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Abstract

Boundaries in gauge field theories are known to be the locus of a wealth of interesting phenomena, as il-
lustrated for example by the holographic principle or by the AdS/CFT and bulk-boundary correspondences. 
In particular, it has been acknowledged for quite some time that boundaries can break gauge invariance, 
and thereby turn gauge degrees of freedom into physical ones. There is however no known systematic way 
of identifying these degrees of freedom and possible associated boundary observables. Following recent 
work by Donnelly and Freidel, we show that this can be achieved by extending the covariant Hamiltonian 
formalism so as to make it gauge-invariant under arbitrary large gauge transformations. This can be done 
at the expense of extending the phase space by introducing new boundary fields, which in turn determine 
new boundary symmetries and observables. We present the general framework behind this construction, 
and find the conditions under which it can be applied to an arbitrary Lagrangian. By studying the exam-
ples of Abelian Chern–Simons theory and first order three-dimensional gravity, we then show that the new 
boundary observables satisfy the known corresponding Kac–Moody affine algebras. This shows that this 
new extended phase space formulation does indeed properly describe the dynamical boundary degrees of 
freedom, and gives credit to the results which have been previously derived in the case of diffeomorphism 
symmetry. We expect that this systematic understanding of the boundary symmetries will play a major role 
for the quantization of gravity in finite regions.
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1. Introduction

The status of boundaries in modern theoretical physics has evolved from being simply “the 
place where we set boundary conditions” to the locus of a wealth of phenomena whose richness 
and physical relevance is becoming increasingly apparent. This is epitomized for example in the 
holographic principle [1,2], the AdS/CFT correspondence [3–5], the bulk-boundary correspon-
dence of condensed matter [6–8], or the study of (entanglement) entropy [9–14]. Depending on 
the system, the boundaries of interest can be inner to the spacetime (and provide for example a 
quasi-local description of black holes [15]), at infinity (and describe the asymptotic geometry of 
spacetime [16–19]), or at finite distances (and delimitate subsystems). To this list one can also 
add boundaries in the form of defects of arbitrary co-dimension, which can support local exci-
tations in topological quantum field theories [20–23] and play now a central role in condensed 
matter [24–26] and quantum gravity [27–30]. Although there is no known framework to describe 
at once the new physics that can emerge on boundaries, one unifying thread has to do with the 
notion of gauge.

Heuristically, the role of gauge transformations is to identify field configurations which would 
have otherwise been deemed inequivalent. However, when defining gauge field theories on man-
ifolds with boundaries these latter can break gauge invariance and thereby turn certain gauge 
degrees of freedom into physical ones. These are for example the famous conformal edge cur-
rents of Chern–Simons theory [6,31]. In the context of gravity, these “would-be-gauge” degrees 
of freedom have been put forward as candidates to explain the origin of black hole entropy 
[32–34]. By using the Chern–Simons formulation of three-dimensional gravity [35,36] Carlip 
was able to construct an explicit realization of this idea [32]. His construction relies partly on 
the fact that the Chern–Simons action is not gauge-invariant and gives rise on the boundary to 
a Wess–Zumino–Novikov–Witten (WZNW) theory [37–40]. A more general result is actually 
known to hold. In a seminal paper, Brown and Henneaux proved that the asymptotic symmetries 
of three-dimensional AdS spacetime were described by two copies of a Virasoro algebra [3], and 
it was shown later on that the corresponding boundary dynamics is given by a Liouville con-
formal field theory [4,41]. This constitutes the first example of a realization of AdS/CFT. These 
examples from three-dimensional gravity are all the more surprising because they give rise to 
infinitely-many degrees of freedom on the boundary while the bulk can only have finitely-many 
owing to the topological nature of the theory. Similar proposals exist for the description of four-
dimensional black hole entropy [42], but are more complicated due to the unavailability of a 
Chern–Simons formulation and the need to work with diffeomorphisms [43,44].

It has been known for a while that by slightly generalizing Noether’s two theorems [45] it is 
possible to consistently assign conserved charges to local gauge symmetries [46,47]. Recently, 
a huge momentum was gained following the realization that a carefully analysis of boundary 
conditions and large gauge transformations (i.e. gauge transformations which do not vanish on 
the boundary) leads to new conserved charges in an unexpectedly broad variety of theories (see 
[48] and references therein), including most notably QED [47,49,50] and gravity [51]. These 
results build up on the existence in these theories of infinite-dimensional asymptotic symmetry 
algebras, like the Bondi–Metzner–Sachs (BMS) algebra in the asymptotically flat gravitational 
case [52–54]. The existence of well-defined conserved charges associated with certain residual 
gauge transformations means that these latter are actually best thought of as symmetries, which 
therefore map between physically inequivalent field configurations. Understanding the origin 
and the physical implications of these forgotten degrees of freedom, or “soft hairs” as they are 
now known, is of primordial importance. As far as we are aware however, there exists so far no 
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systematic and universal understanding of the nature of the conserved charges and asymptotic 
symmetries which should be considered as physical given an arbitrary theory. Rather, the con-
served charges which have been constructed so far always involve some extra structure, in the 
sense that they live on specific regions of spacetime and require specific boundary conditions 
(see for example [55]).

In the present paper, we will focus on yet another type of boundary charges, namely those 
defined at finite distances. Interestingly, the crucial role played by such boundary charge degrees 
of freedom has been impressively illustrated in numerous (lattice) gauge theory computations 
of entanglement entropy [12,13,56–62]. In short, if the contribution of boundary degrees of 
freedom is forgotten one ends up undercounting the entropy. This is remedied by considering 
so-called extended Hilbert spaces which contain information about gauge transformations with 
non-vanishing support on the boundary. While most of the results in these approaches are con-
cerned with the Hilbert spaces (attached to local regions or subsystems) of quantum lattice gauge 
theories, Donnelly and Freidel have recently proposed a classical and continuum analysis of 
the mechanism at play, and applied it to gravity in metric variables [63]. They have in particu-
lar defined an extended phase space containing new boundary degrees of freedom, derived new 
boundary observables for Yang–Mills theory and gravity, and found in this latter case that they 
are described by an unexpectedly large symmetry group. This can potentially have very impor-
tant consequences for the quantization of gravity in finite regions, and therefore deserves a very 
thorough analysis. In the present work we would like to give some more flesh to their argument, 
and to compare its consequences with previously known results about boundary observables in 
gauge theory and gravity. We therefore ask the following two questions:

i) Starting from the Lagrangian of any gauge theory, how to construct in a definite manner an 
extended phase space containing relevant boundary degrees of freedom?

ii) What is the interpretation of the new boundary observables and symmetries which appear 
in this extended phase space?

The first question was already studied in [63] on the particular examples of Yang–Mills the-
ory and second order gravity. Here we would like to develop a general understanding of this 
construction without focusing on a particular example. This will force us to think carefully about 
boundary terms, corner ambiguities, possible gauge-non-invariance of the Lagrangian, and the 
definition of the conserved pre-symplectic form. This will be the first part of our work.

The second question on the other hand has to do with specific examples. As mentioned earlier, 
there are many theories for which the boundary observables and degrees of freedom are (believed 
to be) known. This includes for example the edge modes of Abelian Chern–Simons theory [6,31,
64] and the WZNW gauge fields of non-Abelian Chern–Simons theory [32,40]. In gravity, ob-
servables were constructed in [33,34] with metric variables and in [65] with first order connection 
and triad variables. This thus begs the question of the relationship between these “old” observ-
ables and the “new” observables of [63]. The second part of our work will therefore be devoted 
to the study of this question in Chern–Simons theory and first order three-dimensional gravity. 
We will find that the new observables coming from the extended phase space are a “dressed” 
version of the previously-known observables, but that they satisfy the same current algebra. The 
case of non-Abelian Chern–Simons theory can be treated along the same ways, and we outline 
the main steps of the construction in appendix Appendix D. We will also see that the extended 
phase space obtained by introducing additional boundary degrees of freedom enables to obtain 
conceptual clarity as to the role of gauge transformations versus that of gauge symmetries.

In other words, while it has been known for quite some time how to describe the boundary 
dynamics of Chern–Simons theory (i.e. the WZNW action) and how to describe Hamiltonian 
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boundary observables in Chern–Simons theory and gravity, here we will take these steps further 
and introduce a new set of boundary variables, which are found through the requirement of 
gauge-invariance of the so-called covariant Hamiltonian framework, and which will lead to a 
“dressing” of the previously-known boundary observables. As we will show, for the construction 
of this extended phase space containing the new dressing boundary variables, it is not enough to 
simply consider the gauge-invariant Lagrangian of the theory. Instead, let us now present how 
we will proceed:

In order to simplify the understanding of the interplay between gauge transformations and 
boundaries, we will focus (as in [63]) on (d − 2)-dimensional1 spatial boundaries at finite 
distances. This saves us from having to discuss issues of convergence for e.g. the symplectic 
structure, which would furthermore require to choose a particular asymptotic spacetime struc-
ture (e.g. asymptotically flat or AdS).

The fate of gauge transformations is best studied in the covariant Hamiltonian (or covariant 
phase space) formalism of [46,47,66]. In this elegant framework, a central role is played by the 
so-called pre-symplectic potential. This is a (d − 1)-form in spacetime and a 1-form in field-
space which is determined by the Lagrangian of the theory, and in turn enables to derive its 
Noether currents, its symplectic structure, and the generators of infinitesimal gauge transforma-
tions. We will therefore start our work in section 2 with a review of the covariant Hamiltonian 
formalism, and devote particular attention to boundary (i.e. (d − 1)-dimensional) and corner (i.e. 
(d − 2)-dimensional) terms in the Lagrangian. This is usually overlooked in most treatments, but 
will enable us to identify possible ambiguities or subtleties in e.g. theories whose Lagrangian 
is not gauge-invariant. Following the insight of [63], we will show that important information 
about gauge transformations on the boundary can be obtained by considering finite and field-
dependent gauge transformations2 of the pre-symplectic potential. This means that we will allow 
for non-vanishing field-space variations δ of the finite gauge parameters, lurking towards the 
idea that they could be promoted to the status of degrees of freedom and thereby contribute to 
the symplectic structure. The precise way in which this should be done can be understood by 
noticing that the pre-symplectic potential is not gauge-invariant under such finite field-dependent 
transformations. Amongst our new results we will in particular derive the general form of this 
transformation, and show that it is possible to introduce boundary degrees of freedom that “ex-
tend” the pre-symplectic potential and ensure its gauge invariance. We will then analyze the 
conditions under which this extended pre-symplectic potential can be used to assign vanishing 
Noether charges3 to gauge transformations and to construct a conserved pre-symplectic form. As 
we will see, this will amount to relaxing the usual conservation criterion for the pre-symplectic 
form, and the new boundary degrees of freedom will act as compensating fields for the symplec-
tic flux which is leaked through the boundary. This is precisely realizing the idea that boundary 
conditions should be relaxed on the boundary, and additional fields introduced in order to keep 
track of the information flowing through the boundary from one subsystem to the neighboring 
one.

1 We denote by d the dimension of spacetime.
2 The fact that the construction of [63] could more elegantly and rigorously be understood in terms of field-dependent 

gauge transformations was actually pointed out and studied in [67].
3 The fact that gauge transformations come with vanishing Noether charges in this extended framework has also been 

pointed out in the construction of [67], which however obtains gauge-invariance by using a covariant derivative on 
field-space. As we will see, a more precise statement is actually that the charges are at least gauge-invariant, and at best 
vanishing.
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In section 3, we apply the general results of section 2 to Abelian Chern–Simons theory. 
This constitutes an ideal testbed because there exists already a known Lagrangian [32,64] and 
Hamiltonian [31,34] description of the boundary degrees of freedom and of their dynamics. In 
particular, these descriptions rely respectively on the gauge-non-invariance of the Lagrangian, 
and on the Regge–Teitelboim criterion for functional differentiability of the Hamiltonian genera-
tors [68]. We will first review how these arguments arise, and then show that the extended phase 
space of [63] and section 2 gives a much more systematic construction, which in particular does 
not require a choice of boundary conditions or restrictions on the gauge parameters. Out of this 
construction, we will obtain the dressed boundary observables and their algebra, which is nothing 
but the affine Kac–Moody algebra of the gauge group [69]. We therefore recover known results, 
but with the following conceptual advantage: the gauge transformations are now generated by 
vanishing generators with a closed algebra and assigned gauge-invariant (or vanishing) Noether 
charges, and the new boundary degrees of freedom of the extended phase space give rise to a new 
boundary symmetry. The generators of this latter are precisely the boundary observables, which 
satisfy the current algebra.

Three-dimensional gravity in its first order formulation is studied in section 4. As is well-
known, this is a topological field theory [70,71], which as such is invariant under three types of 
(non-independent) transformations: diffeomorphisms, SU(2) (in the Euclidean case) gauge trans-
formations, and translations. We start by recalling the infinitesimal and finite form of these gauge 
transformations, and give for the first time the expression for the finite translations in the case of 
a non-vanishing cosmological constant (the infinitesimal version appears of course in [35]). After 
repeating the usual Hamiltonian arguments which lead to boundary observables, we proceed fol-
lowing section 2 with the construction of the gauge-invariant extended pre-symplectic potential. 
This is done for two choices of independent gauge transformations: first for SU(2) gauge trans-
formations and translations, and then for SU(2) gauge transformations and diffeomorphisms. We 
then study the new observables which appear on the extended phase space. For simplicity we fo-
cus on SU(2) gauge transformations and translations, and leave the study of diffeomorphisms 
(and therefore comparison with [63]) for future work. The result is that the new observables are 
precisely a dressed (i.e. gauge transformed by the new boundary fields) version of the observ-
ables appearing in [65], to which they reduce if the new boundary degrees of freedom are ignored 
and trivialized. Their algebra is furthermore given by the affine Kac–Moody algebra of ISU(2)
(in the case of a vanishing cosmological constant).

While the affine Kac–Moody algebras which we obtain in this work as boundary symmetry 
algebras are already known to appear from the Regge–Teitelboim condition of functional differ-
entiability of the constraints, what we show here is that the boundary fields of the extended phase 
space allow for a new realization of these algebras in terms of new boundary observables. What 
will therefore be important for future work is to understand the physical role played by these 
boundary fields and observables.

We will present our conclusions and future research directions in section 5. The appendices 
contain some useful formulas as well as the proof of some more lengthy calculations, the main 
formulas needed in order to extend this construction to non-Abelian Chern–Simons theory, and 
a brief treatment of diffeomorphisms.

2. Covariant Hamiltonian formalism and corner ambiguities

In this first section, we present the general framework underlying our construction and that 
of [63]. This relies on well-established results in the so-called covariant Hamiltonian formalism 
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(also known as the covariant phase space formalism), which we here review while carefully keep-
ing track of boundary and corner terms. In particular, we will see that a specific corner ambiguity 
can be fixed by demanding that the covariant Hamiltonian framework be “preserved” by finite 
field-dependent gauge transformations, and that this can be done at the expense of introducing 
new boundary fields.

The reader is free to skip this formal presentation of the results and jump straight to the 
example of Abelian Chern–Simons theory in section 3.

2.1. Conserved pre-symplectic form

The covariant Hamiltonian formalism is a way of studying the generators of infinitesimal 
gauge transformations, along with their charges and their algebra, without the need to resort 
to a non-manifestly-covariant decomposition between space and time. A central object in this 
formalism is the conserved pre-symplectic form, whose construction we now describe.

For the sake of generality, let us consider a Lagrangian L[�] depending on a set of fields �, 
and add to it a possible boundary term b[�]. The variation of the Lagrangian with its boundary 
term is then given by4

δLb[�] = δ(L[�] + db[�]) = E[�] ∧ δ� + dθb,c[�,δ�]. (2.1)

On the right-hand side, the first term identifies the equations of motion E[�], and the second 
term identifies the pre-symplectic potential5

θb,c[�,δ�] := θb[�,δ�] + dc[�,δ�] := θ [�,δ�] + δb[�] + dc[�,δ�]. (2.2)

This object is a (d −1, 1)-form, i.e. a (d −1)-form in spacetime and a 1-form in field space. Since 
it appears in (2.1) via its exterior derivative, its identification is ambiguous up to the addition of 
a closed form, which is the so-called corner ambiguity.

From the knowledge of a potential, we can then construct the associated pre-symplectic cur-
rent (d − 1, 2)-form6 by taking a field space derivative, i.e.

ωb,c[�,δ1, δ2] := δθb,c[�,δ�]. (2.3)

From (2.2) and the fact that δ2 = 0, one can see that this reduces to

ωb,c[�,δ1, δ2] = δθ [�,δ�] + dδc[�,δ�]
= ω[�,δ1, δ2] + dδc[�,δ�] = ωc[�,δ1, δ2]. (2.4)

An important property is that the pre-symplectic current is closed on-shell. More precisely, we 
have

4 Throughout this work, we will always keep track with subscripts of the terms and ambiguities which contribute to the 
right-hand side of the various equalities and definitions. A subscript b denotes for example the presence of a contribution 
from a boundary term, a subscript � will denote the contribution from a boundary Lagrangian with new fields, a subscript 
c will denote the contribution coming from a corner ambiguity, etc. Since these objects will all be clearly defined, there 
should be no ambiguity as to what the subscripts refer to. Furthermore, while section 2 is slightly more formal with these 
notations, sections 3 and 4 will provide all the concrete examples.

5 From now on we will often refer to this object as “the potential”.
6 We use here the shorthand notation δP δQ = δ1Pδ2Q − δ2Pδ1Q for the 2-forms in field space. Furthermore, since 

in the 2-forms in field space all the fields are acted on by a variation δ, we use the notation ω[�, δ1, δ2] instead of 
ω[δ1�, δ2�], which will eventually prove to be lighter.
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dωb,c[�,δ1, δ2] = dωc[�,δ1, δ2] = dω[�,δ1, δ2] � 0. (2.5)

Notice that these three equalities have a different origin. The first one is a strict equality, and 
comes from the fact that the boundary term has completely dropped from the pre-symplectic 
current. The second one comes from the fact that the corner ambiguity is the addition of a total 
exterior derivative. And finally, the third one is the statement that the pre-symplectic current is 
closed on-shell.

Let us now consider a d-dimensional region N ⊂ M of spacetime bounded by ∂N = �1 ∪
�2 ∪ B , where �1 and �2 are two (d − 1)-dimensional space-like hypersurfaces, and B is a 
boundary (which can also consist of an inner boundary and/or a time-like boundary at infinity). 
Integrating the (d, 2)-form dω[�, δ1, δ2] over N , we get that

∫
N

dω[�,δ1, δ2] =
∫

∂N

ω[�,δ1, δ2] =
⎛
⎜⎝∫

�2

−
∫
�1

+
∫
B

⎞
⎟⎠ω[�,δ1, δ2] � 0. (2.6)

At this point, one has to impose boundary conditions in order to deal with the contribution at B . 
Note that these boundary conditions do not know about the boundary conditions on the fields at 
∂M which guarantee that the variational principle is well-defined, and in particular do not know 
about the existence of a possible boundary term db[�] in the Lagrangian. One possibility is to 
assume that the pre-symplectic flux coming from B is vanishing. In this case, we get that the 
pre-symplectic (0, 2)-form, defined as7

	�[�,δ1, δ2] :=
∫
�

ω[�,δ1, δ2], (2.8)

does not depend on the hypersurface � when the equations of motion are satisfied. This is the 
conserved pre-symplectic form.

One weaker possibility is to have boundary conditions at B which are such that
ω[�, δ1, δ2]

∣∣
B

= dw[�, δ1, δ2]. In this case, we get that

∫
B

ω[�,δ1, δ2] =
∫
∂B

w[�,δ1, δ2] =
⎛
⎜⎝∫

S1

−
∫
S2

⎞
⎟⎠w[�,δ1, δ2] (2.9)

where Si = �i ∩ B , and the conserved pre-symplectic form is given by

	�,S[�,δ1, δ2] :=
∫
�

ω[�,δ1, δ2] −
∫
S

w[�,δ1, δ2]. (2.10)

This happens for example in the case of isolated horizons [72,73].

7 Alternatively one can first define the (0, 1)-form


� [�,δ�] :=
∫
�

θ [�,δ�], (2.7)

and, assuming that the specification of � is field-independent so that the field-space variation δ can freely pass through 
the integral, we get that 	� [�, δ1, δ2] = δ
� [�, δ�]. As pointed out and discussed in [63,67], extra care has to be 
taken in the case where � is defined in a relational manner through the field content of the theory.
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In what follows, we will start by assuming that we have a conserved pre-symplectic form as 
defined in (2.8), but this construction will eventually be relaxed when considering the corner 
ambiguity. We can now explain how to obtain the generators of gauge transformations.

2.2. Charges and generators of infinitesimal transformations

Let ε denote the parameter of an infinitesimal gauge transformation8 acting on the fields as 
δε�. In the case of diffeomorphisms, ε will be a vector field ξ , while in the case of internal 
gauge transformations it will be a Lie algebra element α. The generator of this infinitesimal 
gauge transformation is a function H[ε] over the phase space, whose Poisson bracket with the 
fields is{

H[ε],�} = δε�. (2.11)

A fundamental result of the covariant Hamiltonian framework is that this generator is defined by 
the variational formula

/δH[ε] = 	�[�,δ, δε]. (2.12)

From this, one can see that the algebra of these generators is given by{
H[ε1],H[ε2]

} = δε1H[ε2] = 	�[�,δε1 , δε2]. (2.13)

In appendix Appendix B we elaborate a bit on these equalities, and in particular generalize them 
to the case of a pre-symplectic form containing a boundary piece. This will be important for our 
discussion in the next section. Also, note that when contracting the symplectic (0, 2)-form 	�

with a variational vector δε , the quantity /δH[ε] which is obtained is not guaranteed to be inte-
grable, i.e. to be a total variation δ of some expression H[ε]. This requires in general additional 
integrability conditions. This is the reason for which we use the notation /δ.

Another important result is that (2.12) is always given by the sum of a (d − 1)-dimensional 
(spatial) bulk integral involving the equations of motion and a (d − 2)-dimensional boundary 
(or corner) integral [46,47,74,75]. This boundary integral, which is the on-shell value of the 
generator, is the charge of the transformation. We would now like to recall the proof of this 
result. This will be the occasion of introducing the Noether charges, and of seeing how boundary 
terms and corner ambiguities propagate throughout the calculations.

Consider an infinitesimal internal gauge transformation parametrized by α and acting on the 
Lagrangian by producing a total derivative, i.e.

δαL[�] = dm[�,α]. (2.14)

For diffeomorphisms parametrized by ξ , the infinitesimal action is given by the Lie derivative, 
i.e. δξ = Lξ = d(ξ� ·) + ξ� (d·), so we have

δξL[�] = d(ξ�L[�]). (2.15)

In order to treat both cases at once, we will consider a parameter ε and the gauge transformation 
δε = δα + δξ . When acting on the Lagrangian with a boundary term, this becomes

8 Unless otherwise stated, the infinitesimal gauge transformations will always be field-independent in this work. We 
will however be led later on to consider finite field-dependent transformations in order to achieve our construction and to 
illustrate some subtleties which are often overlooked in the literature.
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δεLb[�] = δε(L[�] + db[�]). (2.16)

For internal gauge transformations we have δα(db[�]) = d(δαb[�]), while for diffeomorphisms 
δξ (db[�]) = d

(
ξ� (db[�])). This leads to

δεLb[�] = d
(
ξ�L[�] + ξ� (db[�]) + m[�,α] + δαb[�]). (2.17)

On the other hand, using d(δξb[�]) = d
(
d(ξ� b[�]) + ξ� (db[�])) in (2.1) leads to

δεLb[�] = E[�] ∧ δε� + d
(
θ [�,δε�] + d(ξ�b[�]) + ξ� (db[�]) + δαb[�]). (2.18)

Putting these two equations together finally leads to

E[�] ∧ δε� + d
(
θc[�,δε�] + d(ξ�b[�]) − ξ�L[�] − m[�,α]) = 0. (2.19)

We can now identify the Noether current (d − 1, 0)-form associated with the transformation δε . 
It is defined as

Jb,c[�,ε] := θc[�,δε�] + d(ξ�b[�]) − ξ�L[�] − m[�,α], (2.20)

and we can see that on-shell we have

dJb,c[�,ε] � 0. (2.21)

This in turn implies that we can write

Jb,c[�,ε] � dQb,c[�,ε], (2.22)

where the (d − 2, 0)-form

Qb,c[�,ε] := Q[�,ε] + ξ�b[�] + c[�,δε�] (2.23)

is the Noether charge density associated to ε. From this expression, one can see that the Noether 
charge density is only sensitive to boundary terms in the case of diffeomorphisms. Notice how-
ever that the corresponding contribution is only present because we have kept the corner term in 
(2.18), and represents therefore an ambiguity [46]. These ingredients are all we need in order to 
compute the Noether charge associated with a transformation δε . However, in order to prove the 
result concerning the form of δH[ε], we need to go through a few more equations.

First, we would like to have an equality which defines the off-shell part of (2.22). For this, we 
use the fact that we can always rewrite the term involving the equations of motion and the gauge 
transformation of the fields as

E[�] ∧ δε� = εN[E,�] − dP [E,�,ε]. (2.24)

Noether’s second theorem guarantees that N [E, �] = 0, which implies in turn that we can write

Jb,c[�,ε] = P [E,�,ε] + dQb,c[�,ε]. (2.25)

Now, let us consider the equality

0 = δδαLb[�] − δαδLb[�]
= d(δm[�,α] + δδαb[�] − δαθc[�,δ�] − δαδb[�])
= d(δm[�,α] − δαθc[�,δ�]). (2.26)

This implies that there exists a (d − 2, 1)-form Mc[�, α, δ�] such that

δm[�,α] − δαθc[�,δ�] =: dMc[�,α, δ�]. (2.27)
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Now, the variation of the Noether current is given by

δJb,c[�,ε] = δθc[�,δε�] + δd(ξ�b[�]) − δ(ξ�L[�]) − δm[�,α]. (2.28)

The third term can be rewritten using

δ(ξ�L[�]) = ξ� δL[�]
= ξ� (E[�] ∧ δ�) + ξ� (dθc[�,δ�])
= ξ� (E[�] ∧ δ�) +Lξ θc[�,δ�] − d(ξ� θc[�,δ�])
= ξ� (E[�] ∧ δ�) + δξ θc[�,δ�] − d(ξ� θc[�,δ�]), (2.29)

and the fourth term can be rewritten using (2.27). One can see here that we have explicitly used 
the field-independence δξ = 0. Putting this together leads to

δJb,c[�,ε] = ωc[�,δ, δε] − ξ� (E[�] ∧ δ�) + d(ξ� δb[�]
+ ξ� θc[�,δ�] − Mc[�,α, δ�]). (2.30)

Finally, rearranging the terms in this equation and using the variation of (2.25) leads to

ωc[�,δ, δε] = δP [E,�,ε] + ξ� (E[�] ∧ δ�) + d(δQb,c[�,ε]
− ξ� δb[�] − ξ� θc[�,δ�] + Mc[�,α, δ�])

� d(δQb,c[�,ε] − ξ� δb[�] − ξ� θc[�,δ�] + Mc[�,α, δ�]), (2.31)

where we have used both the equations of motion E[�] � 0 and the linearized equations of 
motion9 δP [E, �, ε] � 0. This shows the desired result, namely that

/δH[�,ε] = 	�[�,δ, δε] �
∫
∂�

(δQb[�,ε] − ξ� δb[�] − ξ� θ [�,δ�] + M[�,α, δ�]).

(2.32)

Notice that here and in (2.12) we have defined the variation of the generator in terms of the 
pre-symplectic form without a corner ambiguity. The goal of this work is precisely to determine 
which corner ambiguity should be used in the definition of the pre-symplectic form, and how this 
affects the generators and their charges.

Furthermore, notice that the above equation is actually not so useful for computing the 
charges, since for this one can simply compute 	�[�, δ, δε] and then identify the boundary 
integral. However, it has the advantage of showing the general result that charges associated with 
gauge transformations are given by boundary integrals, and that, when considering corner ambi-
guities in the pre-symplectic form, these are seen in the boundary integral defining the charge.

Finally, recall as mentioned above that (2.32) does not guarantee that the finite charge as-
sociated to the infinitesimal expression δH[�, ε] does actually exist. For this, an additional 
integrability condition is necessary, and can be obtained from the requirement that one must 
have δ2H[�, ε] = 0 if /δH[�, ε] = δH[�, ε] is integrable.

9 While the generator δH [�, ε] has to be defined for arbitrary variations, i.e. without using the linearized equations of 
motion, the corresponding charge is defined by an integration in the solution subspace of field-space, and can therefore 
be defined using the linearized equations of motion.
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2.3. Boundary conditions and degrees of freedom

In the previous two subsection we have seen how, starting from the potential, one can define 
a conserved pre-symplectic form and derive an expression for (the variation of) the generators 
of infinitesimal gauge transformations and the associated charges. We would now like to explain 
how the potential is related to the fixation of boundary conditions and to the appearance of 
boundary degrees of freedom.

Using (2.1), the variational principle for the action is

δ

∫
M

L[�] =
∫
M

E[�] ∧ δ� +
∫

∂M

θ [�,δ�]. (2.33)

The spacetime boundary integral has to vanish in order for this variation to give the bulk equa-
tions of motion. For this, one can impose global boundary conditions which ensure the vanishing 
of the whole boundary integral. Alternatively, one can achieve this by imposing local boundary 
conditions, which amounts to finding a field configuration �

∣∣
∂M

= �◦ such that

dθb[�◦, δ�◦] = 0. (2.34)

Typically the choice of �◦ is imposed by the physics or the solution under consideration, so in-
stead of seeing (2.34) as an equation for �◦ one has to see it as an equation for the boundary term 
b[�]. More precisely, knowing what field configuration �◦ is to be fixed on the boundary, one 
looks for a boundary term which is then such that (2.34) is satisfied. We will shortly encounter 
example illustrating this familiar matter.

Now, consider the action E∗� of finite and field-dependent gauge transformations on the 
fields �, which possibly changes the Lagrangian by a total derivative as10

L[E∗�] = L[�] + dm[�,E], (2.35)

and also possibly affects its boundary term as

b[E∗�] = b[�] + b̃[�,E]. (2.36)

This is therefore of the general form

Lb[E∗�] = Lb[�] + dmb[�,E], (2.37)

where

mb[�,E] := m[�,E] + b̃[�,E] (2.38)

contains a contribution from the non-invariance of the “bare” Lagrangian and a contribution from 
the non-invariance of the boundary term. For the sake of generality, we allow for mb[�, E] to be 
non-vanishing on-shell. Taking the variation of (2.37) leads to

δ(Lb[E∗�]) = E[�] ∧ δ� + d(θb[�,δ�] + δmb[�,E])
bc= E[�] ∧ δ� + dδmb[�◦,E], (2.39)

where for the second equality we have used the boundary conditions (2.34). One can see that the 
field configuration �◦ on the boundary leaves a contribution of the form dδmb[�◦, E]. As we 

10 Notice that this transformation rule is not satisfied in the case of non-Abelian Chern–Simons theory, where an addi-
tional bulk piece appears under finite gauge transformations. We comment on this in appendix Appendix D.
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shall see on concrete examples below, this contribution will always be non-vanishing in the case 
of field-dependent gauge transformations, thereby spoiling the well-posedness of the variational 
principle.

Now, it can happen that this boundary contribution vanishes for field-independent gauge trans-
formations. In this case, the requirement of field-independence is enough to regain a well-defined 
variational principle. However, it can also be that even for field-independent transformations the 
boundary contribution is not vanishing. In this case, further restrictions have to be imposed at the 
boundary. The way to do so without further constraining the boundary fields �

∣∣
∂M

is to restrict 
the gauge transformations on the boundary to be such that

dδmb[�◦,E◦] = 0. (2.40)

This can either be done by choosing gauge transformations which vanish on the boundary, or 
more generally by imposing a boundary equation on E .

Now, recall that gauge transformations play the role of identifying field configurations which 
would have otherwise been thought of as physically distinct. Therefore, if we are led to restricting 
the allowed gauge transformations on the boundary in order to ensure the definiteness of the vari-
ational principle, it means that some of these configurations do not become identified anymore, 
or in other words that gauge degrees of freedom have now become physical degrees of freedom. 
This explains formally the origin of the “would-be-gauge” boundary degrees of freedom. We 
would of course like to know how to describe the dynamics of these boundary excitations. This 
can be achieved by constructing a gauge-invariant Lagrangian.

In order to make the Lagrangian Lb[�] gauge-invariant, one can add new fields � through a 
boundary term �[�, �] transforming as

�[E∗�,E∗�] = �[�,�] + �̃[�,�,E]. (2.41)

Indeed, if we find a boundary term such that

�̃[�,�,E] = −mb[�,E] + d(something), (2.42)

then the Lagrangian

Lb,�[�,�] := Lb[�] + d�[�,�] (2.43)

is strictly gauge-invariant. Then we have

δLb,�[�,�] = δ(Lb,�[E∗�,E∗�]) = E[�] ∧ δ� + d(θb[�,δ�] + δ�[�,�]), (2.44)

so the variational principle is well-defined even when performing gauge-transformations. More 
precisely, it is well-defined when (2.34) is satisfied and when the boundary fields � obey their 
boundary equations of motion.

In the literature, one can find two different explanations for the origin of the boundary degrees 
of freedom in e.g. Abelian Chern–Simons theory. Indeed, depending on the choice of boundary 
conditions and boundary term, it is either argued that boundary degrees of freedom arise because 
of the need to further constrain the field-independent gauge transformations on the boundary [64], 
or that they arise because the boundary Lagrangian which is added to obtain gauge-invariance 
has a kinetic term (which also means that dδmb[�◦, E] contains (∂E)2) [32]. This state of affairs 
is not fully satisfactory, since it is not clear whether the boundary degrees of freedom arise 
because of the restriction on the allowed gauge transformations or because of the requirement of 
gauge-invariance. Furthermore, it is known that theories which are strictly gauge-invariant, i.e. 
with m[�, E] = 0, may still have boundary degrees of freedom, although in this case none of the 
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above arguments apply. Finally, notice that when adding boundary degrees of freedom through a 
boundary term �[�, �], this latter will drop from the pre-symplectic current according to what 
we have discussed above. It is therefore clear that the covariant Hamiltonian method cannot tell 
us information about the boundary degrees of freedom introduced in this way.

Notice that here we reach this conclusion if indeed we think of the new degrees of freedom 
� as being added via a total divergence term �[�, �] to the initial Lagrangian so as to make 
it gauge-invariant. One could however think of adding degrees of freedom � which are purely 
supported on the corner, and not on all of ∂M . This could be done by viewing �[�, �] as an 
independent Lagrangian, computing its variation to extract its pre-symplectic potential, and then 
adding this potential as a corner term to the potential θ [�, δ�]. This is what has been done 
for example in [83]. However, it is rather immediate to see (and we will illustrate this with 
Abelian Chern–Simons theory) that the corner term which is thereby added to the potential is not 
enough to make this latter gauge-invariant and therefore pursue the construction of the extended 
gauge-invariant phase space along the lines of [63]. Again, this is a manifestation of our claim 
that considering the gauge-invariant Lagrangian is not enough in order to construct the extended 
phase space which contains the dressing boundary degrees of freedom leading to the dressed 
observables.

We would therefore like to find a more systematic criterion for investigating the presence and 
the nature of possible boundary degrees of freedom. Following the insight of [63], this can be 
done by inspecting closer the properties of the pre-symplectic potential itself.

2.4. Finite field-dependent transformations of the pre-symplectic potential

In this subsection, we would like to know how the potential transforms under finite and field-
dependent gauge transformations. For this, let us forget momentarily about possible boundary 
terms �[�, �]. Let us start by computing the gauge transformation of the variation of the La-
grangian. This is given by

(δLb)[E∗�] = E[E∗�] ∧ δ(E∗�) + dθb[E∗�,δ(E∗�)]
= E[�] ∧ δ� + dp[�,E, δE] + dθb[E∗�,δ(E∗�)], (2.45)

which is a generalization of Noether’s result (2.24) to the case of finite and field-dependent gauge 
transformations. We will see below on concrete examples that this relation is indeed correct. 
Notice, as suggested by the notation, that this relation involves first computing the variation δ
of the Lagrangian, and then evaluating this variational quantity on the gauge-transformed fields 
E∗�. Now, demanding that (δLb)[E∗�] = δ(Lb[E∗�]) shows that we must necessarily have

θb[E∗�,δ(E∗�)] = θb[�,δ�] + dc[�,E, δ] + δmb[�,E] − p[�,E, δE], (2.46)

where the corner contribution can take the form

dc[�,E, δ] = dc1[�,E, δ�] + dc2[�,E, δE]. (2.47)

This simple result shows that the finite field-dependent gauge transformations of the potential can 
always be written in the form (2.46), and that by doing so one can identify the corner contribution. 
This generalizes of course straightforwardly to accommodate for the presence of a boundary term 
�[�, �]. More importantly, this shows that the potential is not gauge-invariant (even if δE = 0).

The only freedom in (2.46) which could be used to cancel the corner ambiguity is that of 
playing with the boundary term b[�], adding boundary terms and fields �[�, �], and thereby 
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changing δmb,�[�, �, E]. More precisely, if the boundary terms of the Lagrangian transform as 
(2.36) and (2.41), we have

δmb,�[�,�,E] = δm[�,E] + δb̃[�,E] + δ�̃[�,�,E], (2.48)

where δm[�, E] is the contribution which comes from the bulk Lagrangian and cannot be ad-
justed. By changing the boundary terms, we can change the last two terms, but it is clear that 
there can be corner contributions in (2.46) which cannot be absorbed by these last two terms, no 
matter what the boundary terms are chosen to be.

In these expressions one can see that p[�, E, δE] must necessarily contain the equations of 
motion (and therefore vanish on-shell) in order for the pre-symplectic current

ω[δ1, δ2,�,E] := δθb[E∗�,δ(E∗�)] (2.49)

to be closed on-shell. In fact, if p[�, E, δE] = p[E, �, E, δE] � 0 then we have that

dω[δ1, δ2,�,E] � dω[�,δ1, δ2] � 0. (2.50)

We will see that this condition is satisfied for all the examples treated in this paper, namely 
(Abelian and non-Abelian) Chern–Simons theory as well as three-dimensional gravity without a 
cosmological constant.

In non-Abelian Chern–Simons theory however, we will see in appendix Appendix D that 
there is an additional term in the transformed potential which is not vanishing on-shell and which 
comes from the behavior of the Lagrangian under finite gauge transformations (see previous foot-
note). It is only when computing the variation of this term, i.e. when going to the pre-symplectic 
current, that it will become a total exterior derivative.

2.5. Extended pre-symplectic potential

Let us now consider the general case where we have boundary terms b[�] and �[�, �]. This 
general Lagrangian has a potential given by θb,�[�, �, δ�, δ�] and which under a gauge trans-
formation becomes

θb,�[E∗�,E∗�,δ(E∗�), δ(E∗�)] = θb,�[�,�,δ�, δ�] + dc[�,E, δ]
+ δmb,�[�,�,E] − p[E,�,E, δE]. (2.51)

The gauge-non-invariance of the potential can be corrected by introducing new fields �. Gener-
ally, one can obtain off-shell gauge-invariance by considering

θb,�,c,m,p[�,�,�,δ�, δ�, δ�] := θb,�[�,�,δ�, δ�] + dc[�,�,δ]
+ δmb,�[�,�,�] − p[E,�,�,δ�] (2.52)

provided we choose carefully how the fields � transform under the action of E∗.
It should already be clear from the above formula that considering the extended potential and 

the extended Lagrangian (2.43) is not at all equivalent. Indeed, only the former knows about the 
corner ambiguities. This will be seen on concrete examples in the next two sections.

Notice that the expression (2.52) is in a sense a “minimal” gauge-invariant extension of the 
potential, which is the same as the right-hand side of (2.51) where we have replaced E by �. 
We shall see explicitly on the examples considered in the rest of this work how a gauge-invariant 
expression like (2.52) can indeed be obtained by computing (2.51) and then promoting the pa-
rameters E to new fields �. The expression (2.52) is however not unique, and one is free to add 
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any functional of the fields and their variations as long as this functional itself is invariant under 
the finite transformations E∗. One can also consider adding contributions from new fields other 
than �. We will not consider the effect of these additional ambiguities in this work. However, 
let us simply mention that when allowing for such extra ambiguities, one should do so in a man-
ner which preserves the properties of gauge-invariance which are gained from considering the 
extended potential. This is of course the aforementioned gauge-invariance property under E∗, 
and, as we shall see later on concrete examples, the fact that generator of gauge transforma-
tions computed from the extended symplectic structure are vanishing on-shell. We expect that 
once these conditions related to gauge-invariance are satisfied, the allowed terms that one can 
add to (2.52) could be related to the dynamics of the boundary degrees of freedom (i.e. describe 
the canonically-conjugated momenta to the fields �). We postpone the investigation of such a 
possibility to future work.

By construction, the extended gauge-invariant potential is invariant under infinitesimal gauge 
transformations, i.e.

θb,�,c,m,p[�,�,�,δε�, δε�, δε�] = 0. (2.53)

Furthermore, we will see that the term involving the equations of motion is such that

p[E,�,�,δε�] = P [E,�,ε], (2.54)

where P [E, �, ε] is the quantity appearing (2.24) and (2.25). Notice that in this equality the 
new fields � have actually dropped from the right-hand side. This is due to the way in which 
the fields � have been chosen to transform under the infinitesimal gauge transformations δε . We 
shall encounter below multiples examples illustrating this property. Now, in order to understand 
the consequence of relation (2.53), let us focus on a Lagrangian which has no boundary terms 
and is strictly gauge-invariant, i.e. with b[�] = �[�, �] = m[�, ε] = 0. In this case (2.53) leads 
to

θ [�,δε�] + dc[�,δε] = P [E,�,ε]. (2.55)

Using this corner ambiguity in the definition (2.20) of the Noether current and comparing with 
(2.25) shows that the associated Noether charge is actually vanishing. This is a surprising result, 
which indicates that there is a systematic way of choosing the corner ambiguity appearing in the 
definition of the Noether current in such a way as to obtain a vanishing Noether charge for gauge 
symmetries.

Now, from this extended potential we can construct a pre-symplectic current. According to 
(2.3), this latter will not depend on the boundary terms b[�] and �[�, �], but will contain the 
corner terms. More explicitly, we have

ωb,�,c,m,p[�,�,�,δ1, δ2] = ω[�,δ1, δ2] + dw[�,�,δ1, δ2] − δp[E,�,�,δ�]
= ωc,p[�,�,δ1, δ2], (2.56)

where we have denoted the corner contribution by

dw[�,�,δ1, δ2] := dδc[�,�,δ]. (2.57)

One can see that the pre-symplectic current does not depend on the extra boundary fields � . 
Now, since we focus on the case of theories for which p[E, �, �, δ�] � 0, this pre-symplectic 
current is closed on-shell, i.e.

dωc,p[�,�,δ1, δ2] � dωc[�,�,δ1, δ2] = dω[�,δ1, δ2] � 0. (2.58)
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In (2.6) we have already discussed the integration of dω[�, δ1, δ2]. Instead, integrating the 
(d, 2)-form dωc[�, �, δ1, δ2] over N leads to

∫
N

dωc[�,�,δ1, δ2] =
∫

∂N

ωc[�,�,δ1, δ2] =
⎛
⎜⎝∫

�2

−
∫
�1

+
∫
B

⎞
⎟⎠ωc[�,�,δ1, δ2] � 0.

(2.59)

Assuming that the symplectic flux coming from B is vanishing, we get that the pre-symplectic 
(0, 2)-form defined as

	�,∂�[�,�,δ1, δ2] =
∫
�

ωc[�,�,δ1, δ2]

=
∫
�

ω[�,δ1, δ2] +
∫
∂�

w[�,�,δ1, δ2]

= 	�[�,δ1, δ2] + 	∂�[�,�,δ1, δ2] (2.60)

does not depend on the hypersurface � when the equations of motion are satisfied. Now, notice 
that the condition of vanishing flux at B translates into∫

B

ω[�,δ1, δ2] = −
∫
B

dw[�,�,δ1, δ2], (2.61)

and is therefore a generalization of the condition which leads to (2.10). The fields � which we 
have introduced allow to compensate for the “leaking” of the pre-symplectic form through B . 
Moreover, they give a boundary contribution the pre-symplectic form.

We are now going to study the consequences of this construction through the examples of 
Abelian Chern–Simons theory and first order three-dimensional gravity.

3. Abelian Chern–Simons theory

In this section, we study the boundary degrees of freedom of Abelian Chern–Simons theory in 
three ways. First, we are going to review the standard Lagrangian viewpoint. This will illustrate 
the ambiguities which we have discussed on general grounds in section 2.3. Then, we will discuss 
the Hamiltonian treatment along the lines of Regge and Teitelboim. This will enable us to identify 
the boundary observables and their algebra, but we will see that this requires to impose that the 
parameters of gauge transformations have compact support. Finally, we will see following the 
construction of [63] that the introduction of new boundary fields allows to relax this condition and 
to disentangle the role of generators of gauge transformations from that of boundary observables. 
More precisely, we will obtain boundary observables and at the same time have a generator of 
gauge transformations which is vanishing on-shell (and as such has no Hamiltonian charge).

3.1. Lagrangian

Let us consider the Lagrangian

L[A] = A ∧ dA. (3.1)

Its variation is
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δL[A] = 2δA ∧ dA + dθ [A,δA] = 2δA ∧ dA + d(δA ∧ A). (3.2)

Under infinitesimal and finite gauge transformations, the fields transform as

δαA = dα, δαF = 0, α∗A = A + dα, α∗F = F, (3.3)

where F = dA is the Abelian field strength. The Lagrangian, on the other hand, transforms as

δαL[A] = d(A ∧ dα) = d(αdA) � 0, (3.4)

and

L[α∗A] = L[A] + d(A ∧ dα) = L[A] + d(αdA) � L[A]. (3.5)

We are now going to discuss how this transformation of the Lagrangian can interfere with the 
variational principle and the boundary conditions, and how this is in turn related to the appearance 
of a boundary dynamics.

Note that the specific issue of deriving the boundary dynamics is beyond the scope of the 
present work, which is simply interested in the construction of the extended gauge-invariant 
phase space for Chern–Simons theory and three-dimensional gravity. However, since Abelian 
Chern–Simons theory is the simplest and quintessential example of a theory for which the bound-
ary dynamics can easily be obtained from Lagrangian considerations, we find it interesting to 
reproduce carefully the arguments for the sake of completeness. In fact, we will see that this 
discussion requires to go through additional subtleties related to the choice of boundary condi-
tions. In the following two examples, we therefore discuss the boundary dynamics of (3.1) for 
two choices of boundary conditions. The reader who is interested in the Hamiltonian description 
of the boundary observables can safely skip to section 3.2.

3.1.1. Example 1
With coordinates xμ = (x0, x1, x2) = (t, φ, r), we have the on-shell variation11

δS[A] �
∫

∂M

(δAtAφ − δAφAt ). (3.6)

One way to cancel this boundary variation without the need to introduce a boundary term is to set 
(At − vAφ)

∣∣
∂M

= 0, where we have allowed for the presence of a free parameter v ∈ R (in the 
fractional Hall effect, this corresponds to the velocity of the bosonic excitations on the boundary 
[6,64]). Using this boundary condition and the gauge transformation (3.5), we get

δ(S[α∗A]) � δ

∫
∂M

Aφ(v∂φα − ∂tα), (3.7)

which is not vanishing even in the case δα = 0 of field-independent gauge transformations. This 
is an illustration of the general equation (2.39) which we have discussed in the previous section. 
One way to cancel this new boundary variation without further restricting the boundary connec-
tion (since δAφ

∣∣
∂M

= 0 would imply δAt

∣∣
∂M

= 0 and freeze the dynamics) is to choose one of 
the two following restrictions on the gauge fields:

11 Here and in the rest of the text we use a slight abuse of notation, and write the on-shell equality � even though we 
have not yet imposed the boundary conditions that cancel the boundary contribution to the variation and thereby make 
the bulk equations of motion well-defined. This is just a simple way of dropping bulk contributions proportional to the 
yet-to-be-defined equations of motion.
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α
∣∣
∂M

= 0, (∂tα − v∂φα)
∣∣
∂M

= 0. (3.8)

As discussed in 2.3, this gives rise to boundary would-be-gauge degrees of freedom. However, 
the exact dynamics of these degrees of freedom is still unclear at the moment. This suggests that 
we look at the gauge-invariant action.

The gauge-invariant action is obtained simply by promoting α to a dynamical field a trans-
forming as α∗a = a − α, which gives

S�[A,a] := S[A] +
∫

∂M

(At∂φa − Aφ∂ta). (3.9)

However, this action has no kinetic term for a. One could be tempted to derive equations of 
motion by computing the functional variation with respect to Aφ

∣∣
∂M

, but this is not well-defined 
since δAφ appears in the bulk. One procedure sometimes followed in the literature is to write the 
gauge field as a gauge transformation Aμ = Ãμ + ∂μα [6,64,76]. Using the boundary condition 
to write Ãt

∣∣
∂M

= v(Ãφ + ∂φα) − ∂tα, the action then becomes

S[Ã, α] = S[Ã] +
∫

∂M

(v∂φα − ∂tα)(Ãφ + ∂φα). (3.10)

Choosing the gauge Ãφ = Ãr = 0 in the bulk (which solves the constraint ∂φAr − ∂rAφ = 0
conjugated to At ) then leads to the so-called Floreanini–Jackiw action

S[α] :=
∫

∂M

(v∂φα − ∂tα)∂φα. (3.11)

The equations of motion describing the boundary dynamics of the would-be-gauge degrees of 
freedom are

∂t ∂φα − v∂2
φα = 0, (3.12)

or, introducing the field ρ := ∂φa,

∂tρ − v∂φρ = 0. (3.13)

The solution is given by a chiral wave ρ(φ + vt).
We have seen in this example that it is possible to obtain a boundary Lagrangian describing 

the dynamics of α. Now, let us slightly modify the boundary conditions in order to see how the 
equations of motion (3.12) or (3.13) can be regained.

3.1.2. Example 2
If on the boundary we wish to fix δ(At − vAφ)

∣∣
∂M

= 0, we have to add a boundary term to 
the action and consider

Sb1 [A] := S[A] +
∫

∂M

Aφ(At − vAφ), (3.14)

which is indeed such that

δSb1 [A] � 2
∫

∂M

Aφδ(At − vAφ). (3.15)

Under a finite gauge transformation we get
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Sb1[α∗A] = Sb1[A] +
∫

∂M

∂φα
(
∂tα − v∂φα + 2(At − vAφ)

)
, (3.16)

which implies that

δ(Sb1[α∗A]) � 2
∫

∂M

Aφδ(At − vAφ) + δ

∫
∂M

∂φα
(
∂tα − v∂φα + 2(At − vAφ)

)
. (3.17)

This has to be vanishing in order for the variational principle to be well-defined. The first term 
is vanishing with our initial choice of boundary conditions. The second term will be vanishing 
if δα = 0. If we insist on considering field-dependent gauge parameters, then these have to be 
restricted to satisfy one of the two following two conditions:

∂φα
∣∣
∂M

= 0,
(
∂tα − v∂φα + 2(At − vAφ)

)∣∣
∂M

= 0. (3.18)

Again, it is now still not clear what the dynamics of the boundary degrees of freedom is.
However, looking at the gauge-invariant action obtained by promoting α to be a dynamical 

field a, one gets

Sb1,�1 [A,a] := Sb1[A] +
∫

∂M

∂φa
(
∂ta − v∂φa + 2(At − vAφ)

)
, (3.19)

which contains a kinetic term for a (at the difference with (3.9)). This is actually nothing but the 
Abelian WZNW action for the fields a coupled to A [32] (although this latter is usually written 
in terms of complex coordinates on ∂M). The corresponding equations of motion can be derived 
from

δSb1,�1[A,a] � 2
∫

∂M

Aφδ(At − vAφ) + δ

∫
∂M

∂φa
(
∂ta − v∂φa + 2(At − vAφ)

)

=
∫

∂M

(
∂φδa

(
∂ta − v∂φa + 2(At − vAφ)

) + ∂φa(∂t δa − v∂φδa)
)
, (3.20)

where we have used the boundary condition δ(At − vAφ)
∣∣
∂M

= 0. The equation of motion for a
is therefore

∂t ∂φa − v∂2
φa = 0, (3.21)

which is the same as (3.12). This therefore shows that we have obtained the same boundary 
dynamics as in the previous example, but the manipulations of the action which are involved in 
this derivation are completely different, and this can be traced back to the difference in the choice 
of boundary conditions.

Now, notice that instead of the boundary term in (3.14) one could have also chosen

Sb2[A] := S[A] + 1

2v

∫
∂M

(At + vAφ)(At − vAφ), (3.22)

which is such that

δSb2[A] �
∫

∂M

Aφδ(At − vAφ), (3.23)
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and therefore enables us to fix the same boundary conditions. Now, following the same steps as 
above one finds that the gauge-invariant action is given by

Sb2,�2 [A,a] := Sb2[A] + 1

2v

∫
∂M

(∂ta + v∂φa)
(
∂ta − v∂φa + 2(At − vAφ)

)
, (3.24)

and the equation of motion for a is therefore

∂2
t a − v2∂2

φa = 0, (3.25)

or, introducing the field ρ := ∂ta + v∂φa,

∂tρ − v∂φρ = 0. (3.26)

The above two simple examples illustrate how the Lagrangian derivation of the boundary dy-
namics of Abelian Chern–Simons theory does actually depend on how the boundary conditions 
are written. Although being a simple fact, this also illustrate how, depending on the choice of 
boundary conditions, field-dependent or field-independent gauge-transformations can interfere 
with the variational principle. Most importantly, it shows that there is no uniquely defined proce-
dure which enables for the derivation of the boundary dynamics.

Let us now turn to the Hamiltonian description of the boundary observables. As is well-known, 
these satisfy a current algebra which corresponds to the symplectic structure of the Abelian 
WZNW action (3.19) [39,77,78].

3.2. Hamiltonian

We now review how boundary observables arise in relation with the requirement of functional 
differentiability of the constraints of the Hamiltonian framework [34,68]. The Hamiltonian action 
is

S[A] =
∫
R

dt

∫
�

(
∂0A ∧ A + 2A0dA − d(AA0)

)
, (3.27)

where the differential forms are understood as pulled-back to the spatial slice �. The canonical 
Poisson bracket is 

{
Aa(x), Ab(y)

} = −ε̃abδ
2(x, y)/2, and generic brackets are given by{

f1, f2
} = −1

2
ε̃ab

∫
�

d2x

∫
�

d2y δ2(x, y)
δf1

δAa(x)

δf2

δAb(y)
. (3.28)

Let us now consider the smeared flatness constraint12

F[α] := −2
∫
�

αdA � 0, (3.29)

Its variation is given by

δF[α] = −2
∫
�

(δαdA + δA ∧ dα) − 2
∫
∂�

αδA. (3.30)

12 The action (3.27) is of the form pq̇ − Htot, where Htot is the total Hamiltonian which contains the primary con-
straints. Although we could discard the factor −2 for simplicity, we choose to keep it in order to ensure that all the 
quantities computed throughout this section are in exact agreement.
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In order to compute the Poisson bracket between the constraint and any other function on phase 
space, these should be functionally differentiable. In the case of the flatness constraint, this re-
quires one of the following conditions:

(1) defining an extended generator by /δFc[α] := δF[α] + 2 
∫
∂�

αδA,

(2) considering parameters ᾱ with compact support, i.e. such that ᾱ
∣∣
∂�

= 0,
(3) imposing δA

∣∣
∂�

= 0,
(4) imposing αδA

∣∣
∂�

= 0,

(5) imposing the global condition 
∫
∂�

αδA = 0.

Let us start with the least restrictive choice and walk our way towards the derivation of the 
boundary observables.

Condition (1) is the least restrictive choice since it does not require imposing any condi-
tions on the fields or the gauge parameter at the boundary ∂�. In particular, if we allow for 
field-dependent parameters α, i.e. with δα 
= 0, the variation inside of the boundary contribution 
cannot be pulled outside of the integral. An important case of field-dependent transformations is 
for spatial diffeomorphisms. These are obtained with α = ξ� A. Indeed, in this case we get{

Fc[ξ�A],A} = d(ξ�A) + ξ�dA = LξA. (3.31)

Assuming that δα = 0, we can compute the brackets{
Fc[α],A} = dα,

{
Fc[α],Fc[β]} = 2

∫
∂�

dαβ, (3.32)

showing that Fc[α] is indeed the generator of gauge transformations, and that its algebra is 
anomalous. Furthermore, the extended generator is then integrable and one can write

Fc[α] = F[α] + 2
∫
∂�

αA � 2
∫
∂�

αA. (3.33)

Now, if we want the algebra (3.32) to close, we have to impose that the gauge parameters be 
vanishing at the boundary. In this case we are naturally led to condition (2), and we get back the 
original constraint Fc[ᾱ] =F[ᾱ] � 0 with a closed algebra{

F[ᾱ],F[β̄]} = 0. (3.34)

For an arbitrary smearing parameter α which does not vanish on ∂�, let us now consider the 
quantity

O[α] := −2
∫
�

A ∧ dα =F[α] + 2
∫
∂�

αA � 2
∫
∂�

αA, (3.35)

which is not vanishing (i.e. not a flatness constraint) since α does not have to satisfy (2). This is 
an observable since we have{

O[α],F[ᾱ]} = 2
∫
∂�

dαᾱ = 0, (3.36)
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by virtue of the fact that ᾱ satisfies (2). Furthermore, for α and β such that α
∣∣
∂�

= β
∣∣
∂�

, we 
have (α − β)

∣∣
∂�

= 0, which implies that

O[α] −O[β] =F[α − β] � 0. (3.37)

This shows that the observables O[α] are located on ∂�. Finally, these observables satisfy the 
current algebra{

O[α],O[β]} = 2
∫
∂�

dαβ. (3.38)

We see that these observables arise not simply from the requirement of functional differentiability 
of the flatness constraint, but with the particular addition of condition (2) of compact support for 
the gauge parameters.

Let us summarize this section by recalling the roles played by Fc, F and O. We have first 
obtained a differentiable generator of the gauge transformations by defining the extended gener-
ator Fc. This generator is not a constraint, and on the surface of the constraint (3.29) it is equal 
to a surface term. Also, it does not form a closed algebra. We have then restricted ourselves to 
compactly-supported parameters ᾱ of gauge transformations, for which Fc then agrees with the 
original constraint F and is differentiable. Then, because of the requirement of compact support 
for the parameters, we have seen that the quantity O is an observable since it has vanishing Pois-
son bracket with the constraint. As expected, for general parameters α which do not vanish on 
the boundary, one can see that Fc and O are actually weakly equal to the same surface integral 
and have the same Poisson bracket.

3.3. Extended pre-symplectic potential

In order to understand properly the construction of the gauge-invariant extended potential, 
we are going to study three Lagrangians for Abelian Chern–Simons theory. The first one is the 
gauge-non-invariant Lagrangian (3.1), the second one is the gauge-invariant Lagrangian obtained 
by adding boundary fields following (2.43), and the third one is a gauge-invariant Lagrangian 
obtained by adding bulk fields. This will illustrate a result which is already clear from the general 
analysis of the previous section, namely that having a gauge-invariant Lagrangian is not enough 
to guarantee the gauge-invariance of its potential. As anticipated and illustrated in [63], this 
means in turn that the extended gauge-invariant potential encodes more information about the 
boundary degrees of freedom than the Lagrangian alone.

3.3.1. Gauge-non-invariant Lagrangian
The Lagrangian which we consider here is simply (3.1), and we would like to show that we 

have the equality δ(L[α∗A]) = (δL)[α∗A]. This computation will involve looking at the gauge 
transformation of the potential. Computing the variation of (3.5), we obtain

δ(L[α∗A]) = 2δA ∧ dA + d
(
θ [A,δA] + δ(A ∧ dα)

)
= 2δA ∧ dA + d

(
θ [A,δA] + δ(αdA)

)
, (3.39)

where the potential is given by

θ [A,δA] = δA ∧ A. (3.40)

On the other hand, computing the gauge transformation of the variation of the Lagrangian leads 
to
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(δL)[α∗A] = 2δA ∧ dA + 2d(δαdA) + dθ [α∗A,δ(α∗A)], (3.41)

where the gauge transformation of the potential is found to be

θ [α∗A,δ(α∗A)] = θ [A,δA] + d
(
δα(2A + dα)

) + δ(A ∧ dα) − 2δαdA (3.42a)

= θ [A,δA] + d
(
δα(A + dα) − αδA

) + δ(αdA) − 2δαdA. (3.42b)

The proof of this equation is given in appendix Appendix C. This shows indeed that we have 
the equality δ(L[α∗A]) = (δL)[α∗A], and that θ [α∗A, δ(α∗A)] is of the general form given in 
(2.46).

Now, we can add extra fields in order to define an extended gauge-invariant potential. This can 
be done by considering a field u which transforms as α∗u = u − α. Then, defining the extended 
potential

θc,m,p[A,u, δA, δu] := θ [A,δA] + d
(
δu(2A + du)

) + δ(A ∧ du) − 2δudA (3.43a)

= θ [A,δA] + d
(
δu(A + du) − uδA

) + δ(udA) − 2δudA, (3.43b)

a direct calculation shows that we indeed have the gauge-invariance property

θc,m,p[α∗A,α∗u, δ(α∗A), δ(α∗u)] = θc,m,p[A,u, δA, δu]. (3.44)

We have therefore succeeded in defining an off-shell gauge-invariant potential for the Lagrangian 
(3.1). This is one of the main results of the present article, namely the construction following [63]
of the gauge-invariant potential for Abelian Chern–Simons theory.

3.3.2. Gauge-invariant boundary-extended Lagrangian
As observed in (3.4), the Lagrangian (3.1) is not gauge-invariant. This can be remedied by 

introducing a new boundary field a which transforms as α∗a = a−α. Then, one way of obtaining 
a gauge-invariant theory is to consider the Lagrangian

L�1[A,a] := L[A] + d(A ∧ da). (3.45)

Alternatively, one can consider

L�2[A,a] := L[A] + d(adA). (3.46)

Evidently, these two gauge-invariant Lagrangians lead to the same equations of motion, but differ 
by a corner ambiguity in the potential.

Let us now look at the potentials for these Lagrangians. For the Lagrangian (3.45) it is given 
by

θ�1[A,a, δA, δa] = θ [A,δA] + δ(A ∧ da). (3.47)

Looking at gauge transformations, we get that

θ�1[α∗A,α∗a, δ(α∗A), δ(α∗a)] = θ�1[A,a, δA, δa] + d
(
δα(2A + dα)

)
+ δd(αda) − 2δαdA, (3.48)

which is of the form (2.46). When comparing this with (3.42a), we can see that the term 
δm[A, α] = δ(A ∧ dα) has been replaced by δm�[a, α] = δd(αda). This is due to the fact that we 
have restored the gauge-invariance of the Lagrangian by adding a boundary term, but the gauge 
transformation of this boundary term leads to a corner term. More precisely, this means that we 
have added a boundary term �[A, a] = A ∧ da transforming as
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�[α∗A,α∗a] = �[A,a] + �̃[A,α]
= �[A,a] − m[A,α] + d(something)

= A ∧ da − A ∧ dα + d(αda), (3.49)

thereby leading in the potential to

δm�[a,α] = δm[A,α] + δ�̃[A,α] = δd(αda). (3.50)

Let us now look at the second potential, i.e.

θ�2[A,a, δA, δa] = θ [A,δA] + δ(adA), (3.51)

and compute its gauge-transformation. This is given by

θ�2[α∗A,α∗a, δ(α∗A), δ(α∗a)] = θ�2[A,a, δA, δa] + d
(
δα(A + dα) − αδA

) − 2δαdA.

(3.52)

When comparing this with (3.42b), we can see that the term δm[A, α] = δ(αdA) has now disap-
peared.

Now, the two potentials can also be made off-shell gauge-invariant, just like in the previous 
subsection. For this, we simply need to consider

θ�1,c,m,p[A,a,u, δA, δa, δu]
:= θ�1[A,a, δA, δa] + d

(
δu(2A + du)

) + δd(uda) − 2δudA, (3.53)

or

θ�2,c,p[A,a,u, δA, δa, δu] := θ�2[A,a, δA, δa] + d
(
δu(A + du) − uδA

) − 2δudA.

(3.54)

We can see here that the introduction of the boundary fields a, which have the role of making 
the Lagrangian gauge-invariant, is not enough in order to guarantee that the potential is gauge-
invariant.

Furthermore, notice that one could also have considered the boundary Lagrangian �[A, a] =
adA (or equivalently �[A, a] = A ∧ da), computed its potential aδA, and added this potential as 
the corner ambiguity to the potential δA ∧ A of the Chern–Simons Lagrangian. However, it is 
clear that this procedure does also not lead to the fully gauge-invariant potential which we have 
constructed.

3.3.3. Gauge-invariant bulk-extended Lagrangian
One other way of making the Lagrangian gauge-invariant is through the introduction of an 

additional bulk connection B which transforms as α∗B = B + dα. Then, one can consider

L[A,B] := (A − B) ∧ dA, (3.55)

whose variation is given by

δL[A,B] = δA ∧ (2dA − dB) − δB ∧ dA + d
(
δA ∧ (A − B)

)
, (3.56)

showing that the combined equations of motion are13 dA = 0 = dB . This is therefore a theory 
of two flat connections, and one can see that by solving half of the equations of motion, i.e. by 

13 Note that the Lagrangian L′[A, B] := (A −B) ∧ d(A −B) leads to the gauge-invariant potential θ ′[A, B, δA, δB] =
δ(A − B) ∧ (A − B), but has equations of motion dA = dB .
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writing B = −da, the new fields get pushed to the boundary and (3.55) becomes (3.45). Without 
going on half-shell however, the bulk-extended and boundary-extended Lagrangians differ in a 
very important way, which has of course to do with the properties of the potential.

The potential for (3.55) is given by

θ [A,B, δA] = δA ∧ (A − B), (3.57)

and its gauge transformation is

θ [α∗A,α∗B,δ(α∗A)] = θ [A,B, δA] + d
(
δα(A − B)

) − δαd(A − B). (3.58)

Once again, one can make the potential gauge-invariant by adding a field u and considering

θc,p[A,B, δA, δu] := θ [A,B, δA] + d
(
δu(A − B)

) − δud(A − B), (3.59)

which satisfies

θc,p[α∗A,α∗B,δ(α∗A), δ(α∗u)] = θc,p[A,B, δA, δu]. (3.60)

3.4. Gauge-invariance and boundary symmetries

We are now going to compare the properties of the various gauge-invariant extended poten-
tials which we have introduced so far, and in particular study the boundary contribution to their 
associated pre-symplectic forms.

Before doing so, let us just recall what happens if we work with the gauge-non-invariant 
potential θ [A, δA] = δA ∧ A. In this case, the conserved pre-symplectic form only has a bulk 
piece which is given by

	�[A,δ1, δ2] = −
∫
�

δA ∧ δA, (3.61)

and the Hamiltonian generator of the infinitesimal field-independent gauge transformations δα is

δFc[α] = 	�[A,δ, δα] = −2
∫
�

δA ∧ dα. (3.62)

The reason for which we have denoted this generator by Fc[α] is that it corresponds actually 
to the extended generator defined below (3.30). In particular, it satisfies the properties (3.32). 
As such, this generator of gauge transformations is not vanishing on-shell, and furthermore pos-
sesses an anomalous Poisson algebra. The reason for this is that this extended generator does 
actually coincide with the boundary observables O[α].

We are now going to see, following again [63], how the introduction of the gauge-invariant 
extended potential enables to describe these boundary observables in terms of a new boundary 
symmetry, and how it leads to a generator of gauge transformations which is vanishing on-shell.

3.4.1. Gauge-non-invariant Lagrangian
The conserved pre-symplectic form originating from the extended potential (3.43b) is given 

by

	�,∂�[A,u, δ1, δ2] = 	�[A,δ1, δ2] + 	∂�[A,u, δ1, δ2], (3.63)

with
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	�[A,δ1, δ2] = −
∫
�

δA ∧ δA, 	∂�[A,u, δ1, δ2] = −
∫
∂�

δuδ(2A + du). (3.64)

From these expressions, one can get the Hamiltonian generator of the infinitesimal field-
independent gauge transformations δα . This has now a bulk and a boundary contribution whose 
sum is given by the variational expression

/δF[α] = /δF�[α] + /δF∂�[α] = 	�[A,δ, δα] + 	∂�[A,u, δ, δα]
= −2

∫
�

δA ∧ dα − 2
∫
∂�

αδA. (3.65)

These generators are actually integrable, and satisfy the closed algebra{
F[α],F[β]} = 	�,∂�[A,u, δα, δβ ] = 0 (3.66)

without the need to restrict the gauge parameters to be vanishing on the boundary. Furthermore, 
we have that

F[α] = −2
∫
�

αdA � 0. (3.67)

By adding the new fields u in the extended potential, the extra boundary piece which contributes 
to the pre-symplectic form is ensuring that F[α] is the generator of the infinitesimal transforma-
tions δα and that it has a closed algebra, without the need to resort to the discussion below (3.30). 
Because of this however, we cannot repeat our previous argument concerning the appearance of 
the boundary observables O[α].

These observables are nonetheless still present here, but they are now encoded in a new bound-
ary symmetry. This latter acts on the fields as

�αA = 0, �αu = α, (3.68)

and has a generator defined by the variational formula

/δÕ[α] = 	∂�[A,u, δ,�α] = 2
∫
∂�

αδ(A + du), (3.69)

which is integrable if δα = 0. One can see that this is nothing but the previous expression (3.35)
for the observables, with the difference that the connection is now “dressed” by the new boundary 
field u. It is now immediate to see that these symmetry generators satisfy the algebra{

Õ[α], Õ[β]} = 	∂�[A,u,�α,�β ] = 2
∫
∂�

dαβ, (3.70)

and are observables in the sense that{
F[α], Õ[β]} = 	∂�[A,u, δα,�β ] = 0. (3.71)

We have thus described here the boundary symmetry and observables of Abelian Chern–Simons 
theory using the techniques of [63]. As one can see, the introduction of the fields u in order to 
obtain a gauge-invariant potential enables to disentangle the notions of gauge transformations 
and gauge symmetries. The former are generated by a constraint whose generator is vanishing, 
while the latter are generated by a non-vanishing quantity which is an observable. Furthermore, 
we see that these observables are given from the onset by a boundary integral, while in (3.35)
this is only true weakly (i.e. up to a constraint).
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3.4.2. Gauge-invariant boundary-extended Lagrangian
As explained in (2.60), the conserved pre-symplectic form is only sensitive to the presence of a 

corner term. The pre-symplectic form derived from the three extended gauge-invariant potentials 
(3.43b), (3.53), and (3.54), is therefore the same, and the analysis carried out above applies 
exactly identically to the gauge-invariant boundary-extended Lagrangian.

3.4.3. Gauge-invariant bulk-extended Lagrangian
From the extended gauge-invariant potential (3.59), the conserved pre-symplectic form ac-

quires once again a boundary contribution, i.e.

	�,∂�[A,B,u, δ1, δ2] = 	�[A,B, δ1, δ2] + 	∂�[A,B,u, δ1, δ2], (3.72)

but it is now given by the following bulk and corner pieces:

	�[A,B, δ1, δ2] = −
∫
�

δA ∧ δ(A − B), 	∂�[A,B,u, δ1, δ2] = −
∫
∂�

δuδ(A − B).

(3.73)

From this, we get the generators

/δF[α] = −
∫
�

δ(A − B) ∧ dα −
∫
∂�

αδ(A − B), (3.74)

which integrate to

F[α] = −
∫
�

αd(A − B) � 0, (3.75)

and satisfy the algebra{
F[α],F[β]} = 0. (3.76)

By plugging (3.68) one gets

/δÕ[α] = 	∂�[A,B,u, δ,�α] =
∫
∂�

αδ(A − B), (3.77)

but these boundary observables turn out to have a vanishing Poisson bracket:{
Õ[α], Õ[β]} = 	∂�[A,u,�α,�β ] = 0. (3.78)

Clearly, this is due to the fact that the pre-symplectic form on the boundary is not quadratic in the 
boundary variable u. This illustrate the subtle difference which exists between the Lagrangians 
(3.55) and (3.45). Indeed, although they posses the same equations of motion and the same 
gauge-invariance property, the former leads to boundary observables with a centrally-extended 
algebra, while the latter does not. However, one should recall that (3.55) is defined in the first 
place with more fields living in the bulk.

3.5. Noether charges

Finally, let us end this section by briefly discussing the Noether charges derived from the 
covariant Hamiltonian analysis. This will illustrate how the corner contribution from the extended 
potential can be used to obtain gauge-invariant (or vanishing) Noether charges for the gauge 
symmetries of the theory.
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3.5.1. Gauge-non-invariant Lagrangian
We first compute the Noether current associated to the infinitesimal transformation generated 

by α. From (3.4) one can see that there is a corner ambiguity in this computation since we can 
write both

δαL[A] = d(A ∧ dα) = dm1[A,α], δαL[A] = d(αdA) = dm2[A,α]. (3.79)

These two choices lead to different Noether currents, namely

J1[A,α] = −2αdA + 2d(αA), J2[A,α] = −2αdA + d(αA), (3.80)

and therefore to the two following different conserved Noether charges:

Q1[A,α] =
∫
∂�

2αA, Q2[A,α] =
∫
∂�

αA. (3.81)

One can observe that these Noether charges are not gauge-invariant, i.e. δβQ1,2[A, α] 
= 0, unless 
one imposes the condition α

∣∣
∂�

= 0.

3.5.2. Gauge-invariant boundary-extended Lagrangian
All the conclusions of the previous subsection apply here verbatim. This is due to the fact 

that, for gauge transformations (i.e. not for diffeomorphisms), the Noether current and the pre-
symplectic current are insensitive to the boundary terms b[�] or �[�, �] that one can add to the 
Lagrangian.

3.5.3. Gauge-invariant bulk-extended Lagrangian
For the Lagrangian (3.55), we have m[A, B, α] = 0 because of strict gauge-invariance, and 

the potential is given by (3.57). This leads to the Noether current

J [A,B,α] = −αd(A − B) + d
(
α(A − B)

)
, (3.82)

from which we can see that the Noether charge

Q[A,B,α] =
∫
∂�

α(A − B) (3.83)

is actually gauge-invariant, i.e. δβQ[A, B, α] = 0.

3.5.4. Extended pre-symplectic potential
One can check by an explicit computation that the plugging an infinitesimal gauge transfor-

mation into the extended potentials (3.43b), (3.53), and (3.54) leads to a vanishing result, i.e. 
that

θc,m,p[A,u, δαA, δαu] = θ�1,c,m,p[A,a,u, δαA, δαa, δαu]
= θ�2,c,p[A,a,u, δαA, δαa, δαu] = 0. (3.84)

This is not surprising, and is simply a consequence of the definition of the extended potential. 
Now, in the definition (2.20) of the Noether current we can choose the corner ambiguity to be the 
corner contribution appearing in the extended potential.

Explicitly, the infinitesimal gauge-invariance of the extended potential (3.43a) is

θc,m,p[A,u, δαA, δαu] = θ [A,δαA] + d
(
δαu(2A + du)

) + δα(A ∧ du) − 2δαudA

= 0. (3.85)
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Therefore, using the corner term in the definition of the Noether current leads to

J1,c[A,α] = θc[A,δαA] − m1[A,α]
= θ [A,δαA] + d

(
δαu(2A + du)

) − A ∧ dα

= −δα(A ∧ du) + 2δαudA − A ∧ dα

= −2αdA + d(udα). (3.86)

We see that the charge is not vanishing, but that it is gauge-invariant. The fact that it is non-
vanishing is a consequence of the ambiguity in the definition of m[A, α]. Indeed, if we consider 
instead the infinitesimal gauge-invariance of the extended potential (3.43b), we get

θc,m,p[A,u, δαA, δαu] = θ [A,δαA] + d
(
δαu(A + du) − uδαA

)
+ δα(udA) − 2δαudA = 0. (3.87)

Using the corner term in the definition of the Noether current then leads to

J2,c[A,α] = θc[A,δαA] − m2[A,α]
= θ [A,δαA] + d

(
δαu(A + du) − uδαA

) − αdA

= −δα(udA) + 2δαudA − αdA

= −2αdA, (3.88)

and the charge is therefore vanishing.
This resolves the ambiguity which has been pointed out in the definition of the charges for 

theories whose Lagrangian is not strictly gauge-invariant. Indeed, even though we cannot use 
symmetry arguments in order to fix the charge, we can use the corner ambiguity to make it 
gauge-invariant.

Before moving on to three-dimensional gravity, let us now briefly summarize the results which 
have been obtained in this section. We have first reviewed the way in which the boundary dy-
namics of Abelian Chern–Simons theory is obtained from its Lagrangian and the behavior of 
gauge transformations. Then, we have recalled how the boundary observables, whose algebra is 
the current algebra of the boundary WZNW theory, are obtained in the Hamiltonian treatment 
of [34,68]. Finally, we have compared these Hamiltonian boundary observables with the observ-
ables arising from the extended phase space treatment of [63].

4. First order gravity

We now turn to the case of three-dimensional gravity in its first order formulation. We are first 
going to recall the form of the infinitesimal and finite gauge transformations. Following what we 
did for Chern–Simons theory, we will then recall the structure of the Hamiltonian analysis in the 
presence of boundaries and describe how boundary observables arise in this framework. We will 
then apply the framework of [63] to (one choice of parametrization of) the gauge transforma-
tions of first-order three-dimensional gravity, and obtain the extended potential and symplectic 
structure which lead to the boundary symmetries and observables.

4.1. Lagrangian

The Lagrangian for (Euclidean) first order gravity with a cosmological constant is
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L[e,ω] := tr

(
e ∧ F + 1

6�2
e ∧ [e ∧ e]

)
. (4.1)

Its variation is given by

δL[e,ω] = tr

(
δe ∧

(
F + 1

2�2
[e ∧ e]

)
+ δω ∧ De

)
+ d tr(δω ∧ e), (4.2)

from which we can read the pre-symplectic potential.
The symmetries of the theory are the SU(2) gauge transformations, the so-called translations, 

and the diffeomorphisms. The action of infinitesimal SU(2) gauge transformations is given by

δ
g
αe = [e,α], δ

g
αω = Dα, δ

g
αF = [F,α], (4.3)

where α ∈ 	0
(
M, su(2)

)
. When acting on the Lagrangian, this is of course

δ
g
αL[e,ω] = 0. (4.4)

For the infinitesimal translations, the transformation of the various fields is given by

δt
φe = Dφ, δt

φω = 1

�2
[e,φ], δt

φF = 1

�2
D[e,φ], (4.5)

where φ ∈ 	0
(
M, su(2)

)
is an infinitesimal generator. At the level of the Lagrangian, we have

δt
φL[e,ω] = d tr

(
φ

(
F + 1

2�2
[e ∧ e]

)
− 1

�2
φ[e ∧ e]

)
, (4.6)

showing that if the cosmological constant is not vanishing the Lagrangian is not on-shell gauge-
invariant. Note that this on-shell non-invariance of the Lagrangian under certain infinitesimal 
gauge transformations also appears in the case of non-Abelian Chern–Simons theory, as can be 
seen on (D.4), and for diffeomorphisms in metric general relativity with a non-vanishing cosmo-
logical constant. It can actually be traced back to the fact that non-Abelian Chern–Simons theory 
and gravity with a non-zero cosmological constant are defined by Lagrangians which are not 
vanishing on-shell. Since in this paper we will construct the extended phase space of first order 
gravity in the case of a vanishing cosmological constant, we will not be bothered by this fact. 
However, when extending these results and that of [63] to the case of a non-zero cosmological 
constant, additional subtleties have to be handled and are discussed in [79,80].

Now, from (4.3) and (4.5), we can compute the algebra structure

[δg
α, δ

g
β ] = δ

g
[α,β], [δt

φ, δt
χ ] = 1

�2
δ

g
[φ,χ], [δg

α, δt
φ] = δt[α,φ], (4.7)

which is nothing but that of so(4). We will compare this later on with the Poisson algebra of the 
generators of these infinitesimal transformations. As is well-known, these two algebras will turn 
out to be equal up to a central extension.

Finally, the infinitesimal action of diffeomorphisms is parametrized by a vector field ξ and 
given by the Lie derivative Lξ = d(ξ� ·) + ξ� (d·). Explicitly, this is

δd
ξ eμ = (Lξ e)μ = (

d(ξ� e) + ξ� (de)
)
μ

= ∂μξνeν + ξν∂νeμ,

δd
ξ ωμ = (Lξω)μ = (

d(ξ�ω) + ξ� (dω)
)
μ

= ∂μξνων + ξν∂νω
i
μ. (4.8)

One can then check that we have the well-known relations
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δ
g
ξ� ωe + δt

ξ� ee + ξ� (De) = [e, ξ�ω] + D(ξ� e) + ξ� (De)

= [e, ξ�ω] + d(ξ� e) + [ω, ξ� e] + ξ� (de) + ξ� [ω,e]
= d(ξ� e) + ξ� (de)

= Lξ e

= δd
ξ e, (4.9)

and

δ
g
ξ� ωω + δt

ξ� eω + ξ�
(

F + 1

2�2
[e ∧ e]

)

= D(ξ�ω) + 1

�2
[e, ξ� e] + ξ�

(
F + 1

2�2
[e ∧ e]

)

= d(ξ�ω) + [ω, ξ�ω] + ξ� (dω) + 1

2
ξ� [ω ∧ ω]

= d(ξ�ω) + ξ� (dω)

= Lξω

= δd
ξω. (4.10)

This means that, on-shell, the action of diffeomorphisms can be written as a combination of 
field-dependent gauge transformations and translations. In other words, we have that

δd
ξ � δ

g
ξ� ω + δt

ξ� e. (4.11)

We can now discuss the finite action of these gauge transformations.
Under finite SU(2) gauge transformations parametrized by a group element h, the triad, the 

connection, and its curvature, transform as

h∗e = h−1eh, h∗ω = h−1ωh + h−1dh, h∗F = h−1Fh. (4.12)

At the level of the Lagrangian, this implies that

L[h∗e,h∗ω] = L[e,ω]. (4.13)

The finite version of the translations takes a different form depending on whether there is a 
cosmological constant or not. If the cosmological constant is vanishing, i.e. for �2 = ∞, we have

φ∗e = e + Dφ, φ∗ω = ω φ∗F = F, (4.14)

where φ ∈ 	0
(
M, su(2)

)
is now a finite parameter instead of an infinitesimal generator. At the 

level of the Lagrangian this leads to

L[φ∗e,φ∗ω] = L[e,ω] + d tr(φF ) � L[e,ω], (4.15)

so the Lagrangian is invariant on-shell under finite translations. In the case of a non-vanishing 
cosmological constant on the other hand, the finite transformations are parametrized by a group 
element t ∈ SU(2). Their action on the triad is given by

t∗e = �

2

[
t−1

(
ω + 1

�
e

)
t − t

(
ω − 1

�
e

)
t−1 + t−1dt − tdt−1

]

= �

2

[
t∗g

(
ω + 1

�
e

)
− (t−1

g )∗
(

ω − 1

�
e

)]
, (4.16)
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while their action on the connection is given by

t∗ω = 1

2

[
t−1

(
ω + 1

�
e

)
t + t

(
ω − 1

�
e

)
t−1 + t−1dt + tdt−1

]

= 1

2

[
t∗g

(
ω + 1

�
e

)
+ (t−1

g )∗
(

ω − 1

�
e

)]
. (4.17)

Here we have simply used t∗g to denote the action of t not as a translation but as a gauge 
transformation of the type (4.12). This shows clearly that t∗(e, ω)

∣∣
t=1 = (e, ω) and that at the 

infinitesimal level t∗ becomes indeed δt
�φ (notice that φ picks up here a dimensional factor �).

Finally, for a diffeomorphism Y : M → M , the finite action is given by the pullback maps

eμ(x) �→ (Y ∗e)μ(x) = ∂μY ν(x)eν

(
Y(x)

)
, ωμ(x) �→ (Y ∗ω)μ(x) = ∂μY ν(x)ων

(
Y(x)

)
.

(4.18)

4.2. Hamiltonian

In this part we are going to study the extended Hamiltonian generators and their algebra. First 
of all, the Hamiltonian action takes the form

S[e,ω] = 1

2

∫
M

d3x ε̃μνρ tr

(
eμFνρ + 1

3�2
eμ[eν, eρ]

)

= 1

2

∫
R×�

dt d2x ε̃abtr

(
e0Fab + 2eaFb0 + 1

�2
e0[ea, eb]

)

=
∫
R

dt

∫
�

tr

(
∂0ω ∧ e + ω0De + e0

(
F + 1

2�2
[e ∧ e]

)
− d(eω0)

)
, (4.19)

with canonical Poisson bracket 
{
ea(x), ωb(y)

} = −ε̃abδ
2(x, y), and generic brackets

{
f1, f2

} = −ε̃ab

∫
�

d2x

∫
�

d2y δ2(x, y)

(
δf1

δea(x)

δf2

δωb(y)
− δf2

δea(x)

δf1

δωb(y)

)
. (4.20)

Here the multipliers ω0 and e0 are enforcing respectively the Gauss and flatness constraints 
corresponding to the infinitesimal SU(2) gauge transformations and to the translations. These are 
the gauge transformations which we will focus on for the study of the pre-symplectic potential 
and of the boundary observables.

Let us now replace the multipliers ω0 and e0 by arbitrary smearing parameters and introduce 
the smeared Gauss and curvature constraints

G[α] := −
∫
�

tr(αDe), F[φ] := −
∫
�

tr

(
φ

(
F + 1

2�2
[e ∧ e]

))
. (4.21)

The variations are then given by

δG[α] = −
∫
�

tr(δαDe + δe ∧ Dα + δω ∧ [e,α]) −
∫
∂�

tr(αδe), (4.22)

and
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δF[φ] = −
∫
�

tr

(
δφ

(
F + 1

2�2
[e ∧ e]

)
+ δω ∧ Dφ + 1

�2
δe ∧ [e,φ]

)
−

∫
∂�

tr(φδω).

(4.23)

In order to obtain functionally differentiable quantities, we can then consider the extended gen-
erators defined by

/δGc[α] := δG[α] +
∫
∂�

tr(αδe), /δFc[φ] := δF[φ] +
∫
∂�

tr(φδω). (4.24)

For δα = 0 = δφ, these extended generators are integrable and generate the infinitesimal gauge 
transformations (4.3) and (4.5). Furthermore, they satisfy an algebra which has a first class part

{
Gc[α],Gc[β]} = Gc

[[α,β]], {
Fc[φ],Fc[ϕ]} = 1

�2
Gc

[[φ,ϕ]], (4.25)

and an anomalous part

{
Gc[α],Fc[φ]} =Fc

[[α,φ]] +
∫
∂�

tr(dαφ). (4.26)

As expected, we see here that the Poisson algebra of the extended generators differs from the 
algebra structure (4.7) by the presence of a central extension.

In order for this last bracket to close, one has to consider generators with compact support, 
i.e. ᾱ

∣∣
∂�

= 0 = φ̄
∣∣
∂�

. In this case, boundary observables arise following the same mechanism as 
in sections 3.2 and D.2. In order to describe them, let us focus on the case �2 = ∞. For the su(2)

transformations and the translations, we have respectively the observables

Og[α] := −
∫
�

tr(e ∧ Dα) = G[α] +
∫
∂�

tr(αe) �
∫
∂�

tr(αe), (4.27)

and

Ot[φ] := −
∫
�

tr

(
ω ∧ dφ + 1

2
φ[ω ∧ ω]

)
=F[φ] +

∫
∂�

tr(φω) �
∫
∂�

tr(φω), (4.28)

and their algebra is given by

{
Og[α],Ot[φ]} =Ot[[α,φ]] +

∫
∂�

tr(dαφ). (4.29)

We are now going to analyze the behavior of the potential under finite field-dependent SU(2)

gauge transformations and translations. As we will see, an extra compatibility condition will be 
required in order to obtain an extended potential which is gauge-invariant under both types of 
transformations. From this, we will then be able to proceed with the analysis of the generators of 
gauge transformations and boundary symmetries. As we have seen in the case of Abelian Chern–
Simons theory, the generators of the boundary symmetries will be the boundary observables of 
the theory.
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4.3. SU(2) gauge transformations

Recall that the potential of the Lagrangian L[e, ω] is given by

θ [e, δω] = tr(δω ∧ e). (4.30)

Since the Lagrangian is strictly gauge-invariant, i.e. L[h∗e, h∗ω] = L[e, ω], we have that

δ(L[h∗e,h∗ω]) = δL[e,ω] = E[�] ∧ δ� + dθ [e, δω], (4.31)

where the term giving the equations of motion is simply the bulk term appearing in (4.2). Now, 
using the identity δ(h−1dh) = h−1d(δhh−1)h as well as the two very important relations14

δ(h∗ω) = h−1(δω + D(δhh−1)
)
h, δ(h∗e) = h−1(δe + [e, δhh−1])h, (4.32)

we get

(δL)[h∗e,h∗ω] = E[�] ∧ δ� + d tr
(
e ∧ D(δhh−1)

) + dθ [h∗e, δ(h∗ω)]. (4.33)

The proof of this result is given in appendix Appendix C. This is not yet of the form (2.45), but 
using the fact that

e ∧ D(δhh−1) = Deδhh−1 − d(eδhh−1) (4.34)

does lead to the expected form of the transformation, namely to the total derivative of a term 
involving the equation of motion De � 0.

We can now clearly anticipate what will happen when computing the gauge transformation of 
the potential. Using again (4.32) and (4.34), one gets that

θ [h∗e, δ(h∗ω)] = θ [e, δω] + tr
(
D(δhh−1) ∧ e

)
= θ [e, δω] + d tr(eδhh−1) − tr(Deδhh−1). (4.35)

What we see here is simply the manifestation of the fact that [63,67]

δ(h∗ω) = h−1(δω + D(δhh−1)
)
h = h∗(δω + D(δhh−1)

) = h∗(δω + δ
g
δhh−1ω

)
, (4.36)

where we have to remember that h∗(δω) = hδωh−1 since δω is the difference between two 
connections. Similarly, we have that

δ(h∗e) = h−1(δe + [e, δhh−1])h = h∗(δe + [e, δhh−1]) = h∗(δe + δ
g
δhh−1e

)
. (4.37)

Now, we can make the potential gauge-invariant on-shell by adding a field u ∈ 	0
(
∂�, SU(2)

)
, 

which is a choice of local trivialization transforming as h∗u = h−1u. With this, one can check 
that

δ(h∗u)(h∗u)−1 = h−1(δuu−1 − δhh−1)h = h∗(δuu−1 − δhh−1). (4.38)

Defining the extended potential

θc,p[e,ω,u, δω, δu] := θ [e, δω] + d tr(eδuu−1) − tr(Deδuu−1), (4.39)

one can see that

θc,p[h∗e,h∗ω,h∗u, δ(h∗ω), δ(h∗u)] = θc,p[e,ω,u, δω, δu]. (4.40)

This defines an extended potential which is gauge-invariant under field-dependent SU(2) gauge 
transformations. We now turn to the case of the translations.

14 Notice that here it is crucial for our purposes to keep terms of the form δh, i.e. to consider that h are parameters of 
field-dependent gauge transformations.
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4.4. Translations

As one can see by comparing (4.14) with (4.16) and (4.17), the finite translations have a drasti-
cally different structure depending on whether the cosmological constant is vanishing or not. For 
simplicity we will focus here on the case �2 = ∞. In addition, we have seen in (4.15) that the La-
grangian is not gauge-invariant under the translations, but transforms with a boundary term. This 
is analogous to what happened with the gauge transformations in Abelian Chern–Simons theory. 
For gravity, it is also possible to define Lagrangians which are gauge-invariant from the onset, 
by adding either a boundary or a bulk field. We discuss this possibility in appendix Appendix E.

Let us now focus on the Lagrangian L[e, ω] with �2 = ∞. Computing the variation of (4.15), 
we get that

δ(L[φ∗e,φ∗ω]) = E[�] ∧ δ� + d(θ [e, δω] + φF). (4.41)

On the other hand, the gauge transformation of the variation of the Lagrangian leads to

(δL)[φ∗e,φ∗ω] = E[�] ∧ δ� + d tr(δφF) + dθ [φ∗e, δ(φ∗ω)]. (4.42)

This is shown in appendix Appendix C, and, importantly, does only hold in the case �2 = ∞. 
Once again, one can compute the gauge transformation of the potential to find

θ [φ∗e, δ(φ∗ω)] = θ [e, δω] + tr(δω ∧ Dφ)

= θ [e, δω] − d tr(φδω) + tr(φδF )

= θ [e, δω] − d tr(φδω) + δ tr(φF ) − tr(δφF), (4.43)

which is exactly of the form (2.46), and shows that δ(L[φ∗e, φ∗ω]) = (δL)[φ∗e, φ∗ω].
Now, we can make the potential gauge-invariant by adding a field χ ∈ 	0

(
∂�, su(2)

)
which 

transforms as φ∗χ = χ − φ. Defining the extended potential

θc,m,p[e,ω,χ, δω] := θ [e, δω] − d tr(χδω) + δ tr(χF) − tr(δχF), (4.44)

one can then see that

θc,m,p[φ∗e,φ∗ω,φ∗χ, δ(φ∗ω)] � θc,m,p[e,ω,χ, δω]. (4.45)

Before moving on to the study of the compatibility between the extended gauge-invariant 
potentials (4.39) and (4.44), let us briefly illustrate once again how the corner ambiguities can be 
used to obtain a vanishing Noether charge for the gauge transformations.

4.5. Noether charges

For infinitesimal SU(2) gauge transformations, we have δg
αL[e, ω] = 0. This implies that the 

associated Noether current is

J [e,ω,α] = θ [e, δg
αω] = −tr(αDe) + d tr(αe). (4.46)

Now, the extended potential (4.39) is such that

θc,p[e,ω,u, δ
g
αω, δ

g
αu] = θ [e, δg

αω] + d tr(eδg
αuu−1) − tr(Deδ

g
αuu−1) = 0. (4.47)

Therefore, using the corner term in the definition of the Noether current leads to

Jc[e,ω,α] = θc[e,ω,u, δ
g
αω, δ

g
αu]

= θ [e, δg
αω] + d tr(eδg

αuu−1) = tr(Deδ
g
αuu−1) = −tr(αDe), (4.48)
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thereby showing that the charge is indeed vanishing.
For infinitesimal translations, the initial Lagrangian transforms as δt

φL[e, ω] = d tr(φF ). This 
implies that the associated Noether current is

J [e,ω,φ] = θ [e, δt
φω] − m[ω,φ] = −tr(φF ), (4.49)

so the charge is vanishing from the onset. This is of course consistent with the extended potential, 
since one can see from (4.44) that θc,m,p[e, ω, χ, δt

φω] is actually vanishing term-by-term.

4.6. Compatibility between SU(2) and translations

In order to obtain gauge-invariance of the potential under both the SU(2) gauge transforma-
tions and the translations (which we recall are studied in the case �2 = ∞), we have to somehow 
combine the extended potentials. For this, we need to know how the transformations act on the 
new boundary fields. This is given by

h∗χ = h−1χh, δ(φ∗u)(φ∗u)−1 = δuu−1. (4.50)

With this, we can compute the action of translations on (4.39), which is

θc,p[φ∗e,φ∗ω,φ∗u, δ(φ∗ω), δ(φ∗u)]
= θc,p[e,ω,u, δω, δu] + tr(δω ∧ Dφ) + tr

(
D(δuu−1) ∧ Dφ

)
. (4.51)

On the other hand, the action of SU(2) gauge transformations on (4.44) is given by

θc,m,p[h∗e,h∗ω,h∗χ, δ(h∗ω)]
= θc,m,p[e,ω,χ, δω] + tr

(
D(δhh−1) ∧ e

) + tr
(
D(δhh−1) ∧ Dχ

)
. (4.52)

From these two equations, it is clear that a new term is needed in order to obtain a potential which 
is invariant under both transformations.

The fully-invariant potential is actually given by

θ [e,ω,u,χ, δω, δu]
:= θ [e, δω] + tr

(
D(δuu−1) ∧ e

) + tr(δω ∧ Dχ) + tr
(
D(δuu−1) ∧ Dχ

)
= θ [e, δω] + d tr

(
(e + Dχ)δuu−1 − χδω

) − tr
(
(De + [F,χ])δuu−1 − χδF

)
� θ [e, δω] + d tr

(
(e + Dχ)δuu−1 − χδω

)
, (4.53)

as one can easily check. In the second and third lines, we have simply isolated the equations of 
motion and then gone on-shell to obtain the expression which is suitable for the computation of 
the conserved extended pre-symplectic form. We now have all the ingredients necessary for the 
computation of the generators of gauge transformations and boundary symmetries.

Let us simply observe at this point that this extended potential can also be written in the 
suggestive form

θ [e,ω,u,χ, δω, δu] = tr(δω̃ ∧ ẽ), (4.54)

where we have introduced the “dressed” fields ẽ := u∗(e + Dχ) = u∗(χ∗e) and ω̃ := u∗ω. 
Furthermore, one can check that this expression is of course compatible with the usual corre-
spondence between Chern–Simons theory (which would be here for the gauge group ISU(2)) 
and three-dimensional gravity. Indeed, just like the potential 〈δA ∧A〉 for Chern–Simons theory 
reduces to tr(δω ∧ e) (with the standard non-trivial paring between rotations and translations) 
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once the connection A is decomposed in terms of e and ω, one could check using the results 
of Appendix D that the extended potential of Chern–Simons theory reduces as expected to the 
extended potential (4.53) if the new Chern–Simons boundary field g ∈ ISU(2) is written with the 
Cartan decomposition g = uχ .

4.7. Gauge-invariance and boundary symmetries

We are now once again going to follow [63] in order to construct the symplectic form, and 
extract from it the generators of gauge transformations and the boundary observables generating 
the boundary symmetries.

To compute the conserved pre-symplectic form arising from the potential (4.53), we have to 
use the identity

δ(δuu−1) = −δuδu−1 = −δuu−1uδu−1 = δuu−1δuu−1 = 1

2
[δuu−1, δuu−1]. (4.55)

With this, we then find

	�,∂�[e,ω,u,χ, δ1, δ2] = 	�[e,ω, δ1, δ2] + 	∂�[e,ω,u,χ, δ1, δ2], (4.56)

with the bulk pre-symplectic form

	�[e,ω, δ1, δ2] = −
∫
�

tr(δω ∧ δe), (4.57)

and the boundary contribution

	∂�[e,ω,u,χ, δ1, δ2]
=

∫
∂�

tr

(
δ(e + Dχ)δuu−1 + 1

2
(e + Dχ)[δuu−1, δuu−1] − δχδω

)
. (4.58)

From these expressions for the bulk and the boundary contributions to the conserved pre-
symplectic form, we are going to derive the expressions for the generators of gauge transfor-
mations and for the observables generating boundary symmetries.

In order to derive the expression for the generators of the infinitesimal gauge transformations, 
we need to know how the boundary fields u and χ transform under δg

α and δt
φ . This is given by

δ
g
αu = −αu, δ

g
αχ = [χ,α], δt

φu = 0, δt
φχ = −φ. (4.59)

We therefore find that the generator of infinitesimal SU(2) gauge transformations is given by

/δG[α] = 	�[e,ω, δ, δ
g
α] + 	∂�[e,ω,u,χ, δ, δ

g
α]

= −
∫
�

tr(δe ∧ Dα + δω ∧ [e,α]) −
∫
∂�

tr(αδe), (4.60)

while the generator of infinitesimal translations is given by

/δF[φ] = 	�[e,ω, δ, δt
φ] + 	∂�[e,ω,u,χ, δ, δt

φ] = −
∫
�

tr(δω ∧ Dφ) −
∫
∂�

tr(φδω).

(4.61)

We can now compute the algebra between these generators to find
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{
G[α],G[β]} = δ

g
αG[β] = G

[[α,β]], {
F[φ],F[ϕ]} = δt

φF[ϕ] = 0, (4.62)

and {
G[α],F[φ]} = δ

g
αF[φ] =F

[[α,φ]], (4.63)

which is not anomalous anymore, and closes without the need to restrict the gauge parameters on 
∂�. This is to be put in parallel with the results obtained previously with the extended generators.

Our task is now to find a description of the boundary symmetries and of the observables 
generating them. Since we have constructed our pre-symplectic form by studying the SU(2)

gauge transformations and the translations, we naturally expect to find two boundary symmetries, 
as well as two types of boundary observables generalizing (4.27) and (4.28). First there exists a 
boundary symmetry which acts on the fields as15

�
g
αe = 0, �

g
αω = 0, �

g
αu = uα, �

g
αχ = 0, (4.64)

and whose generator is given by

/δÕg[α] = 	∂�[e,ω,u,χ, δ,�
g
α] =

∫
∂�

tr
(
uαu−1(δ(e + Dχ) + [e + Dχ, δuu−1])).

(4.65)

Notice that this can be rewritten in terms of the dressed fields ẽ = u∗(e + Dχ) = u∗(χ∗e) (this is 
well-defined since the finite actions u∗ and χ∗ commute) as

/δÕg[α] =
∫
∂�

tr(αδẽ), (4.66)

and it is then explicit that the expression /δÕg[α] is integrable. The generators satisfy the algebra{
Õg[α], Õg[β]} = 	∂�[e,ω,u,χ,�

g
α,�

g
β ] = Õg[[α,β]], (4.67)

and are observables in the sense that{
G[α], Õg[β]} = 	∂�[e,ω,u,χ, δ

g
α,�

g
β ] = 0,{

F[φ], Õg[β]} = 	∂�[e,ω,u,χ, δt
φ,�

g
β ] = 0. (4.68)

We have therefore obtained a new observable Õg[α] which is a “dressed” version of (4.27) under 
the action of both boundary fields u and χ .

Now, there exists also a boundary symmetry inherited from the translations. This symmetry 
acts on the fields as

�t
φe = 0, �t

φω = 0, �t
φu = 0, �t

φχ = uφu−1, (4.69)

and is generated by

/δÕt[φ] = 	∂�[e,ω,u,χ, δ,�t
φ] =

∫
∂�

tr
(
uφu−1(δω + D(δuu−1)

))
. (4.70)

This can be rewritten in terms of the dressed field ω̃ = u∗ω as

15 Recall that u is here a group element, while in (3.68) it is a Lie algebra element.
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/δÕt[φ] =
∫
∂�

tr(φδω̃), (4.71)

which shows that the generators are integrable. They satisfy the algebra{
Õt[φ], Õt[ϕ]} = 	∂�[e,ω,u,χ,�t

φ,�t
ϕ] = 0, (4.72)

and are observables in the sense that{
G[α], Õt[ϕ]} = 	∂�[e,ω,u,χ, δ

g
α,�t

ϕ] = 0,{
F[φ], Õt[ϕ]} = 	∂�[e,ω,u,χ, δt

φ,�t
ϕ] = 0. (4.73)

This should be compared with the previous expression (4.28) for the boundary observable asso-
ciated to the translations.

Finally, we can compute the Poisson bracket between the observables themselves. This is 
given by{

Õg[α], Õt[φ]} = 	∂�[e,ω,u,χ,�
g
α,�t

φ]
=

∫
∂�

tr
(
D(uαu−1)uφu−1)

= Õt[[α,φ]] +
∫
∂�

tr(dαφ), (4.74)

which should be put in parallel with (4.29).
Several remarks are now in order. First of all, as announced and as was the case for Abelian 

Chern–Simons theory, we have obtained a natural disentanglement between the role of gauge 
transformations and boundary symmetries [63]. The generators (4.60) and (4.61) of gauge trans-
formations are vanishing on-shell and do not require an extension or the restriction to parameters 
with compact support. Because of the presence of the new boundary fields u and χ , there are 
two new transformations on the boundary, which are given by (4.64) and (4.69), and which are 
symmetries since their generators are non-vanishing and constitute observables. At the differ-
ence with the observables Og[α] and Ot[φ] obtained previously, the new observables Õg[α] and 
Õt[φ] obtained here are defined strongly (i.e. not up to constraints) by boundary integrals, and 
present a dressing of the connection and triad variables by the new boundary fields. Finally, we 
can also see that the algebra (4.74) is strongly equal to a boundary integral, and that this latter 
reproduces the central term appearing in (4.29).

Finally, before closing this paper we would like to briefly mention the problem of finding a 
dynamics for the observables and the boundary variables derived above. One possible definition 
of the boundary dynamics would mean finding a Lagrangian l[�, �] whose variation takes the 
form

δl[�,�] = E[�,�] ∧ δ(�,�) + dϑ[�,�,δ�, δ�], (4.75)

where E[�, �] are equations of motion for the original fields � = (e, ω) and the new boundary 
fields � = (u, χ), and where the potential is the corner term appearing in (4.53), i.e.

ϑ[�,�,δ�, δ�] = tr
(
(e + Dχ)δuu−1 − χδω

)
. (4.76)

This is for example what has been done in [82] (although in another context). Recall first of all, 
as explained at the end of section 3.3.2, that the boundary Lagrangian which could be added in 
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order to make (4.1) gauge-invariant is not the appropriate candidate to describe the boundary 
dynamics along these lines. At first sight, equation (4.54) actually suggests considering tr(ω̃ ∧ ẽ)

as the boundary Lagrangian. Unfortunately, this possibility does not work either because the term 
tr(ω̃ ∧ δẽ) leads to unwanted corner contributions which, as one can show, cannot be canceled
even by adding further terms to the Lagrangian. However, it could be that one can bypass this 
problem by adding further degrees of freedom canonically conjugated to u and χ , but we choose 
to leave a more detailed analysis of this question for the future.

5. Conclusion and perspectives

The general understanding of boundary observables and boundary degrees of freedom in field 
theory, be it for finite boundaries or boundaries at infinity, is still an open question. Indeed, al-
though there exist many examples in which boundary degrees of freedom and their dynamics 
can be described, often in connection with very interesting physical applications, there is no sys-
tematic derivation or understanding (we believe) of the mechanisms at play. As we have recalled 
in 2.3, this depends strongly for example on a choice of boundary conditions or boundary term. 
What is however clear is that boundary degrees of freedom are tightly connected to the fate of 
gauge transformations and gauge invariance.

In this article, we have adopted the point of view of [63], and tried to understand the re-
lationship between the breaking/restauration of gauge-invariance at boundaries and possible 
associated observables. For this, we have first reviewed in section 2 the covariant Hamilto-
nian formalism while paying attention to corner ambiguities and boundary terms, and then 
explained the generic transformation properties of the pre-symplectic potential under finite and 
field-dependent gauge transformations. We have given in particular a general expression for the 
extended gauge-invariant potential, which is obtained by introducing boundary fields that re-
store gauge-invariance at the boundary, and explained how a modification of the usual conserved 
pre-symplectic form leads to an additional boundary symplectic structure. This is a formaliza-
tion the idea put forward in [63]. It has the advantage of clearly separating the role of gauge 
transformations and that of gauge symmetries, the former being generated by constraints and the 
latter by observables. In summary, the observables arise in this picture as the generators of a new 
boundary symmetry, which itself arises from the introduction of new boundary fields that ensure 
gauge-invariance of the potential.

In section 3, we have applied the general framework of section 2 to the explicit example 
of Abelian Chern–Simons theory. This constitutes an ideal testbed because it is a theory for 
which the boundary observables and the boundary dynamics are known. We have found that the 
observables get dressed by the new boundary field ensuring gauge-invariance, taking the form 
(3.69), and that their Poisson bracket reproduces that of the affine Kac–Moody algebra (3.70). 
This is in full agreement with the results which have been known for quite some time now, but it 
makes the whole derivation conceptually clearer. What we have left out of our discussion is the 
derivation of a dynamics for the boundary observables.

Finally, in section 4 we have studied three-dimensional gravity in its first order formulation. 
There, not all the gauge symmetries are independent because of the relation (4.11), so we have 
chosen to focus on the SU(2) gauge transformations and the translations. We have written for the 
first time the finite form of the translations in the case of a non-vanishing cosmological constant, 
which is given by (4.16) and (4.17). From this, one can however see that the action of finite field-
dependent translations on the potential depends strongly on whether the cosmological constant 
is vanishing or not, and we have chosen the former case for simplicity. After having introduced 
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new boundary fields which ensure the gauge-invariance of the potential under both the SU(2)

gauge transformations and the translations, we have shown that these gauge transformations are 
generated at the infinitesimal level by generators which vanish on-shell and have a closed (i.e. 
non-anomalous) algebra. The boundary observables (4.66) and (4.71) which we have then ob-
tained are a dressed version of the observables (4.27) and (4.28) derived in [65], and satisfy the 
affine Kac–Moody algebra (4.29).

These results show that the extended phase space formalism recovers, via the new bound-
ary fields and dressed boundary observables, the boundary symmetry algebra which was known 
in the case of Chern–Simons theory and three-dimensional gravity. It opens however the pos-
sibility on the one hand of accessing the boundary observables and symmetries in the case of 
four-dimensional gravity and diffeomorphism transformations (the results of the extended phase 
space formulation in this case have been presented in [63]), and on the other hand of accessing 
the boundary action describing the dynamics of the boundary degrees of freedom.

Let us stress here once again that one of the main results of this paper, besides the construc-
tion of the gauge-invariant extended symplectic structure for Chern–Simons theory and first order 
gravity, is the fact that the boundary observables obtained via the extended phase space construc-
tion of [63] and which generate the boundary symmetries are a dressed version of the standard 
Hamiltonian observables [34,65,68]. We have found that this dressing corresponds simply to the 
gauge action of the new boundary fields on the bulk fields incoming at the boundary. This result 
follows in fact straightforwardly from the way in which the extended phase space has been con-
structed, which is by acting with gauge transformations on the bulk fields and then promoting 
the parameters of the gauge transformations to new dynamical degrees of freedom (and thereby 
automatically introducing the dressing). Beyond the mathematical details of this construction, 
which has been the scope of this paper, what remains open and challenging to understand is the 
physical meaning of this dressing and of the new boundary degrees of freedom responsible for 
it. To understand the physical meaning of these fields, one promising avenue would be to con-
nect the present construction and that of [63], which were carried out for boundaries at a finite 
distance, to (possibly null) boundaries at infinity, which is where one describes electromagnetic 
and gravitational radiation, and where the wealth of recent results summarized in [55] manifest 
themselves.

Eventually, we are of course interested in understanding the role of these boundary symmetries 
for quantum gravity. There are already several results in this direction in e.g. loop quantum 
gravity [82,83], and this was one of our motivations for studying first order gravity and not 
second order metric gravity as was done in [63]. In order to go to the four-dimensional case, we 
will however have to consider both the SU(2) gauge transformations and the diffeomorphisms, 
and therefore find the four-dimensional generalization of the extended potential (F.12).
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Appendix A. Useful formulas

For g-valued differential forms, say P and Q of degree p and q , we have denoted in the main 
text the Lie bracket by

[P ∧ Q] : 	p+q(g⊗ g) → 	p+q(g). (A.1)

With this, we have the useful permutation and cyclicity relations

[P ∧ Q] = (−1)pq+1[Q ∧ P ], [P ∧ Q] ∧ R = (−1)p(q+r)[Q ∧ R] ∧ P, (A.2)

the Leibniz rule

D[P ∧ Q] = [DP ∧ Q] + (−1)p[P ∧ DQ], (A.3)

the integration by parts formula

DP ∧ Q = d(P ∧ Q) + (−1)p+1P ∧ DQ, (A.4)

and finally the squared action of the covariant derivative is given by

DDP = [F ∧ P ], (A.5)

where F is the curvature.

Appendix B. Pre-symplectic form and generators with boundaries

In this appendix, we start by recalling where the equalities (2.12) and (2.13) come from. For 
this, let us introduce abstract coordinates A, B, . . . on the (infinite-dimensional) phase space. 
With this, we have the notation

	[δ1, δ2] = 	AB(δ1�)A(δ2�)B, (B.1)

where (δ�)A is a tangent vector, and therefore (2.12) takes the form

δH[ε] = 	AB(δ�)A(δε�)B. (B.2)

This in turns implies that

δH[ε]
(δ�)A

= 	AB(δε�)B. (B.3)

We can now calculate the Poisson bracket between H[ε] and an arbitrary phase space function f , 
which by definition is given in terms of the inverse pre-symplectic form by{

H[ε], f } = (
	−1)AB δH[ε]

(δ�)A

δf

(δ�)B = −(δε�)A δf

(δ�)A
= δεf. (B.4)

It then follow that

δε1H[ε2] = {
H[ε1],H[ε2]

} = 	AB(δε1�)A(δε2�)B, (B.5)

which is (2.13). Note that we have included a minus sign in our definition of δεf .
Now, imagine that one has an arbitrary variational quantity δH[ε] which has a bulk and a 

boundary contribution, i.e. which is of the form

δH[ε] = δH�[ε] + δH∂�[ε]. (B.6)
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If there is no relation of the form (B.3) between these terms and the pre-symplectic form, it is 
impossible in general to compute the Poisson bracket between two such phase space functions 
along these lines. However, as we encounter in the main text, if the pre-symplectic form has a 
boundary contribution, i.e. if

	[δ1, δ2] = 	�[δ1, δ2] + 	∂�[δ1, δ2], (B.7)

and if the two variational contributions are defined by

δH�[ε] := 	�[δ, δε], δH∂�[ε] := 	∂�[δ, δε], (B.8)

then one can see that the above calculation goes through, i.e. that it is possible to compute the 
Poisson bracket{

H�[ε1] +H∂�[ε1],H�[ε2] +H∂�[ε2]
} = 	[δε1, δε2]. (B.9)

This explains a subtle yet fundamental difference between the quantities (3.30) and (3.65).

Appendix C. Details of some calculations

Proof of (3.42a)

θ [α∗A,δ(α∗A)] = δ(A + dα) ∧ (A + dα)

= θ [A,δA] + δA ∧ dα + δdα ∧ (A + dα)

= θ [A,δA] + δA ∧ dα + d
(
δα(A + dα)

) − δαdA

= θ [A,δA] + δ(A ∧ dα) − A ∧ δdα + d
(
δα(A + dα)

) − δαdA

= θ [A,δA] + δ(A ∧ dα) − δαdA + d(δαA) + d
(
δα(A + dα)

) − δαdA

= θ [A,δA] + d
(
δα(2A + dα)

) + δ(A ∧ dα) − 2δαdA

= θ [A,δA] + d
(
δα(A + dα) − αδA

) + δ(αdA) − 2δαdA. (C.1)

Proof of (D.25) First, we have that

θ [g∗A,δ(g∗A)] = 〈δ(g−1Ag + g−1dg) ∧ (g−1Ag + g−1dg)〉
= 〈(

δA + D(δgg−1)
) ∧ (A + dgg−1)

〉
= θ [A,δA] + 〈δA ∧ dgg−1〉 + 〈D(δgg−1) ∧ (A + dgg−1)〉. (C.2)

The second term can be rewritten as

〈δA ∧ dgg−1〉 = δ〈A ∧ dgg−1〉 − 〈A ∧ δ(dgg−1)〉
= δ〈A ∧ dgg−1〉 − 〈A ∧ gd(g−1δg)g−1〉
= δ〈A ∧ dgg−1〉 − 〈g−1Ag ∧ d(g−1δg)〉
= δ〈A ∧ dgg−1〉 − 〈d(g−1Ag)g−1δg〉 + d〈(g−1Ag)(g−1δg)〉
= δ〈A ∧ dgg−1〉 − 〈(dA − [A ∧ dgg−1])δgg−1〉 + d〈Aδgg−1〉
= δ〈A ∧ dgg−1〉 − 〈dAδgg−1〉 + 〈[A ∧ dgg−1]δgg−1〉 + d〈Aδgg−1〉.

(C.3)

The third term can be rewritten as
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〈D(δgg−1) ∧ (A + dgg−1)〉 = −〈D(A + dgg−1)δgg−1〉 + d〈(A + dgg−1)δgg−1〉
= −〈dAδgg−1〉 − 〈[A ∧ A]δgg−1〉

− 〈d(dgg−1)δgg−1〉 − 〈[A ∧ dgg−1]δgg−1〉
+ d〈(A + dgg−1)δgg−1〉

= −〈dAδgg−1〉 − 〈[A ∧ A]δgg−1〉
+ 〈d(δgg−1) ∧ dgg−1〉 − 〈[A ∧ dgg−1]δgg−1〉
+ d〈Aδgg−1〉. (C.4)

Putting this together, we get that

θ [g∗A,δ(g∗A)] = θ [A,δA] + 2d〈Aδgg−1〉 + δ〈A ∧ dgg−1〉 − 2〈δgg−1F 〉
+ 〈d(δgg−1) ∧ dgg−1〉. (C.5)

Proof of (4.6)

δt
φL[e,ω] = tr

(
δt
φe ∧

(
F + 1

2�2
[e ∧ e]

)
+ δt

φω ∧ De

)
+ d tr(δt

φω ∧ e)

= tr

(
Dφ ∧

(
F + 1

2�2
[e ∧ e]

)
+ 1

�2
[e,φ] ∧ De

)
+ 1

�2
d tr([e,φ] ∧ e)

= tr

(
−φ

(
DF + 1

2�2
D[e ∧ e]

)
+ 1

�2
[e,φ] ∧ De

)

+ d tr

(
φ

(
F + 1

2�2
[e ∧ e]

)
− 1

�2
φ[e ∧ e]

)

= d tr

(
φ

(
F + 1

2�2
[e ∧ e]

)
− 1

�2
φ[e ∧ e]

)
. (C.6)

Proof of (4.33)

E[h∗�] ∧ δ(h∗�) = tr

(
δ(h∗e) ∧

(
h∗F + 1

2�2
[h∗e ∧ h∗e]

)
+ δ(h∗ω) ∧ h∗(De)

)

= E[�] ∧ δ� + tr

(
[e, δhh−1] ∧

(
F + 1

2�2
[e ∧ e]

)

+ D(δhh−1) ∧ De
)

= E[�] ∧ δ� + tr
([e, δhh−1] ∧ F + D(δhh−1) ∧ De

)
= E[�] ∧ δ� + tr

([e, δhh−1] ∧ F + De ∧ D(δhh−1)
)

= E[�] ∧ δ� + tr
([e, δhh−1] ∧ F + e ∧ DD(δhh−1)

)
+ d tr

(
e ∧ D(δhh−1)

)
= E[�] ∧ δ� + tr

([e, δhh−1] ∧ F + e ∧ [F, δhh−1])
+ d tr

(
e ∧ D(δhh−1)

)
= E[�] ∧ δ� + d tr

(
e ∧ D(δhh−1)

)
. (C.7)
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Proof of (4.42)

E[φ∗�] ∧ δ(φ∗�) = tr
(
δ(φ∗e) ∧ (φ∗F) + δ(φ∗ω) ∧ φ∗(De)

)
= E[�] ∧ δ� + tr

(
δ(Dφ) ∧ F + δω ∧ DDφ

)
= E[�] ∧ δ� + tr

(
δdφ ∧ F + [δω,φ] ∧ F + [ω,δφ] ∧ F

+ δω ∧ [F,φ])
= E[�] ∧ δ� + tr

( − δφdF + [ω,δφ] ∧ F
) + d tr(δφF)

= E[�] ∧ δ� + tr(−δφDF) + d tr(δφF)

= E[�] ∧ δ� + d tr(δφF). (C.8)

Appendix D. Non-Abelian Chern–Simons theory

Here we extend partially the results of section 3 to the case of non-Abelian Chern–Simons 
theory. We will see that the only extra difficulty in doing so is that one has to deal with the 
WZNW contribution to the potential.

D.1. Lagrangian

Let us consider the Lagrangian16

L[A] :=
〈
A ∧ dA + 1

3
A ∧ [A ∧ A]

〉
=

〈
A ∧ F − 1

6
A ∧ [A ∧ A]

〉
, (D.1)

where 〈·〉 denotes a choice of pairing for the Lie algebra elements. Its variation is given by

δL[A] = 2〈δA ∧ F 〉 + d〈δA ∧ A〉, (D.2)

from which we can identify the non-Abelian potential. Under infinitesimal and finite gauge trans-
formations, the fields transform as

δαA = Dα, δαF = [F,α], g∗A = g−1Ag + g−1dg, g∗F = g−1Fg. (D.3)

The Lagrangian, on the other hand, transforms as

δαL[A] = 〈dα ∧ dA〉 = −d〈dα ∧ A〉 = d〈αdA〉, (D.4)

and

L[g∗A] = L[A] − 1

6
〈dgg−1 ∧ [dgg−1 ∧ dgg−1]〉 + d〈A ∧ dgg−1〉, (D.5)

where the extra term is the sum of a boundary term and the WZNW bulk term.

16 In this paper we always work in the adjoint representation, so that the non-Abelian field strength is given by F =
dA + [A ∧ A]/2.
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D.2. Hamiltonian

The Hamiltonian action is

S[A] =
∫
R

dt

∫
�

〈∂0A ∧ A + 2A0F − d(AA0)〉, (D.6)

with canonical Poisson bracket 
{
Aa(x), Ab(y)

} = −ε̃abδ
2(x, y)/2, and generic brackets{

f1, f2
} = −1

2
ε̃ab

∫
�

d2x

∫
�

d2y δ2(x, y)
δf1

δAa(x)

δf2

δAb(y)
. (D.7)

Let us consider the smeared constraint

F[α] := −2
∫
�

〈αF 〉 � 0, (D.8)

whose variation is given by

δF[α] = −2
∫
�

〈δαF + δA ∧ Dα〉 − 2
∫
∂�

〈αδA〉. (D.9)

Now we can proceed as for (3.30). Let us therefore define an extended generator by

/δFc[α] := δF[α] + 2
∫
∂�

〈αδA〉. (D.10)

For α = ξ� A we get{
Fc[ξ�A],A} = D(ξ�A) + ξ�F = d(ξ�A) + ξ�dA = LξA. (D.11)

Adding now the condition that δα = 0, we get the generator of gauge transformations{
Fc[α],A} = Dα, (D.12)

and we can compute the algebra{
Fc[α],Fc[β]} =Fc

[[α,β]] + 2
∫
∂�

〈dαβ〉. (D.13)

Note that to obtain this result we have used the identity

Dα ∧ Dβ = [α,β]F − d([α,β]A) + dα ∧ dβ. (D.14)

Once again, this algebra closes if we consider generators ᾱ which are vanishing on ∂�. In this 
case, Fc[ᾱ] = F[ᾱ] � 0 and we have{

F[ᾱ],F[β̄]} =F
[[ᾱ, β̄]]. (D.15)

For an arbitrary smearing parameter α, let us now consider the quantity

O[α] := −2
∫
�

〈
A ∧ dα + 1

2
α[A ∧ A]

〉
=F[α] + 2

∫
∂�

〈αA〉 � 2
∫
∂�

〈αA〉, (D.16)

which is not vanishing (i.e. not a flatness constraint) since α does not have to vanish on ∂�. This 
is an observable since, because ᾱ has compact support, we have
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{
O[α],F[ᾱ]} =F

[[α, ᾱ]] + 2
∫
∂�

〈[α, ᾱ]A〉 + 2
∫
∂�

〈dαᾱ〉 � 0. (D.17)

Now, for α and β such that α
∣∣
∂�

= β
∣∣
∂�

, we have (α − β)
∣∣
∂�

= 0, so

O[α] −O[β] =F[α − β] � 0, (D.18)

showing that the observables O[α] are located on the edge. Finally, these observables satisfy the 
algebra{

O[α],O[β]} =O
[[α,β]] + 2

∫
∂�

〈dαβ〉. (D.19)

One can see that all these calculations are simply the non-Abelian generalization of that of sec-
tion 3.

D.3. Extended pre-symplectic potential

Let us show that the property δ(L[g∗A]) = (δL)[g∗A] is here indeed satisfied. To compute 
the variation of (D.5) let us first us the invariance of the trace to rewrite L[g∗A] as

L[g∗A] = L[A] − 1

6
〈g−1dg ∧ [g−1dg ∧ g−1dg]〉 + d〈A ∧ dgg−1〉. (D.20)

Using δ(g−1dg) = g−1d(δgg−1)g, we then obtain

δ(L[g∗A]) = 2〈δA ∧ F 〉 − 1

2
〈d(δgg−1) ∧ [dgg−1 ∧ dgg−1]〉

+ d
(
θ [A,δA] + δ〈A ∧ dgg−1〉), (D.21)

with

θ [A,δA] = 〈δA ∧ A〉. (D.22)

On the other hand, computing the gauge transformation of the variation of the Lagrangian leads 
to

(δL)[g∗A] = 2〈δA ∧ F 〉 + 2〈D(δgg−1) ∧ F 〉 + dθ [g∗A,δ(g∗A)]
= 2〈δA ∧ F 〉 + 2d〈δgg−1F 〉 + dθ [g∗A,δ(g∗A)], (D.23)

where we have used the important property

δ(g∗A) = g−1(δA + D(δgg−1)
)
g, (D.24)

together with the integration by parts formula (A.4) and the Bianchi identity DF = 0. Now, as 
shown in appendix Appendix C, the potential transforms as

θ [g∗A,δ(g∗A)] = θ [A,δA] + 2d〈Aδgg−1〉 + δ〈A ∧ dgg−1〉 − 2〈δgg−1F 〉
+ 〈d(δgg−1) ∧ dgg−1〉. (D.25)

Using the identity

d〈d(δgg−1) ∧ dgg−1〉 = −1

2
〈d(δgg−1) ∧ [dgg−1 ∧ dgg−1]〉, (D.26)

we then get as expected that δ(L[g∗A]) = (δL)[g∗A]. Also, notice that by using
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〈d(δgg−1) ∧ dgg−1〉 = −1

2
〈[dgg−1 ∧ dgg−1]δgg−1〉 + d〈dgg−1δgg−1〉 (D.27)

the transformed potential can be written as

θ [g∗A,δ(g∗A)] = θ [A,δA] + d〈(2A + dgg−1)δgg−1〉 + δ〈A ∧ dgg−1〉 − 2〈δgg−1F 〉
− 1

2
〈[dgg−1 ∧ dgg−1]δgg−1〉, (D.28)

and it is then transparent that in the Abelian case this reduces to (3.42a).
The first line of the expressions (D.25) and (D.28) for the gauge transformation of the potential 

is indeed of the general form (2.46), but one can now see that there is an extra term in the second 
line which is neither vanishing on-shell nor a total (exterior of field space) derivative. Therefore, 
although it is possible to define an extended gauge-invariant potential θc,m,p[A, u, δA, δu] by 
promoting the gauge parameters g to a field u transforming as g∗u = g−1u, one has to be careful 
about what happens to this term in the current. It can however easily be checked that we have

δ
(
d(δuu−1) ∧ duu−1) = d

(
d(δuu−1)δuu−1), (D.29)

which is a corner contribution. The bulk symplectic structure will therefore be unchanged and 
in particular conserved. From the gauge-invariant extended potential it is then straightforward to 
follow the steps of the derivation of section 3 and to compute the boundary observables as well 
as their algebra. This latter can easily be shown to reproduce (D.19).

Appendix E. Gauge-invariant Lagrangians for the translations

Just like in the case of Abelian Chern–Simons theory, there are two simple ways of obtaining 
a Lagrangian which is invariant under the action of the translations (in the case of a vanishing 
cosmological constant). This is through the introduction of either a boundary or a bulk field.

E.1. Gauge-invariant boundary-extended Lagrangian

In order to obtain strict gauge invariance, we can add a dynamical boundary field ϕ ∈
	0

(
∂M, su(2)

)
which transforms as φ∗ϕ = ϕ − φ. Indeed, considering the extended Lagrangian

L�[e,ω,ϕ] := L[e,ω] + d tr(ϕF ), (E.1)

we get that

L�[φ∗e,φ∗ω,φ∗ϕ] = L�[e,ω,ϕ]. (E.2)

Notice also that this preserves the SU(2) gauge invariance. Indeed, since these gauge transfor-
mations act as h∗ϕ = h−1ϕh on the new field, we get that

L�[h∗e,h∗ω,h∗ϕ] = L�[e,ω,ϕ]. (E.3)

The symplectic potential for the extended Lagrangian is

θ�[e,ω,ϕ, δω, δϕ] = θ [e, δω] + δ tr(ϕF ). (E.4)

Looking at gauge transformations, we get that

θ�[φ∗e,φ∗ω,φ∗ϕ, δ(φ∗ω), δ(φ∗ϕ)] = θ�[e,ω,ϕ, δω, δϕ] − d tr(φδω) − tr(δφF). (E.5)

As expected, when comparing this to (4.43) we see that the term δm[ω, φ] = δ tr(φF ) has been 
eliminated.
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E.2. Gauge-invariant bulk-extended Lagrangian

Adding a bulk term with a field ϕ transforming as h∗ϕ = h−1ϕh and φ∗ϕ = ϕ − φ, we can 
consider the Lagrangian

L[e,ω,ϕ] := tr
(
(e + Dϕ) ∧ F

)
, (E.6)

which is manifestly strictly gauge-invariant under all the symmetries under consideration. The 
variation of this Lagrangian is given by

δL[e,ω,ϕ] = tr(δe ∧ F + δω ∧ De) + d tr
(
δω ∧ (e + Dϕ) + δϕF

)
, (E.7)

as can be shown by using the Bianchi identity DF = 0 together with DDϕ = [F, ϕ]. The equa-
tions of motion are therefore unchanged. However, the potential is now given by

θ [e,ω,ϕ, δω, δϕ] = θ [e, δω] + tr(δω ∧ Dϕ + δϕF), (E.8)

and it transforms as

θ [φ∗e,φ∗ω,φ∗ϕ, δ(φ∗ω), δ(φ∗ϕ)] = θ [e,ω,ϕ, δω, δϕ] − tr(δφF). (E.9)

There is therefore no corner term in this transformation.

Appendix F. Diffeomorphisms

We have chosen in section 4 to parametrize the total set of gauge transformations of three-
dimensional gravity by the SU(2) ones and the translations. Here we say a brief word about 
diffeomorphisms. This will illustrate some of the additional difficulties which appear in this 
case, and will serve as a basis for future work on four-dimensional first order gravity (since there 
the translations do not exist).

In order to compute the transformation of the potential under a finite diffeomorphism, we have 
to use the variational formula (3.5) of [63]. For a diffeomorphism Y : M → M , this is

δ(Y ∗f ) = Y ∗(δf +LYf ) = Y ∗(δf + δd
Yf

)
, (F.1)

where the vector field appearing in the Lie derivative is

Ya(x) := (δY a ◦ Y−1)(x). (F.2)

This is analogous to the formulas (4.36) and (4.37). With this, we get that

θ [Y ∗e, δ(Y ∗ω)] = Y ∗(θ [e, δω] + tr(LYω ∧ e)
)
. (F.3)

For the sake of simplicity, let us consider the problem of obtaining an extended potential which 
is only on-shell gauge-invariant under these finite diffeomorphisms. As discussed in section 2
and exemplified with the study of Abelian Chern–Simons theory, this poses no restrictions at all 
on the derivation of the pre-symplectic two-form, since this latter is defined in any case from its 
on-shell conservation. Using the infinitesimal equivalence (4.11), we can write

LYω = δ
g
Y� ω

ω + δt
Y� eω +Y�F � δ

g
Y� ω

ω = D(Y�ω), (F.4)

which then leads to
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θ [Y ∗e, δ(Y ∗ω)] � Y ∗(θ [e, δω] + tr
(
D(Y�ω) ∧ e

))
= Y ∗(θ [e, δω] + d tr

(
e(Y�ω)

) − tr
(
(Y�ω)De

))
� Y ∗(θ [e, δω] + d tr

(
e(Y�ω)

))
. (F.5)

This formula is fundamentally different from the transformation properties (4.35) and (4.43). 
This is because the resulting expression depends here on the diffeomorphism Y via Y and also the 
global pullback Y ∗. In particular, one can see that when forming the pre-symplectic (0, 1)-form 
(2.7) we get


�[Y ∗e, δ(Y ∗ω)] �
∫

Y(�)

θ [e, δω] +
∫

Y(∂�)

tr
(
e(Y�ω)

)
, (F.6)

which therefore has two sources of gauge-non-invariance. In order to define the extended poten-
tial, one has to introduce a coordinate system X which defines the surface � by � = X(σ) and 
∂� = X(∂σ), where σ is an open subset of R3. With this, we can then consider 
�=X(σ)[e, δω], 
and since under a diffeomorphism Y we have Y ∗X = Y−1 ◦ X, this becomes


�=X(σ)[Y ∗e, δ(Y ∗ω)] �
∫

(Y−1◦X)(σ)

Y ∗(θ [e, δω] + d tr
(
e(Y�ω)

))

�
∫

�=X(σ)

(
θ [e, δω] + d tr

(
e(Y�ω)

))
. (F.7)

Now, for X := δX ◦ X−1 the analogue for diffeomorphisms of formula (4.38) is given by

δ(Y ∗X) ◦ (Y ∗X)−1 = δ(Y−1 ◦ X) ◦ (Y−1 ◦ X)−1 = Y ∗(X −Y), (F.8)

which implies that one can construct an on-shell gauge-invariant extended potential (0, 1)-form 
as


�,∂�[e,X, δω, δX] :=
∫

�=X(σ)

θ [e, δω] +
∫

∂�=X(∂σ)

tr
(
e(X�ω)

)
. (F.9)

One can check explicitly that this satisfies 
[Y ∗e, Y ∗X, δ(Y ∗ω), δ(Y ∗X)] = 
[e, X, δω, δX]. 
When constructing the pre-symplectic form from this expression, one then has to be extra careful 
with the subtlety mentioned below (2.7), which has to do with the fact that the locations � and 
∂� are now specified in a field-dependent way. This is described in details in [63] for metric 
gravity, and we will develop our construction for first order gravity in a subsequent work [80].

As we have already encountered in the main text, the integrability condition for the boundary 
observables requires (at least if no boundary conditions are put on the fields themselves) that 
the parameters of the boundary symmetry be field-independent. This means that, starting from 
the boundary observables corresponding to SU(2) gauge transformations and translations, one 
cannot simply use the relations (4.9) and (4.10) in order to construct the boundary observables 
associated with diffeomorphisms. As mentioned above, the study of diffeomorphisms therefore 
requires a separate study and will appear in a subsequent work.

Now, the same question as in section 4.6 arises for the compatibility between SU(2) gauge 
transformations and diffeomorphisms. Let us once again go on-shell, since this is all that matters 
for the computation of the pre-symplectic form. The problem of compatibility has to do with 



362 M. Geiller / Nuclear Physics B 924 (2017) 312–365
the fact that SU(2) gauge transformations and diffeomorphisms do not commute. One could 
therefore think of solving this issue by using the gauge-covariant Lie derivative17 defined as 
Lg

ξ := Lξ − δ
g
ξ� ω. Its action on the frame field is given by Lg

ξ e = D(ξ� e) + ξ� (De), which is 
indeed a covariant version of (4.9), while its action on the connection is given by Lg

ξω = ξ� F . 
However, one cannot naively substitute Lg

ξ for Lξ in the above formulas, since there would be 
no interpretation for (F.1). Instead, one can compute explicitly the action of diffeomorphisms 
and SU(2) gauge transformations, and then find the additional corner term that makes them 
commutative, and therefore defines a potential which is fully gauge-invariant.

When acting on a scalar function such as u, the Lie derivative is simply the directional deriva-
tive Lξ u = ξ� du. With this, the on-shell corner term in the potential (4.39) transforms under 
diffeomorphisms as


∂�[Y ∗e,Y ∗u, δ(Y ∗u)] =
∫

∂�=X(∂σ)

tr(eδuu−1) +
∫

∂�=X(∂σ)

tr
(
e(Y�duu−1)

)
. (F.10)

On the other hand, if the SU(2) gauge transformations do not act on X, their action on the corner 
term in the potential (F.9) is given by


∂�[h∗e,h∗X,δ(h∗X)] =
∫

∂�=X(∂σ)

tr
(
e(X�ω)

) +
∫

∂�=X(∂σ)

tr
(
e(X�dhh−1)

)
. (F.11)

From this, one can see that full on-shell gauge-invariance can be obtained by considering


�,∂�[e,ω,u,X, δω, δu, δX] :=∫
�=X(σ)

θ [e, δω] +
∫

∂�=X(∂σ)

tr
(
eδuu−1 + e(X�ω) + e(X�duu−1)

)
. (F.12)

The study of this extended potential and of the associated boundary symmetries will be presented 
in [80].
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