Alpha-Decay Chains of Superheavy Nuclei with Z = 121

G. Saxena¹, * M. Kaushik², and Mamta Aggarwal³ ¹Department of Physics, Govt. Women Engineering College, Ajmer - 305002, INDIA ²Department of Physics, Shankara Institute of Technology, Kukas, Jaipur - 302028, INDIA and

³Department of Physics, University of Mumbai, Kalina, Mumbai-400098, India

To look for the possible fusion reactions and to detect superheavy nuclei specially with Z > 118, is one of the eminent problems in the current nuclear physics world. So far many superheavy nuclei upto Z = 118, have been produced either by cold fusion reaction with target ²⁰⁸Pb and ²⁰⁹Bi at GSI Germany [1] and RIKEN Japan [2] or by hot fusion with projectile ⁴⁸Ca at JINR Dubna, Russia [3–5]. However, for Z > 118, few attempts were already made [6, 7] and the further information in this direction by many experimental and theoretical investigations are highly welcomed.

In view of this, we investigate even and odd isotopes of Z = 121 (298 $\leq A \leq 302$) using relativistic mean-field plus state dependent BCS (RMF+BCS) approach [8, 9] and try to dig int possible α -decay chains for the identification of new element. We compare our results with available experimental data [10]. Investigation of decay properties viz. α -decay and spontaneous fission (SF), have been found as the best and dominant way to probe superheavy nuclei and their stability for the identification of new elements. Out of which α -decay is found as a very powerful tool to investigate the nuclear structure properties of superheavy nuclei. We have studied alpha decay chain of $^{298-302}121$ and calculated alpha decay halflives and spontaneous half-lives of decay chain of these nuclei. For this study, α -decay halflives are calculated by using most recent modified Royer formula given by Akrawy et al in 2017 [11]:

$$log_{10}T_{\alpha}(sec) = a + bA^{1/6}\sqrt{Z} + \frac{cZ}{\sqrt{Q_{\alpha}}} + dI + eI^2$$
(1)

where $I = \frac{N-Z}{A}$ and the constants a, b, c, d, and e are

(Z-N)	a	b	с	d	е
e-e	-27.837	-0.9420	1.5343	-5.7004	8.785
o-e	-26.801	-1.1078	1.5585	14.8525	-30.523
e-o	-28.225	-0.8629	1.5377	-21.145	53.890
o - o	-23.635	-0.891	1.404	-12.4255	36.9005

The spontaneous fission half-life T_{SF} is calculated using the semiempirical formula proposed by Xu *et al.* taken from Ref. [12].

$$T_{1/2} = exp[2\pi\{C_0 + C_1A + C_2Z^2 + C_3Z^4 + C_4(N-Z)^2 - (0.13323\frac{Z^2}{A^{1/3}} - 11.64)\}](2)$$

The constants are $C_0 = -195.09227$, $C_1 =$ 3.10156, $C_2 = -0.04386$, $C_3 = 1.4030 \times 10^{-6}$, and $C_4 = -0.03199$. We use this formula for even-even isotopes and then take average to calculate spontaneous fission half life for odd isotopes.

Table 1 shows the calculated values of α decay half-life (T_{α}) , spontaneous fission halflife (T_{SF}) and the possible decay mode which could be either α decay or SF. We have also compared Q_{α} , α -decay half-life (T_{α}) as well as the decay mode with the available experimental data taken from Ref. [4]. It may be noted from Table 1 that these chains of nuclei with Z = 121, are found with long α -decay chain for which our calculated α -decay half-life and predicted decay mode are in excellent agreement with available data from experiments [4].

G. Saxena and Mamta Aggarwal acknowledge the support provided by SERB (DST), Govt. of India under YSS/2015/000952 and WOS-A scheme respectively.

^{*}Electronic address: gauravphy@gmail.com

Nuclei	$Q_{\alpha}(MeV)$		$T_{\alpha}(1/2)(sec)$		Decay Mode	
	RMF	Expt.	RMF	Expt.	RMF	Expt.
²⁹⁸ 121	12.81		2.91×10^{-03}		$\alpha 1$	
$^{294}119$	11.29		9.74×10^{-01}		$\alpha 2$	
^{290}Ts	10.82		$3.04 \times 10^{+00}$		$\alpha 3$	
^{286}Mc	11.87		4.93×10^{-03}		$\alpha 4$	
^{282}Nh	11.27	$10.78{\pm}0.08$	2.30×10^{-02}	7.3×10^{-02}	$\alpha 5$	α
278 Rg	10.49	$10.85{\pm}0.08$	3.06×10^{-01}	4.2×10^{-03}	$\alpha 6$	α
^{274}Mt	9.85	$10.20{\pm}1.10$	$2.68 \times 10^{+00}$	4.4×10^{-01}	$\alpha 7/SF$	α
²⁹⁹ 121	12.42		8.14×10^{-04}		α1	
295119	11.17		1.73×10^{-01}		$\alpha 2$	
^{291}Ts	10.72		6.25×10^{-01}		$\alpha 3$	
$^{287}\mathrm{Mc}$	11.21	$10.76 {\pm} 0.05$	9.20×10^{-03}	3.7×10^{-02}	$\alpha 4$	α
283 Nh	11.00	$10.23 {\pm} 0.01$	7.54×10^{-03}	7.5×10^{-02}	$\alpha 5$	α
279 Rg	10.52	$10.38 {\pm} 0.16$	2.89×10^{-02}	9.0×10^{-02}	$\alpha 6$	α
^{275}Mt	10.90	$10.48{\pm}0.01$	8.67×10^{-04}	2.0×10^{-02}	$\alpha 7$	α
300121	12.76		3.42×10^{-03}		$\alpha 1$	
296119	11.11		$2.42 \times 10^{+00}$		$\alpha 2$	
^{292}Ts	10.93		$1.65 \times 10^{+00}$		$\alpha 3$	
^{288}Mc	10.13	$10.63 {\pm} 0.01$	$3.44 \times 10^{+01}$	1.64×10^{-01}	$\alpha 4$	α
284 Nh	10.82	$10.12 {\pm} 0.01$	2.01×10^{-01}	9.1×10^{-03}	$\alpha 5$	α
280 Rg	10.43	$9.91{\pm}0.01$	4.10×10^{-01}	$4.6 \times 10^{+00}$	SF	α
^{276}Mt	9.99	$10.03{\pm}0.01$	$1.18 \times 10^{+00}$	4.5×10^{-01}	SF	α
$^{301}121$	12.33		1.25×10^{-03}		$\alpha 1$	
²⁹⁷ 119	10.86		$1.02 \times 10^{+00}$		$\alpha 2$	
^{293}Ts	10.91	$11.32{\pm}0.05$	1.87×10^{-01}	2.2×10^{-02}	$\alpha 3$	α
^{289}Mc	10.01	$10.49{\pm}0.05$	$1.12 \times 10^{+01}$	3.3×10^{-02}	$\alpha 4$	α
285 Nh	10.30	$10.01 {\pm} 0.04$	$1.19 \times 10^{+00}$	$4.2 \times 10^{+00}$	$\alpha 5/SF$	α
281 Rg	10.37	$9.41{\pm}0.05$	6.83×10^{-02}	$1.7 \times 10^{+01}$	SF	\mathbf{SF}
^{277}Mt	10.85		1.08×10^{-03}	5.0×10^{-03}	\mathbf{SF}	SF
$^{302}121$	12.59		6.90×10^{-03}		$\alpha 1$	
298119	10.58		$4.11 \times 10^{+01}$		$\alpha 2$	
^{294}Ts	10.75	$11.18{\pm}0.04$	$4.16 \times 10^{+00}$	5.1×10^{-02}	$\alpha 3$	α
$^{290}\mathrm{Mc}$	10.27	$10.41{\pm}0.04$	$1.49 \times 10^{+01}$	6.5×10^{-01}	$\alpha 4$	α
^{286}Nh	9.33	$9.79{\pm}0.05$	$1.04 \times 10^{+03}$	$9.5 \times 10^{+00}$	SF	α
282 Rg	9.98	$9.16{\pm}0.03$	$4.94 \times 10^{+00}$	$10.0 \times 10^{+01}$	SF	α
^{278}Mt	9.93	$9.58{\pm}0.03$	$1.56{\times}10^{+00}$	$4.5 \times 10^{+00}$	SF	α

TABLE I: Comparison of Q_{α} values, α -decay half-lives calculated by using modified Royer formula [11] and possible mode of decay of $Z = 121 \alpha$ -decay chains with available experimental data [4].

References

- S. Hofmann *et al.*, Rev. Mod. Phys. 72 (2000) 733.
- [2] K. Morita *et al.* J. Phys. Soc. Jpn. 76 (2007) 045001.
- [3] Yu. Ts. Oganessian *et al.*, Phys. Rev. Lett 104 (2010) 142502.
- [4] Yu. Ts. Oganessian *et al.*, Nucl. Phys. A 944 (2015) 62.
- [5] J. H. Hamilton *et al.*, Annu. Rev. Nucl. Part. Sci. 63 (2013) 383.
- [6] S. Hofmann *et al.*, Eur. Phys. J. A. 52 (2016) 180.

- [7] Yu. Ts. Oganessian *et al.*, Phys. Rev. C 79 (2009) 024603.
- [8] G. Saxena *et al.*, Phys. Lett. B 775 (2017) 126.
- [9] G. Saxena *et al.*, Int. J. Mod. Phys. E 27 (2018) 1850074.
- [10] W. J. Huang *et al.*, Chinese Physics C 41 (2017) 030003.
- [11] D. T. Akrawy et al., Jour. Phys. G: Nucl. Part. Phys. 44 (2017) 105105.
- [12] C. Xu *et al.*, Phys. Rev. C 78 (2008) 044329.