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Following Kac [1], let ¢ = G(A) be the affine Kac-Moody algebra of rank £ as-
sociated with a symmetrisable generalised Cartan matrix A having matrix elements
Ay = (i} ) = 2({ax, a;))/({@j,0;)) for 4,5 € I where I = {0,1,...,£}. Each sim-
ple root oy, with ¢ € I lies in H", the dual of the Cartan subalgebra H of G. The
corresponding co-roots are defined by o) = 2a;/{a;,a;) for i € I.

It is convenient to introduce vectors § and w;, with i € I, which together span H*.
In terms of the integer marks ¢; and co-marks ¢} for ¢ € I we have § = Ef:o coy; =
Ti_oc/@/. The marks are chosen [1] so that {6, aj) = 0 for j € I. In addition
(wi,af ) = & for 4,5 € I, (wi,wo) = 0 for i € I, and (6,wo) = c§. Every weight A € H*
may then be expressed in the form A = Ef___o Aiw; — kb = (Ag, AL, ... A k) where the
Dynkin components of A are given by A; = (A, @} for ¢ € I. The level and depth of the
weight ) are defined by L(A) = (\,8) = = !_gcv A and D(A) = —(c§)~ 1 (A, wo) = k. A
weight A € H* is said to belong to the set of integral weights, P, if (A\,aY) € Z for: € I.
Such an integral weight A is dominant and in Py if (A\,a)) > 0 for i € I, and strongly
dominant and in Py if (A\,aY) > 0for: € I.

The Weyl group, W, of G is generated by the Weyl reflections whose action on H*
are defined by r;(A) = A — (A, a))o; for ¢ € I. The orbit of A under the Weyl group
action is the set W, = {wA | w € W}. For each X in P there exists a unique dominant
weight At in Py such that A\ = w, A for some wy, € W. If At is in P4 then all the
elements wA with w € W are distinct, and in particular w, is unique.

The null depth of A is then defined to be d(A)} = D(A) — D(A1). By exploiting the
Weyl group invariance, which implies (A*, A1) = (w, A, wyA) = (), A), it is possible to
show that d(A) = (1/2L(A)) Z{ ;=1 (G (\:d; — AFA)), where G = S-1 with S; =
ci(ey)-1A;; for i,j € Iy = {1,2,...,€}.

Each irreducible highest weight integrable module V* of G is labelled by a dominant
integral weight A. Such a module has a weight space decomposition V* = @cp. V2
and the character of this module is formally given by chV* =32, _, m}e*, where the
weight multiplicity m? is the dimension of V*. Kac [1] has established the character
formula:

i = T w0 [ B cwperr, (1)
weWw wew
where p € H* is defined by p = ©{_qw; so that {p,a)) =1fori € I.
The tensor product V* ® V¥ of two irreducible integrable highest weight modules
of G is fully reducible into a direct sum of such modules. If the multiplicity of oc-
currence of modules V* in this tensor product is denoted by g3, then chV*chV* =
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z rep, g2, ch V*. Two problems which immediately present themselves are the explicit

evaluation of the weight multiplicities m} and the explicit evaluation of the tensor prod-
uct multiplicities g}, . In what follows it is demonstrated not only that these problems
may be solved algorithmically but also that they are intimately connected. Illustrations
are confined for simplicity to the case G = Agl .

The formal definition of chV# and the character formula (1) for chV* and chV*

imply
Z mhe® E e(v)e"("'h’) = Z I Z e(w)e“‘("'*"’). (2)

KEP veW AEP, weEW

For any \ € Py it follows that A + p € Pyy. Moreover w(A + p) € Py if and only if w
is the identity element of W. Setting x = vo, using the fact that m¥, = m# and picking
out those terms on both sides of (2) involving e" with n € P44 leads to the identity

o e(Wory )t eI = 5T gl M, (3)
e€EP AEP,
(etvtp)tery,

This identity provides a geometric procedure for determining the tensor product
multiplicities g}, from the weight multiplicities m# of just one of the constituent irre-
ducible modules in the product. Its use is a straightforward generalisation of a very well
known technique [2,3,4] developed in the context of finite dimensional Lie algebras. The
identity (3) actually provides an explicit formula [3] for tensor product multiplicities:

g:v = Z (Wotyp)my = Z e(w)m‘;+p_w(y+p)’ (4)
cepP weW
(r4vtp)t =2+,
where the sum over o has been replaced in the second expression by a sum over w € W
since the set of elements o + v + p such that (¢ + v+ p)* = A + p is precisely W(A+ p).
Use has also been made the fact that m# =m} .

This formula not only allows the explicit calculation of tensor product multiplic-
ities from a knowledge of weight multiplicities but also the converse. Indeed setting
v =0, so that V* = V9 is the trivial one-dimensional module and ¢}, = g}y = 8}, and
taking A # p in (4) gives Racah’s familiar recurrence relation [3] for weight multiplic-
ities: ¥,y €(w)miy,_,, = 0. However, (4) can be used as it stands as a tool for
determining weight multiplicities from tensor product multiplicities.

By way of illustration, in the case of g = A&” wehave A = ( _g “%) ,so that S = (2),

G =(3)and d(p) = 75%75(“% - ui"z). For the simplest non-trivial module, V(1939 with
highest weight u = wp, the weights are all of the form ¢ = (1 — 2m)wo + 2mwy — pé
with m € Z and p € Z4+. The top ten rows of the infinite weight diagram are shown
below. Ignoring for the moment the foot of the table, the Weyl reflection planes are the
vertical lines through 8¢ = (0,1) and 61 = (1,0). All weights ¢ = (1 —2m, 2m; p) on any
vertical string in a column labelled by m are Weyl equivalent to those on the one string
in the dominant sector labelled by m = 0. In fact o+ = (1,0; k) with k = p — m2, since
d(0) = }(6% — u?) = m?. The weight multiplicities themselves are given by m# = ,_ na
where a, = p(n), the number of partitions of n, as can be shown through the use of
Racah’s recurrence relation [5] or otherwise [1].
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m = cer =3 -2 -1 0 1 2 3 .
(00, o1) - (7, ~6) (5,-4) (3a_2) (1,0) (-1,2) (-3,4) (-5,6) -
d(o) 9 4 1 0 1 4 9
61 6o
!
p=0 1
p=1 1 1 1
p=2 1 2 1
p=3 2 3 2
p=4 1 3 5 3 1
p=>5 1 5 7 5 1
p==6 2 7 11 7 2
p="T 3 11 15 11 3
p=38 5 15 22 15 5
p=9 1 7 22 30 22 7 1
T T
$1 $o
d(¢) - 0 0 0 0 - 2

(C()’Cl) (10,—5) (8’_3) (6’_1) (4’1) (2’3) (015) (_217)

The above weight diagram may then be used to calculate, for example, the tensor
product multiplicities for V(190 @V (200, The procedure based directly on (3) involves
shifting the weight diagram of V(190 through v+p = (3,1;0) so that o = (1—2m, 2m; p)
goes to ( = (4 — 2m, 1 + 2m;p) with L(¢) = 5. This can be effected by the relabelling
given at the foot of the above diagram. The reflection planes are now at the positions
é0 = (0,5) and ¢1 = (5,0). All weights ¢ on any vertical string either lic on a Weyl
reflection plane or are such that (* = (4,1;k) or (2,3;k) for some k, with d({) =
%m(m +1) or %(m2 + m — 2), respectively. Carrying out the Weyl reflections for each
vertical string, taking signatures into account and subtracting p = (1,1;0) gives the
following tensor product multiplicities 98:’6;\(;);(;),0;0):

(Ao, A1) = (3,0) (Ao, M) = (1,2)

k=0 1

k=1 1-1=0 1

k=2 2-1=1 1

k=3 3-2=1 2

k=4 5-3=2 3—1=2
k=5 T—5=2 5—1=4
k=6 11-7=4 7-2=5
k=1 15— 11=4 11-3-1=7

Since tensor products are commutative, the same multiplicities must arise if the
problem is approached in the same way but starting from the weight diagram of the
module V(20:0), This takes the following form in which reflections in the planes signified
by ¥ = (0,2) and %1 = (2,0) have been used to parametrise the weight multiplicities
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in terms of those in the dominant sector. The weights are all of the form 7 = (2 —
2m, 2m; p), with L(7) = 2 and d(7) = %mz or %(m‘2 —1), according as m is even or odd.

m= -4 -3 -2 -1 0 1 2 3 4
(7'0,7'1) e (8 a_ﬁ) (67_4) (4)_2) (21 0) (0 12) (_2a4) (—4,6) ("618)
d(r) 8 4 2 0 0 0 2 4 8
(21 Yo
l l
p=0 ao
p=1 b1 ai b1
p=2 ag b2 az by ag
p=3 al by as b3 ai
p=4 az ba a4 by az
p=>5 b1 a3 bs as b a3 b
p=26 b2 a4 be ae be a4 )
p="T b3 as by a7 by as b3
p=8 ap bg ag bg ag bg ag by ag
T T
#1 do
@) 2 - 0 0 0 0 - 2 4

(¢0,¢1) -+ (10,-5) (8,-3) (6,-1) (4,1) (2,3) (0,5) (-2,7) (-4,9)

Proceeding as in the previous example on the basis of (3) with ¢ and v interchanged,
now involves adding p + p = (2,1;0) to the weights 7 to give {. Of course the reflection
planes signified by ¢o and ¢1 and d(() are exactly as before. Carrying out the reflections,
taking signatures into account and subtracting p leads to expressions for the tensor
product multiplicities which may be solved recursively for the weight multiplicities a;
and by of the dominant weights (2,0; k) and (0,2; k) of V(200 a5 shown below.

(Re, A1) = (8,0) (R0, A1) = (1,2)
k=0 1=aqag ap =1
k=1 0=a-bh 1= a1 =1 h=1
k=2 1=a3—bs 1=0b—bp—ap ag =3 bo =2
k=3 1=a3-0b3 2=>b3—~b1 —ai a3 =25 by =4
k=4 2=a4—bs—ag 2=0b4—by—az ag =10 bu=7
k=25 =as—bs —ai 4 =bs — b3 — a3 as =16 b5 =13
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