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Abstract. We consider the Poynting vector of two exact solutions describing
a charged magnetized non–rotating mass in the following limiting cases: (i)
m2 = q2, and (ii) m = 0. Whereas the former limit leads to a non–vanishing
Poynting vector only for one of the solutions, the latter limit in both solutions
results in non–zero expressions of the azimuthal component of the Poynting vector,
thus providing evidence that Bonnor’s frame–dragging effect takes place even in
the case of a charged massless magnetic dipole.

1. Introduction

In a recent paper [1] it has been shown that in the case of stationary axially symmetric
electrovac spacetimes the knowledge of the Ernst complex electromagnetic potential
Φ [2] is sufficient to answer the question of whether or not the component Sϕ of the
Poynting vector Sα = (Sρ, Sz, Sϕ) is a zero quantity (two other components, Sρ and
Sz, are equal to zero identically). The formula obtained in [1] for Sϕ reads

Sϕ =

√
fe−2γ

4πρ
Im(Φ̄,ρΦ,z), (1)

where f and γ are the metric coefficients entering the Papapetrou line element [3]

ds2 = f−1[e2γ(dρ2 + dz2) + ρ2dϕ2] − f(dt − ωdϕ)2, (2)

ρ and z are the Weyl–Papapetrou cylindrical coordinates, a bar over a symbol means
complex conjugation, and a comma as subindex denotes partial differentiation. Note
that the metric function ω does not enter the expression for Sϕ.

In the ellipsoidal coordinates x and y defined by the relations

x =
1

2κ
(r+ + r−), y =

1

2κ
(r+ − r−), r± =

√

ρ2 + (z ± κ)2, κ = const, (3)

formula (1) takes the form

Sϕ =

√
fe−2γ

4πκ3(x2 − y2)
Im(Φ̄,xΦ,y), (4)

while the line element (2) rewrites as

ds2 = κ2f−1
[

e2γ(x2−y2)
( dx2

x2 − 1
+

dy2

1 − y2

)

+(x2−1)(1−y2)dϕ2
]

−f(dt−ωdϕ)2.(5)
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Formula (4) was applied in [1] to a particular metric [4] representing the field of
a charged massive magnetic dipole. The resulting expression for Sϕ, namely,

Sϕ =
qbκ5(x2 − y2)3F (x, y)

64π
√

ED5/2(m2 − q2)6
, (6)

contains the factor (m2 − q2)6 that suggests a possible singular behavior of Sϕ when
m tends to ±q. This motivates us to analyze the limit m2 = q2 in detail for clarifying
the physical content of formula (6). In the next section we will show how such limit
can be performed, yielding a specific electrostatic solution with vanishing Poynting
vector. This, in turn, gives rise to a question about a possibility of performing the
limit m2 = q2 (which would result in a non–zero Poynting vector) making use of
another known exact solution [5] for a charged massive magnetic dipole, and that
question will be given a positive answer in section 3.

In the present article we also find it interesting to consider the limit m = 0
(vanishing mass) in the solutions [4] and [5], in which case the latter solutions describe
a charged massless magnetic dipole. We shall show that in this limit the component Sϕ

of the Poynting vector is a non–zero quantity for both solutions, thus underlying the
purely electromagnetic nature of Bonnor’s frame–dragging effect caused by a charged
magnetic dipole [6].

2. Limits of the Poynting vector of MSM solution

We remind that the Ernst potentials and the corresponding metric functions f and γ
of MSM solution for a charged massive magnetic dipole are defined by the expressions
[4]

E =
A − B

A + B
, Φ =

C

A + B
, f =

E

D
, e2γ =

E

16κ8(x2 − y2)4
,

A = 2[(κ2x2 − δy2)2 − d2] − 2iκqbxy(1 − y2),

B = m[2κ3x(x2 − 1) + (1 − y2)(2κδx − iqby)],

C = 2κ2(x2 − 1)(κqx + iby) + (1 − y2)[2κqδx − iby(q2 − 2δ)],

D = 4[(κ2x2 − δy2)2 + κ3mx(x2 − 1) + κmδx(1 − y2) − d2]2

+ q2b2y2(2κx + m)2(1 − y2)2,

E = 4[κ2(x2 − 1) + δ(1 − y2)]4 − 4κ2q2b2y4(x2 − 1)(1 − y2),

κ =
√

d + δ, d =
1

4
(m2 − q2), δ =

b2

m2 − q2
, (7)

where κ is the parameter involved in formulae (3), and the real parameters m, q
and b are the mass, charge and magnetic dipole moment of the source, respectively.
The non–zero component Sϕ of the Poynting vector of the MSM solution is given by
formula (6) in which F (x, y) is some function of x and y.

The limit m2 = q2 can most easily be worked out if one first considers the axis
data of the solution (7) on the upper part of the symmetry axis, namely,

E(ρ = 0, z) =
z(z − m) + d − δ

z(z + m) + d − δ
, Φ(ρ = 0, z) =

qz + ib

z(z + m) + d − δ
. (8)

In the limit m2 = q2 the parameter δ, as it follows from its definition, becomes
an infinitely large quantity. However, after the redefinition of the magnetic dipole
parameter b according to

b = b̃(m2 − q2)1/2, (9)
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the limit m2 = q2 does not show any pathology and leads to the axis data

E(ρ = 0, z) =
z(z − q) − b̃2

z(z + q) − b̃2
, Φ(ρ = 0, z) =

qz

z(z + q) − b̃2
, (10)

which define a specific electrostatic solution because E(ρ = 0, z) and Φ(ρ = 0, z) in
(10) are real functions. Hence, we immediately infer that Sϕ is equal to zero in this
case, like in any other electrostatic case in general. This can be also verified directly
by substituting formulae (7), in which the limit m2 = q2 must be performed after the
redefinition (9) of the parameter b, into (4). It should be emphasized that vanishing of
the magnetic field in the limit m2 = q2 must be considered only as a specific feature of
MSM solution which is explained by certain restrictions on the parameters introduced
during the process of construction of that solution, and this property is not necessarily
shared by other solutions for a charged massive magnetic dipole (see next section).

Another limit which is likely to be considered for the Poynting vector of MSM
solution corresponds to vanishing mass of the source, i.e., m = 0. This limit resulting
in a non–zero expression for Sϕ would mean that Bonnor’s frame–dragging effect
is originated exclusively by the electromagnetic part of the solution, and not by its
“gravitational” component involving mass and angular momentum.

By setting m = 0 in the axis data (8), we get

E(ρ = 0, z) = 1, Φ(ρ = 0, z) =
qz + ib

z2 − (q2/4) + (b2/q2)
, (11)

so that both the electric and magnetic fields are present in the axis expression of the
potential Φ in (11).

To obtain a concise analytical expression defining the Poynting vector, we can
restrict our consideration exclusively to the equatorial plane which in the ellipsoidal
coordinates is given by y = 0. Then, taking the limit m = 0 in (7) and calculating the
corresponding Sϕ using formula (4), we arrive at the following elegant final expression:

Sϕ =
64q7b(q4 + 4b2)3x6

π[(q4 + 4b2)x2 − q4][(q4 + 4b2)x2 − 4κmq2x + q4]5
. (12)

This clearly demonstrates the electromagnetic character of Bonnor’s frame–dragging
effect.

3. The case of Manko’s solution

We now turn to another known exact solution for a charged massive magnetic dipole
whose Ernst potentials and metric functions f and γ are defined by the expressions
[5]

E =
A − B

A + B
, Φ =

C

A + B
, f =

AĀ − BB̄ + CC̄

(A + B)(Ā + B̄)
, e−2γ =

16κ4
+κ4

−R+R−r+r−

AĀ − BB̄ + CC̄
,

A = κ2
+[(m2 − q2 − b)(R+r− + R−r+) + iqκ−(R+r− − R−r+)] + κ2

−[(m2 − q2 + b)

×(R+r+ + R−r−) − iqκ+(R+r+ − R−r−)] − 4b2(R+R− + r+r−),

B = mκ+κ−{κ+κ−(R+ + R− + r+ + r−) − (m2 − q2)(R+ + R− − r+ − r−)

+iq[(κ+ − κ−)(R+ − R−) − (κ+ + κ−)(r+ − r−)]},
C = κ+κ−{qκ+κ−(R+ + R− + r+ + r−) − q(m2 − q2)(R+ + R− − r+ − r−)

+i[κ+(q2 + b)(R+ − R− − r+ + r−) − κ−(q2 − b)(R+ − R− + r+ − r−)]}, (13)
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with

R± =
√

ρ2 + [z ± 1

2
(κ+ + κ−)]2,

r± =
√

ρ2 + [z ± 1

2
(κ+ − κ−)]2,

κ± =
√

m2 − q2 ± 2b. (14)

The interpretation of the parameters m, q and b in the above formulae is the same as
in MSM solution, i.e., the mass, charge and magnetic dipole moment, respectively.

On the upper part of the symmetry axis the potentials E and Φ from (14) assume
the form

E(ρ = 0, z) =
z − m

z + m
, Φ(ρ = 0, z) =

qz + ib

z(z + m)
, (15)

and one can see that, unlike in the axis data (8), the constants m and q in (15) admit
arbitrary relations between them without annihilating the magnetic field.

We are especially interested in the limit m2 = q2 which led to a zero Poynting
vector in the case of MSM solution. The axis data (15) hint that now such limit
is feasible and might lead to a non–zero value of Sϕ. To verify this, let us assume
for definiteness that q > 0 and b > 0; also, like in the previous section, we shall be
calculating Sϕ in the equatorial plane z = 0 in order to obtain a concise analytic
expression for the azimuthal component of the Poynting vector. Then, carrying out
the limit m = q in the formulae (14) and calculating the corresponding Sϕ with the
aid of formula (1), we arrive, after some tedious but straightforward calculations, to
the desired result

Sϕ = −16q[b(R+ + r+ + 2q) + iq2(r+ − R+)]

π(R+ + r+)2(R+ + r+ + 2q)5
, (16)

where we have taken into account that κ+ =
√

2b, κ− = i
√

2b in the limit m = q (and
under assumption of the positiveness of b); besides, in the equatorial plane in our case
the equalities R− = R+ and r− = r+ take place. We point out that by further setting
q = 0 or b = 0 in (16), one gets Sϕ = 0, the fact apparent in the limit q = 0, whereas
in the limit b = 0 the annulling of Sϕ is due to vanishing of the factor (r+−R+) in the
numerator of (16) (note that i(r+−R+) is a real quantity). Therefore. we have shown
that in the limit m2 = q2, frame–dragging by a charged magnetic dipole can also take
place, provided this limit does not lead to vanishing of the electric or magnetic field.

Another limit, m = 0, can be worked out too using formulae (14). In this case
representing a charged massless magnetic dipole the axis data (15) reduces to

E(ρ = 0, z) = 1, Φ(ρ = 0, z) =
qz + ib

z2
, (17)

showing that both the electric and magnetic fields survive this limit which, in turn,
suggests the non–zero character of the corresponding component Sϕ of the Poynting
vector. To verify this, we calculate the principal electromagnetic part, Im(Φ̄,ρΦ,z), of
Sϕ in (1), the result being

Im(Φ̄,ρΦ,z) =
qb(4b2 − q4)ρ

4(ρ4 − q2ρ2 + b2)[(q4 − 2b2)R+r+ − 2b2ρ2 + q2b2]4

×[κ+κ−(R+ + r+)(q4ρ2 − 4b2ρ2 − q2b2) + (R+ − r+)(q6ρ2 + q4b2 + 4b4)]2. (18)

Like in the ‘massless’ case of MSM solution considered in the previous section, we
have arrived at the non–zero expression for the Poynting vector, having this time the
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solution (14) as a starting point. It should be noted that the case q4 = 4b2 in (18)
does not cause the Poynting vector to vanish since, as can be seen from the definition
of κ±, R±, r± in (14), the special choice m = 0, 2b = ±q2 of the parameters makes
κ+ or κ− equal to zero. Hence we arrive at a particular case which can be considered
as a sort of an extreme one because R+ = r+, R− = r− for 2b = −q2, and R+ = r−,
R− = r+ for 2b = q2 independently of the value of z, so that the corresponding limit
needs a more subtle tackling. If, for instance, 2b = −q2, i.e., κ− = 0, then formula
(18) rewrites, after appropriately performing in it the limit b = −q2/2, as

Im(Φ̄,ρΦ,z) = −256q5ρ/R6
+, (19)

once again getting a non–zero value for the Poynting vector.

4. Conclusion

In this article, which can be considered as a useful complement of the paper [1],
we have considered two limits in the formulae for the azimuthal component of the
Poynting vector employing the known exact solutions for a charged massive magnetic
dipole. The analysis carried out in sections 2 and 3 permits us to conclude that the
‘mass equal to charge’ limit results in a non–vanishing Poynting vector only for one
of the solutions, and the zero value of Sϕ in the case of MSM solution is explained
by a specific choice of the parameters in the axis data (8) leading to vanishing of
the magnetic field in the limit m2 = q2. On the other hand, the massless limit of a
charged magnetic dipole yields a non–zero expression of Sϕ for both solutions, thus
clearly demonstrating the electromagnetic nature of Bonnor’s frame–dragging effect.
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