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Abstract

We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability 
(the existence of infinitely many local integrals of motion). The IQFT are understood as “effective field 
theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable 
deformations generated by scalar local fields Xs , which are in one-to-one correspondence with the local 
integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved 
currents in a universal way. The first of these scalars, X1, coincides with the composite field (T T̄ ) built from 
the components of the energy–momentum tensor. The deformations of quantum field theories generated by 
X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the 
deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the 
CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in 
sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable 
deformations.
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1. Introduction

A substantial number of Integrable Quantum Field Theories (IQFT) is known in two space–
time dimensions. If � is the space of all 2D Quantum Field Theories (QFT), one can think of 
the subspace �Int ⊂ � of IQFT. This paper is an attempt to get insight into the geometry of 
�Int. Given an IQFT, we will try to enumerate all its infinitesimal deformations which preserve 
integrability. By definition, such deformations form the tangent space T �Int|IQFT, which is a 
subspace of T �|IQFT. We mostly ignore the profound question of ultraviolet (UV) complete-
ness, assuming that the theory has UV cutoff. One can think of elements of � as “effective field 
theories” which make sense only at sufficiently large length scales. Then the space T �|IQFT is 
given by the span of all local scalar fields (modulo total derivatives) present in a given IQFT, 
and the subspace T �Int|IQFT consists of all fields which, being added as perturbations of IFT, 
preserve its integrability.

In this work we show that for any IQFT the space T �Int|IQFT includes an infinite number 
of independent fields Xs , where s runs the values that enumerate the commuting local integrals 
of motion (IM) of the IQFT. The scalars Xs can be defined in terms of the components of the 
local currents associated with the corresponding IM (Sect. 4). Alternatively, in massive theories, 
the fields Xs are identified with special solutions of the form factor bootstrap equations, relating 
them to the deformations of the factorizable S-matrix via the CDD factor (Sect. 7). In many cases 
the set {Xs} form basis in T �Int|IQFT, but generally a finite number of additional fields have to 
be added to span the whole of this space. We illustrate the situation by explicit construction in 
the case of the sine-Gordon model (Sect. 8).

The field X1 is identical to the composite field (T T̄ ). We show that the deformations generated 
by X1 are “solvable” in a certain sense, even if the original theory is not integrable, and we 
discuss some properties of such deformations (Sect. 5).

Our calculations in Sects. 4 and 6 suggest that the question of integrability can be untangled 
from the problem of UV completeness. Our statements below apply to QFT understood as “ef-
fective field theories”, in which all UV pathologies can be hidden under a short-distance cutoff. 
However, in Sect. 9 we make some remarks concerning possible UV behavior of IQFT, and on 
the problem of UV completeness.

2. QFT and deformations

In this discussion, QFT is understood in an abstract sense, as an infinite vector space F =
Span{Oa(z)} of local fields, and a collection of their correlation functions

〈Oa1(z1) ... Oan(zn) 〉 . (2.1)

Here z (e.g. z1, ..., zn above) generally denotes point of space–time. Anticipating dealing with 
IQFT, we limit our attention to 2D space–time, which we take to be Euclidean. Then the points 
z can be labeled by complex coordinates, which are denoted z, ̄z,

z → (z, z̄) ,

{
z = x + iy,

z̄ = x − i.y
(2.2)
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The correlation functions (2.1) are required to satisfy certain properties (some of which we 
specify below, as needed), the most important being the Operator Product Expansion (OPE)1

Oa(z1)Ob(z2) =
∑

c

Cc
ab(z1 − z2)Oc(z2) . (2.3)

One might (or might not) think in terms of Lagrangian QFT, where the theory is described by 
some sort of local action

A[ϕ] =
∫

L
(
ϕ(z), ∂μϕ(z), ∂μ∂νϕ(z), ...

)
d2z (2.4)

which appears in the functional integral over a set of “fundamental fields” ϕ. As was mentioned, 
in this discussion we mostly ignore the problem of UV completeness of the theory, assuming that 
some UV regularization (with the microscopic cutoff distance ε) is imposed. The density L may 
involve higher derivatives of the fundamental fields, i.e. (2.4) is a generic quasi-local action in the 
sense of Ref. [1]. In this approach the space � is understood as the space of quasi-local actions 
(2.4). The coordinates {gi} on � may be given by a full set of parameters – “coupling constants” 
– on which L(ϕ(z), ... |gi) may depend. To shorten notations, we denote by Ag, g = {gi}, the 
points of �. Let again Fg be the space of local fields in Ag . Generic variation of the action (2.4)
can be written as

δA =
∫

δL(z) d2z , δL(z) =
∑

i

δgi Oi(z) , (2.5)

where Oi(z) are elements of a basis in the factor-space

F̂g =F (0)
g /∂Fg ; (2.6)

with F (0)
g being the subspace of scalar fields (for simplicity, we assume that � includes only 

rotationally invariant theories), and ∂F = Span{∂zOa, ∂z̄Oa} is the subspace of total derivatives, 
which bring zero contributions to the integral in (2.5). The Lagrangian approach formulation 
makes self evident the following deformation formula

δg〈O1(z1) · · ·On(zn) 〉g = −
∑

i

δgi

∫
d2z〈Oi(z)O1(z1) · · ·On(zn) 〉g

+
n∑

k=1

〈Oi1(z1) · · · δgOik (zk) · · ·Oin (zn) 〉g. (2.7)

Here δgOa = ∑
i δg

i (B̂i(g)O)a , where Bi(g) are some linear operators in Fg . (The integral over 
z can – and usually does – diverge as z → zk , and in UV complete theory δOk(zk) must include 
cutoff dependent counterterms to make the finite limit ε → 0 possible.) In what follows we will 
not explicitly refer to any Lagrangian representation, but simply postulate the above deformation 
formula. The latter then represents the sense in which the space F̂g is the tangent one T �|g .

1 Here the OPE is understood in the strong sense: we assume that (2.3) converges at some finite range of separations 
z1 − z2. Then the bi-local products as in the l.h.s. of (2.3) can be understood as elements of F . Although this assumption 
is not crucial for our conclusions below, it considerably shortens some of our arguments.
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3. IQFT and local IM

One of the common characteristics of Integrable Field Theories is the presence of an infinite 
set of commutative local Integrals of Motion (IM). Local IM are generated by local currents, i.e. 
pairs of local fields (Ts+1(z), �s−1(z)), which satisfy the continuity equations

∂z̄Ts+1(z) = ∂z�s−1(z) . (3.1)

The index s labels the currents; we will assume its values to represent their spins: the subscripts 
s + 1 and s − 1 indicate the spins of the corresponding fields.2 The spins s for the currents takes 
values in some set {s} ⊂ Z which may be different for different IQFT.3 However, in all QFT there 
are conserved currents (3.1) with s = ±1, the components of its energy–momentum tensor Tμν . 
Below we also use conventional notations

T = −2π Tzz , T̄ = −2π Tz̄z̄ , � = 2π Tzz̄ (3.2)

for these components. If the theory is P-invariant (which we assume), the set {s} is symmetric 
with respect to the P-reflection s ↔ −s. In what follows it will be convenient to use separate 
notations for negative s, i.e. for s > 0 we write �−s−1 as T̄s+1, and T−s+1 as �̄s−1, and remove 
all negative entries from {s}. The negative-s equations (3.1) then read

∂zT̄s+1(z) = ∂z̄�̄s−1(z) . (3.3)

It follows from (3.1) and (3.3) that the integrals

Ps = 1

2π

∫
C

Ts+1(z) dz + �s−1(z) d z̄, (3.4)

P̄s = 1

2π

∫
C

T̄s+1(z) d z̄ + �̄s−1(z) dz (3.5)

do not change under trivial deformations of the integration path C, and thus define local IM.
The notion of integrability requires that the operators4 Ps form a commutative set,

[Ps,Ps′ ] = 0 (3.6)

for any s, s′ ∈ {s}. For local IM of the form (3.4), (3.5) this condition implies

[Pσ ,Ts+1(z)] = ∂zAσ,s(z) , [Pσ ,�s−1(z)] = ∂z̄Aσ,s(z) , (3.7)

and

[Pσ , T̄s+1(z)] = ∂z̄Bσ,s(z) , [Pσ , �̄s−1(z)] = ∂zBσ,s(z) , (3.8)

2 This identification is convenient, but not essential for our arguments below. When there are more than one current of 
the same spin, additional labels may be introduced.

3 Since we assume that the currents are local fields, only integer or half-integer spins s are allowed, but the require-
ment of commutativity (3.6) rules out the possibility of having many fermionic elements. Supersymmetry provides an 
interesting extension, but we do not discuss it here.

4 As usual, the space of states and operator representation may depend on the choice of the Hamiltonian picture (equal-
time slices); specifics of such choice are completely irrelevant for the present discussion.
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where Aσ,s and Bσ,s are some local fields, as well as similar equations for the commutators of 
P̄s with local currents. Let us remind here that the commutators [Ps, O(z)] with any local field 
O can be defined, in the Euclidean language, by the integrals

[Ps,O(z0)] = 1

2π

∮
Cz0

[Ts+1(z)dz + �s−1(z)d z̄]O(z0). (3.9)

In QFT with “coventional” UV behavior (i.e. the one controlled by some UV fixed point) the 
components (Ts+1, �s−1) both have scale dimensions s + 1. Let us note here that generally the 
dimensions are defined relative to a given fixed point; Generally, if QFT has a more complicated 
UV structure, the notion of dimensions may be ambiguous.

4. Local fields Xs

Given the currents (Ts+1, �s−1) and (T̄s+1, �̄s−1), one may attempt to construct “com-
posite” scalar fields by taking limit z → z′ in the operator products Ts+1(z)T̄s+1(z

′) and 
�s−1(z)�̄s−1(z

′). Of course generally such limits are singular, demanding subtractions and thus 
making the result ambiguous. It turns out that if one takes OPE in the special combination

Ts+1(z)T̄s−1(z
′) − �s−1(z)�̄s−1(z

′) (4.1)

and ignores the terms with total derivatives of local fields in the expansion, the non-derivative 
divergent terms cancel out (in fact, all non-derivative terms with singular coefficients disappear 
in the OPE of (4.1), see below). As the result, the limit z′ → z exists in a straightforward sense, 
and it uniquely (up to derivatives) defines the scalar local field Xs ,

lim
z→z′

(
Ts+1(z)T̄s−1(z

′) − �s−1(z)�̄s−1(z
′)
) = Xs(z

′) + derivatives terms. (4.2)

Let us note that the “derivative terms” may well involve divergent coefficients, therefore this 
definition of Xs is unambiguous only up to the derivatives. Fortunately we are interested in the 
fields as the vectors in F̂ , so the derivatives are irrelevant.

Let us show that the limit in (4.2) indeed exists. The following calculations are nearly identical 
to those presented in Ref. [2]. Consider, say, the z̄ derivative of the combination (4.1). As the 
consequence of the continuity equations (3.1), (3.3), the following easily verified identity holds

∂z̄
(
Ts+1(z)T̄s+1(z

′) − �s−1(z)�̄s−1(z
′)
)

= (∂z + ∂z′)�s−1(z)T̄s+1(z
′) − (∂z̄ + ∂z̄′)�s−1(z)�̄s−1(z

′) . (4.3)

Now, plug in the OPE of the products appearing in the r.h.s., e.g. �s−1(z)T̄s+1(z
′) = ∑

i c
i(z −

z′) Oi(z
′), where the sum is over the complete set of independent fields Oi of the theory, and 

ci(z − z′) are c-number coefficient functions. Since all the coefficient functions depend on the 
separation z − z′, and thus get annihilated by the derivatives ∂z + ∂z′ and ∂z̄ + ∂z̄′ in (4.3), one 
concludes that the OPE of the l.h.s. in (4.3) consists entirely of the derivative terms. Similar 
calculation reveals that the ∂z derivative of (4.1) also involves only derivatives of local fields. 
That is, both ∂z̄ and ∂z of the operator product (4.1) vanish as the vectors in F̂ =F/∂F . In turn, 
it follows that the OPE of (4.1) consists mostly of the derivative terms, except for a single term 
which comes with a constant (independent of z − z′) coefficient. The value of the coefficient 
is irrelevant, since it can be absorbed in the normalization of the field Xs below. Setting this 
coefficient to one (for every s) brings the OPE of (4.1) to the form
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Ts+1(z)T̄s−1(z
′) − �s−1(z)�̄s−1(z

′) = Xs(z
′) + derivative terms , (4.4)

which in particular makes obvious the regular nature of the limit in (4.2). Let us stress that 
the scalar fields Xs s ∈ {s} can be constructed in any IQFT explicitly, in terms of the local IM 
densities.

Some useful properties of these operators are worth noting. Consider IQFT in the geometry 
of an infinite cylinder, with the spatial coordinate x compactified on a circle with some finite cir-
cumference R. Then the energy spectrum is discrete, and the stationary states |n〉 are, generally, 
non-degenerate. Then, by repeating the arguments in [2], one can prove that

〈n|Xs |n〉 = 〈n|Ts+1|n〉 〈n|T̄s+1|n〉 − 〈n|�s−1|n〉 〈n|�̄s−1|n〉 . (4.5)

It follows, in particular, that in the infinite system R = ∞ expectation values 〈Xs〉 with s > 1
vanish, because the rotational symmetry of the infinite system forces the expectation values in 
the r.h.s. of (4.5) to vanish.

In IQFT with UV limit controlled by a CFT, the scalars Xs have the dimensions of 
[mass]2(s+1), in particular, they all are “irrelevant” in standard nomenclature. This simply means 
that adding such fields as the perturbations to the action (as we do in Sect. 6 below) alters the UV 
properties of the theory, and generally – but not always – breaks UV completeness of the theory. 
We make further remarks on this point in Sect. 9.

5. (T T̄ ) flow

The operator X1 is special. It is built from the components (3.2) of the conserved energy–
momentum tensor, which is present in any QFT, integrable or not. It is identical to the field 
(T T̄ ), a frequent actor in a number of previous studies [2–7]. A general definition can be found 
in [2]. Here we use the notations X1 and (T T̄ ) interchangeably. Infinitesimal deformations gen-
erated by this operator turn out to be in some sense “solvable”, even if the original theory is not 
integrable. Consider a curve Aα in the theory space �, with α denoting the parameter along the 
curve, such that at any point of the curve the tangent vector is proportional to X1,

d

dα
Aα = 1

π2

∫
(T T̄ )α d2z (5.1)

where the additional subscript α in the r.h.s. is added to emphasize that the operator is built 
(according to (4.4)) from the components of the energy–momentum tensor associated with the 
QFT Aα , and the numerical coefficient 1/π2 is introduced for future convenience. Consider the 
theory Aα in finite size geometry, and let En = En(R, α) energies of the stationary states |n 〉; we 
also denote Pn = Pn(R) = 2πln/R, ln ∈ Z, the corresponding spatial momenta of these states. 
Then, as was shown in [2], the equation (4.5) with s = 1 reduces to

〈n|(T T̄ )|n〉 = −π2

R

(
En

∂

∂R
En + P 2

n

R

)
. (5.2)

Since, by definition of Aα , an infinitesimal shift of α is generated by (T T̄ )α , this leads to closed 
differential equation for the energy levels,

∂
E(R,α) + E(R,α)

∂
E(R,α) + P 2(R) = 0 . (5.3)
∂α ∂R R
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The equation has the same form for all eigenvalues En(R, α); for this reason we dropped the 
index n. Since in what follows α is generally regarded as the parameter, we use instead the 
abbreviated notation

Eα(R) ≡ E(R,α) (5.4)

for any level En(R, α). Let us note here some properties of the solutions of equation (5.3), 
comparing them to the expected properties of the finite-size energies.

(1) Equation (5.3) has the form of the inviscid Burgers equation with the additional driving 
force −P 2(R)/R = −(2πl)2/R3, with E(R, α) playing the role of the velocity field, and α
interpreted as the time.

(2) The general solution at P = 0 is well known; it is given explicitly by the equation

Eα(R) = E0 (R − α Eα(R)) . (5.5)

At generic P = 2πl/R the solution is more complicated but still can be found by the method of 
characteristics.

(3) Since in our context the solution Eα(R) has the meaning of the finite size energy levels, 
one expects them to behave as Eα(R) � Fα R, up to the terms bounded at R → ∞. The above 
equation yields the α-dependence of the bulk vacuum energy density Fα

Fα = F0

1 + αF0
, (5.6)

where F0 is the vacuum energy density of the unperturbed theory A0. Furthermore, if the theory 
is massive, it follows from (5.3) that the mass Mα of any of its particles depends on α as5

Mα = M0

1 + α F0
. (5.7)

Since this equation applies to any particle of the theory, the mass ratios in Aα are independent 
of α.

(4) In general, the energy levels can be written as

Eα = FαR + μα u(r, t) , (5.8)

where r = μαR, μα is an α-dependent mass scale which satisfies μα = μ0/(1 +αF0) (in massive 
theories one can take μα = Mα), t = α μ0μα , and the dimensionless function u(r, t) is bounded 
as r → ∞. Then it is straightforward to check that u = u(r, t) itself satisfies the same equation

∂tu + u∂ru + (2πl)2

r3
= 0 , (5.9)

in terms of the dimensionless quantities.
(5) If the theory is massive, one can consider finite size energy levels corresponding to two 

identical particles having opposite momenta p and −p (so that the total momentum P is zero). 
If MR >> 1 (M = Mα), and energies are well below all inelastic thresholds, the R-dependence 
of E = E(R, α) has the form

E = Fα R + 2
√

M2 + p2 , (5.10)

5 It is easy to check that Eα = FαR +
√

M2
α + P 2(R) solves (5.3), provided Mα is given by (5.7).
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up to terms exponentially small in R. The momentum p here is subject to the quantization 
condition pR + �(p) = 2πn, where �(p) = �α(p) is the scattering phase. It is not difficult 
to show that consistency of (5.10) with (5.9) demands �α(p) = �0(p) − 2α p

√
M2 + p2, or, 

in terms of the rapidity difference θ = θ1 − θ2 (θ parameterizes the particle momentums as 
p = M sinh(θ/2))

�α = �0 − αM2 sinh θ . (5.11)

We see that the effect of the α-flow on the two particle S-matrix is in adding a CDD factor 
S(θ) = S0(θ) exp{−iαM2 sinh θ} (this of course agrees with Eq. (7.4) in Sect. 7 below, provided 
one identifies αM2 = −α1).

If the theory A0 is integrable, the theories Aα are integrable as well (see Sect. 6 below). In 
that case the ground state energy of the finite-size system can be found using the Thermodynamic 
Bethe Ansatz (TBA) technique [8] (for a review see e.g [9]). It is not difficult to show that the 
deformation (5.11) of the scattering phase in the TBA equations leads to the deformation of the 
ground state energy according to (5.5).

(6) As is well known, solutions of Eq. (5.3) tend to develop “shocks”. Mathematically, shocks 
are algebraic (square-root) singularities of E(R, α). Even if one starts with physically acceptable 
E(R, 0) (the analytic function of R at all real R > 0, with singularity at R = 0), evolution in α
may generate a shock singularity at finite positive R. A simple example is provided by the case 
when A0 is CFT, where the finite-size energies of the stationary states |n〉 have the standard form

E0(R) = F0 R − C

R
, (5.12)

with the constants C = Cn = (π/6R) (c−12(�n + �̄n)) expressed in terms of the central charge 
c and the eigenvalues �, �̄ of the operators L0, L̄0. Limiting our attention to the case Pn = 0
(i.e. � = �̄) one finds from (5.5)

Eα(R) = Fα R + R

2α̃

(
1 −

√
1 + 4α̃ C

R2

)
, (5.13)

where α̃ = α (1 + α F0). When α̃ Cn is negative, En(R, α) develops a square-root singularity at 
real positive R = 2

√−α̃Cn. On the other hand, if α̃C is positive, Eα(R) is free from singularities 
at all real R2, including R2 = 0. In fact, it is easy to argue that these features of Eα(R) are not 
specific to the cases when A0 is a CFT. This follows from an alternative form of Eq. (5.5),

Rα = R0 + α E (5.14)

in terms of the functions R0(E), Rα(E) inverse to E0(R), Eα(R), respectively (we still assume 
P = 0 for simplicity, and regard α as a parameter). It shows that the E vs R plots of Eα(R) and 
E0(R) are related just by affine transformation of the coordinate axes E → E, R → R − αE, 
hence the above features are typical if one assumes that E0(R) is regular at all R > 0 but diverges 
at R = 0. Both at positive and negative α̃C, the form (5.13) looks pathological, or at least unusual, 
if one wants to interpret Eα(R) in terms of local QFT with finitely many local degrees of freedom. 
But while the R2 → 0 behavior at positive α̃C may, in principle, be excused in a theory with 
finite UV cutoff,6 the singularity at finite positive R is more troublesome. A possible connection 

6 In fact, it is possible to argue that the theory Aα with positive α, even if equipped with finite UV cutoff, does not 
have a ground state at any R, at least if c is positive. We will comment on this point elsewhere [10].
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of such “shock” singularities to the problem of UV completeness of the theory Aα, Eq. (5.1), 
will be discussed in Sect. 9 in a more general context. Here we note that the finite size spectrum 
(5.13) was obtained in [6,11,12], as the solution of Nambu string quantized in a certain unitary 
gauge, under conjecture that interactions of transverse string oscillations are described by (T T̄ )

perturbation of free bosonic CFT, and using techniques of IQFT with the two-particle S-matrix 
S(θ) = exp{−iαM2 sinh θ}.

The results presented in this section have substantial overlap with interesting recent work of 
Cavagliá, Negro, Szecsenyi, and Tateo [13].

6. Integrable perturbations

We now want to show that every field Xs ∈ F̂ generates an integrable deformation of a given 
IQFT, or, in other words, that Xs all lie in T �Int

∣∣
IQFT, the tangent to the subspace �Int ⊂ � at 

the IQFT.
To this end, let us first prove that the commutator of any local IM Pσ with any of the fields 

Xs(z) is a total derivative of a local field, i.e.

[Pσ ,Xs(z)] ∈ ∂F . (6.1)

Here the commutator can be understood as the contour integral (3.9). To prove (6.1), replace 
Xs(z) by its point-splitted version, and consider the commutator

[
Pσ ,

(
Ts+1(z)T̄s+1(z

′) − �s−1(z)�̄s−1(z
′)
)]

. (6.2)

The commutator naturally splits into “z-terms”, the terms generated by commuting Pσ with the 
densities localized at z, and “z′-terms” from the commutations with the densities at z′. Recalling 
the relations (3.7) one finds

“z-term” = ∂zAσ,s(z) T̄s+1(z
′) − ∂z̄Aσ,s(z)�̄s−1(z

′) (6.3)

= (∂z + ∂z′)Aσ,s(z) T̄s+1(z
′) − (∂z̄ + ∂z̄′)Aσ,s(z)�̄s−1(z

′) ∈ ∂F .

Similar calculation using (3.8) shows that z′-term lies in ∂F as well. Therefore, the whole com-
mutator (6.2) reduces to a combination of total derivatives, and the desired result (6.1) follows in 
the limit z′ → z.

Take a generic IQFT (which we denote A0 ∈ �Int), and focus on one of its local IM, say Pσ . 
Consider the correlation function

〈O
∮
C

[
Tσ+1(z)dz + �σ−1(z)d z̄

] 〉 (6.4)

where O stands for any insertion of the form Oa1(z1)Oa2(z2)...Oan(zn), and the z, ̄z integration is 
over some closed contour C. The continuity equation for the current (Tσ+1, �σ−1) is equivalent 
to the statement that (6.4) vanishes as long as all the insertion points z1, ..., zn lie outside the 
integration contour C.

Now, let A0 + δgsA be an infinitesimally close QFT generated by adding δgs

∫
Xs(z) d2z to 

the action. According to the deformation formula (2.7), the associated deformation of (6.4) has 
the form
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δgs (Eq.(6.4)) = − δgs

∫
d2w 〈Xs(w)O

∮
C

[
Tσ+1(z)dz + �σ−1(z)d z̄

] 〉

+ 〈O
∮
C

[
δgs Tσ+1(z)dz + δgs �σ−1(z)d z̄

] 〉 , (6.5)

where we ignored the term with δgsO in the r.h.s. since it plays no role in the analysis below. The 
deformed theory would still have the IM Pσ if the field variations δgs Tσ+1 and δgs �σ+1 can be 
adjusted in such a way that the full variation (6.5) vanishes.

To see that this is always possible, let us assume for simplicity that the contour C is simple, 
and focus on the first term in the r.h.s. of (6.5). Split the integration over w into two parts,7∫

R2

d2w (...) =
∫

D(C)

d2w (...) +
∫

D̄(C)

d2w (...) , (6.6)

where D(C) is the part of R2 lying inside C, and D̄ is the complement of D. Then the second 
term in (6.6) vanishes, because for any fixed w ∈ D̄(C) the contour C leaves outside all insertion 
points of Xs(w) O. A non-zero contribution may arise from the first term, where w falls inside C. 
With w ∈ D(C) fixed, one can collapse the contour C on w, thus reducing the integral over z
to the commutator [Pσ , Xs(w)] (see (3.9)), which, according to (6.1), lies in ∂F . The latter 
statement means that

4πi [Pσ ,Xs(w)] = ∂w̄T̂σ+1, s(w) + ∂w�̂σ−1, s(w) , (6.7)

where T̂σ+1, s and �̂σ−1, s are some local fields of spins σ + 1 and σ − 1, respectively. Thus, 
in the remaining integral over w the integrand is written as a total derivative, and the integral 
reduces to the boundary contribution, i.e. to contour integral over C. As a result, the first term in 
the r.h.s. of (6.5) transforms to

−δgs 〈O
∮
C

[
T̂σ+1, s(z)dz + �̂σ−1, s(z)d z̄

]
〉 . (6.8)

Thus, the full variation (6.5) can be made equal to zero by choosing

δgs Tσ+1 = δgs T̂σ+1, s , δgs �σ−1 = δgs �̂σ−1, s . (6.9)

We conclude that after infinitesimal deformation generated by the operator Xs the integral Pσ , 
Eq. (3.4) still conserves, provided the densities (Tσ+1, �σ−1) are deformed as

Tσ+1 → Tσ+1 + δgs T̂σ+1, s , (6.10)

�σ−1 → �σ−1 + δgs �̂σ−1, s . (6.11)

Note that the above analysis applies to deformation generated by any of the scalar fields Xs , 
s ∈ {s}, or any linear combinations thereof, and demonstrates conservation of the whole set of 
integrals Pσ , P̄σ , σ ∈ {s} in the deformed theory. However, it does not prove that the deformed 
IM {Ps, P̄s} still commute with each other. Although at the moment we do not have satisfactory 
proof of this statement, we find its general validity very likely. One of the arguments is as follows. 

7 Here we ignore possible “contact terms” contributions which may came from the integration region |w − z| < ε. It is 
easy to see that such terms can be absorbed into re-definitions of δgs Tσ+1 and δgs �σ−1 in Eq. (6.5).
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Consider two IM, say Ps and Ps′ , and suppose that after the deformation the commutator ceases 
to be zero, [Ps, Ps′ ] = Qs+s′ �= 0. The operator Qs+s′ must be another local IM of the form 
(3.4), of the spin s + s′. A priori, there are two possibilities. Either Qs+s′ is the deformation of 
one of the local IM of the original theory,8 or it is an entirely new IM. In both cases the IM of 
the deformed theory would form a non-Abelian algebra of local higher spin IM, which would 
provide extremely powerful symmetry structure, so far unknown outside CFT or free massive 
QFT. Therefore, breakdown of the commutativity under deformation is unlikely: it would be 
“too good to be true”. With this reasoning, we conjecture that the IM of the deformed theory 
generally still commute with each other.

7. S-matrix and form-factors

Typical IQFT is massive.9 As any massive theory, it is completely characterized by the associ-
ated particle theory – the spectrum of stable particles and S-matrix. The presence of higher-spin 
local IM forces the S-matrix to be purely elastic, in which the number N of particles and the 
set of their individual momenta is preserved after the scattering process. Such S-matrices are 
known as “factorizable”, because then N → N S-matrix is expressed as the product of 2 → 2
S-matrices. The latter is the function of a single kinematic variable θ = θ1 − θ2, the difference 
of the particle’s rapidity. In general, in the presence of mass degeneracies in the particle spec-
trum, the two-particle S-matrix Ŝ(θ) is an operator acting in the “flavor” spaces of the colliding 
particles (see e.g. [16]).

Deformations of IQFT preserving integrability, described in the previous sections, must gen-
erate deformations of the factorizable S-matrix. To understand the situation, let us recall that 
in the factorizable scattering theory the two-particle S matrix must satisfy a number of general 
conditions. When mass degeneracy is present, Ŝ(θ) satisfies the celebrated Yang–Baxter equa-
tion, which typically fixes the “flavor” structure up to a finite number of parameters, but leaves 
the freedom multiplying Ŝ(θ) by an arbitrary overall scalar factor. In addition, there are general 
constraints of analyticity, crossing symmetry, and unitarity, which together fix the scalar factor 
up to the so-called CDD ambiguity,

Ŝ(θ) → Ŝ(θ)�(θ) (7.1)

where �(θ) is a meromorphic function, which is analytic and bounded in the “physical strip”, 
and satisfies the equations

�(θ)�(−θ) = 1 , �(iπ + θ)�(iπ − θ) = 1 . (7.2)

Thus, a generic CDD factor admits the formal representation

�(θ) = exp

{
i

∞∑
s=1

αs sinh(sθ)

}
. (7.3)

8 This would be impossible for some classes of IQFT. For example, in many cases, such as the sine-Gordon model, the 
set {s} includes only odd integers; in such cases s + s′ can not be in {s}.

9 Exceptions are integrable CFT, and the so called integrable massless flows. The latter correspond to the special 
(integrable) RG flows ending at IR fixed points. In such cases the notions of particles and S-matrix are less physically 
clear, and generally are ambiguous. Nonetheless, many such theories admit treatment based by “massless S-matrix” and 
associated TBA equations [3,14,15].
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In fact, in many cases (like sine-Gordon model, or O(N) sigma models) the crossing symmetry 
also excludes terms with even s in (7.3). Although important exceptions exist,10 here we assume 
that {s} includes only odd entries (equivalently, the CDD factor satisfies �(θ) = �(iπ − θ)) to 
simplify the arguments below. Furthermore, a possible bound-state structure (i.e. identifications 
of physical poles with particles) may impose additional constraints on the factor �(θ), which 
further restricts admissible values of s in (7.3) to certain a subset {s} ⊂ N. Importantly, in all 
known cases {s} coincides with the set of spins of local IM (3.4) of the given IQFT. Therefore, 
in the typical situation described above, the space of infinitesimal deformations of a factorizable 
S-matrix involves a finite-dimensional part related to the deformations of solutions of the Yang–
Baxter equation (in what follows we refer to those as the “principal deformations”), and also 
infinite-dimensional space of deformations of the CDD factor,

δŜ(θ) =
(

i
∑
s∈{s}

δαs sinh(sθ)

)
Ŝ(θ) . (7.4)

On the other hand, deformations of QFT, and hence deformations of S-matrix, are generally 
generated by local fields O from F (0)/∂F . The S-matrix version of the deformation formula 
(2.7) reads

δg

[
out 〈A(θ ′

1)...A(θ ′
M)|A(θ1)...A(θN) 〉conn

in

]
= −

∑
i

δgi

∫
d2w out 〈A(θ ′

1)...A(θ ′
M)|Oi(w) |A(θ1)...A(θN) 〉conn

in (7.5)

where it is assumed for simplicity that there is a single kind of particles which we denote A, and 
we use obvious notations for the asymptotic states.11 The matrix elements

〈A(θ ′
1)...A(θ ′

M)|O(w) |A(θ1)...A(θN) 〉conn (7.6)

appearing in the integrand in the r.h.s. of (7.5) are known as the form-factors. The deformation 
formula (7.5) is written for fully connected parts of both the S-matrix element in the l.h.s. and the 
form-factor in the r.h.s., as the superscript “conn” indicates (of course, the same formula remains 
valid if one includes all disconnected parts). In what follows we always discuss in terms of the 
fully connected matrix elements, and omit the superscript “conn”. Also, when not important, we 
omit indicators in/out for the states.

In IQFT the form-factors are constrained by a system of the so called “form-factor bootstrap” 
(FFB) equations, which can be written in closed form, provided the factorizable Ŝ(θ) is given. 
FFB equations are a system of linear functional equations, and the solutions form a vector space. 
The form of the FFB equations is independent of the choice of the field O involved, and from 
this point of view O can be regarded as just a tag labeling basic vectors in the vector space 
of solutions of FFB. It is generally believed that the space of solutions of FFB equations is 
isomorphic to the space F of local fields of the IQFT. In a number of important models this 

10 A notable exception is the situation when the particle spectrum contains charge-conjugated pairs of particles A, Ā, 
but all the A + Ā → A + Ā scattering amplitudes have a zero “reflection” component (see e.g. [17] for an example). Such 
structure is compatible with IM Ps with even s, since the charge conjugation acts on the local IM as CPsC = (−)s+1Ps . 
More generally, it is possible that the two-particle S-matrix, as an operator in the “flavor” spaces, has block-diagonal 
structure; in such cases the CDD ambiguity may involve more then one functional factor. In this discussion we ignore 
such complications.
11 Our convention for the state normalization is 〈A(θ)|A(θ ′)〉 = (2π) δ(θ − θ ′).
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expectation was supported by counting of the solution (see e.g. [18,19]), and for the sine-Gordon 
model, even explicit relations between the bases was established [20,21].

For generic Oi(w) there is no reason for the connected matrix element in the r.h.s of (7.5)
to vanish neither at M �= N , nor, if M = N , at {θ ′

1, ..., θ
′
N } �= {θ1, ..., θN }. Therefore, of course, 

generic Oi ∈ F̂ generates non-elastic scattering processes, and thus the corresponding defor-
mation δgi breaks integrability. However, recall that the S-matrix elements always involve the 
energy–momentum delta functions

i (2π)2 δ (�P+) δ (�P−) (7.7)

(which in (7.5) emerges after the w-integration), where

�P+ =
N∑

k=1

p+(θk) −
M∑
l=1

p+(θl) , �P− =
N∑

k=1

p−(θk) −
M∑
l=1

p−(θl) , (7.8)

and p±(θ) = M e±θ . Therefore, the deformation would not generate inelastic processes provided 
the form-factors in (7.5) with N > 2 or M > 2 vanish on the “energy–momentum surface” sup-
porting the delta-functions (7.7). To make this property consistent with analyticity, one then has 
to demand that the connected form-factors with N > 2 or M > 2 have the form

〈A(θ ′
1)...A(θ ′

M)|O(0)|A(θ1)...A(θN)〉
= �P+ G+({θ}|{θ ′}) + �P− G−({θ}|{θ ′}) (7.9)

with G±({θ}|{θ ′}) regular at the energy–momentum surface. And it is easy to see that the 
structure (7.9) is fully consistent with all FFB equations, notably with the “annihilation pole” 
equation, which states that the form-factors (7.6) have poles when one of the final rapidities θ ′

l

coincides with any of the initial rapidities θk , and relates the residues of these poles to the re-
duced form-factors (7.6), with the particles A(θ ′

l ) and A(θk) deleted from the bra and ket states, 
respectively; clearly, under such reduction the structure (7.9) is preserved, because at θ ′

l = θk the 
associated terms in the sums in (7.8) cancel out. Of course, if O is a derivative of another local 
field, i.e. O ∈ ∂F , its form-factors (7.6) vanish on the energy–momentum surface automatically, 
for any N and M . And naively, one might conclude that the structure (7.9) suggests O ∈ ∂F . 
This, however, is not always the case, because for N = M = 2 the energy–momentum surface 
defined by �P+ = 0, �P− = 0 lies entirely within the locus of the annihilation poles of the 
form-factor

in〈A(θ ′
1)A(θ ′

2)|O(0)|A(θ)A(θ2)〉in . (7.10)

Indeed, in this case the energy–momentum conservation requires that both variables θ1 − θ ′
1 and 

θ2 − θ ′
2 (or the same with θ1 ↔ θ2, if the particles have equal masses) turn to zero, while one 

hits the annihilation pole by bringing to zero either one of these variables. Set θ ′
1 = θ1 + ε1, θ ′

2 =
θ2 + ε2, and expand (7.10) in double Laurent series in ε1 and ε2 (remember that the form-factor 
(7.10) is a meromorphic function). It is not difficult to see from the annihilation pole residue 
equation of the FFB [22] that the leading terms have the form

1

i

(
ε1

ε2
+ ε2

ε1

)
Ŝ−1(θ12)Ŝ

′(θ12) 〈A|O|A〉 + f̂
reg
O (θ12) + O(ε1, ε2) , (7.11)

with θ12 := θ1 −θ2, and the prime denotes the derivative. The regular part f̂ reg
O generally does not 

vanish. The singular terms can be attributed to the mass operator O insertions into the external 
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legs of the 2 → 2 scattering amplitude, as the presence of the factor 〈A|O|A〉 = 〈A(θ)|O|A(θ)〉
(which in fact is θ -independent constant) suggests.

From this analysis we conclude that special solutions of the FFB equations can exist, for 
which all form factors (7.6) with N > 2 or M > 2 vanish on the energy–momentum surface, 
but the ones with N = 2, M = 2 do not. We call those the “special form factors”, and denote X
the operators associated with these special solutions. Clearly, adding to X any total derivative 
of a local field generates again a special solution. Since total derivatives are totally irrelevant 
in the deformation formula (7.5), we may regard X as being defined modulo total derivatives. 
Although a general proof is not available, it is very plausible that the space of special solutions, 
when factorized over the total derivatives, is isomorphic to T �Int.

Every special solution X ∈ F̂ generates infinitesimal deformation of the factorizable S-matrix, 
by the deformation of the two-particle S-matrix (see [23]),

Ŝ(θ) → Ŝ(θ)

[
1 + i δg

sinh θ

(
f̂

reg
X (θ) − 2i Ŝ−1(θ)Ŝ′(θ) 〈A|X|A〉 cosh θ

)]
(7.12)

where f̂ reg
X (θ) is the regular part in (7.10). On the other hand, it is natural to assume that any 

infinitesimal deformation of factorizable S-matrix can be generated by some special solution X
of the FFB equations, via (7.12). Thus, the deformations of the CDD factor (7.1) are generated 
by the operators Xs (see Sect. 5). Then (7.4) suggests that we must have12

f
reg
Xs

(θ) = κs sinh(θ) sinh(sθ) for s > 1 , (7.13)

f
reg
X1

= −2πM2 〈�〉ϕ(θ) cosh θ (7.14)

where the constants κs depend on the normalization of the currents (Ts+1, �s−1), and M is the 
particle’s mass. This expectations will be confirmed by explicit calculations in the sine-Gordon 
model in the next section.

8. Example: sine-Gordon model

The Sine-Gordon model,

ASG[ϕ] =
∫ [

1

4π
∂zϕ∂z̄ϕ − μ2

sinπβ2
cos(βϕ)

]
d2z (8.1)

with real β < 1, is perhaps the best known IQFT. Here we use this example to substantiate the 
statements of the previous section.

The particle spectrum and factorizable S-matrix associated with the model are well known 
(see e.g. [16]). Stable particles are quantum soliton A+ and corresponding anti-soliton A− (which 
can be regarded as basic vectors in the space C2 of the charge states), and a number (which 
depends on the range of the coupling parameter β) of neutral “quantum breathers” Bn. The latter 
can be regarded as A+ A− bound states. The two-particle S-matrix of solitons and anti-solitons 

is an operator Ŝ(θ) = S
ε′

1ε
′
2

ε1ε2 (θ) acting in the tensor product C2 ⊗ C
2 of the charge states of the 

scattering particles. Its explicit form can be found in Ref. [16].
The model (8.1) can be regarded as a CFT perturbed by a relevant operator. According to argu-

ments in [24], the space of local fields FSG is isomorphic to the space of fields of the associated 

12 Note that for all deformations Xs but X1 the second term in (7.12) vanishes, since 〈A|Xs |A〉 = 0 for all s > 1, as is 
easily deduced from (4.5). For s = 1 the well known relation 〈A|Xs |A〉 = πM2 〈�〉 holds.
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UV CFT. It includes the exponentials eiaβϕ with arbitrary real a, as well as all their “descen-
dants”. The latter are suitably regularized fields of the form P(∂μϕ, ∂μ∂νϕ, ...) eiaβϕ , where P
are arbitrary polynomials of the first and higher derivatives of ϕ. The descendants of a given ex-
ponential form a bosonic Fock space Fa , where the exponential field is identified with the Fock 
vacuum. As in CFT, each of the spaces Fa splits into the “level subspaces” characterized by spins 
and scale dimensions of the descendants. It is useful to define the spaces

Fa = ⊕∞
n=−∞ Fa+n , (8.2)

which combine all the fields with the same transformation under the symmetry βϕ → βϕ + 2πZ

of (8.1). The full space FSG is the continuous direct sum of Fa with a ∈ [−1/2 : 1/2].
Being IQFT, the model (8.1) has an infinite number of local IM of the form (3.4), (3.5). In this 

case the spins s run all positive odd values, i.e. {s} = N + 1. All currents (Ts+1, �s−1), as well 
as the negative-spin currents, lie in the subspace F0. The IM Ps , P̄s act in FSG by commutators: 
∀O ∈ FSG

isO(z) := [Ps,O(z)] , īsO(z) = [P̄s ,O(z)] , (8.3)

where the commutator may be understood as in (3.9). In fact, the operators is , ̄is act separately 
in each of the subspaces Fa .

The above structure of FSG was essentially proven in Refs. [21,25], starting with the lattice 
realization of the model. By explicit lattice construction, and then taking the continuous limit, it 
was found that FSG supports action of an infinite set of fermionic “creation operators”

β∗
s , γ ∗

s and β̄
∗
s , γ̄ ∗

s , (8.4)

along with the corresponding “annihilation operators” βs , γ s and β̄s , γ̄ s , where again s runs 
over 2N − 1. The fermionic operators obey standard anti-commutation relations, with non-zero
anti-commutators

{βs ,β
∗
s′ } = δs,s′, {γ s ,γ

∗
s′ } = δs,s′ , (8.5)

and all fermions commute with is , īs defined in (8.3). The operators βs , γ s annihilate the expo-
nential fields eiaβϕ . Then, the spaces Fa emerge within the module �a generated by the operators 
(8.3) and (8.4).13 More precisely, by ascribing the “fermionic charges” q to the operators (8.4)
(q = +1 to γ ∗

s and γ̄ ∗
s , and q = −1 to β∗

s and β̄
∗
s )) the module �a can be split into the sum of

subspaces �(q)
a of given q . Then the zero charge sector �(0)

a is isomorphic to Fa . Form factors of 
the fields associated with natural basic vectors in �(0)

a (monomials in (8.4)) have simple compact 
form [21].

As was mentioned, components of conserved currents all lie in the space F0. They have simple 
form in the fermionic basis

Ts+1 = Cs β∗
s γ

∗
1 · 1 , �s−1 = Cs β∗

s γ̄
∗
1 · 1 , (8.6)

T̄s+1 = Cs β̄
∗
s γ̄

∗
1 · 1 , �̄s−1 = Cs β̄

∗
s γ

∗
1 · 1 ,

13 Relation between this “fermionic” basis in Fa is complicated but can be established level by level [26,27]. The 
important question of explicit realization of the fermionic operators directly in the continuous theory (8.1), or even in its 
UV CFT, remains largely open.
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where 1 ∈ F0 is the identity field, and Cs are constants whose values depend on the normal-
ization of the currents. Furthermore, the scalar fields Xs defined by (4.4) are identified with the 
vectors

Xs = C2
s β∗

1γ
∗
s β̄

∗
1γ̄

∗
s · 1 . (8.7)

One way to establish (8.7) is to use the following remarkable identity [21]. Consider the 
operator

Q =
∑

s∈N−1

(
isγ s + īs γ̄ s

)
, (8.8)

which has the fermionic charge +1, and squares to zero. It is possible to show that Q annihilates 
all vectors in the q = −1 subspace of the a = 0 module,

Q�
(−1)
0 = 0 . (8.9)

For instance, applying (8.8) to β∗
s γ

∗
1γ̄

∗
1 · 1 leads to 

(
i1β∗

s γ̄
∗
1 − ī1β∗

s γ
∗
1

) · 1 = 0, which of course 
is the continuity equation (3.1). More to the point, apply Q to the vector β∗

s β̄
∗
s γ

∗
1γ̄

∗
1γ

∗
σ · 1. Then 

(8.9) yields

iσ β∗
s β̄

∗
s γ

∗
1γ̄

∗
1 · 1 = ī1β∗

s β̄
∗
s γ

∗
1γ

∗
σ · 1 − i1β∗

s β̄
∗
s γ̄

∗
1γ

∗
σ · 1 . (8.10)

While the l.h.s. represents the commutator of Pσ with the field (8.7), the r.h.s. is expressly a total 
derivative, in agreement with (6.1). As a bonus, this calculation gives the explicit form of the 
fields appearing in the r.h.s of (6.7),

T̂σ+1, s = β∗
s β̄

∗
s γ

∗
1γ

∗
σ · 1 , �̂σ−1, s = β∗

s β̄
∗
s γ̄

∗
1γ

∗
σ · 1 (8.11)

in the sine-Gordon model.
Alternatively, the identification (8.7) can be established using the explicit form of the finite-

size matrix elements of these fields, which, in particular, expressly satisfy (4.5) (see [25], 
Eq. (10.5)). Moreover, using explicit expression of the form factors in the fermionic basis (see 
[21]), it is not difficult to verify that the form-factors of the fields (8.7) satisfy all the special 
properties described in Sect. 7, namely the form factors (7.6) with N > 2 or M > 2 vanish, while 
the N = M = 2 form factors reproduce (7.14) with κs = C2

s , (the last result, Eq. (7.13), for the 
sinh-Gordon model was obtained independently in a recent paper [28] by a different method), 

and 〈�〉 = π M2

4 cot
(

π

2(1−β2)

)
.

We note here that the sine-Gordon model S-matrix has, apart from the CDD deformations 
generated by Xs , two independent “principal” deformations. One is the change in the parame-
ter β , which is generated by the field (∂μϕ)2. The other is less obvious. It is generated by the 
“soliton-creating” operator Y =O4

0 +O−4
0 ; here and below we use the terminology and notations 

of Ref. [29]. The two terms have soliton charges +4 and −4, respectively, therefore after defor-
mation by this operator the theory conserves the soliton number only modulo 4. It is possible to 
prove that this deformation preserves integrability, and the operator Y generates the “8-vertex” 
deformation of the SG S-matrix which is described in Ref. [30]. An instructive way to show 
that Y ∈ T �Int|SG is to recall that SG model has the symmetry with respect to the affine quan-
tum group Uq( ˆSL(2)) symmetry [31] whose generators are given in terms of non-local currents 
(J±, H±) and (J̄±, H̄±) of fractional spins (see Eq.(4.8) of [29] for definitions). Albeit non-
local, the currents satisfy continuity equations (3.1), which allows one to derive
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J±(z)J̄±(z′) −H±(z)H̄±(z′) =O±4
0 (z′) + derivatives (8.12)

in analogy to (4.4), and use the arguments of Sect. 6 to show that [Ps, O±4
0 (z)] ∈ ∂F .14

9. Discussion

Here we considered the subspace �Int of integrable QFT is the space � of all QFT. Given 
a IQFT ∈ �Int, we studied the content of the tangent space T �Int

∣∣
IQFT of infinitesimal defor-

mations of IQFT which preserve integrability. We found that this space contains infinitely many 
independent vectors Xs , where s runs the same values that labels the local IM Ps of the IQFT. 
The full tangent space may include finitely many additional basic vectors (see discussion at the 
end of Sect. 7). Since massive IQFT are described by their factorizable S-matrices, we observed 
that the local deformations Xs are in correspondence with infinitesimal deformations (7.4) of the 
two-particle S-matrix by the CDD factor. The remaining admissible deformations correspond to 
deformations of the solutions of Yang–Baxter equations proper.

In the previous sections we almost completely ignored the problem of short distance behavior 
of QFT. We assumed that QFT constituting � are equipped with a certain UV cutoff, with cutoff 
distance ε, and limited attention to the scales much greater than ε. Note that this is exactly the 
space in which Wilson’s RG transformations are defined, see Ref. [1]. Of course, it is of much in-
terest to understand which members of � are “UV complete”, i.e. admit meaningful limit ε → 0. 
This condition is naturally formulated in the language of RG: we are interested in RG trajectories 
which can be extended backward in RG “time” (the logarithm of the characteristic length scale) 
indefinitely, without encountering any singularities or pathologies. Such UV complete QFT con-
stitute but a small subspace in the whole space of QFT, �(∞) ⊂ � in the notations of Ref. [1].15

Generally, characterization of �(∞) and the associated tangent space is very difficult problem 
even in 2D, but perhaps it can be simplified if one limits attention to IQFT. This sort of ideas was 
one of the main motivations for this work.

In principle, there are many ways to probe short distance behavior of a theory. Perhaps the 
simplest is to consider the energy spectrum of a finite size system in the geometry of infinite 
cylinder. Then the behavior of En(R) at small R might tell us something about short distance in a 
given theory. Somewhat more complicated but still feasible is to look at the two-point correlation 
functions of local operators, through their intermediate-state decompositions in terms of the form 
factors [33]. Then the UV consistency may be probed by looking at short distance behavior of 
such correlation functions. Below we mostly discuss the finite-size energies, but then make some 
remarks concerning the second approach.

14 By the same arguments one can show that the operators O0±1/β
= exp{± i

β ϕ} also lie in T �Int|SG. Perturbing 
with these operators generates a confining interaction between the solitons, which completely restructures the particle 
spectrum. There are a number of puzzles regarding this deformation, we do not feel ready to discuss it.
15 Of course the fact that the overwhelming majority of small deformations of UV complete QFT are not UV complete is 
well known since the discovery of the “Moscow Zero” in QED, and the (T T̄ )-flow discussed in Sect. 5 seems to provide 
an “exactly solvable” example of the UV problem generated by deformation: at α̃C < 0 the energy level Eα(R) develops 
square-root singularity at certain finite positive R which may be much greater than the cutoff distance ε. And we do not 
believe that just naming this singularity “the Hagedorn transition” of some sort dismisses the problem of explaining its 
physical nature. We hope to return to this question elsewhere [10].
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In massive IQFT with known factorizable S-matrix the finite-size energies can be obtained 
using the Thermodynamic Bethe Ansatz (TBA) method and/or its generalizations[34–36].16 One 
can take factorizable S-matrix of any known IQFT and modify it by a CDD factor (7.3), and 
then solve (numerically) the modified TBA equations for the ground state energy E(R). In fact, 
the coordinates αs are not the best for this sort of calculation (primarily because the series in 
(7.3) has limited domain of convergency in θ ); it is more convenient to use the conventional 
representation

�(θ) =
N∏
p

Bp − i sinh θ

Bp + i sinh θ
, (9.1)

where the parameters Bp are either real negative or enter in complex conjugated pairs with neg-
ative real part (see e.g. [16]), and the number N of the factors in the product may be finite or 
infinite.17 The union of the N -tuples {Bp, p = 1, · · · , N} with all N constitutes coordinate sys-
tem in the space of CDD factors, alternative to the coordinates {αs} in (7.3). If ignoring the 
parameters associated with the principle deformations of the factorizable S-matrix, both can be 
regarded as coordinates in �Int. Under special arrangements of the CDD poles, the TBA equa-
tions may lead to E(R) which is regular at all positive R and display CFT-like singularity at 
R = 0, and these CDD deformations can be shown to give rise to UV complete IQFT. Famous 
example of this kind is provided by Al. Zamolodchikov’s staircase model [38], whose S-matrix, 
from the point of view of the present paper, is the free Majorana fermions S-matrix with a simple 
CDD factor. Further examples can be found in [39,40]. But it is known for a long time that with 
generic choice of the CDD factor (9.1), solution of the TBA equations results in E(R) having 
singularity at finite R. Extensive analysis of this phenomenon was conducted by Al. Zamolod-
chikov in the early 90’s [41], who, by careful numerical calculations, discovered that in all cases 
that such singularity emerged, it happened to be the square root branching point. The singularity 
was later observed (without elucidating its character) in [42], and was attributed to the bosonic 
character of the TBA equation there. In fact, the singularity seems to be a typical feature of 
solutions of TBA equations, bosonic and fermionic alike. It also does not stem from any ab-
normality in the high-energy behavior of Ŝ(θ), in particular, the square-root singularity appears 
under finite-N deformations (9.1), with generic choice of Bp . It seems suggestive to note that, 
at least mathematically, these singularities are of the same character as the singularities observed 
in Eα(R) in the T T̄ -flow in Sect. 5. It is tempting to assume that appearance of such singulari-
ties indicates a violation of true locality, in other words that theories with such singularities lie 
outside �(∞). But it is difficult to support this assumption without much better understanding 
of the physics behind the formation of such singularities. Some steps in this direction will be 
reported in [10].

16 Another approach is based on so called “Non-Linear Integral Equations” (NLIE), generalizing Destri–deVega equa-
tions [37]. In many cases it is more powerful than TBA, but so far it lacks the universality and model independence of 
the TBA algorithm.
17 If the number of factors is finite, such modification does not alter the high-energy asymptotic of the S-matrix, except 
for possibly changing the sign. However, with the infinite product the UV behavior can be substantially affected. For 
example, by taking the limit limN→∞

[
2N−iα sinh θ
2N+iα sinh θ

]N
one can obtain the exponential factor exp{−iα sinh θ} appearing 

in the T (T̄ ) flow, see Sect. 5. The union of the collections {Bp} with all numbers of entries can be regarded as another 
coordinates in the space of CDD factors, alternative to the coordinates {αs } in (7.3).
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Alternative approach is to study the correlation functions using by known approach based on 
the intermediate-state decomposition, with the use of exact form factors [32,33]. For instance, 
the two-point function 〈O(z)O(0)〉 is represented as the sum

∞∑
n=1

1

n!
∫ [ n∏

j=1

dθj

2π

] ∣∣〈A(θ1) . . .A(θn)|O(0)|0 〉∣∣2 exp
{
−MR

n∑
i=1

cosh θi

}
(9.2)

where R = √
zz̄ (again, for simplicity we assume single particle in the spectrum). In local the-

ories the series converges for all positive R (and for all R with positive real part). In principle, 
one can find solutions of the FFB equations for any S-matrix, and the CDD deformations lead 
to corresponding deformations of the form factors. For example, for the Sine-Gordon model S-
matrix with CDD factors (9.1) the it is not too hard to find the form factors using the technique of 
[21]. Very little is known about convergence of the series for generic S-matrix, but it is plausible 
that generally, even with regular high-energy behavior, the series converges only at sufficiently 
large R > R∗, and analytic continuation shows branching point singularity at R∗. This of course 
would indicate breakdown of locality (the discontinuity across the branch cut is directly related 
to the commutator). The problem deserves detailed study.

In this work we only considered Lorentz invariant IQFT. But some of our main results 
seems to apply to more general setting. Thus, the properties established in Sect. 6 for the op-
erators Xs generalize straightforwardly for the fields Xs,s′(z′) = limz→z′ [Ts+1(z)T̄s′+1(z

′) −
�s−1(z)�̄s′−1(z

′)], which may have non-zero spins s − s′, and thus generate integrable defor-
mations breaking the Lorentz invariance. Connections of such “effective theories” with lattice 
integrability seems an interesting question to explore.
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