TENSOR PRODUCTS FOR AFFINE KAC-MOODY ALGEBRAS

R.C. King and T.A. Welsh
Mathematics Department, University of Southampton,
Southampton, SO9 5NH England

Following Kac [1], let $\mathcal{G} = \mathcal{G}(A)$ be the affine Kac-Moody algebra of rank ℓ associated with a symmetrisable generalised Cartan matrix A having matrix elements $A_{ij} = \langle \alpha_i, \alpha_j^{\vee} \rangle = 2(\langle \alpha_i, \alpha_j \rangle)/(\langle \alpha_j, \alpha_j \rangle)$ for $i, j \in I$ where $I = \{0, 1, \dots, \ell\}$. Each simple root α_i , with $i \in I$ lies in \mathcal{H}^* , the dual of the Cartan subalgebra \mathcal{H} of \mathcal{G} . The corresponding co-roots are defined by $\alpha_i^{\vee} = 2\alpha_i/\langle \alpha_i, \alpha_i \rangle$ for $i \in I$.

It is convenient to introduce vectors δ and ω_i , with $i \in I$, which together span \mathcal{H}^* . In terms of the integer marks c_i and co-marks c_i^{\vee} for $i \in I$ we have $\delta = \sum_{i=0}^{t} c_i \alpha_i = \sum_{i=0}^{t} c_i^{\vee} \alpha_i^{\vee}$. The marks are chosen [1] so that $\langle \delta, \alpha_j^{\vee} \rangle = 0$ for $j \in I$. In addition $\langle \omega_i, \alpha_j^{\vee} \rangle = \delta_{ij}$ for $i, j \in I$, $\langle \omega_i, \omega_0 \rangle = 0$ for $i \in I$, and $\langle \delta, \omega_0 \rangle = c_0^{\vee}$. Every weight $\lambda \in \mathcal{H}^*$ may then be expressed in the form $\lambda = \sum_{i=0}^{t} \lambda_i \omega_i - k\delta = (\lambda_0, \lambda_1, \dots \lambda_t; k)$ where the Dynkin components of λ are given by $\lambda_i = \langle \lambda, \alpha_i^{\vee} \rangle$ for $i \in I$. The level and depth of the weight λ are defined by $L(\lambda) = \langle \lambda, \delta \rangle = \sum_{i=0}^{t} c_i^{\vee} \lambda_i$ and $D(\lambda) = -(c_0^{\vee})^{-1} \langle \lambda, \omega_0 \rangle = k$. A weight $\lambda \in \mathcal{H}^*$ is said to belong to the set of integral weights, P, if $\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}$ for $i \in I$. Such an integral weight λ is dominant and in P_+ if $\langle \lambda, \alpha_i^{\vee} \rangle \geq 0$ for $i \in I$, and strongly dominant and in P_+ if $\langle \lambda, \alpha_i^{\vee} \rangle > 0$ for $i \in I$.

The Weyl group, W, of \mathcal{G} is generated by the Weyl reflections whose action on \mathcal{H}^* are defined by $r_i(\lambda) = \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i$ for $i \in I$. The orbit of λ under the Weyl group action is the set $W_{\lambda} = \{w\lambda \mid w \in W\}$. For each λ in P there exists a unique dominant weight λ^+ in P_+ such that $\lambda^+ = w_{\lambda}\lambda$ for some $w_{\lambda} \in W$. If λ^+ is in P_{++} then all the elements $w\lambda$ with $w \in W$ are distinct, and in particular w_{λ} is unique.

The null depth of λ is then defined to be $d(\lambda) = D(\lambda) - D(\lambda^+)$. By exploiting the Weyl group invariance, which implies $\langle \lambda^+, \lambda^+ \rangle = \langle w_\lambda \lambda, w_\lambda \lambda \rangle = \langle \lambda, \lambda \rangle$, it is possible to show that $d(\lambda) = (1/2L(\lambda)) \sum_{i,j=1}^{\ell} (G_{ij} (\lambda_i \lambda_j - \lambda_i^+ \lambda_j^+))$, where $G = S^{-1}$ with $S_{ij} = c_i(c_i^{\mathsf{v}})^{-1} A_{ij}$ for $i, j \in I_+ = \{1, 2, \dots, \ell\}$.

Each irreducible highest weight integrable module V^{λ} of \mathcal{G} is labelled by a dominant integral weight λ . Such a module has a weight space decomposition $V^{\lambda} = \bigoplus_{\kappa \in \mathcal{H}} \cdot V_{\kappa}^{\lambda}$ and the character of this module is formally given by $\operatorname{ch} V^{\lambda} = \sum_{\kappa \in \mathcal{P}} m_{\kappa}^{\lambda} e^{\kappa}$, where the weight multiplicity m_{κ}^{λ} is the dimension of V_{κ}^{λ} . Kac [1] has established the character formula:

$$\operatorname{ch} V^{\lambda} = \sum_{w \in W} \epsilon(w) e^{w(\lambda + \rho)} / \sum_{w \in W} \epsilon(w) e^{w \rho}, \tag{1}$$

where $\rho \in \mathcal{H}^*$ is defined by $\rho = \sum_{i=0}^{t} \omega_i$ so that $\langle \rho, \alpha_i^{\vee} \rangle = 1$ for $i \in I$.

The tensor product $V^{\mu} \otimes V^{\nu}$ of two irreducible integrable highest weight modules of \mathcal{G} is fully reducible into a direct sum of such modules. If the multiplicity of occurrence of modules V^{λ} in this tensor product is denoted by $g^{\lambda}_{\mu\nu}$ then $\operatorname{ch} V^{\mu} \operatorname{ch} V^{\nu} =$

 $\sum_{\lambda \in P_+} g_{\mu\nu}^{\lambda} \operatorname{ch} V^{\lambda}$. Two problems which immediately present themselves are the explicit evaluation of the weight multiplicities m_{κ}^{λ} and the explicit evaluation of the tensor product multiplicities $g_{\mu\nu}^{\lambda}$. In what follows it is demonstrated not only that these problems may be solved algorithmically but also that they are intimately connected. Illustrations are confined for simplicity to the case $\mathcal{G} = A_1^{(1)}$.

The formal definition of $\operatorname{ch} V^{\mu}$ and the character formula (1) for $\operatorname{ch} V^{\nu}$ and $\operatorname{ch} V^{\lambda}$ imply

 $\sum_{\kappa \in P} m_{\kappa}^{\mu} e^{\kappa} \sum_{v \in W} \epsilon(v) e^{v(\nu + \rho)} = \sum_{\lambda \in P_{+}} g_{\mu\nu}^{\lambda} \sum_{w \in W} \epsilon(w) e^{w(\lambda + \rho)}. \tag{2}$

For any $\lambda \in P_+$ it follows that $\lambda + \rho \in P_{++}$. Moreover $w(\lambda + \rho) \in P_{++}$ if and only if w is the identity element of W. Setting $\kappa = v\sigma$, using the fact that $m_{v\sigma}^{\mu} = m_{\sigma}^{\mu}$ and picking out those terms on both sides of (2) involving e^{η} with $\eta \in P_{++}$ leads to the identity

$$\sum_{\substack{\sigma \in P \\ (\sigma + \nu + \rho)^+ \in P_+ +}} \epsilon(w_{\sigma + \nu + \rho}) m_{\sigma}^{\mu} e^{(\sigma + \nu + \rho)^+} = \sum_{\lambda \in P_+} g_{\mu\nu}^{\lambda} e^{\lambda + \rho}. \tag{3}$$

This identity provides a geometric procedure for determining the tensor product multiplicities $g^{\lambda}_{\mu\nu}$ from the weight multiplicities m^{μ}_{σ} of just one of the constituent irreducible modules in the product. Its use is a straightforward generalisation of a very well known technique [2,3,4] developed in the context of finite dimensional Lie algebras. The identity (3) actually provides an explicit formula [3] for tensor product multiplicities:

$$g_{\mu\nu}^{\lambda} = \sum_{\substack{\sigma \in P \\ (\sigma + \nu + \rho) + \equiv \lambda + \rho}} \epsilon(w_{\sigma + \nu + \rho}) m_{\sigma}^{\mu} = \sum_{w \in W} \epsilon(w) m_{\lambda + \rho - w}^{\mu} {}_{(\nu + \rho)}, \tag{4}$$

where the sum over σ has been replaced in the second expression by a sum over $w \in W$ since the set of elements $\sigma + \nu + \rho$ such that $(\sigma + \nu + \rho)^+ = \lambda + \rho$ is precisely $W(\lambda + \rho)$. Use has also been made the fact that $m_{\sigma}^{\mu} = m_{\mu\sigma}^{\mu}$.

This formula not only allows the explicit calculation of tensor product multiplicities from a knowledge of weight multiplicities but also the converse. Indeed setting $\nu = 0$, so that $V^{\nu} = V^{0}$ is the trivial one-dimensional module and $g^{\lambda}_{\mu\nu} = g^{\lambda}_{\mu0} = \delta^{\lambda}_{\mu}$, and taking $\lambda \neq \mu$ in (4) gives Racah's familiar recurrence relation [3] for weight multiplicities: $\sum_{w \in W} \epsilon(w) m^{\mu}_{\lambda + \rho - w \rho} = 0$. However, (4) can be used as it stands as a tool for determining weight multiplicities from tensor product multiplicities.

By way of illustration, in the case of $g = A_1^{(1)}$ we have $A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$, so that S = (2), $G = (\frac{1}{2})$ and $d(\mu) = \frac{1}{4L(\mu)}(\mu_1^2 - \mu_1^{+2})$. For the simplest non-trivial module, $V^{(1,0;0)}$ with highest weight $\mu = \omega_0$, the weights are all of the form $\sigma = (1 - 2m)\omega_0 + 2m\omega_1 - p\delta$ with $m \in \mathbb{Z}$ and $p \in \mathbb{Z}_+$. The top ten rows of the infinite weight diagram are shown below. Ignoring for the moment the foot of the table, the Weyl reflection planes are the vertical lines through $\theta_0 = (0,1)$ and $\theta_1 = (1,0)$. All weights $\sigma = (1-2m,2m;p)$ on any vertical string in a column labelled by m are Weyl equivalent to those on the one string in the dominant sector labelled by m = 0. In fact $\sigma^+ = (1,0;k)$ with $k = p - m^2$, since $d(\sigma) = \frac{1}{4}(\sigma_1^2 - \mu_1^2) = m^2$. The weight multiplicities themselves are given by $m_{\sigma}^{\mu} = a_{p-m^2}$ where $a_n = p(n)$, the number of partitions of n, as can be shown through the use of Racah's recurrence relation [5] or otherwise [1].

The above weight diagram may then be used to calculate, for example, the tensor product multiplicities for $V^{(1,0;0)} \otimes V^{(2,0;0)}$. The procedure based directly on (3) involves shifting the weight diagram of $V^{(1,0;0)}$ through $\nu+\rho=(3,1;0)$ so that $\sigma=(1-2m,2m;p)$ goes to $\zeta=(4-2m,1+2m;p)$ with $L(\zeta)=5$. This can be effected by the relabelling given at the foot of the above diagram. The reflection planes are now at the positions $\phi_0=(0,5)$ and $\phi_1=(5,0)$. All weights ζ on any vertical string either lie on a Weyl reflection plane or are such that $\zeta^+=(4,1;k)$ or (2,3;k) for some k, with $d(\zeta)=\frac{1}{5}m(m+1)$ or $\frac{1}{5}(m^2+m-2)$, respectively. Carrying out the Weyl reflections for each vertical string, taking signatures into account and subtracting $\rho=(1,1;0)$ gives the following tensor product multiplicities $g^{(\lambda_0,\lambda_1;k)}_{(1,0;0)(2,0;0)}$:

$$(\lambda_0, \lambda_1) = (3,0)$$
 $(\lambda_0, \lambda_1) = (1,2)$
 $k = 0$ 1
 $k = 1$ 1 1 1
 $k = 2$ 2 2 1 1 1
 $k = 3$ 3 - 2 = 1 2
 $k = 4$ 5 - 3 = 2 3 - 1 = 2
 $k = 5$ 7 - 5 = 2 5 - 1 = 4
 $k = 6$ 11 - 7 = 4 7 - 2 = 5
 $k = 7$ 15 - 11 = 4 11 - 3 - 1 = 7

Since tensor products are commutative, the same multiplicities must arise if the problem is approached in the same way but starting from the weight diagram of the module $V^{(2,0;0)}$. This takes the following form in which reflections in the planes signified by $\psi_0 = (0,2)$ and $\psi_1 = (2,0)$ have been used to parametrise the weight multiplicities

in terms of those in the dominant sector. The weights are all of the form $\tau = (2 - 2m, 2m; p)$, with $L(\tau) = 2$ and $d(\tau) = \frac{1}{2}m^2$ or $\frac{1}{2}(m^2 - 1)$, according as m is even or odd.

Proceeding as in the previous example on the basis of (3) with μ and ν interchanged, now involves adding $\mu + \rho = (2, 1; 0)$ to the weights τ to give ζ . Of course the reflection planes signified by ϕ_0 and ϕ_1 and $d(\zeta)$ are exactly as before. Carrying out the reflections, taking signatures into account and subtracting ρ leads to expressions for the tensor product multiplicities which may be solved recursively for the weight multiplicities a_k and b_k of the dominant weights (2,0;k) and (0,2;k) of $V^{(2,0;0)}$ as shown below.

	$(\lambda_0,\lambda_1)=(3,0)$	$(\lambda_0,\lambda_1)=(1,2)$		
k = 0	$1=a_0$		$a_0 = 1$	
k = 1	$0=a_1-b_1$	$1=b_1$	$a_1 = 1$	$b_1 = 1$
k = 2	$1 = a_2 - b_2$	$1 = b_2 - b_0 - a_0$	$a_2 = 3$	$b_2 = 2$
k = 3	$1=a_3-b_3$	$2 = b_3 - b_1 - a_1$	$a_3 = 5$	$b_3 = 4$
k=4	$2 = a_4 - b_4 - a_0$	$2 = b_4 - b_2 - a_2$	$a_4 = 10$	$b_4 = 7$
k = 5	$2 = a_5 - b_5 - a_1$	$4 = b_5 - b_3 - a_3$	$a_5 = 16$	$b_5 = 13$

REFERENCES

- [1] V.G.Kac, Infinite dimensional Lie algebras (Boston, Mass.: Birkhauser, 1983)
- [2] A.U. Klimyk, Amer. Math. Soc. Transl. Series 2 Vol 76 (Providence, RI.: Amer. Math. Soc., 1968)
- [3] G. Racah, in Group theoretical concepts and methods in elementary particle physics, Ed. F. Gursey (New York, NY.: Gordon and Breach, 1964) pp1-36
- [4] D. Speiser, in Group theoretical concepts and methods in elementary particle physics, Ed. F. Gursey (New York, NY.: Gordon and Breach, 1964) pp237-246
- [5] A.J. Feingold and J. Lepowsky, Adv. Math. 29, 271-309 (1978)