
NEW COSMOLOGICAL PROBES FOR OLD FUNDAMENTAL

QUESTIONS

by

Julián B. Muñoz
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Abstract

To a good approximation our Universe is flat and homogeneous, and possesses

perturbations which, albeit once upon a time small, have seeded the large-scale struc-

ture that we observe around us. We believe this to be result of inflation, a period

of extremely rapid expansion in the very-early Universe. During this period, it is

assummed that the inflaton—a scalar field driving the expansion—receives small

quantum-mechanical perturbations, described by a power spectrum. It is interest-

ing to study to what extent this assumption is correct. More than one active field

during inflation can generate non gaussianities, which can be observed with the 21-

cm line prior to the formation of the first stars. Additionally, passive fields during

inflation give rise to isocurvature, making different species cluster differently, which

can be observed with the cosmic microwave background. Finally, the power spectrum

might not be entirely scale invariant, in which case its dependence on scales holds

information about the duration of inflation. Moreover, the last few decades have

turned cosmology into a precision science, from which we have learned that baryonic
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matter, constitutes only a small part of the total matter of the Universe, the rest

of it being “dark. We do not know the composition of this dark matter. If it is a

particle it may interact with baryons, which might be observable in the 21-cm line

aforementioned. However, a significant part of dark matter could be made of compact

objects, such as primordial black holes. This would have signatures, both in the form

of gravitational-wave events and as gravitational lenses of fast radio bursts. These

signatures will allow us to detect any compact component of the dark matter down

to one part in a hundred, if it is more massive than 20 solar masses. These studies

will shed light into the nature and distribution of the matter in our Universe.
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“The most exciting phrase to hear in science

is not ‘Eureka!’ but ‘That’s funny...’”

— Isaac Asimov

Chapter 1

Introduction

We live in the golden era of cosmology. During the last few decades a plethora of cosmo-

logical experiments have probed our Universe to astounding precision. This has greatly

increased our understanding of many physical processes, from the inflationary phase at the

birth of the Universe, all the way to the dark-energy domination era we observe today. In

this thesis I present how to use different cosmological probes to study our Universe, with

the goal of attempting to answer fundamental questions.

Our Universe seems to be well described by a simple model, ΛCDM, which posits

that dark matter, an mysterious and seemingly invisible form of matter, outweighs regular

baryonic matter five to one.1,2 This dark matter ought to be cold, in order to collapse

and seed the large scale structure we observe today.3,4 Moreover, the energy budget of the

Universe is dominated by an even more prevalent dark energy, of unknown origin.5,6 It is

our goal, as cosmologists, to find the nature of dark matter and dark energy.

In order to do that we will employ different cosmological probes. The reason for do-

ing that is twofold. First, different observables suffer from entirely different systematics,

which is of great help to disentangle the primary signal (physics) from secondaries. Sec-

ond, each cosmological measurement has a rich phenomenology, which I enjoy unveiling and

understanding.
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CHAPTER 1. INTRODUCTION

In this thesis I will study four cosmological observables... The first probe I will describe

is the cosmic microwave background, or CMB. When the primordial baryon-photon plasma

reached a temperature low enough for hydrogen to be stable, at z ≈ 1100, the Universe first

became transparent, and the radiation in equilibrium got emitted.7,8 In it are imprinted

the overdensities at the time of decoupling, and by observing them we have learned a great

deal about our Universe.

Before jumping on to the properties of the CMB, in Chapter 2 I discuss how the

inflationary regime gives rise to the fluctuations in all cosmological scales. I focus on the

reheating era at the end of inflation, where the inflaton degree of freedom, along with any

other fields, decay into standard-model particles and dark matter.9,10 This is a complicated

process, and due to the high energies at which it occurs it is unlikely we will ever be able to

probe it. However, parametrizing reheating through its equation of state, which is bound

to have some reasonable range of values, allows us to make predictions about inflationary

parameters better than the naive estimate in the literature.11

The next question I try to answer is whether baryons and dark matter are distributed the

same way. If there was only one degree of freedom during inflation that is exactly what you

would expect, and we denote that as adiabatic initial conditions.12,13 However, a curvaton

active during inflation can give rise to isocurvature perturbations. In particular, I focus

on compensated isocurvature perturbations, or CIPs, for which baryons and dark matter

have overdensities such that the total matter is unperturbed.14,15 These are complicated to

find, and only appear at higher orders in perturbation theory. In Chapter 3 I discuss how

the CMB power spectra are sensitive to CIPs, and find the strongest constraints to date.

For this I employ a linear-estimator formalism, for which it is computationally efficient to

evaluate likelihoods,16 and an improved estimator using the full Planck likelihood, as well

as lensing data.17

The duration of inflation is also a mystery. A longer period of quasi de Sitter domination

would leave its imprint as a flatter power spectrum of perturbations.18,19 The departures

from pure scale-invariance, and therefore from pure de Sitter, are parametrized through a

few numbers. From our current observations20 we detect a tilt of the power-spectrum index

at 5-σ. Under the most basic assumptions this would imply a next-order tilt, known as

running, a factor of ∼ 5 too small to be detected by our current experiments. Nonetheless,

2
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as the next generation of cosmological probes will greatly surpass in sensitivity the current

one,21 I have forecasted how well they can detect this quantity.22

The dynamics of inflation, whether with one degree of freedom or more, can be observed

through the statistics of the cosmic perturbations. Not only do we have access to the

power spectrum (or two-point function) of these perturbations, but also to higher-order

point functions. In particular, one expects nongaussianity, manifested through a nonzero

three-point function (or bispectrum) for interacting fields during inflation. In the minimal

inflation model of a single field slowly rolling down a potential, however, this nongaussianity

would be extremely small. The CMB has already been used to search for nongaussianities,

and yielded null results within its precision. Therefore, more futuristic probes are needed,

such as the 21-cm line of hydrogen.

In Chapter 4 I review the physics of the 21-cm line during the dark ages. The dark

ages are the cosmic period after decoupling, and prior to the formation of the first stars,

where the baryonic gas cooled down adiabatically.23 Due to this cooling, and the frequent

interactions between atoms, the spin temperature of the hydrogen was lower than that of

the CMB, which made it absorb photons. This will allow us to observe the Universe like

never before, given that there are almost no fundamental limitations on the resolution.24 I

propose using this 21-cm line to study nongaussianities. As opposed to the CMB, where

the perturbations are linear, here secondary nongaussianities arise due to the nonlinear

evolution of the Universe. I model and propose how to subtract these secondaries.25

The standard inflationary paradigm predicts that our Universe is statistically isotropic,

so there is no preferred direction in the Universe. However, vectorial degrees of freedom

during inflation can change this picture. The 21-cm line is a fantastic probe of this scenario,

and can constrain statistical isotropy to great precision.26

One of the most fundamental questions of cosmology is the nature of dark matter.

This puzzling substance permeates our Universe, and through its gravitational effects pulls

baryons into galaxies and clusters. Despite the realm of observations to which we have

access, little is known about the specific structure of dark matter. It might be a yet-to-

discover fundamental particle, or a bigger object, with stellar mass.

If the dark matter is a particle, it is important to study whether it can interact with

3
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baryons, since that might determine its freeze-out history. Besides collider-based bounds,27

cosmology can provide interesting constraints on baryon-dark matter interactions. These

interactions would tend to thermalize both dark matter and baryons, causing the latter to

cool down, and the former to heat up. However, we noticed that given the relative velocity

between both fluids, and the need to reach mechanical equilibrium, additional heating is

produced as the velocity is damped.28 This causes additional fluctuations in the 21-cm line,

proportional to that of the relative velocity.29

There exists the possibility, however, that dark matter only interacts gravitationally

with baryons. This would be the case if the dark matter was composed of primordial

black holes (PBHs),30,31 or any other kind of massive compact halo object (MACHO).

The possibilities for detection, then, would be extremely limited. Nonetheless, the recent

developments in gravitational-wave astronomy have paved the way for this tool to be able

to detect PBHs.

In Chapter 5 I discuss how to use gravitational waves to search for primordial black

holes. First, we realized that if all dark matter was composed of PBHs the rate of for-

mation of binaries, through close encounters, would be comparable to the rate inferred

from LIGO.32,33 To distinguish these black holes from regular astrophysical ones, however,

remains a challenge. The events produced in PBH binaries would be less clustered, as

they would tend to form in small-mass haloes.34 Moreover, PBH binaries are formed in

close encounters, leading to short inspirals and quick mergers, so there might remain some

eccentricity in them by the time they are observed by LIGO.35

The most direct way to probe dark matter is gravitational lensing, which I discuss

in Chapter 6. This would not require the dark matter to interact with baryons in any

direct way. Using microlensing of nearby stars, the MACHO collaboration was able to

constrain compact-object dark matter, lighter than 30 solar masses, in the Milky-Way

halo.36 However, this does not rule out the PBHs suggested in Ref.32 to be the dark

matter. I developed a way to use fast radio bursts (FRBs) as lensing targets to constraint

dark matter.37 FRBs are extragalactic emissions of radio, of unkown origin, of millisecond

duration.38 If they are lensed by a PBH—or any other compact object—in their way to

Earth, they would be echoed, leading to a double-peak FRB.

To sum up, this thesis treats about a handful of cosmological probes: the CMB, the

4
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21-cm line, gravitational waves, and FRBs, and what we can learn about the Universe from

them.
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“Your theory is crazy, but it’s not crazy

enough to be true.”

— Neils Bohr

Chapter 2

Reheating after Inflation

Models of inflation that rely on the slow rolling of a single scalar field have become the

canonical family of models for inflation.39–41 These models are specified by a potential-

energy density V (φ) given as a function of the inflaton field φ. As long as the slow-roll

conditions, which require that the slope and curvature of V (φ) are sufficiently small, are

satisfied, the Universe inflates. Inflation then ends and is followed by a period of reheating

(see Ref.10 for a review) that converts the energy density in the inflaton to the thermal

bath, at a reheating temperature Tre, that fills the Universe at the beginning of the standard

radiation-dominated epoch.

In the canonical reheating scenario,12 oscillations of the inflaton around the minimum

of its potential correspond to massive inflaton particles, and these particles then decay to

the plasma of Standard Model particles that compose the radiation-dominated Universe.

However, the physics of reheating may be far more complicated. For example, different

rates for different types of decays into different Standard Model particles may yield differ-

ent clocks for starting the usual radiation-dominated epoch. There may be a preheating

stage,42 where there is a resonant production of particles,43 which can enhance the inflaton

decay via scattering,9 or where inhomogeneous modes may be excited.44 Turbulence may

also play a role.45 It is generally assumed that the reheat temperature is above the elec-

troweak transition (presumably so that weak-scale dark matter can be produced). More
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CHAPTER 2. REHEATING AFTER INFLATION

conservatively, though, the reheat temperature must be above an MeV, the temperature

of big-bang nucleosynthesis, the earliest time for which we have clear empirical relics. The

theoretical uncertainty in reheating is often taken into account, in the consideration of

experimental constraints to inflation models, by surmising some reasonable range—e.g.,

Nk = 46 to Nk = 60—for the number Nk of e-folds of inflation between the time that our

observable horizon exited the horizon during inflation and the end of inflation. The upper

limit to this range arises if inflaton oscillations reheat the Universe instantaneously to a

grand unified theory-scale temperature, and the lower limit arises if reheating is closer to

the electroweak scale.

Here we consider an alternative approach where we parametrize the cosmic fluid during

reheating by an effective equation-of-state parameter wre, that tells us how its energy density

(ρ ∝ a−3(1+wre)) decays during this epoch. In the canonical-reheating scenario wre = 0,

but numerical studies of thermalization indicate a possibly broader range of values 0 .

wre . 0.25.46 By demanding that the equation-of-state parameter fall within this range,

we infer slightly better constraints to inflation models than in the usual approach wherein

some overly permissive range of Nk is assumed. The approach we use here was discussed

in Refs.47–51 and applied post-Planck to power-law potentials in Ref.52 In this work we

explore this approach and show its general validity for single field inflation models. As an

example, we apply it to study constraints to the parameter space for natural inflation53,54

and Higgs-like inflation models.55 We show in particular that the lower limit to the tensor-

to-scalar ratio r inferred from current measurements of ns should be a bit higher (by about

25%) if we restrict the value of wre to the range suggested by reheating theory.

The structure of this section is as follows. First, we will study how to parametrize re-

heating through its equation of state, and derive constraints to different inflationary models.

We will, then, take a brief detour to study new models of inflation, such as transplanckian

inflation and DBI. Finally, we will briefly discuss the consequences of this work. We note

that this section draws heavily from Ref.,11 on which it is based.

7
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2.1 The Equation of State of Reheating

Constraints to the parameters of inflation models are often derived assuming some

plausible range for the number—e.g., Nk = 46 to Nk = 60—of e-folds of inflation that

occurred between the time that our current observable Universe exited the horizon and the

end of inflation. However, that number is, for any specific inflaton potential, related to an

effective equation-of-state parameter wre and temperature Tre, for reheating. Although the

physics of reheating is highly uncertain, there is a finite range of reasonable values for wre.

Here we show that by restricting wre to this range, more stringent constraints to inflation-

model parameters can be derived than those obtained from the usual procedure. To do

so, we focus in this work in particular on natural inflation and inflation with a Higgs-like

potential, and on power law models as limiting cases of those. As one example, we show

that the lower limit to the tensor-to-scalar ratio r, derived from current measurements of

the scalar spectral index, is about 20%-25% higher (depending on the model) with this

procedure than with the usual approach.

2.1.1 Formalism

Fig. 2.1 shows the comoving Hubble parameter aH with time.8 It grows for Nk e-folds

during inflation with a time dependence that is fixed given a specific inflaton potential

V (φ). It then decreases for Nre e-folds of expansion during which the energy in the inflaton

potential is dissipated into a radiation bath. The standard radiation-dominated era then

proceeds for NRD e-folds before the advent of matter domination (and then dark-energy

domination). It is clear from the Figure that the number of e-folds of expansion between

the time that a given scale exits the horizon and the end of inflation is related to the

number of e-folds since the end of inflation until that scale re-enters the horizon during

matter/radiation-domination. The expansion history also determines the evolution of the

energy density, and a second relation can be obtained from a given expansion history by

demanding the proper relation between the energy density during inflation and the energy

density today.

A consistent model for inflation must have an inflaton potential V (φ) that at some point

steepens so that the slow-roll condition ε < 1 (where ε = (V ′/V )2/2Mpl
2 is the slow-roll

8



CHAPTER 2. REHEATING AFTER INFLATION

Figure 2.1: Comoving Hubble parameter aH versus scale factor log a. A comoving mode
with wavenumber k exits the horizon during inflation when k = aH and then reenters
during matter domination. Different equations of state for reheating are plotted: canonical
reheating (wre = 0) in blue (solid); wre = −1/3 in red (long dash); wre = 1/3 in brown
(short dash); and the limiting case wre = 1 in green (dotted).

parameter and Mpl is the reduced Planck mass) breaks down, at which point inflation ends.

The number of e-folds between the time that a comoving scale k exits the horizon and the

end of inflation is

Nk =

∫ φend

φk

H dφ

φ̇
, (2.1)

where φk is the inflaton value when k exits the horizon, H(φ) is the Hubble parameter, and

the dot denotes a derivative with respect to time t. The Hubble parameter can then be

written in terms of the inflaton potential using the Friedmann equation, H2 ' V/(3Mpl
2),

and φ̇ is evaluated through the slow-roll equation, 3Hφ̇ + V ′(φ) ' 0, where the prime

denotes derivative with respect to φ. The values of the scalar spectral index ns and tensor-

to-scalar ratio r can be obtained as a function of Nk. Given the relation between Nk

and the number of post-inflation e-folds of expansion, the value of Nk relevant for cosmic

microwave background measurements is a fixed function of ns once a given reheating history

(specified by wre and the reheat temperature Tre) is assumed. Below we will use the fairly

well-determined value of ns to infer, for a given reheat scenario, the inflaton-potential

parameters and from them the allowable values of r.

Let us consider the pivot scale k = 0.05 Mpc−1 at which Planck determines ns.
20 The
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comoving Hubble scale akHk = k when this mode exited the horizon is related to that,

a0H0, of the present time by,

k

a0H0
=

ak
aend

aend

are

are

aeq

aeqHeq

a0H0

Hk

Heq
, (2.2)

where quantities with subscript k are evaluated at horizon exit. The other subscripts

refer to the end of inflation (end), reheating (re), radiation-matter equality (eq), and the

present time (0). Using eNk = aend/ak, e
Nre = are/aend and eNRD = aeq/are, we obtain the

constraint,

ln
k

a0H0
= −Nk −Nre −NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
, (2.3)

on the total expansion.56 The Hubble parameter during inflation is given by Hk = πMpl (rAs)
1/2 /
√

2,

with the primordial scalar amplitude ln(1010As) = 3.089+0.024
−0.027 from Planck.20

The energy density ρend at the end of inflation is related to the energy density ρre at

the end of reheating by the equation-of-state parameter wre during reheating via

ρre

ρend
= exp[−3Nre(1 + wre)], (2.4)

where Nre is the number of e-folds of expansion during reheating.

The energy density at the end of inflation is obtained from

ρend = (1 + λ)Vend, (2.5)

where the ratio λ of kinetic to potential energies at the end of inflation is

λ =
1

3/ε− 1
. (2.6)

When inflation ends (ε ≈ 1), we have λ ≈ 1/2.

We next calculate the energy density at reheating. Assuming conservation of entropy,

gs,reT
3
re =

(
a0

are

)3(
2T 3

0 +
21

4
T 3
ν,0

)
, (2.7)

where gs,re is the effective number of relativistic degrees of freedom at reheating, and Tν,0 =

10
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(4/11)1/3T0 is the current neutrino temperature. Thus,

Tre

T0
=

(
43

11gs,re

)1/3 a0

aeq

aeq

are
. (2.8)

Since the energy density at reheating is ρre = (π2gre/30)T 4
re, we plug Eq. (2.8) into Eq. (2.4)

to get the number Nre of e-folds during reheating as a function of the number NRD of e-folds

during radiation domination. Plugging that into Eq. (2.3) we obtain finally,

Nre =
4

1− 3wre

[
−Nk − log(

k

a0T0
)− 1

4
log

(
30

greπ2

)
−1

3
log

(
11gs,re

43

)
− 1

4
log (Vend)−

−1

4
log(1 + λ) +

1

2
log

(
π2rAs

2

)]
, (2.9)

where gre and gs,re can be both taken to be ≈ 100 and we will use k = 0.05 Mpc−1 throughout

this work, albeit keeping the subindex k in Nk to avoid confusion. Then using Eq. (2.4),

the reheating temperature is,

Tre = exp

[
−3

4
(1 + wre)Nre

](
3

10π2

)1/4

(1 + λ)1/4V
1/4

end . (2.10)

2.1.2 Inflaton potentials

We now discuss the two classes of inflation models that we consider in this work.

Natural Inflation

This model, first proposed in Ref.,53 appears when a global U(1) symmetry is spon-

taneously broken. The inflaton is then the pseudo-Nambu-Goldstone boson. The shift

symmetry protects the flatness of the potential. The inflaton potentials we consider are,

V (φ) =
2Λ4

2m
(1 + cosφ/f)m , (2.11)

11



CHAPTER 2. REHEATING AFTER INFLATION

Figure 2.2: In the lower panels we plot the reheat temperature Tre for natural inflation as
determined by matching the number of e-folds during and after inflation. Results are shown
for decay constants f = 5Mpl, 7 Mpl, and ∞, where the latter corresponds to the m2φ2

limit. Four different effective equation-of-state parameters wre for reheating are considered
in each case: from left to right in their intersection with the bottom of the plots they are
wre = −1/3 (red), wre = 0 (blue), wre = 0.25 (black), and wre = 1 (green). The values
wre = −1/3 and wre = 1 bracket the very most conservative allowed range of values for wre,
while wre = 0 and wre = 0.25 bracket the range suggested by the literature on reheating.
All curves intersect at the point where reheating occurs instantaneously, and the wre = 1/3
curve would be vertical. Values of the termination condition in the range 0.1 . ε . 1 give
rise to variations that are narrower than the widths of the curves. The light purple regions
are below the electroweak scale TEW ∼ 100 GeV. The dark purple regions, below 10 MeV,
would ruin the predictions of big bang nucleosynthesis (BBN). Temperatures above the
intersection point are unphysical as they correspond to Nre < 0. The gray shaded triangles
indicate the parameter space allowed if 0 < wre < 0.25. The light yellow band indicates the
1σ range in ns − 1 = −0.0397± 0.0073 from Planck,20 and the dark yellow band assumes a
projected uncertainty of 10−341 for ns − 1 as expected from future experiments (assuming
the central value remains unchanged). The top panels plot the number Nk of e-folds of
inflation as a function of ns. The vertical dashed red lines demarcate the allowed range of
ns, inferred from the lower panel, and the horizontal dashed red lines in the upper panels
indicate the allowed range of values of Nk.
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where the energy density Λ4 and decay constant f are the parameters of the model. We

generalize the usual natural-inflation potential, which has m = 1, to other values of m to

broaden slightly the class of models we consider. The slow-roll parameters for this model

are

ε = m2 e−x

2f2(1− e−x) +m
, where x =

mNk

f2
, (2.12)

and

η = ηV − ε =
−m
2f2

2f2(1−me−x) +m

2f2(1− e−x) +m
. (2.13)

These lead to the observables r and ns − 1, which are

r = 8m2 e−x

2f2(1− e−x) +m
, (2.14)

and

ns − 1 = −m
f2
− 2m(m+ 1) e−x

2f2(1− e−x) +m
. (2.15)

We will also need to calculate the number Nk of e-folds that happen after a mode with

wavenumber k exits the horizon, which is found to be

Nk =
f2

m
log

[
1

1 +m/(2f2)

(ns − 1)f2 −m2

(ns − 1)f2 +m

]
. (2.16)

Even though the model has two parameters (Λ and f) only one of them is free, since

they are related through the amplitude of the scalar power spectrum. From the value of

the potential Vk at horizon exit we find Λ to be,

Λ =

(
3

4
π2rAs

[
2f2 + n

2f2(1− e−mNk/f2) +m

]m)1/4

. (2.17)

In the f →∞ limit these potentials behave like pure power laws; i.e.,

V (φ) ∼M4−2mφ2m when f →∞, (2.18)

where M is an energy scale that plays the role of Λ and is also fixed.
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Higgs-like Inflation

The potentials we consider for Higgs-like inflation are,

V (φ) = Λ4
[
1− (φ/µ)2

]n
, (2.19)

with slow-roll parameters,

ε =
2n2y

µ2(1− y)2
, (2.20)

and

η = ηV − ε =
2n[−1 + (n− 1)y]

µ2(1− y)2
. (2.21)

The variable y is defined as,

y(µ) ≡ φ2
0/µ

2 = −W
(
−g(µ) exp

[
−g(µ)− 8Nk

µ2

])
, (2.22)

where W (z) is the Lambert W function, and

g(µ) ≡ (φend/µ)2 = 1 +
n2

µ2
−
√
n4 + 2µ2n2

µ2
< 1. (2.23)

Again, we generalize the usual case (n = 2) to explore a broader class of models. In the

general case the tensor-to-scalar ratio and scalar spectral index are,

r =
16n2y

µ2(1− y)2
, (2.24)

and

ns − 1 = −4n

f2

[1 + (n+ 1)y]

(1− y)2
. (2.25)

We will again need the number,

Nk =
µ2

4n

[
− log

(
y

g

)
+ y − g

]
, (2.26)
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of e-folds of inflation, and once again we can express the amplitude Λ of the potential in

terms of the scalar power-spectrum amplitude As and the decay constant µ,

Λ =

[
3

2
π2rAs (1− y)−n

]1/4

. (2.27)

This model also behaves as a power law in the µ→∞ limit, the exponent being in this

case n,

V (φ) ∼M4−nφn when µ→∞. (2.28)

2.1.3 Results

Figure 2.3: Same as Fig. 2.2 but for Higgs-like inflation with parameter values µ = 14Mpl,
20 Mpl, and ∞.

The results of the calculation are shown for usual natural inflation in Fig. 2.2 and for

usual Higgs-like inflation in Fig. 2.3. The reheat temperature Tre determined by matching

the number of e-folds during and after inflation is shown in the lower panels of each Figure.

We show results for four different reheating effective equation-of-state parameters wre. The

value wre = −1/3 indicates the smallest possible value of wre required for inflation to end.

The value wre = 1 provides the most conservative upper limit which comes simply from

causality. The values wre = 0 and wre = 0.25 bracket the range of values of wre in detailed
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models of reheating. The curves for all values of wre intersect at the point where reheating is

instantaneous, and the wre = 1/3 curve would be vertical and intersect this point. The gray

shaded triangles indicate the region allowed if the reheating equation-of-state parameter

lies in the range 0 < wre < 0.25.

The top panels of Figs. 2.2 and 2.3 plot the number Nk of e-folds during inflation for

each model and value of f (for natural inflation) or µ (for Higgs-like inflation). It can be

seen, in particular, that the limit to the allowable range of values of ns imposed by reheating

considerations thus restricts the allowed range of values of Nk. The range of values of Nk is

generally smaller than the range Nk ' 46− 60 often assumed, being replaced (at our pivot

scale k = 0.05 Mpc−1) by Nk ' 47− 57 for the large f, µ limit, and slightly smaller values

for lower f, µ.

It is also important to note that the tightness of the constraint to the ns parameter

space for fixed f (for natural inflation) or µ (for Higgs-like inflation) is determined not

by the precision of current measurements, but by the self consistency of the inflationary-

plus-reheating model. For the m2φ2 case the new range of possible ns for inflation is

(0.958,0.965).

We also show results in Fig. 2.4 as plots of the r-ns parameter space for natural inflation

and for Higgs-like inflation. It is seen here that even after considering the complete range of

values of f (for natural inflation) or µ (for Higgs-like inflation), the parameter space allowed

by restricting the reheating equation-of-state parameter to physically plausible values is

more constrained than that assumed simply taking a range Nk = 46− 60 for the number of

e-folds of inflation. In particular, we see that the smallest tensor-to-scalar ratio r allowed

by the current 1σ range of values for ns is a bit larger with our approach than that obtained

with the less restrictive analysis. The black (dashed) curves correspond to the maximum

reheating possible with equation-of-state parameter wre = 0. Increasing the value of wre

would only shift the black curves to the right.
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Figure 2.4: The ns-r parameter space for (left) natural inflation and (right) Higgs-like infla-
tion. Curves that indicate instantaneous reheating (red) and reheating at the electroweak
scale (black) are shown as well as curves that show Nk = 46 and Nk = 60 e-folds of re-
heating (purple). Diagonal blue lines indicate different values of the decay constants f or
µ, where the orange line is the power-law limit. The horizontal dotted lines indicate the
smallest tensor-to-scalar ratio r consistent with the 1σ range of values of the scalar spectral
index ns, obtained by restricting the reheating equation-of-state parameter to physically
plausible values, which are higher by about 25% than those obtained by simply taking a
range Nk = 46− 60 for the number of e-folds of reheating.
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Model rmin old rmin new

Higgs n = 1 0.020 0.025
Higgs n = 2 0.024 0.030
Higgs n = 3 0.035 0.050
Higgs n = 4 0.055 0.070
Natural m = 1 0.033 0.040
Natural m = 3/2 0.055 0.070
Natural m = 2 0.10 not allowed
m2φ2 0.13 0.14

Table 2.1: Minimum value of the tensor-to-scalar ratio r at the pivot scale k = 0.05 Mpc−1

allowed by reheating considerations and the Planck 1σ range of values of the scalar spectral
index ns for each of the models studied. In the central column we show the minimum r
from the usual analysis in which a range of Nk is allowed, and in the right column the new
minimum obtained by constraining the reheating equation-of-state.

2.2 Expanding the Inflationary Paradigm

In general inflation generates primordial B-modes, albeit with an unknown amplitude.

If it generates them within our observable range (r & 10−3), it is very likely the field

excursion is transplanckian. This might be hard to accommodate within our usual QFT

formalism. We will study one particular model, based on a complex scalar field, in which

transplanckian inflation might be realized.

Given the null detection of B-modes by the Planck+BICEP team,57 current data sug-

gests that inflation is small-scale. One of the small-scale inflationary models is DBI in-

flation.58 We will study how reheating affects this model, and whether it can agree with

current CMB data from the Planck satellite.

2.2.1 Stability of the Inflationary Era

In Ref.59 a novel model for inflation was presented. In this model inflation would be

driven by a complex scalar field, which remains subplanckian during inflation but possesses

transplanckian motion, preserving the Lyth bound on r. This is achieved by creating a

potential with a minimum along a spiraling line into the origin of the 2D Φ-plane, so the

total path length of the field would be orders of magnitude longer than the extent of the

potential.
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The potential in Ref.59 is

V (φ, θ) = λφn
1√
2
nMpl

4−n(1 +A/2 sin(

(
φ√
2Λ

)m
+ θ)). (2.29)

This potential has a minimum for a certain φ(θ), such that the sin is −1, i.e.,(
φ√
2Λ

)m
= −θ + 2kπ − π/2. (2.30)

Therefore, the length transversed in the complex plane is given by,

da =
√
dφ2 + φ2dθ2 ≈ φdθ, (2.31)

where we have approximated φm � Λm, which we will justify later. Under that hypothesis

we can calculate a to be

a =

∫
da =

∫
φdθ =

∫
φ
dθ

dφ
dφ =

m

m+ 1

1

(
√

2Λ)m
(φm+1

0 − φm+1
f ). (2.32)

As in regular power-law inflation the final value of the field will be very small compared to

the initial, so we can neglect it on the formula above. This parameter a tells us the length

of the path of the field, so inflation starts at a = 0 and finishes at some a which satisfies

ε = 1. What we would like is a canonical field that starts at b = b0 and stops rolling at

some smaller value bf � b0, so we reparametrize,

b(φ) = a(φ = 0)− a(φ), (2.33)

having then

b(φ) =
m

m+ 1

φm+1

(
√

2Λ)m
. (2.34)

We can invert this relation to find the potential along the minimum (the path along which

the field is rolling down), that would give us,

V (b) =
λMpl

4−n
√

2
n

(
1− A

2

)(
m

m+ 1

) n
m+1

(
√

2Λ)
nm
m+1 b

n
m+1 . (2.35)

This shows that the field rolling down feels a simple power-law potential (φα), with
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α ≡ n/(m + 1). Therefore, we can do a standard slow-roll analysis. First, the number of

e-folds of inflation would be

N ≈ dφV
V

′
=
φ2

0

2α
, (2.36)

where the two slow-roll parameters are

ε =
1

2

V ′

V
≈ α

4N
=

n

4(m+ 1)

1

N
, (2.37)

and

η =
V ′′

V
≈ α− 1

2N
=
n−m− 1

2(m+ 1)

1

N
. (2.38)

Moreover, these give rise to a tensor-to-scalar ratio

r = 16ε =
4n

(m+ 1)

1

N
, (2.39)

and a scalar tilt

ns− 1 = 2ηV − 6εV = −n+ 2m+ 2

2(m+ 1)

1

N
. (2.40)

Finally, we can reverse the relation for the number of e-folds and describe the field in terms

of it as

b0 =

√
2n

m+ 1
NMpl, (2.41)

or equivalently,

b0 =

(√
2n

m+ 1
N

)1/(m+1)

(
√

2Λ)m/(m+1)

(
m+ 1

m

)1/(m+1)

Mpl

1
m+1 . (2.42)

Now, we can use the measured amplitude of the scalar spectrum to bound Λ, since we

know that

∆2
s =

V

24π2Mpl
4ε
≈ 2.2 · 10−9. (2.43)

Solving for Λ we find

Λ = (
√

2)
m−1
m

(
6π2Asn

N(m+ 1)

)m+1
nm
(

m

m+ 1

) 1
m
(
m+ 1

2nN

) 1
2m

[λ(1−A/2)]
−m−1
nm . (2.44)

For n =4,m =1 the authors claim that Λ ≈ 3.3 · 10−6λ−1/2Mpl �Mpl. This shows that the
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assumption of φ� Λ is justified, since by the end of inflation b ≈Mpl, so

φ > φf = (Λmbf )1/(m+1) ≈ (ΛmMpl)
1/(m+1), (2.45)

and

(φ/Λ)m > (Mpl/Λ)m/(m+1) � 1. (2.46)

Stability Analysis

We will now study whether this solution is stable. Remember the general form of the

potential,

V (φ, θ) = λφn
1√
2
nMpl

4−n(1 +A/2 sin(

(
φ√
2Λ

)m
+ θ)), (2.47)

where we have only considered motion along the curve that minimizes the potential as the

field rolls down, and therefore ignored perturbations perpendicular to that motion. First

of all, the vector of the direction of the motion of the rolling field would be (on (vφ, vθ)

notation)

v‖ =

(
1,
−m

(
√

2Λ)m
φm−1

)
1

|v‖|
≈ (0, 1), (2.48)

and the direction perpendicular to the motion is

v⊥ =

(
1,

(
√

2Λ)m

m
φ−m−1

)
1

|v⊥|
≈ (1, 0), (2.49)

where the approximations are to leading order on Λ/φ, which is of order (Λ/Mpl)
1/(m+1) �

1.

Then, the effective mass of the perpendicular modes would be

m2
⊥ =

∂2V

∂w2
⊥
≈ ∂2V

∂φ2
, (2.50)

which we find to be

m2
φ =

∂2V

∂φ2
=
λMpl

4−n
√

2
n φn−2

(
n(n− 1)(1−A/2) +

A

4
m2

(
φ√
2Λ

)2m
)
. (2.51)
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For m > 0 the second term in the parenthesis dominates, so

m2
φ &

A

4
m2φ

n+2m−2Mpl
4−n

Λ2m2n/2+m
, (2.52)

and, within an order of magnitude, we find

m2
φ

Mpl
2 ∼ λA

(
Λ

Mpl

)m(n−4)/(m+1)

. (2.53)

During inflation H2 ∼ λ
(

Λ

Mpl

)mn/(m+1)

Mpl
2, so we can rewrite Eq. (2.53) as

m2
φ

H2
∼ A

(
Mpl

Λ

)4m/(m+1)

� 1. (2.54)

This shows that the effective mass of the perpendicular motion is much bigger than the

Hubble scale (unless A is extremely small), so we can treat the effective theory as we have

done so far and ignore the perturbations on the perpendicular direction to the spiraling

curve. However, this might still create nongaussianities, as well as isocurvature. We will

explore this in future work.

Jeans length

From Ref.,60 Eq. (10), the Jeans wavenumber for a highly rotating field—such as this

one—is

k2
J =

1

2

 V ′√
2φ
− V ′′ +

√(
V ′√
2φ
− V ′′

)2

+ 4V ′2
φ2

Mpl

2
 , (2.55)

which, considering a power law potential, and since along the minimum V ∼ (1− A/2)φn,

yields

k2
J =

1

4

V

φ2

(
n(2− n) +

√
(n(2− n))2 + 4φ2/Mpl

2

)
. (2.56)

We now neglect the φ/Mpl factor, as it is supressed, to find

k2
J ≈

1

4

V

φ2
(n(2− n) + |n(2− n)|) , (2.57)
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so for n > 2 and n < 0 we don’t have instabilities, since this leading term would vanish and

then kJ ∼ φ2/Mpl
2. However, for 0 < n < 2, we see that

k2
J

H2
≈ 1

2H2

V

φ2
n(2− n) =

3

2
n(2− n)

(
Mpl

φ

)2

� 1, (2.58)

so instabilities may arise.

Quantum tunneling

The minima of the potential for a fixed θ are separated by a radial direction that we

will call ∆φ, if this separation (and the height of the potential) are small enough there is a

chance of quantum tunneling from one minimum to the one right below (instead of turning

the 2π). A representation of how the potential looks for a fixed θ for m = n = 1 is on figure

2.5.

0 20 40 60 80 100
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80

100

Φ

V

Figure 2.5: Inflationary potential V (φ) for a fixed θ direction, both in arbitrary units.

Following Ref.,61 the rate of formation of bubbles per unit time and volume is given by

Rate = Γ/V = Ke−S0 , (2.59)

where K is the ratio of determinants times
√
S0/2π, and S0 is the action. We calculate the

volume of the bubbles by finding the radios R of the bubbles that minimizes the action.

The final result is that,

S0 =
27π2S4

1

2ε3
, (2.60)
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where S1 is the action of the instanton,

S1 =

∫ φf

φ0

√
2V dφ ≤ ∆φ

√
2[Vmax − V (φ0)], (2.61)

and ε is the difference in potentials between between the false vacuum and the real one (or

in this case between the potential in one step and the lower step). That difference in this

case is, to first order in ∆φ,

ε = V (φn)− V (φn+1) ≈ V ′min(φ)∆φ =

= λ(1−A/2)1/
√

2
n
Mpl

4−nnφn−1∆φ, (2.62)

then,

S0 =
27π2S4

1

2ε3
≈ 54π2V 2∆φ4

V ′3∆φ3
=

54π2V 2∆φ

V ′3
. (2.63)

The value of the change on the field is,

∆φ ≈ 2π

m

(√
2Λ

φ

)m−1√
2Λ. (2.64)

So,

S0 ≈
54π2A2λ2φ2nMpl

8−2n 2π

m

(√
2Λ

φ

)m−1√
2Λ(

λ(1−A/2)1/
√

2
n
Mpl

4−nnφn−1
)3 =

=
108π3A2

√
2
n+m

λ(1−A/2)n3

(
φ

Mpl

)4−n(Λ

φ

)m
, (2.65)

where the prefactor is roughly of order 103 (depending on the model parameters), and since

generically we saw that Λ/Mpl ∼ 10−6,

S0 ≈ 103 · 10−6m

(
φ

Mpl

)4−n−m
, (2.66)

remember that Γ/V =

√
S0

2π
e−S0 , so only for values of n and m such that the exponent is

zero that quantity is non negligible, since for high values the exponential dominates, and

for small values the polynomial does.
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In this model the field is always subplanckian, and inflation ends for bf ≈ Mpl, which

translates into a minimum value of φ of φf ≈ (ΛmMpl)
1/(m+1), therefore,

S0 & 103−6m

(
Λ

Mpl

)(4−n−m) m
(m+1)

≈

≈ 10
3−6m−6(4−n−m) m

(m+1) = 103−6m−24 m
m+1

+6
m(n+m)
m+1 . (2.67)

To make the exponent vanish we need, 0 = 3(m+ 1)− 6m(m+ 1)− 24m+ 6(m(n+m)), or

in other words m =
1

9− 2n
, and remembering that the power in the equivalent power law

inflation is α =
n

m+ 1
, that means that for each power law index α that we want there is

a value of m such that tunneling is the most likely, given by,

α =
9/2− 1/(2m)

m+ 1
(2.68)

and in that case the maximum rate is Γ/V = 0.17.

Given a certain Γ/V its meaning is the rate at which critical bubbles of the real vacuum

form, this critical bubbles are those that would make the universe decay into the real vacuum

(instead of self collapsing due to surface effects). The total rate of the universe tunneling

into a lower vacuum then is

Γ ≈ Γ/V H−3. (2.69)

The field takes a certain time in circulating one step down in the potential, which can be

roughly calculated by assuming the angle changes by 2π, For quasi-circular motion T =
2π

θ̇
,

and the angular frequency is roughly θ̇ ∼
√
Ekin
φ2

. We know that the field is slow rolling,

so then Ekin =
1

3/ε− 1
H2 ≈ ε

3
H2Mpl

2, and as we have seen φ ∼ (ΛmMpl)
1/(m+1), so then

θ̇ ∼
√
εH(Mpl/Λ)2m/(m+1) ∼ 101+ 12m

m+1H, (2.70)

which shows that the field moves fast angularly. This shows that, even if a bubble of true

vacuum formed, the slow-rolling potential would have already moved to a lower vacuum

before the bubble grows to be a Hubble horizon. So it is not necessary to worry about

quantum tunneling.

25



CHAPTER 2. REHEATING AFTER INFLATION

To sum up, we have shown that the potential of Ref.59 is not prone to quantum tunnel-

ing, and may only generate non-gaussianities and isocurvature at a small level. However, it

is unclear whether it is stable for all values of n and m, which should be addressed.

2.2.2 Reheating for DBI inflation

Most models of inflation rely on a very flat potential during the slow-roll phase to

produce inflation in a scale-invariant way. The same slow rolling can be produced by the

inclusion of non-standard kinetic terms in the Lagrangian. We will study a model in which

the slowness of the roll is achieved via a ”scalar speed limit” mechanism, similar to the

Lorentz factor of a relativistic particle, called DBI (Dirac-Born-Infield) inflation.58

The model

We start with the action62

Sφ =

∫
d4x
√
−g
[
1/f(φ)

√
1 + f(φ)gµν∂µφ∂νφ− 1/f(φ) + V (φ)

]
, (2.71)

where f(φ) is a warping factor, given by the geometry of the background, and com-

monly taken to be f(φ) = λ/φ4. For a homogeneous solution φ(t), we can define γ =
1√

1− f(φ)φ̇2

≥ 1, which is equivalent to the Lorentz factor in special relativity. This

points to the fact that there is a maximum velocity, φ̇ ≤ φ̇max = 1/
√
f(φ) = φ2/

√
λ. Thus,

from the inverse of the γ factor we can compute a speed of sound cs =
√

1− f(φ)φ̇2.

From the action in Eq. (2.71) we can extract the energy density and the pressure of the

inflaton with this kinetic term, finding

ρ = V (φ)− 1/f(φ) + γ/f(φ)

p = −V (φ) + 1/f(φ) + 1/(γf(φ)), (2.72)

which in turn gives us the equation of state parameter (w = p/ρ) as

w =
−(V f − 1)− 1/γ

(V f − 1) + γ
. (2.73)
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It is easy to check that at the onset of inflation, when φ starts rolling and γ ≈ 1 we have

w = −1, and when inflation ends, and γ → ∞, we get w → 0, meaning that we have a

canonical reheating era. Inflation would end when we cross w = −1/3, we can solve at

which γ that would happen, to find,

γend = V f − 1 +
√

(V f − 1)2 + 3 ≈ 2V f. (2.74)

There are two ways to achieve inflation on DBI, either coming from large values of φ

and moving towards the origin (UV DBI), or starting near the origin and rolling down a

potential (IR DBI). The main difference arises because of the φ dependent warp factor f .

The UV model presents a more scale invariant power spectrum ns = 1 − O(ε2), ruled out

by Planck data, so we will focus on the IR model. In particular, we take a potential

V = V0 −m2φ2/2. (2.75)

In the IR-DBI model there are 2 parameters that can be tuned, which will be cs and m,

since during inflation V ≈ V0. We define R = m/Mpl10−10. We require that φ0 < Mpl,

which will translate into R . 100. The observable parameters are found to be

ns − 1 = −4/N, (2.76)

and

r =
8m2cs

3
√
λMpl

2
N3(4π2As)

−3/2, (2.77)

so this model has a highly suppressed value of r, and therefore does not produce observable

primordial B-modes. Moreover, from the initial value of the energy density we can calculate

the power spectrum, which gives us,

λ =
N4

4π2As
. (2.78)

Before moving forward we note that this model can present significant nongaussianities

for low sound speeds. Current Planck data constraints the sound speed via the formula,

f cNL ≈ 0.32 cs−2 → f c,Planck

NL = 11± 69, (2.79)
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from where we find

cs > .063, (2.80)

which is not extremely constraining. Furthermore, it is worth mentioning that the usual

relation to find the energy scale of inflation (Hk) holds for this model as well,

H2
k =

rAsπ
2

2
, (2.81)

so small r will give rise to small-scale inflation, as usual.

Reheating

Now we move on to find how this model reheats. We know that the equation of state

for DBI inflation ranges from w = −1/3 to 0. We will approximate it as a constant.

In order to get ns in the 1σ range from Planck we need to get between 85 and 125 e-folds

on inflation, which is a value too high for all reheating conditions. We will see, however,

that the curves of instantaneous reheating and N = 60 e-folds do not coincide, which seems

to point at the fact that the usual analysis breaks down for this model. The plots can be

seen on Fig. 2.6.

From our results it is clear that DBI inflation does not work with current measurements

of ns, even though it can predict an extremely small r. It remains unclear whether a nega-

tive equation-of-state during reheating, or a preheating phase, could remedy the situation.

Future work will address these issues.

2.3 Conclusions

We have explored a new technique to find constraints to inflationary models by studying

their reheating period. Instead of focusing on the physics of the reheating phase itself, or

assuming an overly ample parameter space by constraining the number of e-folds of inflation,

we characterize the whole reheating era by a single equation-of-state parameter wre, that

we constrain to have physically reasonable values. This leads to more precise constraints to
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Figure 2.6: ns vs r for IR DBI inflation with cs = 1 (left) and cs = 0.1 (right). Note that
the vertical axis r has been multiplied by a factor of 107 to compensate for its small value.

the inflationary observables.

We have applied this formalism to two families of potentials (natural inflation and

Higgs-like inflation), finding better lower bounds for the tensor-to-scalar ratio r, as can be

seen in Table 2.1 (where the usual m = 1, n = 2 potentials are in bold face). It is important

to notice that these results are robust to changes in the equation-of-state parameter as long

as it is kept under wre = 1/3, as suggested by previous work.

The results derived for the potentials studied also apply, taking the limiting cases f

or µ → ∞, to power-law models and, as we show in Figure 2.4, the allowed region for

the power-law case (green line) is more constrained using our method than with the usual

analysis in which the range for the numbers of e-folds is fixed. For comparison, the right-

hand plots in Figures 2.2 and 2.3 correspond to the plot made on52 for m2φ2 potential,

showing in the upper panel Nk instead of Nre.

The most interesting feature of this technique is its general validity. It was considered

for power-law potentials in Refs.,52,63 and we have generalized here to natural and Higgs-like

potentials. Still, the approach can be similarly applied to any single-field inflation model

and will generically lead to slightly more restrictive bounds to the inflationary parameter

space, including the range of values of the tensor-to-scalar ratio r. As a result, upper bounds

to r, for example, will generally be slightly more restrictive to inflationary models than they

would otherwise be.
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“Science may be described as the art of

systematic over-simplification.”

— Karl Popper

Chapter 3

Cosmic Microwave Background

When the temperature of the universe first became low enough for hydrogen atoms to form,

photons became able to travel without scattering with free electrons, and thus the universe

became transparent. This created a cosmic microwave background (CMB), which covers

the entire sky with an almost- homogeneous temperature of ∼ 3 K. However, if we looked at

a region with slightly more matter than the average, the photons would be redshifted due

to the gravitational potential created by said matter, so we would measure the CMB tem-

perature of that region to be colder. Likewise, an underdense region would appear hotter.

This, plus a plethora of additional effects, creates anisotropies in the CMB temperature on

the order of one in a hundred thousand. First COBE,64 thenWMAP,65 and now Planck66

have measured these CMB anisotropies to an increasingly exquisite precision. This has

allowed us to map the underlying matter perturbations at the time of recombination, and

to establish the cosmological standard model, ΛCDM, which can explain very well all the

CMB data, as well as the rest of cosmological observations.

Part of this model is that CMB anisotropies are adiabatic, so a region with more baryons

also contains more dark matter, neutrinos, and photons. This need not be the case if there

is more than one degree of freedom creating the CMB anisotropies, like a curvaton. In

Ref.16 I performed a Gaussian analysis of the latest Planck data release, to find constraints

to compensated isocurvature. Additionally, in Ref.17 we extended that analysis to include
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the lensing effects of the CMB, finding the strongest constraint to compensated isocurvature

to date.

There are a number of tensions in Plancks CMB data. Among the most important ones

is that there seems to be more gravitational lensing due to substructure than expected.

This is a 2−σ tension with both the result from a trispectrum analysis, as well as with the

prediction from ΛCDM. Furthermore, the second running, which describes how the power

spectrum behaves at small scales, seems larger than expected, also at 2−σ. We will explore

what are the consequences of these tensions and how well we will be able to resolve them

with next-generation CMB experiments.

The Planck experiment has finished acquiring data, and the last data release by the

Planck team is expected in the next year. The future of CMB observations lies in the

so-called Stage-4 CMB experiment, a series of Earth-based observatories aiming to measure

CMB anisotropies to unprecedented precision.21 As part of the S4 forecasting team, I have

developed code to find the precision that the S4 CMB experiment will reach in measuring

different parameters.

I will start this chapter by reviewing the basics of CMB physics. Then, I will move

on to compensated isocurvature perturbations, before briefly mentioning Planck’s lensing

anomaly. Finally, I devote the last part of the chapter to how well we can measure the

shape of the primordial power spectrum from the CMB, in particular by measuring its

scalar runnings.

3.1 Basic Formalism

3.1.1 Linear estimators for Planck

Codes like CosmoMC67 and Python Monte Carlo68 are commonly used for parameter

analysis. It is, however, a computationally costly procedure. We already have a best fit

for the six ΛCDM model parameters in the absence of any additional physics,1 so we can

perturb the model around this best fit by adding a new parameter, and increasing the

number Np of parameters accordingly. In that case the new best-fit parameters will not be

31



CHAPTER 3. COSMIC MICROWAVE BACKGROUND

too far away in parameter space from the old ones, so we can perform a linear analysis. In

reality

We construct a linear estimator of the parameters near their current best-fit values.1

To do so we parametrize the power spectra as,

CX,obs
` − CX,best−fit

` =

Np∑
i=1

δAXi g
X
i (`), (3.1)

where CX,best−fit
` is the best-fit (lensed) power spectrum, with X = {TT, TE,EE}. We

have left out other CMB observables, such as B-mode polarization, due to the absence of

sufficiently sensitive and foreground-free CMB polarization data. These could, however,

potentially have significant constraining power.69

We define the first six original amplitudes to be the ΛCDM parameters as Ai =

{ωb, ωc, ns − 1, As, τ,H0}, where ωb = Ωbh
2 and ωc = Ωch

2 are the baryon and cold-dark-

matter physical densities, ns is the tilt of the scalar power spectrum, and As its amplitude.

Here, τ is the optical depth of reionization and H0 is the Hubble parameter. We define the

deviations of these parameters from their best-fit values to be δAi.

The basis functions gXi (`) for i = 1−6 are constructed as

gXi (`) ≡
∂CX`
∂Ai

, (3.2)

where the derivatives are taken by fitting in CAMB70 near the best-fit values of the six

ΛCDM parameters.

We show all the derivatives with respect to the ΛCDM parameters in Figures 3.1, 3.2,

and 3.3. There are well-known correlations between the high-` effects of changing the dark-

matter density ωc and the Hubble parameter H0. Similarly, increasing As and decreasing τ

produce very similar changes in the power spectra, except at the lowest `s.

Notice that in those plots we are also showing the derivative with respect to the lensing

amplitude as an eighth parameter. The basis functions for CIPs and lensing are very similar.

This could help resolve the tension between the observed level of CMB lensing in Planck

power spectra and expectations from the ΛCDM model. We will explore this topic later.
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Figure 3.1: Derivatives of the CMB TT power spectrum at the current best-fit values. We
employ derivatives with respect to the logarithm of each amplitude Ai to account for their
different orders of magnitude. Consequently, there is a factor of Ai different to translate to
the gis in the text. In the top panel we show the derivatives with respect to ωb (in solid-
black), ωc (in dashed-blue), As (in red–dot-dashed), and H0 (in dotted-green). In the lower
panel we plot the derivatives with respect to ns (in solid-black), τ (in dashed-blue), the CIP
variance ∆2

rms (in red–dot-dashed), and the lensing amplitude AL (in dotted-green). For
visual purposes we have chosen an arbitrary CIP normalization in these plots.
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Figure 3.2: Derivatives of the CMB TE power spectrum at the current best-fit values. We
use the same conventions as in Figure 3.1.
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Figure 3.3: Derivatives of the CMB EE power spectrum at the current best-fit values. We
use the same conventions as in Figure 3.1.

3.1.2 Fisher Matrix

We now study the detectability of the different δAi simultaneously through a Fisher

analysis. We employ the usual definition of the Fisher matrix,71,72 with components

Fij = 〈gi, gj〉 , (3.3)

where the inner product 〈 , 〉 is defined as

〈gi, gj〉 ≡
∑
X,Y

∑
`

gXi (`)C−1
XY g

Y
j (`). (3.4)

The covariance matrix C` is given by73,74

(C`)XY =
2

2`+ 1

1

fsky
×


(
C̃TT`

)2 (
C̃TE`

)2
C̃TT` C̃TE`(

C̃TE`

)2 (
C̃EE`

)2
C̃EE` C̃TE`

C̃TT` C̃TE` C̃EE` C̃TE`

[(
C̃TE`

)2
+ C̃TT` C̃EE`

]
1

2

 , (3.5)

where we have defined

C̃TT` ≡ CTT` +NTT
` ,

C̃TE` ≡ CTE` ,

C̃EE` ≡ CEE` +NEE
` , (3.6)

34



CHAPTER 3. COSMIC MICROWAVE BACKGROUND

and the NX
` are the instrumental noises, for which we use the Planck tabulated noise for

the Planck analysis and zero in the cosmic-variance-limited case. These are equivalent to

the inverse-variance weighted sum over all channels i:

CXX,N` =

(∑
i

w−2
X,ie

−`2σ2
b,i

)−1

, (3.7)

with σb,i ≡ θi/
√

8 ln 2, θi is the full-width-half-maximum, and wi are the weights per solid

angle for each channel. The two main Planck channels, with 143 and 217 GHz frequencies,

have the properties listed in Table 3.1.

Channel θ (arcmin) wT (µK arcmin) wP (µK arcmin)

Planck 143 GHz 7 30 60

Planck 217 GHz 5 40 95

Stage-4 CMB 3 1 1.4

Table 3.1: Planck and S4 sensitivities to temperature and polarization at the frequencies
used to estimate the lensing potential. For Planck we take the two main frequencies that
contribute to cosmology, and for S4 we take one effective band.

3.1.3 Lensing

The CMB is lensed by large-scale structure along the line of sight, let us now briefly

review this effect. Lensing creates coupling between modes. Given a lensing multipole φLM

the coupling between the a
(1)
lm and a

(2)
lm temperature anisotropies (where a(i) ranges over

{T,E,B}) is given by

〈
a

(1)
`ma

(2)
`′m′

〉
= Cα` δ``′δmm′(−1)m +

∑
LM

(−1)M

 ` `′ L

m m′ −M

φLMf
α
``′L, (3.8)

where the coupling function fα``′L is tabulated in Okamoto and Hu,75 and α ≡ (12) is an

index running over combinations of modes.

The way Planck measures lensing is using the formalism in Okamoto and Hu, which
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establishes an estimator for dLM =
√
L(L+ 1)φLM as

d̂αLM = AαL
∑

`m,`′m′

a
(1)
`ma

(2)
`′m

 ` `′ L

m m′ −M

 gα``′L, (3.9)

where AαL and gα``′L are selected to obtain

〈dαLM 〉 =
√
L(L+ 1)φLM . (3.10)

while minimizing the variance of the estimator,

〈dαLMdαL′M ′〉|Gaussian = δLL′δMM ′(C
dd
L +Nαα

L ), (3.11)

where the subindex Gaussian means that we take φLM = 0, or only the disconnected part

of the four point function. Using Eq. (3.9) we can obtain

Nαβ
L =

AαLA
β
L

L(L+ 1)(2L+ 1)

∑
``′

(gα``′L)∗
[
C13
` C

24
`′ g

β
``′L + (−1)`+`

′+LC14
` C

23
`′ g

β
`′`L

]
, (3.12)

where here Cα` includes instrumental noise, and those cross terms arise because of the

four-point function

〈
a

(1)
`1m1

a
(2)
`2m2

a
(3)
`3m3

a
(4)
`4m4

〉∣∣∣
Gaussian

= C13
`1 C

24
`2 δ`1`3δ`2`4 + C14

`1 C
23
`2 δ`1`4δ`2`3 , (3.13)

where the (12)-(34) term gives δL0, so we ignore it.

This clearly shows that there are two ways to detect lensing. The first one is to search for

the off-diagonal correlations induced by lensing, as in the last term of Eq. (3.8), via the four-

point function (or trispectrum). This allows to probe each lensing mode independently, as

each L produces different correlations. The second method consists on using the integrated

effect of lensing on the CMB power spectra. For that we would need to expand Eq. (3.8)

to second order in φ, and average over φ as well, to obtain an integrated measure of the

lensing power spectrum CddL . The main effects of the lensing on the CMB power spectra

are to add power at small scales and to smooth the acoustic peaks.76,77 The amount of

lensing inferred from CMB TT measurements seems, however, to be higher (by about two

standard deviations) than the predicted value, and the result obtained from the trispectrum.
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This difference is parametrized through the lensing amplitude AL,78,79 which is fixed to be

AL = 1 in ΛCDM, but letting it vary can better fit the data. An analysis of the Planck

measurements of the TT power spectrum found a best-fit value of AL = 1.22 ± 0.10.1 We

will see how this result is degenerate with a compensated isocurvature perturbation.

3.1.4 Stage-4 CMB

The specifications we use for the S4 CMB experiment follow those of Ref.,21 which has a

sensitivity ∆T = 1µK-arcmin, with a resolution of θFWHM = 3 arcmin, over 40% of the sky.

To that we add Planck over an additional 20% of the sky, and a prior on the optical depth

of reionization of τ = 0.06 ± 0.01. The S4 experiment is expected to observe the ` range

between 30 and 5000 for polarization, although the highest modes will be noise-dominated;

and between ` = 30 and 3000 for temperature, as higher multipoles would be contaminated

by foregrounds. For Planck we take two bands, corresponding to frequencies of 143 and 217

GHz, respectively, with noises ∆T = {43, 66}µK-arcmin, and ∆E = {81, 134}µK-arcmin,

a resolution of θFWHM = {7, 5} arcmin and we do not include lensing data.

The CMB power spectra can be written as

CXY` = (4π)2

∫
dk k2T X` (k)T Y` (k)Pζ(k), (3.14)

where the indices X,Y = {T,E, or d} stand for temperature, E-mode polarization, and

lensing potential respectively, and T X` are their transfer functions.73,80–82 These T X` do not

depend on the primordial power spectrum, so the runnings only affect the C` through the

change in Pζ(k).

To forecast the errors in a set of parameters θi we define the Fisher matrix as83,84

Fij =
∑
`

2`+ 1

2
fskyTr

[
C−1
`

∂C`

∂θi
C−1
`

∂C`

∂θj

]
, (3.15)

where fsky is the sky-fraction covered, and the covariance matrix, ignoring E−d correlations
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is given by

C` =


C̃TT` CTE` CTd`

CTE` C̃EE` 0

CTd` 0 C̃dd`

 , (3.16)

and we have defined again

C̃TT` ≡ CTT` +NTT
` ,

C̃EE` ≡ CEE` +NEE
` ,

C̃dd` ≡ Cdd` +Ndd
` , (3.17)

where NXX
` are the noise power spectra, given by

NTT
` = ∆2

T e
`(`+1)σ2

b ,

NEE
` = 2×NTT

` , (3.18)

where ∆T is the temperature sensitivity as defined above, and σb = θFHWM/
√

8 log 2, with

the full-width-half-maximum θ2
FHWM given in radians. For the lensing noise Ndd

` we follow

the approach in Ref.,85 where the E- and B-mode data is used to reconstruct the lensing

power spectrum, Cdd` , whose effect is then subtracted from the B-mode data. This allows

us to iteratively compute the maximum delensing possible given the S4 polarization noise,

and thus forecast the sensitivity to lensing modes.75,86–88 For reference, the S4 lensing noise

is predicted to be smaller than the signal for ` . 1000.

We note that the Fisher matrix in Eq. (3.15) is equivalent to the one in Eq. (3.5), albeit

looking very different. The reason for using two different formalisms is that only with the

Fisher matrix in Eq. (3.5) one can look for residuals, as we will do for Planck data; whereas

the matrix in Eq. (3.15) is clearly of lower dimensionality, which is useful when adding

lensing dataset, as we do for the S4 CMB experiment.
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3.2 Compensated Isocurvature Perturbations

Cosmological density perturbations are thought to have their origin during inflation.89–91

These perturbations seed the large-scale inhomogeneities that later grow to become galax-

ies and clusters.92 From structure formation and cosmic-microwave-background (CMB)

observations, we know that primordial density perturbations have amplitude δ ∼ 10−5.1

Primordial perturbations can be classified into two groups depending on their initial

conditions. Adiabatic perturbations are perturbations to the total energy density that

leave the ratios of the different constituents of matter everywhere the same. Isocurvature

perturbations involve perturbations to the relative number densities of different components

of matter.13,19,93,94 The simplest inflationary models have purely adiabatic fluctuations,

while isocurvature fluctuations usually signal the presence of a second field during inflation,

as in curvaton models.95,96

Isocurvature perturbations between photons and a single other species are in general

well constrained.97–99 If, however, there is a baryon-density perturbation that is compen-

sated by a dark-matter perturbation in such a way that the total matter density remains

constant, then there are no pressure or gravitational-potential perturbations above the

baryonic Jeans scale. These compensated isocurvature perturbations (CIPs) thus have no

observable effect on the CMB at linear order in the CIP amplitude.100,101 There are con-

straints from other observables, but these are a factor of ∼ 104 weaker than the adiabatic

component.14,15,69,102

In the standard scenario, the CMB power spectrum is determined given fixed values

of the baryon and dark-matter densities Ωb and Ωm, respectively, in units of the critical

density. CIPs, however, introduce variations to Ωm and Ωb between different patches of the

CMB sky. They thus induce a variation in the power spectrum from one patch of sky to

another.

The mean power spectrum—that obtained by measurements over the entire sky—

remains unaltered, to linear order in the CIP amplitude. The variations show up, how-

ever, in two different ways. First of all, the spatial modulation of the power spectrum is

characterized by a departure from gaussianity, a specific nontrivial four-point function, or
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trispectrum. A search for such a trispectrum was performed in Ref.15 The second conse-

quence, however, is a change to the power spectrum that arises to quadratic order in the

CIP amplitude, which can be understood heuristically as a smoothing of features in the

CMB power spectrum when different power spectra are averaged.

Here we seek the effect of CIPs on the CMB power spectra obtained by Planck. We

parametrize the magnitude of the effect of CIPs in terms of an rms CIP amplitude ∆rms. We

find from a temperature-only analysis a constraint of ∆2
rms ≤ 7.1×10−3, which is competitive

with, and complements, that obtained from the complete trispectrum, although with a far

simpler analysis. That figure improves to ∆2
rms ≤ 5.0× 10−3 if Planck polarization data are

included. We then make CIP sensitivity forecasts for future experiments. We also show that

CIPs have a very similar effect on the power spectrum to changing the lensing amplitude

AL. They can thus alleviate the tension between the lensing amplitude obtained from the

Planck spectrum (AL = 1.22± 0.1) and that expected from theory (AL = 1).1

CIPs change the baryon and dark-matter densities in such a way that the total matter

energy density, Ωm = Ωb + Ωc, remains unaltered. We parametrize their effect as

Ωb = Ω̄b[1 + ∆(n̂)], and

Ωc = Ω̄c − Ω̄b∆(n̂), (3.19)

where Ωb and Ωc are the baryon and dark-matter energy densities respectively, the overbar

represents their unperturbed values, and ∆(n̂) is the amplitude of the CIP in the specific

direction n̂ at recombination. This expression is accurate for CIPs of sufficiently large

angular scale, where they can be treated as a modulation of background parameters.103

The linear-order effects of CIPs are on scales at which the baryons behave differently

from dark matter, corresponding to angular scales ` & 105−6,69 which makes them unob-

servable in the CMB, although potentially detectable using cosmological 21-cm absorption

measurements at high redshift.101 CIPs will also have consequences for the CMB fluctua-

tions induced by adiabatic perturbations. In a region of high ∆(n̂) (high baryon density),

decoupling will be longer, thereby smoothing the peak structure in the CMB power spec-

trum. The mean-free path of CMB photons would be reduced by the higher electron den-

sity, leading to less damping of CMB fluctuations on small angular scales. A higher baryon
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density also decreases the plasma sound speed and hence decreases the sound horizon at

recombination.93

3.2.1 Angular distribution

We expand the amplitude of the compensated isocurvature perturbations in spherical

harmonics as

∆(n̂) =
∑
LM

YM
L (n̂)∆LM , (3.20)

where the spherical-harmonic coefficients ∆LM are statistically independent and have a

variance given by

〈∆LM∆∗L′M ′〉 = δLL′δMM ′C
∆
L . (3.21)

We take the ansatz of a scale-invariant power spectrum for ∆ in k-space. For L . 800,

this creates a scale-invariant angular power spectrum CL = AL−2 when projected onto the

last-scattering surface (LSS), where A is a dimensionless amplitude.69 The simple picture

of CIPs as a modulation of background parameters corresponds to a separate universe

approximation, which was shown in Ref.103 to only be valid for L . 100, as the imprint of

CIPs are washed for at smaller CIP angular scales. We thus restrict our analysis to L ≤ 100.

We assume that the CIP amplitude ∆(n̂) is a Gaussian random variable with zero

average and variance ∆2
rms ≡

〈
∆2
〉
. Instead of finding an estimator for each ∆LM we will

directly measure its variance, which can be expressed in terms of the CIP angular power

spectrum C∆
L as

∆2
rms =

100∑
L=1

(2L+ 1)

4π
C∆
L , (3.22)

which means that our constraints will be on the total power in CIPs and not on each

individual C∆
L . By using Eq. (3.22) we can relate the CIP variance ∆2

rms to the amplitude

A of the power spectrum as,

∆2
rms ≈ 0.96A. (3.23)
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3.2.2 Previous constraints

As CIPs do not change CMB power spectra at linear order, past work has relied on other

observables to constrain their amplitude. For example, measurements of galaxy-cluster

baryon fractions (obtained through X-ray observations) were used in Ref.102 to search for

CIPs, imposing the constraint ∆2
rms . 5× 10−3. This technique, however, relies on clusters

being fair samples of the baryon density in the universe, as well as being kinematically

relaxed.

In Ref.,69 the off-diagonal correlations in the CMB created by CIPs were computed,

and a forecast was made of the sensitivities that could be reached by studying them with

different instrumental setups. Data from the WMAP mission104 were analyzed in Ref.15 to

constrain the amplitude ACIP of the CIP power spectrum CL to be smaller than 5.5× 10−3

at 68% C.L., which translates to a constraint on the CIP variance of ∆2
rms . 4 × 10−3,

where the L = 1 mode has been ignored due to reconstruction uncertainties.

3.2.3 Averaged-Sky method

CIP effects on the power spectrum

In our picture we treat the CIP amplitude as a Gaussian random variable. This allows

us to calculate the observed CMB angular power spectrum Cobs
` by averaging over the CIP

amplitudes,

Cobs
` =

1√
2π∆2

rms

∫
d∆e−∆2/(2∆2

rms)C`(∆), (3.24)

which to first non-zero order in ∆rms is given by

Cobs
` ≈ C`|∆=0 +

1

2

d2C`
d∆2

∆2
rms. (3.25)

We calculate the second derivative by fitting C`|Ωb,Ωc near {Ω̄b, Ω̄c} as a function of

∆. We have checked that terms that are higher order in ∆2
rms are negligible for the upper

limits to ∆2
rms that we infer. This causes a change in the power spectrum, from where we
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can extract a seventh basis function

gX7 (`) ≡ 1

2

d2CX`
d∆2

, (3.26)

where the derivative is calculated in the separate-universe approximation, and has associated

amplitude δAX7 = ∆2
rms. We show this base function in Figures 3.1, 3.2, and 3.3 for each

CMB dataset.

We have found that the CIP-induced corrections to CMB power spectra from Eq. (3.25)

numerically agree with those computed with the full mode-coupling formalism of Ref.,69 but

are simpler to evaluate.

We have shown expressions for how CIPs alter CMB power spectra. Now we consider

how to estimate ∆2
rms with measurements of the three main CMB power spectra, CTT` ,

CTE` , and CEE` . For that we use a Fisher-matrix analysis to fully capture the correlations

between the CIP variance, ∆2
rms, and the usual cosmological parameters.

Now we are ready to find estimates and errors for the six standard cosmological param-

eters, as well as the CIP amplitude ∆2
rms.

We consider two cases. First, for Planck, we not only obtain estimators for the CIP

variance, but also apply them to the data to obtain actual limits to CIPs. We will take a

small detour to study the viability of CIPs as a solution for the lensing tension in the Planck

CMB power spectra. Second, we will study a cosmic-variance limited (CVL) experiment.

Planck constraint

Let us begin by considering the Planck 2015 power spectra (CX,Planck
` ), obtained from

the Planck Legacy Archive (http://pla.esac.esa.int/pla/). To diminish the effects of

correlations between different `s, we used binned data for ` ≥ 30, with width ∆` = 30. The

minimum-variance unbiased estimators for these seven amplitudes δAi are

δ̂Ai =
∑
j

(F−1)ij 〈R(`), gj(`)〉 , (3.27)
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where (F−1)ij is the inverse of the Fisher matrix, and R(`) is the residual after subtracting

the best fit from the data, RX(`) = CX,Planck
` − CX,best−fit

` .

With the current data in the Planck Legacy Archive, however, it is hard to disentangle

the optical depth τ and the scalar amplitude As, since the effect of changing either is

highly degenerate.105 The main difference between As and τ is the reionization bump,

caused by τ , that appears at low ` in polarization measurements.106–108 Our linear analysis

underestimates the errors when using low-` polarization data, so in lieu of them we will

add a prior τ = 0.068 ± 0.019 to the optical depth for robustness. We choose the final `

ranges to be ` = 30− 2500 for TT, and ` = 30− 1995 for TE and EE power spectra, where

the maximum ` is that available in the Planck Legacy Archive. Later on, when considering

lensing, we will add the full low-` data to the analysis.

We show the best fits derived with this analysis in Table 3.2. The best fit to the CIP

amplitude with TT-data only is ∆2
rms = (5.8± 7.1)× 10−3, and with the combined data set

is ∆2
rms = (0.9 ± 5.0) × 10−3. There is thus no evidence for the existence of CIPs, and the

constraint is of the same order of magnitude as the trispectrum constraint of Ref.15 Notice

that we have not required ∆2
rms to be positive. Imposing a prior ∆2

rms ≥ 0 would change the

68%C.L. constraints to ∆2
rms ≤ 0.011 for TT, ∆2

rms ≤ 0.012 for TE, ∆2
rms ≤ 0.052 for EE,

and ∆2
rms ≤ 0.0054 for the combined data set. Notice that these limits have become more

constringent in the case of the TE data set, due to the negative best-fit value for ∆2
rms,

whereas the opposite is true for the TT and EE data sets.

Parameter TT TE EE Combined

ωb . . . . . . . . . 0.02238±0.00028 0.02175±0.00052 0.0251±0.0015 0.02243±0.00017
ωc . . . . . . . . . 0.1193±0.0026 0.1217±0.0033 0.1112±0.0055 0.1194±0.0015
ns . . . . . . . . . 0.9653±0.0081 0.939±0.023 0.986±0.018 0.9620±0.0049
log
(
1010As

)
3.097±0.036 3.08±0.040 3.11±0.040 3.11±0.034

τ . . . . . . . . . .. 0.082±0.018 0.080±0.019 0.078±0.019 0.088±0.017
H0 . . . . . . . . . 67.7±1.3 66.0±1.7 72.1±3.1 67.4±0.71
∆2

rms . . . . . . . 0.0058±0.0071 −0.023±0.020 0.040±0.023 0.0009±0.0050

Table 3.2: Best-fit values and standard deviations for cosmological parameters with the
three different Planck data sets (TT, TE and EE polarizations for ` > 30), as well as
combining them. We have used a prior in τ in addition to all the data sets to break the
degeneracy between τ and As.

We show the confidence ellipses for the Planck experiment on Figures 3.4 and 3.5,
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where it is clear that the CIP contribution to the CMB power spectrum is highly corre-

lated with most of the rest of parameters. The correlation coefficients, defined as rij ≡
(F−1)ij/

√
(F−1)ii(F−1)jj , are found to be rωb,∆2

rms
= 0.73, rωc,∆2

rms
= −0.57, rns,∆2

rms
=

0.76, rAs,∆2
rms

= −0.46, and rH0,∆2
rms

= 0.69.

We do not show the covariance between ∆2
rms and τ , since the prior applied to τ renders

the correlation coefficients meaningless. Even though this high-` analysis shows no strong

evidence for the existence of CIPs, they have the potential to resolve the lensing tension

mentioned above, when including low-` data. We now explore this possibility.

Solving the Lensing Tension

The CMB is lensed by large-scale structure along the line of sight. The main effects

of the lensing on the CMB power spectra are to add power at small scales and to smooth

the acoustic peaks.76,77 The amount of lensing inferred from CMB TT measurements

seems, however, to be higher (by about two standard deviations) than the predicted value.

This difference is parametrized through the lensing amplitude AL,78,79 which is fixed to be

AL = 1 in ΛCDM, but letting it vary can better fit the data. An analysis of the Planck

measurements of the TT power spectrum found a best-fit value of AL = 1.22± 0.10.1

Adding a new parameter to the likelihood analysis changes the best-fit AL if the new

parameter is correlated with it.109,110 The effects on the CMB of increasing AL are very

similar to adding CIPs, as can be seen from Figures 3.1, 3.2, and 3.3. Then, we can compute

the offset induced in AL due a non-zero CIP variance ∆2
rms as

δAL = (F−1)AL,∆ F∆,∆ ∆2
rms. (3.28)

In the Planck TT case, the product (F−1)AL,∆ × F∆,∆ evaluates to be ≈ −150. This

means that a CIP variance of ∆2
rms ≈ 10−3 would induce a bias in the lensing amplitude of

δAL ≈ −0.2, completely eliminating the tension between the ΛCDM value of AL = 1 and

the observed value. This value of ∆2
rms is allowed by the current constraints on CIPs, being

a factor of ∼ 7 smaller than our TT-only bound.

Of course this is only an approximate analysis ignoring the rest of the cosmological
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parameters. To include all correlations we use a Fisher-matrix analysis as above, adding

δAX8 ≡ AL − 1 as an eighth parameter in our analysis. Its associated basis function, g8, is

defined as in Eq. (3.2).

We fit for the value of AL from the Planck data, first without CIPs (to show the tension)

and then with CIPs. To follow more closely the analysis carried out by Planck,1 we will use

the low-` polarization data instead of setting a prior for τ . These data are available as part

of the Planck likelihood package.1

The results are displayed in Table 3.3. We show the fit for the six original ΛCDM

parameters +AL first, where it is clear that the best-fit lensing amplitude deviates ∼ 2

standard deviations from the ΛCDM value of AL = 1 for the TT, EE, and the combined

data set.

In Figure 3.6 we plot the likelihoods for AL, when marginalizing over the rest of pa-

rameters, before and after including CIPs.2 This Figure shows a significant widening of the

likelihood curves, which added to the bias from Eq. (3.28) is responsible for the decrease in

the tension of the fit.

In Table 3.3 we also show the standard deviations (and new best-fit values) when

including the six ΛCDM parameters + ∆2
rms +AL (so Np = 8). In that case the tension in

the TT data set vanishes, due to the correlations between AL and ∆2
rms.

A χ2 analysis of the TT power spectrum shows a preference for a non-standard lensing

amplitude. The change in χ2 from the standard ΛCDM model (with AL = 1) to an AL-

varying model (usually denoted ΛCDM+AL) is ∆χ2 = −4.1, giving rise to a p-value of

0.043, which makes it a significantly better fit.

Adding CIPs to this ΛCDM+AL model changes χ2 by ∆χ2 = −0.3, with a p-value of

0.58. This implies that ΛCDM+AL+CIPs does not fit the TT power spectrum better than

ΛCDM+AL.

Interestingly, CIPs alone can do as well as AL alone improving the χ2 statistic. The

change in χ2 from the ΛCDM model to ΛCDM+CIPs is ∆χ2 = −3.9, with a p-value of

1http://wiki.cosmos.esa.int/
2Note that, since we are using a linear Fisher-matrix analysis, these likelihoods are Gaussian by construc-

tion.

46



CHAPTER 3. COSMIC MICROWAVE BACKGROUND

0.048 (to be compared with 0.043 when adding a varying AL to ΛCDM). Notice, though,

that the best-fit CIP variance in that case would be ∆2
rms = (12.9± 6.4)× 10−3, which is in

tension with both the trispectrum bound,15 and the galaxy-cluster bound.102

This shows that adding either a varying AL or CIPs to a standard ΛCDM model

provides a better fit for the TT Planck power spectrum, by a comparable amount. Adding

both, however, is not supported by the data. There are, however, a few systematic effects in

the analysis that could bias the result. The most important example is that our treatment

of the low-` data is too simplistic. As a result, the uncertainties in τ and AL in Table 3.3

are small when compared to the Planck 2015 result.1 This indicates that our Fisher-matrix

analysis is too optimistic when inferring the optical depth from the low-` polarization data,

which could be due to the non-gaussian nature of the low-` likelihoods, to the mode coupling,

or to the linear approximation breaking down. A full likelihood analysis could show that

CIPs absorb more of the lensing tension than indicated in this simple analysis.

Summarizing, we conclude that CIPs are unlikely to solve the lensing tension with

current Planck data. Nonetheless, they remain one of the simplest prospective solutions, due

to their high correlation with the lensing amplitude (rAL,∆2
rms

= −0.82). High-quality low-`

polarization data will be publicly available in the next few years,111 so a reanalysis using

the full Planck likelihoods, perhaps also including higher-` multipoles from SPTpol,112,113

will resolve the matter definitively.
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Figure 3.4: 1σ (68%) confidence ellipses for the Planck TT data set. From left to right we
show ωb, ωc, and ns vs ∆2

rms. The unperturbed (Planck) best-fit values are shown as dashed
lines.
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Parameter TT TE EE Combined

ωb . . . . . . . . . 0.02235±0.00020 0.02257±0.00032 0.0245±0.0013 0.02228±0.00014
ωc . . . . . . . . . 0.1180±0.0023 0.1168± 0.0023 0.1095±0.0053 0.1185±0.0014
ns . . . . . . . . . 0.9660±0.0054 0.983±0.015 0.992±0.014 0.9641±0.0037
log
(
1010As

)
3.038±0.031 3.065± 0.035 3.07±0.034 3.038±0.031

τ . . . . . . . . . .. 0.056±0.016 0.062±0.016 0.062±0.016 0.055±0.015
H0 . . . . . . . . . 68.1±1.0 68.6±1.1 72.4±2.9 67.75±0.64
AL . . . . . . . . . 1.13±0.064 1.17±0.17 1.46±0.23 1.108±0.054

Parameter TT TE EE Combined

ωb . . . . . . . . . 0.02248±0.00029 0.0223±0.0046 0.02593±0.00017 0.02222±0.00018
ωc . . . . . . . . . 0.1176±0.0025 0.1183±0.0029 0.1102± 0.0053 0.1187±0.0015
ns . . . . . . . . . 0.9699±0.0086 0.977±0.017 1.004±0.016 0.9622±0.0052
log
(
1010As

)
3.041±0.031 3.05±0.035 3.081± 0.036 3.037±0.031

τ . . . . . . . . . .. 0.057±0.016 0.058±0.016 0.065±0.016 0.054±0.015
H0 . . . . . . . . . 68.5±1.2 67.7±1.5 73.0±3.0 67.60±0.70
AL . . . . . . . . . 1.07±0.11 1.43±0.35 −0.39±0.65 1.142±0.085
∆2

rms . . . . . . . 0.007±0.011 −0.028±0.033 0.088±0.064 −0.0038±0.0074

Table 3.3: Best-fit values and standard deviations for cosmological parameters with the
three different Planck data sets (TT, TE and EE polarizations for ` > 30), as well as
combining them. In the top part we have fitted for the original six parameters and the
lensing amplitude AL. In the bottom part we have also added a CIP amplitude ∆2

rms.
Instead of a prior in τ we have used the low-` polarization data (` < 30) from Planck in
addition to all the data sets to disentangle τ and As.

3.06 3.08 3.10 3.12 3.14

0.000

0.005

0.010

Log(As x 10
10)

Δ
2
rm
s

66.5 67.0 67.5 68.0 68.5 69.0

0.000

0.005

0.010

H0

Δ
2
rm
s

0.95 1.00 1.05 1.10 1.15 1.20

-0.005

0.000

0.005

0.010

0.015

0.020

AL

Δ
2
rm
s

Figure 3.5: 1σ (68%) confidence ellipses for the Planck TT data set. From left to right we
show ∆2

rms vs As, H0, and AL, using low-` polarization data instead of a prior on τ for the
latter. The unperturbed (Planck) best-fit values are shown as dashed lines.
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Figure 3.6: Normalized likelihoods for the lensing amplitude for all data sets. In the top
panel without considering CIPs, and in the lower panel adding them as well.

Cosmic-variance limit

We now find the minimum ∆2
rms observable in the cosmic-variance limited case for

different data sets.

We consider an experiment with no instrumental noise N` (i.e. N` = 0), full sky

coverage (fsky = 1) and range of observation from ` = 2 to 2500. In reality the lowest

multipoles should be treated with care, due to possible Galactic-foreground subtraction,114

which we ignore here. We show the results for the uncertainties of such an experiment in

Table 3.4.

The best CVL constraints to ∆2
rms arise from the polarization power spectra (EE espe-

cially) instead of the TT power spectrum, as holds true for the six original parameters.72

The minimum CIP variance observable in the CVL is ∆2
rms = 9 × 10−4, a factor of ∼

5 better than the current trispectrum constraint.15 This result pales in comparison to the

sensitivity of a CVL trispectrum experiment, as described in Ref.,103 which would be able

to measure ∆2
rms ≤ 3× 10−6.

Here τ is free, unlike the Planck case, where we included a prior. This leads to higher

correlations of the CIP amplitude ∆2
rms with the optical depth τ , and the scalar amplitude

As. We find the correlation coefficients in the CVL case to be rωb,∆2
rms

= 0.30, rωc,∆2
rms

=

−0.02, rns,∆2
rms

= 0.47, rAs,∆2
rms

= −0.71, rτ,∆2
rms

= −0.66, and rH0,∆2
rms

= 0.15. When

including a lensing amplitude, we find rAL,∆2
rms

= −0.27.
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Data ωb ωc ns As τ H0 ∆2
rms

TT 1.6 ×10−4 1.7 ×10−3 5.0 ×10−3 8.1 ×10−11 0.019 0.80 4.8 ×10−3

TE 1.1 ×10−4 1.0 ×10−3 4.7 ×10−3 3.6 ×10−11 8.3 ×10−3 0.45 2.5 ×10−3

EE 7.4 ×10−5 7.6 ×10−4 2.8 ×10−3 9.9 ×10−12 2.4 ×10−3 0.33 1.5 ×10−3

Combined 2.8 ×10−5 4.6 ×10−4 1.8 ×10−3 8.0 ×10−12 1.9 ×10−3 0.19 9.0 ×10−4

Table 3.4: Standard deviations forecast for a CVL experiment measuring from ` = 2 to
` = 2500 and with fsky = 1. We consider the six ΛCDM parameters + ∆2

rms being fitted at
the same time.

3.2.4 Modification to Lensing Estimators

Here we will also use the CIP contribution to the standard lensing potential power spec-

trum estimator and use the Planck estimates of weak lensing to further constrain CIPs. We

find that from the CMB power spectrum (temperature and polarization) the CIP amplitude

can be constrained to ∆2
rms < 0.014 at 95% confidence level (corresponding to a constraint

on the amplitude of a scale-invariant CIP power spectrum ACIP < 0.056). When including

the Planck estimates of the lensing potential the constraint improves by more than a factor

of four to ∆2
rms < 0.0034 (ACIP < 0.013). This upper limit improves upon the previous

best upper limit which uses estimates of the baryon fraction in galaxy clusters. Using the

approach we present here, estimates of the large-scale lensing potential power spectrum

from the CMB can constrain the CIP amplitude to ∆2
rms < 8× 10−5 (ACIP < 1.2× 10−4).

Both weak gravitational lensing and compensated isocurvature perturbations can be

thought of as a modulation of a ‘background’ CMB anisotropy. In this subsection we con-

sider these effects under the flat-sky approximation and focus on the temperature anisotropy

(related expressions which include polarization are straight forward to generalize).

In the presence of lensing plus a CIP we have

T (n̂) = T
[
n̂+ ~∇φ(n̂),∆(n̂)

]
, (3.29)

' T (n̂) +∇iφ∇iT + ∆(n̂)
∂T

∂∆

∣∣∣∣
∆=0

+
1

2

(
∇iφ∇jφ∇i∇jT + ∆(n̂)2 ∂

2T

∂∆2

∣∣∣∣
∆=0

)
+ · · ·

In addition to this, the finite experimental sensitivity of any observation adds a noise term

so that the total observed temperature at each point on the sky can be written T t(n̂) =

T (n̂) + TN (n̂) where we will assume that we are using beam-deconvolved maps. This leads
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to a power spectrum of the observed map of the form

CTT,t` = CTT` + CTT,N` , (3.30)

where the superscript N denotes noise. Then, the observed power spectrum can be written

through δ(2)(~̀+ ~̀′)CTT,obs(`) ≡ 〈T (~̀)T ∗(~̀ ′)〉/(2π)2. In the flat-sky approximation the

observed power spectrum is given by

CTT,obs
` = CTT`

[
1−

∫
d2L

(2π)2
CφφL (~L · ~̀)2

]
+

∫
d2L

(2π)2
CTT|~̀−~L|C

φφ
L [(~̀− L) · ~L]2 (3.31)

+

∫
d2L

(2π)2
CdT,dT
|~̀−~L|

C∆∆
L + CT,d

2T
`

∫
d2L

(2π)2
C∆∆
L .

The CIP modulation also produces a contribution to higher order correlations. In

particular, Refs.14,15,69,103 construct an optimal estimator for ∆LM from the connected

part of the CMB trispectrum. The analysis of the CMB trispectrum is far from trivial, so

here we utilize the fact that estimates of the lensing potential power spectrum, φ, are also

built out of the connected part of the CMB trispectrum.75,77,115 In the presence of CIPs,

the estimator used to reconstruct the lensing potential power spectrum becomes biased.

In the case of Planck, the lensing estimator is made using maps constructed from

the 143 GHz and 217 GHz channels, as in Table 3.1. We furthermore note that the Planck

analysis uses a bandpass filter and harmonic space to restrict the power spectrum mulitpoles

to 100 6 ` 6 2048 and use a fiducial cosmology that is spatially flat with parameters:

Ωbh
2 = 0.0222, Ωch

2 = 0.1203, Ωνh
2 = 0.00064 (corresponding to two massless neutrinos

and one massive neutrino with m = 0.06 eV), H0 = 67.12 km s−1 Mpc−1 , As = 2.09×10−9,

ns = 0.96, and τ = 0.065.

The minimum-variance temperature estimator derived in Ref.75 is

d̂TT (~L) ≡ i~LATT (L)

L2

∫
d2`1
(2π)2

T t(~̀1)T t(~̀2)FTT (~̀1, ~̀2), (3.32)
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which can be shown to give yield to a lensing power spectrum17

〈d̂∗TT (~L)d̂TT (~L′)〉 = (2π)2δ(2)(~L− ~L′)

{
L2CφφL + L2C∆∆

L

∫ d2`1
(2π)2

hTT (~̀1, ~̀2)FTT (~̀1, ~̀2)∫
d2`1
(2π)2

fTT (~̀1, ~̀2)FTT (~̀1, ~̀2)

2

+ N
(0)
TT,TT (L) +N

(1),φφ
TT,TT (L) +N

(1),∆∆
TT,TT (L)

}
, (3.33)

where N
(0)
TT,TT (L) = ATT (L) is the Gaussian bias produced by the unconnected part of the

trispectrum, N
(1),X
TT,TT (L) is the non-Gaussian (connected) part of the trispectrum due to the

lensing potential (X = φφ) and the CIP modulation (X = ∆∆). In practice, the Planck

lensing analysis uses a combination of observed and simulated CMB maps to subtract the

Gaussian bias.77 Since the simulated maps do not include a CIP contribution, some fraction

of the CIP contribution to the Gaussian bias may not be fully subtracted.

We showed in Ref.17 that the only contribution which is significant is

QL ≡

∫
d2`1
(2π)2

hTT (~̀1, ~̀2)FTT (~̀1, ~̀2)∫
d2`1
(2π)2

fTT (~̀1, ~̀2)FTT (~̀1, ~̀2)
(3.34)

we find that for Planck

QL '
0.12

L2
. (3.35)

This scaling is a result of the optimal weight, fTT ∼ `2CTT` , used in the standard lensing

potential estimator, compared to the CIP weight hTT ∼ CT,dT` . We can now see that

constraints to ∆2
rms when including estimates of the lensing potential power spectrum are

dominated by the lower values of L. The CIP contribution to a given estimator depends on

the noise properties of the experiment, so in Fig. 3.7 we show the result for Planck and S4

CMB.

The final result from this analysis is that ∆2
rms ≤ 4.3 × 10−3 at 95% C.L., a factor of

three smaller than the result without this lensing contribution.22,116
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Figure 3.7: The CIP contribution to the estimator for the lensing potential power spectrum
for both Planck (dashed blue) and CMB S4 (dot-dashed blue) for ∆2

rms = 2.5 × 10−3. For
comparison lensing potential power spectrum is shown in the solid orange curve.

Forecasts

We now assess the sensitivity of future CMB experiments to CIPs. As for lensing, the

improvements will come primarily come from small-scales (in particular, polarization), and

so we focus on the proposed S4 CMB experiment, as described in Ref.21

We model the S4 CMB as a single channel experiment, as described in Table 3.1, and

follow the Fisher formalism from Eq. (3.15). Since the CIP contribution to the lensing-

potential power-spectrum estimator roughly decreases as L−2, the sensitivity of future es-

timates to the scale-invariant CIP amplitude, ACIP, is highly dependent on the minimum

observable L-value, Lmin, and therefore highly dependent on the sky coverage. Assuming

that the non-lensing biases contributing to the lensing potential power spectrum estimator

can be robustly subtracted on large angular scales, the minimum multipole which can be es-

timated is approximately given by Lmin ∼ f−1/2
sky . Unfortunately, galactic foregrounds117 and

temperature/polarization leakage21 could degrade the largest-scale measurements (L < 30).

We defer analysis of these complications to future work and obtain forecasts as a func-

tion of the minimum Lmin detectable by the S4 CMB. Using information from the lensing

estimator and power-spectrum smoothing, we obtain the sensitivity to ∆2
rms(RCMB) for S4
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CMB experiment as a function of Lmin (shown in Fig. 3.8). For Lmin ≥ 10 the majority

of the constraint comes from the CIP modulation of the CMB power spectrum, whereas

for Lmin < 10 the CIP contribution to the lensing potential estimator dominates. We note

that the S4 CMB lensing noise is very close to the cosmic-variance limit, and therefore the

results should be the same for any other nearly CVL experiment. In particular, a full-sky

CVL measurement of the lensing potential power spectrum has the potential to constrain

∆2
rms(RCMB) . 10−5, and therefore ACIP . 4× 10−5.

Figure 3.8: Projected sensitivity to σ2
rms for the S4 CMB. The overall sensitivity is shown in

the solid blue curve. The sensitivity can be divided into a contribution from the smoothing
of the CMB multipoles (dotted black) and from estimates of the lensing potential power
spectrum (dot-dashed red). The lensing potential contribution is only important if future
experiments can probe Lmin . 5.

Conclusions

Compensated isocurvature perturbations leave no imprint on the observable CMB to

linear order, so their amplitude can be considerably larger than the ∼ 10−5 amplitude of

primordial adiabatic perturbations. Currently the best constraints arise from analyzing the

four-point function of the CMB, from where one can probe the first L ∼ 20 multipoles of a

CIP power spectrum, corresponding to scales larger than 10 degrees in the sky.

We use a different method to search for CIPs, based on studying the CMB power
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spectrum that arises to second order in the CIP-perturbation amplitude. We find a simple

form for the contribution to the CMB power spectrum, proportional to the CIP variance

∆2
rms, which has the advantage of being easier to analyze than the trispectrum.

The amplitude ∆2
rms of this new contribution to the power spectrum can be expressed

in terms of a sum over all the modes of a scale-invariant CIP power spectrum, although

only the first L ∼ 100 modes are important in CMB studies. This allows us to probe the

CIPs down to angular scales of ∼ 2 degrees in the sky.

We show that CIPs can alleviate the 2σ discrepancy in the lensing amplitude AL,

between that inferred from the Planck TT power spectrum and the ΛCDM expectation

(AL = 1). Adding CIPs to a standard ΛCDM model can improve the fit of the TT power

spectrum as much as adding a varying AL, making it unnecessary to have AL 6= 1. The

best-fit value for ∆2
rms in that case, however, would be three standard deviations above the

current bounds. A full MCMC analysis would precisely determine whether CIPs provide a

viable solution to the lensing tension.

We find a 1σ constraint on the CIP variance of ∆2
rms ≤ 7.1×10−3 using Planck tempera-

ture data alone, which improves to ∆2
rms ≤ 5.0×10−3 if polarization data are included. More-

over, once the lensing data from Planck is included the bound becomes ∆2
rms ≤ 2.2× 10−3

at 1σ, a factor of 3 more stringent than with temperature+polarization alone.

3.3 Tilt and Running

Single-field slow-roll inflation predicts a nearly scale-free power spectrum of pertur-

bations, as observed at the scales accessible to current cosmological experiments. This

spectrum is slightly red, showing a tilt (1 − ns) ∼ 0.04. A direct consequence of this tilt

are nonvanishing runnings αs = dns/d log k, and βs = dαs/d log k, which in the minimal

inflationary scenario should reach absolute values of 10−3 and 10−5, respectively. In this

section we calculate how well the upcoming S4 CMB experiment can measure these two

runnings.
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3.3.1 Inflationary Power Spectrum

During inflation, quantum fluctuations generate an almost-scale-invariant power spec-

trum of fluctuations. The scalar perturbations ζk thus have a two-point function given

by

〈ζkζ∗k′〉 = Pζ(k)(2π)3δD(k + k′), (3.36)

where Pζ(k) is the scalar power spectrum, for which we can define an amplitude as

log ∆2
s(k) ≡ log

[
k3

2π2
Pζ(k)

]
= logAs + (ns − 1) log

(
k

k∗

)
+

1

2
αs log2

(
k

k∗

)
+

1

6
βs log3

(
k

k∗

)
, (3.37)

where As is the scalar amplitude, ns is the scalar tilt, and αs and βs are the running and the

second running, respectively. At the pivot scale of k∗ = 0.05 Mpc−1, Planck has measured

a scalar amplitude As = 2.196 × 10−9, with tilt ns = 0.9655.118 We will take these values,

with αs = βs = 0, as our baseline. We will also assume for the rest of this section the

fiducial ΛCDM parameters to be: ωb = 0.02222, ωc = 0.1197, τ = 0.06, and H0 = 67.5

km/s.

We show the logarithmic derivative of the matter power spectrum with respect to the

tilt ns, the running αs, and the second running βs, at our fiducial values in Fig. 3.9. From

this Figure it is clear that scales away from the pivot scale k∗ = 0.05 Mpc−1 change the

most when higher-order runnings are introduced. Note that the logarithmic derivative with

respect to the scalar amplitude As would just be a horizontal line in this plot. We also show

the regular matter power spectrum Pδ for comparison, both without any runnings and with

βs = 0.03, as argued in Ref.119 to be enough to produce primordial black holes (PBHs).

3.3.2 Single-Field Slow-Roll Predictions

Let us now briefly review the dynamics of single-field slow-roll (SFSR) inflation, and

how the runnings change it. In the case of inflation being driven by a single field φ under a

potential V (φ), the amplitude As and tilt ns of the scalar power spectrum are determined

by a combination of V ′(φ∗) and V ′′(φ∗),
118 where φ∗ is the value of the field at the pivot
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Figure 3.9: Logarithmic derivatives of the power spectrum Pδ(k), as a function of the
wavenumber k in Mpc−1, with respect to the scalar tilt ns in blue line (solid for positive
and dotted for negative values), to the running αs in black long-dashed line, and the running
of the running βs in red line (dashed for positive and dash-dotted for negative values), at
the ΛCDM best-fit values. The matter power spectrum Pδ(k) is shown in the top center for
comparison, where the case with no runnings corresponds to the solid black line, and the case
with βs = 0.03−the highest running allowed by Planck at 68% C.L.−to the green-dashed
line.
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scale, and ′ denotes a derivative with respect to φ. The absolute magnitude of V (φ∗) is

related to the tensor-perturbation amplitude, or alternatively to its ratio r to the scalar

amplitude.120 The uncertainty in the reheating phase at the end of inflation, however,

hampers a unique determination of the shape of the inflaton potential from As, ns, and

r.10,11,42,52 The inclusion of an additional observable, such as the scalar running αs, may

help alleviate these uncertainties, as it provides information about the V ′′′(φ∗) term.121

A similar argument applies to the second running βs with the fourth derivative of the

potential. Unfortunately, in single-field slow-roll inflation these runnings are expected to be

rather small. To illustrate why, let us define the slow-roll parameters

ε =
M2

pl

2

(
V ′

V

)2

,

η = M2
pl

V ′′

V
,

ξ2 = M4
pl

V ′V ′′′

V 2
,

σ3 = M6
pl

V ′2V (4)

V 3
, (3.38)

where Mpl = (8πG)−1/2 ≈ 2.4 × 1018 GeV/c2 is the reduced Planck mass, and we have

defined the third- and fourth-order slow-roll parameters, ξ and σ respectively, to be of

the same order as ε and η in SFSR inflation. In this case, both the scalar and tensor

indices (denoted by nt, αt, and βt) can be found to first non-vanishing order in the slow-roll

parameters as122,123

r = 16ε,

1− ns = 2η − 6ε, nt = −2ε,

αs = −2ξ2 + 16ηε− 24ε2, αt = 4ηε− 8ε2,

βs = 2σ3 + 2ξ2(η − 12ε)− 32ε(η2 − 6ηε+ 6ε2), βt = −4εξ2 − 8ε
(
η2 − 7εη + 8ε2

)
,

(3.39)

so for σ ∼ ξ ∼ η the prediction of single-field slow-roll inflation is αs = O[(ns−1)2] ∼ 10−3,

and βs = O[(ns−1)3] ∼ 10−5, as long as the potential does not experience a sudden change

near CMB scales.124–126 In the same way that large local non-gaussianities would rule out

single-field slow-roll inflation,127,128 a running αs much larger than ∼ 10−3 would also imply
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a more complex model of inflation. A similar argument holds with βs, although with a 10−5

amplitude. Furthermore, it has been argued that very-large positive values of βs & 10−2

are not possible within any SFSR model, as they would force the inflationary era to end

before the largest observable scales exited the horizon.125,129,130 Thus, PBH production

with a value of the second running βs = 0.03 requires additional degrees of freedom during

inflation. In general, reaching a precision of σ(βs) . 10−2 will provide a useful test of the

single-field inflationary paradigm.

3.3.3 Forecasts

The proposed S4 CMB experiment, which we model as in Section 3.1.4, will be able to

map modes up to ` ∼ 5000, both in temperature and polarization. We will study the level

of precision that this S4 CMB experiment can reach for the running αs, and the second

running βs.

The parameters θi that we will forecast in this section are the six ΛCDM parameters

(ωb, ωc, ns, As, τ , and H0), plus the running αs, and the second running βs.

Results

We show in Fig. 3.10 the confidence ellipses between αs, βs, and the six ΛCDM pa-

rameters. Both runnings are mainly degenerate with ωb, ns, and As. Moreover, αs and

βs are also correlated, which is to be expected, since both αs and βs increase the power

at k > k∗, or ` & 500, where a great part of the CMB information comes from. We show

the forecast uncertainties for these parameters in Table 3.5. In this table we show the

minimum αs that could be measured by a S4 CMB experiment (marginalizing over ΛCDM

parameters but setting βs = 0), which is σ(αs) = 0.0025, enough to detect significant

departures from slow-roll single-field inflation, albeit not sufficient to detect the slow-roll

prediction αs ≈ 10−3. Meanwhile, the 1−σ C.L. on βs (marginalizing over ΛCDM+αs)

will be σ(βs) = 0.0045. This will shed light on the claimed detection of a non-zero second

running βs = 0.02± 0.01,130 and will have the power to test whether primordial black holes

with tens of solar masses are formed from a positive second running. From these results we
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find that the S4 experiment alone will not suffice to determine the dynamics of inflation.

Similar results have been forecasted for the proposed COrE satellite.131

As an additional test we have studied the correlation between both the running αs,

and the second running βs, and the neutrino mass mν for the S4 experiment. We find a

correlation, defined as rij ≡ Cij/
√
CiiCjj , with C ≡ F−1, of rαs,mν = −0.24 between the

neutrino mass and the running, and rβs,mν = −0.23 between the neutrino mass and the

second running. Marginalizing over mν in addition to the other ΛCDM parameters worsens

the sensitivity of the S4 CMB experiment to the runnings at percent level, which justifies

neglecting the effects of the mass of the neutrinos in our forecasts.

Model σ (ωb) σ (ωc) σ (ns) σ (As) σ (τ) σ (H0) σ (αs) σ (βs)

ΛCDM+αs 3.4 ×10−5 6.0 ×10−4 2.2 ×10−3 2.1 ×10−11 0.0055 0.23 0.0025 −
ΛCDM+αs+βs 3.5 ×10−5 7.0 ×10−4 2.7 ×10−3 2.1 ×10−11 0.0056 0.27 0.0026 0.0045

Table 3.5: 1 − σ C.L. forecast for the S4 CMB experiment. We consider the six ΛCDM
parameters and αs in the first row, and we add the second running βs in the last row.

Combined constraints

The strength of the Fisher-matrix approach we follow is that we can easily add the

information from different experiments by summing their Fisher matrices. We take as a our

baseline case the proposed S4 CMB experiment, and in Table 3.6 we show the minimum

αs and βs observable at 1−σ when adding different combinations of experiments to the S4

CMB, from Ref.22 The results for CMB and galaxy surveys marginalize over all ΛCDM

parameters and the bias b for αs, and we include αs in the marginalization for βs. For

details of galaxy surveys see.22 These results show that only very-futuristic experiments

will be able to probe the dynamics of inflation, with the S4+SKA reaching a sensitivity of

σ(αs) ≈ 10−3 . (1 − ns)2 Interestingly, in all cases σ(βs) ∼ 2σ(αs), which attests to the

difficulty of determining the second running.

In Fig. 3.11 we plot the 1 − σ confidence ellipses in the αs − βs plane for the S4 CMB

experiment, as well as the combination of S4+DESI, and S4+SKA. A representation of

the current Planck 68% C.L. region is also shown (from Ref.130), which displays a slight

preference for a non-zero βs. We draw a line in the αs − βs plane above which PBHs
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Figure 3.10: Confidence ellipses for the ΛCDM parameters and αs and βs, for the S4 CMB
experiment. In darker purple we show the 68% C.L. region, and in lighter purple the 95%
C.L. region.
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Experiment σ(αs) σ(βs)

S4 CMB 0.0025 0.0045
S4+WFIRST 0.0020 0.0035
S4+DESI 0.0018 0.0034
S4+SKA 8.5 ×10−4 0.0019

Table 3.6: 1−σ uncertainties on the running αs and the second running βs for the S4 CMB
experiment plus different proposed galaxy surveys. We marginalize over the six ΛCDM
parameters (plus the bias amplitude b for the galaxy surveys) when computing σ(αs) and
over αs as well for σ(βs).

with masses larger than 1015 gr could be formed, calculated as in Sec. 5.2. Comparing the

ellipses in Fig. 3.11 with the predictions from slow-roll inflation it is clear that departures

from slow-roll behavior should be detectable in αs, although not in βs unless they are very

drastic.

Conclusions

In this section we have studied how well the S4 CMB experiment will be able to measure

the runnings of the scalar power spectrum. A summary of our results is in Table 3.6, where

we show that the S4 CMB will be able to measure the ΛCDM parameters to astounding

precision (see Table 3.5). This S4 CMB experiment, however, will probe the runnings to a

precision σ(αs) = 0.0025 and σ(βs) = 0.0045, insufficient to detect the single-field slow-roll

inflation prediction, although enough to measure significant departures from it.

We added to the S4 CMB results the information from upcoming galaxy surveys, such

as WFIRST and DESI. In Ref.22 we found that these surveys will marginally improve

the S4 measurements, reducing the error bars by at most 30%. However, more futuristic

surveys, such as a billion-object SKA, will add enough information to half the S4 CMB

uncertainties, reaching enough sensitivity to detect αs ∼ 10−3, as predicted by slow-roll

inflation. Additionally, these measurements will allow us to falsify the model for PBH

production proposed in Ref.119 with the improved βs accuracy.

To summarize, within the next few decades the uncertainties in the runnings αs and

βs will decrease by a significant factor, as new cosmological experiments are developed

and their data is analyzed. This will allow us to very-precisely characterize the dynamics of
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inflation, and test deviations from the standard slow-roll scenario. Such a measurement will

be invaluable for characterizing the inflationary potential beyond the first-order slow-roll

approximation, opening a window into the first moments of the Universe.
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“It’s more fun to experience things when you

don’t know what’s going to happen.”

— Louis C.K.

Chapter 4

The 21-cm Hydrogen Line

Increasingly precise cosmic microwave background (CMB)104,118 and large-scale structure

(LSS)132 measurements have zeroed in on a rather simple model of the cosmos, requiring

only a handful of parameters. In particular, initial fluctuations seem to be mostly scalar

and highly Gaussian.57,133,134 They are well described by a simple power-law spectrum,

whose slope is consistent with a single scalar field driving inflation while slowly rolling down

a very flat potential.8,39

Neither the CMB nor LSS will reach enough number of modes to probe the ultimate

predictions of slow-roll inflation. However, fluctuations in the brightness temperature of

the 21- cm line of neutral hydrogen have the potential to open a new window on the high-

redshift universe. This observable can in principle allow us to probe a fantastic number of

modes, largely surpassing those available from CMB observations alone. First, fluctuations

are undamped down to the baryon Jeans scale (with wavenumber k ∼ 300 Mpc−1) three

orders of magnitude smaller than the photon diffusion scale (k ∼ 0.2 Mpc1). In addition,

whereas CMB anisotropies probe a single surface, a line such as the 21-cm transition makes

it possible to observe the early universe in tomography, and to coadd the information from

each independent redshift slice. While the 21-cm line can in principle be observed all the

way to cosmological reionization, at z ∼ 10, the signal is cleaner at higher redshifts z & 30,

the dark ages preceding the formation of the first luminous objects. We focus on this

65



CHAPTER 4. THE 21-CM HYDROGEN LINE

redshift range in this work.

The technical challenges to observe high-redshift 21-cm fluctuations are daunting, and

will most likely require a telescope array on the far side of the Moon,135 as well as foreground-

removal of the Galactic synchrotron radiation to an exquisite accuracy. We will not tackle

these problems in the present work, but we will study what can be learned from the dark

ages about cosmology once foregrounds are subtracted.

While the baryon-photon fluctuations are highly linear at the epoch of last-scattering

z ∼ 1100, the perturbations in the cold dark matter (CDM) and baryon fluids have signif-

icantly grown by z ∼ 50. Even if they remain small enough that no bound structure has

formed yet, gravitational growth leads to a non-linear dependence of the density field on

initial conditions. In addition, the 21-cm brightness temperature depends non-linearly on

the local baryon density, velocity gradient, and temperature. Unless treated appropriately,

all this can jeopardize the usefulness of 21-cm fluctuations to measure cosmology.

4.1 Formalism

The nuclear spin of the hydrogen atom makes its triplet ground state have a slightly

higher energy than its singlet counterpart, giving rise to a transition with characteristic

wavelength λ ≈ 21 cm in the radio spectrum. Its very long wavelength makes it a good

probe of the early Universe, being easily identifiable. We start by reviewing the physics of

the 21-cm line during the dark ages and its angular power spectrum.

4.1.1 Global signal

The ratio of the populations of the triplet and singlet Hydrogen states defines a tem-

perature, which we denote as spin temperature Ts. During the dark ages CMB photons

stimulate radiative transitions between the singlet and the triplet Hydrogen states.136 Colli-

sions between different Hydrogen atoms will also create upwards and downwards transitions.

The timescale of both these effects is much smaller than the evolution of the universe,137
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so we can use the quasi-steady-state approximation,

n0(C01 +R01) = n1(C10 +R10), (4.1)

where n1 and n0 are the densities of triplet- and singlet-state Hydrogen atoms, Cij are

the collisional transition rates, and Rij are the rates of radiative transition due to the

CMB blackbody photons. This allows us to define the spin temperature, which we can

approximate very well by

Ts = Tγ +
C10

C10 +A10
TH
T∗

(TH − Tγ), (4.2)

where TH is the temperature of the neutral hydrogen, Tγ that of the CMB, T∗ = 0.068 K

= 5.9µeV is the characteristic temperature of the 21-cm transition, and A10 is the Einstein

spontaneous-emission coefficient of the 21-cm transition.

During the redshift period of interest collisions dominate over radiative transitions,

which couples the spin temperature to that of the Hydrogen. This enables Hydrogen atoms

to resonantly absorb CMB photons with a rest wavelength of 21 cm, which from Earth re-

sults in a decrease in the brightness temperature of the CMB at the corresponding redshifted

wavelength. We ignore here low-redshift effects, such as the Wouthuysen-Field effect,138–140

heating of the Hydrogen gas due to miniquasars,141,142 or early stellar formation.143,144

Let us define the 21-cm line temperature for small optical depths τ as

T21 =
Ts − Tγ
1 + z

τ, (4.3)

corresponding to the contrast with the CMB temperature redshifted to today. This param-

eter is given by

τ =
3

32π

T∗
Ts
nHλ

3
∗

A10

H(z) + (1 + z)∂rvr
, (4.4)

where λ∗ ≈ 21 cm, nH is the number density of neutral Hydrogen, and ∂rvr is the proper

gradient of the peculiar velocity along the line of sight.
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4.1.2 Fluctuations

The optical depth and the spin temperature of a Hydrogen clump depend on its density

and velocity divergence. The small anisotropies in these two quantities create fluctuations

on the 21-cm temperature T21. Let us define δv ≡ −(1 + z)∂rvr/H(z). Then, at linear

order, the 21-cm fluctuations can be expressed as25,145

δT21(x) = α(z)δb(x) + T̄21(z)δv(x), (4.5)

with T̄21(z) being the spatially-averaged 21-cm brightness temperature, and α(z) = dTb/dnH ,

including gas-temperature fluctuations as in Ref.25 The observed fluctuation of this quantity

in a direction n̂ of the sky and at a certain frequency ν is given by

δT21(n̂, ν) =

∫ ∞
0

dxWν(x)δT21(x) , (4.6)

where Wν(x) is the window function selecting the information at a certain frequency band

centered in ν. In Fourier space the primordial curvature perturbation ζk is related to the

baryonic anisotropies by δb(k, z) = Mζ(k, z)ζk, and δv(k, z) = µ2δb(k, z), with µ = (k̂ · n̂).

We can, therefore, define the transfer function of the 21-cm temperature fluctuations as,

T`(k, ν) =

∫ ∞
0

dxWν(x)Mζ [k, z(x)]
[
T̄21(z)J`(kx) + α(z)j`(kx)

]
, (4.7)

where j` is the spherical bessel function with index `, and we have defined J`(kx) ≡
−∂2j`(kx)/(∂kx)2, which can be written in terms of j`, and j`±2.146 Given this, we can

easily compute the 21-cm line angular power spectrum at a certain frequency ν as

C` =
2

π

∫ ∞
0

k2dkPδδ(k)T 2
` (k, ν) , (4.8)

where Pδδ is the (isotropic) primordial curvature power spectrum, given in
〈
ζ iso
k ζ iso

k′
〉

=

(2π)3Pδδ(k)δ(3) (k + k′), with ζ iso
k being the isotropic part of the curvature perturbations,

as defined in Chapter 3.
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4.1.3 Instrumental Noise

In the cosmic-variance limit (CVL) the only source of noise is the variance given by

having a finite number of measurements of the power spectrum C` itself. If one considers,

however, an interferometer looking at the dark ages at a certain frequency ν, there is an

additional noise power spectrum given by23,86,87,147

`2CN` =
(2π)3T 2

sys(ν)

∆ν tof2
cover

(
`

`cover(ν)

)2

, (4.9)

where ∆ν is the bandwidth of the survey, to is the total time of observation, `cover(ν) ≡
2πDbase/λ is the maximum multipole observable, with Dbase being the largest baseline of

the interferometer. The amplitude of this noise is given by the system temperature Tsys,

which we take to be the synchrotron temperature of the observed sky,

Tsys(ν) = 180
( ν

180 MHz

)−2.6
K, (4.10)

found from extrapolating to lower frequencies the results in Ref.148

We will use different baselines and coverage fractions for different applications, so we

defer assigning specific values to each subsection. We also show the CVL results, as the

ultimate limit attainable by 21-cm measurements.

4.2 Dark-matter Interactions with Baryons

4.2.1 Motivation

The standard picture of cold dark matter (CDM)149 seems to fit very well with our

current observational constraints.1 There are, however, a few puzzles that would require

dark matter to have non-zero interactions.150–152 Moreover, several models for the dark-

matter (DM) particle predict some level of weak non-gravitational interaction with standard-

model baryons.153,154 Here we will study these interactions during the dark ages.

The simplest way to observe these interactions would be through direct detection exper-

iments, such as DarkSide,155,156 LUX157 and XENON100.158 These experiments are very
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sensitive to large dark-matter masses but cannot constrain interactions for DM masses be-

low ∼ 10 GeV due to the small recoil of the nuclei in any given interaction. A different probe

would consist of indirect early-time effects of these interactions. One example would be the

modification of the small-scale power spectrum, due to the drag induced in the DM by the

interactions,159 which would be observable in the cosmic microwave background (CMB), as

well as in Ly-α forest measurements. Another example is CMB spectral distortions, which

would be created by the indirect coupling, through baryons, of dark matter and photons in

the very early universe.160 These last two probes require interactions to be relevant at early

times, so they are not sensitive to all velocity dependences. Some models for dark-matter–

baryon interactions may elude constraints because interactions get stronger at later times.

We will focus on one of those models, in which the interaction cross section is parametrized

by σ = σ0v
−4, one realization of which would be dark-matter milicharge.153 To constrain

interactions at later times, a useful probe is the 21-cm line during the dark ages.

Interactions between baryons and dark matter can be detected through their effect on

the brightness temperature of the 21-cm line. This brightness temperature is proportional to

the difference between the spin temperature of the neutral Hydrogen and the CMB temper-

ature. In the standard scenario the spin temperature is coupled to the baryon temperature

during the redshift range z ∼ 30− 200. This creates a departure between spin temperature

and CMB temperature. As shown in Ref.,161 if the baryons are cooled down (by interacting

with a colder fluid, like the dark matter) the spin temperature will be lower, modifying the

overall brightness temperature.

We emphasize that these interactions do not cause just cooling of the baryons, but also

heating. In the usual picture of interaction between two fluids, the warmer fluid will lose

energy toward heating up the colder one, while there will be no energy transfer if both fluids

have the same temperature. However, if there is a relative velocity between the two fluids

-dark matter and baryons in our case- there will be an additional friction term that will tend

to damp this relative velocity. The kinetic energy lost in this manner will induce heating

in both fluids. The magnitude of this effect depends on the initial relative velocity, which

is given by a Gaussian variable with a (3D) variance of ∼ 29 km/s at kinematic decoupling

(z ≈ 1010).29,145

The brightness temperature will then acquire an additional spatial dependence, through
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the local variation of the relative velocities. Quantifying this effect, we find that during the

dark ages it creates an additional contribution to the power spectrum of 21-cm temperature

fluctuations, which can be more than an order of magnitude bigger at large scales than the

standard one, even for values of the cross section allowed by current CMB studies.159 We

study the detectability of this new signal with an SKA-inspired interferometer1 and with a

more futuristic proposed experiment. We also study how the global signal changes due to

interactions and discuss the prospects for experiments such as NenuFAR2.

4.2.2 Evolution of interacting dark matter and baryon fluids

In this section we will study how the interactions between DM and baryons change their

temperatures. To do that we will have to calculate the drag on the relative velocity due to

interactions with baryons, as well as the heating effect on both fluids. Our results will rely

on the current understanding of relative velocities, so let us start with a brief review.

Velocities

In the standard cosmological evolution, dark matter starts collapsing as soon as matter-

radiation equality is reached. Baryons, however, cannot cluster due to radiation pressure,

until they decouple from the photon background. This difference in their evolution history

generates a relative velocity between the two components. After the baryons and photons

kinematically decouple, at redshift z ≈ 1010, this velocity redshifts away, since the baryons

experience infall into the DM gravitational wells. Ref.29 first pointed out that relative

velocities affect the formation of small-scale structure. Their effect on the standard power

spectrum of 21-cm fluctuations in the dark ages was studied in Ref.145

At kinematic decoupling, the relative velocities Vχb ≡ Vχ − Vb follow a Gaussian

distribution, where Vχ and Vb are the DM and baryon bulk velocities. Then the differential

probability of having an initial relative velocity Vχb,0 is given by

P(Vχb,0) =
e−3V2

χb,0/(2V
2
rms)

(2π
3 V

2
rms)

3/2
, (4.11)

1https://www.skatelescope.org/.
2http://nenufar.obs-nancay.fr.
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where the value of the (3D) width of this distribution is Vrms = 29 km/s ∼ 10−4 c at

kinematic decoupling (z = 1010).145 This rms value as well as the full power spectrum of

Vχb,0 can be simply extracted from standard linear Boltzmann codes.137,162

Elastic interactions between fluids with a relative velocity will have two different effects.

First, they will tend to decrease the relative velocity and achieve mechanical equilibrium,

which in our scenario will manifest itself as a drag on the relative velocity.159 Second, they

will thermally couple the fluids, tending to equilibrate their temperatures.

We start by calculating the drag on the relative velocity.

Drag term

Throughout the text we consider cross sections parametrized as σ = σ0v
−4. First we

analyze the velocity change due to the collision with a baryon with velocity vb. In the

center-of-mass (CM) frame the initial velocity of the DM particle will be

vχ
(CM),0 = (vχ − vb)

mb

mb +mχ
, (4.12)

and in an elastic collision the final velocity can be parametrized by the angle toward which

it is scattered, so the final velocity of the dark matter particle is

vχ
(CM),f = v(CM),0

χ n̂, (4.13)

where n̂ is a unit vector. The change in velocity in a single collision (which is Galilean

invariant, and hence frame independent) is

∆vχ =
mb

mb +mχ
|vχ − vb|

(
n̂− vχ − vb
|vχ − vb|

)
. (4.14)

To calculate the full effect of the interactions we need to include the rate at which

interactions happen, and average over the velocities of the fluid elements. The rate of

interactions in a particular direction dn̂ is dσ/dn̂ |vχ − vb|nb, where σ(|vχ − vb|) is the

cross section as a function of the relative velocity, and nb is the number density of baryons
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(targets). The time derivative of the DM bulk velocity will then be

dVχ

dt
= nb

∫
d3vχfχ

∫
d3vbfb |vχ − vb|

∫
dn̂
dσ

dn̂
∆vχ, (4.15)

and we can perform the inner integral, by plugging Eq. (4.14) into Eq. (4.15) and realizing

it has to be proportional to the only direction (vχ − vb) inside the integral, to find

dVχ

dt
= − ρb

mb +mχ

∫
d3vχfχ

∫
d3vbfb(vχ − vb) |vχ − vb| σ̄, (4.16)

where we have defined the momentum-transfer cross section as

σ̄(|vχ − vb|) ≡
∫
d(cos θ)

dσ

d cos θ
(1− cos θ) . (4.17)

Alternatively, we could have calculated the drag on the baryon velocity, which is given

by exchanging χ↔ b in Eq. (4.16), so that dVb/dt = −(ρχ/ρb)dVχ/dt. The relative velocity

between the two fluids will then evolve as

dVχb

dt
= − ρm

mb +mχ

∫
d3vχfχ

∫
d3vbfb(vχ − vb) |vχ − vb| σ̄, (4.18)

where we have defined ρm ≡ ρb + ρχ.

To calculate the two integrals over velocities we define two new variables vm and vth,

as

vm ≡

mχ

Tχ
vχ +

mb

Tb
vb

mχ

Tχ
+
mb

Tb

, and (4.19)

vth ≡ vχ − vb, (4.20)

so that the velocity distributions f factorize∫
d3vχfχ

∫
d3vbfb =

∫
d3vthfth

∫
d3vmfm. (4.21)

Nothing will depend on vm, so we can just integrate it out, leaving then only the integral

of the relative velocity vth. The distribution function fth of this velocity is a Gaussian

displaced from the origin by Vχb and with thermal width given by the sums of the baryon
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and DM widths, Tχ/mχ + Tb/mb. The integral to calculate hence reduces to

dVχb

dt
= − ρm

mb +mχ

∫
d3vthfthvthvthσ̄(vth), (4.22)

Focusing on the case in which the interaction cross section is parametrized as σ̄ = σ0v
−4,

the drag term is given by

D(Vχb) ≡ −
dVχb
dt

=
ρmσ0

mb +mχ

1

V 2
χb

F (r), (4.23)

where we have defined r ≡ Vχb/uth, and u2
th ≡ Tb/mb +Tχ/mχ, which is the variance of the

thermal relative motion of the two fluids. The function F (r) is determined as

F (r) ≡ erf

(
r√
2

)
−
√

2

π
e−r

2/2r, (4.24)

which grows with r from zero at r = 0 to one at r →∞.

Heating

We now study the second effect that interactions have on the dark-matter and baryon

fluids, namely heating. Interactions between two fluids (1 and 2) with different temperatures

will tend to heat up the colder fluid (in our case the cold dark matter) at the expense of

the energy of the warmer fluid, tending to equalize their temperatures. The heating rate

is usually proportional to the temperature difference (T1 − T2). We will show here that,

if there is a relative velocity between the two fluids, the heating rate will also include a

friction term that will heat up both fluids, independently of their temperature difference.

There is an intuitive reason to expect a heating term even for equal-temperature fluids,

if two fluids with the same temperature collide with a relative velocity, and then equilibrate,

this final relative velocity should vanish. The kinetic energy would hence get transformed

into a higher final temperature for both fluids, due to conservation of energy.

Let us calculate the heating rate Q̇b of the baryons in their instantaneous rest frame,

where the change in energy will directly give us the heat instead of having to add bulk
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motions. A baryon changes its energy in a collision by ∆Eb = mbvCM ·∆vb = −mχvCM ·
∆vχ,159 where vCM = (mbvb + mχvχ)/(mb + mχ). The heating of the baryonic fluid per

unit time is

dQb
dt

=
mbρχ

(mχ +mb)

∫
d3vbfb

∫
d3vχfχ(vχ)

× σ̄ (|vχ − vb|) |vχ − vb| [vCM · (vb − vχ)] , (4.25)

where we have already integrated over outgoing angles dn̂ using Eqs. (4.14) and (4.17).

We perform this integral and find

dQb
dt

=
2mbρχσ0e

− r
2

2 (Tχ − Tb)
(mχ +mb)2

√
2πu3

th

+
ρχ
ρm

mχmb

mχ +mb
VχbD(Vχb). (4.26)

The first term, in the r → 0 limit, was derived in,159,161 but here we also find the second

term, which is non-zero for r 6= 0.

By symmetry, Q̇χ is obtained by simply substituting b↔ χ in Eq. (4.26). We see that

these expressions, with the drag D(Vχb) in Eq. (4.23), conserve the total kinetic energy

density in the baryon-DM fluid, i.e.

nχ
dQχ
dt

+ nb
dQb
dt
− ρχρb

ρm
D(Vχb)Vχb = 0. (4.27)

Now that we know how the interactions change the energy of the baryons and DM at

any given time, let us find how their temperatures are modified.

4.2.3 Temperature evolution

Using the expressions for the drag D(Vχb), in Eq. (4.23), and the heating rates Q̇b and

Q̇χ, in Eq. (4.26), we can write the equations of the temperature evolution,.159,161 In our

analysis we also evolve the relative velocity Vχb. The set of equations we will have to solve
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is then

dTχ
da

= −2
Tχ
a

+
2Q̇χ
3aH

, (4.28)

dTb
da

= −2
Tb
a

+
ΓC
aH

(Tγ − Tb) +
2Q̇b
3aH

, (4.29)

dVχb
da

= −
Vχb
a
−
D(Vχb)

aH
, (4.30)

where we have assumed the photon temperature Tγ is unaltered, H is the Hubble parame-

ter and ΓC is the Compton interaction rate, which depends on the free-electron density ne.

Since the free-electron abundance also depends on the baryon temperature through the re-

combination rate, we must solve for Eqs. (4.28)-(4.30) simultaneously with the free-electron

fraction xe = ne/nH

dxe
da

= − C

aH

(
nHABx2

e − 4(1− xe)BBe3E0/(4Tγ)
)
, (4.31)

where C is the Peebles factor,163 E0 is the ground energy of Hydrogen, and AB(Tb, Tγ) and

BB(Tγ) are the effective recombination coefficient and the effective photoionization rate to

and from the excited state respectively.7,164

For convenience, we parametrize the results in terms of a dimensionless cross section

σ41, defined as

σ41 ≡
σ0

10−41cm2
, (4.32)

so that σ41 ≤ 3.2(mχ/GeV) is the 95% C.L. constraint from CMB-analysis,159 valid only

for mχ � mb.

Limiting cases

To gain understanding of the implications of Eq. (4.26) it is enlightening to study the

extreme cases of very-heavy and very-light dark matter.

• For very massive dark matter (mχ � mb ≈ 1 GeV), the first term in Eq. (4.26)

is small and the second one dominates, which means that the new effect we have cal-

culated is more relevant than the previously-known result. In this limit we then have

Q̇b = (ρχ/ρm)mbVχbD(Vχb)[1 + O(mb/mχ)], which means Q̇b ∝ σ0/mχ. Equivalently, the
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DM heating term will be given by Q̇χ = (ρb/ρm)mbVχbD(Vχb)[1 + O(mb/mχ)], so that

Q̇χ ∝ σ0/mχ as well, so for mχ � mb the constraints we will find will behave as σ0 ∝ mχ.

• In the opposite limit, in which mχ � mb, we find that the temperature-independent

heating term (second term in Eq. (4.26)) is linear in mχ and hence subdominant. The first

term is roughly constant. Although uth depends on Tχ/mχ, Tχ starts as zero and does not

change unless there are interactions. This leads to a net mass-independent cooling Q̇b < 0,

whereas the dark matter decouples, since Q̇χ ∝ mχ → 0.

Let us now briefly discuss the two limiting cases where either thermal or relative veloc-

ities dominate,

• When Vχb � uth ≡
√
Tχ/mχ + Tb/mb (thermal velocity dominates), we recover the

results of Ref.,161 where baryons get cooled down and tend to thermalize with the dark

matter fluid. This is shown in Fig. 4.1 as the “Vχb,0 = 0” case.

• In the limit where Vχb is much bigger than uth, the second term in Eq. (4.26) domi-

nates, which causes a net heating of the baryon fluid. However, the overall rate of interac-

tions (and hence net heating or cooling) is suppressed for large velocities, due to the fact

that the cross section is proportional to v−4.

Numerical results

We solve the system Eqs. (4.28)-(4.31) for different values of σ41 and mχ, starting at

z = 1010 with the baryons tightly coupled to the photon fluid (Tb = Tγ) and with perfectly

cold dark matter (Tχ = 0), although we tested that having slightly warm dark matter at

recombination does not change our results significantly. We use cosmological parameters

consistent with their current best-fit values.1 We have also checked that, for the values of

σ41 considered in our analysis, the system is not already tightly coupled at z = 1010, which

would require us to start evolving the system at an earlier redshift.

As for the initial conditions for Vχb, we will solve the system for an array of values from

zero initial velocity to three times the width of its Gaussian distribution. For purposes

of illustration we will plot two different cases, one in which Vχb,0 = Vrms = 29 km/s at

initial redshift, and another in which Vχb,0 = 0, to show how the relative velocity affects the
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results. In the case with Vχb,0 6= 0, higher values of mχ imply a more significant heating of

the baryons.

In Fig. 4.1 we show how the baryon temperature changes with the strength of the

interactions. In the central and bottom panels we have mχ ≥ mp. In those two figures it is

explicit that having Vχb,0 6= 0 (red lines) induces extra heat in the system as a result of the

damping of the relative velocity, which increases the temperature of both baryons and dark

matter. However, when considering the case with Vχb,0 = 0 (blue lines), the interactions

cool down the baryons and only heat up the dark matter. In the upper panel of Fig. 4.1 we

have set mχ = 0.1 GeV. In this case it is clear that introducing interactions can only cool

down the baryons, albeit with a more pronounced temperature drop in the Vχb,0 = 0 case.
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Figure 4.1: Baryon temperatures (three upper curves) without interactions (solid curve)
and when adding interactions with σ41 = 1 (dashed-blue curve for the case where Vχb,0 = 0
and red curve for Vχb,0 = Vrms), as well as dark-matter temperatures (two lower curves,
dash—dotted-blue curve for the case where Vχb,0 = 0 and red curve for Vχb,0 = Vrms). From
top to bottom we show the results for mχ = 0.1, 1, and 10 GeV.
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4.2.4 Effects on the 21-cm dark ages signal

We have seen how the baryon and dark matter temperatures change when adding

interactions. Now we will study how this modified baryon temperature gives rise to a

different spin temperature for the gas during the dark ages, which in turn modifies the

21-cm brightness temperature we would observe.

21-cm brightness temperature

In the usual scenario the spin temperature follows the gas temperature as of decoupling

and until z ∼ 30, which makes it different from the CMB temperature in the redshift range

z ∼ 30 to 200. This creates a non-zero 21-cm line temperature T21 in this range. As we

have shown, dark-matter–baryon interactions can either cool down or heat up the baryons,

thus changing the spin temperature.

We show this effect in Fig. 4.2, where we plot for reference the CMB temperature, as

well as the usual non-interacting gas and spin temperatures. We also plot the gas and spin

temperature for interacting cases with either Vχb,0 = 0 or Vχb,0 = Vrms. The deviation of the

spin temperature in the interacting cases is apparent, even for a cross section of σ41 = 1,

compatible with CMB bounds.

If there is more heating than cooling of the baryons, the 21-cm brightness temperature

decreases in magnitude, since the spin temperature is closer to the CMB temperature during

the dark ages. Cooling of the baryons increases the brightness temperature, as long as the

spin temperature stays coupled to the baryons. In Fig. 4.3 we plot the 21-cm brightness

temperature, from Eq. (4.55), for different values of the relative velocity and DM mass.

It is interesting to note that the heating increases with the mass of the dark matter, as

predicted, so that the average brightness temperature T̄21 during the dark ages is higher

when including interactions.
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Figure 4.2: Values of the spin temperature (dashed curves) and the gas temperature (solid
curves) for the collisionless case (black curve) and when including collisions (blue curve
for Vχb,0 = 0 and red curve for Vχb,0 = Vrms), as well as the CMB temperature in the
dashed-green curve. From top to bottom we show the results for mχ = 0.1, 1, and 10 GeV.
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Figure 4.3: Values of the average brightness temperature of the 21-cm line for the collision-
less case (solid-black curve), the case with interactions (blue-dashed curve for Vχb,0 = 0,
purple–dot-dashed curve for Vχb,0 = Vrms), and the average over initial velocities in the
red-dotted curve. From top to bottom we show the results for mχ = 0.1, 1, and 10 GeV.
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Global signal

Let us define T̄21(Vχb) as the brightness temperature in the absence of density pertur-

bations. In the standard scenario this quantity is spatially homogeneous and is termed the

global 21-cm signal. Once DM-baryon interactions are included, T̄21(Vχb) is still a function

of the initial relative velocities. We calculate its average over said initial velocities as

〈
T̄21

〉
=

∫
d3Vχb,0T̄21(Vχb,0)P(Vχb,0), (4.33)

with the probability distribution P(Vχb,0) given by Eq. (4.11). We show this quantity in

Fig. 4.4 for the interacting case and for three different DM masses.

21-cm fluctuations

As we have shown, the brightness temperature T21 of the 21-cm line is modified by the

inclusion of interactions, and this modification depends on the initial relative velocity. The

large-scale fluctuations of the relative velocity will therefore be imprinted on the brightness

temperature, since two regions with different initial relative velocities will appear with dif-

ferent brightness temperatures (compare blue and red lines in Fig. 4.3), which will actually

generate an additional contribution to the power spectrum of the 21-cm fluctuations. Let

us calculate it.

The standard deviation of T21 as a function of Vχb,0 is

T21,rms ≡
√〈

T 2
21

〉
− 〈T21〉2. (4.34)

Even if T21 had no explicit spatial dependence, it would fluctuate because relative

velocities are not homogeneous. In principle, to compute the power spectrum of T21, one

should first compute its two-point correlation function. This is obtained by integrating over

the six-dimensional joint probability distribution of the relative velocities at two different

points (see Ref.145). To simplify matters we shall make the following approximation

T21(Vχb,0) ≈ 〈T21〉+ T21,rms

√
2

3

(
1−

V 2
χb

V 2
rms

)
, (4.35)
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Figure 4.4: Values of the brightness temperature of the 21-cm line for the collisionless case
in solid-black curve, and three with interactions (σ41 = 1), in dashed-blue curve mχ = 0.1
GeV, in dot-dashed—purple mχ = 1 GeV, and in dotted-red curve mχ = 10 GeV.

which has the advantage of resulting in simple analytic expressions165 while still reproducing

adequately the variance of T21. For illustration we show T21 as a function of Vχb,0 for the

mχ = 1 GeV case in Fig. 4.5. We calculate the power spectrum of T21(Vχb,0) in this

approximation to be

〈
T21(k)T ∗21(k′)

〉
= T 2

21,rmsPV 2
χb

(k)(2π)3δD(k + k′), (4.36)

where PV 2
χb

is the power spectrum of
√

2/3(1− V 2
χb,0/V

2
rms). We plot PV 2

χb
(k) in Fig. 4.6.

Our observable, the brightness temperature of the 21-cm line, varies in space through

its dependence on the baryon density nb, as well as on the initial relative velocities Vχb,0.

To linear order in density perturbations the temperature of the 21-cm line, Eq. (4.55), will

be given by25

T21 = T̄21(Vχb,0) +
dT21

dδ
δ, (4.37)

where δ ≡ (nb − n̄b)/n̄b, dT21/dδ is a well-known function of redshift for Vχb,0 = 0, and

T̄21 = τ̄(T̄s − Tγ)/(1 + z) is the unperturbed value of the brightness temperature. Both T̄21

and dT21/dδ depend on the initial relative velocities. The average over initial velocities of
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Figure 4.5: Brightness temperature T̄21 of the 21-cm line for mχ = 1 GeV and σ41 = 1
at redshifts z = 30 in dashed-blue curve, z = 40 in dash-dotted–purple curve and z = 50
in dotted-red. We also show the average over velocities for each redshift, as defined in
Eq. (4.33), in solid curves and their corresponding colors.

T21 is then

〈T21〉 =
〈
T̄21

〉
+

〈
dT21

dδ

〉
δ. (4.38)

We can, however, approximate 〈dT21/dδ〉 ≈ dT21/dδ(Vχb,0 = 0), since the error made in the

21-cm temperature would be of order δT21(k) ∼ T21,rmsδ, which is subdominant. We can

calculate the variance of T21 over both initial relative velocities and overdensities (as in the

usual power spectrum) to find

PT21(k) = T̄ 2
21,rmsPV 2

χb
(k) +

(
α(z) + T̄21

k2
||

k2

)2

Pb(k, z), (4.39)

where k|| is the magnitude of k in the line-of-sight direction, α(z) as defined in Ref.,25 and

Pb is the usual baryon power spectrum.

We can convert easily from k-space to `-space by using a harmonic transform,166 which

is exact in the case of the flat-sky limit and still a very good approximation for ` ≥ 10,

which should be good enough for our order-of-magnitude estimates. We define the angular
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Figure 4.6: Power spectra as a function of k. In solid-blue curve we show the power spectrum
of V 2

χb, as defined in Eq. (4.36), and in dashed-black curve the usual power spectrum of

baryon overdensities at redshift z = 30.

power spectrum for the usual fluctuations as

Cusual
` =

1

r2

∫
dk||

2π

∣∣∣W̃ (k||)
∣∣∣2(α+ T̄21

k2
||

k2

)2

Pb (k) , (4.40)

where k ≡
√
`2/r2 + k2

||, and W̃ (k||) is the window function. The new angular power

spectrum (Vχb), due to interactions, will be

C
Vχb
` =

T̄ 2
21,rms

r2

∫
dk||

2π

∣∣∣W̃ (k||)
∣∣∣2 PV 2

χb
(k) . (4.41)

Before going into a full-scale analysis one might be interested in what would happen at

a single `, and at different redshifts. We show in Fig. 4.7 the value of the square root of the

velocity power spectrum (C
Vχb
` )1/2 for different values of the cross section. For illustration

purposes we also show the usual power spectrum (Cusual
` )1/2, from Eq. (4.40), where for

simplicity we have taken α(z)/α(z0)(Cusual
` )1/2(z0) as a proxy for (Cusual

` )1/2(z) as well as

a redshift-independent bandwidth of ∆ν/ν = 0.02 to avoid recalculating the integral in

Eq. (4.40) for each redshift in this plot. We show the cases of ` = 30 and ` = 1000 in the

upper and lower panels, respectively.
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Figure 4.7: Amplitude of the brightness-temperature fluctuations induced by relative ve-
locity fluctuations for three different cross sections (solid-black curve for σ41 = 0.01, red
curve for σ41 = 0.1, and green curve for σ41 = 1), as well as for the usual baryon density
perturbations. We calculate at two different scales: in the first panel we show the results
for ` = 30 and in the second one for ` = 1000.

4.2.5 Detectability

So far we have shown that DM-baryons interactions modify the baryon temperature,

raising it or lowering it, depending on the initial relative velocity. Varying the baryon

temperature will change the spin temperature and hence the brightness temperature of the

21-cm line. This quantity, also known as the “global signal”, is the main observable during

the dark ages. We will study how to detect interactions with a global-signal experiment.

Moreover, since the temperatures depend on initial velocities, and these have a spatial-

dependence, we have argued that there will be a new contribution to the power spectrum,

which, at large scales, can overcome the usual one for values of the cross section of σ41 & 0.1.

We will study the detectability of this signal with interferometry later in this section.

Global signal

Let us start by analyzing the most direct effect of DM-baryon interactions, the change

in the global signal during the dark ages. Next-generation experiments, such as NenuFAR,

will survey the 21-cm line brightness temperature down to frequencies possibly as low as

ν ∼ 10 MHz, which corresponds to a redshift z > 100.

We have seen in Fig. 4.3 how the brightness temperature changes when adding inter-
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actions. We will use the amplitude of the brightness temperature at its peak as a proxy

for the detectability of the signal, even though its very high redshift (z ∼ 90) may make it

unobservable.

Let us first find the signal-to-noise ratio to detect interactions having a cross section

σ41 = 1. If we could determine the brightness temperature T̄21 at its peak with 5% precision,

we would be able to detect interactions with σ41 = 1 at a signal-to-noise ratio S/N ∼ 10

for mχ = 0.1 GeV, S/N ∼ 0.5 for mχ = 1 GeV, and S/N & 1 for mχ = 10 GeV.

More interestingly, if we were able to improve the error by a factor of 5, reaching 1%

precision of peak-temperature determination, we would be able to detect cross sections as

small as σ41 . 0.04 for mχ = 0.1 GeV, σ41 . 0.1 for mχ = 1 GeV, and σ41 . 0.2 for

mχ = 10 GeV, all of which are beyond what can be achieved by current CMB analysis.159

Fluctuations

We now turn our focus to the measurement of the 21-cm power spectrum, Eq. (4.39).

In a maximum-likelihood analysis, the Fisher forecast for the error in the measurement of

the amplitude A of a power spectrum C` is given by1473,

1

σ2
A

=
∑
`

(
∂C`
∂A

)2 1

σ2
`

. (4.42)

For a given sky coverage fsky, the error for an individual ` in the estimated value Â is86,87,147

σÂ` =

√
2

fsky(2`+ 1)

(
Cusual
` + CN`

)
, (4.43)

where CN` is the instrumental noise power spectrum, defined in Eq. (4.9), and Cusual
` is the

usual power spectrum of 21-cm fluctuations (under the null hypothesis of no DM-baryon

interactions), Eq. (4.39).

3We assume that the likelihood function is Gaussian in the vicinity of its maximum.167
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The minimum detectable amplitude Â at 1-σ significance is thus

σÂ =

fsky

2

`max∑
`min

(2`+ 1)(C̃
Vχb
` )2(

Cusual
` + CN`

)2
− 1

2

, (4.44)

where C̃
Vχb
` = C

Vχb
` /A encodes the ` dependence of the velocity power spectrum from DM-

baryon interactions, and `min = 180/θ is the largest scale accessible by an experiment with

sky coverage fsky = θ2. Because of the use of the harmonic transform in Eq. (4.40), we take

`min = 15. This should not affect the results significantly since there are very few modes at

lower `.

We will consider two different scenarios, first a realistic experiment modeled after SKA

that could be taking data within the next few years and second a more idealized experiment

whose noise level will be low enough to detect the primordial power spectrum at redshift

z = 30 (but still not cosmic-variance limited, since the usual primordial power spectrum

vanishes for smaller redshifts but the noise will not).

We will study the redshift range z = 20 to 30, at the very end of the dark ages. This

range is chosen to avoid complex astrophysical processes at low redshift as well as to still be

observable from Earth. We may not be fully free of contamination, however, since the epoch

of the formation of the first stars is unknown, and the X-rays generated during star formation

may start to heat up the gas at z . 25.168 Moreover, accreting intermediate-mass black

holes (sometimes termed miniquasars) may also be an important source of X-rays during

this era.141,142,144 Once data of the gas temperature during the dark ages are acquired, a

careful analysis should take these processes into account along with the heating produced

by DM-baryon interactions, and by studying their different redshift behaviors and angular

structures, disentangle them. We motivate future work to address this issue.

We find the angular noise power spectrum of an interferometer from Eq. (4.9). Inspired

by design plans for the Square Kilometer Array, we first consider a future ground-based

interferometer with access to the final stages of the dark ages, z ∼ 20− 30, with a baseline

of D = 6 km [corresponding to a maximum angular scale `cover(ν) ∼ 5800 at redshift

z = 30], with fcover = 0.02, surveying a sky fraction fsky = 0.75 for a total of five whole

years. As for the bandwidth, we surveyed a range between ∆ν = 0.1 MHz and 10 MHz
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and found that ∆ν ∼ 1 MHz is the optimum value (for smaller bandwidths the noise C`s

dominate over the signal and for larger ones the number of redshift slices is too small).

For more optimistic constraints, we set D = 50 km, fcover = 0.1, and assume ten

whole years of observations. In order to get a result closer to the cosmic-variance limit

we could perform the analysis from z = 20, going up to the beginning of the dark ages,

z = 200. However, we find that it does not improve the results significantly, due to the

rise of synchrotron radiation at low frequencies, which grows much more rapidly than the

signal. We consider then the same redshift range as before, z from 20 to 30.

One of the great advantages of 21-cm as a probe is the ability to analyze the tomography

of the signal, enabling us to coadd information from different redshift slices. Summing over

redshift slices, the signal-to-noise ratio is given by

(S/N) =

∑
z

fsky

2

`max∑
`min

(2`+ 1)
(
C
Vχb
` (z)

)2

(
Cusual
` (z) + CN` (z)

)2


1
2

, (4.45)

In Fig. 4.8 we show the C`s for the usual primordial perturbations (Cusual
` ), for the

instrumental noise (CN` , both with next-generation and futuristic parameters), and for the

new contribution due to interactions (C
Vχb
` ), all of them at redshift z = 30.

Results

Let us start by considering the realistic noise case (that corresponds to the experimental

parameters of SKA) and find what the signal-to-noise ratio would be for detecting σ41 = 1.

We calculate the signal-to-noise ratio for σ41 = 1 in each redshift bin between z = 20 and

z = 30 with Eq. (4.45). We find the total signal-to-noise ratio to be S/N∼ 3 for the case

of mχ = 0.1 GeV, S/N∼ 9 for mχ = 1 GeV, and S/N∼ 0.2 for mχ = 10 GeV. We could

alternatively express the results in terms of the smallest σ41 that would still give us a signal-

to-noise ratio of 1, taken to be approximately σ41,min = 1/
√
S/N . We show the minimum

detectable cross sections in Tab. 4.1.

Let us now move on to trying to find the smallest possible σ41 detectable at S/N = 1
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Figure 4.8: Angular power spectra at redshift z = 30 with bandwidth ∆ν = 1 MHz. In solid-
black curve we show the usual primordial perturbations, in solid- and dotted-blue curves
the instrumental noises for the realistic and optimistic cases [see Eq. (4.9) and discussion
below] and in dashed-red curve the new piece due to interactions for σ41 = 1 and mχ = 1
GeV.

in the more optimistic case. In principle the amplitude A of C
Vχb
` , equal to T̄ 2

21,rms, is

a non-trivial function of redshift and σ41. However, we find that for small values of σ41

(σ41 . 0.1), the quantity f(z) ≡ T̄21,rms/σ41 is approximately independent of σ41 (although

it does depend on mχ). Then we can construct an estimator for σ41 for each redshift slice,

(
σ̂2

41

)
z

=
(Â)z
f2(z)

, (4.46)

with variance given by σ2
(σ2

41)z
= σ2

A(z)/f4(z). We can then combine all the estimators into

a minimum-variance one, finding the variance of the final redshift-independent estimator,

1

σ2
σ2
41

=
∑
z

f4(z)

σ2
A(z)

. (4.47)

With the optimistic experimental parameters defined above we find that the minimum

σ41 observable at 68% C.L. (1σ) is σ41 . 1.7 × 10−3 for mχ = 0.1 GeV, σ41 . 4.3 × 10−3

for mχ = 1 GeV, and σ41 . 3.6× 10−2 for mχ = 10 GeV. These results are about 2 orders

of magnitude better than the CMB constraints found in,159 where σ41 . 16(mχ/10 GeV).
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mχ [GeV] 1/10 1 10

Fluctuations (realistic) 6×10−42 3×10−42 2×10−41

Fluctuations (optimistic) 2×10−44 4× 10−44 4× 10−43

Global signal (1% error) 4×10−43 1×10−42 2× 10−42

Table 4.1: Minimum σ0 (in cm2, corresponding to σ41× 1041) detectable with both realistic
and optimistic interferometer parameters at 68% C.L., as well as with global-signal analysis
with 1% accuracy for three different dark-matter masses mχ (in GeV).

4.2.6 Discussion and Conclusions

Let us close this section with some comments.

• As we have shown, interactions between dark matter and baryons give rise to a new

heating term, which can increase the temperature of the baryons significantly. We only

used said heating to study dark-ages physics but this result may have applications beyond

our analysis, for example in the epoch of reionization.169

• In this work we have focused only on the case where σ ∼ vn with n = −4, but one

may wonder whether the dark ages can potentially provide new information not contained

in the CMB analysis for other values of n. Since the dark ages occur more recently than

decoupling, we have only been interested in interactions that increase at later times. Ref.159

showed that the interaction rate grows for n ≤ −3, so all results that we could forecast for

n > −3 would be worse than those obtained with CMB studies. That still leaves n = −3

as a potential interaction to study, for example.

• It is also worth mentioning that if we wanted to translate these results to a constraint

specific to a dark-matter milicharge model,153 the ionization fraction of the baryons would

cause a suppression of xe ∼ 10−4.

• We have also found a decrease in the bulk relative velocity of baryons and dark

matter characterized by a drag, Eq. (4.23). In Fig. 4.9 we show the unperturbed relative

velocity Vχb, found by solving Eqs. (4.28)-(4.31) with initial relative velocity Vχb,0 = Vrms,

and baryon speed of sound cs ≡
√

3Tb/mb. We also plot the same two velocities for an

interacting case. All velocities are divided by a factor of 1/(z + 1) to eliminate a fiducial

redshift dependence.
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In the standard case the speed of sound is always below the bulk one, which creates

supersonic flow of the baryons.29,145 Including collisions can both raise the thermal velocity

as well as decrease the relative one, so it reduces the Mach number N to be lower than 1

at lower redshifts, which could affect the formation of small-scale structure.170

σ41=0

σ41=1

50 100 200
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1+z

V
/(
z+
1)

(k
m
/s
)

mχ = 1 GeV

Vχb

cs

Figure 4.9: Values of the relative velocity (solid curves) and the thermal speed of sound
(dashed curves) divided by (1 + z). We show the collisionless case (black curves) and the
case with σ41 = 1 (blue curves), for mχ = 1 GeV.

• Finally, throughout the text we have quoted results for mχ = 0.1, 1, and 10 GeV. For

lower masses, the result is independent of mass, and for higher masses it depends on σ0/mχ.

We show a larger range of dark-matter masses in Fig. 4.10, where we plot the minimum σ0

one could detect at a signal-to-noise ratio of 1, as a function of the dark-matter mass mχ.

We show how the result asymptotes for very high and very low mχ, and we also compare

with the CMB+Lyα analysis in Ref.,159 shown in dotted-green curve, which is only valid

for large mχ.

To conclude, interactions between dark matter and baryons create a new contribution

to the 21-cm power spectrum. We found that this will allow to detect interactions more

than 2 orders of magnitude better than can be achieved by CMB+Lyα analysis, and with

a broader mass range.
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Figure 4.10: Minimum σ0 (in cm2) detectable as a function of mχ in GeV. In black curve
we show the results for the case with realistic parameters and in blue curve the one with
optimistic parameters. In dotted-green curve we display the current CMB constraint (only
valid for mχ � GeV).

4.3 Non Gaussianities

While single-field inflation has the merit of simplicity, a plethora of alternative models

remain consistent with current data.171,172 The main characteristic that differentiates them

from the simplest inflationary scenario is that they can generate significant primordial non-

gaussianities (PNGs). The simplest form of PNG is a non-vanishing three-point function for

the primordial curvature perturbation ζ, parametrized by a dimensionless amplitude fNL ∼
〈ζ3〉/〈ζ2〉2. Single-field inflation leads to a small three-point function, corresponding to

fNL ∼ 10−2.127,128 Alternative models typically generate fNL ∼ 1, as a result of interactions

with other fields, higher-derivative terms in the Lagrangian,173 or other mechanisms.171

Measuring fNL . 1 is therefore a natural target for future experiments to start significantly

constraining the physics of inflation.174

The best constraints on fNL to date are obtained from CMB studies,175 and are con-

sistent with zero, though with a large uncertainty, σfNL
∼ 5 − 40 depending on the shape

considered. CMB measurements are now cosmic-variance limited in temperature down to

the photon diffusion scale corresponding to multipole ` ∼ 2000. The anticipated improve-

ment in polarization measurements is expected to only marginally tighten the constraints

on fNL. Reaching the fNL ∼ 1 frontier will therefore most likely require other data sets.
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A prime dataset to be considered are 21-cm fluctuations. These, however, suffer from

a large source of contamination: the intrinsic non-gaussian nature of 21-cm fluctuations,

even for perfectly gaussian initial conditions. Two previous studies have partially addressed

this issue. Ref.176 computed the bispectrum of 21-cm fluctuations resulting from non-linear

gravitational growth, but treated it approximately as a confusion noise rather than a bias.

Ref.177 computed all contributions of the secondary bispectrum, but did not account for it

in their final forecasts. In addition they only computed the bispectrum for specific triangle

configurations. These two groups moreover get significantly different final results.

In this work we compute the primary and secondary bispectra using the flat-sky formal-

ism. This accurately reproduces the full-sky calculation with a much lower computational

cost, and greatly simplifies the analysis. We show that the shapes of the primary and

secondary bispectra overlap significantly. Unsubtracted, the secondary bispectrum would

lead to a bias ∆fNL ∼ 103. Even percent-level residuals after subtraction would lead to a

non-zero non gaussianity of order ∆fNL ∼ 10. This warrants a Fisher analysis, fitting simul-

taneously for the amplitude of PNG and for nuisance parameters characterizing the residual

secondary bispectrum after a best-estimate is subtracted. For a single redshift slice, we find

that the uncertainty in fNL after marginalizing over the nuisance parameters is increased

by a factor of ∼ 3 − 6 in comparison to an ideal case without secondaries. Finally, we op-

timally combine redshift slices accounting for the smoothness of the secondary bispectrum

as a function of redshift. Our forecasts for a cosmic-variance-limited experiment targeting

30 ≤ z ≤ 100 with a bandwidth of 0.1 MHz and angular resolution of 0.1 arcminute are:

σf localNL
∼ 0.03, σ

fequilNL
∼ 0.04, and σforthoNL

∼ 0.03. For the same angular resolution but a

bandwidth of 1 MHz our forecast is σf localNL
∼ 0.12, σ

fequilNL
∼ 0.39, and σforthoNL

∼ 0.29.

4.3.1 Secondaries

We can expand the 21-cm temperature T21, from Eq. (4.5) to second order in pertur-

bations as145

T21 = T 21(1 + δv + δ2
v) +

(
Tb δb + TT δTgas

)
(1 + δv)

+Tbb δ2
b + TbT δbδTgas + TTT δ2

Tgas , (4.48)

94



CHAPTER 4. THE 21-CM HYDROGEN LINE

where δb ≡ δnb/nb is the fractional fluctuation of the baryon density and δTgas is the frac-

tional fluctuation of the gas temperature, which affect T21 through the collision rates. This

equation neglects fluctuations of the ionization fraction xe ∼ 10−4 at the redshifts of in-

terest, as they lead to negligible fluctuations of T21 which is proportional to (1 − xe). We

compute the coefficients in the above equation as described in Ref.145 They ought to be

used for detailed prediction when actual data is available. For this study, however, we shall

make simplifying assumptions regarding the gas temperature fluctuations in order to keep

calculations tractable. We now describe our approximations.

The evolution of the gas temperature can be obtained from the first law of thermo-

dynamics. Neglecting fluctuations of the CMB temperature and the effect of gravitational

potentials, the full non-linear equation is145

δ̇Tgas −
2

3
δ̇b

1 + δTgas
1 + δb

= ΓC

[
T cmb − T gas

T gas

δxe −
(
T cmb

T gas

+ δxe

)
δTgas

]
, (4.49)

where ΓC × (Tcmb − Tgas) is the rate at which Thomson scattering of CMB photons by free

electrons heats up the gas. Since ΓC ∝ T 4
cmbxe, the fluctuations of the gas temperature

are coupled to those of the free-electron fraction δxe . In principle this equation should be

solved simultaneously with the evolution of δxe , obtained by perturbing the recombination

rate.145 We find that neglecting δxe leads to errors of order ∼ 10% for the linear evolution

and we shall set δxe → 0 for simplicity. With this simplification, the equation for δTgas to

second order is

δ̇Tgas −
2

3
δ̇b
(
1− δb + δTgas

)
+
T cmb

T gas

ΓCδTgas = 0. (4.50)

We shall consider scales larger than the baryonic Jeans scale: k � kJ ∼ 300 Mpc−1. On

these scales baryons behave just like CDM, so their evolution equation does not depend on

Tgas. Given δb, we can therefore solve for the gas-temperature fluctuations. We decompose

the baryon-density fluctuation into a piece linear in the initial conditions δ
(1)
b and a quadratic

piece δ
(2)
b resulting from non-linear gravitational collapse. We can then solve for the linear
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Figure 4.11: Coefficients of the approximate decomposition of the gas-temperature fluctua-

tions as a quadratic function of baryon density fluctuations: δTgas(x, z) ≈ C1(z)δ
(1)
b (x, z) +

C2(z)[δ
(1)
b (x, z)]2 +C ′2(z)δ

(2)
b (x, z). At high redshift, Compton heating is efficient and main-

tains Tgas = Tcmb, with negligible fluctuations, so C1 ≈ C2 ≈ C ′2 ≈ 0. At low redshift, the
gas decouples thermally from the CMB and starts cooling down adiabatically, asymptoting

towards Tgas ∝ n2/3
b , which implies C1 ≈ C ′2 → 2/3 and C2 → −1/9.

and quadratic parts of δTgas :

δ̇
(1)
Tgas

+
T cmb

T gas

ΓCδ
(1)
Tgas

=
2

3
δ̇

(1)
b , (4.51)

δ̇
(2)
Tgas

+
T cmb

T gas

ΓCδ
(2)
Tgas

=
2

3
δ̇

(2)
b +

2

3
δ̇

(1)
b (δ

(1)
Tgas
− δ(1)

b ). (4.52)

Our final approximation is to assume that δ
(1)
b is uniformly proportional to the scale factor

a, i.e. δ
(1)
b (x, a′) = (a′/a)δ

(1)
b (x, a), independently of the position x, and similarly that

δ
(2)
b ∝ a2. We then solve Eqs. (4.51) and (4.52) starting at z = 1000 with vanishing initial

conditions. The mean free-electron fraction xe required for ΓC and mean gas temperature

T gas are obtained from HyRec.7,164 This allows us to obtain three coefficients C1(z), C2(z)

and C ′2(z) such that

δ
(1)
Tgas

(x, z) = C1(z)δ
(1)
b (x, z), (4.53)

δ
(2)
Tgas

(x, z) = C2(z)[δ
(1)
b (x, z)]2 + C ′2(z)δ

(2)
b (x, z), (4.54)

which we show in Fig. 4.11.

96



CHAPTER 4. THE 21-CM HYDROGEN LINE

The assumption that δ
(1)
b ∝ a and δ

(2)
b ∝ a2 is not quite correct. Indeed this assumes

that baryons behave exactly like CDM. In reality, they start with different “initial” con-

ditions at z ≈ 1000, after they decouple from the photon fluid shortly after cosmological

recombination: their overdensity is typically significantly smaller than that of the CDM

on sub-horizon scales, and their velocity field, though comparable to that of the CDM in

magnitude, has a very different scale dependence (hence leading to the relative-velocity ef-

fect29). Baryons therefore take some time to “catch up” to the CDM, and their growth rate

at early times differs from δb ∝ a, and is scale-dependent. Given that Thomson scattering

maintains Tgas = Tcmb at z & 200, regardless of the exact value of δb, this should not be a

major issue, but should be properly accounted for in a detailed analysis.

With these caveats in mind, we substitute our approximation δTgas = C1δ
(1)
b +C2[δ

(1)
b ]2+

C ′2δ
(2)
b into equation (4.48) and obtain the following simpler expression for the 21-cm bright-

ness temperature fluctuations to second order, with which we shall work for the rest of this

work:

δT21 ≈T 21(δ(1)
v + δ(2)

v + [δ(1)
v ]2)

+ α(z)δ
(1)
b (1 + δ(1)

v ) + β(z)[δ
(1)
b ]2 + γ(z)δ

(2)
b . (4.55)

The effective coefficients α, β, and γ are straightforwardly obtained from the coefficients of

Eq. (4.48) and C1, C2, C
′
2 and are shown in Figure 4.12.

Neglected sources of fluctuations

The above analysis is only valid on subhorizon scales, and does not account for several

relativistic effects. First, the gas is not at rest with respect to comoving observers. We

have already accounted for the resulting perturbation to the local Hubble expansion rate

due to the velocity gradient. In addition, a local velocity leads to (i) a difference between

the proper time in the baryon rest frame and the comoving frame, (ii) a dipolar anisotropy

of the CMB intensity in the baryon rest frame, and (iii) an additional redshifting of the

observed frequency. Gravitational potentials also affect the observed brightness temperature

through: (i) a time dilation, (ii) a perturbation to the local expansion rate, (iii) the Sachs-

Wolfe and integrated Sachs-Wolfe effects, and (iv) lensing by intervening structure, as is

97



CHAPTER 4. THE 21-CM HYDROGEN LINE

�� �� ��� ���
-��

-��

-��

-��

�

��

�+�

� �
��
��

��
�
(	


)

T 21

↵

�

�

Figure 4.12: Coefficients of the approximate decomposition of the 21-cm brightness temper-

ature given in Eq. (4.55), in mK. In solid black we plot T 21, in blue dashed α = ∂T21/∂δ
(1)
b ,

in red dotted β = 1
2∂

2T21/∂δ
2
b , and in purple dot-dashed γ = ∂T21/∂δ

(2)
b .

familiar from CMB studies. All these relativistic corrections are rigorously accounted for

using the relativistic Boltzmann equation in Ref.137 They lead to fluctuations on scales

comparable to the horizon at the redshift of absorption, i.e. k . 10−3 Mpc−1.137 We will

neglect them in this study, which is justified as we shall see that most of the signal-to-noise

for PNGs comes from small scales, with k � 10−3 Mpc−1.

Redshift-space distortions are an additional source of non-linear fluctuations. The ob-

server has only access to the total redshift zobs ≡ λobs/λ21−1, and will compute the angular

power spectrum on slices of fixed zobs. The observed redshift is the sum of the cosmological

redshift z and the redshift due to the relative peculiar velocity v|| along the line of sight:

zobs = z + v||/c. The observed brightness temperature at wavelength λobs is therefore

T obs
21 (λobs, n̂) =

T loc
21 (z, n̂)

1 + zobs
, (4.56)

where the true redshift z ≡ zobs − v||(z, n̂)/c depends implicitly on the unknown local

velocity. The angular power spectrum at fixed zobs therefore has additional non-linear

terms.137 We shall not account for those in this study but they should of course be modeled

accurately when actual data is available.

Finally, Ref.145 showed that the non-linear dependence of the 21-cm fluctuation on the

local baryon density and temperature leads to enhanced large-scale fluctuations due to the
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relative velocity effect.29 The magnitude of the enhanced fluctuations is δT21 ∼ β∆〈δ2
s〉,

where β is the coefficient of quadratic terms in the brightness-temperature fluctuations, and

∆〈δ2
s〉 is the large-scale fluctuation of small-scale power due to the relative velocity effect.

These enhanced fluctuations are most important for scales k . 0.1 Mpc−1, and we will

not account for them in this study, where we focus mostly on smaller scales. The relative-

velocity effect also leads to a suppression of the average small-scale power, but this takes

place at scales k & 100 Mpc−1, which we do not consider.

Flat-sky formalism

We consider a small patch on the sky, across which we can assume that the line of

sight n̂ is a constant direction. We then define the Fourier transform of the brightness

temperature as

δT (k) ≡
∫
drd2x⊥e−ik·xδT (rn̂,x⊥). (4.57)

Assuming matter domination and that the baryons have caught up to the dark matter so

that δb ∝ a, at linear order the peculiar velocity term is δv(k) = (k̂ · n̂)2δb(k). The linear

terms of Eq. (4.55) therefore contribute a Fourier transform

δT lin(k) = [α+ T 21(k̂ · n̂)2]δb(k). (4.58)

The power spectrum of 21-cm fluctuations is therefore anisotropic: to lowest order, and

defining k|| ≡ k · n̂,

PδT (k) =
(
α+ T 21 k

2
||/k

2
)2
Pδb(k). (4.59)

Similarly, the bispectrum BδT (k1,k2,k3) is anisotropic, and depends on the orientation of

the wavenumbers with respect to the line of sight. It is defined as usual through

〈δT21(k1)δT21(k2)δT21(k3)〉 =(2π)3δD(k1 + k2 + k3)×BδT (k1,k2,k3). (4.60)

Since we focus on small angular scales, we adopt a flat-sky formalism.166 We assume

that the 21-cm temperature is observed with a finite window function W in frequency. The

observed temperature is therefore the convolution of the underlying temperature with W ,
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which we shall denote by W ∗ δT . We define the flat-sky harmonic transform

δT (r, `) ≡
∫
A

d2x⊥
r2

e−i`·x⊥/r(W ∗ δT )(rn̂,x⊥), (4.61)

where n̂ is the line of sight, assumed constant over the small survey area A, and x⊥ is

perpendicular to the line of sight. In terms of the Fourier modes of δT , this gives

δT (`) =

∫
d3k

(2π)3
eirk||W̃ (k||)δT (k)(2π)2δ̃D(rk⊥ − `), (4.62)

where W̃ (k||) is the Fourier transform of the window function and we have defined

δ̃D(`) ≡ 1

(2π)2

∫
A

d2x⊥
r2

eix⊥·`/r. (4.63)

The function δ̃D peaks at the origin, with value δ̃D(0) = fsky/π, where fsky is the fraction of

sky subtended by the survey. If has a characteristic width ∆` ∼ (fsky)−1/2 and integrates

to unity. Finally, a convolution of δ̃D with itself gives δ̃D back.

The covariance of δT (`) at equal r is given by

〈δT (`)δT ∗(`′)〉 =

∫
d2k⊥(2π)2δ̃D(rk⊥ − `)δ̃∗D(rk⊥ − `′)

×
∫
dk||

2π
|W̃ |2(k||)PδT

(
k||,k⊥

)
. (4.64)

For ` � (fsky)−1/2, we may approximate k⊥ ≈ `/r in the inner integral. Carrying out the

outer integral, we arrive at178

〈δT (`)δT ∗(`′)〉 ≈ (2π)2δ̃D(`′ − `)C`, (4.65)

where, as in Eq. (4.40),

C` ≡
1

r2

∫
dk||

2π
|W̃ |2(k||)PδT

(
k||, `/r

)
. (4.66)

We show the flat-sky power spectrum C` computed with different widths of the window

function and for several redshift slices in Fig. 4.13.
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Figure 4.13: Flat-sky power spectrum C` in the limit of infinitely narrow window function,
for redshifts (top to bottom) z = 50 (blue), z = 100 (black) and z = 30 (red). We also show
the C` at redshift z = 50 for a Gaussian window function of width 0.1 MHz (blue dashed)
and width of 1 MHz (blue dotted).

Similarly, the three-point function of δT (`) defines our flat-sky bispectrum:

〈δT (`1)δT (`2)δT (`3)〉 = (2π)2δ̃D(`1 + `2 + `3)B`1`2`3 , (4.67)

with

B`1`2`2 ≡
∫
dk1||dk2||

(2π)2r4
W̃ (k1||)W̃ (k2||)W̃ (−k1|| − k2||)BδT

(
k1||, `1/r; k2||, `2/r

)
, (4.68)

where we have dropped the dependence on k3 in the k-space bispectrum since it is fixed by

the triangle condition given k1 = k1||n̂ + `1/r and k2 = k2||n̂ + `2/r. Note that we do not

use the Limber approximation and perform the full integrals over k||’s.

We now describe and compute the different contributions to B`1`2`3 .

4.3.2 Bispectrum of 21-cm fluctuations

The bispectrum gets contributions from primordial non-gaussianities, which we would

like to extract from the data, but also from secondary non-gaussianities, arising from the

non-linear relation between the observable and the initial conditions, even if the latter are

perfectly gaussian.
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We only consider multipoles ` & 100, which correspond to wavenumbers k & 0.01

Mpc−1, as most of the signal-to-noise ratio for bispectrum measurements is expected to

come from small-scale modes. We therefore neglect the contributions of relativistic terms to

the bispectrum, in particular the ISW-lensing bispectrum, which is the dominant secondary

bispectrum for CMB anisotropies.179,180

Primordial non-gaussianities

The contribution of PNG to the bispectrum of 21-cm fluctuations can be obtained to

lowest order by only considering the linear terms in Eq. (4.55), and assuming that they

are linearly related to the primordial curvature fluctuations. The Fourier transform of the

linear terms is given in Eq. (4.58). We define M(k, z) ≡ δb(k, z)/Φ(k), where Φ = (3/5)ζ is

Bardeen’s gravitational potential. The bispectrum of brightness-temperature fluctuations

gets a contribution

Bprim
δT (k1,k2,k3) =

3∏
i=1

(α+ T 21µ
2
i )M(ki)×BΦ(k1, k2, k3) (4.69)

from primordial non-gaussianities, where µi ≡ (ki · n̂)/ki.

We now review the different shapes of the initial potential bispectrum BΦ(k1, k2, k3)

that we will consider in this work (see e. g. Ref.175 for a larger variety of shapes).

Local The simplest form of PNG is of the local type, where the primordial potential Φ is

a local non-linear function of a gaussian field φ:

Φ(x) = φ(x) + f local
NL

(
φ2(x)− 〈φ〉2

)
. (4.70)

This implies a non-vanishing bispectrum for Φ, given to lowest order by

Blocal
Φ (k1, k2, k3) = 2f local

NL [PΦ(k1)PΦ(k2) + 2 perm.] . (4.71)

This form of the bispectrum peaks in the squeezed configuration (k1 � k2 ∼ k3 and

permutations).
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Local-type PNG typically arises in multi-field inflation models, such as the curvaton

model or modulated reheating.

Equilateral PNGs of the equilateral type arise when there are non-standard kinetic terms

in the inflation Lagrangian, which are included in the so-called P (X) models of inflation,

concrete examples of which are k-inflation173,181 and Dirac-Born-Infield inflation.182 In

these models the effective sound speed cs can be very different from the speed of light (c = 1),

and the non-gaussianity parameter is related to this departure via f equil
NL = −(35/108)(c−2

s −
1).

This shape peaks when the three modes cross the horizon at the same time, and hence

k1 ∼ k2 ∼ k3. A good template for it is,183

Bequil
Φ (k1, k2, k3) = 6f equil

NL A2
Φ

{
−
[

1

(k1k2)4−ns + 2 perm.

]

− 2

(k1k2k3)2 4−ns
3

+

[
1

(k1k2
2k

3
3)

4−ns
3

+ 5 perm.

]}
, (4.72)

where AΦ is the normalization of the power spectrum of Φ: PΦ(k) = AΦ/k
4−ns .

Orthogonal The “orthogonal” shape of PNG was defined in Ref.184 to be orthogonal to

the equilateral shape for the scalar product Ba·Bb ≡
∑

k1,k2,k3
Ba
k1,k2,k3

Bb
k1,k2,k3

/[PΦ(k1)PΦ(k2)PΦ(k3)].

Its form is

Bortho
Φ (k1, k2, k3) = 6fortho

NL A2
Φ

{[
−3

(k1k2)4−ns + 2 perm.

]

− 8

(k1k2k3)2 4−ns
3

+

[
3

(k1k2
2k

3
3)

4−ns
3

+ 5 perm.

]}
. (4.73)

The models of Galileon inflation185 and ghost inflation186 predict very high values of

fortho
NL . In general, in terms of the Lagrangian for the Goldstone boson π during inflation,

both equilateral and orthogonal shapes arise from cubic kinetic interactions, and the fNLs

are linearly related to the coefficients of the π̇3 and π̇(∂π)2 terms.
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It is interesting to also mention the folded form of non-gaussianity, where the shape

of the bispectrum peaks at flattened (folded) triangles (k1 = k2 = k3/2 and permuta-

tions). Initial conditions different from the standard Bunch-Davies vacuum would give

rise to this kind of PNG. It can be expressed as a combination of the two above, as

Bfolded =
(
Bequil −Bortho

)
/2.

Directional dependence In some models where inflation is driven by a gauge vector field

or in solid inflation187 there is an additional form of PNG, that induces an extra dependence

in the angle between the ki vectors. In this case the bispectrum can be decomposed in

Legendre polynomials,188 where each component would be

B
(J)
Φ (k1, k2, k3) = f

(J)
NL

[
PΦ(k1)PΦ(k2)PJ(cos θ12) + 2 perm.

]
, (4.74)

where PJ is the Legendre polynomial of order J , and θ12 is the angle between k1 and k2,

whose cosine can be expressed as cos θ12 = (k2
3 − k2

1 − k2
2)/2k1k2. We consider J = 1, 2 and

3.

Secondary non-gaussianities

Non-linear gravitational collapse The growth of overdensities by gravitational collapse

is a fundamentally non-linear process, leading to a non-vanishing 3-point function, even

when starting from perfectly gaussian initial conditions. The resulting bispectrum can

be computed from second-order perturbation theory (see e.g. Ref.178). The correlation of

two linear perturbations with a second-order density perturbation or normalized velocity

divergence (θ ≡ −∇ · v/H) takes the form

〈δ(1)(k1)δ(1)(k2)δ(2)(k3)〉′ = 2F (k1,k2)P1P2, (4.75)

〈δ(1)(k1)δ(1)(k2)θ(2)(k3)〉′ = 2G(k1,k2)P1P2, (4.76)

where 〈...〉′ is the three-point function divided by (2π)3δD(k1 + k2 + k3), and Pi ≡ Pδ(ki)

is the power spectrum of the linear overdensity. The mode-coupling kernels F (k1,k2) and
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G(k1,k2) are both of the form1784

K(k1,k2) = c1 + c2 k̂1 · k̂2

(
k1

k2
+
k2

k1

)
+ c3(k̂1 · k̂2)2. (4.77)

For a CDM-only universe, (c1, c2, c3) = (5
7 ,

1
2 ,

2
7) for F and (3

7 ,
1
2 ,

4
7) for G. In reality,

however, baryons start clustering after recombination, while the CDM overdensities have

already been growing since their scales entered the horizon. Their density and velocity

fields at recombination are therefore very different and the subsequent growth factor of

matter fluctuations is therefore not just D(a) ∝ a. It moreover has a scale dependence, as

baryons, though they start with effectively zero overdensity at recombination (δb � δc on

sub-horizon scales), have a velocity comparable to that of the CDM, but with a different

scale dependence. Different wavenumbers therefore grow at slightly different rates. The

coefficients ci in Eq. (4.77) are therefore in reality weakly dependent on redshift and, perhaps

to a lesser extent, on scale. We shall ignore these complications here and take their standard

values.

Assuming δb = δ and using δv(k) = µ2θ(k) and δ
(1)
v (k) = µ2δ

(1)
b (k) [note that this last

relation only holds for the first-order perturbations], the bispectrum of 21-cm fluctuations

due to gravitational collapse is straightforwardly obtained from Eq. (4.55):

Bgrav
δT (k1,k2,k3) =2(α+ T 21µ

2
1)(α+ T 21µ

2
2)P1P2

×
[
γF (k1,k2) + T 21(µ1 + µ2)2G(k1,k2)

]
+ 2 perm. (4.78)

Non-linear relation between brightness temperature and baryon density The

relationship between the 21-cm brightness temperature and the underlying density and ve-

locity field is fundamentally non-linear, due to (i) the non-linear dependence of the optical

depth on the local peculiar velocity gradient (τ ∝ 1/(1−δv)), (ii) the non-linear dependence

of the spin temperature on the baryon density and temperature, and (iii) the non-linear

dependence of the gas temperature on the baryon density. Therefore even for a perfectly

gaussian underlying density field, this non-linear mapping leads to a non-vanishing bispec-

trum.

4These coupling kernels are derived in the sub-horizon limit. Since we are mostly interested in small
scales we shall not concern ourselves with subtle issues regarding the squeezed limit of the gravitational
bispectrum on horizon scales.
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This contribution to the bispectrum can be obtained from the following three-point

functions:

〈δb(k1)δb(k2)[δ2
b ](k3)〉′ = 2P1P2, (4.79)

〈δb(k1)δb(k2)[δbδv](k3)〉′ = (µ2
1 + µ2

2)P1P2, (4.80)

〈δb(k1)δb(k2)[δ2
v ](k3)〉′ = 2µ2

1µ
2
2P1P2, (4.81)

where the superscript (1) is implicit in all the fluctuations. Using Eq. (4.55), the explicit

expression for the bispectrum arising from the non-linearity of δT21 as a tracer is then

Bnl
δT (k1,k2,k3) =(α+ T 21µ

2
1)(α+ T 21µ

2
2)×

(
2β + α(µ2

1 + µ2
2) + 2T 21µ

2
1µ

2
2

)
P1P2

+ 2 perm. (4.82)

The total secondary bispectrum is obtained by summing Eqs. (4.78) and (4.82). Note

that the bispectrum arising from Eq. (4.78) requires the kernels F and G to be non-zero,

whereas the bispectrum from (4.82) does not.

Numerical evaluation and comparison

Inserting the Fourier-space primordial bispectra Eq. (4.69) and secondary bispectra

Eqs. (4.78) and (4.82) into Eq. (4.68), we obtain the harmonic-space bispectra in the flat-

sky limit.

We show the total secondary bispectrum in Fig. 4.14, along with the bispectra resulting

from local, equilateral and orthogonal PNGs. As found by previous authors,177 we find

that the secondary bispectrum is typically at least two orders of magnitude larger than the

bispectrum due to PNGs for fNL = 1. This order-of-magnitude difference can be understood

quite simply: the ratio of secondary to primary bispectra is of order

Bsec

Bprim
∼ 〈δδδδ〉
〈δδδfNLΦ〉

∼ δ(z)

fNLΦ
. (4.83)

We know that δ(z = 0) ∼ 1 at the non-linear scale kNL(z = 0) ≈ 0.1 Mpc−1. Scaling back

to z = 100 gives δ(z = 100) ∼ 10−2 at k ∼ 0.1, with an amplitude increasing logarithmically
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with wavenumber. The primordial gravitational potential is nearly scale-independent and

of order Φ ∼ 3×10−5. We therefore obtain Bsec/Bprim ∼ few × 100 for fNL = 1, consistent

with our more detailed calculation.

Note that our estimates for both the primary and the secondary bispectra neglected

higher-order terms, for example terms of order 〈δ2δ1δ3〉 in the secondary bispectrum. These

terms are suppressed by an additional factor of order δ2 ∼ 10−4 at z ≈ 100, and are therefore

comparable to the primary bispectrum only if fNL ∼ few times 10−2. We will not consider

them in this study, but they should be accounted for in a final data analysis aiming for a

few percent uncertainty in fNL.

In practice, we carry out the integrals up to some maximum multipole `max correspond-

ing to the resolution of the observations.

Secondary

Local

Equilateral

Orthogonal

��� ��� ���� ���� ����� ����� ������

��-��

��-��

��-��

��-��

ℓ

|�
(ℓ
�ℓ
�ℓ
)|
[�
�
�
]

Secondary

Local

Equilateral

Orthogonal

��� ��� ���� ���� ����� ����� ������

��-��

��-��

��-��

��-��

ℓ

|�
(ℓ
�ℓ
�ℓ
/�
�)
|
[�
�
�
]

Figure 4.14: Bispectra of 21-cm brightness-temperature fluctuations resulting from sec-
ondary non-gaussianities and different shapes of primordial non-gaussianity, with fNL = 1,
at z = 50. The top panel shows the bispectra for equilateral triangles (` ≡ `1 = `2 = `3).
The bottom panel shows the bispectra for squeezed triangles (` ≡ `1 = `2 � `3 = `/50).
In dashed blue we plot local, in dotted orange equilateral and in dash-dotted green orthog-
onal non-gaussianity. In solid black we plot the secondary bispectrum. The bispectra are
computed in the flat-sky approximation for an infinitesimally narrow redshift slice.
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4.3.3 Fisher analysis

Bias due to secondary non-gaussianities

Assuming a single type of primordial non-gaussianity with bispectrum B`1`2`3 = fNLb
prim
`1`2`3

,

if secondary non-gaussianities were negligible the minimum-variance cubic estimator for fNL

from a single redshift z would be189

f̂NL =
(bprim, Bobs)z
(bprim, bprim)z

, (4.84)

where we defined

Bobs
`1,`2,`3 ≡

1

4πfsky
δT (`1)δT (`2)δT (`3), (4.85)

and the scalar product ( , )z is constructed as

(Bi, Bj)z ≡ 4πfsky

∫∫∫
`1≥`2≥`3

d2`1d
2`2d

2`3
(2π)4

δD(`1 + `2 + `3)×
Bi
`1`2`3

Bj
`1`2`3

Ctot
`1
Ctot
`2
Ctot
`3

. (4.86)

In this equation Ctot
` is the total variance of δT (`), due to cosmic variance and all other

sources of noise, including the instrument and foregrounds. We assume throughout that the

noise can be approximately computed neglecting non-gaussian contributions to δT (`). In

practice, all our results will be quoted in the cosmic-variance limit, i.e. for Ctot
` = C` given

in Eq. (4.66) 5.

We saw in the previous Section that the bispectrum resulting from secondary non-

gaussianities is much larger than the one arising from PNGs, typically by two to three

orders of magnitude for fNL = 1. Using the estimator, Eq. (4.84), would therefore lead to

a bias

∆fNL =
(bprim, Bsec)z
(bprim, bprim)z

≡ cprim,sec

√
(Bsec, Bsec)z
(bprim, bprim)z

, (4.87)

where cprim,sec ∈ [−1, 1] quantifies the shape overlap or degeneracy of the primordial and

secondary bispectra [geometrically, cprim,sec is the cosine of the angle between the two bispec-

5Note that in order to have tenth-of-arcminute resolution at redshift z = 100 one would need a baseline
D & 350 km. In order to reach cosmic variance limit at z = 50 and for resolution of one arcminute, the
parameters of the interferometer would have to be really optimistic, with complete coverage fcover = 1, a
baseline of order the diameter of the moon D = 3500 km, and a time of observation of 2 years.
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tra, for the scalar product (4.86)]. The shapes of primordial and secondary non-gaussianity

being different, one may hope that their overlap is small1766. However, assuming a cosmic-

variance-limited experiment with an infinitely narrow window function and a resolution of

∼ 0.1′ (corresponding to `max = 105), we find that cloc,sec = 0.89, cequi,sec = 0.79, and

cortho,sec = −0.83. The unsubtracted secondary bispectrum would therefore lead to large

biases ∆f loc
NL = 870, ∆f equi

NL = 3900, and ∆fortho
NL = −3900. For maximum resolution of

1′ (corresponding now to `max = 104), the values of the degeneracy coefficients would be

cloc,sec = 0.80, cequi,sec = 0.89, and cortho,sec = −0.88, which in turn would make the biases

∆f loc
NL = 420, ∆f equi

NL = 2400, and ∆fortho
NL = −2100.

Such a strong degeneracy may seem surprising at first, given the large number of tri-

angles on which the scalar product depends. However, because the bispectra are essentially

smooth featureless functions of ` for small angular scales, they can have significant overlap

in the sense defined in Eq. (4.87)7. The equilateral and orthogonal-type bispectra have

more complex shapes in k and `-space than the local type, which is why their overlap with

the secondary bispectrum decreases with increasing `max while it increases for the latter.

In the next section we describe how to deal with these degeneracies.

Estimators for a single redshift slice

One could in principle try and model the secondary bispectrum from first principles

and subtract the resulting bias ∆fNL from the estimated PNG amplitude. This strategy

is the one adopted for the bispectrum of CMB anisotropies, where the main contaminant

is the ISW-lensing bispectrum. Given the now well-measured cosmological parameters,

the latter can indeed be modeled to sufficient accuracy, i.e. with an error smaller than

the statistical uncertainty in fNL.166,175 In the case of 21-cm fluctuations, however, even

percent-level residuals in the modeled secondary bispectrum would lead to biases of order

∆fNL ∼ 10, significantly larger than the statistical errors one may hope to achieve. Reaching

sub-percent accuracy would require, first, a very careful treatment of subtle microphysical

6Ref.176 treat the secondary non-gaussianity as a source of noise instead of a bias, which is inappropriate.
7Consider for instance the 1-dimensional scalar product 〈F.G〉 =

∫ `max

`min
F (`)G(`)d`, with `min � `max. If

F (`) ∝ `α and G(`) ∝ `β , then their degeneracy coefficient is approximately c =
√

1 + 2x/(1 + x), where
x ≡ (β − α)/(2α+ 1). This is greater than 0.4 for x ≤ 10.
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processes affecting the population of the hyperfine levels. In addition, it will be limited by

the accuracy of cosmological parameters.

The amplitudes of all the secondary bispectra depend on the coefficients ci in Eq. (4.77)

for the kernels F and G. Although we use the values derived for a matter-dominated,

CDM-only universe in our analysis, we assume that the exact values could be computed

exactly should one want to do so. On the other hand, the four parameters Ai ≡ T 21, α, β, γ

in Eq. (4.55) depend on the detailed microphysics of the hyperfine transition. For now we

assume that they can be modeled up to subpercent accuracy and denote their best estimates

by A0
i .

Our model for the bispectrum is

B`1`2`3 = Bsec,0
`1`2`3

+ fNL b
prim
`1`2`3

+
4∑
i=1

fi b
i
`1`2`3 , (4.88)

where Bsec,0
`1`2`3

is the best estimate for the secondary bispectrum obtained with the A0
i ,

fi ≡ ∆Ai are the unknown residuals of the four coefficients and bi`1`2`3 ≡ ∂Bsec
`1`2`3

/∂Ai. To

make the notation more compact we denote8 f0 ≡ fNL and b0`1`2`3 ≡ b
prim
`1`2`3

, and recall that

we search for one type of PNG at a time. Notice that we disregard higher order correction

terms, proportional to ∆α2 and ∆T̄ 2
21, since we will be able to model those two parameters

to a precision better than 0.3%, as shown in Tab. 4.3, which would mean that the bias in

the non-gaussianity amplitude is of order ∆fNL ∼ 103(3× 10−3)2 . 10−2.

We fit simultaneously for the amplitude of the PNG and for the residual coefficients of

the secondary bispectrum. We treat the latter as nuisance parameters over which we will

marginalize. In geometrical terms, we construct an estimator for the PNG by projecting

the observed bispectrum on the component of the primordial bispectrum orthogonal to all

shapes of secondary non-gaussianity.

The minimum-variance cubic estimators for the parameters fi are given by

f̂i ≡
∑
j

(F−1)ij(b
j , Bobs −Bsec,0)z, (4.89)

8Note that fNL and fi do not have the same dimensions, but this does not affect the analysis.
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where F−1 is the inverse of the Fisher matrix F whose components are

Fij ≡ (bi, bj)z. (4.90)

The variances of these estimators are

σ2
f̂i

= (F−1)ii, (4.91)

and the signal-to-noise ratio (SNR) for fNL is fNL/
√

(F−1)00.

We show in Fig. 4.15 the forecasted SNR for the local-type PNG, for a single narrow

redshift slice around z = 50, as a function of the maximum multipole moment `max (with

`min = 100). We also show for reference the SNR one would obtain if one neglected the

secondary non-gaussianities, i.e. when substituting (F−1)00 → 1/F00 as in Ref.177 We see

that properly accounting for secondary non-gaussianities and their correlation with the

primordial bispectrum reduces the SNR by a factor of ∼ 6.

We also show the SNR integrated starting from `max = 105 down to a minimum `min,

as a function of the latter. It plateaus for `min ∼ 103, so modes with smaller ` do not

contribute significantly to the signal-to-noise ratio, which justifies our neglect of several

contributions to the bispectrum on large scales.

In Fig. 4.16 we show the forecasted SNRs for the other shapes of PNG we considered.

Secondary non-gaussianities are less correlated with these shapes than the they are with

the local type, so the reduction in SNR is not as dramatic (a factor of ∼ 3).

We summarize the forecasted SNR in Table 4.2 for a single narrow redshift-slice at

z = 50, for `max = 104 (corresponding of an angular resolution of roughly 1 arcmin) and

`max = 105 (0.1 arcmin angular resolution), assuming a cosmic-variance-limited experiment

(i.e. taking Ctot
` = C`, and neglecting additional thermal noise). In particular, we find that

values of f loc
NL ∼ 1.3 and ∼ 0.23 could be reached for `max = 104 and 105, respectively.

The bigger improvement for better resolution for the orthogonal and equilateral shapes

with respect to the local one is due to the fact that they become less degenerate with the

secondary bispectra as more modes are added in the analysis, as argued in Section 4.3.3.

It is interesting to discuss how well we could probe the four secondary coefficients,
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Figure 4.15: Signal-to-noise ratio (SNR) for PNG of the local type with fNL = 1, for a
single narrow redshift slice at z = 50 and assuming fsky = 1. The blue dashed curve shows
(F00)1/2, the SNR obtained if one neglected secondary non-gaussianity. The black solid
and red dotted curves show [(F−1)00]−1/2, the SNR after marginalization over the unknown
residual amplitudes of the secondary bispectrum, as a function of `max (black solid) and as
a function of `min at fixed `max = 105 (red dotted).
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Figure 4.16: SNR for different shapes of PNGs (with fNL = 1), after marginalization over
the residual amplitudes of the secondary bispectrum. The different lines correspond to
equilateral-type PNG (solid black), orthogonal-type PNG (blue dashed), and the three
direction-dependent shapes J = 1, 2 and 3 in dotted green, dash-dotted brown, and long-
dashed red, respectively.
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PNG type σfNL
(arcmin) σfNL

(0.1 arcmin)

Local 1.3 0.23
Equilateral 14 0.71
Orthogonal 11 0.71
J = 1 83 5.3
J = 2 4.5 0.83
J = 3 40 3.1

Table 4.2: Detection forecasts for different shapes of PNG for a cosmic-variance-limited
experiment observing the full sky at a single narrow redshift slice at z = 50. The central
column gives the results for `max = 104 (equivalent to having an experiment with arcminute
resolution), and the right column those for `max = 105 (one tenth of arcminute).

T 21, α, β, and γ. In Tab. 4.3 we show the relative errors reachable for each of them with a

0.1 arcminute resolution, as well as the correlation with the rest of parameters.

T 21 α β γ fNL

T 21 5.9× 10−4

α −0.95 2.6× 10−3

β −0.97 0.91 0.012
γ 0.41 −0.63 −0.43 7.2× 10−4

fNL 0.89 0.85 −0.92 0.36 0.23

Table 4.3: Fractional error and correlation coefficients of fNL and secondary bispectrum
amplitudes. The diagonal elements are the fractional errors for each parameter, calculated
as
√

(F−1)00 for the case of fNL and
√

(F−1)ii/A
0
i for the rest. The off-diagonal elements

are the correlations between parameters, defined as (F−1)ij/
√

(F−1)ii(F−1)jj . For these
results we considered local non gaussianity, at redshift z = 50 and a resolution of 0.1
arcminutes.

Choice of nuisance parameters

In our analysis we have marginalized over the residuals of the four coefficients T 21, α, β, γ.

Here we discuss how different choices would affect our results.

On the optimistic side, if we were able to relate the four secondary coefficients to each

other to high precision we could choose to marginalize over a single overall amplitude for

the secondary bispectrum.

On the pessimistic side, we may choose to marginalize over all geometrically distinct

contributions to the secondary bispectrum. This would account for unknown redshift de-
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pendences in the ci coefficients. Recalling that the kernels F and G are made of three ge-

ometrically distinct pieces, Eq. (4.78) gives 18 different geometric shapes. Equation (4.82)

adds three independent shapes. This amounts to a total of 21 distinct geometric shapes,

the amplitudes of which we marginalize over.

We show the resulting SNRs in Fig. 4.17, where for reference we also show the SNR in

the absence of secondary non-gaussianities, and our main result, which considers 4 nuisance

parameters. As expected, our result lies between the optimistic and pessimistic cases, which

act as bounds for the SNR when considering additional secondary bispectra.

In particular, in the optimistic approach, the SNR is improved by a factor of ∼ 5: we

find detection limits f local
NL ∼ 0.12, f equil

NL ∼ 0.75, fortho
NL ∼ 0.58, fJ=1

NL ∼ 5.7, fJ=2
NL ∼ 0.88,

fJ=3
NL ∼ 13 at arcminute resolution and f local

NL ∼ 0.0063, f equil
NL ∼ 0.032, fortho

NL ∼ 0.030,

fJ=1
NL ∼ 0.19, fJ=2

NL ∼ 0.04, fJ=3
NL ∼ 0.40 at maximum resolution for a single redshift slice at

z = 50.

In a real experiment, a χ2-like test should be carried out to find out whether additional

secondary bispectra to the four proposed here need to be considered.
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Figure 4.17: SNR for local-type PNG with fNL = 1 as a function of `max, when neglecting
secondary non-gaussianities (top, solid black curve), marginalizing over an overall amplitude
of the secondary bispectrum (blue dashed), marginalizing over 4 coefficients as we do in the
main text (red, dashed), and marginalizing over the amplitudes of the 21 geometrically
distinct shapes of secondary bispectra (bottom, green dash-dotted).
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Tomography

So far we have been studying the bispectrum on a single redshift slice, which would

correspond to observing the 21-cm line with a single frequency channel. However, one of the

great advantages of the 21-cm line is that it enables us to coadd information from different

redshifts.

Before thinking of how to add different redshift shells we will study whether they contain

the same or different information. Let us construct a measure of the correlation between

two slices at a radial distance ∆r from each other. We define the correlation length ξr(`) as

the radial separation beyond which the cross-correlation between two redshift-slices is less

than 1/2 the power spectrum:

C`[∆r = ξ(`)] =
1

2
C`[∆r = 0], (4.92)

where the cross-power spectrum C`[∆r] is obtained from

C`[∆r] ≡
1

r2

∫
dk||

2π
PδT

(
k||, `/r

)
eik||∆r. (4.93)

From the correlation length in radial comoving separation ξr we obtain the characteristic

correlation length in frequency space ξν through

ξν =
dν

dz

dz

dr
ξr = ν0H0

√
ΩM (1 + z)−1/2ξr (4.94)

≈ 1 MHz

(
51

1 + z

)1/2( ξr
60 Mpc

)
, (4.95)

where ν0 = 1.4 GHz is the rest-frame frequency of the 21-cm transition.

We show the function ξν(`) in Figure 4.18. For ` . 100 (corresponding to k . keq ∼ 0.01

Mpc−1), P (k||, `/r) peaks at k|| ∼ keq, independently of `, and the cross-correlation C`[∆r]

has a characteristic length scale ξν ≈ 0.3 MHz, independent of `. For ` & 100, the function

P (k||, `/r) has a characteristic turnaround scale at k|| ∼ `/r, which leads to a correlation

length ξν(`) ∝ 1/`.

In order to compare with previous results in the literature176,177 we will assume band-
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Figure 4.18: Correlation length ξν as a function of `, defined as the separation in frequency
beyond which two redshift slices are correlated by less than 1/2. This curve was calculated
with an infinitely narrow bandwidth at z = 50, and for each ` the correlation would increase
to match the value of the bandwidth if it is bigger than the ξν in the plot.

widths ∆ν of 1 MHz and 0.1 MHz. As argued above (Fig. 4.15) most of the signal comes

from large-` modes (` & 1000), for which the correlation length ξν < 0.1 MHz, so in both

cases we may assume that different redshift slices are completely uncorrelated. An observa-

tion of 21-cm fluctuations between 14 MHz (z = 100) and 45 MHz (z = 30) with frequency

resolution ∆ν would therefore have Nslices ≈ 30× 1 MHz/∆ν independent redshift slices.

The simplest analysis would consist in finding the best-fit fNL for each redshift slice

and coadd the estimators with inverse-variance weighting. This procedure is not optimal,

however, as the secondary bispectrum (and by extension, the residual after subtraction of

the best-estimate Bsec,0) is a smooth function of redshift. The redshift dependence of the

residuals fi = ∆Ai can therefore be modeled by a linear combination of a few basis functions

and depends on a few coefficients instead of Nslices independent amplitudes:

fi(z) =

Nbases∑
j=0

fijPj(z). (4.96)

Several choices of basis functions could be made. We found that in the redshift range

30−100 the coefficients Ai(z) could be fit to ∼ 1, 0.1, and 0.01 percent accuracy with third,

fifth, or seventh-order polynomials in log(z), respectively. We assume that this will also
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hold for the residuals. We therefore adopt Pj(z) = [log(z/50)]j for j = 0 to Nbases = 3 or 7

as our basis set. Our full model for the redshift-dependent bispectrum is therefore

B`1`2`3(z) =Bsec,0
`1`2`3

(z) + fNLb
prim
`1`2`3

(z) +

4∑
i=1

Nbases−1∑
j=0

fijb
(ij)
`1`2`3

(z), (4.97)

where b
(ij)
`1`2`3

(z) ≡ Pj(z)× bi`1`2`3(z).

We now fit simultaneously for fNL and 4 × Nbases nuisance parameters fij . Because

we assume the redshift slices are uncorrelated (specifically, the noise is uncorrelated in

different slices, but the signal is not), the total scalar product between two bispectra is

simply obtained by summing the single-redshift scalar product over redshift slices:

(bn, bm) ≡
∑
z

(bn, bm)z, (4.98)

where n ≡ (ij) is a generalized index, and (bn, bm)z is the scalar product of two bispectra

at redshift z defined in Eq. (4.86). The usual Fisher analysis leads to σ2
f̂NL

= (F−1)00,

where the (1 + 4Nbases) × (1 + 4Nbases) Fisher matrix Fnm is now defined from the total

scalar product (4.98). We find that using seventh-order instead of third-order polynomials

degrades the SNR by no more than ∼ 20 %. The final results we quote are obtained using

third-order polynomials.

Our final results are shown in Table 4.4, where we quote the minimum fNL detectable

for fsky = 1 and `max = 105 for two different bandwidths (∆ν =1 and 0.1 MHz). For

fsky < 1 all the results scale as σfNL
∝ f−1

sky.

In summary, with a bandwidth of 1 MHz we could cross the fNL = O(1) threshold,

enabling us to rule out a big class of models of inflation if no PNG is detected. Increasing

the frequency resolution to 0.1 MHz the numbers improve to fNL ∼ few 10−2, which would

be close to the ultimate limit of the consistency relation (fNL ∼ ns − 1), and hence should

be present even in the simplest model of inflation.
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PNG type σfNL
(1 MHz) σfNL

(0.1 MHz)

Local 0.12 0.03
Equilateral 0.39 0.04
Orthogonal 0.29 0.03
J = 1 1.1 0.1
J = 2 0.33 0.05
J = 3 0.85 0.09

Table 4.4: Minimum fNL detectable integrating all redshift slices between z = 30 and
z = 100 for fsky = 1. In the central column we show the result for a bandwidth of ∆ν = 1
MHz and in the right column for ∆ν = 0.1 MHz.

4.3.4 Conclusions

Now that the information from the CMB on non-gaussianity has been almost fully

mined, it is time to consider other potential data sets. Intensity fluctuations in the 21-

cm line during the dark ages offer a window into yet unexplored times and scales, and a

promising future probe of PNGs.

The technical challenges that need to be overcome before the required experiments

see the light of day are daunting. Because of atmospheric attenuation it would require an

observatory on the Moon. Even then, care should be taken with intense Galactic foreground

emission. Nevertheless, this is not an impossible task.

An additional issue is that the 21-cm signal is intrinsically highly non-gaussian, due to

non-linear gravitational growth, and the non-linear mapping between brightness tempera-

ture and the underlying density field. In this work we have, for the first time, addressed

this issue with a rigorous Fisher analysis approach, assuming cosmic-variance limited ex-

periments with a finite angular and frequency resolution. We have shown that for a single

redshift slice the secondary bispectrum is significantly degenerate with the primordial one,

which results in a noticeable decrease of the forecasted signal-to-noise ratio (SNR) for PNGs.

This contrasts with the results of previous work, where this degeneracy was either neglected

when forecasting the SNR,177 or where it was claimed to be weak.176 We then co-added

the information of independent redshift slices while enforcing a smooth variation of the

secondary bispectrum amplitudes with redshift.

For a full-sky experiment with ∆ν = 0.1 MHz and 0.1-arcminute resolution, we forecast
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a sensitivity σf localNL
≈ 0.03, which would enable us to check the famous inflationary consis-

tency relation. We also forecast σfequil ≈ 0.04, σfortho ≈ 0.04, fJ=1 ≈ 0.1, fJ=2 ≈ 0.05, and

fJ=3 ≈ 0.09. Measurements of 21-cm fluctuations therefore have the potential to signifi-

cantly improve upon cosmic-variance-limited CMB bounds.

4.3.5 Extending to the Cosmic Collider

In realistic inflation models, besides one effectively-massless scalar field driving infla-

tion, there is a vast landscape of heavy fields. Although classically these heavy fields are

not very important (except when excited by sharp features in the model), their quantum

fluctuations leave distinctive signatures in the density perturbations. These fluctuations

are most appreciable when the masses of the fields are of the same order as the Hubble

scale H of the inflationary background or less. For this reason, this class of models is called

Quasi-single-field (QSF) inflation models.190–204 Fields with these masses may already be

present in the spectrum of a UV-completed unification theory, such as the KK spectrum

and stringy states in string theory;196 they may arise from fields that are originally light,

but their mass gets uplifted by loop corrections in the inflationary background205,206 or

by coupling to the background curvature. The presence of supersymmetry can also pro-

vide a natural mechanism to stabilize scalar fields with mass of order H.192 In addition,

it has been suggested that particles with mass somewhat heavier than O(H) may be used

as the “primordial standard clocks”207–209 to track the evolution of the scale factor a(t)

of any time-dependent background, providing direct evidence for either inflation or alter-

native scenarios. As such, these heavy fields could provide a wealth of information about

fundamental physics and our primordial Universe.

Interestingly, heavy fields imprint potentially observable distinctive signatures in the

primordial non-Gaussianities190–193,195,196 that are not captured in the low-energy effective

theories of single-field inflation models. In particular, Arkani-Hamed and Maldacena derived

a general result196 showing that the entire particle spectrum, including the mass and spin,

is reflected in the scaling behavior of various soft limits of primordial non-Gaussianities.

Moreover, the spin of particles coupled to the inflaton can be geometrically disentangled

with 3D surveys, by studying the trispectrum.202,210–212 It is likely that these are the
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highest mass scales directly observable9 in nature and provides a strong motivation to fully

explore the observability of such signatures in the data. In this sense inflation has been

referred to as a “cosmological collider experiment”.

In this subsection I will study what constraints can be placed on the presence of heavy

particles during inflation, considering future cosmological surveys of the 21-cm field. For

a large class of models, one can infer the mass of the heavy field from the power of the

momentum ratio between the long and short mode of the three-point function. For light

fields in the mass spectrum this power is a real number, with the power-laws between

those of the local- and equilateral-type non-Gaussianities, behaving as “intermediate non-

Gaussianities”. For heavier fields in the spectrum, however, the power becomes a complex

number, which results in oscillatory signals in the bispectrum, with the “clock signal” being

the oscillatory component of this bispectrum. Additionally, non-zero spins generate an

additional dependence on the angle between the two modes, creating an incredibly rich

phenomenology.196,214

We define the shape S(k1, k2, k3) of the three-point function as

〈ζ3〉 ≡ (2π)3δD(k123)
A2

(k1k2k3)2
S(k1, k2, k3). (4.99)

These behaviors have been shown to lead to a characteristic scaling of the squeezed limit

of the bispectrum given by

Ssqueezed ∝
(
klong

kshort

)1/2±iµ
. (4.100)

This form reproduces the power-law of the squeezed limit of the local shape when m/H ≈ 0

and interpolates between the local and equilateral shapes up to m/H = 3/2. For higher

masses, it becomes an oscillatory function of klong/kshort. For compactness we denote ν ≡ iµ
for imaginary µ. Motivated by this behavior, we therefore propose a template of the form

Sclock(k1, k2, k3) =fNL
37/2

2
A (α123) (α123)−1/2 × sin

(
µ ln

(α123

2

)
+ δµ

)
+ 2 perm, (4.101)

where α123 = k1+k2
k3

and where δµ is a calculable but model-dependent phase. Here A(α) is a

window function meant to remove equilateral contributions. We will consider two different

9In models that temporarily break scale-invariance, it is also possible that much heavier fields can be
excited non-adiabatically and leave different signatures in the density perturbations.207,208,213
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window functions, a smooth generalized Gaussian of the form

AG(α123) = 1− exp
−
(
α123−1

a

)b
, (4.102)

and a sharp cutoff

AH(α123) = H(α123 − α0), (4.103)

where H is the Heaviside step function. For details about the choice of the window function

and its parameters a, b or α0 the reader is encouraged to visit Ref.215

Instead here we will focus on the effect of the secondary nongaussianities mentioned

above. We define the signal-to-noise-ratio (SNR) degradation as the amount of signal lost

with respect to the case without secondaries, i.e.
√
F−1

00 F00 − 1, assuming the subindex 0

corresponds to fNL and the Fisher matrix Fij is computed using BδT (k1,k2,k3) and PδT (k)

at z = 50. We show a histogram of the degradations in signal to noise when adding each of

the 21 independent shapes in Figure 4.19 for the µ case, and in Fig. 4.20 for the ν case. We

find that most secondary shapes are orthogonal to the µ primordial shapes, especially for

higher µ values, due to more-rapid oscillations. In the ν case, however, there is significant

overlap between several secondaries and the primordial signal, which is to be expected since

the ν shapes interpolate between the local and equilateral templates, already found to be

highly correlated with secondaries in Ref.216 We show the total degradation in signal to

noise in Tab. 4.5, where we have marginalized over the 21 secondary shapes simultaneously.

All the degradation factors are O(1), and are particularly small for the oscillatory (µ) case.

We note that this degradation is driven by a few highly-correlated shapes, so restricting the

analysis to 4 linear combinations of the 21 shapes, as done originally in Ref.,216 would not

change results significantly. We thus conclude that secondaries would not strongly affect

cosmic-collider forecasts.

4.4 Cosmic Anisotropies

One of the key principles of cosmology is the notion of isotropy and homogeneity—there

is no preferred location nor preferred direction in the Universe. This, though, is violated

by small primordial perturbations. Still, the prevailing single-field slow-roll model for the
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Model SNR Deg.

µ = 0.3 0.99
µ = 0.7 0.75
µ = 1 0.47
µ = 2 0.56
ν = 0.3 1.05
ν = 0.7 1.92
ν = 1 1.44

Table 4.5: Degradation in SNR computed as
√
F−1

00 F00 − 1, when considering the 21 sec-

ondary shapes of non-Gaussianities simultaneously.
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Figure 4.19: Histogram of the (natural logarithm of the) degradation in the SNR, defined

as
√
F−1

00 F00 − 1, with each of the 21 secondary shapes. In red we show the µ = 0.3 case,

in gray µ = 0.7, in blue µ = 1, and in yellow µ = 2.

origin of these perturbations predicts that isotropy and homogeneity should be preserved

in a statistical sense. A significant detection of a deviation from statistical isotropy or

homogeneity would falsify some of the simplest models of inflation, making it necessary to

postulate new physics, such as non-scalar degrees of freedom. Moreover, it would open a

window into the physics of the early Universe, shedding light upon the primordial degrees

of freedom responsible for inflation. Departures from statistical isotropy and homogeneity

can take different forms. We will study the two main cases, a dipolar power asymmetry

and a quadrupolar asymmetry.
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Figure 4.20: Degradation in the SNR, defined as
√
F−1

00 F00−1, with each of the 21 secondary

shapes independently. In red we plot the ν = 0.3 case, in gray ν = 0.7, in blue ν = 1.

4.4.1 Primordial dipolar asymmetry

The CMB measurements indicate that the microwave sky is almost perfectly gaussian

and rotationally-symmetric, as predicted by single-field inflation. There are, however, a

few observed anomalies that require explaining, most important of which is the dipolar

asymmetry. First detected by WMAP,217–220 and later on confirmed by Planck,118,221–223

this anomaly can be phrased as a dipolar modulation of the CMB sky at large angular scales.

When including smaller CMB angular scales, however, this anomaly seems to disappear

completely. Moreover, study of the density of quasars at lower redshifts showed no evidence

for a dipolar modulation at a corresponding angular scale of k ∼ 1 Mpc−1.224 We will

explore models for a dipole modulation in which the signal vanishes at k = 1 Mpc−1, being

non-zero at smaller and bigger angular scales, as predicted by theoretical models.225

In general statistical anisotropy can be expressed by a curvature perturbation with a

position-dependent dipolar modulation, written as

ζk(x) = ζ iso
k

[
1 +

∑
M

A1Mf(k)Y1M (n̂)

]
, (4.104)

where x ≡ xn̂ with x ≡ |x|. A constant f(k) = 1 was originally introduced to explain a ∼ 3σ
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evidence of dipolar asymmetry in the CMB sky at very large scales (` . 60).118,221–223 This

asymmetry can be expressed as an amplitude A ∼ 0.07 in T (n̂) = T iso(n̂)(1 +An̂ · p̂), with

p̂ denoting the preferred direction of the modulation, and T iso being the usual temperature

fluctuation. On the other hand, several detailed analyses of the CMB maps have also shown

that such dipolar modulation is highly damped for ` & 60.118,221–223 This scaling seems

to be consistent with a different constraint obtained by quasar abundances, leading to a

vanishing dipolar asymmetry at k ∼ 1 Mpc−1.224 We implement a heuristic model for

such observationally-motivated scale dependence as a function, f(k) = (1 − k/kA)n with

kA ≡ 1 Mpc−1, for n = 1 and 2, in our parametrization of Eq. (4.104).

While the precise scale dependence is different for different models,225–229 we choose

the following 2 shapes as proxies

f(k) = 1− k

kA
,

(
1− k

kA

)2

. (4.105)

These reconstruct the observed decaying shapes for k < kA(≡ 1 Mpc−1). On the other

hand, on unobserved small scales as k > kA, these grow larger, and with opposite signs.

We can define the mode-coupling matrix as

G`1`2 =
2

π

∫ ∞
0

k2dkP (k)f(k)T`1(k, ν)T`2(k, ν), (4.106)

where the additional factor f(k) is 1 in the usual case, and will have different values for

alternative inflationary models. This is the standard general way to express the angular

correlations; in the following section we will compute the angular power spectra for different

models describing rotational asymmetries.

Figure 4.21 plots the correlations G`,` + G`+1,`+1 for the 2 different models for the

function f(k), taking z = 30 and ∆ν = 1.0 MHz. We can confirm there that a dip is located

at ` ∼ `A ≡ kAx(z = 30) ' 1.3 × 104, with x(z = 30) ' 13 Gpc denoting the conformal

distance to z = 30, as expected. The difference between these 2 models show up for ` & `A

because of the difference of the signs and the different power-law exponent. We also notice

that G`,` +G`+1,`+1 is substantially enhanced compared with the isotropic power spectrum

C`, which we also show in Figure 4.21 for reference, for ` & `A, as expected from Eq. (4.105).

This results in a sharp rise in the signal-to-noise ratio for ` & `A.
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Figure 4.21: G`,` + G`+1,`+1 for A1M (left panel) and G`,`+2 for g2M (right panel). Solid
(dashed) lines describe positive (negative) values. We here adopt z = 30 and ∆ν = 1.0 MHz.
For the pivot scales, we choose kA = 1 Mpc−1 and kg = 0.05 Mpc−1, corresponding to
`A ≡ kAx(z = 30) ' 1.3 × 104 and `g ≡ kgx(z = 30) ' 650 in ` space. For comparison,

we also show the isotropic power spectrum C` = G
f(k)=1
`` (purple), which acts as a cosmic

variance in the Fisher matrix computation.

4.4.2 Primordial quadrupolar asymmetry

We now turn to study quadrupolar asymmetries, which can be generated by a wide

range of inflation models involving anisotropic sources, such as vector fields. The signatures

of these anomalies may be discovered in observables other than CMB. In this section we

investigate the 21-cm temperature power spectrum generated by such anomalies.

When including a quadrupolar asymmetry, we can write the curvature power spectrum

as

〈ζk1ζk2〉 = (2π)3P (k1)

[
1 +

∑
M

g2Mf(k1)Y2M (k̂1)

]
δ(3)(k1 + k2) . (4.107)

A non-vanishing g2M arises in inflation models where the inflaton couples to a vector field

with a non-zero vacuum expectation value, via L = −1
4I

2(φ)F 2.230–237 In these cases, the

time dependence of the coupling function I(φ) determines the scale dependence of f(k).

The nearly scale-invariant spectrum, i.e., f(k) = 1, is realized by choosing I(φ) ∝ a−2,

with a denoting the scale factor.233,234,236 In other words, except for this case, f(k) has
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a scale dependence. A nearly scale-invariant f(k) is also generated in the solid inflation

models.238,239 The magnitude of g2M relies strongly on the model parameters. For vector-

field models, g2M is proportional to the ratio of the energy density of the vector field to

that of the scalar field, ρA/ρφ,.233,234 If the inflaton is identifed to the pseudoscalar field,

the coupling strength between the pseudoscalar and the vector field also affects g2M .235–237

The data analysis with the Planck map gives upper bounds for the scale-invariant case

f(k) = 1 of |g2M | . 10−2,118,240 leading to several constraints on the model parameters

e.g., ρA/ρφ . 10−9.236

In what follows, we discuss the detectability of g2M in a general model-independent

way, and do not translate the results into any specific model parameters. To do so, we

assume 5 different power-law shapes for f(k),

f(k) = 1 ,

(
k

kg

)±1

,

(
k

kg

)±2

, (4.108)

with kg = 0.05 Mpc−1 being the pivot scale adopted in the Planck collaboration.118

The right panel of Fig. 4.21 plots the off-diagonal correlations G`,`+2 generated from

the 5 different models in Eq. (4.108), for z = 30 and ∆ν = 1.0 MHz. It is obvious in this

Figure that all the lines interesect each other at the multipole corresponding to the pivot

scale, `g ≡ kgx(z = 30) ' 650, and they are tilted depending on their spectral indices,

respectively. We can also observe sign changes happen at ` ∼ 100.

4.4.3 Results and Conclusions

Here we forecast measurements of rotational asymmetries with the 21-cm power spec-

trum. We compute G`1`2 for the 7 different models of the function f(k) (2 for the dipolar

and 5 for the quadrupolar asymmetry), and then calculate the forecasted detectability of

the coefficients A1M and g2M , via a Fisher matrix analysis, including three different instru-

mental noise configurations.

First, we will use specifications consistent with those of the Square Kilometre Array,

currently under construction in South Africa. We will then assume a Futuristic Radio Array

(SKA-fut), as an example for a futuristic, but still Earth-based, experiment. Finally, we
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will show results for the cosmic-variance-limited (CVL) case, where CN` = 0.

For the SKA case we take a baseline of 6 km, a coverage fraction of fcover = 0.02, and

a time of data collection of 5 whole years. In the SKA-fut case we consider an increased

baseline of D = 100 km, a coverage fraction of 0.2, and 10 whole years of observations. The

baseline of this SKA-fut case would be large enough to reach ` & 104 at redshift z . 50,

enabling us to prove the very small scales anisotropy predicted by some models.225

We show, in Fig. 4.22, the `max dependence of σ(A1M ) and σ(g2M ) for z = 30 and

∆ν = 0.1 MHz. As seen in this figure, the sensitivities to A1M and g2M in SKA-fut get better

as `max increases up to `max ∼ 104, after where the sensitivity plateaus. The sensitivities for

the SKA-fut and CVL cases are comparable for `max . 103, departing after that due to the

noise becoming dominant. The SKA-fut sensitivities actually exceed the SKA ones by ∼ 4

orders of magnitude; thus, highly accurate measurements are possible with SKA-fut, being

the constraints comparable to, or better than, Planck 2015.118,240 In the 2 top panels for

σ(A1M ), we notice that the sensitivities in the CVL cases drastically increase beyond the

pivot scale `A ' 1.3× 104 as expected from Fig. 4.13. Likewise, in the blue-tilted cases for

σ(g2M ) (f(k) ∝ k1,2) the error bars decline drastically at around `g ' 650, corresponding

with the crossing point in Figure 4.13, as seen in the two bottom panels. Moreover, as in

the previous sections we can employ tomography, i.e., to coadd information from different

redshift slices. This increases sensitivity by a factor of ∼ 5 with respect to a fixed redshift

slice, as shown in Ref.26

4.5 Scale-Invariance of the Power Spectrum

The CMB has allowed us to very precisely measure a narrow band of the universe at

redshift z = 1100, as described in Chapter 3, whereas galaxy surveys map the local universe

up to z ∼ O(1). The region between these two probes has very valuable cosmological

information, which can be probed with the 21-cm hydrogen line.136,241

In order to reach scales beyond k ∼ 1 Mpc−1 one can observe at the dark ages, where

the matter distribution of the universe remains linear down to much smaller scales,136

enabling access to a tremendous wealth of cosmological information. This era, however,
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will be extremely difficult to probe, due to the increase in Galactic synchrotron emission at

low frequencies, as well as the atmospheric absorption of radio frequencies. LOFAR10 will

access the edge of the frequency range required for this task, although it is not likely to reach

enough sensitivity to observe primordial fluctuations. Instead, this will require building an

interferometric array on the far side of the moon.135 The proposed DARE11 satellite will

serve as a stepping stone to explore the end of the dark ages, although to constrain the

runnings to any significant level one will need a large moon-based interferometer, which we

will model as different FFTT long-baseline arrays.

4.5.1 Formalism

As opposed to the angular power spectrum noise we employed above we use a k-space

noise here. Given an antenna array with a baseline Dbase uniformly covered up to a fraction

fcover ≤ 1, observing for a time to, we can write the instrumental-noise power spectrum in

k-space as23,242

PN21(z) =
πT 2

sys

tof2
cover

χ2(z)yν(z)
λ2(z)

D2
base

, (4.109)

where λ(z) is the 21-cm transition wavelength at redshift z, yν(z) = 18.5
√

(1 + z)/10

Mpc/MHz is a conversion function from frequency ν to k||.

We take a FFTT-like experiment,242 with fcover = 1 and a variable baseline Dbase,

observing 2π steradians of the sky (so fsky = 0.5). For these experiments we will employ

a pivot scale of k∗ = 0.1 Mpc−1, to help break the degeneracy between αs and βs arising

from the augmented observable k range with respect to CMB experiments.

The baseline of each array will determine the maximum perpendicular wavenumber it

can observe, calculated as

kmax
⊥ =

2πDbase

χ(z)λ(z)
≈ 2 Mpc−1

(1 + z) + 1.1
√

1 + z
× Dbase

km
. (4.110)

For simplicity we choose a matching line-of-sight resolution for the FFTT experiments to

have a single maximum kmax that will vary with Dbase, although in practice line-of-sight

10http://www.lofar.org/
11http://lunar.colorado.edu/dare/
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resolution might be easier to achieve through finer frequency binning. We also assume that

astrophysical foregrounds will cut off line-of-sight wavenumbers smaller than243

kmin
|| ≈

2π

yν ∆ν
, (4.111)

where ∆ν is the total bandwidth probed by our experiment, and is ∆ν ≈ 50 MHz for

the dark ages (z = 20 − 100), which translates into a minimum wavenumber kmin
|| ≈ 10−2

Mpc−1. Our results do not depend sensitively on this cutoff, so we set both kmin
|| and kmin

⊥

to kmin = 10−2.

Similarly to the CMB case, the 21-cm power spectrum P21(k) depends on the primordial

parameters ns, As, αs, and βs only through the matter power spectrum Pδ(k). Unfortu-

nately, the redshift functions A(z) and T21(z) depend on the rest of ΛCDM parameters.

For simplicity we will perform an order-of-magnitude forecast of the errors only on the

primordial parameters, ignoring ωb, ωc, H0, and the reionization parameters. This is a

vast oversimplification, adopted because the primordial parameters should be moderately

decoupled from the rest of ΛCDM.

Fisher Formalism in k-space

To forecast we separate the available comoving volume in redshift bins, chosen to be

small enough that all redshift-dependent parameters are constant within each bin. We then

compute the Fisher matrix for one of these slices, centered at redshift zi, as244

F
(i)
ab =

fsky

2

Voli
(2π)3

∫ kmax

kmin

dk(2πk2)

∫ 1

−1
dµ

∂P21(k, z)

∂pa

∂P21(k, z)

∂pb[
P21(k, z) + PN21(z)

]2 , (4.112)

where Voli is the comoving volume of the slice, and pa = {As, ns, αs, βs}. We will then

incorporate the information from all the redshift bins by just adding the Fisher matrices,

i.e.,

Fab =
∑
i

F
(i)
ab . (4.113)
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4.5.2 Results

During the dark ages the spin temperature is coupled to the gas temperature through

collisions.136 This makes T 21 negative, causing absorption of CMB photons at radio fre-

quencies. The redshift range in which T 21,A < 0 is z ∼ 20 − 200. During this range T 21,

as well as A(z), including perturbations to gas temperature, can be found in Ref.25 We

note that the z ∼ 20 range might be contaminated by astrophysical effects. In any case our

results are not altered dramatically by changes in the starting redshift.

We can now compute the uncertainty in αs, when marginalizing over As and ns, for

a FFTT-like experiment. Likewise for βs, marginalizing in this case over αs as well. We

show these errors in Fig. 4.23, where it can be seen that an experiment with a baseline of

Dbase ∼ 5 km could confirm the slow-roll prediction for αs, whereas to detect βs ∼ (1−ns)3

one would need Dbase = O(100) km. With the goal of detecting a non-vanishing βs we

propose a 300-km perfectly covered array, which we just label FFTT300. We show the

results for this very-futuristic array in Table 4.6. More details can be found in Ref.22

Array σ (As) σ (ns) σ (αs) σ (βs)

FFTT300 1.4× 10−15 4.1× 10−6 7.0× 10−6 1.2× 10−5

Table 4.6: 1 − σ uncertainties in the scalar amplitude As, tilt ns, running αs, and second
running βs for different 21-cm arrays. For As, ns, and αs we only marginalize over As and
ns, whereas for βs we marginalize over αs as well, and we do not marginalize over nuisance
parameters. Here we have increased the pivot scale to k∗ = 0.1 Mpc−1.
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Figure 4.22: Expected 1σ errors on A1M and g2M for a single redshift slice at z = 30 and
∆ν = 0.1 MHz with `min = 2. We show the results for f(k) = (1− k/kA)1,2 for the dipolar
case, and for f(k) = (k/kg)

0,1,2 for the quadrupolar case. For comparison, we draw the 1σ
errors obtained from the Planck 2015 bounds, i.e., σ(A1M ) ∼ σ(g2M ) ∼ 0.01.118,240
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Figure 4.23: 1−σ uncertainties in αs and βs for an experiment measuring the dark ages
with a dense core (fcover = 1) extending for a baseline Dbase in km. We show the slow-
roll-inflation prediction for αs in gray and for βs in red, and in dashed green we show the
specifications for the proposed FFTT. In this figure we have marginalized over As and ns
to calculate σ(αs), and also over αs to compute σ(βs), and not marginalized over nuisance
parameters. Here we have chosen a pivot scale of k∗ = 0.1 Mpc−1.
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“Is such a thing even possible? Yes it is.”

— Giorgio Tsoukalos

Chapter 5

Gravitational Waves

Einstein’s theory of general relativity predicts that two massive objects orbiting each other

will emit radiation, therefore inspiriling and eventually merging. This radiation would be

in the form of gravitational waves, with a characteristic spectrum given by the orbital

frequency of the binary.

Ever since Einstein himself predicted gravitational waves there has been a strong effort

by the community to detect them. However, only the waves emitted by extremely massive

objects, orbiting very close to Earth, are within our reach. It can be argued that the

first “indirect” detection of gravitational waves was made by Hulse, Taylor, and Weisberg,

who studied the binary pulsar system PSR B1913+16.245 Over thirty years they carefully

studied the pulses from this system, and found that the Doppler shift induced by the

orbit are accelerating, due to the inspiral of the system. The gravitational waves emitted,

however, are orders of magnitude fainter than what could be detected from Earth.

It has taken nearly a century to directly detect the first gravitational waves (GWs).

The LIGO collaboration recently detected the merger of two pairs of black holes (BHs) of

tens of solar masses.246–248 These kinds of events have the best chances of being detected

by an interferometer like LIGO, since most of the energy in GWs is emitted in the last few

orbits before the merger, where the BHs orbit with a frequency of ∼ 100 Hz, within the

LIGO band.
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In this chapter I will review the GW signatures of the merger of BHs, as well as its

applications for the search of dark matter in the form of primordial black holes.

5.1 General Formalism

Here we will discuss the coalescence of two black holes. In general, we can split this

event in three phases: (i) the inspiral, where the two objects are far away and can be

described through a post-newtonian approximation, and the emission is mostly caused by

their quadrupole; (ii) the merger, starting when the objects cross their innermost stable

circular orbit (ISCO), and a burst of radiation is emitted; and (iii) the ringdown of the

resulting black hole into a stable Kerr solution, where the first few normal modes are

excited and emit gravitational waves as they relax.

Let us now review this process.

5.1.1 Energetics

We can define the chirp mass as

Mc =
(m1 ·m2)3/5

m
1/5
tot

, (5.1)

where m1 and m2 are the masses of the two objects and mtot is their sum. This will prove

to be an useful quantity.

Inspiral

Following Ref.,249 the spectral energy density at the source of the emitted GWs during

the inspiral of a circularized orbit is

dE

dfs

∣∣∣∣
inspiral

=
1

3

(
π2

fs

)1/3

M5/3
c , (5.2)
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where fs is the GW frequency at the source (related to the observed frequency fobs as

fobs = fs/(1 + z)).

Merger

The frequency at the end of the inspiral and the beginning of the merger phase is (at

the source),

fmerger(m1,m2) = 0.02/mtot, (5.3)

and the merger phase lasts

τmerger(m1,m2) = 14.7s× mtot

105M�
. (5.4)

During the merger phase, the spectral energy density is given by

dE

dfs

∣∣∣∣
merger

=
16µ2ε

mtot(fringdown − fmerger)
, (5.5)

where µ is the reduced mass and ε is the fraction of the energy in the initial BH binary that

is emitted in GWs during the merger phase, and fringdown is defined below. Throughout we

take ε = 0.04, in agreement with the uncertainties of the GW150914 event.33

Ringdown

The perturbed Kerr black hole resulting from the merger oscillates with a frequency of

quasi-normal ringdown of

fringdown(m1,m2) =

(
1− 0.63(1− α)3/10

)
2πmtot

, (5.6)

where the dimensionless spin α of the final BH is simply α = cS
Gm2

f
, assuming mf ' mtot.
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5.1.2 Amplitude and Noise

Given an energy flux dE/dfs per unit frequency we can compute the observed strain

amplitude as

hc(fobs) =
√

2
1 + z

πdL(z)

√
dE

dfs
, (5.7)

where for all practical purposes we include the inspiral and merger phases, but ignore the

contribution from the ringdown, which is short and characterized by a very fast reduction

of the hc with time (even in the high signal-to-noise GW150914 event).

As an example, in Fig. 5.1, we show the evolution of the strain amplitude over frequency

and time during the last second of the coalescence of two 30 M� BHs following a circularized

orbit.

Figure 5.1: Evolution over the last second of the amplitude of the signal strain, superimposed
on the noise as expected with the LIGO design sensitivity. Time t here is between -1 to
0 seconds. Left : assuming no significant remaining eccentricity over that last one second.
Right : assuming that during the last one second there is a remaining eccentricity that evolves
from 0.55 to 0.3, resulting in the presence of higher GW modes than just the quadrupole
(n=2) on. The different mode amplitudes also evolve with time.
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Figure 5.2: Noise and strain for gravitational-wave observations as a function of frequency
f . In blue solid I show the characteristic strain hc for both GW events deteted by LIGO
so far. In red-dashed I show the current LIGO sensitivity, computed as

√
Sh, whereas the

red–dash-dotted line is the design sensitivity of LIGO. The black-dotted line shows the
futuristic eLISA satellite sensitivity.

Notice that this characteristic strain hc can be related to the Fourier amplitude via

hc(f) = 2fh̃(f). (5.8)

Given a stochastic signal (such as noise) we can compute its power spectrum as

〈
h̃(f)h̃(f ′)

〉
=

1

2
Sh(f)δD(f − f ′). (5.9)

To find whether some given GW experiment can detect a signal we define the signal-to-noise

ratio ρ as

ρ2 ≡ 4

5

∫ ∞
0

df
|h̃(f)|2

Sh(f)
, (5.10)

where the 1/5 factor accounts from accounting for non-optimal orientation of the detector,

and Sh is the noise power spectrum of the interferometer.

For reference we show the noise (computed as
√
Sh) from LIGO (both current and the

design sensitivity), and from the futuristic space-based eLISA, in Fig. 5.2. We also show

the strain (hc) from the two BH-BH mergers observed by LIGO so far. It is interesting that
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LIGO can detect the last ∼ 5 seconds before the merger, whereas eLISA can observe the

system for ∼ years prior to their merger.

5.2 Search for Primordial Black Holes

The nature of the dark matter (DM) is one of the most longstanding and puzzling

questions in physics. Cosmological measurements have now determined with exquisite pre-

cision the abundance of DM,1,104 and from both observations and numerical simulations

we know quite a bit about its distribution in Galactic halos. Still, the nature of the DM

remains a mystery. Given the efficacy with which weakly-interacting massive particles—for

many years the favored particle-theory explanation—have eluded detection, it may be war-

ranted to consider other possibilities for DM. Primordial black holes (PBHs) are one such

possibility.30,31,250,251

In this section we will use the knowledge from gravitational waves from above, as well

as the early results from the LIGO experiment, to find out whether primordial black holes

(PBHs) can be the dark matter.

5.2.1 Formation

If they are to be the dark matter, PBHs could have formed in the primordial universe

from very-dense pockets of plasma that collapsed under their own gravitational pull. The

scales in which stellar-mass PBHs were formed are orders of magnitude beyond the reach of

any cosmological observable. However, if the inflationary dynamics were fully determined

by a single field, one could extract information about the potential V (φ) at the smallest

scales from V (φ∗) at the pivot scale (and its derivatives) by extrapolation. With this idea

in mind we attempt to find what are the values of the running αs and second running βs,

as defined in Chapter 3, which allow PBH formation.

The formation process of the PBHs is poorly understood,252 so we will not attempt

to model it. For several reviews see for example Refs.30,253,254 Here we will assume that

PBHs form at the scale at which the fluctuations become of order unity. It is clear that

any positive running, if not compensated by a negative running of higher order, will create
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enough power in some small-enough scale to have ∆2
s(k) = 1. Nonetheless, we will require

that the mass of the formed PBHs is larger than ∼ 1015 gr, to prevent PBH evaporation

before z = 0, which sets a limit on the smallest scale where PBHs can form of of kpbh = 1015

Mpc−1. We compute the αs − βs range in parameter space that produces enough power in

scales k < kpbh to generate PBHs and show it in Fig. 3.11, along with the constraints from

future experiments. In order to produce PBHs of ∼ 30M�, as suggested in Ref.32 to be

the dark matter, the relevant scale is k ∼ 105 Mpc−1, forcing the second running to be as

large as βs ≈ 0.03, which will be tested at high significance by the S4 CMB experiment.

5.2.2 Rate of GW events

Here we consider whether part of the BH-BH events detected by LIGO248 could be

PBHs. There may be a window for PBHs to be DM if the BH mass is in the range

20M� .M . 100M�.254,255 Lower masses are excluded by microlensing surveys,36,256,257

and pulsar timing arrays.258 Higher masses would disrupt wide binaries.255,259,260

We will study different constraints to PBHs from different sources in the next Section.

Here we instead focus on what can GWs teach us about this possibility.

In any galactic halo, there is a chance two BHs will undergo a hard scatter, lose energy

to a soft gravitational wave (GW) burst and become gravitationally bound. This BH binary

will merge via emission of GWs in less than a Hubble time. Note that this analysis differs

from Refs.,251,261 where the binaries are formed very early on and take a Hubble time to

merge. Below we first estimate roughly the rate of such mergers and then present the results

of more detailed calculations. We discuss uncertainties in the calculation and some possible

ways to distinguish PBHs from BH binaries from more traditional astrophysical sources.

Consider two PBHs approaching each other on a hyperbolic orbit with some impact

parameter and relative velocity vpbh. As the PBHs near each other, they produce a time-

varying quadrupole moment and thus GW emission. The PBH pair becomes gravitationally

bound if the GW emission exceeds the initial kinetic energy. The cross section for this
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process is,262

σ = 23/7 π

(
85π

6
√

2

)2/7

R2
s

(vpbh

c

)−18/7

= 1.37× 10−14M2
30 v
−18/7
pbh−200 pc2, (5.11)

where Rs = 2GMpbh/c
2 is the Schwarzchild radius, M30 the PBH mass in units of 30M�,

and vpbh−200 the relative velocity in units of 200 km sec−1.

We begin with a rough but simple and illustrative estimate of the rate per unit volume

of such mergers. Suppose that all DM in the Universe resided in Milky-Way like halos of

mass M = M12 1012M� and uniform mass density ρ = 0.002 ρ0.002M� pc−3 with ρ0.002 ∼ 1.

Assuming a uniform-density halo of volume V = M/ρ, the rate of mergers per halo would

be

N ' (1/2)V (ρ/Mpbh)2σv

' 3.10× 10−12M12 ρ0.002 v
−11/7
pbh−200 yr−1 . (5.12)

The relative velocity vpbh−200 is specified by a characteristic halo velocity. The mean cosmic

DM mass density is ρdm ' 3.6 × 1010M� Mpc−3, and so the spatial density of halos is

n ' 0.036M−1
12 Mpc−3. The rate per unit comoving volume in the Universe is thus

Γ ' 1.1× 10−4 ρ0.002 v
−11/7
pbh−200 Gpc−3 yr−1. (5.13)

The factor M12 drops out, as it should. The merger rate per unit volume also does not

depend on the PBH mass, as the capture cross section scales like M2
bh.

This rate is small compared with the 2 − 53 Gpc−3 yr−1 estimated by LIGO for a

population of ∼ 30M� − 30M� mergers,263 but it is a very conservative estimate. As

Eq. (5.13) indicates, the merger rate is higher in higher-density regions and in regions of

lower DM velocity dispersion. The DM in Milky-Way like halos is known from simulations264

and analytic models265 to have substructure, regions of higher density and lower velocity

dispersion. DM halos also have a broad mass spectrum, extending to very low masses where

the densities can become far higher, and velocity dispersion far lower, than in the Milky

Way. To get a very rough estimate of the conceivable increase in the PBH merger rate
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due to these smaller-scale structures, we can replace ρ and v in Eq. (5.13) by the values

they would have had in the earliest generation of collapsed objects, where the DM densities

were largest and velocity dispersions smallest. If the primordial power spectrum is nearly

scale invariant, then gravitationally bound halos of mass Mc ∼ 500 M�, for example, will

form at redshift zc ' 28 − log10(Mc/500M�). These objects will have virial velocities

v ' 0.2 km sec−1 and densities ρ ' 0.24 M� pc−3.266 Using these values in Eq. (5.13)

increases the merger rate per unit volume to

Γ ' 1400 Gpc−3 yr−1. (5.14)

This would be the merger rate if all the DM resided in the smallest haloes. Clearly, this is

not true by the present day; substructures are at least partially stripped as they merge to

form larger objects, and so Eq. (5.14) should be viewed as a conservative upper limit.

Having demonstrated that rough estimates contain the merger-rate range 2−53 Gpc−3 yr−1

suggested by LIGO, we now turn to more careful estimates of the PBH merger rate. As

Eq. (5.13) suggests, the merger rate will depend on a density-weighted average, over the en-

tire cosmic DM distribution, of ρ0.002v
−11/7
pbh−200. To perform this average, we will (a) assume

that DM is distributed within galactic halos with a Navarro-Frenk-White (NFW) profile3

with concentration parameters inferred from simulations; and (b) try several halo mass

functions taken from the literature for the distribution of halos.

The PBH merger rate R within each halo can be computed using

R = 4π

∫ Rvir

0
r2 1

2

(
ρnfw(r)

Mpbh

)2

〈σvpbh〉 dr (5.15)

where ρnfw(r) = ρs
[
(r/Rs)(1 + r/Rs)

2
]−1

is the NFW density profile with characteristic

radius rs and characteristic density ρs. Rvir is the virial radius at which the NFW profile

reaches a value 200 times the comoving mean cosmic density and is cutoff. Here, Mpbh is

the PBH mass and vpbh is the relative velocity of two PBHs. The angle brackets denote an

average over the PBH relative velocity distribution in the halo. The merger cross section σ

is given by Eq. (5.11). We define the concentration parameter C = Rvir/Rs. To determine

the profile of each halo, we require C as a function of halo mass M . We will use the

concentration-mass relations fit to DM N-body simulations by both Ref.267 and Ref.4
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We now turn to the average of the cross section times relative velocity. The one-

dimensional velocity dispersion of a halo is defined in terms of the escape velocity at radius

Rmax = 2.1626Rs, the radius of the maximum circular velocity of the halo. i.e.,

vdm =

√
GM(r < rmax)

rmax
=
vvir√

2

√
C

Cm

g(Cm)

g(C)
, (5.16)

where g(C) = ln(1 + C) − C/(1 + C), and Cm = 2.1626 = Rmax/Rs. We approximate

the relative velocity distribution of PBHs within a halo as a Maxwell-Boltzmann (MB)

distribution with a cutoff at the virial velocity. i.e.,

P (vpbh) = F0

[
exp

(
−
v2

pbh

v2
dm

)
− exp

(
− v

2
vir

v2
dm

)]
, (5.17)

where F0 is chosen so that 4π
∫ vvir

0 P (v)v2dv = 1. This model provides a reasonable match to

N-body simulations, at least for the velocities substantially less than than the virial velocity

which dominate the merger rate (e.g., Ref.268). Since the cross-section is independent of

radius, we can integrate the NFW profile to find the merger rate in any halo:

R =

(
85π

12
√

2

)2/7 9G2M2
vir

cR3
s

(
1− 1

(1 + C)3

)
D(vdm)

g(C)2
, (5.18)

where

D(vdm) =

∫ vvir

0
P (v, vdm)

(
2v

c

)3/7

dv, (5.19)

comes from Eq. (5.17).

Eq. (5.11) gives the cross section for two PBHs to form a binary. However, if the binary

is to produce an observable GW signal, these two PBHs must orbit and inspiral; a direct

collision, lacking an inspiral phase, is unlikely to be detectable by LIGO. This requirement

imposes a minimum impact parameter of roughly the Schwarzchild radius. The fraction of

BHs direct mergers is ∼ v2/7 and reaches a maximum of ∼ 3% for vpbh = 2000 km s−1.

Thus, direct mergers are negligible. We also require that once the binary is formed, the

time until it merges (which can be obtained from Ref.269) is less than a Hubble time. The

characteristic time it takes for a binary BH to merge varies as a function of halo velocity

dispersion. It can be hours for Mvir ' 1012M� or kyrs for Mvir ' 106M�, and is thus
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Figure 5.3: (Left) The PBH merger rate per halo as a function of halo mass. The solid line
shows the trend assuming the concentration-mass relation from Ref.,4 and the dashed line
that from Ref.267 To guide the eye, the dot-dashed line shows a constant BH merger rate
per unit halo mass.
(Right) The total PBH merger rate as a function of halo mass. Dashed and dotted lines
show different prescriptions for the concentration-mass relation and halo mass function.

instantaneous on cosmological timescales. Given the small size of the binary, and rapid

time to merger, we can neglect disruption of the binary by a third PBH once formed. BH

binaries can also form through non-dissipative three-body encounters. The rate of these

binary captures is non-negligible in small halos, but they generically lead to the formation

of wide binaries that will not be able to harden and merge within a Hubble time. This

formation mechanism should not affect our LIGO rates. The merger rate is therefore equal

to the rate of binary BH formation, Eq. (5.18).

Fig. 5.3 shows the contribution to the merger rate, Eq. (5.18), for two concentration-

mass relations. As can be seen, both concentration-mass relations give similar results. An

increase in halo mass produces an increased PBH merger rate. However, less massive halos

have a higher concentration (since they are more likely to have virialized earlier), so that

the merger rate per unit mass increases significantly as the halo mass is decreased.

To compute the expected LIGO event rate, we convolve the merger rate R per halo with

the mass function dn/dM . Since the redshifts (z . 0.3) detectable by LIGO are relatively

low we will neglect redshift evolution in the halo mass function. The total merger rate per

unit volume is then,

V =

∫
(dn/dM)(M)R(M) dM. (5.20)
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Given the exponential falloff of dn/dM at high masses, despite the increased merger rate

per halo suggested in Fig. 5.3, the precise value of the upper limit of the integrand does not

affect the final result.

At the lower limit, discreteness in the DM particles becomes important, and the NFW

profile is no longer a good description of the halo profile. Furthermore, the smallest halos

will evaporate due to periodic ejection of objects by dynamical relaxation processes. The

evaporation timescale is

tevap ≈ (14N/ lnN ) [Rvir/(C vdm)] , (5.21)

where N is the number of individual BHs in the halo, and we assumed that the PBH mass

is 30M�. For a halo of mass 400M�, the velocity dispersion is 0.15 km sec−1, and the

evaporation timescale is ∼ 3 Gyr. In practice, during matter domination, halos which have

already formed will grow continuously through mergers or accretion. Evaporation will thus

be compensated by the addition of new material, and as halos grow new halos will form

from mergers of smaller objects. However, during dark-energy domination at z . 0.3, 3

Gyr ago, this process slows down. Thus, we will neglect the signal from halos with an

evaporation timescale less than 3 Gyr, corresponding to M < 400M�. This is in any case

13 PBHs, and close to the point where the NFW profile is no longer valid.

The halo mass function dn/dM is computed using both semi-analytic fits to N-body

simulations and with analytic approximations. Computing the merger rate in the small

halos discussed above requires us to extrapolate both the halo mass function and the

concentration-mass relation around six orders of magnitude in mass beyond the small-

est halos present in the calibration simulations. High-resolution simulations of 10−4M�

cold dark matter micro-halos270,271 suggest that our assumed concentration-mass relations

underestimate the internal density of these halos, making our rates conservative.

The mass functions depend on the halo mass through the perturbation amplitude

σ(Rvir) at the virial radius Rvir of a given halo. Due to the scale invariance of the window

functions on small scales, σ(Rvir) varies only by a factor of two between Mvir = 109M� and

103M�. Thus the extrapolation in the mass function is less severe than it looks. We also

note that the scale-invariant nature of the initial conditions suggests that the shape of the
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halo mass function should not evolve unduly until it reaches the scale of the PBH mass, or

evaporation cutoff.

To quantify the uncertainty induced by the dn/dM extrapolation, we obtained results

with two different mass functions: the classic analytic Press-Schechter calculation272 and

one calibrated to numerical simulations from Tinker et al.273 The agreement between the

two small-scale behaviors suggests that extrapolating the mass functions is not as blind as

it might otherwise seem. We also include a third mass function, due to Jenkins,274 that

includes an artificial small-scale mass cutoff at a halo mass Mvir ∼ 106M�. This cutoff is

inserted to roughly model the mass function arising if there is no power on scales smaller

than those currently probed observationally. We include it to provide a very conservative

lower limit to the merger rate if, for some reason, small-scale power were suppressed. We do

not, however, consider it likely that this mass function accurately represents the distribution

of halo masses in our Universe.

Fig. 5.3 shows the merger rate per logarithmic interval in halo mass. In all cases,

halos with Mvir . 109M� dominate the signal, due to the increase in concentration and

decrease in velocity dispersion with smaller halo masses. The Tinker mass function, which

asymptotes to a constant number density for small masses, produces the most mergers.

Press-Schechter has ∼ 50% fewer events in small halos, while the Jenkins mass function

results in merger rates nearly four orders of magnitude smaller (and in rough agreement

with Eq. (5.13)).

We integrate the curves in Fig. 5.3 to compute the total merger rate V. All mass

functions give a similar result, ∼ (3±1)×10−4 Gpc−3 yr−1, from halos of masses & 109M�,

representing for the Tinker and Press-Schechter mass function a small fraction of the events.

When we include all halos with Mvir > 400M�, the number of events increases dramatically,

and depends strongly on the lower cutoff mass Mc for the halo mass. Both the Press-

Schechter and Tinker mass functions are for small halos linear in the integrated perturbation

amplitude ∝ 1/σ(Rvir) at the virial radius Rvir of the collapsing halo. In small halos,

1/σ(Rvir) is roughly constant. Thus for a mass function MF(σ), we have

(dn/dM) ∼ (C log σ/dM) [MF(σ)/Mvir] ∼M−2
vir . (5.22)
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The concentration is also a function of 1/σ(Rvir) and it too becomes roughly constant

for small masses. Assuming a constant concentration, the merger rate per halo scales as

R ∼M10/21. Thus, Eq. (5.20) suggests that V ∼M−11/21
c . This compares well to numerical

differentiation of Fig. 5.3, which yields V ∼M−0.51
c .

The integrated merger rate is thus

V = 2 f(Mc/400M�)−11/21 Gpc−3 yr−1, (5.23)

with f ' 1 for the Tinker mass function, and f ' 0.6 for the Press-Schechter mass function

(the Jenkins mass function results in an event rate V ' 0.02 Gpc−3 yr−1, independent of

Mc . 106M�).

A variety of astrophysical processes may alter the mass function in some halos, especially

within the dwarf galaxy range, 109 − 1010M�. However, halos with Mvir . 109M� are too

small to form stars against the thermal pressure of the ionized intergalactic medium275

and are thus unlikely to be affected by these astrophysical processes. Inclusion of galactic

substructure, which our calculation neglects, should boost the results. However, since the

event rate is dominated by the smallest halos, which should have little substructure, we

expect this to make negligible difference to our final result.

In the above, we have assumed an NFW profile, which has a singular density as r → 0.

The Einasto profile276 avoids this feature, and is

ρ(R) = ρ0 exp

(
− 2

α

[(
R

Rs

)α
− 1

])
(5.24)

where α = 0.18. This profile shape reduces the amplitude of the central density peak,

spreading the mass to wider radii. As most of the mergers occur outside the central peak,

this increases the implied merger rate by 50% to ∼ 3 Gpc−3 yr−1.

Our assumption of an isotropic MB-like velocity distribution in the halo may also un-

derestimate the correct answer, as any other velocity distribution would have lower entropy

and thus larger averaged v−11/7. Finally, the discreteness of PBH DM will provide some

Poisson enhancement of power on ∼ 400M� scales. More small-scale power would probably

lead to an enhancement of the event rate beyond Eq. (5.23).
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The recent LIGO detection of two merging ∼ 30M� black holes suggests a 90% C.L.

event rate263 of 2 − 53 Gpc−3 yr−1 if all mergers have the masses and emitted energy of

GW150914. It is interesting that—although there are theoretical uncertainties—our best

estimates of the merger rate for 30M� PBHs, obtained with canonical models for the DM

distribution, fall in the LIGO window.

We have assumed a population of PBHs with the same mass. The basic results obtained

here should, however, remain unaltered if there is some small spread of PBH masses, as

expected from PBH-formation scenarios, around the nominal value of 30M�.

PBH mergers may also be interesting for LIGO/VIRGO even if PBHs make up only a

fraction fpbh of the DM. In this case, the number density of PBHs will be reduced by fpbh.

The cutoff mass will increase as Mc ∼ f−1
pbh if we continue to require > 13 PBHs in each

halo to avoid halo evaporation. The overall event rate will be V ∼ 2f
53/21
pbh Gpc−3 yr−1.

Advanced LIGO will reach design sensitivity in 2019,277,278 and will probe z < 0.75, an

increase in volume to ≈ 500 Gpc3. Thus over the six planned years of aLIGO operation,

while we should expect to detect ∼ 6000 events with fpbh = 1, we will expect at least one

event if fpbh > 0.03.

Distinguishing whether any individual GW event, or even some population of events,

are from PBH DM or more traditional astrophysical sources will be extremely complicated.

PBH mergers are expected to have no electromagnetic/neutrino counterparts whatsoever.

A DM component could conceivably show up in the BH mass spectrum as an excess of

events with BH masses near 30M� over a more broadly distributed mass spectrum from

astrophysical sources.279,280 Still, there are some prospects, which we now study.

5.2.3 Distribution

Measurements of the cross-correlation of the GW events with overlapping galaxy cat-

alogs may provide an useful tool to determine if BH mergers trace the stellar mass of the

Universe, as would be expected from mergers of the endpoints of stellar evolution. If on

the other hand the BHs are of primordial origin, their merging would be preferentially

distributed more like small-scale DM halos instead of luminous galaxies, and thus have

a lower cross-correlation with galaxy surveys.34 Here we forecast the expected precision

147



CHAPTER 5. GRAVITATIONAL WAVES

of the cross-correlation measurement for current and future GW detectors such as LIGO

and the Einstein Telescope. We then predict how well these instruments can distinguish

the model that identifies high-mass BH-BH mergers as the merger of primordial black holes

that constitute the dark matter in the Universe from more traditional astrophysical sources.

In order to measure the correlation between the host halos of BH-binaries and galaxies,

we use measurements of their number counts. We consider angular projections C`, that can

be calculated from the underlying 3D matter power spectrum by using

CXY` = r

∫
4πdk

k
∆2(k)WX

` (k)W Y
` (k) , (5.25)

where W
{X,Y }
` are the source distribution window functions for the different observables

(here X and Y stand for galaxies and GWs), ∆2(k) is the dimensionless matter power

spectrum today, and r is a cross-correlation coefficient (r ≡ 1 for the auto-correlation case,

X = Y ).

The window function for the number count distributions can be written as:

WX
` (k) =

∫ ¯dNX(z)

dz
bX(z)j`[kχ(z)]dz . (5.26)

dN̄X(z)/dz is the source redshift distribution, normalized to unity within the same redshift

range as the window function; bX(z) is the bias that relates the observed correlation function

to the underlying matter distribution, that we assume to be scale-independent on large

scales; j`(x) is the spherical Bessel function of order `, and χ(z) is the comoving distance.

The integral in Equation (5.26) is performed over the redshift range corresponding to the

selection function of the galaxy survey.

For the galaxy catalog we assume a constant redshift distribution of galaxies. As for

GW events, their number can be estimated by

dNGW (z)

dz
≈ R(z)Tobs

4πχ2(z)

(1 + z)H(z)
, (5.27)

where R(z) is the redshift-dependent merger rate, Tobs is the observation time and H(z) is
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the Hubble parameter. The errors in the auto- and cross-correlations are given by

σ
CgGW
`

=

√√√√(Cg GW
`

)2
+
[(
Cgg` + 1

n̄g

)(
CGW GW
` + 1

n̄GW

)]
(2`+ 1)fsky

, (5.28)

and

σCg g
`

=

√√√√2
[
Cgg` + 1

n̄g

]2

(2`+ 1)fsky
, (5.29)

where fsky is the fraction of the sky observed and n̄{g,GW} is the average number of sources

per steradian, i.e. the integral of dN/dz (Eq. (5.27) in the GW case).

We now define the effective correlation amplitude Ac ≡ r × bGW , where r is the cross-

correlation coefficient of Equation (5.25). This cross-correlation coefficient parametrizes the

extent to which two biased tracers of the matter field are correlated. How well this amplitude

can be measured is shown in Fig. 5.4. I show results as a function of the minimum scale

probed `max and the number of BH-BH mergers detected, defined as NGW = TobsRVobs,

where R is the integrated average merger rate in units of Gpc−3 yr−1, and Tobs and Vobs

are the relevant observation time and volume. I keep the maximum redshift as zmax = 1.5.

An error of σ(Ac) = 0.5 can be achieved with those parameters, which translates into a

prospective 2−σ “measurement” of a less-biased GW population, and hence a PBH origin.

We refer the reader to Ref.34 for more details.

5.2.4 Eccentricities

The binaries in the local Universe are formed on very elongated orbits, so the GW

waveforms will initially have high ellipticity, shown as higher frequency harmonics in the

GW signal.269 For example, for an event occurring at a redshift z = 0.09 and with a final-

BH spin of α− 0.67 (roughly corresponding to the best-fit values for the GW150914 event),

we see that such an event would be easily traced over the expected final design noise of

LIGO,277 during a full second before the merger. If instead, those black holes were on an

elliptical orbit with eccentricity e evolving from 0.55 to 0.3 during that last second of the

coalescence (as in Fig. 5.1), then the GW power would be emitted also in other modes at

frequencies fnsource = n ·forb, where forb is the Keplerian orbital frequency of the binary. As
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Figure 5.4: Forecast errors on the cross-correlation amplitude Ac (colorbar) as a function
of `max, the maximum multipole accessible, and the number NGW of GW events observed,
assuming they are distributed up to a maximum redshift zmax = 1.5.

can be clearly seen, in addition to observing the n = 2 (quadrupole) mode, LIGO with its

expected final-design sensitivity should clearly be able to identify higher modes at least up

to n = 8, since for frequencies > 50Hz all these additional modes have a strain amplitude

that is at least a factor of 3 higher than that of the noise. We note that the extent to which

the higher modes can be identified relies on the waveforms used by the LIGO collaboration.

We also note the eccentricity gets reduced within the last second of the inspiral, which

changes the relative power of GWs between modes.

Observing higher modes can also allow the identification of events with eccentricity

at the last stages of the inspiral with a higher signal-to-noise ratio (S/N) than that of the

equivalent circularized objects. In fact, properly accounting for the presence of higher modes

is relevant to understanding the physical properties (mainly the masses and the distance)

of the binary. In Table 5.1, we present the expected S/N at LIGO and ET. For LIGO

we assume the final design sensitivity while for the Einstein Telescope we used the design

option ”ET-B” of Ref.,281 which is the more pessimistic at low frequencies (relevant for

high-mass BH coalescence events). As can be seen, the exact contribution to the S/N from

the various GW modes at the inspiral depends on the eccentricity of the binary once its

GWs enter the frequency band of the observatories, denoted here as ein (not to be confused

with the eccentricity at formation of the binary e0), as well as the final eLSO. Yet, for events
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z ein→eLSO S/N Merger ∆(S/N) Ins. ∆(S/N) Ins. ∆(S/N) Ins. ∆(S/N) Ins.
& Ringdown (n=2) (n=3) (n=4) (n=5)

0.09 0 → 0 44 +25 - - -
0.09 0.6 → 0 44 +22 +33 +35 +31
0.09 0.6 → 0.3 44 +8.0 +30 +37 +33
0.75 0 → 0 6.8 +1.3 - - -
0.75 0.6 → 0.3 6.8 +1.2 +3.3 +4.2 +4.1

Table 5.1: The contribution of higher GW modes at elliptical orbits of 30 M� PBHs detected
by the LIGO experiment. We assume that when entering the frequency band of observation
the binary has an initial eccentricity ein that evolves down to eLSO. The total S/N is
the linear sum of columns 2-6 (we have accounted for the quadratic sum from the various
phases). We take α = 0.67 in Eq. (5.6) and ε = 0.04 in Eq. (5.5).

with significant eccentricities during observation, higher modes can contribute significantly

to the total S/N. Furthermore, these modes would reduce the overall contribution of the

quadrupole mode to the S/N.

The results for two cases are shown in Table 5.1, where it is clear that very-eccentric

events have significant power in n > 2 modes. In this Table we do not include the n = 1

mode since its contribution to the S/N is small, and depends on the exact assumptions of

the instrument sensitivity at the lowest frequencies. For LIGO, we assume the frequency

band starts as 20 Hz. Any further advances allowing that conservative value to be reduced

would increase the S/N values quoted and the capacity of these observatories to identify

elliptical orbits at coalescence.

With the numbers here mentioned it is expected that LIGO will detect O(1) eccentric

events during its 10-year life, assuming that the entirety of the dark matter is made of

PBHs. Only futuristic telescopes will be able to observe these events in a large-enough

quantity to confirm whether the dark matter is made of PBHs.35
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“They already put my ideas into practice.”

— Tommy Wiseau

Chapter 6

Fast Radio Bursts

Although observations indicate that dark matter accounts for a significant share of the en-

ergy density of our Universe,1 we do not know its composition. Longtime candidates to make

up the dark matter are massive compact halo objects (MACHOs).36 They were originally

proposed to be as light as 10−7M� and as heavy as the first stars (∼ 103M�).282 Over the

years, different experiments have progressively constrained the fraction fDM of dark matter

that can reside in MACHOs with a given mass, placing tight upper bounds over most of the

vast range above. High-mass (& 100M�) MACHOs, for example, are constrained by the

fact that they would perturb wide stellar binaries in our Galaxy.260 Meanwhile, lower-mass

(. 20M�) MACHOs are effectively ruled out as the sole component of Galactic dark matter,

as they would create artificial variability in stars, due to gravitational microlensing.256

However, there remains a window of masses between 20 and 100M�, where the con-

straints are weaker, and in which arguably all the cosmological dark matter could be in the

form of MACHOs.283,284 This is a particularly interesting window, as it has been recently

argued in Ref.32 that if primordial black holes (PBHs)30,31 in the ∼ 30M� mass range are

the constituents of dark matter, they form binaries in halos, coalesce, and emit observable

gravitational waves, with an event rate consistent with the published LIGO detection.247
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6.1 Gravitational lensing

In this chapter we propose to use the strong lensing of fast radio bursts (FRBs) to

probe MACHOs of masses & 20M�, including PBHs, and either confirm that they make

up the dark matter or close this window.

6.1.1 The FRB Properties

FRBs are strong radio bursts with a very short duration, which makes them ideal as

microlensing targets. Their temporal width is increased by the dispersion measure (DM),

which measures the time delay of photons with different radio frequencies due to scattering

by free electrons on their way to Earth. All detected FRBs to date possess high DMs, which

yield burst widths of ∼ 1− 10 ms.38,285–288 These values of the DM are several times larger

than the expected contribution from free electrons within the Milky Way,289 suggesting

their origin is extragalactic (some authors, however, prefer a Galactic origin290). Proposed

sources of extragalactic FRBs include merging neutron stars291 or white dwarfs,292 as well

as bursts from pulsars.293

Strong lensing of a FRB by a MACHO will generate two images of the burst. While

their angular separation may be too small to be resolved, the time delay between them, on

the order of milliseconds for a MACHO lens with mass ML ∼ 20− 100M�, might be large

enough to enable a detection of two separate peaks, rather than one, if the time delay is

bigger than the pulse width. Fortunately, the lensing of FRBs by compact objects is not

necessarily an unlikely occurrence. In fact, if all the dark matter is in MACHOs, roughly

one in 50 FRBs originating at z = 0.5 should be lensed. If there are ∼ 104 FRBs on the

full sky each day,294 then as many as ∼ 20 microlensed FRBs may be reaching Earth daily.

Upcoming surveys, like APERTIF,295 UTMOST,296 HIRAX,297 or CHIME,298 which will

map a considerable fraction of the sky, may thus see a significant number of lensed FRBs.

Below, we calculate the effects of microlensing on a given FRB and compute the optical

depth for strong lensing by compact objects. We then combine those results with different

redshift distributions of FRBs and estimate how many lensed bursts are expected if MA-

CHOs make up all the dark matter. We also estimate the smallest fraction fDM that will
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give rise to a detectable rate of microlensed events.

6.1.2 Lensing Formalism

A MACHO of mass ML can be treated as a point lens with an (angular) Einstein radius:

θE = 2

√
GML

c2

DLS

DSDL
, (6.1)

where DS , DL, and DLS are the (angular-diameter) distances to the source, to the lens,

and between the source and the lens, respectively.299 A point lens produces two images, at

positions θ± = (β ±
√
β2 + 4θ2

E)/2, where β is the (angular) impact parameter. The time

delay between these two images is

∆t =
4GML

c3
(1 + zL)

[
y

2

√
y2 + 4 + log

(√
y2 + 4 + y√
y2 + 4− y

)]
, (6.2)

where y ≡ β/θE is the normalized impact parameter and zL is the redshift of the lens. We

also define the flux ratio Rf as the absolute value of the ratio of the magnifications µ+ and

µ− of both images; i.e.,

Rf ≡
∣∣∣∣µ+

µ−

∣∣∣∣ =
y2 + 2 + y

√
y2 + 4

y2 + 2− y
√
y2 + 4

> 1. (6.3)

To claim that a FRB is strongly lensed we will require three conditions. First is that

the brighter image has a signal-to-noise ratio of 10. Second is that the observed time

delay is larger than some reference time ∆t, which will place a lower bound on the impact

parameter y > ymin(ML, zL), calculated via Eq. (6.2). Finally, we demand that the flux

ratio Rf is smaller than some critical Rf (which we take to be redshift independent), to

ensure that both events are observed (note that for the fainter image the look-elsewhere

effect is no longer relevant). This forces the impact parameter to be smaller than ymax =[
(1 +Rf )/

√
Rf − 2

]1/2

.
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6.2 Lensing Probability

We now calculate the probability for a FRB to be lensed.

6.2.1 Lensing Optical Depth

The lensing optical depth of a source at redshift zS is given by

τ(ML, zS) =

∫ zS

0
dχ(zL)(1 + zL)2nL σ(ML, zL), (6.4)

where χ(z) is the comoving distance at redshift z, nL is the comoving number density of

lenses, and σ is the lensing cross section of a point lens of mass ML, given by an annulus

between the maximum and minimum impact parameters by

σ(ML, zL) =
4πGML

c2

DLDLS

DS

[
y2

max − y2
min(ML, zL)

]
. (6.5)

Equation (6.4) can be recast by using the Hubble parameter both at the redshift of the lens,

H(zL), and today, H0, as

τ(ML, zS) =
3

2
fDMΩc

∫ zS

0
dzL

H2
0

cH(zL)

DLDLS

DS

× (1 + zL)2
[
y2

max − y2
min(ML, zL)

]
, (6.6)

where Ωc = 0.24 is the cold-dark-matter density today, and the only remaining dependence

on the lens mass ML is through ymin. Lower MACHO masses result in a lower optical depth,

especially at lower source redshifts, due to our minimum time-delay requirement.

To calculate the integrated lensing probability, the optical depth for lensing of a single

burst has to be convolved with the redshift distribution of incoming FRBs. We will con-

sider two possible redshift distributions. First, we assume FRBs have a constant comoving

number density, in which case the number of FRBs in a shell of width dz at redshift z

is proportional to the shell’s comoving volume dV (z) =
[
4πχ2(z)/H(z)

]
dz,300 divided by

(1 + z) to account for the effect of cosmological time dilation in the rate of bursts. To

represent an instrumental signal-to-noise threshold we introduce a Gaussian cutoff at some
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redshift zcut, so the constant-density redshift distribution function would be

Nconst(z) = Nconst
χ2(z)

H(z)(1 + z)
e−d

2
L(z)/[2d2L(zcut)], (6.7)

where dL is the luminosity distance, and Nconst is a normalization factor to ensure that

Nconst(z) integrates to unity. Second, we consider a scenario in which FRBs follow the

star-formation history (SFH),301 whose density is parametrized as

ρ̇∗(z) = h
a+ bz

1 +
(
z
c

)d , (6.8)

with a = 0.0170, b = 0.13, c = 3.3, d = 5.3, and h = 0.7.302,303 In this case, the SFH-based

redshift distribution function NSFH(z) is,

NSFH(z) = NSFH
ρ̇∗(z)χ2(z)

H(z)(1 + z)
e−d

2
L(z)/[2d2L(zcut)], (6.9)

and the normalization factor NSFH is chosen to have NSFH integrate to unity.

In Figure 6.1 we plot a histogram of the estimated redshifts for the current FRB cata-

log,38 which is well fit by the two FRB distribution functions above, if a cutoff of zcut = 0.5

is chosen.

6.2.2 Detection Prospects

To estimate the total number of FRBs observable in the near future, we consider an

experiment like CHIME.298 In Ref.294 it was estimated that CHIME will detect ∼ 730 −
15000 FRBs per year, and so we will take a fiducial, albeit optimistic, value of NFRB = 104

bursts per year.

Interchannel dispersion broadens the FRB pulse arrival time to

δtDM = 0.3 ms× DM

800 pc cm−3

∆ν

24 kHz

(
800 MHz

ν

)3

, (6.10)

where ν is the frequency, ∆ν is the bandwidth, which will be 24 MHz, or smaller, for

transient studies with CHIME,298 and DM is the dispersion measure, given by the integrated
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Figure 6.1: A histogram of the 17 FRBs observed to date, with inferred redshifts.38 FRB
redshift distributions are plotted assuming a constant comoving density (solid-red), and
following the star-formation history (dashed-blue), both with a cutoff at zcut = 0.5, and
normalized to match the total number of detected events.

column density of electrons.304 The total pulse width of a FRB will have a contribution from

its (unknown) intrinsic pulse profile, as well as scattering with the intergalactic medium,305

and the lensing time delay has to be bigger than its total width to be easily detectable. To

account for this, we will require a lensing time delay longer than ∆t = 1 ms as our baseline

case. FRBs might have a distribution of intrinsic widths; wider bursts would give rise to

more pessimistic results, whereas narrower FRBs might produce more optimistic ones. We

will therefore show results for ∆t = 0.3 ms and ∆t = 3 ms, as well.

Given how little is known about the luminosity function of FRBs,294,300 we will not

attempt to model the lensing magnifications µ+ and µ− observable at each source redshift.

Instead, we will simply require a constant flux ratio Rf = 5 as a threshold, since this will

make the echoed image detectable.

Now, given a distribution function N(z) for FRBs, we can calculate their integrated

optical depth τ̄(ML), due to MACHOs of mass ML, as

τ̄(ML) =

∫
dz τ(z,ML)N(z). (6.11)
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We show this quantity in Figure 6.2 for the same two distribution functions discussed above.

It is clear that the distribution mimicking the SFH produces a higher optical depth, due to

the higher redshift of most sources.
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Figure 6.2: Integrated optical depth, with weightings corresponding to a population of
FRBs with constant comoving density (red curves) and following the SFH (blue curves),
both with a cutoff at zcut = 0.5. In dashed, solid, and dotted lines we require a time delay
∆t > 0.3, 1, and 3 ms, respectively. In all cases, fDM = 1.

We can finally forecast the number Nlensed of lensed FRBs that a fraction fDM of dark

matter, in the form of point lenses of different masses, will yield. In all cases we are in the

optically thin regime, where the probability to be lensed is just Plens = 1− e−τ̄ ≈ τ̄ . Thus,

if we observe a number NFRB of FRBs, τ̄NFRB of them should be lensed. Notice that, even

if all the dark matter was composed of compact objects of a single mass ML, the lensing

time delays induced on FRBs would not have a unique value, due to the different impact

parameters and redshifts of the lenses.

In Fig. 6.3 we show the joint probability distribution function (PDF) for a time delay ∆t

and a flux ratio Rf , assuming a 30 M� lens. This PDF has been calculated by convolving

Eqs. (6.2) and (6.3), assuming a flat distribution in impact parameters squared up to y2
max,

with a population of FRBs following Nconst(z), and shows a clear correlation between the

lensing time delays and the flux ratios. We also show the probability P (∆t) to find a time

delay ∆t between the two events, calculated by marginalizing the PDF over Rf < 5. This
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time-delay distribution would be broadened further if the MACHOs had some range of

masses instead of a single ML.

P(Δt)
Δ

t  
[m

s]

Rf

Figure 6.3: Joint probability distribution for the flux ratio Rf and time delay ∆t between
the two peaks of a FRB lensed by a 30 M� MACHO. On the right, we marginalize over Rf ,
and show the probability to find a time delay ∆t. The shaded region corresponds to time
delays smaller than 1 ms, too short to be detectable.

Considering the most conservative case of a constant-density distribution of FRBs,

with a cutoff at redshift zcut = 0.5 as discussed above, and 104 total detected FRBs,

corresponding to one year of observation with CHIME, we will see a number Nlensed = 13

of lensed bursts with a time delay longer than 1 ms, if all the dark matter is in the form

of 20M� MACHOs. If, however, the dark matter is made of 30M� PBHs, as suggested in

Ref.,32 the number of lensed events that will be detected is Nlensed = 60. For all MACHO

masses larger than ML = 100M� the number of lensed events is simply Nlensed = 130. Here

we have required a flux ratio smaller than Rf = 5 to observe both bursts, although high

MACHO masses produce time delays much in excess of the threshold values of ∆t, so the

cross section annulus in Eq. (6.6) becomes a circle, and Nlensed scales roughly linearly with

Rf .
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6.3 Constraints to Compact Dark Matter

We can also determine the smallest fraction fDM that will produce at least one lensed

event in a survey with 104 FRBs. Fig. 6.4 shows the regions of the fDM-ML parameter

space that give rise to at least one such event for lensing time delays longer than 0.3, 1, and

3 ms. We also show the current constraints to fDM from the EROS Collaboration,256 the

MACHO Collaboration,36 and wide-binary disruption.260

From Figure 6.4 we see that, if none of the 104 upcoming FRBs is lensed, the amount

of dark matter in MACHOs will be constrained to fDM < 0.8% above a cutoff mass of

∼ 100M�, under the assumption that the smallest time delay detectable is 1 ms. This

will thus place more stringent constraints over this mass range than those coming from

wide-binary disruption,260 by more than an order of magnitude.
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Figure 6.4: Fraction fDM of dark matter allowed in the form of point lenses of mass ML, if
no events out of NFRB = 104 are lensed, where the FRBs have a constant comoving density
with a cutoff at zcut = 0.5. In dashed, solid, and dotted black we show our constraints
when we require a time delay ∆t > 0.3, 1, and 3 ms, respectively. In red we show the
current constraints from the MACHO Collaboration, in green the ones from the EROS
Collaboration, and in blue the constraints from galactic wide binaries.

For masses in the 20 − 100M� window, outside the reach of the Galactic-lensing sur-

veys,36 a dark-matter fraction of fDM ∼ 8%, at the lower-mass end of this range, and

0.8% at the higher-mass end, would suffice to detect one lensed FRB, if 104 FRBs are ob-

160



CHAPTER 6. FAST RADIO BURSTS

served with a time resolution of 1 ms. As the number of lensed events scales trivially with

NFRB/104, even a smaller number of ∼ 103 FRBs per year should suffice to detect ∼ 1− 10

lensed FRBs in the first year of operation of CHIME, if MACHOs in this window made up

the dark matter. This conservative number will still allow us to place constraints on fDM,

comparable in magnitude to all current surveys (fDM ≤ 10%), but over the whole mass

range ML > 20M�, if no lensed events are observed. Interestingly, even with a time resolu-

tion of 3 ms one would detect at least one lensed event, if MACHOs of mass ML & 50M�

were the main component of dark matter.

6.3.1 Disentangling the Lensing Signal

FRBs might suffer intrinsic repetition. For example, the event FRB 121102 has been

observed repeating as quickly as over minutes.288 Lensing by a MACHO of mass ML ∼
105M� creates a time delay also on the scale of minutes, which then sets a natural ceiling

to the MACHO mass that can be unequivocally probed with lensing of FRBs. In general,

the correlation between time delays and flux ratios of the bursts, as shown in Fig. 6.3, will

be of invaluable help to statistically determine whether repetition of FRBs is caused by

microlensing.

Throughout this work we have assumed that an upcoming CHIME-like experiment will

detect events up to a cutoff redshift of zcut = 0.5, as this fits the current FRB data. We

can also calculate constraints for an increased cutoff redshift, e.g., zcut = 0.7, representing

a more optimistic redshift distribution. In that case, for ∆t = 1 ms and Rf = 5, we

expect Nlensed = 35 lensed events out of 104 if dark matter is made of MACHOs of mass

ML = 20M�, Nlensed = 110 if this mass is ML = 30M�, and Nlensed & 200 for masses higher

than 75M�. Were none of these 104 FRBs to show lensing, however, we could constrain

fDM at 30 M� to be smaller than 0.9% (or 0.5% for ∆t = 0.3 ms, where this last number

would apply to larger masses, and smaller ∆t). The increase in the lensing optical depth,

due to the higher redshift of the events, leads to either more FRBs being lensed, or better

constraints on fDM.
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6.4 Conclusions

Let us add a few comments before concluding.

It has been argued that we could be preferentially observing strongly-lensed FRBs.306,307

If this is the case, most observed FRBs will be lensed by intervening objects, such as galactic

halos, on their way to Earth. This would create a double image with a time delay on the

order of weeks.308 More importantly, when crossing those galactic halos the probability to

be microlensed by a MACHO is close to unity, which would help detect more microlensed

FRBs, or improve our constraints on fDM.

Note that, due to our requirement that they behave as point lenses, MACHOs need to

be smaller than their Einstein radii. This constrains the size of a MACHO of mass ML to

be more compact than ∼ 0.1 pc ×
√
ML/30M�.

Other Lensing Applications

An effect similar to femto- or nanolensing of gamma-ray bursts could be observed in

FRBs,309,310 albeit, given the relatively low frequency (ν ∼ GHz) of FRBs, one could probe

lenses only with masses higher than ML ∼ 10−5M�, since lower masses would create a time

delay smaller than 1/ν and not cause interference. An experiment with bandwidth ∆ν ∼ 20

kHz could probe a maximum mass ML ∼ 0.1M� with nanolensing (higher masses would

cause time delays longer than 1/∆ν and interfere within each bandwidth). The unknown

FRB frequency spectrum poses a challenge to modeling this effect, so it is left for future

work.

A Lensed FRB?

Among the FRBs found to date, there is one particular event, FRB 121002, which has

been observed with a double peak delayed by 5.1 ms.311 This delay could have been caused

by a MACHO lens of mass ML & 200M�. The second image of FRB 121002 appears

brighter, however, which contradicts the usual lensing prediction. In future work will assess
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how likely it is that this delay is due to lensing and study further cosmological applications

of lensing of FRBs.

Closure

In conclusion, upcoming interferometers will open up the radio sky, which will allow us

to detect FRBs at a staggering pace. By studying whether these FRBs are doubly peaked

we can conclude if they have been microlensed or not. Given the existing constraints,

compact objects (MACHOs) are allowed to make up a large fraction of dark matter in our

Universe (and even all of it in the mass window between 20 and 100 M�). We will be

able to detect from tens to hundreds of lensed FRBs if the dark matter is indeed composed

of these MACHOs. Alternatively, if no FRBs are microlensed, we will place the strongest

constraints yet on the fraction of dark matter in the form of compact objects.
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fluctuations from the dark ages,” Phys.Rev.D, vol. 89, no. 8, p. 083506, Apr. 2014.

[25] J. B. Munoz, Y. Ali-Hamoud, and M. Kamionkowski, “Primordial non-gaussianity

from the bispectrum of 21-cm fluctuations in the dark ages,” Phys. Rev., vol. D92,

no. 8, p. 083508, 2015.

[26] M. Shiraishi, J. B. Munoz, M. Kamionkowski, and A. Raccanelli, “Violation of statis-

tical isotropy and homogeneity in the 21-cm power spectrum,” Phys. Rev., vol. D93,

no. 10, p. 103506, 2016.

[27] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, “LEP Shines Light on Dark Matter,”

Phys. Rev., vol. D84, p. 014028, 2011.

[28] J. B. Munoz, E. D. Kovetz, and Y. Ali-Haimoud, “Heating of Baryons due to Scatter-

ing with Dark Matter During the Dark Ages,” Phys. Rev., vol. D92, no. 8, p. 083528,

2015.

[29] D. Tseliakhovich and C. Hirata, “Relative velocity of dark matter and baryonic fluids

and the formation of the first structures,” Phys. Rev., vol. D82, p. 083520, 2010.

[30] B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy.

Astron. Soc., vol. 168, pp. 399–415, 1974.

167



BIBLIOGRAPHY

[31] B. J. Carr, “The Primordial black hole mass spectrum,” Astrophys. J., vol. 201, pp.

1–19, 1975.

[32] S. Bird, I. Cholis, J. B. Munoz, Y. Ali-Hamoud, M. Kamionkowski, E. D. Kovetz,

A. Raccanelli, and A. G. Riess, “Did LIGO detect dark matter?” 2016.

[33] B. P. Abbott et al., “Properties of the Binary Black Hole Merger GW150914,” Phys.

Rev. Lett., vol. 116, no. 24, p. 241102, 2016.

[34] A. Raccanelli, E. D. Kovetz, S. Bird, I. Cholis, and J. B. Munoz, “Determining the

progenitors of merging black-hole binaries,” Phys. Rev., vol. D94, no. 2, p. 023516,

2016.

[35] I. Cholis, E. D. Kovetz, Y. Ali-Hamoud, S. Bird, M. Kamionkowski, J. B. Munoz, and

A. Raccanelli, “Orbital eccentricities in primordial black hole binaries,” Phys. Rev.,

vol. D94, no. 8, p. 084013, 2016.

[36] R. A. Allsman et al., “MACHO project limits on black hole dark matter in the 1-30

solar mass range,” Astrophys. J., vol. 550, p. L169, 2001.

[37] J. B. Munoz, E. D. Kovetz, L. Dai, and M. Kamionkowski, “Lensing of Fast Radio

Bursts as a Probe of Compact Dark Matter,” 2016.

[38] E. Petroff, E. D. Barr, A. Jameson, E. F. Keane, M. Bailes, M. Kramer, V. Morello,

D. Tabbara, and W. van Straten, “FRBCAT: The Fast Radio Burst Catalogue,” Publ.

Astron. Soc. Austral., vol. 33, p. 45, 2016.

[39] A. D. Linde, “Chaotic Inflation,” Phys. Lett., vol. B129, pp. 177–181, 1983.

168



BIBLIOGRAPHY

[40] N. Kaloper and L. Sorbo, “A Natural Framework for Chaotic Inflation,” Phys. Rev.

Lett., vol. 102, p. 121301, 2009.

[41] P. Creminelli, D. Lpez Nacir, M. Simonovi, G. Trevisan, and M. Zaldarriaga, “φ2

or Not φ2: Testing the Simplest Inflationary Potential,” Phys. Rev. Lett., vol. 112,

no. 24, p. 241303, 2014.

[42] M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby, “Nonperturbative Dy-

namics Of Reheating After Inflation: A Review,” Int. J. Mod. Phys., vol. D24, p.

1530003, 2014.

[43] L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation,”

Phys.Rev.Lett., vol. 73, pp. 3195–3198, 1994.

[44] B. R. Greene, T. Prokopec, and T. G. Roos, “Inflaton decay and heavy particle

production with negative coupling,” Phys. Rev., vol. D56, pp. 6484–6507, 1997.

[45] R. Micha and I. I. Tkachev, “Turbulent thermalization,” Phys. Rev., vol. D70, p.

043538, 2004.

[46] D. I. Podolsky, G. N. Felder, L. Kofman, and M. Peloso, “Equation of state and

beginning of thermalization after preheating,” Phys. Rev., vol. D73, p. 023501, 2006.

[47] S. Dodelson and L. Hui, “A Horizon ratio bound for inflationary fluctuations,” Phys.

Rev. Lett., vol. 91, p. 131301, 2003.

[48] J. Martin and C. Ringeval, “First CMB Constraints on the Inflationary Reheating

Temperature,” Phys. Rev., vol. D82, p. 023511, 2010.

169



BIBLIOGRAPHY

[49] P. Adshead, R. Easther, J. Pritchard, and A. Loeb, “Inflation and the Scale Dependent

Spectral Index: Prospects and Strategies,” JCAP, vol. 1102, p. 021, 2011.

[50] J. Mielczarek, “Reheating temperature from the CMB,” Phys. Rev., vol. D83, p.

023502, 2011.

[51] R. Easther and H. V. Peiris, “Bayesian Analysis of Inflation II: Model Selection and

Constraints on Reheating,” Phys. Rev., vol. D85, p. 103533, 2012.

[52] L. Dai, M. Kamionkowski, and J. Wang, “Reheating constraints to inflationary mod-

els,” Phys. Rev. Lett., vol. 113, p. 041302, 2014.

[53] F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman, and A. V. Olinto, “Natural

inflation: Particle physics models, power law spectra for large scale structure, and

constraints from COBE,” Phys. Rev., vol. D47, pp. 426–455, 1993.

[54] K. Freese and W. H. Kinney, “Natural Inflation: Consistency with Cosmic Microwave

Background Observations of Planck and BICEP2,” JCAP, vol. 1503, p. 044, 2015.

[55] D. E. Kaplan and N. J. Weiner, “Little inflatons and gauge inflation,” JCAP, vol.

0402, p. 005, 2004.

[56] A. R. Liddle and S. M. Leach, “How long before the end of inflation were observable

perturbations produced?” Phys. Rev., vol. D68, p. 103503, 2003.

[57] P. A. R. Ade et al., “Joint Analysis of BICEP2/Keck Array and Planck Data,” Phys.

Rev. Lett., vol. 114, p. 101301, 2015.

170



BIBLIOGRAPHY

[58] M. Alishahiha, E. Silverstein, and D. Tong, “DBI in the sky,” Phys. Rev., vol. D70,

p. 123505, 2004.

[59] J. McDonald, “Sub-Planckian Two-Field Inflation Consistent with the Lyth Bound,”

JCAP, vol. 1409, no. 09, p. 027, 2014.

[60] L. A. Boyle, R. R. Caldwell, and M. Kamionkowski, “Spintessence! New models for

dark matter and dark energy,” Phys. Lett., vol. B545, pp. 17–22, 2002.

[61] S. R. Coleman and F. De Luccia, “Gravitational Effects on and of Vacuum Decay,”

Phys. Rev., vol. D21, p. 3305, 1980.

[62] X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, “Observational signatures and non-

Gaussianities of general single field inflation,” JCAP, vol. 0701, p. 002, 2007.

[63] P. Creminelli, D. Lpez Nacir, M. Simonovi, G. Trevisan, and M. Zaldarriaga, “φ2

Inflation at its Endpoint,” Phys. Rev., vol. D90, no. 8, p. 083513, 2014.

[64] G. F. Smoot, C. L. Bennett, A. Kogut, E. L. Wright, J. Aymon, N. W. Boggess,

E. S. Cheng, G. de Amici, S. Gulkis, M. G. Hauser, G. Hinshaw, P. D. Jackson,

M. Janssen, E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstein, P. Lu-

bin, J. Mather, S. S. Meyer, S. H. Moseley, T. Murdock, L. Rokke, R. F. Silverberg,

L. Tenorio, R. Weiss, and D. T. Wilkinson, “Structure in the COBE differential mi-

crowave radiometer first-year maps,” ApJ Letters, vol. 396, pp. L1–L5, Sep. 1992.

[65] E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)

171



BIBLIOGRAPHY

Observations: Cosmological Interpretation,” Astrophys. J. Suppl., vol. 192, p. 18,

2011.

[66] P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron.

Astrophys., vol. 571, p. A16, 2014.

[67] A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A

Monte Carlo approach,” Phys.Rev., vol. D66, p. 103511, 2002.

[68] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, “Conservative Constraints

on Early Cosmology: an illustration of the Monte Python cosmological parameter

inference code,” JCAP, vol. 1302, p. 001, 2013.

[69] D. Grin, O. Dore, and M. Kamionkowski, “Compensated Isocurvature Perturbations

and the Cosmic Microwave Background,” Phys. Rev., vol. D84, p. 123003, 2011.

[70] A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of CMB anisotropies

in closed FRW models,” Astrophys.J., vol. 538, pp. 473–476, 2000.

[71] M. Tegmark, A. Taylor, and A. Heavens, “Karhunen-Loeve eigenvalue problems in

cosmology: How should we tackle large data sets?” Astrophys. J., vol. 480, p. 22,

1997.

[72] S. Galli, K. Benabed, F. Bouchet, J.-F. Cardoso, F. Elsner, E. Hivon, A. Mangilli,

S. Prunet, and B. Wandelt, “CMB Polarization can constrain cosmology better than

CMB temperature,” Phys. Rev., vol. D90, no. 6, p. 063504, 2014.

172



BIBLIOGRAPHY

[73] M. Kamionkowski, A. Kosowsky, and A. Stebbins, “Statistics of cosmic microwave

background polarization,” Phys.Rev., vol. D55, pp. 7368–7388, 1997.

[74] M. Zaldarriaga and U. Seljak, “An all sky analysis of polarization in the microwave

background,” Phys. Rev., vol. D55, pp. 1830–1840, 1997.

[75] T. Okamoto and W. Hu, “CMB lensing reconstruction on the full sky,” Phys. Rev.,

vol. D67, p. 083002, 2003.

[76] A. Lewis and A. Challinor, “Weak gravitational lensing of the cmb,” Phys. Rept., vol.

429, pp. 1–65, 2006.

[77] P. A. R. Ade et al., “Planck 2015 results. XV. Gravitational lensing,” Astron. Astro-

phys., vol. 594, p. A15, 2016.

[78] E. Calabrese, A. Slosar, A. Melchiorri, G. F. Smoot, and O. Zahn, “Cosmic Microwave

Weak lensing data as a test for the dark universe,” Phys. Rev., vol. D77, p. 123531,

2008.

[79] M. Zaldarriaga and U. Seljak, “Gravitational lensing effect on cosmic microwave back-

ground polarization,” Phys. Rev., vol. D58, p. 023003, 1998.

[80] U. Seljak and M. Zaldarriaga, “A Line of sight integration approach to cosmic mi-

crowave background anisotropies,” Astrophys.J., vol. 469, pp. 437–444, 1996.

[81] M. Kamionkowski, A. Kosowsky, and A. Stebbins, “A Probe of primordial gravity

waves and vorticity,” Phys. Rev. Lett., vol. 78, pp. 2058–2061, 1997.

173



BIBLIOGRAPHY

[82] U. Seljak and M. Zaldarriaga, “Signature of gravity waves in polarization of the mi-

crowave background,” Phys. Rev. Lett., vol. 78, pp. 2054–2057, 1997.

[83] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N. Spergel, “Weighing the

universe with the cosmic microwave background,” Phys. Rev. Lett., vol. 76, pp. 1007–

1010, 1996.

[84] W. L. K. Wu, J. Errard, C. Dvorkin, C. L. Kuo, A. T. Lee, P. McDonald, A. Slosar, and

O. Zahn, “A Guide to Designing Future Ground-based Cosmic Microwave Background

Experiments,” Astrophys. J., vol. 788, p. 138, 2014.

[85] K. M. Smith, D. Hanson, M. LoVerde, C. M. Hirata, and O. Zahn, “Delensing CMB

Polarization with External Datasets,” JCAP, vol. 1206, p. 014, 2012.

[86] L. Knox and Y.-S. Song, “A Limit on the detectability of the energy scale of inflation,”

Phys. Rev. Lett., vol. 89, p. 011303, 2002.

[87] M. Kesden, A. Cooray, and M. Kamionkowski, “Separation of gravitational wave and

cosmic shear contributions to cosmic microwave background polarization,” Phys. Rev.

Lett., vol. 89, p. 011304, 2002.

[88] C. M. Hirata and U. Seljak, “Reconstruction of lensing from the cosmic microwave

background polarization,” Phys. Rev., vol. D68, p. 083002, 2003.

[89] V. F. Mukhanov, “Gravitational Instability of the Universe Filled with a Scalar Field,”

JETP Lett., vol. 41, pp. 493–496, 1985, [Pisma Zh. Eksp. Teor. Fiz.41,402(1985)].

174



BIBLIOGRAPHY

[90] V. Springel et al., “Simulating the joint evolution of quasars, galaxies and their large-

scale distribution,” Nature, vol. 435, pp. 629–636, 2005.

[91] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of Almost

Scale - Free Density Perturbations in an Inflationary Universe,” Phys. Rev., vol. D28,

p. 679, 1983.

[92] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous

and conformal Newtonian gauges,” Astrophys.J., vol. 455, pp. 7–25, 1995.

[93] P. J. E. Peebles and J. T. Yu, “Primeval adiabatic perturbation in an expanding

universe,” Astrophys. J., vol. 162, pp. 815–836, 1970.

[94] W. Hu, “An Isocurvature mechanism for structure formation,” Phys. Rev., vol. D59,

p. 021301, 1999.

[95] D. H. Lyth and D. Wands, “Generating the curvature perturbation without an infla-

ton,” Phys.Lett., vol. B524, pp. 5–14, 2002.

[96] D. H. Lyth, C. Ungarelli, and D. Wands, “The Primordial density perturbation in the

curvaton scenario,” Phys. Rev., vol. D67, p. 023503, 2003.

[97] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and A. Riazuelo, “Bounds on CDM

and neutrino isocurvature perturbations from CMB and LSS data,” Phys. Rev., vol.

D70, p. 103530, 2004.

[98] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and M. Viel, “Squeezing the window

175



BIBLIOGRAPHY

on isocurvature modes with the lyman-alpha forest,” Phys. Rev., vol. D72, p. 103515,

2005.

[99] M. Kawasaki and T. Sekiguchi, “Cosmological Constraints on Isocurvature and Tensor

Perturbations,” Prog. Theor. Phys., vol. 120, pp. 995–1016, 2008.

[100] C. Gordon and A. Lewis, “Observational constraints on the curvaton model of infla-

tion,” Phys.Rev., vol. D67, p. 123513, 2003.

[101] C. Gordon and J. R. Pritchard, “Forecasted 21 cm constraints on compensated isocur-

vature perturbations,” Phys.Rev., vol. D80, p. 063535, 2009.

[102] G. P. Holder, K. M. Nollett, and A. van Engelen, “On Possible Variation in the

Cosmological Baryon Fraction,” Astrophys.J., vol. 716, pp. 907–913, 2010.

[103] C. He, D. Grin, and W. Hu, “Compensated isocurvature perturbations in the curvaton

model,” Phys. Rev., vol. D92, no. 6, p. 063018, 2015.

[104] G. Hinshaw et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-

servations: Cosmological Parameter Results,” Astrophys. J. Suppl., vol. 208, p. 19,

2013.

[105] J. R. Bond and G. Efstathiou, “The statistics of cosmic background radiation fluctu-

ations,” Mon. Not. Roy. Astron. Soc., vol. 226, pp. 655–687, 1987.

[106] K. L. Ng and K.-W. Ng, “Large-angle Polarization of the Cosmic Microwave Back-

ground Radiation and Reionization,” Astrophys. J., vol. 456, pp. 413–421, 1996.

176



BIBLIOGRAPHY

[107] M. Zaldarriaga, “Polarization of the microwave background in reionized models,”

Phys. Rev., vol. D55, pp. 1822–1829, 1997.

[108] G. Holder, Z. Haiman, M. Kaplinghat, and L. Knox, “The Reionization history at

high redshifts. 2. Estimating the optical depth to Thomson scattering from CMB

polarization,” Astrophys. J., vol. 595, pp. 13–18, 2003.

[109] E. Di Valentino, A. Melchiorri, and J. Silk, “Beyond six parameters: extending

ΛCDM,” Phys. Rev., vol. D92, no. 12, p. 121302, 2015.

[110] ——, “Cosmological hints of modified gravity?” Phys. Rev., vol. D93, no. 2, p. 023513,

2016.

[111] J. Lazear et al., “The Primordial Inflation Polarization Explorer (PIPER),” Proc.

SPIE Int. Soc. Opt. Eng., vol. 9153, p. 91531L, 2014.

[112] J. E. Austermann et al., “SPTpol: an instrument for CMB polarization measurements

with the South Pole Telescope,” Proc. SPIE Int. Soc. Opt. Eng., vol. 8452, p. 84521E,

2012.

[113] A. T. Crites et al., “Measurements of E-Mode Polarization and Temperature-E-Mode

Correlation in the Cosmic Microwave Background from 100 Square Degrees of SPTpol

Data,” Astrophys. J., vol. 805, no. 1, p. 36, 2015.

[114] N. Aghanim et al., “Planck 2015 results. XI. CMB power spectra, likelihoods, and

robustness of parameters,” Astron. Astrophys., vol. 594, p. A11, 2016.

[115] S. Das, B. D. Sherwin, P. Aguirre, J. W. Appel, J. R. Bond, C. S. Carvalho,

177



BIBLIOGRAPHY

M. J. Devlin, J. Dunkley, R. Dünner, T. Essinger-Hileman, J. W. Fowler, A. Ha-

jian, M. Halpern, M. Hasselfield, A. D. Hincks, R. Hlozek, K. M. Huffenberger, J. P.

Hughes, K. D. Irwin, J. Klein, A. Kosowsky, R. H. Lupton, T. A. Marriage, D. Mars-

den, F. Menanteau, K. Moodley, M. D. Niemack, M. R. Nolta, L. A. Page, L. Parker,

E. D. Reese, B. L. Schmitt, N. Sehgal, J. Sievers, D. N. Spergel, S. T. Staggs, D. S.

Swetz, E. R. Switzer, R. Thornton, K. Visnjic, and E. Wollack, “Detection of the

Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmol-

ogy Telescope,” Physical Review Letters, vol. 107, no. 2, p. 021301, Jul. 2011.

[116] J. Valiviita, “Power Spectra Based Planck Constraints on Compensated Isocurvature,

and Forecasts for LiteBIRD and CORE Space Missions,” JCAP, vol. 1704, no. 04, p.

014, 2017.

[117] R. Flauger, J. C. Hill, and D. N. Spergel, “Toward an Understanding of Foreground

Emission in the BICEP2 Region,” JCAP, vol. 1408, p. 039, 2014.

[118] P. A. R. Ade et al., “Planck 2015 results. XX. Constraints on inflation,” Astron.

Astrophys., vol. 594, p. A20, 2016.

[119] B. Carr, F. Kuhnel, and M. Sandstad, “Primordial Black Holes as Dark Matter,”

Phys. Rev., vol. D94, no. 8, p. 083504, 2016.

[120] R. Easther, W. H. Kinney, and B. A. Powell, “The Lyth bound and the end of

inflation,” JCAP, vol. 0608, p. 004, 2006.

[121] A. R. Liddle, P. Parsons, and J. D. Barrow, “Formalizing the slow roll approximation

178



BIBLIOGRAPHY

in inflation,” Phys. Rev., vol. D50, pp. 7222–7232, 1994.

[122] E. D. Stewart and D. H. Lyth, “A More accurate analytic calculation of the spectrum

of cosmological perturbations produced during inflation,” Phys.Lett., vol. B302, pp.

171–175, 1993.

[123] K. Kohri, Y. Oyama, T. Sekiguchi, and T. Takahashi, “Precise Measurements of

Primordial Power Spectrum with 21 cm Fluctuations,” JCAP, vol. 1310, p. 065, 2013.

[124] A. Kosowsky and M. S. Turner, “CBR anisotropy and the running of the scalar

spectral index,” Phys. Rev., vol. D52, pp. R1739–R1743, 1995.

[125] W. H. Kinney, “Inflation: Flow, fixed points and observables to arbitrary order in

slow roll,” Phys. Rev., vol. D66, p. 083508, 2002.

[126] T. Kobayashi and F. Takahashi, “Running Spectral Index from Inflation with Modu-

lations,” JCAP, vol. 1101, p. 026, 2011.

[127] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field

inflationary models,” JHEP, vol. 05, p. 013, 2003.

[128] P. Creminelli and M. Zaldarriaga, “Single field consistency relation for the 3-point

function,” JCAP, vol. 0410, p. 006, 2004.

[129] B. A. Powell, “Scalar runnings and a test of slow roll from CMB distortions,” 2012.

[130] G. Cabass, E. Di Valentino, A. Melchiorri, E. Pajer, and J. Silk, “Constraints on

179



BIBLIOGRAPHY

the running of the running of the scalar tilt from CMB anisotropies and spectral

distortions,” Phys. Rev., vol. D94, no. 2, p. 023523, 2016.

[131] M. Escudero, H. Ramrez, L. Boubekeur, E. Giusarma, and O. Mena, “The present

and future of the most favoured inflationary models after Planck 2015,” JCAP, vol.

1602, no. 02, p. 020, 2016.

[132] E. Komatsu et al., “Non-Gaussianity as a Probe of the Physics of the Primordial

Universe and the Astrophysics of the Low Redshift Universe,” 2009.

[133] P. A. R. Ade et al., “Detection of B-Mode Polarization at Degree Angular Scales by

BICEP2,” Phys. Rev. Lett., vol. 112, no. 24, p. 241101, 2014.

[134] ——, “A Measurement of the Cosmic Microwave Background B-Mode Polarization

Power Spectrum at Sub-Degree Scales with POLARBEAR,” Astrophys. J., vol. 794,

no. 2, p. 171, 2014.

[135] S. Jester and H. Falcke, “Science with a lunar low-frequency array: from the dark ages

of the Universe to nearby exoplanets,” New Astron. Rev., vol. 53, pp. 1–26, 2009.

[136] A. Loeb and M. Zaldarriaga, “Measuring the small - scale power spectrum of cos-

mic density fluctuations through 21 cm tomography prior to the epoch of structure

formation,” Phys. Rev. Lett., vol. 92, p. 211301, 2004.

[137] A. Lewis and A. Challinor, “The 21cm angular-power spectrum from the dark ages,”

Phys. Rev., vol. D76, p. 083005, 2007.

180



BIBLIOGRAPHY

[138] G. B. Field, “Excitation of the Hydrogen 21-CM Line,” Proceedings of the IRE, vol. 46,

pp. 240–250, Jan. 1958.

[139] S. A. Wouthuysen, “On the excitation mechanism of the 21-cm (radio-frequency)

interstellar hydrogen emission line.” AJ, vol. 57, pp. 31–32, 1952.

[140] C. M. Hirata, “Wouthuysen-Field coupling strength and application to high-redshift

21 cm radiation,” Mon. Not. Roy. Astron. Soc., vol. 367, pp. 259–274, 2006.

[141] M. Kuhlen and P. Madau, “The First miniquasar,” Mon. Not. Roy. Astron. Soc., vol.

363, pp. 1069–1082, 2005.

[142] S. Furlanetto, S. P. Oh, and F. Briggs, “Cosmology at Low Frequencies: The 21 cm

Transition and the High-Redshift Universe,” Phys. Rept., vol. 433, pp. 181–301, 2006.

[143] A. Fialkov, R. Barkana, E. Visbal, D. Tseliakhovich, and C. M. Hirata, “The 21-cm

signature of the first stars during the Lyman-Werner feedback era,” Mon. Not. Roy.

Astron. Soc., vol. 432, p. 2909, 2013.

[144] Z. Haiman, “The First nonlinear structures and the reionization history of the uni-

verse,” in Carnegie Observatories Centennial Symposium. 1. Coevolution of Black

Holes and Galaxies Pasadena, California, October 20-25, 2002, 2003.

[145] Y. Ali-Hamoud, P. D. Meerburg, and S. Yuan, “New light on 21 cm intensity fluctu-

ations from the dark ages,” Phys. Rev., vol. D89, no. 8, p. 083506, 2014.

[146] S. Bharadwaj and S. S. Ali, “The CMBR fluctuations from HI perturbations prior to

reionization,” Mon. Not. Roy. Astron. Soc., vol. 352, p. 142, 2004.

181



BIBLIOGRAPHY

[147] A. H. Jaffe, M. Kamionkowski, and L.-M. Wang, “Polarization pursuers’ guide,” Phys.

Rev., vol. D61, p. 083501, 2000.

[148] J. D. Bowman, M. F. Morales, and J. N. Hewitt, “Foreground Contamination in

Interferometric Measurements of the Redshifted 21 cm Power Spectrum,” Astrophys.

J., vol. 695, pp. 183–199, 2009.

[149] P. J. E. Peebles, “Large scale background temperature and mass fluctuations due to

scale invariant primeval perturbations,” Astrophys. J., vol. 263, pp. L1–L5, 1982.

[150] M. Mateo, “Dwarf galaxies of the Local Group,” Ann. Rev. Astron. Astrophys., vol. 36,

pp. 435–506, 1998.

[151] S. S. McGaugh, W. J. G. de Blok, J. M. Schombert, R. K. de Naray, and J. H. Kim,

“The Rotation Velocity Attributable to Dark Matter at Intermediate Radii in Disk

Galaxies,” Astrophys. J., vol. 659, pp. 149–161, 2007.

[152] D. N. Spergel and P. J. Steinhardt, “Observational evidence for selfinteracting cold

dark matter,” Phys. Rev. Lett., vol. 84, pp. 3760–3763, 2000.

[153] K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, “Dark-

matter electric and magnetic dipole moments,” Phys. Rev., vol. D70, p. 083501, 2004,

[Erratum: Phys. Rev.D73,089903(2006)].

[154] M. Pospelov and T. ter Veldhuis, “Direct and indirect limits on the electromagnetic

form-factors of WIMPs,” Phys. Lett., vol. B480, pp. 181–186, 2000.

182



BIBLIOGRAPHY

[155] P. Agnes et al., “First Results from the DarkSide-50 Dark Matter Experiment at

Laboratori Nazionali del Gran Sasso,” Phys. Lett., vol. B743, pp. 456–466, 2015.

[156] D. D’Angelo, “DarkSide-50: results from first argon run,” in Proceedings,

20th International Conference on Particles and Nuclei (PANIC 14): Ham-

burg, Germany, August 24-29, 2014, 2014, pp. 369–372. [Online]. Available:

https://inspirehep.net/record/1339375/files/arXiv:1501.03541.pdf

[157] D. S. Akerib et al., “First results from the LUX dark matter experiment at the Sanford

Underground Research Facility,” Phys. Rev. Lett., vol. 112, p. 091303, 2014.

[158] E. Aprile et al., “Dark Matter Results from 225 Live Days of XENON100 Data,”

Phys. Rev. Lett., vol. 109, p. 181301, 2012.

[159] C. Dvorkin, K. Blum, and M. Kamionkowski, “Constraining Dark Matter-Baryon

Scattering with Linear Cosmology,” Phys. Rev., vol. D89, no. 2, p. 023519, 2014.

[160] Y. Ali-Hamoud, J. Chluba, and M. Kamionkowski, “Constraints on Dark Matter In-

teractions with Standard Model Particles from Cosmic Microwave Background Spec-

tral Distortions,” Phys. Rev. Lett., vol. 115, no. 7, p. 071304, 2015.

[161] H. Tashiro, K. Kadota, and J. Silk, “Effects of dark matter-baryon scattering on

redshifted 21 cm signals,” Phys. Rev., vol. D90, no. 8, p. 083522, 2014.

[162] D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System

(CLASS) II: Approximation schemes,” JCAP, vol. 1107, p. 034, 2011.

183



BIBLIOGRAPHY

[163] P. J. E. Peebles, “Recombination of the Primeval Plasma,” Astrophys. J., vol. 153,

p. 1, Jul. 1968.
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