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ABSTRACT

The concept of renormalization was first introduced by Dirac to investigate the infinite

self energy of an electron classically. This radical theory was probably the first time

when an infinity occurring in a physical system was systematically investigated. This

thesis presents a new perspective of renormalization by introducing methods from

metric geometry to control divergences.

We start by extending Dirac’s work and analyzing how the radiation reaction due

to the precision of the electron’s magnetic moment affects its motion. This is fol-

lowed by modeling scalar field theory on lattices of various kinds. Scale invariance,

which plays a major role in the very few renormalizable theories in nature, is inbuilt

in our formalism. We also use Wilson’s ideas of effective theory and finite element

methods to study continuum systems. Renormalization group transformations form

the central theme in this picture. By incorporating finite element methods, an idea

borrowed from mechanical engineering, we study scalar fields on triangular lattices in

a hierarchal manner. In our case, the cotangent formula turns out to be a fixed point

of the renormalization group transformations. We end our thesis by introducing a

new metric for space-time which emerges from the scalar field itself. The standard

techniques used in the theory of renormalization so far attempt to redefine coupling

constants of the theory to remove divergences at short distance scales. In our for-

malism, we deduce the distance scale itself. In our notion of distance, built from

correlation functions of the fields, the divergences disappear.
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CHAPTER 1

INTRODUCTION

“I must say that I am very dissatisfied with the situation, because this so-called

‘good theory’ does involve neglecting infinities which appear in its equations,

neglecting them in an arbitrary way. This is just not sensible mathematics.

Sensible mathematics involves neglecting a quantity when it is small - not

neglecting it just because it is infinitely great and you do not want it!”

— P. A. M. Dirac, Directions in Physics

The standard model of particle physics stands out among other theories in physics

not only because of its comprehensive explanation of the forces of nature but also for

the rigorous experimental verifications that it has undergone. Since ancient times,

physicists have been trying to understand the elementary composition of matter and

the forces governing them. After all, we now know that Democritus’s atomic hypoth-

esis is not accurate. Our knowledge about the basic building blocks of matter has

gone a lot of change and a good understanding of it was proposed by the standard

model in the 1970s. It captures the fundamental forces of nature- electromagnetic,

weak and strong nuclear interactions except gravity.

The recent discovery of the Higgs et al. boson in 2012, followed by the Nobel

prize in 2013, provides the missing piece of the puzzle in the standard model. All the

theoretically predicted parameters in the Lagrangian of the standard model have now
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been verified experimentally over the past fifty years. Does this bring us to an end

for the quest of the fundamental forces? Well, apparently not. The discoveries so far

open up a chestful of questions to be solved in years to come. For example, attempts

are being made to find an unified theory which can explain gravity as well along with

the three other fundamental forces of nature.

We shall however take a step back and try to address the mathematical formalism

on which the standard model stands, namely quantum field theory (QFT). QFT

started off as an offshoot of relativistic quantum mechanics. Such a system can

create or destroy particles via interactions. These interactions could not be explained

by quantum mechanics as the particle number of the system was no longer conserved.

The infinite degrees of freedom involved in the system called for a new theoretical

development. Though QFT passed the first barrier to explain particle interactions,

it however gave rise to divergences. Theoretical predictions for physically observed

quantities were infinite and an elaborate scheme called renormalization had to be

introduced to reconcile the theoretical predictions and experimental observations.

Quantum field theory is the calculus of the microworld [1]. It can be viewed as

the theory of interacting quantum fields which includes virtual transitions of quantum

fields. For example, the electromagnetic fields in nature can be quantized and thought

of as particle-like photons. Interactions of the electromagnetic field with matter

can be visualized as interactions with these quanta of fields with matter. Each of

these interactions has a nice diagrammatic representation which goes by the name of

Feynman diagrams. However, the presence of virtual states leads to infinities in the

calculations. The emergence of these infinities remained a puzzle for quite sometime.

Following an idea by Dirac, the first step towards solving the puzzle was finally laid

by Bethe, Schwinger, Feynman and Dyson in 1940s. They showed that the infinities

could be avoided by redefining the coupling constants and masses of the theory. The
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process of redefinition of the parameters of the model became famous as renormaliza-

tion in years to come. Even though it is mathematically quite cumbersome, it led to

physical theories of unprecedented accuracy and elegance. The magnetic moment of

the electron was calculated using this formalism to an accuracy of 15 decimal places,

and agrees with experiments.

Another renormalizable theory is the Yang-Mills theory. This non-abelian gauge

theory describes the strong forces in the standard model. The “Higgs” mechanism,

which assigns masses to the force carriers in the standard model is also a renormaliz-

able theory. These theories in nature stand on an elegant, yet intricate model. The

renormalizable theories have other issues which need to be addressed now. The Yang-

Mills theory has the million dollar prize associated with it, to address the mass gap

problem. The mass gap problem in the theory deals with the existence and evalua-

tion of the ground state and first excited state energies of the theory. The “Higgs”

mechanism on the other hand has a naturalness problem/hierarchy problem associ-

ated to it. The mass of the Higgs et al. boson calculated in this theory is lighter

than the Planck mass by many orders of magnitude. It is puzzling that the weak

forces of nature mediated by the Higgs et al. boson are so much stronger than the

gravitational forces.

A major development to the story of renormalization happened in the early 1950s

with the introduction of Renormalization Group methods. It became easier to an-

alyze ultraviolet and infrared divergences. Using these algorithms, one could find

the changes in the coupling constants with changing energy scales. These ideas were

put on a solid theoretical footing by Wilson in 1970s. By discretizing space to solve

problems in statistical mechanics, he showed that the renormalization group was a

discrete semigroup. He introduced the idea of effective field theory. One could iso-

late the most important degrees of freedom of a system and average out the other



4

irrelevant degrees of freedom to find an effective theory. In this process, the cou-

pling constants of the theory scale under the renormalization group transformations.

This approach explained phase transitions. Even though space was discretized in

the model, phase transitions in critical phenomena turn out to be independent of

the microscopic details of the system such as lattice spacings. The fixed points of

these transformation have a physical relevance. They are the critical exponents in

the theory of phase transitions.

Wilson found the connection between the existing ideas of renormalizability and

renormalization group and sewed them into one framework. The two crucial aspects

of his formalism were that of understanding a continuum process in finite steps, by

discretization and to discard the impertinent degrees of freedom by an averaging

process to get an effective model. The renormalization group transformations played

a crucial role to execute these ideas.

We try to imbibe Wilson’s approach of finite element methods in our work. The

other important feature of his work is that of scale invariance. Both Yang-Mills

theory and the “Higgs” mechanism in four dimensions have coupling constants which

are dimensionless and hence scale invariant. The Wiener process in one dimension,

which models Brownian motion, is a scale invariant process. In chapters 3 and 4, we

used these ingredients of scale invariance and finite element methods to study scalar

fields on lattices. We used a Gaussian distribution similar to the Wiener process in

our studies.

In chapter 5, however, we introduce a new perspective for renormalization. So

far, we have known that mass influences the metric of space-time. We showed that

the correlation functions in scalar fields itself give rise to a new notion of distance.

The correlation functions in chapter 4 motivated this study. This metric has the

advantage that it is devoid of divergences. Most of the divergences in QFT arise
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from the correlation functions blowing up at short distance scales. In this new metric

instead of changing the parameters of the theory, the new measure of distance is

devoid of such divergences.

Though renormalization has been well accepted at this point, it is still not un-

derstood very well. Since it saw a significant development in the context of QFT, a

common misconception which prevails is that it arises only in QFT. This is actually

not true and regularization methods occur in other areas as well. We list a few ex-

amples in Sec. 1.1. In fact, the first example of renormalization was given by Dirac

in his study of the motion of an electron in an electromagnetic field, taking into ac-

count its self energy. Feynman mentioned this problem in his Nobel lecture in 1965.

He mentioned that infinite energy of interaction of the electron with itself existed in

the classical theory. Dirac’s solution for the problem by redefining the mass of the

electron however lead to certain physically inconsistent solutions. In chapter 2, we

discuss Dirac’s approach and the ideas that followed. The magnetic moment of the

electron was included in our work, which was missing in the story.

1.1 Renormalization beyond Field Theory

Infinities do show up in disciplines other than QFT and one has to implement corre-

sponding regularization techniques to give a sensible meaning to divergent quantities.

We shall highlight examples from mathematics, quantum mechanics where renormal-

ization techniques play a major role.
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The Gamma Function in Mathematics

Divergent sums and integrals occur in mathematics and physics. To avoid them, one

has to implement unintuitive methods to deduce finite values for divergent quantities.

The Gamma function serves as a good toy model for that [2]. The Euler constant

γ which is associated with the Gamma function illustrates how the difference of two

divergent quantities can still lead to a finite value.

The Gamma function is defined with the recurrence relation,

Γ(z + 1) = z Γ(z), and Γ(1) = 1. (1.1.1)

Γ(z) =
1

z(z + 1) . . . (z + k − 1)
Γ(z + k) (1.1.2)

follows from (1.1.1). This leads to the observation that it has poles at non-positive

integers (z = 0,−1,−2, . . .). An alternative definition of the Gamma function which

highlights this fact as well is-

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
. (1.1.3)

So its reciprocal ought to have a product representation of the form,

1

Γ(z)
∼ z

∞∏
n=1

(
1 +

z

n

)
. (1.1.4)

The product (1.1.4) however diverges. It is known that a product of the kind
∞∏
n=1

(1 + xn) converges only if
∞∑
n=1

|xn| converges [3]. For the Gamma function
∑
n

1

n
is

not convergent, but
∑
n

1

n2
is. This suggests a remedy for the issue. Our product can

be fixed by the function (1 + z) e−z as it has the same zero as (1 + z) and to leading
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orders it is bounded by [4]

∣∣1− (1 + z)e−z
∣∣ < C |z|2 . (1.1.5)

Hence the product below converges.

∞∏
n=1

(
1 +

z

n

)
e−

z
n , (1.1.6)

1

Γ(z)
= z lim

n→∞

(
1 +

z

n

)
e−

z
n ez[(1+ 1

2
+...+ 1

n)−logn]. (1.1.7)

By taking the logarithm of the equation (1.1.7) and by separating the divergent

constant as k, we get

log
1

Γ(z)
= log z +

∞∑
n=1

log
(
e−

z
n

[
1 +

z

n

])
+ zk. (1.1.8)

The constant k can be determined by comparing the derivative of the logarithm

of the Gamma function to leading orders. We find that,

ψ(z) =
d

dz
log Γ(z) ∼ −1

z
− γ +O(z). (1.1.9)
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Thus the arbitrary constant k is the Euler constant γ,

γ = lim
n→∞

(
n∑
i=1

1

i
−
∫ n

1

dx

x

)
(1.1.10)

= lim
n→∞

(
1

n
+

n−1∑
i=1

[
1

i
− log

(
1 +

1

i

)])

=
∞∑
i=1

[
1

i
− log

(
1 +

1

i

)]
= 0.57721

= −Γ′(1).

Even though we have a divergent sum
n∑
i=1

1

i
and a divergent integral

∫ n

1

dx

x
, the

difference- the Euler constant is finite. The result is convergent as 1
k
− log

(
1 + 1

k

)
is

bounded as it goes as O
(

1
k2

)
to leading orders.

Another noticeable thing is that with higher values of n, accuracy of γ increases.

This is similar to the perturbative results in field theory.

n γ

1 1

10 0.626383

50 0.587182

100 0.582207

1000 0.577716

10000 0.577266

The Gamma function thus illustrates regularization of a logarithmic divergence

outside quantum field theory. Another famous technique which is borrowed from

mathematics to find the effective action of a theory is the Zeta function regularization
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[5]. The “renormalized” product formula for the Gamma function is thus,

1

Γ(z)
= zeγz

∞∏
n=1

e−
z
n

(
1 +

z

n

)
. (1.1.11)

Delta Potential in Quantum Mechanics

Another instance of renormalization is a simple non-relativistic quantum mechanical

system: the attractive delta function potential in two dimensions [6]. The system

highlights ideas of cutoff and shows how the coupling constant is associated with the

cutoff. This model also highlights how the change in the boundary condition of a

system can be viewed as a singular potential such as the delta function potential [7].

The two-dimensional Schrödinger wave equation for the model is,

[
−∇2 − J δ2(x)

]
ψ(x) = Eψ(x).

In terms of Fourier components the eigenvalue equation becomes

k2ψk − J
∑

m∈Z×Z

ψm = Eψk, ψ(x) =
∑
k

ψke
ik.x. (1.1.12)

The solution is,

ψk =
Jψ•

k2 − E
, ψ(0) = ψ• =

∑
m∈Z×Z

ψm. (1.1.13)

By summing over all values of k and eliminating ψ•, we get an equation for the

spectrum as

J−1 =
∑
k∈Z×Z

1

k2 − E
. (1.1.14)
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The sum representing J diverges logarithmically. The idea of renormalization trans-

lated to this situation is-

• Putting a cutoff in the magnitude of the Fourier index (momentum): |k| < Λ.

• Asking how should the “coupling constant” J depend on Λ in order that the

lowest energy is some given value −µ2.

• Showing that if we eliminate J in this way, all the remaining eigenvalues remain

finite as Λ→∞.

• We don’t care about J. We care about eigenvalues which describe energies, and

eigenfunctions which determine probabilities.

In more detail,

J−1(Λ) =
∑
|k|<Λ

1

k2 + µ2
. (1.1.15)

Using (1.1.14), we can rewrite this as

∑
|k|<Λ

1

k2 + µ2
−
∑
|k|<Λ

1

k2 − E
= 0. (1.1.16)

Although each series is divergent, the combined series in the limit as Λ→∞ is,

χ(z) =
∑

k∈Z×Z

{
1

k2 + µ2
− 1

k2 − z

}
. (1.1.17)

χ(z) is an analytic function whose zeroes are the eigenvalues. They are all determined

in terms of the lowest eigenvalue. The divergent quantity J(Λ) has disappeared from

the final answer. This is an example of renormalization.
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Resolvent Formula

We can reformulate the above example in more satisfactory mathematical terms using

the resolvent (Green’s function to physicists). Let Ĥ0 be an operator on L2(R) self-

adjoint in some domain D. In most interesting cases, Ĥ0 is a second order ordinary

differential operator (e.g., Laplacian). We will see how to modify the domain and get

an operator with a different spectrum, without changing the effect on differentiable

wave-functions. Physically this amounts to changing the boundary conditions on the

wave equation, which can also be thought of as singular potentials. The resolvent of

Ĥ0 is defined to be, for λ not in the spectrum

R̂0 =
1

λ− Ĥ0

, (1.1.18)

which satisfies the equation

− d

dλ
R̂0(λ) = R̂2

0(λ). (1.1.19)

Conversely, any operator-valued analytic function satisfying this condition is of the

form (λ− Ĥ)−1; i.e. it is the resolvent of some operator. Given one such solution, we

will construct another, as follows. Since

[Ĥ0 − λ]R̂0(λ) = −1, (1.1.20)

R0(x, y|λ) satisfies the same differential equation as the eigenfunctions of Ĥ0 except at

x = y where it has a discontinuous derivative. For λ 6= λn, R̂0 is a compact operator;

the integral kernel is often square summable in each variable.
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Proposition. For µ not in the spectrum of Ĥ0, the kernel

R(y, x|λ) = R0(y, x|λ) +R0(y, 0|λ)
1

χ(λ)− χ(µ)
R0(0, x|λ)

satisfies the resolvent equation d
dλ
R(y, x|λ) = −

∫
R(y, z|λ)R(z, x|λ)dz provided that

d

dλ
χ(λ) = − d

dλ
R0(0, 0|λ).

Thus R̂ is the resolvent of some operator

R̂(λ) =
1

λ− Ĥ
, (1.1.21)

with the same form as Ĥ0 on smooth functions, but with a different domain of self-

adjointness in L2(R). Its spectrum is given by the equation

χ(λ) = χ(µ). (1.1.22)

In particular, µ itself is an eigenvalue which determines the rest of the spectrum λn(µ)

from the above equation. The orthonormal eigenfunctions of H are

ψn(x) =
R0(x, 0|λn(µ))√

χ′(λn(µ))
. (1.1.23)

In the example of the delta function potential,

R0(x, y|λ) =
∑

k∈Z×Z

eim·(x−y)

λ− |k|2
(1.1.24)
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Although R0(0, 0|λ) =
∑

k∈Z×Z

1

λ− |k|2
is divergent, its derivative

− d

dλ
R0(0, 0|λ) =

∑
k∈Z×Z

1

(λ− |k|2)2 (1.1.25)

converges. Hence,

χ(λ)− χ(µ) =
∑

k∈Z×Z

{
1

λ− |k|2
− 1

µ− |k|2

}
(1.1.26)

is convergent.

1.2 Techniques to address Renormalization

Numerous techniques have been invented by physicists and mathematicians to deal

with the problem of renormalization. One such method is the renormalization group

transformation, which is explained below by using the one dimensional Ising model [8].

This is followed by a short discussion highlighting the finite element method (FEM)

to find an approximation for the self energy of a field on an interval of the real line.

Renormalization Group Transformation

In Sec. 1.1, we got a glimpse of divergent quantities. At times, it is cumbersome yet

plausible to deal with those divergences using renormalization techniques. However

most theories in nature are not renormalizable. A theory is renormalizable if we

can find the right set of renormalization group (RG) transformations of its couplings

so that the physically divergent quantities (dependent on couplings) are no more

divergent under the redefinition of the coupling constants.
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The main idea behind RG transformations is to find an effective theory at a

certain length scale by averaging out fluctuations over length scales smaller than

that. This decreases the number of degrees in the system. As an analogy, if we

are interested in the macroscopic properties of a system we do not pay attention

to its microscopic properties. Wilson was the major proponent of this idea [9]. A

systematic approach to subdivide length scales in the problem is introduced and an

effective action corresponding to each length scale is found. The major steps of the

technique are mentioned below,

• Coarse grain: All physical systems have an implicit short distance length scale

a associated with them. Fluctuations at length scales below a can be averaged

out. For spin systems a could be the lattice spacing. Coarse graining involves

changing this cutoff scale by a certain factor, say b. It is as if one were zooming

out of the system. The action for the system could be represented by this

functional integral

S =

∫
x>a

dDxL [φ(x), λ] .

• Rescale: Due to the coarse graining, the action needs to be evaluated in the

new length scale which is

S =

∫
x>ba

dDx

bD
L [φ(bx), λ] .

• Renormalize: This is the crucial step where we get the RG transformations. In

order to preserve the same functional form for the action, we get a set of con-

ditions for the couplings in the theory. Thus the action is implicitly dependent

on the scaling b through the coupling constants. What we get is an effective

action where few degrees of freedom have been integrated out in the process of
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changing the cutoff of the theory to ba.

S =

∫
x>ba

dDxL [φ′(x), λ′(b)] .

A theory turns out to be renormalizable if there exists a mapping G : λ → λ′.

This mapping redefines the couplings of the theory at small length scales such that

physically observable quantitates are no more divergent. However we must be aware

that these transformations do not form a group actually but a semigroup rather. Even

though the scaling parameters b1, b2 ∈ G satisfy b1 ◦ b2 = b1b2, the inverse may not

exist. The information which is lost in the coarse graining process cannot be retrieved

by any inverse operation.

Ising Model in One Dimension

We now demonstrate the renormalization group transformation for the Ising model

in one dimension. This particular example highlights RG transformation in position

space as it involves subdividing the real line on which the spin sites of the Ising model

lie. The Ising model is a mathematical construct often used to describe ferromag-

netism. In this, the atoms on a lattice are allowed to be in spin up or down state and

only interactions between neighboring atoms are considered.

A one dimensional lattice with N sites having nearest neighboring interactions

has the following partition function

Z =
∑

{σi|i=1,...N}

e−βH[σi], (1.2.1)
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where

H = −J
∑
〈ij〉

σiσj −K
∑
i

σi, (1.2.2)

〈ij〉 denote neighboring sites.

The partition function is a quantity of great interest in statistical mechanics. With

as many as 2N configurations, it is difficult to compute the partition function. We

use RG transformations to ease this difficulty. We reduce the number of degrees of

freedom of the system by summing over the even sites and use the recursive nature

of the partition function. We then relabel the sites (Fig. 1.1). The b for rescaling in

this turns out to be 2.

N = 8

b = 2

N = 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4

Figure 1.1: Pictorial representation of sites being summed over

In order to sum over the even sites, we let i = 2j. By summing over the possible

spins at site i,

∑
σ2j=±1

eβ(K+Jσ2j−1σ2j+Jσ2jσ2j+1) =


eβ(K+2J) + e−β(K+2J) , σ2j−1 + σ2j+1 = 2

eβK + e−βK , σ2j−1 + σ2j+1 = 0

eβ(K−2J) + e−β(K−2J) , σ2j−1 + σ2j+1 = −2

(1.2.3)
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Once the sites have been relabeled (j → i), we can use the recursive nature of the

partition function,

eβ(J ′σiσi+2+K′(σi+σi+2)) =


eβ(J ′+2K′) , σi + σi+2 = 2

eβJ
′

, σi + σi+2 = 0

eβ(J ′−2K) , σi + σi+2 = −2

(1.2.4)

On comparing the two sets of equations (1.2.3, 1.2.4), we get the following conditions-

e4βK′ =
cosh β(K + 2J)

cosh β(K − 2J)
, (1.2.5a)

e4βJ ′ =
cosh β(K + 2J) cosh β(K − 2J)

cosh2 βK
. (1.2.5b)

These are the RG transformations for the coupling constants in the Ising model.

We can now find a fixed point for this map and in turn make the partition function

recursive in nature. If the external field strength K is absent, then the fixed points

of this map (1.2.6) turn out to be 0,∞.

βJ ′ =
1

2
log cosh 2βJ. (1.2.6)

The two most important features associated with this calculation were-

• The recursive nature of the partition function. For large number of sites N , we

can compute the partition function easily with several iterations.

• The partial sum over half of the sites at each step to find an effective partition

function for the remaining sites.
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We will be using the same ideas in the chapter 3 as well for continuous distribu-

tions, and not discrete sums like this.

Discrete Approach to Field Theory

We shall now see another instance of an unintuitive method of discretizing space to

study fields on them. We get rid of many infinite dimensional integrals in this process,

which are not well defined in a rigorous way.

Finite Element Method (FEM) in one dimension

Given a field with values fixed on its boundary points, we want to interpolate the

fields to the interior points by dividing space into a mesh. In the continuum limit as

the lattice spacing goes to zero, we should obtain results independent of the mesh.

We shall demonstrate an example of finite element method in one dimension and

estimate the amount of self energy stored in the field.

Let us consider a scalar field defined on an interval of length L and we want to

get an approximation for the amount of self energy stored in the field. The action

under consideration,

S =
1

2

∫ L

0

|∇φ(x)|2 dx. (1.2.7)

The equation of motion associated with the action is the Laplace equation

∇2φ(x) = 0 (1.2.8)

with boundary values specified as φ(0) = φ0, φ(L) = φN .

In order to solve this differential equation by finite element methods, we divide the

interval [0, L] into N small pieces of length ε such that the field value does not change
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much over a small piece. In the limit as N →∞, we should get a good approximation

for the self energy. For simplicity and also to satisfy the Laplace equation we consider

our field to be

φ(xi) = αxi + β, ∀xi ∈ [0, L] (1.2.9)

xi = i
L

N
= i ε, i = 0, . . . N. (1.2.10)

The parameters which satisfy the given boundary conditions are-

α =
φN − φ0

L
, β = φ0 (1.2.11)

With these assumptions, the action turns out to be approximately

S =
1

2

(∫ ε

0

|∇φ(x)|2 dx+

∫ 2ε

ε

|∇φ(x)|2 dx+ . . .+

∫ Nε

(N−1)ε

|∇φ(x)|2 dx
)

=
1

2

(∫ ε

0

α2 dx+

∫ 2ε

ε

α2 dx+ . . .+

∫ Nε

(N−1)ε

α2 dx

)
=
Nε

2
α2

=
(φN − φ0)2

2L
, (1.2.12)

since ∇φ(x) = α. A dimensional analysis of (1.2.7) shows that our answer has the

right dimensions.

We shall see later in Sec. 3.1 that the action (1.2.12) is analogous to the heat

kernel for the one dimensional Wiener process. This way of subdividing an interval

to find the partition function for the whole interval in a hierarchal manner will be

extended to the plane, and is demonstrated in chapter 4. Finite element method had

not been used in field theory in such a fashion before.
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CHAPTER 2

RADIATING PARTICLE IN

ELECTRODYNAMICS

“God runs electromagnetics on Monday, Wednesday, and Friday by the wave

theory, and the devil runs it on Tuesday, Thursday, and Saturday by the

quantum theory.”

— Sir William Henry Bragg, Dictionary of Scientific Quotations

Classical electrodynamics doesn’t escape divergences as well. Like many other the-

ories, it has certain limitations and gives rise to absurd results in certain domains.

In this chapter, when we try to understand the classical motion of an electron in a

constant magnetic field, we are faced with lots of complications. Surprisingly, this

question does not have a definitive theoretical answer even now. The complications

arise when the radiation from the particle is considered. Without it, the answer is

quite elementary: a helical path around the magnetic field [10,11] obtained by solving

the Lorentz equation of motion,1

duµ

dτ
=

q

m
F µνuν , µ, ν = 0, . . . 3 (2.0.1)

1In units with c = 1. q and m are the charge and mass respectively. Also, uµ = dxµ

dτ is the four-

velocity and τ is proper time. Note the constraint ηµνu
µuν = 1 and its derivative ηµνu

µ duν

dτ = 0.
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where

F µν = ∂µAν − ∂νAµ, (2.0.2)

Ei = −F 0i, i, j = 1, 2, 3

Bi = −1

2
εijkF

jk.

E,B being the electric and magnetic fields respectively.

2.1 Orientation

A quantity of interest in electrodynamics is the self-energy for a charge distribution,

that is, amount of energy spent to bring the charges from infinity to their current

configuration. For a single particle like the electron, the self-energy turns out to be

1
2
qφ where φ is the potential of the field created by the particle itself at the point of

the particle. The fun starts now.

For an electron, since its potential φ is q
R

, its self-energy turns out to be q2

2R
. The

electron being a point particle itself, the self-energy of the electron at the point of its

location diverges to infinity at R = 0. Thus the self-energy of the electron turns out

to be infinite. This leads to the unreasonable conclusion that its mass (self-energy

divided by c2) would be infinite as well. Classical electrodynamics fails at this point

and sets the classical electron radius beyond which it is not applicable.

R0 =
q2

mc2
.

This gives rise to the question whether the mass of the electron is of complete

electromagnetic origin or not. Dirac [12] answered this question in quite an unintuitive
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way and probably set the first example of renormalization while studying the theory of

radiating electrons. But we know that reality is not so simple: an accelerated charge

radiates, and the radiation emitted by it exerts a force back on it. If the energy is

not replenished, the path should be a spiral, the radius of the circle decreasing with

the energy.

Determining the force exerted on a point particle by its own field is fraught with

conceptual difficulties: the force is infinite. Dirac made a major step forward by

showing that this divergence can be removed by a renormalization of the mass. The

problem lies in defining the intrinsic mass of point particles like the electron. As

discussed earlier, classical electrodynamics leads to an infinite positive mass for the

electron. Dirac assigned an infinite negative mass of non-electromagnetic origin to

compensate for the infinite mass of electromagnetic origin. Thus renormalization sets

in again to give rise to a sensible answer by subtracting one infinity from another.

Since this argument was not based on mathematical rigor, the resulting equation

(the Lorentz-Dirac equation of motion)2

duµ
dτ

=
q

m
Fµνu

ν + ε [ηµν − uµuν ]
d2uν

dτ 2
, ε =

2

3

q2

m
(2.1.1)

ε = 6.24× 10−24s,

is still not the correct answer. It predicts runaway solutions even in the absence

of any external fields. A particle can accelerate away to infinity with exponentially

growing energy. Part of the problem is that the radiative terms persist even in the

absence of external forces. Also, the equation involves the third derivative of position;

so it needs a new initial condition. Dirac suggested that this be chosen such that the

2The last term includes a projection operator that ensures that the constraint ηµνu
µ duν

dτ = 0 is
satisfied.
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energy remains finite forever. However such solutions suffer from another problem: a

violation of causality; the particle would accelerate before the external field is turned

on.

Landau and Lifshitz proposed [13] a way out of this dilemma. Replace the deriva-

tive of acceleration by its leading approximation in an expansion in powers of ε,

duµ
dτ

=
q

m
Fµνu

ν + ε [ηµν − uµuν ]
d

dτ

[ q
m
F ν
ρ u

ρ
]
, ε =

2

3

q2

m
. (2.1.2)

The radiative term now vanishes when the external force is zero; and the equation

now involves only the second order derivative of position. The free particle does not

run away. Further analysis shows that the orbits in a constant magnetic field [14,15]

and in a Coulomb field [16] decay as expected.

An order of magnitude estimate also tells us the validity of this equation (2.1.2).

For a particle in an electric field with frequency of motion of ω, Ė is roughly pro-

portional to ωE. Thus the radiative damping is of the order q3ω|E|
m2 . The radiation

damping force is small in comparison to the force due to the external field if

q3ω|E|
m

� q|E|.

This sets the limit on the wavelength λ = 1
ω

associated with the radiation as

λ� q2

m
.

In units where c 6= 1, q2

mc2
for an electron is its classical radius (2.1). This shows

that the radiation damping is pertinent only till the limit where classical electrody-

namics is applicable itself else it gives rise to inconsistent results. The wavelength

associated with the external force should be large compared to the size of the particle
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for the formula (2.1.2) to hold good. But why should we stop at first order in the

iteration in powers of ε?

Thus we consider the century-old problem of determining the equation of motion

of a radiating point charge to be settled finally. However, the electron has a magnetic

moment as well as electric charge; radiation arises not only from the acceleration of

the charge but also the precession of the magnetic moment. In the relativistic case,

these are of comparable magnitude. Therefore, it is necessary to extend the Lorentz-

Dirac and Landau-Lifshitz equations to the case of a spinning charged particle.

Bargman, Michel and Telegdi (BMT) proposed [17], more than a half century ago,

an equation for a (non-radiating) classical particle with charge and magnetic moment.

A theory of radiating spinning particles generalizing this has been proposed some time

ago as well [18]. However, the BMT equation does not seem to be the classical limit

of the Dirac wave equation of the electron. It would be better to have a classical

theory whose canonical quantization leads directly to the Dirac wave equation.

Such an approach was proposed more recently by Barut and Zanghi [19]. After

reviewing their ideas, we will find solutions of the Barut-Zanghi equation for a non-

radiating charged particle in a constant magnetic field: itself a new result. Barut

and Unal [20] also derived the analogue of the Lorentz-Dirac equation, after a mass

renormalization. However, it suffers from the same runaway solutions of the free

particle, as the spin-less case.

We proposed an equation of motion for a radiating spinning charged particle [21]

with gyromagnetic ratio 2 (e.g., the electron or the muon) by applying a prescription

analogous to that of Landau and Lifshitz, to the Barut-Zanghi equation. We showed

that at least for spin-polarized orbits in a constant magnetic field, the orbits decay

as expected physically.
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2.2 Non-Radiating Spinning Charged Particle

How can one find the motion of a particle with spin in the classical limit? If we can

find a Lagrangian whose canonical quantization is the Dirac wave equation, it can

be the basis for such a classical treatment. The Lagrangian proposed by Barut and

Zanghi is,

L =
i

2
[ ˙̄zz − z̄ż] + pµẋ

µ −H, H = z̄γνz [pν − qAν ] , z̄ = z†γ0. (2.2.1)

γ’s are the Dirac matrices or the Gamma matrices.

Here z is a Dirac spinor with four complex numbers as components. The dimen-

sions of z are that of the square root of action (= mass×length) and that of τ is the

inverse of mass, in units where c = 1 but ~ 6= 1. Then qFµν has dimensions of mass

over length.

The equations of motion are, with πµ = pµ − qAµ

dxµ

dτ
= z̄γµz, (2.2.2a)

−idz
dτ

= γµπµz, (2.2.2b)

dπµ
dτ

= qFµν z̄γ
νz. (2.2.2c)

Note that, τ is not proper time as ẋµ is not necessarily of constant length.3 But

we have the orthogonality condition

ẋµπ̇µ = 0. (2.2.3)

3This is unlike the beginning of the chapter, where τ was proper time
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These equations follow from the Hamiltonian

H = z̄γµzπµ, (2.2.4)

and Poisson Brackets (P.B.) are obtained using

{f, g} = i{∂f
∂z

∂g

∂z̄
− ∂g

∂z

∂f

∂z̄
}+ gµν{

∂f

∂pµ
∂g

∂xν
− ∂f

∂xµ
∂g

∂pν
}, (2.2.5)

{πµ, πν} = −qFµν , {πµ, xν} = δνµ

{z, z̄} = i, {πµ, z} = {z, x} = 0. (2.2.6)

All other pairs of P.B. are zero. We can introduce a constraint

z̄z = a, (2.2.7)

consistent with the P.B. and the equations of motion. The quantity a, with the

dimensions of action, sets the scale for the intrinsic angular momentum of the particle.

Upon quantization, the wave function can be thought of as a function of x, pµ =

−i~ ∂
∂xµ

; it is also a polynomial in z̄, with z = −~ ∂
∂z̄

satisfying the constraint

− ~z̄
∂

∂z̄
ψ = aψ. (2.2.8)

Thus the parameter a is quantized in multiples of ~. The smallest value is a = ~ for

which ψ(x, z̄) = z̄ψ(x) is a linear function. The Dirac wave equation is the eigenvalue
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equation for H, with eigenvalue am

i~γµ
∂

∂xµ
ψ = mψ. (2.2.9)

Other quantizations, for which ψ(z̄) is a higher degree polynomial, correspond to

the wave equations of Bhabha and Harish-Chandra. They could be interesting as

wave equations for composite particles like hadrons [22].

It is convenient to introduce the velocity and spin variables

vµ = z̄γµz, Sµν =
i

4
z̄[γµ, γν ]z, (2.2.10)

so that

dxµ

dτ
= vµ, (2.2.11a)

dvµ

dτ
= 4Sµνπν , (2.2.11b)

dπµ
dτ

= qFµνv
ν , (2.2.11c)

dSµν

dτ
= vνπµ − vµπν . (2.2.11d)

These equations describe a relativistic analogue of the isotropic precessing top of

Poinsot [23]. The Hamiltonian

H = vµπµ, (2.2.12)

describes a coupling to the external field which causes a precession of the velocity and

spin. For a constant electromagnetic field, K = π · π − qSµνFµν is conserved as well.

d

dτ
[π · π − qSµνFµν ] = 2qFµνπ

µvν − 2qFµνv
νπµ = 0. (2.2.13)
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This is the classical analogue of the square of the Dirac operator, corresponding

to the gyromagnetic ratio 2. We will see later that it is proportional to the angular

momentum in the plane of the electromagnetic field.

2.3 Non-Radiating Spinning Particle in a Constant

Magnetic Field

Now let us turn to solving the equations of motion in the case of a magnetic field

pointed along the third direction: F12 = −F21 > 0; and all other components are

zero. Before we solve the problem including radiation damping, we must recover the

solution without radiation. Even this appears to be new: Barut and collaborators

only solved the case of a free particle.

We consider only orbits that lie in the 12 plane. That is, we restrict to the case

where all the tensor indices µ, ν, ρ . . . are in the 0, 1, 2 subspace in the sections that

follow except Sec. 2.4. It is useful to introduce the ‘dual’ variables

qFµν = εµνρF
ρ, (2.3.1a)

Sµν = εµνρSρ, (2.3.1b)

Sρ =
1

2
εµνρSµν . (2.3.1c)

For a constant magnetic field, only the time component F 0 is non-zero. We can
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assume it to be positive without loss of generality. Then,

dπµ
dτ

= εµνρv
νF ρ, (2.3.2a)

dvµ

dτ
= −4εµνρSνπρ, (2.3.2b)

dSµ
dτ

= −εµνρvνπρ. (2.3.2c)

If we define

λµ =
1

2
(Sµ +

1

2
vµ), ρµ =

1

2
(Sµ −

1

2
vµ), (2.3.3)

2.3.2 reduce to

dπµ
dτ

= 2εµνρ [λν − ρν ]F ρ, (2.3.4a)

dλµ

dτ
= −2εµνρλνπρ, (2.3.4b)

dρµ
dτ

= 2εµνρρ
νπρ. (2.3.4c)

Spin-Polarized Orbits

There is a special class of ‘left-handed’ orbits for which ρµ = 0. (Also, the opposite

case with λµ = 0.) For these, the spin and velocity are synchronized in the following

way-

Sµν =
1

2
εµνρv

ρ. (2.3.5)

In the non-relativistic limit, this means the spin is pointed along the magnetic field

(times q).

Since these solutions are periodic (not chaotic), orbits of this kind in a synchrotron

should be of special interest. If the gyromagnetic ratio is slightly different from two,

the spin would depart from this orientation, which is the principle behind a famous
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experiment for the measurement of g − 2 for the muon.

The equations reduce to:

dπµ
dτ

= εµνρv
νF ρ (2.3.6a)

dvµ

dτ
= −2εµνρvνπρ. (2.3.6b)

The tensor εσµν = εµνρη
ρσ form the structure constants of the three dimensional

Lorentz Lie algebra SO(1, 2). This is analogous to the way that the Levi-Civita

tensor gives the structure constants of the Lie algebra of rotations in Euclidean three

dimensional space. Denote the Lie product of SO(1, 2) as a relativistic cross product

(u× w)µ = ενρµ uνwρ. (2.3.7)

This differs from the familiar cross product in Euclidean geometry by some signs,

(u× w)0 = u1w2 − u2w1 (2.3.8a)

(u× w)1 = −u2w0 + u0w2 (2.3.8b)

(u× w)2 = −u0w1 + u1w0. (2.3.8c)

Then our equations are a relativistic version of the equations for a precessing top,

π̇ = v × F, v̇ = −2v × π. (2.3.9)

It follows that,

v · v̇ = 0 (2.3.10)
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so that v · v = a2 is conserved; a is some number (like Planck’s constant) with the

dimensions of action; the spin is of magnitude a
2
. Also, the parameter τ is proportional

to proper time in this special case.

The energy π0 = E and

K = πµπ
µ − vµFµ (2.3.11)

are conserved.4 Now,

v̇0 = 2(v2π1 − v1π2) (2.3.12)

and

v̇2
0 = 4

([
v2

1 + v2
2

] [
π2

1 + π2
2

]
− [v1π1 + v2π2]2

)
. (2.3.13)

Re-expressing the r.h.s. in terms of conserved quantities,

v̇0 = 2

√
[v2

0 − a2] [E2 −K + v0F0]− [H − Ev0]2. (2.3.14)

Weierstrass elliptic function satisfy this differential equation. The remaining com-

ponents of π, v can be obtained by solving the other constraint equations. It is also

possible to understand the solution as an integrable hamiltonian system, a relativistic

analogue of the precessing top.

4K is proportional to angular momentum.
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2.4 Equation of Motion for Radiating Spinning Par-

ticles

Barut and Unal followed the method of Dirac to derive the analogue of the Lorentz-

Dirac equation of motion including the self-force. Only the equation for πµ is affected-5

dπµ
dτ

= qFµνv
ν + q2

[
ηµν −

vµvν
v · v

]{2

3

v̈ν

v · v
− 9

4

v · v̇v̇ν

(v · v)2

}
. (2.4.1)

The last term is the contribution from self-interactions, after a renormalization. It

is a singular perturbation i.e. q2 is small and it changes the order of the equations.

It has runaway solutions, just like the Lorentz-Dirac equation. Let us apply to it

a prescription like that of Landau and Lifshitz, to get a second order equation of

motion.

Naively, the Landau-Lifshitz prescription amounts to using

v̈µ = 4Ṡµνπν + 4Sµν π̇ν , (2.4.2)

and replacing π̇ by its zeroth order contribution

v̈µ → 4Ṡµνπν + 4SµνqFνρv
ρ = 4 [vνπµ − vµπν ] πν + 4SµνqFνρv

ρ. (2.4.3)

But this can’t be right: for a free particle (Fµν = 0), the radiation reaction force

should be zero. Dropping the terms not proportional to Fµν ,

dπµ
dτ

= qFµνv
ν +

8q3

3v · v

[
ηµν −

vµvν
v · v

]
SνρFρσv

σ. (2.4.4)

5µ, ν range from 0, . . . 3 in this section.
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Along with the previous equations for v and S, this system of ordinary differential

equations is our proposal for the equation of motion of a spinning radiating charged

particle. We must verify that the solutions are physically sensible: there should not be

runaway solutions. We will study the case of polarized orbits in a constant magnetic

field and show that the energy decreases with time. The ultimate test of our proposal

must be experimental, especially since we do not yet have a derivation from first

principles.

Radiating Spin-Polarized Particles in a Magnetic Field

Now let us turn to our proposed equations for a radiating spinning charged particle.

Again, we will look for solutions in the special case where the spin is polarized

Sµ =
1

2
vµ.

Since the radiative terms do not change the equations for vµ, Sµν this condition

is still preserved by time evolution i.e. Ṡµ = 1
2
v̇µ. Unpolarized orbits are chaotic and

the radiation damping is likely to be even larger.

The equations then reduce to:

dπµ
dτ

= qFµνv
ν +

4q3

3v · v

[
ηµν −

vµvν
v · v

]
ενραvαFρσv

σ (2.4.5a)

dvµ

dτ
= −2εµνρvνπρ. (2.4.5b)

We know that, v · v̇ = 0 and v · v = v2
0 − (v2

1 + v2
2) = a2.

dπµ
dτ

= εµνρv
νF ρ +

[
a2ηµν − vµvν

]
γF ν , (2.4.6)
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where

γ =
4q2

3a2
.

In terms of relativistic cross products (2.3.8),

π̇ = v × [F + γF × v], v̇ = −2v × π. (2.4.7)

Thus, even the radiation damping terms have a simple meaning in terms of the

relativistic cross product of the Lie algebra SO(1, 2).

Note that

H = v · π (2.4.8)

is still conserved and m = H
a

continues to have the physical meaning of mass. But

energy E = π0 and K are no longer conserved. The evolution of v0 continues to be

determined by the equation we derived earlier. Thus we get the system:

dE

dτ
= −γF0(v2

0 − a2) (2.4.9a)

dK

dτ
= 2γF0

[
a2E −Hv0

]
(2.4.9b)

v̇0 = 2

√
[v2

0 − a2] [E2 −K + v0F0]− [H − Ev0]2. (2.4.9c)

Since E and K are no longer constants, the solution is not an elliptic function. Also,

noting that F0 > 0 in our convention and v2
0 − a2 = (v2

1 + v2
2) > 0, we see that energy

is monotonically decreasing. The results do match our intuition in this manner.
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Summary

Our discussion so far gives an example of a divergence in electrodynamics and shows

how the limitations of the subject itself makes it difficult to deal with the divergence.

We proposed equations of motion for the electron which gave us answers with the

correct physical intuition. We shall now proceed to deal with divergent quantities in

field theory from the point of view of renormalization groups.



36

CHAPTER 3

TOOLBOX TO ELUCIDATE

RENORMALIZATION

“The smallest particles of matter were said [by Plato] to be right-angled

triangles which, after combining in pairs, ... joined together into the regular

bodies of solid geometry; cubes, tetrahedrons, octahedrons and icosahedrons.

These four bodies were said to be the building blocks of the four elements,

earth, fire, air and water ... [The] whole thing seemed to be wild speculation.

... Even so, I was enthralled by the idea that the smallest particles of matter

must reduce to some mathematical form ... The most important result of it

all, perhaps, was the conviction that, in order to interpret the material world

we need to know something about its smallest parts.”

— Werner Heisenberg, his recollections from Plato’s Timaeus

In this chapter, we will see an application of renormalization group transformations

to understand scalar fields on triangular lattices. We will discuss the one dimensional

Wiener process (Sec. 3.1) where the idea of subdivision of the interval forms the central

theme. An attempt to generalize this to higher dimensions (Sec. 3.3) is presented

afterward highlighting some of the unexpected results and the possible flaws with

such an extension. We also show an example of renormalization group transformation

for non-Gaussian distributions such as the Ising model (Sec. 3.4).
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3.1 Recursive Nature of Wiener Process in Field

Theory

A view of the streak of light coming in through our window on a bright sunny day

makes a whole bunch of dust particles visible to the naked eye. They execute a

random motion by traveling in all directions and colliding with each other. The

particles have no memory of their motion and their future motion is not influenced

by their past motion [24]. Such a motion was noticed by a botanist Robert Brown

while observing pollen grains suspended on a liquid. Years later, Einstein explained

this random motion (which became famous as Brownian motion) by the differential

equation (3.1.1) [25]. The following equation describes the one dimensional Brownian

motion, which also goes by the name of diffusion equation or heat equation depending

on the context.

∂u(x, t)

∂t
=

1

2

∂2u(x, t)

∂x2
. (3.1.1)

u(x, t) denotes the density of the particles which diffuse.

The differential equation can be solved by using Fourier transform

u(x, t) =
1

2π

∫
ũ(x, t)eikx dk, (3.1.2)

which reduces it to,

∂tũ(k, t) +
k2

2
ũ(k, t) = 0

∂t

(
e−

k2t
2 ũ(k, t)

)
= 0. (3.1.3)
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The generic solution turns out to be,

ũ(k, t) = f(k)e−
k2t
2 . (3.1.4)

If the initial condition for the problem is u(x, 0) = h(x) with h̃(k) as the Fourier

transform of h(x), then

ũ(k, t) = h̃(k)e−
k2t
2 . (3.1.5)

The solution u(x, t) is a convolution of the heat kernel and the initial condition for

the problem. The heat kernel is

K(x, t) =
1

2π

∫
e−

k2t
2 eikx dk

=
1√
2πt

e−
x2t
2 . (3.1.6)

u(x, t) =

∫
K(x− y, t)h(y) dy. (3.1.7)

The interesting features of this distribution are:

〈x〉 = 0, 〈x2〉 = t,

which are characteristic of Brownian motion. The mean position of the particle in

such a motion is 0 as it has gone in both positive and negative directions with equal

probability. However the mean square displacement turns out to be proportional to

the time that the particle has undergone the Brownian motion.

The Brownian motion was better explained by Norbert Wiener in 1920 by giving

it a sound mathematical footing. He developed a distribution associated to the Brow-

nian motion which captures its essential features. Later it found use in many areas

such as finance, economics besides physics [26]. The Wiener distribution is nothing
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but the heat kernel (3.1.6) which was derived earlier. If the unit time interval [0, 1]

is divided into smaller time steps such that, 0 < t1 < t2 < . . . < tn ≤ 1, and the

position of the particle undergoing Brownian motion at time tk denoted by x(tk), then

the Wiener distribution is characterized by the following properties-

• All the particles begin at the origin that is x(0) = 0.

• The path of the particle is continuous for 0 ≤ t ≤ 1 with probability 1.

• The difference of the coordinates of the particle at various time intervals form

random variables

x(t1)− x(0), x(t2)− x(t3), . . . , x(tn)− x(tn−1)

which vary independently. They form a distribution with zero mean and vari-

ance proportional to (tk − tk−1), k = 1, . . . n.

The Wiener distribution satisfying these properties is given by

K(x, y; t) =
1√
2πt

e−
(x−y)2t

2 . (3.1.8)

An interesting property of this function which shall be put to use later is

∫
K(x, y; t)K(y, z; s) dy = K(x, z; t+ s). (3.1.9)

Wiener constructed this Gaussian measure on functions of one variable by sub-

dividing the interval and imposing the scale invariance of the measure [27]. By sub-

dividing planes into triangles and space into tetrahedra, we can construct analogous

distributions for several variables. The real space renormalization group transforma-

tions used in this process is similar to the one dimensional Ising Model described in
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Sec. 1.2. Our construction of field theory is based on dividing space into simplex.

Having assigned random variables at the vertices of these simplex, we look into the

correlations between them and their dependence on the spatial distance between the

points.

In the continuum limit what we construct is a quantum field theory of fractional

scaling dimension, with a correlation function that varies as a power of distance. There

are many approaches to constructing quantum field theories in fractional dimensions

[28, 29] in part motivated by the success of dimensional regularization. This power

is often positive, but we also find a few cases where it is negative. An example of

a system with growing correlation function will be that of Brownian motion. The

average distance between two points undergoing Brownian motion increases with

time as 〈(x(t1)− x(t2))2〉 ∼ |t1− t2|. The quantum nature of the theory sets in as we

consider functional integrals over all possible configurations. All possible paths are

taken into account with different weights depending on the action associated to the

path.

The above correlation is obtained using the Wiener measure which physicists

denote by ∫
[Dx] e−

1
2

∫
x′2(t)dt.

Exactly what does this mean? There certainly is no Lebesgue measure which can be

called Dx in the space of functions because that space is infinite dimensional [30].

Also, the functions x(t) are not always differentiable but have probability one under

the Wiener measure. x′(t) is at best a distribution and does not have a sensible

product. x′(t)2 is by itself meaningless.

We recall that the derivative dy
dx

in calculus is to be understood as a limit con-

structed using epsilons and deltas of modern analysis, and not as some infinitesimal
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divided by another. Similarly, the path integral is to be understood as a limit of

finite dimensional integrals. The action being the integral of a local Lagrangian (a

function of the field and its derivative) is not to be taken literally. Indeed, it is a

limit of a sequence of local measures (that depends only on nearest neighbors of the

triangulation) and may not tend even formally to a local action principle. They can

be viewed as quantum analogues of the Laplace’s equations studied on fractals by

Strichartz [31].

3.2 Partitioning the Real Line

In order to construct our measures over several variables we start off with the simplest

case for a measure on the real line. Suppose that φ0 and φ1 are the boundary values

of the field on the interval [x0, x1] of length a = x1 − x0. Integrating out the field

everywhere on the inside of the interval induces some measure h(φ1, x1|φ0, x0) on the

boundary values. The simplest possibility is a Gaussian that is translation invariant

in field values,

h(φ1, x1|φ0, x0) = Cae
− 1

2
αa(φ1−φ0)2 (3.2.1)

for some αa and Ca which can depend on the length of the interval |x1 − x0|. If

we subdivide the interval into two and integrate over the field at the new point, we

should get back the original measure. Let us choose the new point to be the midpoint

of the interval x01 = 1
2
(x1 + x0).

∫
h(φ1, x1|φ01, x01)h(φ01, x01|φ0, x0)dφ01 = h(φ1, x1|φ0, x0) (3.2.2)
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This leads to the condition

C2
a
2

∫
e
− 1

2
αa

2
[(φ1−φ01)2+(φ01−φ0)2]dφ10 = Cae

− 1
2
αa(φ1−φ0)2 , (3.2.3)

Ca = C2
a
2
. (3.2.4)

By completing the square, we get

C2
a
2

∫
e
− 1

2
αa

2

[
2(φ01−φ0+φ12 )

2]
e
− 1

2
αa

2

(φ1−φ0)
2

2 dφ10 = Cae
− 1

2
αa(φ1−φ0)2 . (3.2.5)

Thus,

1

2
αa

2
= αa (3.2.6a)

C2
a
2

√
π

αa
2

= Ca (3.2.6b)

On solving the above set of relations, we get

αa =
α

a
, (3.2.7a)

Ca =

√
α

2πa
, (3.2.7b)

h(φ1, x1|φ0, x0) =

√
α√

2π(x1 − x0)
e
− α

2(x1−x0)
(φ1−φ0)2

. (3.2.7c)

By repeated subdivisions of the interval we would get the integral

∫ ∏
i

dφie
−α

2

∑
i

(φi+1−φi)
2

xi+1−xi . (3.2.8)

This is not to be taken literally: lim
xi+1→xi

φi+1 − φi
xi+1 − xi

almost never exists and so φ′2

is actually meaningless. In the limit of small size of the interval, the exponent can be
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interpreted as

α

2

∫
φ′2dx,

justifying the physicists’ notation for the Wiener measure.

∫ ∏
i

dφi e

−α
2

∑
i

(φi+1 − φi)2

xi+1 − xi →
∫
Dφe−

α
2

∫
φ′2dx. (3.2.9)

The quantity α may be related to mass divided by ~ in some physical system or it

may represent the inverse of the diffusion coefficient for a different system.

3.3 Higher Dimensional Analogues

A higher dimensional analogue of this process of subdivision would involve triangu-

lating space-time. We would subdivide each triangle (or more generally simplex) to

get smaller ones by introducing extra vertices. Integrating out the field at the extra

vertices should give back the original measure. Our idea is to find an approximation

for the functional integral in quantum field theory by an integration of the scalar

values at the vertices of a triangulation:

∫
Dφe−S[φ]A (φ(x1), · · ·φ(xn)) ≈

∫ ∏
i

dφi
∏
f

Fa (φ(f))A (φ(x1), · · ·φ(xn)) .

A triangulation is chosen with the points xα(α = 1, · · · , n) in the argument of

A among the vertices. The measure of integration is assumed to be local; i.e., can

be expressed as a product of factors Fa (φ0, φ1, φ2) each depending only on the field

values at the vertices of a single face f of the triangulation. The basic idea is that if

we subdivide a triangle by introducing new vertices, and integrate over the field at
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these new vertices, we must get back the contribution of the original triangle. These

are field theoretic analogues of the hierarchical models [32] commonly studied in spin

systems [33].

What kind of triangle can be sub-divided into two equal triangles which are each

similar to the original one? A moment’s reflection shows that a right isosceles triangle

has this property. However, it has been shown that for higher dimensions, one can

subdivide a d simplex in n dimensions into nd similar simplexes [34].

x0 x01 x1

x12

x2

x02

Figure 3.1: Subdivision of right triangle

Let us work out the integral in two dimensions to get a feel for the method

before going to the much harder higher dimensional case. We start with the triangle

(Fig. 3.1) with vertices x0 = (0, 0), x1 = (a, 0), x2 = (a, a). Let

Fa(φ0, φ1, φ2) = Cae
−Qa(φ0,φ1,φ2) (3.3.1)

be the factor corresponding to such a triangle, for some normalization constant Ca

and quadratic form Qa. We assume that it is invariant under translations in the

field variables for simplicity. It is likely that “massless” scalar fields may have this

property which was observed in chapter 4. If the quadratic term was independent of
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cross terms between two vertices, it may explain scalar fields in the “infinite mass”

limit. The function must be symmetric under the interchange of the vertices x0, x2.

Thus we have

Qa(φ0, φ1, φ2) = αa
(
(φ0 − φ1)2 + (φ2 − φ1)2

)
+ βa(φ0 − φ2)2 (3.3.2)

for some constants αa, βa. This can also be expressed in matrix form as

Qa(φ0, φ1, φ2) = φT Q̂aφ, Q̂a =


αa + βa −αa −βa

−αa 2αa −αa

−βa −αa αa + βa

 , φ =


φ0

φ1

φ2

 .

(3.3.3)

If we choose the new internal vertices to be midpoints of the sides of the original

triangle x0x1x2

xij =
1

2
(xi + xj), 0 ≤ i < j ≤ 2 (3.3.4)

it divides the original triangle into the four equal triangles that are similar to the

original. The new triangles (x0x01x02, x02x01x1, x1x12x02, x02x12x2) have orthogonal

edges which are half the length of the original triangle.

The reproducibility condition obtained after integrating out the field variables at

the new vertices is

e−Q2a(φ0,φ1,φ2) =

∫
e−Ra(φ0,φ1,φ2,φ01,φ02,φ12)dφ01dφ02dφ12, (3.3.5)
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where (up to a normalization constant),

Ra(φ0, φ1, φ2, φ01, φ02, φ12) = Qa(φ0, φ01, φ02) +Qa(φ02, φ01, φ1)

+Qa(φ1, φ12, φ02) +Qa(φ02, φ12, φ2). (3.3.6)

This can be expressed in terms of a matrix form as

Ra(φ0, φ1, φ2, φ01, φ02, φ12) = φT R̂aφ. (3.3.7)

The result of integrating out the new variables φ01, φ02, φ12 is best understood by

splitting the matrix R into a block L that acts on the original variables (φ0, φ1, φ2),

another K acting on the new variables (φ01, φ02, φ12) and a third matrix J that mixes

the two-

R̂a =

 L J

JT K

 , (3.3.8a)

L =


αa + βa 0 0

0 2αa + 2βa 0

0 0 αa + βa

 , K =


4αa −2αa 0

−2αa 4αa + 4βa −2αa

0 −2αa 4αa

 ,

(3.3.8b)

J = −


αa βa 0

αa 2βa αa

0 βa αa

 , φ =



φ0

φ1

φ2

φ01

φ02

φ12


. (3.3.8c)



47

The exponent in the above Gaussian can also be written as

Ra(φ0, φ1, φ2, φ01, φ02, φ12) = φTe Lφe + 2φTe Jφi + φTi Kφi, (3.3.9)

where φi and φe denote the set of internal (new) and external (original) vertices of

the triangle. On completion of squares we get

Ra = φTe Lφe + (φTi + φTe J
T (K−1)T )K(φi +K−1Jφe)− φTe JK−1JTφe. (3.3.10)

The result of the integral over the internal vertices then turns out to be

Q̂2a = La − JaK−1
a JTa

=


1
8
(5αa + 6βa)

1
2
(−αa − βa) 1

8
(−αa − 2βa)

1
2
(−αa − βa) αa + βa

1
2
(−αa − βa)

1
8
(−αa − 2βa)

1
2
(−αa − βa) 1

8
(5αa + 6βa)

 . (3.3.11)

Fixed Points of the Transformation

The above result should be equal to the quadratic form

α2a

[
(φ0 − φ1)2 + (φ1 − φ2)2]+ β2a(φ0 − φ2)2 = φTQ2aφ. (3.3.12)

On comparing its form we get,

α2a =
1

2
(αa + βa), β2a =

1

8
(αa + 2βa). (3.3.13)
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If we define the ratio xa = βa
αa

we can write these relations as:

x2a = f(xa), f(x) =
1 + 2x

4(1 + x)
(3.3.14a)

α2a = λ(x)αa, λ(x) =
1

2
(1 + x). (3.3.14b)

We now seek a fixed point of the transformation xa 7→ x2a. It is a quadratic equation

with two roots,

f(x) = x

x =
−1±

√
5

4
. (3.3.15)

The solution with negative x should be discarded as it does not give an integrable

Gaussian. The positive root corresponds to the scaling relation

α2a = λαa, λ =
1

8

(
3 +
√

5
)
,

thus we set

x =

√
5− 1

4
, λ =

1

8

(
3 +
√

5
)
. (3.3.16)

If we make the ansatz αa = a−µα1 we get

2−µ =
3 +
√

5

8
,

or

µ =
log(λ−1)

log 2
=

log
(

8
3+
√

5

)
log 2

≈ 0.611516. (3.3.17)
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To summarize, we have a scale covariant solution to the reproducibility condition

Fa(φ0, φ1, φ2) = Ca exp

(
−a−µα1

{
(φ0 − φ1)2 + (φ2 − φ1)2 +

√
5− 1

4
(φ0 − φ2)2

})
.

(3.3.18)

We can also determine the normalization constant using the relation

C4
a

√
π3

32(α3
a + 2α2

aβa)
= C2a, (3.3.19)

but that is less interesting. The determinant of K determines the denominator.

Correlation function

Choose two points x1, x2 on the plane separated by some distance L = |x1−x2|. Draw

an iso-right triangle with the line connecting these points as a hypotenuse. We then

bisect the right angle to get two iso-right triangles, subdivide them and continue this

procedure until after a large number of subdivisions we get triangles with very small

sides. We then integrate out all vertices expect the original triangle to calculate the

correlation function-

G(x1,, x2) =

∫ ∏
i dφi

∏
f Fa (φ(f)) (φ(x1)− φ(x2))2∫ ∏
i dφi

∏
f Fa (φ(f))

. (3.3.20)

The integrals can be evaluated using the reproducibility property above. In the

end we will end up with an integral over the two vertices of the original large triangle

whose side is L.

G(x1,, x2) =

∫
dφ0dφ1dφ2 (φ1 − φ2)2 e

−L
−µ
2
α1

{
(φ0−φ1)2+(φ2−φ1)2+

√
5−1
4

(φ0−φ2)2)
}

∫
dφ1dφ2e

−L−µ
2
α1

{
(φ0−φ1)2+(φ2−φ1)2+

√
5−1
4

(φ0−φ2)2
} .

(3.3.21)
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Thus, for some positive constant G,

G(x1, x2) = G|x1 − x2|µ ∼ |x1 − x2|0.611516. (3.3.22)

Note that the magnitude of the correlations increase with distance. This is similar

to the behavior of the average distance between two points experiencing a Brownian

motion. On the other hand this is not the behavior expected from a two dimensional

quantum field theory with action S = −1
2

∫
|∇φ|2d2x = 1

2
(φ,∆φ). The correlations

behave logarithmically then

∫
d2k

(2π)2

1

|k|2
eik·(x1−x2) ∼ log |x1 − x2|. (3.3.23)

An interpretation is that our formalism leads to a quantum field theory in a space of

fractal dimension in between one and two.

Additional Examples on the Plane

In the case above, we get a correlation function that increases with distance. Are

these exponents universal? Is it possible to find another subdivision procedure that

will produce a correlation that decreases with distance? To answer these questions

we worked out several additional examples of subdivision. It turns out that each

subdivision of the plane (into squares, triangles of different shapes etc.) gives a

different exponent for the correlation function. Also, in most cases other than two

examples, we get correlation functions that grow with distance.
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Subdividing a Square

We can also subdivide the plane into squares (Fig. 3.2). To each square of side a we

can associate a Gaussian weight with quadratic form

Qa(φ1, φ2, φ3, φ4) = αa
[
(φ1 − φ2)2 + (φ2 − φ3)2 + (φ3 − φ4) + (φ4 − φ1)2

]
+ βa

[
(φ1 − φ3)2 + (φ2 − φ4)2

]
. (3.3.24)

x1 x2

x3x4

x12

x23

x34

x41

x5

Figure 3.2: Subdivision of square

We subdivide each square by connecting the centroid x5 to the midpoints of the

sides x12, x23, x34, x41. If we then integrate out the five new vertices, we will get the

transformations as

α2a =
1

4
(2αa + βa), β2a =

2α2
a + 4αaβa + β2

a

8αa + 4βa
. (3.3.25)
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Fixed Points and Correlation Function

We get the condition for a fixed point of by setting f(xa) = x2a, where xa = βa
αa

,

4 (2 + 4x+ x2)

(2 + x)(8 + 4x)
= x. (3.3.26)

Of the three solutions, only x = −1,
√

3− 1 lead to positive eigenvalues

α2a = λαa, λ =
1

4
, or

1

4

(
1 +
√

3
)
. (3.3.27)

These two fixed points give growing correlations

G(x1 − x2) ∼ |x1 − x2|µ, µ = 2, or 0.550016. (3.3.28)

Apollonian Subdivision

Another example of a decreasing correlation function is the iterated Apollonian sub-

division of a triangle: we join the vertices to an interior point, thereby subdividing the

triangle into three triangles (Fig. 3.3). Another interpretation is in terms of circles:

we can regard the plane as being subdivided into three mutually tangent circles cen-

tered at the vertices of a triangle. Then we can insert a new circle in the interstitial

region that is tangent to the other three circle. This process can then be repeated.

Every tangency of a pair of circles corresponds to an edge connecting their centers.

The scaling law of the correlation function can be computed just as before by



53

x0 x1

x2

x3

Figure 3.3: Apollonian subdivision

computing the Gaussian integral over the new vertex x3-

e−α
√
3a[(φ0−φ1)2+(φ0−φ2)2+(φ1−φ2)2]

∝
∫
e−αa[(φ0−φ1)2+(φ0−φ2)2+(φ1−φ2)2+2(φ0−φ3)2+2(φ1−φ3)2+2(φ2−φ3)2]dφ3. (3.3.29)

Each side emanating from vertex x3 is shared by two triangles, which explains

the factor of 2 in those terms. The terms are proportional as the scaling is not done

rigorously here. We say that one third of the vertices are integrated out roughly after

each step and we get
√

3 as the scale factor in two dimensions.

Fixed Points and Correlation Function

This leads to the transformation

α√3a =
5

3
αa, (3.3.30)
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and a correlation function with exponent

G(x1, x2) ∼ |x1 − x2|µ, µ =
log 3

5

log
√

3
≈ −0.929947. (3.3.31)

Finally we see an example of a correlation decreasing with distance.

Division of a triangle into six similar triangles

Another example of a decreasing correlation function is the subdivision of an equi-

lateral triangle, divided up into six equilateral triangles (Fig. 3.4). Topologically this

is the same as the barycentric subdivision, or the bisection of the angles of the tri-

angles [35]. We add a new point at the centroid (on the incenter) and connect it

to the original vertices and midpoints of the sides. As long as the six smaller trian-

gles occupy the same plane as the original one, it is not possible for them all to be

equilateral. But we can assign equal lengths to all the edges as long as we do not

insist that the graph has an isometric embedding in Euclidean space. By iterating

the subdivision process, we will get a fractal which makes sense as a metric space,

but not as a sub-manifold of Euclidean space.

x0 x1

x2

x3

x01

x12x02

Figure 3.4: Six fold division of triangle
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To each of the equilateral triangle we associate the Gaussian weight

Qa(φ0, φ1, φ2) = αa
[
(φ0 − φ1)2 + (φ1 − φ2)2 + (φ2 − φ0)2

]
. (3.3.32)

The field variables at the vertices (x01, x02, x12) and the center of the original

triangle (x3) are integrated over to give a larger equilateral triangle with the vertices

(x0, x1, x2) . Using the same scaling argument from the previous case we say that

the side of the smaller triangles is
√

6 smaller than the side of the triangle which is

subdivided

e−Q
√
6a(φ0,φ1,φ2) =

∫
e−Ra(φ0,φ1,φ2,φ3,φ01,φ02,φ12)dφ3dφ01dφ12dφ12, (3.3.33)

with

Ra(φ0, φ1, φ2, φ3, φ01, φ02, φ12) = Qa(φ0, φ01, φ3) +Qa(φ0, φ3, φ02) +Qa(φ1, φ3, φ01)

+Qa(φ1, φ12, φ3) +Qa(φ2, φ3, φ12) +Qa(φ2, φ02, φ3).

(3.3.34)

Fixed Points and Correlation Function

On computing the Gaussian integral and comparing it with the Gaussian form ex-

pected we get the following transformation

α√6a =
5

4
αa. (3.3.35)

The new quadratic form for the triangle will be

Q√6a(φ0, φ1, φ2) =
5

4
αa
[
(φ1 − φ0)2 + (φ0 − φ2)2 + (φ1 − φ2)2

]
, (3.3.36)
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thus the correlation function scales with exponent as

G(x1 − x2) ∼ |x1 − x2|µ, µ =
log 4

5

log
√

6
≈ −0.249078, (3.3.37)

giving us another example of a correlation function that decreases with distance.

Subdividing Tetrahedrons

We extend this procedure of subdivision from the plane to three dimensional space.

It is not possible to subdivide a tetrahedron into two that are similar to itself by

a simple bisection. That would be equivalent to the ancient problem of doubling

the cube, which is impossible by ruler-compass methods (i.e., the cube root of 2

cannot be found by such “Platonic” constructions). But it is possible to subdivide

a tetrahedron into eight tetrahedrons, each similar to the original. The trick is to

choose right isosceles tetrahedra, whose faces are all right triangles, based on three

mutually orthogonal edges of equal length [36]. Fig. 3.5 shows an example of such a

tetrahedron, the three mutually orthogonal edges being shown in bold lines.

To be more specific, the vertices

x0 = (0, 0, 0), x1 = (a, 0, 0), x2 = (a, a, 0), x3 = (a, a, a), (3.3.38)

give a right isosceles tetrahedron of smallest side a (Fig. 3.6) where every face is a

right triangle. There are three kinds of edges- of squared lengths a2, 2a2, 3a2. In fact,

the squared length of the edge xij is just |i − j|a2, for i, j = 0, 1, 2, 3. To each such

tetrahedron we associate a function Ta(φ0, φ1, φ2, φ3) which represents the result of

integrating out the field in its interior.

The internal vertices of the subdivision are the six points xij = 1
2
(xi + xj) for
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x0

x1

x2

x3

Figure 3.5: Right regular tetrahedron

0 ≤ i < j ≤ 3.

The reproducibility condition is the integral equation

T2a(φ0, φ1, φ2, φ3) =

∫
Ta(φ0, φ01, φ02, φ03)Ta(φ1, φ01, φ02, φ03)

Ta(φ1, φ12, φ02, φ03)Ta(φ1, φ12, φ13, φ03)Ta(φ2, φ12, φ02, φ03)

Ta(φ2, φ12, φ13, φ03)Ta(φ2, φ23, φ13, φ03)Ta(φ3, φ23, φ13, φ03)

dφ01dφ02dφ03dφ12dφ13dφ23. (3.3.39)

Remark. It is important to have the correct order of arguments in the Ta as we

are not dealing with a regular tetrahedron. We have verified that with the given or-

der above, the distance matrices are exactly half the distance matrix of the original

tetrahedron.

We assume a translation symmetry in field space (a global symmetry we expect
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x0

x1

x2

x3

x23x03

x01

x02

x13

x12

Figure 3.6: Subdivision of right regular tetrahedron

for massless fields) that is

Ta(φ0 + φ, φ1 + φ, φ2 + φ, φ3 + φ) = Ta(φ0, φ1, φ2, φ3).

Also, we assume a Gaussian ansatz for Ta,

Ta(φ0, φ1, φ2, φ3) = e−Qa(φ0,φ1,φ2,φ3) (3.3.40)

Qa(φ0, φ1, φ2, φ3) = α
(
(φ0 − φ1)2 + (φ3 − φ2)2

)
+ β

(
(φ0 − φ2)2 + (φ3 − φ1)2

)
+ γ(φ0 − φ3)2 + δ(φ1 − φ2)2. (3.3.41)

This builds in the translation invariance as well as the reflection symmetry (0123)�

(3210) of the right isosceles tetrahedron.
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The exponent of the integral (3.3.39) is a quadratic function of ten variables-

Ra(φ0, φ1, φ2, φ3, φ01, φ02, φ03, φ12, φ13, φ23) = Qa(φ0, φ01, φ02, φ03) +Qa(φ1, φ01, φ02, φ03)

+Qa(φ1, φ12, φ02, φ03) +Qa(φ1, φ12, φ13, φ03)

+Qa(φ2, φ12, φ02, φ03) +Qa(φ2, φ12, φ13, φ03)

+Qa(φ2, φ23, φ13, φ03) +Qa(φ3, φ23, φ13, φ03).

(3.3.42)

This is equal to 1
2
φT R̂φ for some 10 × 10 symmetric matrix R̂, which can be

calculated by evaluating the second derivatives (Hessian), a straightforward procedure

in Mathematica. This matrix can be split into blocks

R̂ =

 L J

JT K

 (3.3.43)

whereK is a matrix in the six dimensional subspace of the internal variables (φ01, · · · , φ23),

L is a matrix in the four dimensional subspace of the external variables (φ0, · · · , φ3)

and J is a 4 × 6 matrix that mixes them. The result of evaluating the integral over

the internal variables by completing the squares is again a Gaussian with the Hessian

matrix

L− JK−1JT . (3.3.44)

Fixed Points of the Transformation

Thus we can write the renormalization group transformation as

Q̂2a = La − JaK−1
a JTa . (3.3.45)
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On comparing with the form of Qa, the parameters α2a · · · δ2a will be determined as

some homogeneous rational functions of αa · · · δa. The ratios

β2a

α2a

,
γ2a

α2a

,
δ2a

α2a

(3.3.46)

depend only on the variables x = βa
αa
, y = γa

αa
, z = δa

αa
; i.e. αa and α2a can be scaled

out.

Thus we get a map of the projective space P 3 to itself. Each fixed point (x∗, y∗, z∗)

of this map is a Gaussian that is mapped into itself under our transformation, except

for an overall multiplication of the quadratic form by α2a

αa
(the “eigenvalue” λ) evalu-

ated at (x∗, y∗, z∗). A sensible solution must have a positive eigenvalue and also the

parameters (x∗, y∗, z∗) must define a positive quadratic form Qa. The equations for

the fixed points can be reduced to a polynomial for x-

− 2 + 22x+ 132x2 + 380x3 + 699x4 + 188x5 − 1639x6 − 2488x7 − 948x8

+ 594x9 + 608x10 + 152x11 = 0. (3.3.47)

The fixed point values for the other variables are determined in terms of this root-

y =
1

107606064063
(−88214437948− 533552485049x− 1626406118465x2 − 3995440895007x3

− 4531514030431x4 + 6599814153205x5 + 18490138345312x6 + 10764883382910x7

− 3123153862430x8 − 5175977687624x9 − 1495324502248x10) (3.3.48)

z =
1

35868688021
(−16477061906− 533552485049x− 1626406118465x2 − 3995440895007x3

− 4531514030431x4 + 6599814153205x5 + 18490138345312x6 + 10764883382910x7

− 3123153862430x8 − 5175977687624x9 − 1495324502248x10). (3.3.49)
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Of the eleven solutions, only five are real and among them exactly one leads to a

positive quadratic form Qa

x ≈ 0.699787174329122, y ≈ 0.182495561519144, z ≈ 2.547486684557433.

(3.3.50)

The eigenvalue i.e. the ratio for this solution is α2a

αa
= λ ≈ 0.7958942.

As for the right triangles, the correlation function can now be calculated. We

can choose any two vertices on the original tetrahedron for this purpose and find the

correlation between them. The choice of vertices is not as important as the distance

between them, which is very large compared to the sides of the tetrahedrons obtained

by subdivision. The field variables in those vertices obtained by subdivision are

integrated out. The correlations will scale as log(λ−1)
log 2

when the distance is doubled.

That is,

G(x1, x2) ∼ |x1 − x2|
log λ
log 2 ∼ |x1 − x2|0.329351. (3.3.51)

3.4 Extension to Discrete Distributions

We now extend our ideas to non Gaussian measures in order to find non trivial fixed

points. To do so, we consider the same simplexes from the previous examples. The

field values (φi) are no more assigned random values but only discrete values (σi = ±1)

similar to the Ising model.

Ising Model in One Dimension

We carry out the idea of subdivision of the real line once more, only instead of

integrals we end up calculating discrete sums. Let the function associated with an
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interval [x0, x1] be-

Fa(σ0, σ1) = eQa(σ0,σ1) (3.4.1a)

Qa(σ0, σ1) = αa(σ0σ1) + γa. (3.4.1b)

There will not be any higher order terms of σi since σ2
i = 1 and σiσj = iεijkσk.

We divide the interval into two halves now and sum over the new variables.

∑
σ01

eQa(σ0,σ01)eQa(σ01,σ1) =
∑
σ01

eαaσ01(σ0+σ1)+2γa

=
[
eαa(σ0+σ1) + e−αa(σ0+σ1)

]
e2γa . (3.4.2)

Fixed Points and Correlation Function

On comparing with the function associated with the whole interval

F2a(σ0, σ1) = eα2a(σ0σ1)+γ2a , (3.4.3)

we get the following pair of equations considering all the possible values taken by the

pair (σ0, σ1),

2e2γa = eγ2a−α2a (3.4.4a)

e2γa
(
e2αa + e−2αa

)
= eγ2a+α2a . (3.4.4b)

The transformation obtained from these equations is

e2α2a =
e2αa + e−2αa

2
. (3.4.5)
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The trivial fixed point αa = 0 is obtained by setting α2a = αa. The normalization

constant can be determined from the relation between γa and γ2a.

Ising Model on a Right Triangle in the Plane

We carry out the idea of sub division for a triangle now (Fig. 3.7). Let the function

associated with the triangle be

Fa(σ0, σ1, σ2) = eQa(σ0,σ1,σ2) (3.4.6a)

Qa(σ0, σ1, σ2) = αa(σ0σ1 + σ1σ2) + βa(σ0σ2) + γa. (3.4.6b)

x0 x1

x2

x02

Figure 3.7: Subdivision of right triangle for Ising model

We now divide the original triangle into two new similar triangles. The new vertex

is summed over and the total contribution from the two triangles is computed:

∑
σ02

eQa(σ1,σ02,σ0)eQa(σ2,σ02,σ1) =
∑
σ02

eαaσ02(σ0+σ2+2σ1)+βaσ1(σ0+σ2)+2γa

=
[
eαa(σ0+σ2+2σ1) + e−αa(σ0+σ2+2σ1)

]
eβaσ1(σ0+σ2)+2γa .

(3.4.7)
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Fixed Points and Correlation Function

On comparing it with the form of the energy associated with the bigger triangle

F√2a(σ0, σ1, σ2) = eα
√

2aσ1(σ0+σ2)+β√2a(σ0σ2)+γ√2a , (3.4.8)

we get the following pairs of equations:

e2(γa+βa)
(
e4αa + e−4αa

)
= e2α√2a+β√2a+γ√2a (3.4.9a)

e2γa
(
e2αa + e−2αa

)
= e−β

√
2a+γ√2a (3.4.9b)

2e2(γa−βa) = e−2α√2a+β√2a+γ√2a . (3.4.9c)

In order to obtain these equations we look into all the tuples formed by assigning

values to (σ0, σ1, σ2) . Out of the set of eight equations we get only three independent

equations. The transformations associated with these equations are,

e4α√2a =
e4βa (e4αa + e−4αa)

2
(3.4.10a)

e4β√2α =
2 (e4αa + e−4αa)

(e2αa + e−2αa)2 . (3.4.10b)

The trivial fixed points αa = 0, βa = 0 are obtained by setting α√2a = αa, β√2a =

βa. γa and γ√2a again determine the normalization factor.

Ising Model on sixfold subdivision of a triangle

Having found the obvious fixed points αa = 0, we now investigate the sixfold subdi-

vision of the triangle to see if it has a non trivial fixed point, and indeed it has one.
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To each of the equilateral triangles we associate a function-

Fa(σ0, σ1, σ2) = eQa(σ0,σ1,σ2), (3.4.11a)

Qa(σ0, σ1, σ2) = αa(σ0σ1 + σ1σ2 + σ2σ0) + γa. (3.4.11b)

A sum is now carried over the vertices (σ01, σ02, σ12, σ3) to form a bigger equilateral

triangle with the vertices (σ0, σ1, σ2),

∑
σ01

∑
σ02

∑
σ12

∑
σ3

eQa(σ1,σ12,σ3)eQa(σ2,σ12,σ3)eQa(σ2,σ02,σ3)eQa(σ0,σ02,σ3)eQa(σ0,σ01,σ3)eQa(σ1,σ01,σ3)

= e−6αa+6γa(2 + e−2(−2+σ2+σ0)αa + e2(2+σ2+σ0)αa + e−2(−2+σ2+σ1)αa + e2(2+σ2+σ1)αa

+ e−2(−2+σ0+σ1)αa + e2(2+σ0+σ1)αa + e−4(−3+σ2+σ0+σ1)αa + e4(3+σ2+σ0+σ1)αa

+ e−2(−4+2σ2+σ0+σ1)αa + e2(4+2σ2+σ0+σ1)αa + e−2(−4+σ2+2σ0+σ1)αa + e2(4+σ2+2σ0+σ1)αa

+ e−2(−4+σ2+σ0+2σ1)αa + e2(4+σ2+σ0+2σ1)αa). (3.4.12)

Fixed Points and Correlation Function

The function associated with the bigger triangle should be of the form

F√6a(σ0, σ1, σ2) = eα
√

6a(σ1σ0+σ0σ2+σ2σ1)+γ√6a . (3.4.13)

We get the following pairs of equations when comparing the previous results by

assigning all admissible values to (σ0, σ1, σ2):

e−α
√
6a+γ√6a = e−6(αa−γa)

(
3 + 6e4αa + 4e8αa + 2e12αa + e16αa

)
(3.4.14a)

e3α√6a+γ√6a = e−6(αa−γa)
(
9 + 3e8αa + 3e16αa + e24αa

)
. (3.4.14b)
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Thus the renormalization group transformation on α is the iteration of the function

f(αa) =
−1

4
log

[
3 + 6e4αa + 4e8αa + 2e12αa + e16αa

9 + 3e8αa + 3e16αa + e24αa

]
. (3.4.15)

There is a trivial fixed point for the equation αa = f(αa) at αa = 0 and a non

trivial fixed point at αa∗ = 0.159579. The normalization constants are determined by

γa and γ√6a.

To find the critical exponents we linearize the recursion relation at the fixed point.

f ′(αa∗) = 1.93411. (3.4.16)

This shows that the fixed point is unstable. The scaling factor for this trans-

formation is
√

6. Using these numbers we can calculate the thermal exponent yt '
log(1.93411)

log(
√

6)
= 0.736312. It leads to the critical exponents for the correlation length and

specific heat to be ν = 1
yt

= 1.35812, α = 2(1− ν) = −0.716239.

Summary

We list the shortcomings of the subdivisions of simplex used in this chapter-

• The correlation functions obtained vary as irrational power of the distance in

the continuum limit. This suggests that the theory corresponds to field theo-

ries in spaces of fractional dimensions even though the simplex lies in integer

dimensions. The strange fact is that the irrational power is always less than 2.

• The edge weights of the simplex are always considered to be positive real num-

bers.

• Some of the internal edges are over counted in the action. This may be the
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cause for the weird power law.

• Different subdivisions lead to different powers and no universality is obtained.

• The size of the geometrical object was not taken into account.

We attempt to address these issues and find a different subdivision scheme for the

two dimensional simplex in chapter 4.
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CHAPTER 4

FINITE ELEMENT METHOD IN FIELD

THEORY

“Philosophy is written in that great book which ever lies before our eyes I

mean the universe but we cannot understand it if we do not first learn the

language and grasp the symbols, in which it is written. This book is written in

the mathematical language, and the symbols are triangles, circles and other

geometrical figures, without whose help it is impossible to comprehend a single

word of it; without which one wanders in vain through a dark labyrinth.”

— Galileo Galilei, The Metaphysical Foundations of Modern Science

In the previous chapter 3, we came across a method to construct the partition function

of the fields in a recursive manner. This however has certain limitations which we

try to avoid in this chapter by using the finite element method. We show how the

partition function for the self energy of a field defined on a triangular lattice can

be calculated recursively using ideas of renormalization group transformations. Our

formalism is based on a nice geometric construction.
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4.1 Orientation

The most successful regularization method in understanding non-perturbative Quan-

tum Field Theory (QFT) is the lattice method [37,38], which replaces space-time by

a periodically arranged finite set of points. Numerical simulations based on this are

becoming increasingly accurate, therefore any attempt at a mathematical formulation

of quantum field theory must build on this success and aim to improve upon it.

The classical analogue of the problem would be the solution of Partial Differential

Equations (PDEs). In the early days a lattice with identically shaped fundamental

regions was used for numerical solutions of PDEs. Later it was realized that using

meshes adapted to the boundary conditions makes more economical use of computing

resources by adding more points where the field varies rapidly and fewer where it

varies slowly. The Finite Element Method [39, 40] was developed in the seventies:

it allows fundamental cells to have different shapes and sizes and use sophisticated

interpolation methods to model the field in the interior of each cell. This Discrete

Differential Geometry is useful not only to solve PDEs, but also to model shapes for

use in computer graphics [41,42].

The analogue in Quantum Field Theory is to replace the periodic lattice with

a mesh that contains different length scales. This approach has been looked at by

groups the in past and met with varying degrees of success. The first approach in

this direction was by Christ, Friedberg and Lee [43] (except they proposed to average

over all locations of lattice points as a way to restore rotation invariance, which did

not turn out to be helpful). There is also some early work by Bender, Guralnik and

Sharp [44]. Patodi’s FEM to solve the eigenvalue problem for Laplacians was not

noticed by physicists at this time. Since then much of the work on Lattice Gauge

Theories has been computational along with some analytic work [45].
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We propose to adapt existing methods of QFT and develop new Finite Element

Methods to understand the essential problem from Wilson’s point of view: how to

integrate out some variables and get an effective theory for the remaining degrees

of freedom (for a recent review, see the volume [46]). The simplest case is the one

dimensional lattice (the set of integers), which has a natural subdivision into even

and odd numbered elements. By integrating out the odd sites and leaving only the

even sites we are left with an identical lattice with a different separation between

field points (Sec. 1.2). Unfortunately there is no simple procedure to extend this into

higher dimensions.

A natural idea would be to divide space into triangles (simplices in higher dimen-

sions) and to fit them together to form larger ones, allowing us to integrate out the

interior vertices and obtain an effective large scale theory. An advantage of our reg-

ularization method is that the renormalization map can be calculated exactly. The

transformation between the angles of the triangles from subsequent generations is

obtained at each stage of the subdivision. The first examples [47] we constructed

this way ignored the shape (information contained in the angles) of the triangles.

The Finite Element Method used by engineers leads to a “cotangent formula” [48].

It approximates the Laplacian in two dimensions on one hand and also happens to

be a fixed point [49] of the renormalization dynamics. We determine this dynamics

explicitly [50].

We expect this fixed point to be a continuum limit on a fractal, analogous to the

Bethe lattice for which the renormalization group can be exactly calculated. Such

QFTs can serve as approximations to theories on Euclidean spaces. Or perhaps at

short distances, space-time really is not Euclidean.

If generalized to the Ising model, nonlinear sigma models or to four dimensional

field theories, we could get interesting examples of Discrete Conformal Field Theory.



71

In our approach we do not average over triangulations. Such an average has been

proposed as an approach to quantum gravity [51] and as a way to restore translation

invariance.

4.2 Cotangent Formula

In the early days of computational engineering, Duffin derived a formula for the

discrete approximation for the energy of an electrostatic field on a planar domain.

In this Finite Element Method the plane is divided into triangles where the field is

specified at each vertex and the energy of the field is the sum of contributions from

each triangle. An approximation for the energy of a triangle is obtained by linear

interpolation of the field to the interior.

Suppose the vertices x0, x1, x2 correspond to field values φ0, φ1, φ2. Each point x in

the interior of the triangle divides it into three sub-triangles with vertices {x, x0, x1},

{x, x1, x2} and {x, x2, x0} respectively.

If the ratio of the area of a sub-triangle opposite to x0 to the larger triangle is

u0 =
∆(x, x1, x2)

∆(x0, x1, x2)
, (4.2.1)

then

x = u0x0 + u1x1 + u2x2, u0 + u1 + u2 = 1, u0, u1, u2 > 0. (4.2.2)

We can use the pair u0, u1 as coordinates instead of the cartesian components of

x. The linear interpolation of the field values to the point x is then

φ(x) = u0φ0 + u1φ1 + u2φ2. (4.2.3)
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The energy of the interpolated field inside a triangle on calculation turns out to

be

S =
1

4

[
a2 (φ0 − φ1)2 + a1 (φ2 − φ0)2 + a0 (φ1 − φ2)2] (4.2.4)

where a0, a1, a2 are the cotangents of the angles at the vertices.

φ1(x1) φ2(x2)

φ0(x0)

a1 a2

a0

Figure 4.1: Triangle with labelled vertices and cotangents of the angles

Proof. Define the vectors along the sides of the triangle (see Fig. 4.1),

eµ1 = xµ1 − x
µ
0 , eµ2 = xµ2 − x

µ
0 . (4.2.5)

Using ua for a = 1, 2 as coordinates,

xµ = uaeµa =⇒ ∂ax
µ = eµa (4.2.6)

Then the metric tensor of the plane in these coordinates has as components the dot

products of the sides:

gab = eµae
ν
b δµν , g =

 |e1|2 e1 · e2

e1 · e2 |e2|2

 . (4.2.7)
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Also,
√

det g = e1 × e2 is twice the area of the triangle. The cotangents are

a0 =
e1 · e2

e1 × e2

, a1 =
(e2 − e1) · e1

(e2 − e1)× e1

, a2 =
e2 · (e2 − e1)

e2 × (e2 − e1)
. (4.2.8)

Then,

a0 + a1 =
|e1|2

e1 × e2

, a0 + a2 =
|e2|2

e1 × e2

, (4.2.9)

and

√
det ggab =

 |e2|2
e1×e2 − e1·e2

e1×e2

− e1·e2
e1×e2

|e1|2
e1×e2

 =

 a0 + a2 −a0

−a0 a0 + a1

 . (4.2.10)

Thus, using
∫
d2u = 1

2
,

S =
1

2

∫ √
det ggab∂aφ∂bφd

2u

=
1

4

[
(a0 + a2)(φ1 − φ0)2 − 2a0(φ1 − φ0)(φ2 − φ0) + (a0 + a1)(φ2 − φ0)2

]
.

(4.2.11)

This can be rewritten as

S(φ0, φ1, φ2|a0, a1, a2) =
1

4

[
a0(φ1 − φ2)2 + a1 (φ2 − φ0)2 + a2 (φ0 − φ1)2] (4.2.12)

as claimed.

4.3 Triangles to Special Relativity

The space S of similarity classes of triangles (with marked vertices) is a hyperboloid

[52]. This can be understood in several ways. A pair of sides of a triangle forms a
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basis, thus the space of marked triangles may be identified with GL(2,R): this group

acts transitively and without a fixed point on the space of bases. Quotienting by

rotation, scaling and reflection around a side gives

S = GL(2,R)/
(
SO(2,R)× R+ × Z2

)
= SL(2,R)/SO(2,R).

which is a hyperboloid. This argument generalizes to n dimensions: the similarity

classes of marked simplices is GL(n,R)/R+ × SO(n,R)× Z2 = SL(n,R)/SO(n,R).

An equivalent point of view is that S is the space of symmetric tensors of determi-

nant one: a pair of sides of the triangles define a symmetric tensor through their inner

products. By scaling we can choose this symmetric tensor to have determinant one.

It is clear that SL(2,R) acts on the space of such tensors transitively, with SO(2,R)

as the isotropy group at one point. Again this generalizes to n dimensions.

A more explicit point of view will be useful in what follows. A similarity class of

marked triangles is determined by the angles at the vertices (or, for convenience, the

cotangents of the angles). Since the angles (θ0, θ1, θ2) of a triangle add to up π, the

cotangents satisfy

a0a1 + a1a2 + a2a0 = 1, ai = cot θi (4.3.1)

This can be written as

aTηa = 1, a =


a0

a1

a2

 , η =
1

2


0 1 1

1 0 1

1 1 0

 . (4.3.2)

Since η has signature (1,−1,−1), this is the equation for a time-like hyper-surface in
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Minkowski space R1,2. Setting

p0 =
a1 + a2 + a0√

3
, p1 =

a2 − a1

2
, p2 =

2a0 − a1 − a2

2
√

3
, (4.3.3)

the “cotangent identity” (4.3.1) becomes the equation for a hyperboloid

p2
0 − p2

1 − p2
2 = 1. (4.3.4)

The quantity 4 (a0 +a1 +a2) is the ratio of the sum of squares of the sides to the area

of the triangle. It is a minimum for an equilateral triangle and becomes large for a

flat triangle (one with small area or large perimeter).

So far we discussed triangles with marked vertices but we should also consider

invariant transformations of the vertices. The group S3 of permutations of vertices is

generated by the cyclic permutation

σ : 012 7→ 120

and the interchange of a pair of vertices

τ : 012 7→ 021

S3 = 〈σ, τ |σ3 = 1, τ 2 = 1, τστ = σ2〉. (4.3.5)

These permutations act on the cotangents through the matrices

σ =


0 1 0

0 0 1

1 0 0

 , τ =


1 0 0

0 0 1

0 1 0

 . (4.3.6)
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We can also parametrize S by the complex number

z =
a1 + i

a1 + a2

. (4.3.7)

By a translation, we can choose the first vertex x1 = 0 and by a rotation and

scaling we may choose x2 = 1. z is then the coordinate of the remaining vertex.

Then the permutation of the vertices becomes

σ(z) =
1

1− z
, τ(z) = 1− z̄. (4.3.8)

By a reflection around the side 12, we can choose a0 + a1 + a2 > 0; equivalently

Im(z) > 0. Note that τ is the reflection around the perpendicular from vertex 0 to

the opposite side 12 of the triangle.

Subdivision of a triangle

We can subdivide a triangle into three sub-triangles of equal area by connecting the

centroid x3 = x0+x1+x2
3

to the vertices x0, x1, x2 by straight lines. (If we subdivide at

some other interior point, we get similar results).

The cotangents of the angles of the sub-triangle opposite vertex 0 are given by

cot(x2x1x3) = 2a1 + a2 (4.3.9a)

cot(x3x2x1) = 2a2 + a1 (4.3.9b)

cot(x1x3x2) =
a0 − 2a1 − 2a2

3
(4.3.9c)

as shown in Fig. 4.2.

To see this, choose a coordinate system with x1 = (0, 0), x2 = (1, 0), x0 = (x, y)
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x1 x2

x0

x3

2a1 + a2 2a2 + a1

a0−2a1−2a2
3

Figure 4.2: Triangle with few cotangents of the angles labelled after subdivision

so that x3 = (1+x
3
, y

3
). Then,

a1 =
x

y
, a2 =

1− x
y

, a0 =
1− a1a2

a1 + a2

. (4.3.10)

By dropping a perpendicular from x3 to the side x1x2 we get

cot(x2x1x3) =
1+x

3
y
3

= 2a1 + a2, cot(x3x2x1) =
1− 1+x

3
y
3

= 2a2 + a1. (4.3.11)

The remaining angle is given by solving the cotangent formula:

cot(x1x3x2) =
1− (2a1 + a2)(2a2 + a1)

(2a1 + a2) + (2a1 + a2)
=

1− a1a2 − 2(a1 + a2)2

3(a1 + a2)
=
a0 − 2a1 − 2a2

3
.

(4.3.12)

We can thus express the cotangents of this sub-triangle as Λa where

Λ =


1
3
−2

3
−2

3

0 2 1

0 1 2

 . (4.3.13)
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It is noted that

ΛTηΛ = η,

due to the cotangent identity. Thus subdivisions are represented by Lorentz trans-

formations in R1,2. The symmetry under the interchange of 1 and 2 leads to

Λτ = τΛ.

The cotangents of the remaining sub-triangles are given by cyclic permutations

Λσ and Λσ2 (see Fig. 4.3). In this convention, the central angle is listed first.

x1 x2

x0

x3

Λ

ΛσΛσ2

Figure 4.3: Action of Λ and σ matrices to produce subdivision of a triangle

In the complex parametrization z = x+ iy = a1+i
a1+a2

, the subdivision Λ corresponds

to

Λ(z) =
1 + z

3
, (4.3.14)

which is the complex co-ordinate of the centroid when x1 = 0, x2 = 1, x0 = z. Recall

that in this parametrization σ(z) = 1
1−z . Clearly, both Λ and σ map the upper half

plane to itself.

The semigroup generated by 〈Λ,Λσ,Λσ2〉 describe repeated subdivisions of a tri-

angle. After many iterations, most of the triangles are flat: they have small area and
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large perimeter [53]. The dynamics generated by this semigroup is the renormaliza-

tion group of real space decimations.

4.4 Renormalization Dynamics

Consider a Gaussian scalar field with values φ0, φ1, φ2 at the vertices of a triangle with

cotangents a0, a1, a2. The most general quadratic form for the discrete approximation

to the action will be

S(φ0, φ1, φ2|a) = P (a)φ2
0 +Q(a)φ1φ2 +P (σa)φ2

1 +Q(σa)φ2φ0 +P (σ2a)φ2
2 +Q(σ2a)φ0φ1

(4.4.1)

The coefficients P (a), Q(a) are functions of the cotangents satisfying the symmetry

P (a) = P (τa), Q(a) = Q(τa). (4.4.2)

For example, the cotangent formula corresponds to the choice

P (a) =
a1 + a2

4
, Q(a) = −a0

2
. (4.4.3)

If we subdivide the triangle and associate a field φ3 at the central vertex, the

action will be the sum of contributions from each triangle.

Ssub(φ0, φ1, φ2, φ3|a) = S(φ3, φ1, φ2|Λa) + S(φ3, φ2, φ0|Λσa) + S(φ3, φ0, φ1|Λσ2a)

= Aφ2
3 +Bφ3 + C (4.4.4)
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where

A = P (Λa) + P (Λσa) + P (Λσ2a)

B = φ0

{
Q(σΛσa) +Q(σ2Λσ2a)

}
+ φ1

{
Q(σ2Λa) +Q(σΛσ2a)

}
+ φ2

{
Q(σΛa) +Q(σ2Λσa)

}
C = φ2

0

[
P (σ2Λσa) + P (σΛσ2a)

]
+ φ2

1

[
P (σΛa) + P (σ2Λσ2a)

]
+ φ2

2

[
P (σ2Λa) + P (σΛσa)

]
+ φ1φ2Q(Λa) + φ2φ0Q(Λσa) + φ0φ1Q(Λσ2a) (4.4.5)

The effective action after integrating out the central field variable is given by

e−S̃(φ0,φ1,φ2|a) = Z

∫
e−Ssub(φ0,φ1,φ2,φ3|a)dφ3 (4.4.6)

where Z =
√

3(a0+a1+a2)
2π

is a normalization constant.

S̃(φ0, φ1, φ2|a) = C − B2

4A
(4.4.7)

On comparing coefficient of φ2
0, we get

P̃ (a) = P (σ2Λσa) + P (σΛσ2a)− [Q(σΛσa) +Q(σ2Λσ2a)]
2

4 [P (Λa) + P (Λσa) + P (Λσ2a)]
. (4.4.8)

On comparing coefficient of φ1φ2, we get

Q̃(a) = Q(Λa)− [Q(σ2Λa) +Q(σΛσ2a)] [Q(σΛa) +Q(σ2Λσa)]

2 [P (Λa) + P (Λσa) + P (Λσ2a)]
. (4.4.9)

Using Λτ = τΛ, τστ = σ2 we can verify that P̃ (τa) = P̃ (a), Q̃(τa) = Q̃(a) as

needed for symmetry. The denominator

A(a) = P (Λa) + P (Λσa) + P (Λσ2a) (4.4.10)
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is invariant under σ, τ and hence, under all permutations.

The semigroup generated by the map R : (P,Q) 7→ (P̃ , Q̃) on the space of pairs

of functions on the hyperboloid is the renormalization dynamics (“renormalization

group”). This explicit example should help us understand such dynamics. For ex-

ample, is there is a notion of entropy that increases monotonically? Its fixed points

correspond to some sort of continuum limit (which could be fractals) [54].

Fixed Points

An obvious fixed point consists of constant P,Q. This corresponds to the “Apollonian

subdivisions” considered in an earlier paper.

We now show that the cotangent formula of the FEM,

P (a) =
a1 + a2

4
, Q(a) = −a0

2
(4.4.11)

is also a fixed point of the above dynamics. It is not hard to verify that

A = P (Λa) + P (Λσa) + P (Λσ2a) =
3

2
(a0 + a1 + a2) (4.4.12a)

Q(σΛσa) +Q(σ2Λσ2a) = −(a0 + a1 + a2) (4.4.12b)

P (σ2Λσa) + P (σΛσ2a) =
1

12
[2a0 + 5(a1 + a2)] (4.4.12c)

so that P̃ (a) = a1+a2
4

.
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Similarly,

Q(Λa) =
−a0 + 2a1 + 2a2

6
(4.4.13a)

Q(σ2Λa) +Q(σΛσ2a) = −(a0 + a1 + a2) (4.4.13b)

Q(σΛa) +Q(σ2Λσa) = −(a0 + a1 + a2) (4.4.13c)

from which Q̃(a) = −a0
2

follows.

This fixed point describes some sort of continuum limit of two dimensional scalar

field theory. As in the examples of Ref. [47] it is likely to be a fractal of dimension

less than two; but we have not been able to determine this dimension yet.

4.5 Correlation Function

The correlation functions of the fields is a quantity of great interest. We use our

formalism to find the correlation for the fixed points of the action. The spatial

dependence of the correlation functions turns out to have a very nice geometric in-

terpretation.

We find the correlation function for the following action-

S(φ0, φ1, φ2|a) =
1

4

[
a2 (φ0 − φ1)2 + a1 (φ2 − φ0)2 + a0 (φ1 − φ2)2] . (4.5.1)

By setting the field value at φ0 = 0, the expectation values of interest can be

evaluated by this integral-

〈φiφj〉 =

∫
dφ1dφ2e

−S(φ0,φ1,φ2|a)φiφj∫
dφ1dφ2e

−S(φ0,φ1,φ2|a)

, i, j = 1, 2 (4.5.2)
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For the choice of the fixed points as coefficients in the action,

〈φ2
1〉 = 2 (a1 + a0) (4.5.3a)

〈φ2
2〉 = 2 (a2 + a0) (4.5.3b)

〈φ1φ2〉 = 2a0 (4.5.3c)

If we choose two points x, y inside the triangle and set x0 to be origin-

x = u0x0 + u1x1 + u2x2

= u1x1 + u2x2 (4.5.4)

ui =
τix
τ
, i = 0, 1, 2, and τ = τ0x + τ1x + τ2x. (4.5.5)

Similarly,

y = v0x0 + v1x1 + v2x2

= v1x1 + v2x2 (4.5.6)

vi =
τiy
τ
, i = 0, 1, 2, and τ = τ0y + τ1y + τ2y. (4.5.7)

By our linear interpolation, the field values at those points turn out to be-

φ(x) = u1φ1 + u2φ2 (4.5.8a)

φ(y) = v1φ1 + v2φ2. (4.5.8b)
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Thus,

|x− y|2 = (u1 − v1)2 |x1|2 + (u2 − v2)2 |x2|2 + 2 (u1 − v1) (u2 − v2) |x1.x2|

|x− y|2

τ
= (u1 − v1)2 |x1|2

τ
+ (u2 − v2)2 |x2|2

τ
+ 2 (u1 − v1) (u2 − v2)

|x1.x2|
τ

.

(4.5.9)

However we know the following relations as well for this case -

|x1|2

τ
= 2(a0 + a1),

|x2|2

τ
= 2(a0 + a2), 2

|x1.x2|
τ

= 4a0. (4.5.10)

We use this to simplify (4.5.9)-

|x− y|2

τ
= (u1 − v1)2 2(a0 + a1) + (u2 − v2)2 2(a0 + a2) + (u1 − v1) (u2 − v2) 4a0

= (u1 − v1)2 〈φ2
1〉+ (u2 − v2)2 〈φ2

2〉+ 2 (u1 − v1) (u2 − v2) 〈φ1φ2〉

= 〈(φ(x)− φ(y))2〉. (4.5.11)

Thus the correlation function for two interior points to be-

〈(φ(x)− φ(y))2〉 =
|x− y|2

τ
(4.5.12)

The correlation function between two points turns out to be the ratio of the

Euclidean distance between the points and the area of the triangle. The result has

an elegant geometrical description associated to it. An extension of this method to

higher dimensions would be interesting.
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Summary

The discrete approach to field theory developed in this chapter helps one to find an

effective action. The striking features of this approach were-

• The action has a recursive nature at each level of barycentric subdivision of the

triangles.

• The functional form of the action has surprising connections with the cotan-

gent formula used by electrical engineers to solve differential equations by finite

element method.

• The correlation of the fields between two points can be used to find the spatial

distance between the points.

The interdisciplinary nature of the result made us curious about the other tools used

by engineers. We shall show in chapter 5, how electrical resistor networks lead to a

new perspective of distance where we evade divergences associated with correlation

functions.
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CHAPTER 5

METRIC FROM FIELD THEORY

“An experiment is a question which science poses to Nature, and a

measurement is the recording of Nature’s answer.”

— Max Planck, Scientific Autobiography and other papers

The last few chapters have dwelt in explaining the regimes in which divergences occur

in nature and the tools used to remove those divergences. Divergences are classified

as ultraviolet divergences or infrared depending on whether they occur at short or

large distances. The prevalent renormalization techniques attempt at redefining the

coupling constants of the system so that one gets finite values for the observables in the

short or long distance scales. In this chapter, we tried developing a new perspective of

distance solely from the scalar field itself [55]. This notion of distance arises [56] from

the correlation functions of the field and divergences are avoided in this. The key

idea for this work comes from resistance distance used in electrical resistor networks

with applications ranging from chemistry [57] to computer science.

5.1 Orientation

In view of the discovery of the Higgs et al. boson [58–60], it is timely to reconsider

the fundamental implications of a plain scalar field of the standard model: one that
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is not composite, associated to supersymmetry, or to extra dimensions of space-time.

It is of interest to study a quantum theory of scalar fields in any case, as it describes

many other phenomena as well; such as phase transitions.

Such a field is not expected to have an effect on the geometry of space-time. This

is unlike the other bosonic fields: according to General Relativity, gravity modifies

the metric of space-time from Euclidean to Riemannian. And gauge fields have a ge-

ometric meaning in terms of parallel transport. A fundamental scalar field is thought

to have a geometrical meaning only as a remnant of dimensional reduction: if space

time has extra dimensions (whether continuous or discrete, as in non-commutative

geometry), the extra components of the gauge or gravitational field would be scalars

in four dimensional space-time.

In our work, we will show that a scalar quantum field defines a metric on space-

time as well. But to understand this metric we must go beyond Riemannian geometry.

In recent years, the study of such general metric spaces has emerged [61, 62] as a

fundamental branch of mathematics, touching on topology, geometry and analysis.

We know from classical mechanics that a free particle moves along a straight-

line. The length of this line is the distance between points. In quantum mechanics,

the propagator is the sum over all paths,1 with a weight proportional to e−S, where

S =
1

2

∫
ẋ2 dt is the action [63]. Thus, a quantum notion of distance should involve

the propagator itself rather than a property of a particular path.

However in quantum field theory, we should seek a notion of distance based on

the correlations of fields at two points, which is the analogue of the propagator. We

1In this paper we will study quantum theories formulated in terms of a path integral

∫
e−S [Dφ]

where S is a real positive function of the field, the action. That is why the signature of the metric is
positive instead of being Lorentzian. To get physical answers we must do an analytical continuation
in time.
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will show that the quantity

σ(x, x′) =
√
〈[φ(x)− φ(x′)]2〉

(defined with a regularization) in a scalar quantum field theory satisfies the axioms

of a metric (see the Appendix A for a summary of metric geometry). In particular,

the triangle inequality

σ(x, x′) ≤ σ(x, x′′) + σ(x′′, x′)

holds. This notion of distance between two points is very different though, from the

Riemannian notion. It is worth exploring on its own right, even if we continue to use

the Euclidean length for most physical purposes.

For example, the triangle inequality above cannot be saturated if x, x′, x′′ are all

distinct. By contrast, for the Euclidean distance, as long as x′′ lies on the straight

line connecting x to x′, we would have |x− x′| = |x− x′′|+ |x′′ − x′|. More generally,

in Riemannian geometry, we can saturate the triangle inequality by choosing x′′ to

be any point on a shortest geodesic connecting x to x′.

This means that σ(x, x′) is not the length of geodesics in any Riemannian geom-

etry: it defines a non-Riemannian metric geometry.

So why would space-time look Euclidean classically? It turns out that the length

of a curve defined by σ(x, x′) (in a super-renormalizable or asymptotically free theory;

we do not know the general answer yet) is the same as the Euclidean length. The

reason is that for small distances and small interactions, σ(x, x′) ∝ |x − x′|. (The

proportionality constant depends on the regularization.) The length of a curve is

defined by breaking it up into small segments (see Appendix A). For small enough

segments we will get (up to a constant) their Euclidean length. Classical measure-
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ments of distance always involve lengths of curves. So even σ will give the Euclidean

answer (up to the proportionality constant) in these measurements.

According to σ, the shortest curve connecting two points is still the straight line.

But this shortest length is not the same as σ(x, x′). We will see that σ(x, x′) is a

monotonically increasing function of |x − x′| which, for dimensions n = 3, 4 tend to

a constant for large |x − x′|; space-time has finite diameter according to σ. For the

case of a massless free field in four dimensions using the heat kernel regularization,

we have an explicit formula-

σ(x, x′) =

 1

8π2a2
− 1

2π2(x− x′)2
+

e−
(x−x′)2

4a2

2π2(x− x′)2

 1
2

. (5.1.1)

The story can be different for a scalar quantum field theory that does not tend to

free field theory at short distances. For a λφ4 theory in four dimensions, perturbation

theory breaks down at short distances. We are not able to determine analytically the

relationship of σ(x, x′) to |x − x′| for short distances. This case is of great impor-

tance, as it describes the Higgs boson of the standard model. Large scale computer

simulations are needed to study this relationship.

Since our metric depends on the cutoff a, can it still have a physical significance?

We will see in the continuum regularization schemes, a change of the cutoff does

not change the Lipschitz equivalence class of the metric. Thus the Lipschitz class of

space-time should have a physical significance: instead of differentiable functions we

would talk of Lipschitz functions for example. This equivalence class does change if

we let the cutoff go to zero; it is different from that of Euclidean space. Thus, the

functions that are Lipschitz with respect to σ are not the same as those with respect

to |x− x′|.
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When non-Euclidean geometry was still new, it was useful to understand a curved

metric in terms of an embedding into Euclidean space. In the same way, it is useful to

understand a non-Riemannian metric such as ours by embedding into a Riemannian

manifold. We will show that our metric σ(x, x′) can be thought of as the length of

the geodesic in a Riemannian manifold with one extra dimension: the geodesic does

not lie in the submanifold, so has a shorter length than any curve that stays within

the submanifold (in particular the Euclidean straight line).

In the following section, we describe scalar quantum field theory on a lattice and

show how σ(x, x′) can be defined for it (Sec. 5.2). We find the metric explicitly for the

case of free massless scalar field on a lattice in terms of certain discrete Fourier series.

This special case is related to the resistance metric of Kigami [64]. We show that

the metric cannot be induced by any Riemannian geometry. In Sec. 5.3, we consider

other regularization schemes, in particular the heat kernel method. This allows us to

get an explicit form in terms of elementary functions for free field theory. It is shown

that the Lipschitz equivalence class of the metric is independent of the cutoff. We also

show that it is possible to embed space-time in a Riemannian manifold (Sec. 5.4) of

one higher dimension such that our σ is the induced metric. We have an application

of our result in network theory, mainly collaboration graphs (Sec. 5.5).

Lattice Scalar Field Theory

A scalar field on a graph Γ is a function φ : Γ→ RN . The action (or energy, depending

on the physical application) is a function of the scalar field

S(φ) =
an−2

2

∑
x∼x′

[φ(x)− φ(x′)]
2

+ an
∑
x

V (φ(x)). (5.1.2)
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The first sum is over nearest neighbors in the graph and a is the distance between

them.2 V is a polynomial whose coefficients are the “bare coupling constants”. Free

field theory is the special case where V is a quadratic function. Massless free field

theory is the case V = 0. The expectation value of any function of the field is defined

to be

〈f〉 =

∫
f(φ)e−S(φ)dφ∫
e−S(φ)dφ

. (5.1.3)

In particular, the correlation functions are the expectation values

G(x1, · · ·xn) = 〈φ(x1) · · ·φ(xn)〉. (5.1.4)

Sometimes it will be more convenient to work with quantities such as

R(x, x′) = 〈[φ(x)− φ(x′)]2〉 (5.1.5)

related to the correlation function by-

R(x, x′) = G(x, x) +G(x′, x′)−G(x, x′)−G(x′, x). (5.1.6)

The case of greatest interest is a cubic lattice Ωa,L = a (Z/ΛZ)n with period

L = Λa. The aim of quantum field theory is to construct the continuum limit a →

0, L → ∞ such that the correlation functions have a sensible limit. In taking this

limit, the coefficients of the polynomial V are to be varied as functions of the cutoff a.

This program is essentially complete [65] in the case n = 2. Constructing non-trivial

examples (i.e., with a V of degree higher than two) is very difficult in the physically

interesting cases of dimensions three (for the theory of phase transitions) and four

2Obviously, we can absorb a into φ or V but we will find it convenient not to do so.
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(for particle physics). Wilson and Fischer used ingenious approximations [66, 67]

to understand the three dimensional case. In dimensions higher than four, such a

continuum limit does not exist except for the case of a free field [68]. The case of four

dimensions is marginal and a non-trivial continuum limit cannot be constructed by

standard methods [69].

5.2 Standard Deviation Metric

The mean deviation

D(x, x′) = 〈|φ(x)− φ(x′)|〉

satisfies the triangle inequality since, for each instance of φ.

|φ(x)− φ(x′)| ≤ |φ(x)− φ(x′′)|+ |φ(x′′)− φ(x′)| (5.2.1)

holds. So it will hold in the average as well.

More generally,

Dp(x, x
′) = [〈|φ(x)− φ(x′)|p〉]

1
p (5.2.2)

for p ≥ 1 is a metric on space-time.3 The most interesting is the case p = 2 of the

standard deviation

σ(x, x′) =
[
〈|φ(x)− φ(x′)|2〉

] 1
2 . (5.2.3)

σ(x, x′) is obviously positive and symmetric. Also, σ(x, x′) > 0 if x 6= x′ because

otherwise, every instance of a scalar field would have to take the same value at x and

x′.

Each theory of matter field will define a metric on space-time. The distance is

3Due to translation invariance, 〈|φ(x)− φ(x′)|〉 = 0.
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a simple concept for scalar fields. For gauge fields, it is more subtle, but gauge

invariant notions do exist [70]. Reflection positivity seems to imply such a metric

even for fermion fields. When the scalar field takes values in a curved target space

φ : Ωn → M (e.g., the nonlinear sigma model) we would use the metric dM of the

target to define σ(x, x′) =
√
〈| [dM(φ(x), φ(x′))]2 |〉.

Why could we not have defined a metric using the average of the square of the

distance

R(x, x′) = 〈(φ(x)− φ(x′))2〉

itself? It is more closely related to the correlation functions (5.1.6). The point is

that the square of a metric, such as (φ(x) − φ(x′))2 does not in general satisfy the

triangle inequality. (By contrast, the square root of a metric always does.) In some

special cases (e.g., massless free field) the expectation value R(x, x′) itself is a metric.

This particular case was discovered by Kigami in the context of fractals [64,71]. But

there are other probability distributions (that are not Gaussians) for which R(x, x′)

does not satisfy the triangle inequality. For example, the exponential distribution

in certain parameter regimes. Also, with regularizations other than the lattice (e.g.,

heat kernel method, see Sec. 5.3) R(x, x′) does not satisfy the triangle inequality. But

D1(x, x′) and σ(x, x′) always do (Appendix A). Of the two, the standard deviation is

σ(x, x′) is easier to calculate, as usual.

Free Scalar Field

In the special case (5.1.2), of a free field

V (φ) =
1

2
m2
∑
x

φ(x)2, (5.2.4)
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φ(x)−φ(x′) is a Gaussian random variable with variance R(x, x′) and zero mean. So

we have the relation

σ =

√
π

2
D. (5.2.5)

This relation is universal for free fields: it does not depend on the cutoff procedure

used (e.g., square vs triangular lattice). But the range of values of σ will depend on

the cutoff.4

Explicit Formula for R

The expectation values are Gaussian integrals which we can evaluate explicitly in

terms of the Green’s function [72]-

G(x, x′) = 〈φ(x)φ(x′)〉.

It is the solution of the lattice Helmholtz equation,

[∆x +m2]G(x, x′) = δΩa,L(x, x′). (5.2.6)

The lattice laplacian is the sum over nearest neighbors y, for fixed x of [73]-

∆ψ(x) =
1

a2

∑
〈yx〉

[ψ(x)− ψ(y)] (5.2.7)

(According to this definition, the eigenvalues of the operator are positive.)

4Note that Ik =

∫ ∞
−∞
|φ|ke− 1

2
φ2

R dφ = 2R
1+k
2

∫ ∞
0

e−u(2u)
k−1
2 du = 2

k+1
2 Γ

(
k + 1

2

)
R

1+k
2 .

Thus 〈|φ|〉 =
I1
I0

=
2√
2π

√
R =

√
2

π
R, 〈φ2〉 =

I2
I0

=
2

3
2

1
2

√
π

√
2π

R = R
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The lattice delta function depends on L through periodicity;

δΩa,L(x, x′) =


a−n, if x = x′ mod L

0, otherwise.

(5.2.8)

The discrete Fourier transform of a function is given by

ψ̃(p) = an
∑

x∈Ωa,L

e−ip·xψ(x), (5.2.9)

where the wavenumber p belongs to the dual lattice

p ∈ Ω̃a,L = Ω 2π
L
, 2π
a

(5.2.10)

for which a, L are exchanged for their reciprocals. Note the identity

L−n
∑
p∈Ω̃a,L

eip·(x−x
′) = δΩa,L(x, x′). (5.2.11)

The inverse discrete Fourier transform is then-

ψ(x) = L−n
∑
p

eip·xψ̃(p). (5.2.12)

Then,

∆̃ψ(p) = ∆̃(p)ψ̃(p), ∆̃(p) =
4

a2

n∑
r=1

sin2 apr
2
. (5.2.13)

Thus

G(x, x′) = L−n
∑
p∈Ω̃a,L

eip·(x−x
′)

∆̃(p) +m2
. (5.2.14)
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It follows that

R(x, x′) = L−n
∑
p∈Ω̃a,L

4 sin2 p·(x−x′)
2

∆̃(p) +m2
. (5.2.15)

Resistance Metric

In the limit m → 0 of a free massless scalar field, R(x, x′) itself (and not only its

square root) is a metric. Explicitly,

R(x, x′) = L−n
′∑

p∈Ω̃a,L

4 sin2 p·(x−x′)
2

∆̃(p)
(5.2.16)

the sum being over terms with ∆̃(p) 6= 0. This is the resistance metric of Kigami,

evaluated for the cubic lattice. There is a simple physical interpretation for this

quantity. Imagine a network, each pair of nearest neighbors being connected by

a resistor of same resistance. Then R(x, x′) is the effective resistance between the

pair of points x, x′ after all the others have been eliminated using Kirchoff’s laws of

current conduction. A method to compute this effective resistance for any arbitrary

configuration of resistances has been done in Appendix B. It is obvious that R(x, x′)

is positive and symmetric. See Ref. [71] for an ingenious proof that it satisfies the

triangle inequality.

Infinite Lattice

The resistance metric is often studied on sequences of graphs that tend to a fractal.

Not much has been studied as a metric on the more familiar graph of a cubic lattice.

Perhaps the reason is that it is totally different from the Euclidean metric. Physicists

have already calculated the properties of resistance on cubic lattices [74] without

noting that it satisfies the triangle inequality. In the limit of a lattice of infinite
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period L → ∞, the momentum space becomes a torus of period 2π
a

. Then we have

the integral representation5 with m = 0,

R(x, x′) =

(
1

2π

)n ∫ π
a

−π
a

dnp
4 sin2 p·(x−x′)

2

4
a2

n∑
r=1

sin2 pra

2

R(x, x′) =
a2−n

n
, |x− x′| = a, m = 0. (5.2.17)

If we consider x−x′ = (0, · · · a, · · · 0) to be along the i th direction alone and consider

the sum over all the n integrals, the trigonometric terms in the numerator and denom-

inator would cancel and the integral evaluates to a2−n. Also, the nearest neighbors

have the same resistance.

In the opposite limit of large Euclidean distance, the answer depends more dra-

matically on the dimension.

For n = 1, it is easy to see that the resistance metric is simply the Euclidean

distance

R(x, x′) = |x− x′|.

We have

R(x, x′) =
1

2π

∫ π
a

−π
a

dp
sin2 p(x−x′)

2

a−2 sin2 pa
2

. (5.2.18)

Let p→ 2π
a
p and r = |x−x′|

a
,

R(x, x′) = a

∫ 1
2

− 1
2

sin2 πr

sin2 πp
dp = ra = |x− x′|.

5Use the Euler-MacLauren formula lim
L→∞

L−n
Λ∑
k=1

f

(
2π

L
k

)
=

∫ 2π
a

0

f(p)
dnp

(2π)n
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For n = 2,

R(x, x′)→ 1

2π

[
log
|x− x′|

a
+ γ +

1

2
log 8 + · · ·

]
, |x− x′| → ∞. (5.2.19)

For n > 2, and |x− x′| >> a we can approximate

R(x, x′) ≈ Cn
an−2

− 2Gn(x− x′), (5.2.20)

where Gn(x) is the continuum Green’s function of the Laplace operator. The constant

Cn is independent of a but depends on the method of regularization. For the lattice

regularization [75,76],

Cn = 2

∫ 1
2

− 1
2

1

4
[
sin2 πp1 + sin2 πp2 + · · · sin2 πpn

] dnp. (5.2.21a)

R(x, x′) ≈ Cn
an−2

− C ′n
|x− x′|n−2

+ O
(
|x− x′|n−3

)
. (5.2.21b)

The constant C ′n is universal: it is the same in every regularization scheme, being

simply related to the continuum Green’s function.

C ′n =
1

2
π−

n
2 Γ
(n

2
− 1
)

(5.2.22)

When n = 3, 4

C3 ≈ 0.505462, C ′3 =
1

2π
, n = 3 (5.2.23a)

C4 ≈ 0.309867, C ′4 =
1

2π2
, n = 4 (5.2.23b)

The plot (Fig. 5.1) shows that σ(x, x′) =
√
R(x, x′) always grows with the Euclidean

distance.
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Figure 5.1:
√
aσ(x, x′) is plotted as a function of Euclidean distance scaled by lattice length

But the rate of growth is very slow for large distances. For nearest neighbors

σ(x, x′) = a1−n
2

√
1

n
, |x− x′| = a. (5.2.24)

And for large distances,

σ(x, x′) ≈ σna
1−n

2 − σ′n
|x− x′|n−2

+ O
(
|x− x′|n−3

)
. (5.2.25)

σn =
√
Cn, σ′n = a

n
2
−1 C ′n

2
√
Cn
. (5.2.26)

Note that the above equations (5.2.23) is consistent with Cn >
1
n
.

We plot (Fig. 5.1) the distance in dimension three, in units of the lattice spacing a.

Note that the length of a path is the sum of distances between nearest neighbors along

the path. Hence the geodesic distance (the length of the shortest path connecting
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two points) is proportional to the Euclidean distance

σl(x, x
′) = a−

n
2

√
1

n
|x− x′| ≥ σ(x, x′). (5.2.27)

The equality holds only for nearest neighbors. For large |x − x′|, the geodesic

distance is much greater: σl(x, x
′) >> σ(x, x′). It is easy to understand why using

the resistance model: the shortest curve is just one among possibly many paths that

connect the pair of points. When resistances corresponding to the paths are combined

in parallel, the effective resistance obtained is smaller than all of them.

No Intermediate Point

We now show that when n ≥ 3 , the triangle inequality

σ(x, x′) ≤ σ(x, x′′) + σ(x′′, x′) (5.2.28)

can never be saturated unless one of the distances is zero. The distance between

nearest neighbors is

1√
n
a1−n

2 .

So the smallest value for the r.h.s. (5.2.28), being the sum of two non-zero distances,

is twice this,

2√
n
a1−n

2 .

On the other hand, the distance between any pair of points is bounded (5.2.25),

σ(x, x′) <
√
Cna

1−n
2 . (5.2.29)
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Now, its easy to check that

Cn <
4

n
. (5.2.30)

Instead of an analytic proof, we can simply calculate the values in the two inter-

esting cases numerically,

C3 ≈ 0.505462 <
4

3
(5.2.31a)

C4 ≈ 0.309867 < 1 (5.2.31b)

Thus, the minimum value of the r.h.s. (5.2.29) is greater than the maximum value of

the l.h.s. and the inequality can never be saturated.

It follows that σ(x, x′) cannot be induced by any Riemannian metric.

Massive Scalar Field

In the case of a massive free scalar field, the asymptotic dependence on the Euclidean

distance is given by the Yukawa potential between points charges exchanging a mas-

sive particle: it vanishes exponentially.

σ(x, x′) ≈ σna
1−n

2 − σ′n
e−m|x−x

′|

|x− x′|n−2
+ O

(
|x− x′|n−3

)
, n > 2 (5.2.32)

The constants σn, σ
′
n are as above.

5.3 Other Regularization Schemes

Although we have used the lattice definition of scalar field theories, universality im-

plies that other regularization schemes will suffice. For example, we could use a sharp

momentum cutoff or a smooth momentum cutoff or a heat kernel method.
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We saw that in the limit L→∞, the momentum variables takes values on a torus

of period 2π
a

in each direction. Thus, the lattice regularization amounts to replacing

a potentially divergent integral by

∫
dnpf(p)→

∫ π
a

−π
a

dnp

(2π)n
f ′(p),

where f ′(p) agrees with f(p) for |p| << 1
a
. A typical example we encountered above

is

1

p2
→ 1

a−2

n∑
r=1

4 sin2 apr
2

. (5.3.1)

Another method, commonly used in scalar QFT is

∫
dnpf(p)→

∫
dnpK (a|p|) f(p), (5.3.2)

where K(ξ) ≈ 1 for ξ << 1 and is zero for ξ >> 1. The advantage is that this

preserves rotation invariance which the lattice breaks. Examples are-

K(a|p|) =
1

1 + a2p2
, Pauli− Villars

K(a|p|) = Θ(a|p| < 1), Sharpcutoff

K(a|p|) = e−a
2p2 , HeatKernel

Polchinski [77], among others, advocated for a smooth function that is one for |p| <

a−1 and zero for |p| > a−1.

The advantage of these schemes is that the underlying space-time continues to be

Rn, but with a possibly different measure of integration on its dual space (momentum

space). Our proposal would be to determine a metric on space-time from the standard
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deviation, computed using this regularized measure in momentum space. Again we

begin with the free field,

G(x, x′) =

∫
dnp

(2π)n
K(a|p|) 1

p2 +m2
eip·(x−x

′). (5.3.3)

R(x, x′) =

∫
dnp

(2π)n
K(a|p|)

4 sin2 p·(x−x′)
2

p2 +m2
. (5.3.4)

The explicit answer seems simplest for the heat kernel regularization. With m = 0,

we get an answer in terms of the incomplete Gamma function, Γ(ν, z) =

∫ ∞
z

tν−1e−tdt

G(x, x′) =
π
n
2

4|x− x′|n−2

[
Γ

(
n− 2

2

)
− Γ

(
n− 2

2
,
(x− x′)2

4a2

)]
. (5.3.5)

To see this,

G(x, x′) =

∫
dnp

(2π)n
e−a

2p2 1

p2
eip·(x−x

′)

=

∫ ∞
a2

dt

∫
dnp

(2π)n
e−tp

2

eip·(x−x
′)

=

∫ ∞
a2

dt
e−

(x−x′)2
4t

(4πt)
n
2

, (5.3.6)

which we evaluate. a plays the same role as the nearest neighbor distance in the

lattice regularization. It is the short distance cutoff.

In particular,

G(x, x) =
21−nπ−

n
2 a2−n

n− 2
, (5.3.7)

R(x, x′) =
22−nπ−

n
2

n− 2
a2−n − 1

2

|x− x′|2−n

π
n
2

[
Γ

(
n− 2

2

)
− Γ

(
n− 2

2
,
(x− x′)2

4a2

)]
(5.3.8)
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For even n the expression is more elementary:

R(x, x′) =
1

8π2a2
− 1

2π2(x− x′)2
+

e−
(x−x′)2

4a2

2π2(x− x′)2
, n = 4. (5.3.9)

It follows that our metric σ(x, x′) =
√
R(x, x′) is proportional to the Euclidean

distance for small |x− x′|:

R(x, x′) =
2−nπ−

n
2 (x− x′)2

nan
+O

(
|x− x′|4

)
. (5.3.10a)

σ(x, x′) =
2−

n
2 π−

n
4

√
na

n
2

|x− x′|+O
(
|x− x′|2

)
. (5.3.10b)

We plot (Fig. 5.2) the metric as a function of Euclidean distance, in units with

a = 1 for n = 3, 4.

Figure 5.2: Plot showing the dependence of σ with Euclidean distance in dimensions 3 and 4

Note that R(x, x′) would not satisfy the triangle inequality, being proportional to

the square of the Euclidean distance for small |x−x′|. This confirms that the correct

choice of metric is the standard deviation, not the variance of the scalar field.
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For large |x− x′|,

R(x, x′) =
22−nπ−

n
2

(n− 2)an−2
− π−

n
2

2
Γ
(n

2
− 1
) 1

|x− x′|n−2
+ · · · (5.3.11)

Thus, in the heat kernel regularization

Cn =
22−nπ−

n
2

n− 2
, C ′n =

1

2
π−

n
2 Γ
(n

2
− 1
)
. (5.3.12)

As noted earlier Cn is not universal but C ′n is. To compare the numerical values

C3 ≈ 0.0897936 vs 0.505462 for lattice (5.3.13)

C4 ≈ 0.0126651 vs 0.309867 for lattice. (5.3.14)

Lipschitz Equivalence

How does the change of the cutoff affect the geometry defined by σ? We now show

that for the free field, there are constants k1, k2 such that

0 < k1(a, b) ≤ σa(x, x
′)

σb(x, x′)
≤ k2(a, b) <∞.

That is, k1, k2 depend on the cutoffs a, b but not on the points x, x′ ∈ Rn. This

means that the two metrics σa and σb on Rn are Lipschitz equivalent. The proof

for the free massless theory uses the explicit formula to show that when a < b, the

ratio σa(x,x′)
σb(x,x′)

takes its largest value for x = x′ and its smallest value as |x− x′| → ∞.

Fig. 5.3 illustrates this fact. Thus,

(
b

a

)n
2
−1

≤ σa(x, x
′)

σb(x, x′)
≤
(
b

a

)n
2

, a < b, n > 2. (5.3.15)
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Figure 5.3: Plot showing the ratio of distance using two cutoffs on the Euclidean distance

We conjecture that this bi-Lipschitz inequality (5.3) holds for all renormalizable

scalar QFT in the continuum regularization schemes. The actual values of the Lip-

schitz constants might change however. Thus, we propose that although the metric

itself depends on the cutoff, its Lipschitz equivalence class is universal. This makes

some sense as Lipschitz equivalence for metric spaces is analogous to diffeomorphisms

for manifolds.

Beyond Free Fields: Wilson-Fisher

When 3 < n < 4, the scalar field theory with potential

V (φ) =
1

2
m2|φ|2 +

1

4
λ|φ|4, (5.3.16)
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has a fixed point of the renormalization group. The momentum integrals defining

the scalar theory make sense even for fractional values of n, even though the case,

n = 3 is the case of physical interest. The case n = 3, N = 1 (N being the number of

components of φ) for example, describes the critical point of a liquid and a gas. The

connection of this to fractals remains mysterious. A more detailed study of quantum

field theory on fractals is called for. We took a first step in this direction ourselves.

At this Wilson-Fisher fixed point, the Green’s function is

G(x− x′) =

∫
eip·(x−x

′)

p2−η K (a|p|) d3p

(2π)3
, (5.3.17)

where the critical exponent η can be calculated in the ε-expansion (Sec. 25.5 of Ref.

[67]).

η =
N + 2

2(N + 8)2
ε2 + O

(
ε3
)
, ε = 4− n. (5.3.18)

This quantity is universal and has been calculated to much higher precision. (See

[78] for the result up to order ε5). In this example, the metric

σ2(x, x′) = 2G(0)− 2G(x− x′) (5.3.19)

becomes for |x− x′| >> a,

σ(x, x′) =
σ3

a
1+η
2

− σ′3
|x− x′|1+η

+ · · · (5.3.20)

That is, even when n = 3, it scales as if the dimension of space were a little bit

higher than three. Again, the diameter of space is finite and the next-to-leading order

correction contains the Green’s function of physical interest. Also, for small |x− x′|

our σ(x, x′) is proportional to the Euclidean metric.
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5.4 Embedding in a Riemannian Manifold

Our standard deviation is not a geodesic metric. The length metric of σ is pro-

portional to the Euclidean metric, which is typically larger than σ. In the lattice

regularization, the length of any curve is just the number of edges along it: the supre-

mum above is achieved when each segment connects nearest neighbors. In the heat

kernel regularization, we saw that when x, x′ are close enough, σ(x, x′) is proportional

to |x−x′|. So the length of any curve according to σ will be, up to a constant multiple,

its Euclidean length.

Thus, the distance perceived by a quantum model of propagation is drastically

different from the classical model. Classically, the particle simply takes the shortest

path (which is also the path of least action). Quantum mechanically, we must sum

over all the paths; longer paths are simply less probable. Long paths can dominate

the sum, if the sheer number of long path makes up for their smaller probability. This

is what happens on cubic lattices of dimension n ≥ 2 as is easy to verify using the

explicit form we found above. Again, this illustrates how far from being a geodesic

metric σ is.

We will now show that we can embed Rn into a Riemannian manifold of one

dimension higher such that the length of the geodesic connecting (x, x′) in the ambient

space is equal to σ(x, x′). The extra dimension provides a “short-cut” that allows us

to realize our metric as a geodesic distance. In the Appendix A, we give an example

involving the chord length of circles that illustrates this situation.

Consider a Riemannian metric on Rn × R+

ds2 = h2(ρ)dρ2 + ρ2dxidxi. (5.4.1)
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These coordinates are chosen to make later expressions simpler.

As an example, n = 1 and h(ρ) = 1
ρ

is one description of the metric of constant

negative curvature on a hyperboloid. The substitution y = 1
ρ

turns this into the

familiar Poincare’ metric

ds2 =
dy2 + dx2

y2
. (5.4.2)

To continue with this example, (which we will not use directly, but is similar

enough to those we will use) the real line is a sub-manifold, the line of constant

y = y0. There are two induced distances on this sub-manifold: we can ask for the

minimum length of curves that lie on the sub-manifold: this is just the Euclidean

metric on the real line. Or the minimum over all curves that start and end at points

(y0, x) and (y0, x
′) on the line, but in between can lie anywhere on the plane (Fig. 5.4).

It is clear that the latter can be smaller than the Euclidean distance. It is in fact a

non-geodesic metric on the real line, whose length metric is the Euclidean metric.

Y

X

(y0, x) (y0, x
′)

Figure 5.4: Trajectory in the x y plane shown by dotted line
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The geodesic (5.4.1) minimizes

∫ √
h2(ρ) + ρ2

(
dx

dρ

)2

dρ. (5.4.3)

We need to find the geodesic that connects the (ρ0, x
′) with (ρ0, x). By a rotation

and translation we can choose x = ( r
2
, 0, · · · 0) and x′ = (− r

2
, 0, · · · 0), where r =

|x− x′| is the Euclidean distance. The geodesic will then lie in the (ρ, x1) plane. The

Euler-Lagrange equation implies that

ρ2√
h2(ρ) + ρ2

(
dx
dρ

)2

(
dx

dρ

)
= ρ1, (5.4.4)

for some constant ρ1. A moments thought will show that the geodesic is reflection

symmetric around x = 0 and that dρ
dx

= 0 at x = 0. Thus dx
dρ

= ∞ at x = 0, and we

conclude from the above equation that ρ1 is simply the point at which x = 0.

dx

dρ
= ± ρ1h(ρ)

ρ
√
ρ2 − ρ2

1

. (5.4.5)

Thus

x(ρ) = ±
∫ ρ

ρ1

ρ1h(ρ)

ρ
√
ρ2 − ρ2

1

dρ. (5.4.6)

It follows from

h2(ρ) + ρ2

(
dx

dρ

)2

=
h2(ρ)ρ2

ρ2 − ρ2
1

, (5.4.7)
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that

r = 2

∫ ρ0

ρ1

ρ1h(ρ)

ρ
√
ρ2 − ρ2

1

dρ. (5.4.8)

L = 2

∫ ρ0

ρ1

ρh(ρ)√
ρ2 − ρ2

1

dρ. (5.4.9)

where r is the Euclidean distance and L is the length of geodesic.

Together eqns. (5.4.8, 5.4.9) give parametrically via ρ1, the length of the geodesic

in terms of the Euclidean distance r. When r → 0, we have also ρ0 ≈ ρ ≈ ρ1 and

L ≈ ρ0r. (5.4.10)

The inverse problem of determining h(ρ) given L(r) looks hard. But recall that

only the asymptotic behavior of σ(r) as r →∞ is universal. So we should be able to

find a h(ρ) within the same universality class by looking at the asymptotic behavior.

What should h(ρ) be in order that

L(r) ∼ C − C ′

rn−2+η
+ . . . (5.4.11)

This is the behavior of the metric σ(x, x′) in the continuum regularization we

derived in the last Sec. 5.3.

The equation (5.4.10) determines ρ0 in terms of the cutoff.

ρ0 =
2
−n
2 π−

n
4

√
na

n
2

. (5.4.12)
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Suppose h(ρ) ∼ h1ρ
−µ as ρ→ 0. Then we get

r ≈ 2h1ρ1
ρ−1−µ

1 − ρ−1−µ
0

µ+ 1
(5.4.13)

r ≈ 2h1

µ+ 1
ρ−µ1 . (5.4.14)

Also,

L ≈ 2h1
ρ1−µ

0 − ρ1−µ
1

1− µ
, (5.4.15)

so that

L ≈ 2h1

1− µ
ρ1−µ

0 − 2h1

1− µ

[
µ+ 1

2h1

]µ−1
µ

r1− 1
µ . (5.4.16)

This gives us what we want if

1− 1

µ
= −(n− 2 + η),

µ =
1

n− 1 + η
. (5.4.17)

The resulting metric

ds2 ≈ h2
1ρ
− 2
n−1+η dρ2 + ρ2dxidxi (5.4.18)

has curvature going to −∞ as ρ→ 0 when (n+ η − 1) ≥ 1. The case n = 2, η = 0 is

marginal. In that we get a metric of constant negative curvature asymptotically.

5.5 Application

The motivation for the standard deviation metric which we have obtained in Sec. 5.2

comes from the resistance metric. Resistance metric which also goes by the name
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of resistance distance was probably introduced by D. J. Klein [57] in chemistry. He

wanted to associate a notion of a chemical distance which would be dependent on

the multiplicity of the bonds between atoms in a molecule. Atoms having multiple

bonds between them are in a sense closer as compared to a pair with lower number

of bonds.

To give an insight into this abstract notion of distance, we use collaboration

graphs. These graphs arise in network theory based on the team work of the people

involved. The nodes in the graphs are representative of the actors/authors and a

link exists between a pair of nodes depending on the mutual collaborations of the

actors/authors. Using this notion of resistance distance, we can form clusters of people

based on their collaborations. Intuitively, a pair of authors, who have collaborated

on ten papers (say) are closer than a pair of authors who have only one joint paper.

We shall demonstrate our ideas of resistance distance for four movie actors. We

list the movies in which each pair of actors have acted together and find a notion of

closeness between them based on their collaborations. The movies in which the pairs

have acted together are-

• Brad Pitt, Gary Oldman- True Romance

• Morgan Freeman, Brad Pitt- Se7en

• Harvey Keitel, Brad Pitt- Thelma & Louise, Inglourious Basterds

• Harvey Keitel, Gary Oldman- None

• Gary Oldman, Morgan Freeman- Batman Begins, The Dark Knight, The Dark

Knight Rises

• Morgan Freeman, Harvey Keitel- None
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Based on this we find the adjacency matrix for these actors. An entry is made

if a pair of actors have a collaboration. We also find a collaboration matrix based

on the number of collaborations between the authors. The diagonal entries for the

collaboration matrix denote the number of the movies the actor has acted in this set

of movies.

Adjacency Matrix

Pitt Oldman Morgan Keitel


Pitt X X X

Oldman X X ×

Morgan X X ×

Keitel X × ×

Collaboration Matrix

Pitt Oldman Freeman Keitel


Pitt 4 −1 −1 −2

Oldman −1 4 −3 0

Freeman −1 −3 4 0

Keitel −2 0 0 2

1
3Ω

1 Ω

1
2Ω

1 Ω

Freeman Oldman

Pitt

Keitel

Figure 5.5: Resistor network with resistances weighted by number of collaborations

We now construct an electrical circuit (Fig. 5.5) with resistances between nodes
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based on the inverse of the number of collaborations. On computing the effective

resistance between each node we can classify the closeness between the actors. The

effective resistance between all the pairs are listed below-

• Gary Oldman, Morgan Freeman- 0.285

• Harvey Keitel, Brad Pitt- 0.500

• Brad Pitt, Gary Oldman- 0.571

• Morgan Freeman, Brad Pitt- 0.571

• Harvey Keitel, Gary Oldman- 1.071

• Morgan Freeman, Harvey Keitel- 1.071

The results indeed show that the pairs (Gary Oldman, Harvey Keitel) and (Mor-

gan Freeman, Harvey Keitel) are farthest from other pairs since they have not acted

in movies together. However Gary Oldman and Morgan Freeman are closest to each

other since they have most number of collaborations between them. We did similar

demonstrations over large number of actors using Mathematica [79, 80]. We sort ac-

tors based on their affinity (Fig. 5.6) to Robert De Niro. The corresponding graph

showing mutual collaborations between those actors is also drawn (Fig. 5.7).

Summary

In this chapter, we show that a non-Riemannian metric on space-time emerges from

scalar quantum field theory. In dimensions n > 2 even the free field induces a very

different metric from Euclidean space: space-time has finite diameter for example.

Yet, the length of any curve as defined by this metric is (up to a constant) the usual
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Figure 5.6: Plot of effective resistance with Robert De Niro as central character

Euclidean length. Thus, classical measurements are unaffected. We calculated the

metric explicitly in free field theory and also took a step towards understanding the

interactions by calculating it for the Wilson-Fischer fixed point.

It is of great interest to calculate the metric (perhaps exactly) for the case of

asymptotically free scalar quantum field theories in two dimensions. We would expect

that there are logarithmic corrections to the length of a curve, a first indication of

non-Riemannian geometry. Also, there are many two dimensional scalar field theories

that are exactly solvable [81]; can we get an exact formula for the metric in some of

them?

But by far the question of greatest interest is that of λφ4 theory in four dimen-
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Figure 5.7: Graph with edges between actors who have acted in same movie

sions. Since perturbation theory breaks down at short distances, it is not possible to

study this question analytically. A numerical simulation is needed to understand how

σ(x, x′) depends on, or differs from, the Euclidean distance |x−x′|. How does the em-

bedding in Sec. 5.4 of two dimensional space-time into three dimensional hyperbolic

space change in the presence of interactions?

Another interesting offshoot of our work could be to extend this notion of distance

beyond Gaussian distributions. There are many distributions in nature which do not

fall under this. They may be discrete as well. Can one give a notion of proximity for
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such arbit distributions by studying the data associated with them? For example, if

one were to study the amount of rainfall all over the world, will the deserts be easily

clustered under one group based on the data.
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[52] I. Bárány, A. F. Beardon, and T. K. Carne, Mathematika 43, 165 (1996).

[53] P. Diaconis and L. Miclo, Combin. Probab. Comput. 20, 213 (2011).

[54] J. Kigami, Analysis on Fractals (Cambridge University Press, 2001).

[55] A. Kar and S. G. Rajeev, Phys. Rev. D 86, 065022 (2012).

[56] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks (The Mathe-

matical Association of America, 1984).

[57] D. J. Klein, J. Math. Chem. 12, 81 (1993).

[58] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

[59] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).



123

[60] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585

(1964).

[61] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry (American

Mathematical Soc., 2001).

[62] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces

(Springer, 1999).

[63] A. Das, Field Theory: A Path Integral Approach (World Scientific, 2006).

[64] J. Kigami, J. Funct. Anal. 204, 399 (2003).

[65] J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View

(Springer-Verlag, 1987).

[66] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).

[67] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon

Press, 2002).

[68] M. Aizenman, Phys. Rev. Lett. 47, 1 (1981).
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APPENDIX A

METRIC GEOMETRY

A metric on a set X is a function d : X ×X → R such that

• d(x, x) = 0

• d(x, x′) > 0 if x 6= x′ (separation)

• d(x, x′) = d(x′, x) (symmetry)

• d(x, x′) ≤ d(x, x′′) + d(x′′, x′) (triangle inequality)

The most familiar example is the Euclidean metric on Rn.

|x− x′| =

√√√√ n∑
i=1

(xi − x′i)2. (A.1)

This metric is so ingrained in us that we might forget that the actual metric

of space-time should be deduced by physical measurements and is not self-evidently

Euclidean. Often (e.g., numerical simulations of scalar field theory, solution of PDEs)

we have to approximate space by a discrete lattice Ωn
a,L = a (Z/ΛZ)n with nearest

neighbor spacing a and period L = Λa in each direction. Then the Euclidean metric

is approximated by the length of the shortest path connecting two points on the
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lattice

l(x, x′) =

√√√√ n∑
i=1

(xi − x′i mod L)2. (A.2)

The square root of a metric is again a metric. More generally, if f : R+ → R+ is a

concave function f ′′(x) < 0 with f(0) = 0, then we can construct from a given metric

d a new one d̃(x, x′) = f((d(x, x′)). But the square of a metric is not always a metric.

For example, the square of the Euclidean metric is not a metric: the sum of the sides

of an obtuse triangle is not greater than the square of the side opposite.

The length of the shortest curve (geodesic) connecting two points in a Riemannian

manifold is a metric. Any metric arising as the length of geodesics has the interme-

diate property: given any pair of points (x, x′) there is another x′′ (a midpoint) that

saturates the triangle inequality:

d(x, x′) = d(x, x′′) + d(x′′, x′).

Any point x′′ lying along the shortest geodesic connecting x, x′ would suffice.

There are metrics that do not have this property. According to them, the distance

between two points can be shorter than the length of every curve connecting them.

Obviously, such metrics are non-Riemannian. This is precisely the case of interest to

us.

Although the concept of derivative does not make sense in general on a metric

space (for that we would need a differential manifold), Lipschitz functions are the

analogue of differentiable functions. A function f : X → Y between metric spaces is

said to be k-Lipschitz if

dY (f(x), f(x′))

dX(x, x′)
< k,
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for all x, x′ ∈ X. Roughly speaking, the magnitude of the derivative is less than k.

Two metric spaces are Lipschitz equivalent if there are continuous, one-to-one Lips-

chitz maps in each direction which are inverses of each other. Lipschitz equivalence

is roughly analogous to diffeomorphisms between manifolds.

Length of Curves

Given a metric we can define the length of a curve as the largest sum of the length of

line segments. In more detail, a curve γ : [0, T ]→ X can be broken up into segments

0 ≡ t0 < t1 < t2 < · · · tk < T ≡ tk+1.

The sum of the chord lengths

k+1∑
i=1

d (γ(ti−1), γ(ti))

can be thought of as an approximation to its length. The actual length of the curve

is the least upper bound of all such approximations; i.e., avoiding all the “short-cuts”

made by the chords:

l[γ] = sup
0<t1<···tk<T

k+1∑
i=1

d(γ(ti−1), γ(ti)).

The length of a continuous curve can be infinite. There are well known examples of

continuous curves (e.g., Koch curve) with an infinite length in the Euclidean metric.

Also, suppose we define d(x, x′) = |x−x′| 12 , the square root of the Euclidean distance.

Then the length of every straight-line segment is infinite!

For the familiar case of a differentiable curve in a Riemannian manifold, it is not
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hard to verify that this agrees with the usual definition

l[γ] =

∫ T

0

√
gγt

(
˙γ(t), ˙γ(t)

)
dt.

The reason is that, for short enough segments, the chord length is approximated by

the length of the tangent vector. It is not hard to come up with continuous but not

differentiable curves of infinite length.

Length Metric

Given a metric d, we can often construct from it a (possibly distinct) length metric

dl(x, x
′) as the greater lower bound of the lengths of all the curves that connect x to

x′. (This construction could fail if the length of every continuous curve is infinite, or

if there is no greater lower bound.)

A metric is said to be geodesic (also called a interior space or intrinsic metric) if

this the one we started with: dl(x, x
′) = d(x, x′).

The Euclidean distance is an example of a geodesic metric. Any length metric is

itself a geodesic metric. That is, (dl)l = dl for any d.

An example of a non-geodesic metric (Fig. A.1) is the length of a chord connecting

two points on a circle:

d(θ, θ′) = 2 sin
|θ − θ′|

2
(A.3)

where 0 ≤ θ, θ′ ≤ 2π is the usual polar co-ordinate. For small angles, this agrees with

the arc-length

d(θ, θ′) ≈ |θ − θ′|. (A.4)

Therefore if we break-up an arc into small segments and add up the lengths we
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θ

θ′

Figure A.1: Diagram shows how arcs are approximated by chord lengths

will get the arc-length; i.e., the length metric of d is just the arc-length

dl(θ, θ
′) = |θ − θ′|. (A.5)

But in general

d(θ, θ′) < dl(θ, θ
′).

Note that although the chord length is not a geodesic metric on the circle, it is

the length of a geodesic in the plane in which the circle is embedded. We showed that

the standard deviation metric of a scalar field theory can be similarly realized as the

geodesic length in a space of one dimension higher.

Triangle Inequality for Standard Deviation Metric

Suppose that ai, bi, ci (for some finite range of the index i) are positive numbers

satisfying the inequality ai ≤ bi + ci. Then it is obvious that the weighted averages
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〈a〉 =

∑
i

aiwi∑
i

wi
also satisfy 〈a〉 ≤ 〈b〉+ 〈c〉. More generally, the Lp-averages for p ≥ 1,

〈a〉p =


∑
i

apiwi∑
i

wi


1
p

satisfy

〈a〉p ≤ 〈b〉p + 〈c〉p.

To see this, simply note that 〈a〉p ≤ 〈b+ c〉p by monotonicity; the rest follows by

the fact that the Lp-norm satisfies the triangle inequality.

If we replace the discrete average above by an integral with respect to a probability

measure e−S(φ)dφ, the inequality continues to hold. For positive functions,

a(φ) ≤ b(φ) + c(φ) =⇒ 〈a〉p ≤ 〈b〉p + 〈c〉p. (A.6)

〈a〉p =


∫
e−S(φ)ap(φ)dφ∫
e−S(φ)dφ


1
p

. (A.7)

These facts are useful for us because they show that the Lp average of a metric is

also a metric. We just have to choose

a(φ) = |φ(x)− φ(x′)|, b(φ) = |φ(x)− φ(x′′)|, c(φ) = |φ(x′′)− φ(x′)|. (A.8)

Thus σ(x, x′) =
√
〈(φ(x)− φ(x′))2〉 satisfies the triangle inequality.
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APPENDIX B

EFFECTIVE RESISTANCE FROM

GAUSSIAN INTEGRALS

The effective resistance in an electrical resistor circuit can be obtained by doing Gaus-

sian integrals. Though it is not the conventional way to find the effective resistance,

the technique comes in handy for complicated circuits. They are both minimization

problems in two different domains.

R2R1

A B C

Figure B.1: Resistors in series

Given an electrical circuit of resistors in series (Fig. B.1) we can find the total

dissipation energy. If the voltages φA, φC at A,C are fixed, the problem amounts to
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finding the variable voltage χ at B. In order to minimize the energy (V
2

R
),

E(χ) =
(φA − χ)2

R1

+
(χ− φC)2

R2

, (B.1)

we get the optimal voltage χ0 by setting dE
dχ

= 0 as below-

χmin =
R2φA +R1φC
R1 +R2

. (B.2)

The minimum energy is obtained for E(χ0), i.e.

Emin =
(φA − φC)2

R1 +R2

. (B.3)

This shows that the effective resistance in the circuit is Rnet = R1 + R2. One can

obtain the same result by doing the following Gaussian integral.

∫
dχ e

− (φA−χ)2

R1
− (χ−φC)2

R2 =

√
π

R1R2

R1 +R2

e
− (φA−φC)2

R1+R2 (B.4)

The result of doing the integral amounts to minimizing the exponent in the integrand.

The same principle can be carried over to other complicated circuits which amounts

to doing multi-dimensional Gaussian integrals. The steps involved in finding the ef-

fective resistance across nodes A,B have been listed below-

• The dissipation energy for the electrical circuit is computed by fixing the volt-

ages φA, φB at two nodes A,B and varying the voltages φ1, . . . , φn at n other

nodes.
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• The dissipation energy E(φA, φB|φ1, . . . , φn) turns out to be-

(
φA φB φ1 φ2 . . . φn

)

L2×2 J2×n

JTn×2 Kn×n





φA

φB

φ1

φ2

...

φn


. (B.5)

L involves the resistances between the edges A,B; J involves the resistances

which join edges A or B to node 1, 2, . . . n; K includes the resistances between

the nodes 1 to n alone. The block structure divides the vertices where voltages

is fixed, from the ones where it isn’t.

• The dissipation energy can be minimized by computing the n dimensional Gaus-

sian integral-

∫
dφ1 . . . dφn e

−E(φA,φB |φ1,...,φn) = e−Emin(φA,φB). (B.6)

• The exponent in the result is-

Emin (φA, φB) =

(
φA φB

) Q2×2


φA
φB

 , Q = L− JK−1JT . (B.7)

The effective resistance is RAB = 2/Tr(Q).

The above methodology can be used to compute the resistance metric for any

arbitrary configuration of resistors easily, which are hard to find in general. A lot of

this can be programmed into Mathematica and computed.
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