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Following Kac [1], let G - G(A) be the affine Kac-Moody algebra of rank ~ as- 
sociated with a symmetrisable generalised Caf tan  matr ix A having matrix elements 
A,~ = (a, ,a~)  = 2((a, ,a~))/((cg,a~) ) for i , j  E I where I = {0 ,1 , . . . ,~} .  Each sim- 
ple root ai ,  with i E I lies in 9/ ' ,  the dual of the Caf tan  subalgebra 9t of G. The 
corresponding co-roots are defined by a v = 2a~/(a,, a,) for i E I. 

It is convenient to introduce vectors 6 and wi, with i E I ,  which together span 7"(*. 
In terms of the integer marks cl and co-marks c v for i E I we have & = L 

The ma ks are chosen [1] so that - -  0 for j e I.  In addition 
(w,,a~) = 6,j for i , j  e I, (w,,w0> = 0 for i e I ,  and (6,wo> = c~. Every weight ), e ~"  

may then be expressed in the form )~ = ~ l ~=0A~w~ - k6 = (A0, AI , . . .AI ;k )  where the 
Dynkin components of A are given by As = (A, a~ ) for i E I. The level and depth of the 
weight A are defined by L(A) (A, 6) * v = = E , = 0 c ,  a n d  = = k .  A 

weight A E "H" is said to belong to the set of integral weights, P ,  if (A,a v ) E Z for i E I. 
Such an integral weight A is dominant  and in P+ if (A, a~' ) > 0 for i E I ,  and strongly 
dominant  and in P++ if (A, a~' ) > 0 for i e I .  

The Weyl group, W, of ~ is generated by the Weyl reflections whose action on 7-/* 
are defined by ri(A) = A - ()~,a~)a~ for i E I. The orbit of A under the Weyl group 
action is the set W~ = {wA [ w E W}. For each A in P there exists a unique dominant 
weight A + in P+ such tha t  A + = wx A for some wx E W. If A + is in P++ then all the 
elements wA with w E W are distinct, and in particular wx is unique. 

The null depth of A is then defined to be d()~) = D(A) - D(A+). By exploiting the 
Weyl group invariance, which implies (),+, ,k+) = (w~ ~, w~ ,k) = (~,)~), it is possible to 
show that  d(A) (1/2L(A)) t = S_I = E ,,j=x (a,~ ()~,)~j -~+)~+)) ,  where a w i th  So' = 
c,(c'[)-lA,i for i , j  E I+  = {1 ,2 , . . .  , t}.  

Each irreducible highest weight integrable module V ~ of ~ is labelled by a dominant 
integral weight A. Such a module has a weight space decomposition V ~ = @,eu" V~ 

A and the character of this module is formally given by ch V ~ = ~ ,e P m ,  e , where the 
is the dimension of V, x. Kac [1] has established the character weight multiplicity m ,  

formula: 

chV Z: O) 
w ~ W  w ~ W  

t. where p ~ ~* is defined by p = ~ ~=0 w~ so that  (p, a~ ) = 1 for i E I .  
The tensor product V" ® V ~ of two irreducible integrable highest weight modules 

of G is fully reducible into a direct sum of such modules. If the multiplicity of oc- 
currence of modules V ~ in this tensor product is denoted by g~, then ch V" ch V ~ = 

508 



~¢ P+ g~v ch V ~ . Two problems which immediately present themselves are the explicit 

evaluation of the weight multiplicities rn, ~ and the explicit evaluation of the tensor prod- 
uct multiplicities g~v x • In what follows it is demonstrated not only that  these problems 
may be solved algorithmically but also that  they are intimately connected. Illustrations 
ave confined for simplicity to the case ~ = A~ 1). 

The formal definition of chV" and the character formula (1) for chV ~ and chV ~ 
imply 

E: re:e" E E] (2) 
~ E P  y E W  ,~EP+ w E W  

For any A E P+ it follows that  A + p E P++. Moreover w(A + p) E P + +  if and only if w 
is the identi ty element of W. Setting ~ = vg, using the fact that  m~¢ -- rn~ and picking 
out those terms on both sides of (2) involving e~ with r 1 E P++  leads to the identi ty 

Z: = Z: (3) 
f E P  )~GP+ 

(,. -F ~,+ p)+ EP++  

This identi ty provides a geometric procedure for determining the tensor product 
multiplicities g ~  from the weight multiplicities rn~ of just one of the constituent irre- 
ducible modules in the product.  Its use is a straightforward generalisation of a very well 
known technique [2,3,4] developed in the context of finite dimensional Lie algebras. The 
identity (3) actually provides an explicit formula [3] for tensor product multiplicities: 

g.t = Z: = Z: (4) 
wE~' w E W  

( r  + . + p ) +  =~+A, 

where the sum over a has been replaced in the second expression by a sum over w E W 
since the set of elements a + u + p such that  (a + v + p)+ = A + p is precisely W(,~ + p). 
Use has also been made the fact that  m~ = r n ~ .  

This formula not only allows the explicit calculation of tensor product multiplic- 
ities from a knowledge of weight multiplicities but also the converse. Indeed setting 
u = 0, so that  V ~ = V 0 is the trivial one-dimensional module and g~  = g~0 = 6~, and 
taking ~ ~ /~  in (4) gives Racah's  familiar recurrence relation [3] for weight multiplic- 
ities: ~.wew e(w)m~+p-wp = 0. However, (4) can be used as it stands as a tool for 
determining weight multiplicities from tensor product multiplicities. 

By way of illustration, in the case of g = A~ 1) we have A = (_2 - 2 ) ,  so that  S = (2), 

G = (½) and d(/~) = ~ 7 ~ ( # i  2 - #i+2). For the simplest non-trivial module, V(i,°;°) with 

highest weight # = w0, the weights are all of the form a = (1 - 2re)w0 + 2row1 - p6 
with m E Z and p E Z+. The top ten rows of the infinite weight diagram are shown 
below. Ignoring for the moment the foot of the table, the Weyl reflection planes are the 
vertical lines through 80 = (0,1) and 8i = (1, 0). All weights (r = (1 - 2m, 2m; p) on any 
vertical string in a column labelled by m are Weyl equivalent to those on the one string 
in the dominant  sector labelled by rn = 0. In fact or+ = (1, 0; k) with k = p - m 2, since 

2 2 m2.  :I(al - -Pl )  = The weight multiplicities themselves are given by m~ = ap_,~ 
where a ,  -- p(n), the number of partitions of n, as can be shown through the use of 
Racah's  recurrence relation [5] or otherwise [1]. 
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m 

p = 0  
p = l  
p = 2  
p = 3  
p = 4  
p = 5  
p = 6  
p = 7  
p = 8  
p = 9  

d(C) 
(Co, C1) 

o ° o  

, , ,  

--3 --2 --I 0 1 2 3 -. • 

( 7 , - 6 )  ( 5 , - 4 )  ( 3 , - 2 )  (1,0) ( - 1 , 2 )  ( - 3 , 4 )  ( - 5 , 6 )  . . .  
9 4 1 0 1 4 9 

61 60 

1 
I 1 I 
1 2 ! 
2 3 2 

1 3 5 3 1 
1 5 7 5 1 
2 7 11 7 2 
3 11 15 11 3 
5 15 22 15 5 

1 7 22 30 22 7 1 
T T 
¢1 ¢0 

- 0 0 0 0 - 2 

(10, - 5 )  ( 8 , - 3 )  (6, - 1 )  (4,1) (2 ,3)  (0 ,5)  ( - 2 , 7 )  .. .  

The above weight diagram may then be used to calculate, for example, the tensor 
product multiplicities for V(1,0;0) ® V(2,°;°). The procedure based directly on (3) involves 
shifting the weight diagram of V (1,°;°) through u+p = (3, 1; 0) so that a = (1-2m,  2m; p) 
goes to ¢ = (4 - 2m, 1 + 2re;p) with L(¢) = 5. This can be effected by the relabelling 
given at the foot of the above diagram. The reflection planes are now at the positions 
¢0 = (0, 5) and ¢1 = (5, 0). All weights ~ on any vertical string either lie on a Weyl 
reflection plane or are such that ~+ = (4, 1; k) or (2,3; k) for some k, with d(~) = 
]rn(rn + 1) or ](rn 2 + m -- 2), respectively. Carrying out the Weyl reflections for each 
vertical string, taking signatures into account and subtracting p = (1, 1; O) gives the 

.(~o,~,;k) . following tensor product multiplicities u(1,0;0)(2,0;0)" 

= (3, 0) = (1, 2) 

k = O  1 
k = l  1 - 1 = 0  1 
k = 2  2 - 1 = 1  1 
k = 3  3 - 2 = 1  2 
k = 4  5 - 3 = 2  3 - 1 = 2  
k = 5  7 - 5 = 2  5 - 1 = 4  
k = 6  1 1 - 7 = 4  7 - 2 = 5  
k = 7 1 5 -  11 = 4 11 - 3 -  1 = 7 

Since tensor products are commutative, the same multiplicities must arise if the 
problem is approached in the same way but starting from the weight diagram of the 
module V(2.°;°). This takes the following form in which reflections in the planes signified 
by ¢0 = (0, 2) and ¢1 = (2, 0) have been used to parametrise the weight multiplicities 
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in t e r m s  of those  in the dominaal t  sector .  T h e  weights  are all of  the fo rm T = (2 -- 
2 m , 2 m ; p ) ,  wi th  L ( r )  = 2 and  d(7) = ½m 2 or ½(rn 2 -  1), accord ing  as m is even or odd.  

m = - 4  - 3  - 2  - 1  O 1 2 3 4 
(~o,~t)  "." ( 8 , - 6 )  ( 6 , - 4 )  ( 4 , - 2 )  ( 2 , 0 )  ( 0 , 2 )  ( - 2 , 4 )  ( - 4 , 6 )  ( - 6 , 8 )  
d ( r )  8 4 2 0 0 0 2 4 8 

¢1 ¢o 
l 1 

p = 0  ao 
p = 1 bl a t  bl 
p = 2 ao b2 a2 b2 ao 
p = 3 a l  b2 a3 b3 a t  
p = 4 a2 b4 a4 b4 a2 
p = 5 bl a3 b5 a5 b5 a3 bl 
p = 6 b2 a4 b6 a6 b6 a4 b2 
p = 7 b3 a5 b7 a7 b7 a5 b3 
p = 8 ao b4 a6 b8 a8 b8 as b4 ao 

T T 
¢1 ¢0 

d(¢) 2 - 0 o 0 0 - 2 4 
(¢o,¢t) . . .  (10 , - 5 ) ( 8 , - 3 )  ( 6 , - 1 )  (4,1) (2 ,3)  (0 ,5)  ( - 2 , 7 )  ( - 4 , 9 )  

Proceed ing  as in the  p rev ious  e x a m p l e  on the  basis  of  (3) wi th  # and  v in te rchanged ,  
now involves add ing  # + p = (2, 1; 0) to  the  weights  ~- to give ~. Of  course  the  reflect ion 
p lanes  signified b y  ¢0 and  ¢1 and  d(~) are  exac t ly  as before.  C a r r y i n g  out  the  reflections,  
t ak ing  s igna tu res  in to  accoun t  and  s u b t r a c t i n g  p leads to express ions  for the  tensor  
p r o d u c t  mul t ip l ic i t ies  which  m a y  be  solved recurs ive ly  for the  weight  mul t ip l ic i t ies  ak 
and  bk of the  d o m i n a n t  weights  (2, 0; k) mad (0, 2; k) of  V (2,°;°) as shown  below. 

(~0, ~1) = (3, o) (~o, ~t) = (1, 2) 
k = 0 1 = ao a0 = 1 
k = l  0 = a t - b t  1 = b l  a l = l  b l = l  
k = 2 1 = a2 - b2 1 --- b2 - b0 - a0 a2 = 3 b2 = 2 
k = 3 1 = a3 - b3 2 = b3 - bl - a t  a3 = 5 b3 = 4 
k = 4 2 = a4 - b4 - a0 2 = b4 - b2 - a2 a4 = 10 b4 = 7 
k = 5 2 = a s -  b s -  az 4 = b s -  b 3 -  a3 a5 = 16 b5 = 13 
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