 

three or more dimensions at that!) does not, in itself, seem cause for 

excitement. But this theory has one extremely striking property: for 

sufficiently sma.ll~ouplin~ constant, the Feymman se~des for all the 
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Schwin~er functions are convergent! (This is definitely false for (¢4)2 

- Jaffe (1965)). 

Remarks i. The intuitive reason the series are convergent once the theory. 

is proven to exist is quite simple. :cos ¢:2 is equivalent to :sin ~:2 

by translation of the field. But ~:sin @:2 and -k:sln ¢:2 are equally 

good theories via ¢ ÷ -@ covariance. 

2. The key requirement is the control of <exp(-kUA)> for finite 

A and k E R, for then the cluster expansion machine can be turned to 

prove analyticity of the Schwinger functions. 

3. FrShlich uses the idea of Albeverio-Hoegh Krohn (1973) that 

these theories are equivalent to certain statistical mechanical theories. 

By some clever use of Guerra, Rosen, Simon (1973), he reduces control of 

<exp(-~UA)> to control of a purely Coulomb system in two dimensions ( 

in finite volume and with image charges) and then appeals to methods of 

Deutsch-Lavand (1974). 
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