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ABSTRACT OF DISSERTATION

MEASUREMENT OF CP PARAMETERS IN B~ — D 4,- 70K~
AND STUDY OF THE X (3872) IN B — Jipntn~ K
WITH THE BABAR DETECTOR

This dissertation presents two analyses performed on data collected with the BABAR
detector at the SLAC PEP-II ete™ asymmetric-energy B Factory. First, a Dalitz analysis
is shown that performs the first measurement of CP violation parameters in the decay
B~ — D,4+,.-.0K~ using the decay rate asymmetry and D — D° interference. The
results can be used to further constrain the value of the CKM angle v. The second
analysis studies the properties of the X (3872) in neutral and charged B — Jipntn~ K
decays. Measurements of the branching ratio and mass are presented as well as the search

for additional resonances at higher masses.
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decays were analyzed separately to uncover possible different properties of the X (3872)
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Chapter 1

Introduction

1.1 Weak interactions and CP violation

The invariance of Quantum Field Theory (QFT) under the continuous symmetry transfor-
mations of the Poincaré group (the relativistic equivalent to the Galilei group in classical
mechanics) gives rise to the usual ten conservation laws. In addition, we have the following

potential discrete symmetry operations:

e ( : particle —antiparticle (charge conjugation)
o P:(t,x)r— (t,—x) (parity or space inversion)
o T:(t,x)+— (—t,x) (time reversal).

The CPT-theorem states that the combined operation of C', P and T is a symmetry of

I Direct consequences

every local, Lorentz invariant QFT with a hermitian Hamiltonian.
(and possibilities for experimental tests) are the equality of particle and antiparticle masses
as well as their lifetimes. If CPT is indeed conserved in nature it follows that CP and T’
separately, are either both conserved or both violated for a given interaction.

Since the weak interaction only couples left-handed particles (or right-handed anti-

particles) both C' and P are violated. The combined operation CP that turns left-handed

'For a pedagogical derivation of the CPT theorem and historic references see [3].
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particle into right-handed anti-particles on the other side, was thought to be a good
symmetry for weak interactions until 1964 when Cronin and Fitch discovered CP violation
in the neutral kaon system [4]. Even larger CP violating effects in the B meson system
observed by the BABAR and Belle experiment establish CP (and T') violation for the weak
interaction. In the following we will see under which conditions the Standard Model (or
any field theory) allows for CP violating effects.

First, we need to establish the CP transformation of an arbitrary complex field ¢
under the CP operator Ucp. A heuristic argument uses the fact that (CP) = T~! in case
the CPT theorem holds. Using ¢(t,x) = ¢oe'®*ED and Tp = —p we get for the time
reversal

To(t,x) = ¢o e TPHED = o(t, x)*, (1.1)

i.e. the complex conjugate of the original field. Hence, the CP conjugate of ¢ is given by

the hermitian conjugate ¢* and we allow for an arbitray phase factor
Ucp pULp = €®¢*. (1.2)
Next, we consider a simple “toy” field theory with the hermitian Hamilton density
Hi=9¢O0+g" ¢* O, (1.3)

where ¢ is a coupling constant and O an arbitrary operator [5]. The CP conjugate of this

Hamiltonian is readily obtained as
Ucp HiULp = g €9¢* 0" 4+ g* e 60 (1.4)

and if we choose v = —2arg(g) the system is invariant under Ucp. In other words, the

phase factor of Ucp is fixed by the coupling constant. If we consider a system with two
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coupling constants, like

Ho = g1¢001+ 92009+ h.c. (1.5)

Ucp Ho Ué‘P = g1 99" OF + g2 €"¢* O} + h.c.

we can no longer absorb the phase into the coupling constant if the phases of g; and g
are different. Whatever o we choose, Ucp will not be a symmetry of the system giving
rise to CP violating effects.

In the Standard Model, the charged current weak interaction for N generations is

2

Wby (1 = 2)Vij 5 + hec., (1.6)
where 1); are the down-type particle mass eigenstates, Ez are the up-type antiparticle
mass eigenstates and V;;1); are the weak eigenstates connected to the mass eigenstates
by the unitary N x N weak mixing matrix V. The coupling between generation ¢ and
Jj is therefore proportional to g V;;. If V' contains irreducible complex phases, the theory
will allow for CP violating processes. The following section, will investigate this for the

currently known three quark generations.

1.2 CKM quark mixing matrix

For three quark generations, the quark mixing matrix V' is commonly expressed as a 3x3

unitary matrix operating on the down-type quark mass eigenstates

d/ Vud Vus Vub d
s 1= Ve Vs Vi s (1.7)
v Via Vis Vi b
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and is called the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [6,7]. It is
instructive to check whether a 3 x 3 unitary matrix allows for a (CP violating) complex
phase. An N x N complex matrix contains 2N? real numbers. The unitarity requirement

of V

N
> ViiVi =6 (1.8)
k=1

consists of N? constraints on the matrix elements, reducing the number of independent
parameters to N2. For 2N quark fields, there are (2N — 1) independent phases that can be
absorbed into the quark fields, leaving N — (2N — 1) = (N — 1)? free parameters. Out of
these (N —1)? parameters (g) = N(N —1)/2 can be chosen as mixing angles between the
different quark pairs. The remaining (N — 1)(/N — 2)/2 parameters are complex phases.
For N = 3 quark generations, the CKM matrix V' can therefore be parameterized using
three real mixing angles and one complex phase giving rise to possible CP violation in the
quark sector. For an explicit confirmation for the cases N = 2,3 see [5].

A “standard” parameterization [8] of V' using three (Euler) angles and a phase is given

by
C12513 512€13 s13€” 1018
V= —s12c93 — 12823513613 19093 — S12893513€713 593C13 (1.9)
_ 613 _ _ 1013
512823 — €12€23513¢€ C12523 — 512€23513€ €23C13

with ¢;; = cost);; and s;; = sinf;; for the three generations i, j = 1,2,3. This parameteri-
zation is exact to all orders and contains the three real mixing angles 612, 623, 613 and the
phase §. Another parameterization that makes use of the relative size of the mixing angles

Ss12 > S23 > s13 was proposed by Wolfenstein and is expressed in powers of A = s19:

1—)A?)2 A AX3(p — in)
V= A 1-X%/2 AN +0(\Y) (1.10)
AN (1 — p—in) —AN? 1
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with A, p and 1 being real numbers of order unity.
Out of the unitarity constraints (1.8) of the CKM matrix the following describes best

the CP violation in B meson decays:
kadvk,, Vaud Vil + VeaViy + ViaVii = 0. (1.11)

In the complex plane this equation represents a triangle, the Unitarity Triangle (UT).

Rotating one of the sides (V.4V,;) onto the real axis and rescaling it to unity yields

VudVy 41 ViaViy,

= 1.12
VeVl T v (1-12)

Figure 1.1 shows a picture of the rescaled UT. The three angles of the UT are denoted by

a, 3 and v:

Ltdit}‘; L(:di>’[<3 Ludi*b
— _ — — c = ————=_ub ) 1.13
a = arg ( VeV, ) B = arg ViV ) v = arg VeV, (1.13)

Using the Wolfenstein approximation (1.10) the angle v can be expressed in terms of n

and p:

AAN2
= arg( (1-X2)(1 (1 —in/p))

_)\2 3
Y, - arg( (1 —X2/2)AN (p—l—m))

: (1.14)

- an -

bli

which is also indicated in Fig. 1.1 by the apex of the triangle. Moreover, since sjze " =
AN (p—in)+O(\*) we can identify § ~ — arg(AN?(p—in)) = tan~! % = v up to corrections
of A*. This also justifies v being called the weak phase.

Fig. 1.2 summarizes the current experimental results [9] for the apex of the UT. The

different color bands indicate confidence regions from different measurements. The nu-
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A
A
n 7777777777 I
VidVib b VigVip
u Vid Vb
[Vea Vel | Vea Vel
|
I
|
I
Y ! B
0 ' -
0 P 1

Figure 1.1: The rescaled Unitarity Triangle described by Eq. (1.12).

merical values of some observables obtained by the global fit shown in the figure are:

A = 0.2272 +0.0010

A = 0.809+0.0014
p=p(l—X/2) = 0.197 £0.030
7=n(1-X/2) = 0.339+0.019

a = 97.3+5.0

B = 229410

v = 598449 (1.15)

Note that these numbers are obtained by a global fit of all measurements. Direct measure-
ments might have larger errors. For example, the world average on (3 is sin(23) = 0.687 +
0.032 [10] and the best direct measurement of v from BABAR is currently v = 67 £33 [11].
Despite the fact that we already have fairly good constraints on the apex of the UT, it
is still indispensable to measure each observable directly, and thus to over-constrain the
triangle. New Physics beyond the Standard Model (beyond CKM) could show up in de-
viations from the UT and therefore it is important to measure all sides and angles of the

triangle to very high accuracy.
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07 71— T — T
06 \?{ZB Amg | @ =
d FPCP 06 |
0.5 ﬁ\ v =
g~ N\ 1
04 L SN 7
= 3 sol. w/ cos 2B <0 ]
0.3 g (excl. at CL>0.95) E
€ ]
0.2 > o N
0.1 V! Veol
B

0 | I P I U I S

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ol

Figure 1.2: Experimental constraints [9] on the apex of the Unitarity Triangle. p =
p(1 —A2/2) and 77 = (1 — A?/2) are the rescaled Wolfenstein parameters. ex is the CP
violating parameter in the kaon system and Am, 4 are measurements obtained from Bg d
mixing.

1.3 Measuring the CKM angle ~

In the following sections we present different methods to directly measure the CKM angle
~. The basic idea of all methods is similar to the double slit experiment. Given two
amplitudes A; and Ase’® with an unknown relative phase ¢, one can measure the phase
difference through the interference pattern of the two amplitudes |A; + Ae™®|? = | A1 |2 +
|As)? + 2§R(AlAgei¢’). If A; o are real, the interference term becomes 24 A5 cos ¢ and by
measuring cos ¢ one can determine the phase difference ¢ up to a two-fold ambiguity due
to cos(¢) = cos(¢+ 7). In our case, we are not interfering light, but quantum mechanical
decay amplitudes of particles.

Since « is the phase of the V,;, matrix element, we necessarily need to interfere ampli-
tudes of which at least one involves a b — wu transition. The Feynman diagrams of two
decays that we will encounter numerous times in what follows are shown in Fig. 1.3. The
left diagram shows the color-allowed decay B~ — D°K~ and the right diagram shows the

color-suppressed? decay B~ — D°K~. With N, = 3 colors and the measured values for

2The internal W emission in the right diagram puts constraints on the allowed colors of the € and s
quark to form colorless mesons together with the pre-determined colors of the b and u quark from the B™.
This reduces the number of possible amplitudes.
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the CKM matrix elements one can estimate the ratio of the amplitudes to be

_ABT = D°KT)| 1|V Vs
"BEJAB S DK N Vi Vil

Nl = (= 2/2) = o~ il

%

N
~ 0.39/3 ~0.1. (1.16)
u u b U
(B) (D% (D)
b C wW- C
(B7)
W= U s
(K7) (K™)

|
<

Figure 1.3: Color allowed B~ — DYK~ (left) and color suppressed B~ — DK~ decay
(right). The b — u transition in the right decay gives rise to the weak phase e~%.

We can then write the amplitudes of the two decays as

AB- - D'K™) = Ap

A(B~ — D°K™) = Aprpese ™™ (1.17)

where we have defined the magnitude and phases of the color suppressed decay relative to
the color allowed decay and Ap is a real number. e~ arises due to Vj,, in the weak decay
and 0p is an unknown (CP-conserving) strong phase. To observe interference between the
two decays, the D and D° need to decay to the same final state, which we call f. We

define the D-decay amplitudes as

=
)
o
!
=
Il
8N
~

ADY - f) = Afrfei‘sf (1.18)
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with 7y as the amplitude ratio and J; an unknown strong phase. The amplitude of the

cascade decay including D°/D° interference is
A(B~ — DyK™) = AgA, (1 +rpry ei(é—”) : (1.19)

where 0 = dp + d; is the overall strong phase and Dy indicates that the D meson is
detected via the final state f. We only observe the branching ratio B(B~ — DsK~),

which is related to the amplitude (1.19) by
B(B~™ — DyK~) = |A(B~ — DyK™)]> = A3 A} (14 r5*r} + 2rprycos(d — 7)) . (1.20)

Since the only CP-violating quantity in (1.20) is -y, the CP-conjugate mode is obtained by

replacing iy — —i7y and the branching ratio for the BT decay becomes
B(BT — Dsz+) = |A(BT — DfK+)\2 = AQBA? (1+ TB27"J2c + 2rprycos(6 + 7)) . (1.21)

Equations (1.20) and (1.21) have a total of six unknowns (Ap, Ay, 7p,7¢,0,7). How many
observable are there? Ap can be determined by measuring B(B~ — D°K~) x B(D° —
K~I"y;) where the flavor of the D meson is tagged by the charge of the kaon. Measure-
ments of B(D? — f) and B(D" — f) give Ay and ry. The remaining two observables,
B(B~ — DyK~) and B(B* — DyK™"), depend on 4, v and rp. We realize that we have
six unknowns but only five observables and therefore the problem is under-determined.
However, this can easily be overcome by adding a second decay mode D — f’. This will
result in four new observables, B(B~ — DpK~), B(B* — DpK™), B(D° — f') and
B(D° — f’), but only three new unknowns (rp, Ap, §4/). Therefore, it allows the extrac-
tion of the strong phase 9, the amplitude ratio rp and the weak phase v, simultaneously.

A. Soffer first pointed out that CP-violation measurements performed by this method
suffer from ambiguity which is at least 8-fold [12]. Since the measured decay widths

contain the term cos(d £ ), from which we hope to extract «y, the value of cos(d £ ) will
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be invariant under the following symmetry operations

Si i oy, 8 d
S, 1 oy« 4

Sy ¢ y—y+mw d—d—m

leading to an 8-fold ambiguity. This holds for all CP-violation measurements in which the
measurable widths depend only on trigonometric functions of the sum of a weak phase
and a CP-conserving phase.

So far, we have not specified which final states f should be used. In the following,
we present in chronological order three different proposals that have been put forward to

realize the above measurement.

1.3.1 Gronau-London-Wyler method (GLW)

Gronau, London and Wyler (GLW [13,14]) proposed in 1991 to use D decays into CP
eigenstates for the direct measurement of v. The CP even or odd eigenstates of the D
meson are DY = (D° + D%)/+/2. These can be identified by their CP even (K9 79, K2
p°, K%w) or CP odd (nt7~, KT K~) decay products. Since CP violation in the D meson
system in negligible small in the Standard Model it can be safely disregarded. The idea
is to extract v from the decay rate asymmetry of B~ — DY K~ and BT — DL K*. With

the definitions from (1.17) we can write the amplitude of the B decay as

V2A(B™ — DYK™) = A(B~ - DK")+ A(B~ — D'K~) = Ap (1 +rp ei(5B—7)>

V2ABT — DUKY) = A(B*Y - DYK*)+ A(BY — DK*) = Ap <1j:rB ei(éBJr'y))

and the decay rate asymmetry is

A2 . )
|A(BY — DYKH)|? —|A(B~ — DYLK7)? = o (\1 +rpel®Bt2 _|1£rp esz—m?)
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= A%rp (£cos(dp +7) Fcos(dp — 7))

= F2A%rpsindpsiny. (1.22)

In the last step we have used the trigonometric identity cos(a=3) = cos acos fFsin asin 3.
Equation (1.22) also shows possible limitations of this method pointed out by Atwood,
Dunietz and Soni (ADS, [15]):

1. DY decays to CP final states are either Cabibbo suppressed or color suppressed and

the experimentally feasible total is less than 5%.

2. Due to the numerical value of rp ~ 0.1, the CP violating asymmetries are only on

the order of 10%.

3. The sensitivity to v depends on the unknown strong phase (difference) dp that could

severely limit the application of the GLW method.

4. The method requires knowledge of Ap and rp through the measurement of 5(B~ —

D°K~) and B(B~ — D°K™).

The last point is worth considering in more detail because it will lead to the ADS method.
In practice, measuring the color suppressed decay B(B~ — DK ™) requires that the D° be
identified in a hadronic final state since semileptonic decays suffer from unacceptably high
backgrounds due to the invisible neutrino. However, the decay chain B~ — DK —, D? —
f results in the same final state as B~ — DK, D% — f, where the D" undergoes doubly
Cabibbo suppressed decay. In the next section, we will see that this interference is not

negligible and prevents the experimental determination of B(B~ — DK ™).

1.3.2 Atwood-Dunietz-Soni method (ADS)

Atwood, Dunietz and Soni [15,16] realized that two of the drawbacks of the GLW method
can be used in favor of each other. Ideally, in an interference experiment, the two inter-

fering amplitudes should have comparable magnitudes to allow maximum sensitivity to
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the phase difference. If one allows for non-CP eigenstates in the decay of the neutral D
meson one can offset the rp-suppression in the B decay by a doubly Cabibbo suppressed
(DCS) decay of the D meson. For example, let us consider the final state f = K7~ and
the two decay chains B~ — DK, D’ - K*t7~ and B~ — D°K~, D — K*7n~. Fig-
ure 1.4 shows the corresponding Feynman diagrams for the D decay. D° — Kt~ (left)
only involves diagonal terms of the CKM matrix (Cabibbo allowed) whereas D° — K7~
(right) is suppressed by |VegVis|?/|VesVaal? = A* 2 0.003. The experimental value for this
ratio is B(D? — K*+7~)/B(D° — K*7~) = 0.0036 + 0.0011 [8]. Using 75 =~ 0.1 (1.16)

the amplitude ratio for the decay chain is

AB-— DY, K~
(B” = Dicrr K7) V0.0036 /5 ~ 0.6, (1.23)
A(B~ — Dy K7)

which is of order unity and therefore ideal for an interference experiment. The extraction
of 7 can now be done with the help of Eq. (1.20) and (1.21) using at least two different

final states.

(DY) (K+) (DY) ()
W- U W+ 3

() (K™)
d U

Figure 1.4: Cabibbo allowed D — K7~ (left) and doubly Cabibbo suppressed (DCS)
D% — K*r~ decay (right). The suppression is of order |VoqVis|?/|VesVua|? = A%

1.3.3 Giri-Grossman-Soffer-Zupan method (GGSZ)

So far, we have only considered two-body decays of the D meson. Giri, Grossman, Soffer
and Zupan (GGSZ, [17,18]) suggested to use multi-body D decays, such as D — K9nt7—,

D— KKK~ D — Ko ntn%or D — 7t 7~ 7% Except the last decay all are Cabibbo
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allowed and due to the expected presence of resonances large strong phases are expected.
In order to extract rp, v and 0 one has to perform a Dalitz analysis of the D decay (see
section 2.2 for an introduction to the Dalitz plot).

The amplitudes of the 3-body D-decay (here we use the example D — 777~ 7°) is

parametrized in terms of its Dalitz variables:

A(D? — 7%(p) 7T (p2)m™ (p3)) = fpo(siz.s13) = fpo(s4o,5—0)

AD® = 7(pr)n” (p2)n* (ps) = foolsis s12) = fools-0,540),  (124)

where we have used the CP symmetry of the strong interactions and the fact that the
final state is a spin zero state. p; is the 4-momentum of the pion and s;; = (p; + pj)2 the
invariant mass squared of the pion pair. We will discuss the functional form of fpo below.

With the above definitions and (1.17) the amplitude of the cascade decay is
AB™ = Dpyp-n0K7) = Ap (fDO(Slg, 813) + TBei(aBi'Y)fDo (813, 812)) . (1.25)

The amplitude for the B* decay is obtained by exchanging si2 <> si3 and replacing

v o
A(B+ — DﬁrﬂfﬁoK—’—) = AB (fD0(813, 812) + 7“B€i(63+7)fD0 (812, 813)) . (1.26)
The differential partial decay width is given by the complex square of (1.25)

dF(Bi - D7r+7r—7rOK7) =

(1.27)

A% (| fpo(s12,s13) % + B2 fpo(s13, 512)|2 + 2rER [fpo(s12, 813) fpo* (513, 512) e 0B ) dgp

where d¢ denotes the phase space variable, which is proportional to dsio dsi3. It seems
that in order to measure ~, we need knowledge of the D decay amplitude fpo. The main

new idea by GGSZ is, that all the information necessary to measure 7 is already contained
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in the Dalitz plot and no further knowledge of fpo is required. This is called the model-
independent approach. Since the analysis presented in Chapter 3 of this dissertation does
not make use of this approach, we refer the interested reader to [17] for the details.

If the functional form of fpo were known, the analysis would be simplified since only
the three variables rp, dp and v needed to be fit (Ap is an irrelevant overall normalization
factor). CLEO has analyzed D — nt7n~ 7% decays and found that the three-body decay
is dominated by p — 77 decays and a non-resonant component [19]. Thus, fpo can be
modelled by the sum of Breit-Wigner shapes. The theoretical error introduced by this
assumption is expected to be much smaller than the statistical error in the measurement

of 7. Using this knowledge we can write

fDO(Slg, 813) = ayg 6i50 + Z Qar eiéTAr(Slg, 813) s (128)

r

where the first term corresponds to the non-resonant and the second to the resonant
contributions. A, is a Breit-Wigner shape for the resonance r (e.g. p*, p~, p%) with
the appropriate spin factors (details can be found in section 3.6.6). The amplitudes a;
and phases §; are obtained from an analysis equivalent to the one CLEO did. Using
(1.28) together with (1.27) in a Dalitz fit to B~ — D+, 0K~ decays will give a direct
measurement of the CP violating phase . This will be the topic of Chapter 3 of this

dissertation.
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1.4 The X(3872) state

This section gives an overview over both experimental and theoretical results regarding
the “mystery meson” X (3872). By the time of my graduation it has been almost exactly
three years since Belle announced the discovery of a new state at 3872 MeV/c?. Since then,
the original Belle publication [20] received over 200 citations and more than 60 articles
alone with the word “X(3872)” in their title appeared [21]. A vast amount of models
and interpretations for this new state have been put forward, some already excluded by
experiment, others still being tested. In the following, a summary of the experimental
results together with two possible models for the X (3872) are being presented. This also
includes a summary of results of this dissertation that will be presented in detail in later

chapters.

1.4.1 Experimental results

Belle at KEKB delivered the first evidence [22] for a possible new state at 3.872 GeV/c?
in B-decays in Sept. 2003. The Belle detector is located at the KEKB asymmetric ete™
collider in Japan, which operates at a center-of-mass (CM) energy of /s = 10.58 GeV
corresponding to the mass of the 7°(4S5) resonance. The signal was observed in the decay
Bt — Jhprtr KT in a total data sample of 152 million BB events. The mass of the
new state is measured to be (3872.0 + 0.6 + 0.5) MeV/c? and the 90% confidence level
(C.L.) upper limit on the width is I" < 2.3 MeV. In May 2005, the Belle Collaboration has
updated their results using 275 million BB events [23].

In Belle’s analysis the J/ candidate was reconstructed by a pair of well identified
electrons or muons with an invariant mass range 3.077 < m(I717) < 3.117 GeV/c?. Addi-
tionally, a pair of oppositely charged pions with an invariant mass greater than 575 MeV/c?
and a loosely identified charged kaon is required. To suppress continuum background only
events with a normalized Fox-Wolfram moment of Ry < 0.4 and |cos 05| < 0.8 are selected

where 6p is the polar angle of the B-meson direction in the center-of-mass (CM) frame.
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Figure 1.5: Distribution for J/i) 7" 7~ invariant mass for the X (3872) region. The signal
yield is 49.1 + 8.4 events

True B mesons are considered to fall into a 3o signal box defined as |AE| < 0.034 GeV
and 5.2725 < mpg < 5.2875GeV/c?.3 Figure 1.5 shows the invariant mass m(J/nt7™)
near 3872 MeV/c? for the selected events. The distribution is fitted with a first-order poly-
nomial for the background and a Gaussian for the signal. The width of the Gaussian is
fixed to 3.2 MeV/c?, the resolution obtained from the 1(25) — JApn+ 7~ control sample.

The signal yield is 49.1 + 8.4 events resulting in a product branching fraction of

B(B — X(3872)K, X (3872) — Jfpntn™) = (13.1 £ 2.4+ 1.3) x 107°. (1.29)

To investigate whether the dipion originates from a p meson or not, the 777~ invariant
mass in a +5MeV/c? window around the X (3872) peak is shown in Fig. 1.6. Clearly, this
is consistent with a peak at the nominal p mass. Belle fits the m (7" 7 ™) invariant mass
with the hypothesis of the J/i) and p being in a relative S-wave or P-wave and concludes
that the S-wave fits the data much better than the P-wave (x?/d.o.f. = 43.1/39 versus
71.0/39) indicating that J*T is strongly favored over J~+.

Since the number of signal events is too low for a full angular analysis, Belle tries to
find, for a given J©'¢ hypothesis for the X (3872), angular quantities that have distributions
with a zero in some location. In the bins near the zero point, any observed events would
have to be accounted for by an upward fluctuation of the background. Going through all

possibilities with J < 2, Belle concludes that the data only support the quantum numbers

3In Belle jargon the energy substituted mass mgs is called beam constrained mass Mp.
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Figure 1.6: m(mx"7~) distribution of evens in the X (3872) signal region. The solid
(dashed) curve shows the fit that uses a p Breit-Wigner line shape with the J/i) and p in a
relative S-wave (P-wave). The histogram indicates the side-band determined background
and the dot-dashed curve is a fit of this background.

17* and 2% for the X (3872) [23].

Another important experimental test is to search for radiative decays of the X (3872).
In case of the X (3872) begin a charmonium state one would expect a considerably large
fraction of radiative decays to vx.1. Belle searches for those decays with x.1 — vJ/
in the 1 (2S5) and X(3872) region [22]. Figure 1.7 shows the result of the fit to mgg
and the 7yx.1 invariant mass. As expected, there is a clear signal for the ¥(25) but no
evidence for this decay in the X (3872) region. A similar analysis has been performed for
X (3872) — vxc2 with the same negative result [24]. The resulting upper limits on the

ratio of partial widths are

F(X(3872) - FYXCI)
T(X(3872) — ntm—Jf))

< 089  (90% C.L.)

F(X(3872) - 7Xc2)
['(X(3872) — ntm—J/p)

< 11 (90% C.L.).

Using 256 fb~! Belle finds evidence for the decays X (3872) — J/ip and X (3872) —
Jppmta— w0 [25]. Figure 1.8 shows the background subtracted J/)~y invariant mass. It is
obtained by fitting the mpgg and AFE distributions in bins of m(.J/ ) for events within
the signal box |AE| < 0.035GeV and 5.2745 < mps < 5.2855GeV/c?. The signal yield
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Figure 1.7: Signal-band projections of (a) mggand (b) m(yx.1) for the ¢(2S) region with
the results of the unbinned fit superimposed from Belle. (c¢) and (d) are the corresponding
results for the X (3872) region.

in the X (3872) bin is 13.6 + 4.4 events with a 4.00 significance. The product branching
ratio is

B(B — X (3872)K, X(3872) — J/p) = (1.8 £ 0.6 +0.1) x 1075 (1.30)

This result unambiguously establishes the charge conjugation parity of the X (3872) as

C = +1. This is consistent with the other results reported above.

20 —

Events/bin

3736 3928 4120
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Figure 1.8: The signal yields from a fit to the mggs and AFE distributions in bins of
m(J/7).

A similar analysis is performed for the X (3872) — J/pnt7~7° decay mode. This time
the mps and AFE fits are done in bins of m(7 7~ 7") for events with |AE| < 0.035GeV,

5.2725 < mps < 5.2875 GeV/c? and |m(J/ 3m)—3.872] < 0.0165 GeV/c?. Figure 1.9 shows
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the resulting signal yields. The branching ratio is comparable to the J/p7nt 7~ mode:

B(X — Jprtrn0)
B(X — Jipntn—)

=1.0+04+03. (1.31)

If these are the same states, this implies that there are large isospin breaking effects that

allow the X (3872) both decay into J/)p and J/i)w. Another lesson about the isospin of
T
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Figure 1.9: The signal yields from a fit to the mggs and AFE distributions in bins of
m(rntr—mY).

the X (3872) can be learned from searching for X (3872) — J/p7m°7" decays. The ratio
R=T(X — Ja7n'7) /T (X — Jhbntm~) is expected to be R =1/2 for I =0 and R =0
for I = 1, if isospin is conserved. Belle searches for this decay using 253 fb~! and selecting
events within —0.06 GeV < AE < 0.03GeV and +15MeV/c? of 3872 MeV/c?. A Gaussian
fit to the mpg distribution is shown in Fig. 1.10 that yields 0.2 4 2.6 events. The ratio R
is compared to the 1(2S5) case where R is known to be 0.60 £ 0.05:

DX = Jpm’n®) | TW(2S) = Ja'r)
DX = Jfbrrn) ~ CT((28) = Jfpmia )

(1.32)

Unfortunately, with the amount of data used for this analysis it is not possible to distin-
guish between the I = 0 and I = 1 hypothesis.

Finally, Belle has preliminary results of the X (3872) decaying to D"D°z?, where the
11.3 £ 3.6 signal events concentrate close to the threshold for the final state, which would

strongly disfavor a 271 assignment for the X (3872) [26].
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Figure 1.10: The mpgs distribution for (a) B — ¥(2S)K,%(2S) — JAn’7% and (b)
B — X(3872)K, X (3872) — J/i 77" with a superimposed fit. The signal yield is 55 4 10
events for the 1(25) and 0.2 & 2.6 events for the X (3872).

BABAR at PEP-II was the third collaboration after CDF 1I to confirm the existence
of the X (3872) in the decay mode X (3872) — J/iyntn~ [27]. The most recent result uses
232 million BB events collected at the 7(45) resonance [28]. This analysis is described
in full detail in Chapter 4 of this dissertation. Figure 1.11 shows the J/) 7t 7~ invariant
mass for (a) B~ — X(3872)K~ and (b) B® — X(3872)KY. 61.2 £ 4.5 signal events at
7.50 statistical significance and 8.3 4.5 signal events at 2.60 significance are found in the
charged and neutral B-decay mode, respectively. The branching fraction and confidence

intervals are,

B(B~ — XK, X — Jhpntr™) = (10.1+£25+1.0) x107°
134 x10°% < BB - XKV, X — Jpntn™) < 103x107%  (90% C.L.)

013<R=8B"B~ < 110  (90% C.L.). (1.33)

Under the assumption that the excess of events in the BY mode is really due to the
X (3872), we can measure the mass difference between and the ratio of branching ratios

for the X (3872) in charged and neutral B decays:

mp-_xk- = (3871.3+0.6=+0.1)MeV/c?
Mpo_xky = (3868.6+1.2+0.2) MeV/ c?

Am = (2.7+1.340.2)MeV/c?
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R = 0.5040.30 £ 0.05. (1.34)

The important question whether there exists a charged partner of the X (3872) was
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Figure 1.11: JApwTn~ invariant mass for (a) B~ — X(3872)K~ and (b) B’ —
X (3872)KY. The dashed line represents the combinatorial background, the dotted lien
represents the sum of the combinatorial and peaking background and the solid line the
sum of all background plus the signal. The shaded area shows events in the mpgg sideband
region |mpg — 5260 MeV/c?| < 6 MeV/c?.

addressed by BABAR [1,29] in searching for an excess of events in the J/y7~7” mass
spectrum that is shown in Fig. 1.12. The left plot shows events from B? — Japn~ 7K+
and the right plot shows events from B~ — Jipn~n°K? decays, respectively. Using 234
million BB events no evidence for a charged partner of the X (3872) was found. The limits

on the branching ratios are

BB’ - X K", X — Jn %) < 54x10°%  (90% C.L.)

BB~ - X K°, X~ —Jyn %) < 22x107%  (90% C.L.), (1.35)

and the hypothesis of a charged isospin partner of the X (3872) is ruled out with a likelihood

ratio test.

An inclusive search for the production of X (3872) in B~ — XK, where the X
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Figure 1.12: Jipn— 70 invariant mass for (a) B — Jipr 7K+ (b) and B~ —
Jiprn~ 1KY, No evidence for a charged partner of the X (3872) is found.

is a € state, has been addressed by BABAR with 232 million BB events [30]. By fully
reconstructing one of the two B mesons and measuring the kaon momentum spectrum
in the B center-of-mass frame, any charmonia produced with the kaon can be identified
in the kaon momentum spectrum. Figure 1.13 shows the known charmonium resonances
but not evidence for the X (3872) is found. The upper limit on the absolute branching
ratio obtained by this analysis is B(B~ — X (3872)K~) < 3.2 x 10~%. Together with
the branching ratio measurements from Belle and BABAR, the lower limit B(X(3872) —
JprtrT) > 4.2% at 90% C.L. can be set.

CDF II at Tevatron confirmed Belle’s measurement by searching for a Jip w7~ res-
onance produced inclusively in pp collisions at /5 = 1.96 TeV using 220 pb™~! of data [20].
Jfp — ptp~ candidates are selected by requiring m (st g ™) within 60 MeV/c? of the PDG
value. In addition to that, constraints on both the vertex fit for the dimuon and the
Jhpmt ™ vertex are used to suppress backgrounds with the same final states. Figure 1.14
(left) shows the J/pnt7~ invariant mass distribution. Besides the 1(25) at 3.686 GeV/c?
a small bump at 3.872 GeV/c? is observed. The significance of the signal is reported as

11.6 standard deviations. The mass and width are obtained by modelling each peak by
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Figure 1.13: Kaon momentum spectrum for B~ — XK~ in the X(3872) region. The
arrows indicate the position of known charmonium states. No evidence for the X (3872)
is found.

a Gaussian and the background shape by a second order polynomial. This results in the

following mean and width for the X (3872)

mx = (3871.3 0.7+ 0.4) MeV/c?

ox = (4.940.7)MeV/e?,

where the width is consistent with the detector resolution. To investigate the dipion mass
distribution, which was reported by Belle to peak near the p mass, the same plot is made
again with the requirement m (77 ~) > 500 MeV/c?. This is shown in Fig. 1.14 (right).
The background is reduced by almost a factor of two and the fit shows that there is no
change in the X (3872) signal yield within statistics. This leads to the conclusion that
there is little signal with dipion masses below 500 MeV/c? that supports evidence that the
dipion is originating from p® — 77~ decays.

A more detailed study of the dipion mass spectrum has been carried out by CDF
IT using 360 pb~ ! [31]. Fig. 1.15 shows the 777~ invariant mass spectrum for 1(2S)
(left) and X (3872) (right) events together with fits to various hypothesis. The spectrum

is inconsistent with calculations for 11" and 3% charmonia. A good fit is obtained for
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Figure 1.14: (left) The mass distribution of J/i) ©* 7~ observed by CDF II in inclusive p
p collisions. A large peak for the 1(29) is seen and a signal near a mass of 3872 MeV/c?
is visible (enlargement shown in the inset). (right) shows the same requiring m(r*7~) >
500 MeV/c?.

X — J/pp, an interpretation supported by the C-even decay X — J/ipy that was shown

above. The data is compatible with both S- and P-wave J/i p decays.

D@ at Tevatron performs a similar analysis to CDF II using 230 pb~! of data col-
lected at the Tevatron between April 2002 and January 2004. Figure 1.16 (left) shows
the putp~ 77~ mass spectrum with the 1(25) and X (3872). The superimposed fit ex-
tracts 522 + 100 X (3872) candidates from the data. The mass difference between the
X (3872) and the J/) is measured to be 774.9 + 3.1 4 3.0 MeV/c? and the with of the
peak is 17 & 3 MeV/c?, which is consistent with the detector resolution. To investigate the
characteristics of the X (3872), they compare the production and decay properties of the
X (3872) to the 1(25). Figure 1.16 (right) shows the signal yields for the two particles
with different selections on kinematic and angular variables applied. Without going into
the details at this point, no significant difference between the X (3872) and the ¢ state

¥(2S5) is found.
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1.4.2 Diquark-Antidiquark model

The possibility of diquarks (gq) in addition to mesons (¢g) and baryons (gqq) as build-
ing blocks for hadrons is almost as old as QCD itself [32,33]. Recently, diquarks have
been revived as possible explanations for some of the more exotic particles observed in
experiments (for a recent review see [34] and references therein). Since each quark is a
SU(3) color triplet, the possible diquark color multiplets are 3 ® 3 = 6 @ 3. Inevitably,
a diquark is a colored object and therefore cannot exists on its own. Whether the two
quarks attract or repel is determined by the color factor of the multiplet. Using the proper
quark gluon interaction vertices from QCD, one obtains fg = —1/3 and f3 = 2/3 where
positive (negative) numbers indicate attraction (repulsion) [35]. Including flavor SU(3)
symmetry the four possible diquark configurations are (3., 3¢) and (3., 6¢) with each spin
0 and 1. It turns out that (3¢,3¢) with spin 0 is the most promising candidate for a
diquark (“good” diquark in [34]). Combining a diquark and an antidiquark results in a
3 ® 3 = 8 @ 1 multiplet both in flavor and color giving rise to an observable flavor nonet,
which is a color singlet.

L. Maiani et al. use this idea in their 2005 diquark-antidiquark model [36] to accom-
modate some recently discovered new states (X (3872), Y (4260), Ds(2317), ...) into the
quark model. As most other quark models, the quark masses are determined from a

spin-dependent interaction Hamiltonian
H = Zmz + Z QHij(Si . S]) , (1.36)
i i<j

where m; are the constituent quark masses, x;; depend on the flavor and color state of
the quark pair and S; is the spin of the quark. A diquark-antidiquark pair is defined as

[cq][eq] with ¢ = u, d (¢ and § do not need to be of the same flavor). Applying (1.36) yields

H = Qm[cq]+2(ch)§(sc'sq+SE‘Sq)+2/€q§Sq'Sq+2/€c§(sc‘Sq+Sg'S§)+2/€CESC'SE, (137)
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where (k¢q)3 indicates that the two quarks are in a color triplet whereas all the other
quark pairs are in a color singlet configuration likewise to mesons. The latter are obtained
by fitting the model to the observed hyperfine splittings of L = 0 mesons (K, K*) and
the color triplet coefficients are determined likewise from Baryon splittings (A, X, Y™).
The X (3872) is used as the JPC = 1%+ state with the symmetric spin distribution
[eqls=1[cq)s=0 + [cq]s=0[cq]s=1 and a mass M (17T) fixed to the experimentally observed
value. Diagonalizing (1.37) and using 257 - Sy = (1 + S2)? — S? — S2 the constituent

diquark mass mj., can be calculated from

1 1
M1t = 2Meq) — (Keq)3 + 5/@'@ — Keg + 5/%5. (1.38)

as Mg = 1933 MeV/ c?. Using this as input for the other eigenvalues of the Hamiltonian

the spectrum of X particles shown in Fig. 1.17 is obtained.

3650

o 1 1"~ o+

Figure 1.17: The full spectrum of X particles. The X (3872) JFC = 177 state is used as
the input for the calculation of the other masses. The dashed lines indicate possible decay
channel thresholds [36].

Each of these X particles comes with four different quark contents: two neutral states
X, = leu][cu], X4 = [cd][cd] and two charged states XT = [cu][cd], X~ = [cd][cu].

Allowing for mixing between the neutral mass eigenstates results in a low-mass and a
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high-mass state as described by

X cosf siné Xu
= . (1.39)
X —sinf cosf Xy
For the difference in the mass of the low and high mass state, the prediction is
— T+2
m(Xp) —m(X;) = gltd = Mu MeV/c2 , (1.40)

cos(20) cos(20)

where the mixing angle 6 ~ +20° is calculated from the ratio of X — J/i)37 and X —

J/ip 2 events reported by Belle [24]. This results a mass difference of

m(Xp) —m(X;) = (8 + 3) MeV/ 2. (1.41)

Figure 1.18 shows the Feynman diagram for B — X K decays. Note that both X,
and X, can be produced in neutral/charged B-decays. The same is true for X and X .
This is one of the most important predictions of the diquark-antidiquark model: since the
narrow width of the observed X (3872) does not allow for two nearby states produced at
the same time, one of the neutral X states has to dominate B decays and one has to
dominate B~ decays. If this is true, the two states should have a mass difference given by
(1.40). Moreover, since the amplitudes of weak B? and B~ decays are related by isospin
symmetry, the branching ratios for neutral and charged X particles can be related to each
other. Assuming that indeed one of the X particles dominates B° decays, the following
lower bounds can be obtained:

B(B~ — X"K% X~ — Jyn— 1)

R = 0.2 1.42
B(B~ — Xy K=, Xy — Jfpnta—) g (1.42)

BB - X~K*, X~ — Japn— )
R = ’ 0.53. 1.43
B(B~ — Xy K=, Xy — Jfpnta) g (1.43)
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Figure 1.18: Feynman diagrams for the production of X, ([cu][cu]) (left) and X,([cd][¢d])
(right) in B — Jpatn~ K° decays. The K°(ds) is either produced with the d quark
from the vacuum (left) or with the spectator-d (right). Similar diagrams hold for charged
B decays as well as for the production of X+ and X .

In summary, the diquark-antidiquark model predicts a complete spectrum of new X
particles. In particular, it predicts four distinct states for the X (3872), two neutral and
two charged states. Finding the charged states and measuring the mass difference between

the two neutral states will determine if the model is correct or not.

1.4.3 Meson-Meson bound states

Similar to the binding of a proton and a neutron in the deuterium (*H) nucleus (deuteron)
one could imagine that two mesons can form a bound state. As for the deuteron the binding
force would be mediated by pion exchange. A detailed analysis of possible bound meson
states is presented by N. Tornqvist in [37,38], which he calls “deusons”. Unfortunately,
the nomenclature is not consistent throughout the literature and other authors refer to
the same states as meson “molecules”.

Restricting ourselves to ground-state mesons (I = 0), we need to consider possible
bound states of spin-0 pseudoscalars (P) with 4 JP¢ = 0=F and spin-1 vectors (V') with
JPC¢ = 17~ Since the pion itself is a vector (JX = 17), parity conservation forbids a
bound state of two pseudoscalars (PP). Therefore only PV and V'V deusons are possible.

Furthermore, pion exchange is in general much weaker (or repulsive) for isovectors than

4p=(=1)"' and C = (=1)"** for a g meson with angular momentum [ and spin s.
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isoscalars, reducing the possible meson combinations even more. Considering only K,
D and B mesons as candidates for P or V' the possible combinations (all isoscalars)
with sufficient binding energy are PV* with J¥¢ = 0=t,1t+ and VV* with JF¢ =
0t+,07F, 17 ,27F. A detailed calculation and an extensive list can be found in [38]. In
the following we only consider bound states of D mesons due to their recent experimental
relevance in light of the X (3872).

The most intriguing feature of the X (3872) is that its mass is very close to the D D*?
threshold (m(D) + m(D*) = 3871.2 + 0.7MeV/c?). This suggests that it is a good
candidate for a PV* (i.e. D°D*") deuson and several authors recently investigated this
possibility in great detail [39-49]. As explained above, possible quantum numbers are 17"
if the two D mesons are in an relative S-wave or 0~ for a P-wave. Higher total angular
momentum states would result in a higher mass and are thus not considered as candidates

for the X (3872). Other properties are:

e Decays via DD* annihilation are expected to be small because of the small binding
energy (deuteron ~ 2.2MeV) and thus large spatial size resulting in a narrow width.

OZI allowed decays to J/ip will be favored compared to states with only light hadrons.

e The DT D*~ channel is about 8 MeV/c? higher than the observed peak and therefore

closed by phase space. However, see below for isospin breaking effects.

e For exact isospin and pion exchange, only the isoscalar channel (I = 0) results in an

attractive potential. Thus in the deuson model, the X (3872) is a isoscalar.

e Charged combinations like D?D** with vanishing total charm are necessarily isovec-

tors and therefore not predicted by the model [50].

If the X (3872) would really be an isosinglet then the decay to .J/ p° would be forbidden
by isospin conservation unless there is isospin mixing in the initial state, which we will

discus now in more detail.
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Isospin breaking in bound D mesons [41,47] could be produced by mixing of different
isospin doublets in the final state. In the case of the X (3872), the nearby D™ D*~ threshold
at 3879.5 MeV/c? suggests that a D D* molecule at 3872 MeV/c? would consist of a mixture
of D’D*Y and D*D*~. Assuming the mixture is described by a € [0,1] and |X) is the

wave function of the X (3872) deuson we get 5

1+a)D°D% + (1 —a)DTD™
Vova? +1 '

x) = ¢ (1.44)

which can be written in terms of quark content using D°(ci) and D (cd) as

|1 X) = (14 a)uu+ (1 — a)dd)

cc
V2va2 +1
cC (uﬂ-i—da uﬂ—dﬁ)
+ «
a?+1 V2 V2
cc
= ——([I=0+all=1)),
T (1 =0 +all=1)

where |[I = 0, 1) is the usual isosinglet and isotriplet respectively, obtained from combining
a v and d quark. We obtain a pure I = 0 state for &« = 0 equivalent to equal contributions
from DD and DT D~ in the initial state (1.44). Since the mass of the X (3872) is closer to
the DYD*? threshold than to the DT D*~ we expect less contribution from the latter (o >
0) resulting in a final state |X) of undefined isospin and G-parity. Due to these isospin
breaking effects both the decays X (3872) — J/i p°(7+7~) and X (3872) — Jipw(r T~ 70)
are permitted to certain extends. Radiative decays to x.17y will be forbidden by C-parity
if the X (3872) is either the 17 or 0~ deuson, which agrees with Belle’s non-observation
of this mode. Finally, it is worth noting that using a specific decay model for the X (3872)
as a deuson, E. Braaten and M. Kusunoki [40] predict that the branching fraction for
B — X (3872) KV is likely to be suppressed by at least an order of magnitude compared to

that for B~ — X (3872) K ~. However, other models do not make such a strong prediction.

5'}“0 simplify the notation, one of the D mesons is always to be considered a D* and DD =
(|IDD) + |DD)) /V2.

G is the conserved quantum number resulting from isospin symmetry with G = (—1)'C



Chapter 2

Analysis techniques

This section describes common concepts and variables used in the following analyses. In
fact, most of these techniques will be used in any data analysis in high energy physics.
We start by introducing variables that can be used to discriminate between certain event
types. In most cases these types consists of signal and background events. The goal is to
classify each event by exploiting certain properties of the kinematics, angular distribution,
spatial shape, etc. Usually, once the events have been classified, a unknown physical
parameter (e.g. mass and width of a resonance, branching ratio, CP parameter, ...) needs
to be extracted from the signal events. Depending on the parameter this can be done
by simply counting events or by fitting the data to an analytic function derived from a
physical model of the process. The latter is performed with the method of maximum

likelihood estimators that is described further below.

2.1 Discriminating variables

2.1.1 Kinematic variables AE and mgg

B mesons that are produced in ete™ — BB can be identified by their well constrained
kinematics due to the known initial momentum of the ete™ system. We follow the

notation in [51,52] to derive two kinematic variables (AE and mpgg) that can be used to

37
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separate true B mesons from background events.

In the reaction of ete~™ — BB, we can write energy-momentum conservation as
M

q0 = q1+q2 (2.1)

where ¢q is the 4-momentum of the eTe™ system and ¢; 2 are the 4-momenta of the two
B mesons. Since ¢ = ¢3 = mQB for true B mesons, we can test for any reconstructed BB
pair if (I) ¢ and ¢35 equal to each other and (II) their common value equals m%.
Test (I) is represented by the invariant Ag? = q% - q%. With the CM energy squared
s =q¢ = (q1 + q2)* we can write this as
A¢ = ¢ —a
= ¢ —(0—a)°

= 2qoq1 — S. (2.2)

In the CM frame where ¢; = (E7,0) and go = (1/s,0) this reads

A¢® = 2\/sEf —s. (2.3)

Dividing both sides by 2+/s we can define

AE = A¢?/2V/s = Ef —\/5/2, (2.4)

which will be peaked at zero for eTe~™ — BB events since it is the energy of the B
candidate minus its expected CM energy.
For the second independent variable we evaluate g7 with the constraint Ag? = 2¢oq1 —

s = 0 (equivalent to AE = 0) and define mpg = ¢{|A p_o. Evaluated in the CM frame
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the constraint is Ef = y/s/2 and therefore

mbs = Gilap_o = B’ —pi’ = (V5/2)* —pi2,

mps = \[s/4- P}, (2.5)

which corresponds to the mass of the B candidate using its measured momentum and
fixing its expected CM energy. If we instead evaluate ¢} in the laboratory frame the

AFE = 0 constraint yields EgF1 — po - p1 = $/2 and

mps = dilAp—o = B — Pl = (s/2+po - P1)*/E§ — pi. (2.6)

mpg is called the energy-substituted mass for obvious reasons as can be seen from (2.5).
The use of mpg in the CM frame (2.5) is complicated at an asymmetric ete™ collider
because one requires particles masses for the boost to the CM frame. With a slight
change in notation we summarize the two kinematic variables to be used in identifying B

mesons in eTe~ — BB collisions:

AE = EY— /352 (2.7)

mps = \/(8/2 +po-ps)*/Ef — ph (2.8)

where £y = E .+ + E.- and pg = p.+ + p.- is the total energy and momentum of
the eTe -system, s = Eg — p% the center of mass energy squared, E}j the energy of
the reconstructed B meson in the ete -rest frame and pp the 3-momentum of the B
meson in the laboratory frame. For a true B meson we expect AE to peak at zero.
The energy substituted mass mpgg should, of course, peak at the nominal value of the
B mass around 5.279GeV/c?>. Due to the detector resolution effect, it turns out that
AFE and mpgg represent an almost uncorrelated pair of variables in the two dimensional

space of momentum and energy. Other pairs of variables like mass and energy or mass
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and momentum are strongly correlated and less useful. Figure 2.1 shows an example for

B~ — Jhpmtn~ K~ signal Monte Carlo events.
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Figure 2.1: AF (left) and mpg (right) for B~ — JipnT 7~ K~ signal Monte Carlo events.

2.1.2 Thrust angle

To discriminate between certain types of background it is useful to have a measure for the
spherical symmetry of an event. A particle that decays into two particles with opposite
momenta or a particle decaying into two jets has less spherical symmetry than a decay
into many particles with random momenta. For this reason we define the thrust of an

event as follows:

(2.9)

T is called the (normalized) thrust axis of the event and points in the direction that
maximizes the sum of the longitudinal momenta of the particles. The summation goes
over all the particles in the event with three-momentum p;. The thrust 7" can have values
between 0.5 and 1, where the latter one describes highly directional events and the former
one highly isotropic events.

The thrust angle 07,5 is now defined as the angle between the thrust axis of the B
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candidate and the thrust axis of the rest of the event where all the calculations are done in
the CM system, which is the 7°(45) rest frame. For a typical continuum background event
with a two-jet structure the B thrust axis will be collinear with the thrust axis for the
rest of the event. For a true signal event those two thrust axis will be uncorrelated. Thus,
we expect cos Oppust t0 peak near 1 for continuum background and a flat distribution for

signal events.

2.1.3 Fox-Wolfram moment

The Fox-Wolfram moments H; are defined by [53]

pil|p;|
H=> ET]Pl(cos 0:;) (2.10)

i, vis

where 0;; is the angle between the particle momenta p; and p; and E,; is the total visible
energy of the event. The F)(z) are the Legendre polynomials, Py(x) = 1, Pi(z) = z,...
Energy-momentum conservation requires that Hy ~ 1 and H; = 0 if we assume negligible
contributions from the particle masses. It is therefore customary to normalize the results

to Hy and we define the second Fox-Wolfram moment as

9 —
R H,

(2.11)

The highly directional continuum events tend to have high R2-values whereas the more

spherical B events have lower values of R2. See Fig. 4.1 in section 4.2.5 for an example.

2.1.4 Helicity angles

Particle decays have a certain angular distribution depending on the spin structure of
initial and final states. The calculation of the matrix element is done within the helicity
formalism that was developed in [54]. More accessible descriptions can be found in [55-57].

The main idea is that the helicity operator h=S§- P with spin S and linear momentum



2.2. Dalitz analysis technique 42

p is invariant under rotations and boosts along the momentum direction resulting in well
defined angular distributions. From the experimentalists point of view, we compare the
angular distributions of particle decays for different types of backgrounds and signal and
separate them by imposing selections on the helicity angle. The definition of the helicity
angle is pictured in Fig. 2.2. For a two-body decay A — B + X, B — C + D the helicity
angle is measured in the rest-frame of B between the direction of its parent (A) and
daughter (D). Any sequential two-body decay can be described using these angles in the

particles respective rest frame.

D
eD
x~—(A—~(B)

C

Figure 2.2: Definition of the helicity angle fp in the two-body decay A — B+ X, B —
C + D. The angle is measured between the direction of D and A in the rest-frame of B.

2.2 Dalitz analysis technique

The Dalitz plot technique was first introduced by Richard Dalitz in 1953 for the analysis
of 7-meson data. It allows to represent the entire phase space of any three-body final state
in a two-dimensional scatter plot.

A three-body decay M — mj+mao+ms (see Fig. 2.3 left) of a mother particle with mass
M into three daughter particles of masses m; has 12 degrees of freedom. Four-momentum
conservation and the knowledge of the three daughter masses puts seven constraints on
the kinematics. In the rest frame of M where p; + p2 + p3s = 0 the momenta of all three

daughter particles lie in a plane. The orientation of this plane described by the three Fuler
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angles (a, 3, v), and the energy of two of the daughters can be used to fully describe the

kinematics. The partial decay rate is [8]

11
r— ) 60T IM|? dEy dE, dovd cos(B) dy (2.12)

where M is the Lorentz-invariant matrix element. If M is a scalar (spin 0) particle or if

we average over the spin states, integration over the angles in (2.12) yields:

11

2
dsia d 2.1
(@) 3oa8 MI dsrz dszs. (2.13)

where s;; = m?j = (p;i + pj)2 is the invariant mass squared of particles ¢ and j. The
equation gives the partial decay rate of M for the differential phase space dsio dssz. A
two-dimensional scatter plot of the decay in s1o and ss3 is called a Dalitz plot. For a
decay with constant matrix element M, an important feature is that the Dalitz plot
has a uniform density. Any additional structure or inhomogeneity must result from a
non-constant matrix element, i.e. the decay is not a pure three-body phase space decay.
Information about M and intermediate resonances can be extracted directly from the
Dalitz plot. The kinematic allowed region for a three-body decay is illustrated in Fig. 2.3
(right) on the Dalitz plane. The allowed values for so3 for given sjo are conveniently

evaluated in the rest frame of mqa:

(523)max = (B3 + E5)* — (Ip3] — [p3])* (2.14)

(523)min = (B3 + E5)* — (Ip3] + [P3])?, (2.15)

where * denotes quantities in the mio rest frame with p;kQ = E;Q — m?, ES = (s12— m% —
m3)/2miy and Ef = (M? — 515 — m2)/2m2. Overall four-momentum conservation yields
S12 4 S13 + S93 = M2 + m% + m% + mg, which can be used to derive similar relations for

the other particle pairs.
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Figure 2.3: Left: A three-body decay of a parent particle with mass M and momentum P
into three daughter particles with masses m; and momenta p;. Right: Kinematic allowed
region for the three-body decay illustrated on the Dalitz plane.

2.3 Maximum likelihood estimators

The analyses described in this dissertation make extensive use of maximum likelihood
(ML) estimators [58] to measure unknown parameters 6 = (6;...6,,) of a probability
density function (PDF) that is used to describe a physical quantity Z (random variable).
Assuming 6 describes the data correctly, the probability to observe x is P(x;0). For n

measurements the likelihood function

L(O) = [ P(xs; 0) (2.16)

is the probability for n independent measurements with values x;. Under the hypothesis
that P is the correct model to describe the data, the ML estimators 0; are given by the

solutions of
oL

9 =" (2.17)
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Since log(y) is a monotonically increasing function of y the same estimators can be obtained

by solving

dlogL 0 - L
. —-zﬁ2-22;77(xz70)-— 0 (2.18)

instead. In High Energy Physics research, the program MINUIT [59] from the CERN
Program Library is used to minimize the negative log-likelihood (NLL) function. In the

case of a sufficient large data sample, the Hesse matrix of the NLL

=3 log L
Vi = ~35.90;
0 lo=0

(2.19)

is an estimator for the covariance matrix of the ML estimator 6.
If the number of observations N itself is a random variable distributed according to a

Poisson distribution with mean value v the extended likelihood function is

L(v,0) = v *NHP 20 (2.20)

This form of the likelihood function is particularly useful if P can be written as the sum

of PDFs for different event types t € T’

W) = uPilx). (2:21)

teT

where 1 is the fraction of events of type t and ), piu = 1. Inserting (2.21) into (2.20) the

log-likelihood function is
log L(v,pu) = —v + Zlog (Z v Pr(x ) , (2.22)
teT

where we have dropped terms independent of the parameters. By defining n; = ;N as

the expected number of events of type ¢, the log-likelihood function can be written as a
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function of the parameters n only:

N
log L(n) = — Z ne + Z log (Z nﬂ%(xﬁ) . (2.23)
1

teT 1= teT

With the normalization ), iy = 1 we obtain the total number of events N = ", n; as a
sum of independent Poisson variables with mean n;. The estimators n; give directly the

estimated mean numbers of events of type t.

2.4 Artificial neural networks

An artificial neural network [58] is a special case of a non-linear test statistics to distinguish
between two hypothesis Hy (null hypothesis) and H;. According to the Newman-Pearson
lemma, a one-dimensional test statistics t(x) for a vector of data x = (x1,...,z,) with

the maximum power is simply the likelihood ratio

_ [(x[Ho)
109 = Foxi) (2.24)

Of course, in practice we do not know f(x|Hg,1) but we can still make a simpler Ansatz

for the functional form of #(x). Suppose we take ¢(x) to be of the form

t(x) =K (ao + i ai:ci> . (2.25)
=1

The function K(z) is called the activation function and usually taken to be the sigmoid

function
1

K& = 1=

(2.26)

The test statistics ¢(x) can be seen as the output node of a network with n inputs x; and
is called a single-layer perceptron. If the activation function is monotonic (i.e. the sigmoid

function) the single-layer perceptron is equivalent to a linear test statistics of which the
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Fisher discriminant is one commonly used example. However, the single-layer perceptron
can easily be extended by adding additional (hidden) layers h; with m nodes between the

input and output layer. Instead of (2.25) we write

t(x) =K |ao+ Y _a;hi(x) (2.27)
j=1

and the h; themselves are given as functions of the nodes in the previous layer (here, the

input layer)
hj (X) =K (wjo + Z wijxi> . (2.28)
i=1

In general, this can be extended to multiple hidden layers and is called a multilayer
perceptron (MLP). Of course, the task remaining is to determine the weights a; and w;;.
This is called training of the neural network and can be accomplished by minimizing an

error function like

€ = Bo(t(x) — t0)*] + Ex[(t(x) — t1)?] (2.29)

where F,, is the expectation value and ¢, is the preassigned target value for the hypothesis
H,. In practice, if the weights are determined form a training sample of size N, the

expectation values in (2.29) can be replaced by the sum of the means:

1 N
p:l

where tP is the desired output value for the pattern (event) p. For example, tP = 0 if xP is
a background event and t¥ = 1 if x? is a signal event. Choosing the input variables x;, the
number of hidden nodes h;, the number of total layers and constructing a proper training

sample are crucial parameters that determine the separation power of the neural network.



Chapter 3

Measurement of CP parameters in

B~ DK, D—anxY

This chapter presents the first measurement of CP parameters in B~ — DK~, D —
7tn~ 70 decays. The analysis uses the model-dependent GGSZ Dalitz analysis method
that was presented in section 1.3.3 of this dissertation. It is based on the previous branch-
ing ratio measurement by BABAR [60,61]. Using 229 million BB events, the results for

the branching ratio and asymmetry from 133 4 23 signal events are

B(B™ — Do K7) (5.54+1.0£0.7) x 1076 (3.1)

A(B™ = Dpsp o K7) —0.02 + 0.16 + 0.03,

where the asymmetry is defined as A = (N~ —N*)/(N~+N*) with N* as the number of
Bt signal events. The analysis presented in the following uses the same signal extraction
technique as the previous analysis and performs a Dalitz fit of the D decay to extract
the CP parameters related to the CKM phase 7. Where necessary we will give a brief
description of the techniques used in the branching ratio analysis. Otherwise we will

concentrate on the CP-fit.

48
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3.1 Introduction

We briefly summarize the important equations for a measurement of v in B~ — DYK .
The reader is referred to section 1.3 for detailed information. The sensitivity to + arises
from the interference of the Cabibbo allowed B~ — DK~ decay and the doubly Cabibbo
suppressed decay B~ — DK~ with D — 7nt7n~ 7% in both cases.” We define the ampli-

tudes

A(B- - D'K™) = Ap (3.2)

A(B~ — D°K™) = Aprge'®s=) (3.3)

with dp being the difference in the strong phase between the two decays and v being the
weak phase. Using fpo(s+0,5-0) and fpo(s_o,s4o) from Eq. (1.18) for the amplitudes of

the 3-body DY and D° decay we obtain the amplitude for the cascade decays as

Ap——p_, _ ok-(5+0,5-0) = Ap(fpo(st0,5-0)+ 2-fpo(s—0,5+0))

Ap+—p_,  ok+(540,5-0) = Ap(fpo(s—0,510) + 2+ fpo(st0,5-0)),  (3.4)

where 2z = rp ¢!0BE7) ig the parameter that describes the CP violation. With rp being
a positive small number of order 0.1 it is experimentally difficult to perform the analysis
in the z(rp, dp,7y) parameterization due to inevitable fit biases in 5. Hence, both BABAR
and Belle [11, 62] have performed their previous analyses, using different final states, in

the Cartesian coordinates

x4 =R(zy) =rpcos(dp £7)

y+ = S(z4) = rpsin(dp £7), (3.5)
"D denotes either D° or D° throughout this document
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which are unbounded and hence do not have this problem. The current best measurement

of these parameters are listed in Table 3.1. Theses values can be used in a frequentist or

B~ — DK~ B~ — D*K~ B~ — DK*~

D* — D% D~y K*~ — Ko~
T_ 0.05+0.05+0.02 —0.13+0.08+£0.02 —0.46=+0.17+£0.03
Y- 0.11+£0.07+£0.04 —0.20+£0.09 £0.03 0.05 £ 0.27 = 0.03
x4+ —0.14£0.05£0.03 0.10 £0.07£0.03 —0.10£0.15£0.03
y+ —0.03£0.06 £ 0.02 0.01 £+ 0.09 £ 0.06 0.00 £0.15+0.05

Table 3.1: Average measurements of the Cartesian coordinates in different modes [10].
For each mode the D meson is reconstructed from K977~ final states.

Bayesian analysis to obtain a measurement of the CKM phase ~.

The plan of this analysis is as follows. First we describe the data sample and event
selection. Then we establish a set of uncorrelated analysis variables and describe the
probability density function for each of these variables and all the signal and background
event types. The analytic parameterization of fpo is determined in a separate analysis
and described briefly. We continue with a description of the maximum likelihood fit
used to obtain a measurement of the CP parameters zy. After validating the fitting
procedure using Monte Carlo simulations, we present the fit result on data and studies of

the systematic errors.
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3.2 Data sample and event selection

The Monte Carlo (MC) and data sets used in this analysis are shown in Table 3.2. We
use both SP5/6 (processed with analysis-26) and SP8 (processed with analysis-30)
generic MC. Two different simulations of the D Dalitz plot are used. A phase-space
(PHSP) only simulation (SP-4854) of D — 777~ 70 decays that is used for the efficiency
shape determination. And a simulation according to the previous CLEO measurement

(SP-6795) [19]. The on- and off-peak data samples are both processed with analysis-30.

# events (105) Luminosity (fb™ ")

Event type SP5/6 SP8 total
BtB~ 584.0  399.9 1785.6
BB 540.7  354.9 1625.6
cc 425.8  232.7 487.8
uds 677.2 331.8 482.8

Signal (PHSP) | 0.347  0.542
Signal (CLEO) | 0.351  0.542
On peak 288.48

Table 3.2: Data and MC samples used in the B and D analyses.

The event selection in this analysis is based on the branching ratio analysis of this
mode [60,61], and the reader is referred to that documentation for detailed information.
In the following, we describe only the additional selection criteria used in this analysis.

We exclude events for which the invariant mass of the bachelor kaon and the oppositely-
charged pion daughter of the D is in the range 1.84 < my, < 1.89 GeV/c?. This removes
the background B~ — D%_ﬂJr p~, for which m_+,.- 0 happens to fall within our D mass
cuts. Such events peak in mgs and AE and constituted a significant background in the
previous B~ — D_+_ - 0K~ analysis, where they were classified as part of the DnX
background. The signal efficiency of this cut is 97.8% and the BB cut efficiency is 69%.

As in the branching fraction analysis, we have decided to veto events in which the

77~ daughters of the D candidate originate from a K? decay. The reason for doing this
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is as follows: First, the treatment of the decay D — K%7° as a signal mode has been
done in a separate BABAR analysis [11] using runs 1-4 data, which was optimized for the
selection of those events. Second, removing KO decays from the event sample simplifies
the treatment of the background. Without the K9 veto, one needs to either trust the MC
to give the correct fraction of KO decays in the background, or introduce several new fit
parameters for describing this fraction in each background type.

By studying the efficiency of signal and background decays, we decided to use the
following cuts to reject K9 decays. We exclude 7*7~ candidate pairs whose invariant
mass is between 0.489 GeV/c? and 0.508 GeV/c?. The size of this mass veto window in
relation to the kinematically allowed Dalitz region is pictured in Fig. 3.1. We instantly

see that the effect on the Dalitz plot is very small.
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Figure 3.1: Schematic representation of the K mass veto window applied to the Dalitz
plot. Events within the diagonal line are rejected. The area within the boundary is the
kinematic allowed region for D — 77~ 70 decays.

Moreover, we remove events with a D flight distance (Dag) greater than 1.5cm. Dag
is calculated as the spatial distance between the D vertex and the K~ vertex. Table 3.3
shows the number of true KU candidates found on generic BB MC with different selections
on Dag as well as with and without the K0 mass veto cut. The right two columns show
the relative changes in signal efficiency. The chosen K9 rejection cuts remove 94.3% of

the K events and are 97.4% efficient for B~ — D+, .0 K~ signal events.
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true KV in generic BB MC B™ — D4, -0 K™ events

Dpg/cm | cut on Dag —i—Kg veto cut on Day —i—Kg veto

386 100% | 153 39.6% | 31518 100% | 30929 98.1%
<30 221 57.3% | 51 13.2% | 31442 99.8% | 30855 97.9%
<15 | 141 36.5% | 22 5.7% | 31285 99.3% | 30701 97.4%
<10 106 27.5% | 17 4.4% | 31128 98.8% | 30549 96.9%
<0.7] 8 20.7% | 11 2.8% | 30938 98.2% | 30363 96.3%
<05]| 62 16.1% | 10 2.6% | 30707 97.4% | 30138 95.6%
<04 | 53 13.7% 9 2.3% | 30476 96.7% | 29918 94.9%
<03 45 11.7% 9 2.3% | 30110 95.5% | 29566 93.8%

Table 3.3: Study of the K rejection cuts. Columns 2 and 3 list the number of truth-
matched K9 events on generic BB MC with and without the K? mass veto for different
values of the D flight distance cut. The last two columns list the relative signal efficiency
for those cuts. The highlighted line represents the final cut.

Two neural network variables are use in this analysis to provide separation between
signal and background events. The first neural network variable ¢ is computed from
input variables that provide separation between continuum and BB events. The sec-
ond variable d combines input variables that separate correctly reconstructed 7¥ and DY
candidates from misreconstructed ones. It provides separation between signal and all mis-
reconstructed D-background. A detailed description of the neural networks can be found
in [61]. Figure 3.2 shows the distributions of the neural network variables together with
the efficiencies for signal and background when cutting on the variable. Since the neural
network variable d cannot be used in the Dalitz fit due to correlations (see section 3.4) we
tighten the cut from d > 0.1 to d > 0.25 compared to the branching ratio analysis.

In events that have multiple candidates, we select the candidate with the value of mpgg
closest to 5.279 GeV/c?, the nominal B~ mass.

The absolute signal efficiency is obtained from the CLEO signal simulation and cor-
rected using the official correction tables and recommendations from the Particle ID (PID),
Tracking and Neutrals groups for release 18. Only DK, events (see section 3.3) are con-
sidered signal. We use the PID tables provided by the PID group to weight each track

by its data efficiency and calculate an event weight. For the 70 efficiency we use the
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Figure 3.2: (left two plots) Distribution of the neural network variables ¢ and d for back-
ground (hatched) and signal. (right two plots) The cut efficiencies to remove background
(triangles) and signal (dots) when applying the selection ¢,d > =.

recommended correction of 0.968311. The same procedure is done with the phase space
simulation as a cross-check. Table 3.4 lists the efficiencies before and after the corrections.

The final efficiency used in this analysis is thus 11.41%.

Efficiency (%) | CLEO PHSP
no correction 12.14  13.23
PID correction 11.78  12.84
7V correction 11.41  12.43

Table 3.4: Signal efficiency after different corrections for the CLEO and phase-space sim-
ulation.
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3.3 Event types

The following ten event types (one signal and nine background types) are used throughout
this analysis. We use the notation Xp for an event type with a correctly reconstructed D

candidate, and Xp for an event type with a misreconstructed D candidate:

o DKo : B~ — D, +,-0K~ events that were correctly reconstructed. These are
the only events considered as signal. Note that this is somewhat different from
the DKp category of [60], where the requirement was only that the D be correctly
reconstructed. Here we require that the entire B candidate is correctly reconstructed,
since a wrong-sign kaon candidate can bias the CP measurement. In practice, the
fraction of B~ — D_+,.- 0K~ events with a correctly-reconstructed D and a fake

K is small. The old and new definition of “signal” are therefore very similar.

® DKygq : B™ — Dpvr—p0 K™ events that are misreconstructed. Note that this is
somewhat different from the DK category of [60], which includes only events in

which the D is misreconstructed.

e Drp: B~ — D%, D° — nt7 70 decays, where the decay D° — ntr—70 is

correctly reconstructed and the remaining 7~ is mistaken to be the kaon.

e Drp : B~ — D%, DY — 7t~ 7Y decays, where the D candidate is misrecon-
structed. The kaon candidate may be either the remaining 7~ or a particle from the

other B meson in the event.

e DKX : B — DWK®~ excluding D — atn 70 decays, with a misreconstructed

D candidate.

e DX : B — D™z~ and B — D(*)p_, excluding DY — 7t7~ 70 decays, with a

misreconstructed D candidate.

e BBCp : All other BB events with a misreconstructed D candidate.
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e BBCp : Other BB events with a correctly reconstructed D — 77~ 70 decay.

e qqp : Continuum e*e™ — ¢g events with a misreconstructed D candidate.

0

e qqp : Continuum eTe™ — ¢g events with a correctly reconstructed D — 7rm 7

decay.
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3.4 Variable correlation studies

In order to decide which analysis variables can be used in a Dalitz plot fit, we conducted
studies of correlations between possible variables. In the branching ratio analysis of this
mode, it was found that small, non-linear correlations between the background distribu-
tions of fit variables result in a significant bias. This was solved by not using mpgg and
mp as fit variables.

The neural net variable d and its input parameters are highly correlated with the
Dalitz plot variables. This is because most of the d input variables depend strongly on
the momentum of the 7°. Therefore this variable is not used in the Dalitz plot fit.

As shown in this section, the Dalitz variable distributions have small, yet significant
correlations with the mgg and mp distributions. Therefore, we are cutting on mpgg and
mp rather than using them in the fit. We show in this section that the variables AE and
q are uncorrelated with s; ¢ and s_g and will be used together with the Dalitz variables

in the fit to measure the CP parameters.

3.4.1 1-D Correlations of analysis variables

To check for possible correlations between our analysis variables, we divide the MC samples
in each of the variables AF, ¢, mgg, and mp with the binning shown in Table 3.5. For
each bin of variable i, we made histograms of the other variables j # ¢ and performed a
Kolmogorov-Smirnov (KS) test [63] between the histogram in the different bins. Tables 3.6
to 3.10 list the results. A low KS probability indicates correlations between variables i

and j. Figures 3.3 to 3.6 show distributions with particularly low values.

Bin 1 Bin 2 Bin 3 Bin 4
AFE (MeV) (=70, —25) (—25,0) (0,25) (25,60)
q (0.1,0.2) (0.2,0.4) (0.4,0.7) (0.7,1.0)
mps( GeV/cQ) (5.20,5.24) | (5.24,5.26) | (5.26,5.28) | (5.28,5.30)
mp( GeV/c2) (1.805,1.84) | (1.84,1.86) | (1.86,1.88) | (1.88,1.925)

Table 3.5: Binnings used for the KS comparisons.
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mps(AE) 0.85009 0.73107 0.93885 0.38350 0.70753  0.95120
mp(AE) 0.62565 0.82801  0.58600 0.78014 0.94076  0.31087
q(AE) 0.10397  0.69409  0.96303 0.56791  0.46216  0.99908
s—o(AE) 0.79043  0.45685  0.71429 0.81399 0.66677  0.65186
s+0(AE) 0.08032  0.05592  0.29049  0.98409 0.26768  0.81920
mps(q) 0.44222  0.37835 0.04888  0.87244  0.09863  0.01279

mp(q) 0.80627  0.67542  0.64751 0.60491 0.84932 0.91112
s—o(q) 0.74894  0.99280 0.95268 0.14221 0.18733  0.34757
s+o(q) 0.77493  0.38147  0.35849  0.68479  0.33700 0.92544
mp(mes) 0.64959  0.97761  0.73920 0.92023 0.51343  0.89923
s—o(mgs) 0.80018 0.88319 0.46723 0.96282 0.63195 0.50504
syo(mgs) 0.07161  0.01451  0.04428  0.94910 0.74056  0.64685
s_o(mp) 0.85561  0.65314  0.60934 0.37380 0.99953  0.27898
syo(mp) 0.50661  0.30152  0.88817 0.66741 0.71759  0.53655

Table 3.6: KS test for correlations in BBCp. In each row, z(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Table 3.5 for the bin ranges.
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Figure 3.3: Comparison of s_g in bins of mpgg for DmX events corresponding to the KS
probabilities of Table 3.9 (from left to right, top to bottom).



3.4. Variable correlation studies 59

Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mps(AE) 0.28395 0.62840 0.45293  0.99846  0.72791  0.93610
mp(AE) 0.99161 0.85667 0.94378 0.55168 0.81582  0.46429
q(AE) 0.66880  0.68085  0.47289  0.98864 0.88583  0.84802
s—o(AE) 0.45790 0.63849  0.92200 0.24200 0.95943  0.87477
s1+0(AE) 0.49215 0.22806  0.20413  0.99820 0.80507  0.97716
mps(q) 0.89412  0.12506  0.00227 0.38719  0.03010  0.33143

mp(q) 0.87311 0.06921  0.09345 0.29561 0.45084  0.78220
s—o(q) 0.32656  0.82834  0.46593  0.58815 0.33722  0.82488
s+o(q) 0.99663  0.62460 0.39228 0.99701 0.67679  0.80969
mp(mgs) 0.10919  0.34694  0.99671  0.82946  0.93795  0.99120
s—o(mgs) 0.69502 0.89079 0.88188 0.99813 0.93158 0.93861
syo(mes) 0.70925  0.92879  0.85514  0.59944  0.99992  0.94279
s—o(mp) 0.12292  0.49611  0.29906  0.47361 0.93576  0.67997
syo(mp) 0.78541  0.57557  0.11712  0.99545 0.21293  0.25807

Table 3.7: KS test for correlations in ggp. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Table 3.5 for the bin ranges.

Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mes(AE)  0.60199 0.84207 0.22632  0.91552  0.62885  0.45079
mp(AE) 096144 045095 0.98135 0.78327 0.99897  0.64991
4(AE) 0.91009 0.23767 0.61756 0.10852 0.74274  0.31324
s_o(AE)  0.83659 0.92609 0.09428 0.63933 0.63363 0.39361
sio(AE)  0.38185  0.64747  0.49310  0.79212  0.82248  0.42574
mes(q) 0.95701  0.70660 0.42206 0.90395 0.60795 0.68795

mp(q) 0.71770  0.38342  0.45221 0.11639 0.77951  0.97165
s—o(q) 0.06657  0.25413  0.75196  0.84852  0.23763  0.50730
s+o(q) 0.42054 0.45182 0.94930 0.76732 0.45072  0.84810
mp(mes) 0.70348  0.91141  0.24713  0.45401 0.71686  0.32906
s—o(mgs) 0.48828  0.64797 0.55364 0.67328 0.13752  0.29764
syo(mps) 0.82629  0.52138  0.78886  0.90014 0.64186 0.70178
s—o(mp) 0.00640 0.00329 0.11214  0.98493 0.68523  0.62572
syo(mp) 0.34202  0.78095 0.43126 0.69949 0.75910 0.69264

Table 3.8: KS test for correlations in ggp. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Table 3.5 for the bin ranges.
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mes(AE) 023212 0.97048 0.30068 0.69550  0.97993  0.71033
mp(AE)  0.07001  0.91724  0.36380 0.12105 0.99036  0.10972
4(AE) 0.87135  0.97401  0.07209 0.89851 0.33114  0.26918
s_o(AE)  0.26197 0.78646 0.90335 0.98009 0.38209  0.95142
sto(AE)  0.79952  0.35878  0.40727  0.48684 0.85884  0.44531
mes(q) 0.67897 0.87794  0.29283  0.99440 0.39936  0.38617

mp(q) 0.69629  0.99240 0.58685 0.96654 0.10499 0.20911
s—o(q) 0.59794 0.12840 0.63841 0.65257 0.87183  0.27060
s+o(q) 0.96332  0.31967 0.00485 0.23770  0.00054 0.03412
mp(mes) 097417  0.15612  0.96218  0.52693  0.85493  0.81117
s—o(mgs) 0.51052 0.79206 0.42789 0.71484 0.84089 0.77075
syo(mps)  0.02331  0.00000  0.00000  0.00003  0.00000  0.00464
s—o(mp) 0.08562  0.02694 0.01373  0.28299  0.28445 0.98791
syo(mp) 0.88521  0.02533  0.00000 0.14921  0.00004 0.00256

Table 3.9: KS test for correlations in DwX. In each row, z(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Figs. 3.3 and 3.4. See Table 3.5 for the bin ranges.
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Figure 3.4: Comparison of s;¢ in bins of mp for D7 X events corresponding to the KS
probabilities of Table 3.9 (from left to right, top to bottom).
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mes(AE) 050372 0.97961 0.29342  0.57620 0.91531  0.29877
mp(AE)  0.08617 0.98832 0.28366 0.39926  0.0047/ 0.18294
4(AE) 0.20336  0.82335 0.96075 0.58739  0.66002  0.95231
s_o(AE) 094220 0.87434 0.76969 0.66894 0.55288  0.98887
sto(AE)  0.81799  0.85517  0.39840 0.79181  0.91457  0.89001
mes(q) 0.85553  0.81694 0.00880 0.86322 0.01057  0.005/4

mp(q) 0.51720  0.79002  0.44661  0.07877  0.00548  0.75020
s—o(q) 0.20447 0.47838  0.72828 0.66474  0.02687  0.11399
s+o(q) 0.10513 0.34842  0.29851 0.98101 0.61993 0.91044
mp(mes) 0.89057  0.45996  0.49679  0.81437 0.51006 0.55743
s—o(mgs) 0.09971  0.00023 0.00026 0.02748 0.00418 0.29616
syo(mes)  0.99260  0.00000  0.00000  0.00005 0.00000  0.24407
s—o(mp) 0.97862  0.22565 0.01610  0.84595 0.27140  0.86307
syo(mp) 0.94996  0.43259 0.94171 0.95786  0.89141  0.26122

Table 3.10: KS test for correlations in DK X. In each row, z(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See also Figs. 3.5 and 3.6. See Table 3.5 for the bin ranges.
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Figure 3.5: Comparison of s_q in bins of mpg for DK X events corresponding to the KS
probabilities of Table 3.10 (from left to right, top to bottom).
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Figure 3.6: Comparison of s;¢ in bins of mpgg for DK X events corresponding to the KS
probabilities of Table 3.10 (from left to right, top to bottom).
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3.4.2 Correlation studies with 2-D Dalitz distributions

In addition to the 1-D correlation studies of the previous section, we performed KS tests
between 2-D Dalitz distributions in the bins listed in Table 3.11 for the different event
types. Tables 3.12 to 3.17 list the KS probabilities of this test. Low probabilities indicate

possible correlations between the 2D Dalitz distributions and the variable used in the

binning.
Bin 1 Bin 2 Bin 3
AFE (MeV) (=70,—25) (—25,25) (25,60)
q (0.1,0.2) (0.2,0.7) (0.7,1.0)

mps(GeV/c?) | (5.20,5.24) (5.24,5.26) (5.26,5.30)
mp(GeV/c?) | (1.805,1.845) | (1.845,1.875) | (1.875,1.925)

Table 3.11: Binnings used for the 2D-KS comparisons of the Dalitz distributions.

Bins 1,2 Bins 1,3 Bins 2,3
mps  0.80528  0.02165 0.07048
AFE 0.01614 0.13611  0.22403
q 0.20087  0.05519  0.12012
mp 0.52057  0.08130  0.10963

Table 3.12: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for BBCp events. The bin definitions are listed in Table 3.11.

Bins 1,2 Bins 1,3 DBins 2,3
mes  0.76663 0.44127 0.81126
AE 038409 0.25026 0.51625
q 0.47830  0.04475  0.03021
mp 032201  0.00964 0.01852

Table 3.13: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for qqp events. The bin definitions are listed in Table 3.11.
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Bins 1,2 Bins 1,3 DBins 2,3
mes 055411  0.88925 0.36111
AE  0.38744 0.11640 0.74168
q 0.58916  0.90730  0.56165
mp  0.10490  0.38350 0.51012

Table 3.14: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for qqp events. The bin definitions are listed in Table 3.11.

Bins 1,2 Bins 1,3 Bins 2,3
mpgs  0.00095  0.00000 0.00000
AFE 0.20996  0.18657  0.72411
q 0.78332 0.31413  0.25159
mp 0.21288  0.00033  0.07307

Table 3.15: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for DX events. The bin definitions are listed in Table 3.11. The Dalitz distributions for
mpgs and mp are shown in Figs. 3.7 and 3.8.

DPiX: mes<5.24 DPiX: mes>5.24 && mes<5.26 DPiX: mes>5.26

Figure 3.7: Dalitz distributions of mgg for D7 X events in the three bins used for the KS
comparison shown in Table 3.15.

Bins 1,2 Bins 1,3 DBins 2,3
mes 024916 0.00000  0.00000
AE 053465 0.34538  0.70650
q 0.91606  0.47534  0.14354
mp  0.74505  0.03849  0.03367

Table 3.16: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for DK X events. The bin definitions are listed in Table 3.11. The Dalitz distributions for
mpgs and mp are shown in Figs. 3.9 and 3.10.
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Figure 3.8: Dalitz distributions of mp for Dw X events in the three bins used for the KS
comparison shown in Table 3.15.
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Figure 3.9: Dalitz distributions of mpg for DK X events in the three bins used for the KS
comparison shown in Table 3.16.
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Figure 3.10: Dalitz distributions of mp for DK X events in the three bins used for the KS
comparison shown in Table 3.16.
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Bins 1,2 Bins 1,3 Bins 2,3
mpgs  0.00000 0.00000 0.00000
AFE 0.84778  0.78585  0.89935
q 0.30894  0.48435  0.20788
mp 0.00087  0.21046  0.30470

Table 3.17: KS probabilities for the two-dimensional comparison of the Dalitz distributions

for Dmp events. The bin definitions are listed in Table 3.11. The Dalitz distributions for
mp are shown in Fig. 3.11.
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Figure 3.11: Dalitz distributions of mp for Dmp events in the three bins used for the KS
comparison shown in Table 3.17.
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3.5 Validation of event distributions

Since all of the PDF shapes in this analysis are obtained from MC samples, it is necessary
to validate them against the data and check the level of agreement. The general idea is
to first establish the agreement between signal and sideband region on MC. Once this is
confirmed, the MC and data sidebands can be used to quantify the agreement between

data and MC.

3.5.1 Comparison of MC Dalitz plot distributions in signal region and

sidebands

To determine whether the background Dalitz plot distributions can be validated with
sideband data, we compared these distributions in MC between the signal region and five

different sidebands. The sidebands are:
e Upper AFE: 0.06 < AE < 0.140 GeV

Lower AE: —0.140 < AE < —0.07 GeV

mgs: 5.2 < mpg < 5.272 GeV/c?

e Upper mp: mp > 1.9 GeV/c?
e Lower mp: mp < 1.82 GeV/c?

The KS probabilities comparing the Dalitz plot distribution of the different backgrounds
in the signal region and the sidebands are shown in Table 3.18. The MC statistics used
in this study are listed in Table 3.19. We find good to very good agreement for the Dalitz
plot distributions between the MC signal and sideband region. Hence, we can assume
that a comparison of data and MC sidebands will also reveal any possible problems in the

signal region. This test is performed in the next section.
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Event type Upper AE Lower AE mpgg Upper mp Lower mp

DKX 0.89 0.44 0.06 0.42 0.61
DnX 0.94 0.80 0.31 0.29 0.44
BBCp 0.98 0.77 0.17  0.30 0.26
qqp 0.77 0.90 0.43 0.55 0.68
49D 0.87 0.95 0.74 091 0.91

Table 3.18: Kolmogorov-Smirnov probabilities comparing the Dalitz plot distribution of
background event types in the signal region and sidebands. The MC statistics used in this
study are listed in Table 3.19.

Event type Signal region Upper AE Lower AE mpgs  Upper mp Lower mp

DKX 171 144 202 530 403 426
DrnX 628 514 821 3156 2095 2188
BBCp 401 344 531 2620 1625 1700
qqp 2307 2412 2849 19235 11565 11792
44D 34 33 37 267 153 154

Table 3.19: Numbers of MC events used to calculate Table 3.18.

3.5.2 Comparison of data and MC Dalitz plot distributions in sidebands

To check the data-MC agreement, we compare the data and MC Dalitz plot distributions
in the same sidebands as in the previous section. The upper and lower mp sideband are
merged together to obtain larger statistics. The two-dimensional data Dalitz distributions
are compared to properly weighted MC samples and the total x?/ndof between the two
histograms together with the p-value is calculated. The test is performed for all values
of ¢, ¢ < 0.25 (enhances continuum events), and ¢ > 0.25 (suppresses continuum events).
Table 3.20 and Table 3.21 show the results for the different sidebands and a minimum
average number of events in each Dalitz plot bin of 15 and 30 events, respectively.
Again, we find good agreement between the data and MC sidebands. Together with
the studies of the previous section, we conclude that the background distributions obtained

from MC give a good description of the distributions found in data.
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Sideband 0.1 <g¢ < 1 01<g<025 ¢>025 q>06

Upper AE  1.082 (31.31%) 0.842 (60.65%) 1.009 (42.97%) 1.139 (28.58%)
Lower AE  1.134 (22.89%) 1.203 (25.21%) 0.927 (58.31%) 1.191 (26.15%)
mpgs 1.034 (32.55%) 1.011 (43.79%) 0.982 (56.83%) 1.122 (13.24%)
mp 0.980 (52.85%) 1.167 (22.44%) 1.302 ( 7.01%) 1.301 (16.13%)

Table 3.20: Data and MC comparison of the Dalitz shapes in different sidebands and
for different bins of q. The values given are the total x2/ndof and the resulting p-value
in percent. The average minimum number of events per Dalitz bin is 15 events. See
Table 3.21 for the same test with 30 as the minimum number of events per bin.

Sideband 0.1<g<1 01<g<025 g¢>025 q>06

Upper AE  1.342 (9.10%) 0.967 (46.54%) 1.166 (28.34%) 1.348 (23.18%)
Lower AE  1.018 (41.21%) 1.230 (27.07%) 1.161 (28.79%) 1.007 (43.16%)
mes 1.034 (32.55%) 0.956 (62.17%) 1.003 (47.56%) 1.150 (15.14%)
mo 1.209 (16.79%) 1.327 (16.58%) 0.813 (69.50%) 2.174 ( 2.08%)

Table 3.21: Data and MC comparison of the Dalitz shapes in different sidebands and
for different bins of ¢q. The values given are the total x2/ndof and the resulting p-value
in percent. The average minimum number of events per Dalitz bin is 30 events. See
Table 3.20 for the same test with 15 as the minimum number of events per bin.

3.5.3 Comparison of 1D fit variables in data and MC sidebands

Although this has been validated already in the previous branching ratio analysis, we
repeat the comparison of data and MC sidebands for the remaining fit variables AE and
q. Figure 3.12 shows the AFE distribution on data and MC for the different sidebands. The
p-values of a x? test for this set of plots and for other ranges of ¢ are listed in Table 3.22.
The comparison of the ¢ distribution can be seen in Fig. 3.13 and Table 3.23. Both from

the p-values and the plots we conclude that there is good agreement between data and

MC.
Sideband 0l<g<1 01<g<025 ¢>025 ¢>06
mes 0.803 0.315 0.908  0.653
Lower mp 0.692 0.299 0.849  0.386
Upper mp 0.179 0.526 0.131  0.079

Table 3.22: P-values of a x? test between data and MC for the AE distribution in different
sidebands and using different cuts on gq.
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Figure 3.12: Comparison of AE distributions in data (black triangles) and MC (blue
circles) in the mpgg (left), lower mp (middle) and upper mp (right) sideband for 0.1 <
g < 1.0. The p-values of a y?-test are listed in Table 3.22.

Sideband 0.1 <¢<1
megs 0.645
Lower mp 0.140
Upper mp 0.506
Upper AFE 0.404
Lower AFE 0.392

Table 3.23: P-values of a x? test between data and MC for the ¢ distribution in different
sidebands.
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3.6 Probability density function

This section describes the probability density function (PDF) used in the fit. Separate
functions for the 1-D analysis variables AF, d, ¢ and the 2-D Dalitz plot, as well as for
the ten different event types are presented. Eventually, the full PDF for this analysis has

about 400 parameters, that are determined by fitting suitable MC samples.

3.6.1 Overview

The total PDF is a sum over the PDFs of all event types t:

Ppi — th Pl = IpK,, PEKsig + DK PEKbgd
t

Iprp szj,rD + fDrp PJSU)

foEX Phrx + fDex Phax

fBBCD P%BCD + fBBC)H P%BCD

fQQD PéqD + fQ‘UD Péq;z) ’ (36)

+ o+ o+ o+

where the subscripts correspond to the event types of section 3.3, f; is the expected fraction
of events of type t and P} is the PDF for these events. The superscript i = 1,2 indicates
the two types of fits that are used in the two-step fitting procedure of this analysis (see

section 3.8.5). In the first fit, we use the variables
1. AFE
2. ¢ (neural net separating BB from continuum)
3. d (neural net separating good D candidates from fake ones)

Under the assumption of no correlations between the distributions of the various event

types in the fit variables (this assumption is justified by the studies in the branching ratio
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analysis [61]), the PDF for events of type ¢ used in the first fit is

Pi(AE, ¢,d) = E(AE) Qi(q) Ci(d). (3.7)

The variables used in the second fit are the uncorrelated (see sec. 3.4) set

1. AE

3. 540 and s_g

hence the single event type PDF can be expressed as the product

PE(AE7 4,540, 870) = gt(AE) Qt(q) Dt(SJrOa 5*0)' (38)

The following subsections discuss the parameterizations of these PDFs.

3.6.2 Parametrization of & (AFE)

The AE PDFs are parameterized using Gaussians, asymmetric Gaussians, and 2nd-order
polynomials. Table 3.24 lists the functional form used for each event type, and the fits
to MC samples from which these functions and their shape parameters were obtained are

shown in Figs. 3.14 through 3.18.
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Event type t  &(AE)  Qu(qd'),Ci(d)

DKgig G+ P G+ AG
DKygq G+ P G+ AG
Drp G G+ AG
Dmp P G

DrX P G+ AG
DKX P G+ AG
BBCp G G

BBC) P G+ AG
q9D P G

qqp P G+ AG

Table 3.24: Functional forms of the AFE and g PDFs of each event type, indicated with
G = Gaussian, AG = asymmetric Gaussian and P = 2nd order polynomial.
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Figure 3.14: The distributions of AE for DK, (left) and DKjygq (right) obtained from
MC.
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Figure 3.17: The distributions of AE for BBCp (left) and BBCp (right) obtained from
MC.
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Figure 3.18: The distributions of AE for qqp (left) and ggp (right) obtained from MC.
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3.6.3 Parametrization of Q;(q)

Figure 3.2 (p. 54) shows the distribution of the neural network variable ¢ for signal and
background. Finding an analytical parameterization for this shape is rather difficult and
most analyses resort to using histogram based PDF's to describe them. We use a different

approach and define the transformation

—0.55
/ — arctanh [ 22 3.9
g — ¢ = arctan ( 05 , (3.9)

which maps the selection interval ¢ € (0.1,1.0) to ¢’ € (—00,00). It turns out that ¢’ has
a Gaussian-like shape and can easily be parametrized analytically. We use the sum of an
asymmetric Gaussian and a Gaussian to fit the event types DKg, DKypeq, DX, DK X,
Drp, BBCp and qqp. A single Gaussian is used for the event types BBCp, D7rp and
qqp. Table 3.24 summarizes the different shapes used in each fit and Figs. 3.19 through
3.23 show the fitted MC distributions.
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Figure 3.19: The distributions of ¢’ for DK, (left) and DKj,eq (right) obtained from MC.
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3.6.4 Parametrization of C;(d)

The same transformation as described in the previous section is used for d but with

changed numerical values due to the different selection interval:

(3.10)

d — d' = arctanh <d_0ﬂ> ,

0.375

which maps the selection interval d € (0.25,1.0) into d'(—o0,00). Figs. 3.24 through 3.28

show the fitted MC sample to the shapes listed in Table 3.24 (p. 74).
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3.6. Probability density function 82

3.6.5 Dalitz Plot Efficiency PDF

The efficiency as a function of the Dalitz plot variables si1g and s_g is determined from
phase space signal MC including the proper particle ID corrections for the charged pions

and kaon in the event. We fit the efficiency with a cubic polynomial:

Eff(st0,5-0) =1 + si(st0+s-0)
s2(s5o + s20) + s3(s%0 + 57)
54(5,0510 + 5105%0) + 5554050

a1(s40 — 5-0) + az(sty — s2p)

+ o+ o+ o+

as(s59 — 520) + aa(s—05%g — s+0520) (3.11)

The parametrization is split into symmetric (s;) and asymmetric (a;) coefficients that
are mostly uncorrelated, helping the fit converge. In addition to the relation (3.11),
Eff(s;0,5_0) = 0 for all points outside the physical Dalitz boundary or within the K9
mass veto window described in section 3.2. This veto window shows up as a diagonal void
line at the high mass region of the Dalitz plot.

The function Eff(s;g,s_g) gives only the reconstruction efficiency. Truth-matched
DK, signal events satisfy an additional requirement, namely, that they were correctly
reconstructed, and hence have different efficiency function parameters. The efficiency
function for these events is Effp(sto,s_0). Its parameters are obtained from phase-space
signal MC events that passed all the cuts and were truth-matched.

The results of the efficiency fits are listed in Table 3.25. Fig. 3.29 shows the efficiency
(upper left), data generated from the fitted efficiency Effp (upper right) and the projections
onto the Dalitz variables (lower plots). We notice that asymmetric coefficients for both
efficiencies are consistent with zero. To simplify the fitting code, we therefore neglect the

asymmetry in the efficiency functions.
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the Dalitz plot axes of phase-space MC (data points) and the efficiency fit function (line).
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Effp Eff
51 276 £8.10 0.56 = 0.035
so  —113+£3.29 —0.27 £0.017

S3 15.7 £ 0.84 0.042 4+ 0.0044
S4 29.8 £2.19 0.043 £ 0.012
s5  —166 £ 8.24 —0.27 £0.044
ax 1.65+12.2  —0.013 £ 0.069
ay —3.13+10.3 —0.0043 £ 0.058
as 0.724+2.19 0.0021 £ 0.012
ay 1.45 £2.33 0.0065 £ 0.013

Table 3.25: Fit results for the efficiency coefficients of Eq. (3.11) for the signal efficiency
Effp and the reconstruction efficiency Eff. Fig. 3.29 shows the fit for Effp.

3.6.6 Dalitz plot signal PDF

The PDF for signal events is a product of the “physical” PDF and the efficiency function:
DDKsig(8+07 8_0) = 'D%h}ézig (8+0, 8_0) EffD (S+0, S_O). (3.12)

For B~ decays, the physical PDF is

D%hfy(iig(&roa s-0) = |fpo(s10,5-0) + (z— +iy-) fpo(s_o0,540), |- (3.13)

where fpo is the complex Dalitz plot amplitude for DY decays, and we have written the
complex coefficient 7e’®=7) using the two real variables z_ and y_ with z_ = x_ 4+ y_.
The physical PDF for BT decays is obtained by the exchange s, < s_g and z_ < z,. In
Section 3.8 we will show that the parameterization z(x,y) is not suitable for this analysis
and we will use a polar parameterization z(p, ) instead.

The D decay Dalitz distributions are calculated with the isobar model,

Fo(540,5_0) = anre™ N + Z ar€ ¥t A (510,5_0), (3.14)

r

where the first term is a flat, non-resonant contribution and the sum is over all 2-body
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resonances. The 2-body resonance amplitude describes the decay of the DY to particle
C and resonance 7, followed by the decay of the resonance 7 to particles A and B (D° —

(r — AB)C). Following the notation of [64] we write:

F
q2 - imrF(Q) ’

A, = FpF, (3.15)
m.

2

e

where we take the D form factor to be Fp = 1, the expressions for the resonance form
factor F, are listed in Table 3.26, ¢*> = m,243 = (pa + pp)? is the reconstructed mass
squared of the resonance candidate, m, is the nominal mass of the resonance, I'(q) a

mass-dependent width and Fy the spin-factor for a resonance of spin s:

R o= 1 (3.16)
2 2 2 2
m —m mp —m
Fl = mic — m%c + ( Do 0)2( B A) (3]‘7)
q
2
(m30 —mg)(m% —mj)
= (mQBC — mic + D 7
1 M2 m2.)2
L (i 2wy )
2 942
x <m?43 —om% — 2m% + %) . (3.18)

Note that we use the reconstructed mass ¢ in the denominator rather than the resonance
mass m, as was done in [64]. This seems a more reasonable approach, especially for broad

resonances like the p. The mass-dependent width is expressed as

() =T, (“B)QSH (%) r2 (3.19)

br q

where I',. is the width of the resonance and p, is the momentum of either daughter in the
resonance rest frame. pap is the same but with the two-track invariant mass assigned to
the parent instead of the nominal resonance mass.

The parameters of the resonances used in the signal PDF are listed in Table 3.27. We
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Spin Form factor F

0 1
1 1+R2]22%
1+R2p%
9 9+3R2p2+Rip}
9+3R%p p+R'ph s

Table 3.26: Blatt-Weisskopf penetration form factors. R is the meson radial parameter,
whose value we take to be 1.5GeV ™!, and p, is the momentum of either daughter in the
resonance rest frame. pap is the two-particle invariant mass.

take the mass and width of the fp(1370) from the E791 Dalitz plot analysis of Dy —
7ta~nt [65]. The width of the f5(980) is also taken from that analysis. These three
parameters have large uncertainties in the PDG, whose input comes mostly from scattering
experiments. Therefore, it seems more relevant to our decay to take them from their
relatively precise measurement in the Dg decay. The w resonance is included without any
p — w mixing.

Furthermore, the PDF includes three non-resonant P-wave amplitudes (one for each
pair of pions) with A, = Fj. Figures 3.30 through 3.36 show the Dalitz distributions of

individual components used in our signal PDF.

State Mass (MeV) Width (MeV) Source

p— T 775.8 £0.5 150.3 £ 1.6 PDG

p(1450) — 7w 1465 + 25 400 £ 60 PDG

p(1700) — 7 1720 + 20 250 £ 100 PDG

f0(980) — 7w~ 980 + 10 44 + 3 PDG (mass), [65] (width)
fo(1370) — 7o~ 1434 + 18 173 + 32 [65]

fo(1500) — 7™ 1507 £5 109 £7 PDG

fo(1710) — 7o~ 1714 £5 140 £ 10 PDG

f(1270) — ntn~  12754+12 18517570 PDG

o— Tt 200 400

Phase space

The following are used only for systematics
f5(1525) — g~ 1525+ 5 73+6 PDG
w— Tt 782.59 8.49 PDG

Phase space P-wave

Table 3.27: Components of the signal Dalitz PDF, and the sources of their parameters.
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Figure 3.33: Dalitz plot distributions of for®, fom%, and fo(1370)7° toy MC events.
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Figure 3.34: Dalitz plot distributions of fo(1500)7°, f5(1525)7%, and f5(1710)7° toy MC
events.
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Figure 3.35: Dalitz plot distributions of o7", wn®, and nonresonant toy MC events.
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3.6.7 Dalitz plot background PDF

The Dalitz distributions for background events with a correctly reconstructed D-candidate

(Dmp, BBCp and qqp) are the same as for signal events with z = y = 0:
DDﬂD = DBBCD = D(I(ID = |fD0(8+0,S,0)|2, (320)

where fpo(sto,5-0) was defined in Eq. (3.14).
The Dalitz background distributions for Dmp, DKX, BBCp and qqp events are
obtained from the generic BB and ¢ MC samples. We model the Dalitz distributions as

the incoherent sum of three unpolarized p resonances and a non-resonant (NR) component:

Dinc(s+0,5-0) = [NRPNr + (1 — fNR) [(1 — [0)(for P + (1= ) PO ) + fpopgo](.g.m)

The non-resonant component Pygr is parametrized by a cubic polynomial (Eq. (3.11)).
Each resonant component 772 is the product of the efficiency function and a relativistic,

spin zero, Breit-Wigner amplitude at the p mass Ag:
732 = EH(S_H), S_o)‘Ag(S_i_o, S_o) ’2. (3.22)

This gives a good description of p resonances from background events that do not have
an angular correlation with any of the other particles in the decay. Table 3.28 lists the
relative fractions of the different components found by the fit. To quantify the fit quality,
we generate events from the fitted PDF, with 100 times the statistics of the input MC
sample, and perform a KS test between the two Dalitz distributions. The KS probabilities
of this test can be found in Table 3.28. The fits for each event type are shown in Figs. 3.37
through 3.40.

The D7 X Dalitz shape has an accumulation of events at low s¢ masses (see Fig. 3.41).

This is due to B — D*r~, D* — D" decays, with the D final state often containing
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Event type INR Jot Jpo  KS prob
Dmp 0.94 +£0.09 0.30+0.60 0.00=+0.97 0.564
DKX 0.97+0.02 1.00+0.62 0.004+0.11 0.120
BBCp 0.76 £0.03 0.70 £0.07 0.13 £0.07 0.759
qqp 0.89 +£0.02 0.53+0.10 0.224+0.08 0.396

Table 3.28: Relative fractions of the non-resonant (NR), p* and p° component in the
background Dalitz distributions together with the KS probability of the fit results.
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Figure 3.37: Fit to the Dalitz distribution of D7p events. a) shows the MC events used in

the fit, b) and ¢) show the projections on s;g and s_g and d) shows the Dalitz distribution
of events generated from the fitted PDF.
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Figure 3.38: Fit to the Dalitz distribution of DK X events. a) shows the MC events

used in the fit, b) and c¢) show the projections on s;¢ and s_g and d) shows the Dalitz
distribution of events generated from the fitted PDF.
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Figure 3.39: Fit to the Dalitz distribution of BBC) events. a) shows the MC events
used in the fit, b) and c) show the projections on s;¢ and s_¢ and d) shows the Dalitz
distribution of events generated from the fitted PDF.
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Figure 3.40: Fit to the Dalitz distribution of gqp events. a) shows the MC events used in
the fit, b) and ¢) show the projections on s, and s_g and d) shows the Dalitz distribution
of events generated from the fitted PDF.
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a K~ that is taken to be the bachelor kaon. Combining the soft pion from the D* decay
with a 7Y candidate that is often also soft, results in this low-mass accumulation.

We use a histogram-based PDF to parameterize this background type. Fig. 3.41 (left)
shows the binning of the histogram used for the PDF. Each bin is weighted according to
its area inside the Dalitz boundaries. The two plots on the right show the PDF projections

on syo and s_g, respectively.
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Figure 3.41: Dalitz distribution of DX events including the binning used for the his-
togram PDF (left). The two plots on the right show the projections of the PDF on s,
and s_g, respectively.

We use the same approach for signal events with a badly reconstructed D-candidate
(DKypgq). Fig. 3.42 shows the histogram used for the PDF. Overlaid is a plot of the DKj,q

events (with reduced statistics).
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Figure 3.42: Dalitz distribution of DKjeq events including the binning used for the his-
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3.7 Dalitz plot fit of D — 777 7Y

The resonance parameters of fpo(sto,5-0) (Eq. (3.14) in section 3.6.6) are determined in
a separate analysis [66,67]. Using 232fb™! of data, a clean D, +,-,0 sample is obtained
from D*t — DO} decays where the charge of the soft 7 tags the flavor of the DY. The
resolution in Am = m7}, — mOD is approximately 0.3 MeV/c? and only D candidates with
0

Am within 0.6 MeV/c? of the central value are retained. Figure 3.43 shows the 7+ 77

invariant mass of these D candidates.

Events/ ( 0.0025 GeV/c?)

(GeV/c?)

Figure 3.43: 77~ 7¥ invariant mass of D candidates obtained from D** — Dz decays.
The dots represent the data, the dashed line shows the combinatorial background and the
shaded region represents the total background.

For the Dalitz plot analysis, only D candidates within the 1o signal region (1.848 <
m(rtr~ 1Y) < 1.880) are used. This window also rejects all background events from
misreconstructed 77 K~ 7 decays that can be seen in the left tail of Fig. 3.43. The Dalitz
fit uses the resonance masses and width listed in Table 3.27 (p. 86). The amplitude of
the p component is fixed to one and its phase is fixed to zero. All other amplitudes and
phases are floating in the fit. The fit fraction for each PDF component in terms of Eq.

(3.14) is defined as
B i larAr(s40,5-0)|> ds_ods o

N . 3.23
[ 1fpo(s40,5-0)> ds_odsto (3.23)

F,

Due to interference, the fit fraction is not the relative contribution of the component.
Table 3.29 lists the result of the Dalitz fit and Fig. 3.44 shows the projections of the PDF

on the three two-pion invariant masses.
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Component Amplitude a, Phase ¢, Fraction F,.(%)
pT 1 0 67.8
o0 0.588 + 0.006 16.2 + 0.6 26.2 0.5
p- 0.714 £ 0.008 —2.0+0.6 34.6 + 0.8
pT(1450) —0.21 +0.06 34+ 18 0.11 £0.07
0(1450) 0.33 £ 0.06 10 +8 0.30 £ 0.11
p~ (1450) 0.82 4+ 0.05 159+29 1.79 +0.22
pT(1700) 2.25+0.18 —16.7+t24 4.1+£0.7
p°(1700) 2514015 —17.14+1.7 5.0+0.6
p~ (1700) 2.00+0.11 —-50.2+£3.3 3.25 £ 0.36
f0(980) 0.0525 +0.0039  120.6 4.7 0.250 + 0.037
fo(1370) 0.222 +0.034 —244+9 0.37 £0.11
fo(1500) 0.203 + 0.022 192+9 0.39 +0.08
fo(1710) 0.391 £ 0.046 231 +8 0.31 £0.07
f2(1270) 0.303 4 0.009 9.0+3.4 1.32 £ 0.08
o —0.238 +0.015 79+4.3 0.82 £0.10
Nonresonant 0.57 £0.07 168.6 £3.7 0.84 £0.21

Table 3.29: Result of the DY Dalitz fit. The amplitudes (a,) and phases (¢,) are defined
relative to the p™. The last column shows the fit fraction F, according to Eq. (3.23).
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Figure 3.44: Projections of the data and PDF for the Dalitz fit to D° — 77~ 70 decays.
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, 7’ and ntaT

are shown,



3.8. Maximum likelihood fit 97

3.8 Maximum likelihood fit

This section describes how the PDF described in section 3.6 is used to extract the CP

parameters from the data sample.

3.8.1 Combining Dalitz shape, signal yield and asymmetry

In order to measure the CP parameters using the Dalitz shape one minimizes the negative
log-likelihood (NLL)
Lop=—Y logP’ (3.24)

with respect to the CP parameters. P? is the PDF given by equations (3.6) and (3.8) and
the sum goes over all events.

We note, however, that the signal branching fraction and decay rate asymmetry also
depend on the CP parameters. This information is used in the GLW (section 1.3.1) and
ADS (section 1.3.2) methods but has not been exploited yet by any of the previous Dalitz
analysis and is not captured by this NLL. From very general arguments [17], one can
conclude that the branching ratio and asymmetry have a sensitivity to the CP parameters
that is similar to that of the Dalitz shape distribution. To incorporate all the available

information in the data, we minimize
L= Lpp + LBa, (3.25)

where Lpa is an additional term to the log-likelihood that represents the information

contained in the branching ratio and asymmetry. This term can be written in form of a

XQ

1 _
Lpa = QKV” lyja (3'26)

where we have defined Y; (Y2) to be the difference between the measured and expected

signal yield (asymmetry), and V' is the covariance matrix for these two observables includ-
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ing some systematic errors described below. The expected signal yield and asymmetry
are

Nexp = N+ Nep

exp

N- — N+
A = =P~ &P 3.27
P Nexp + Nebp (3.27)

where N;E(p is the expected number of BT signal events for a given value of the CP

parameters z4

S fpo(s40,5-0) + z2— fpo(s—o, s10)* dssods_o
o J 1 fpo(s+0,8-0)[? dstods—o

N+ — f ’fDO (8—07 8+0) + Z+fDO(S+0, 3_0)’2 d8+0d8_0 (3 28)
o ! J 1fpo(s-0,5+0)[* dstods—o ’ :

and we have used the quantities defined in Eq. (3.4). 7 is a normalizing factor depending on
the number of BB events N 5> the no-CP branching fractions, and the absolute efficiency
€

n=-NpzB(B~ — D'’K")B(D° — rtr n%e. (3.29)

The statistical and systematic uncertainties in 7 are included in the error matrix V.
In the subsections below we explore the advantages of minimizing £ instead of Lpp.

We then describe the fit procedure to realize this in section 3.8.5

3.8.2 Behavior of the Dalitz shape NLL Lpp

Figure 3.45 shows the dependence of Lpp (3.24) on the parameters x4 and y4, calculated
from a data luminosity equivalent toy MC experiment. The lines indicate 1o contours
with the line surrounding the white area being the 1o contour line. It is evident that
at negative values of x, Lpp is almost constant, resulting in a reduced sensitivity in this
region.

The asymmetry with respect to z and the flatness of Lpp at low x values are a conse-
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Figure 3.45: Dependence of the negative log likelihood Lpp, computed with a single toy
MC experiment containing both signal and background, on all pair combinations of the
parameters x4, y+ (2D plots, 1o contours) and on the individual parameters (1D plots).
The true values of z,y4 are 0. The values of the parameters not shown in each plot are

set to their true values.
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quence of the small value of the phase difference A¢p = ¢,- —¢,+ ~ 2° between the p~ and
pT resonances, as well as the relatively large ratio a,-/a,+ =~ 0.7 between the magnitudes
of their amplitudes (see Table 3.29). To illustrate the effect of A¢ on the NLL shape we
show in Fig. 3.46 Lpp for B~ events as a function of z_ and y_ for varying values of A¢.
One sees that as A¢ increases, the shape of Lpp rotates in the z — y plane. Moreover,
the sensitivity (density of contour lines) is maximal around A¢ ~ 90°. From the upper

0 we observe that

left plot, which corresponds to the physical situation in D° — 7tna—rx
the NLL is highly asymmetric, that the sensitivity greatly depends on the true values of
x and y and that there are non-linear correlations between x and y. These properties of

the NLL make it very difficult to obtain unbiased results for z and y in the maximum

likelihood fit.

EE R Y

Figure 3.46: Lpp of a signal-only B~ toy sample as a function of z_ and y_ if the Dalitz
plot contains only p* and p~. The phase difference between them varies from 0° (top left)
to 180° (bottom right) in 20° steps.

In Figure 3.46, one can see a very tall peak in Lpp at, for example x =~ 1.4 for the top
left plot. This peak appears approximately where the CP parameters are such that the
pT totally destructively interferes with the p~, making the Dalitz plot highly asymmetric.
With the Dalitz plot distribution thus being very different from the highly symmetric
distribution in the no-CP violation case (a symmetry that is due to approximately equal

pT and p~ amplitudes), this results in very large values for Lpp.
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3.8.3 Behavior of the yields term Lga

Figure 3.47 shows the expected signal yields Neixp of (3.28) as a function of the CP param-
eters. A significant dependence is observed, which can be used to increase the sensitivity
of the measurement to the values of these parameters. The source of the circular shape
of regions of constant yield vs. x and y is as follows. The yield (either Nt or N7) is

proportional to

N / |A+ (x +iy)A|* do, (3.30)

where the integral is over the Dalitz plot and we use the shorthand notation

A = fpo(s+o,5-0)

A = fpo(s_o,540) (3.31)

Squaring and dividing (3.30) by [ |AJ* gives

[RAD) ) [SAA)

N o 1+ (2 +y?) + 22 TIAE 2 T ap (3.32)
For constant N, this gives a circle whose center (minimum value of N) is at
o [RAT)
I
Lo o= I5AA) ?(‘jf). (3.33)

It is easy to show that ¢ = 0 as a result of the symmetry of the boundary of the Dalitz plot.
Dividing the Dalitz plot into the region above and below the symmetry line s o = s_y,

we can write

o [1ap = [sam
/

I(A*A) + / J(A*A). (3.34)
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Since changing from the “above” region to the “below” region is equivalent to exchanging

510 <> s_o and hence A < A according to (3.31) we obtain

yo/yAP = / %(A*Z)Jr/ (A" A)
510>5-0 540>5-0
_ / S (44— (A" ay). (3.35)
S$4+0>S—0

The integrand of the last line vanishes, resulting in
0 _
y- = 0. (3.36)

Furthermore, we expect the magnitude of |2°| to be of order [|A|> = 1. Both these
expectations are seen in Fig. 3.47.

In Fig. 3.48 we make use of the dependence of the yields on the CP parameters by
showing the dependence of L5 on these parameters. One can see that Lpa does not give
a unique solution for z4 and y4, since there are two observables and four unknowns. For
example, the y versus z plot shows that while one can find a decent solution in the radial
direction (i.e., the z-axis when one is at y = 0), the solution in the tangential direction
(y in this example) will have a large error, since infinitesimal variations in this direction
result in a negligible change in the NLL. However, Lp still puts a significant constraint
on the CP parameters, given additional information to resolve this ambiguity.

Finally, Fig. 3.49 shows the dependence of the combined NLL function £. This function
depends more strongly on the CP parameters and is better behaved than either Lpp or
Lpa. It is worthwhile to note some features of £. Fig. 3.49 still shows traces of the
ambiguity seen in Fig. 3.48. In addition, the circular shape clearly seen in the y, vs. x4
plot and the nonlinear x — y correlation that it indicates, means that there is on average
a bias in the radial direction. For example, with the true values being x = y = 0, both
upward and downward fluctuations in y lead to an upward fluctuation in x.

It is now obvious that the Cartesian parameterization of the CP parameter z(z,y)
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Figure 3.47: Dependence of the expected number of events Neff(p on the true values of the
CP parameters 1, y+ in a toy experiment.

chosen by previous analyses is inappropriate for this analysis. Due to the circular shape

of L polar coordinates z(p, #) are a much better suited pair of parameters.

3.8.4 Polar coordinates for the CP parameters

The circular shape of L in the z — y plane (Fig. 3.49) results in non-linear correlations
between the fit parameters  and y. This causes various problems that are illustrated in
Appendix 3.A. Therefore, instead of using the Cartesian coordinates x and y, we define

the following polar parameterization z(p, @) reflecting the symmetry of Lpa:

pr = V(wx =202+ (y+ —y°)? (3.37)
_ .0
0. = tan " <7yi y0> ,
Ty —

where (2%, 1) is the origin of the polar coordinate system, defined in Eq. (3.33) with

20 = 0.8496

P = 0. (3.38)
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Figure 3.48: Dependence of Lpa on all pair combinations of the parameters x4,y (2D
plots, 1o contours) and on the individual parameters (1D plots) in a toy experiment. The
true values of x4,y are 0. The values of the parameters not shown in each plot are set

to their true values.
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Figure 3.49: Dependence of £ on all pair combinations of the parameters x4, y+ (2D plots,
1o contours) and on the individual parameters (1D plots) in a toy experiment. The true
values of x4 ,y+ are 0. The values of the parameters not shown in each plot are set to
their true values.
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The no-CP violation case in these coordinates is py = 2% and #; = 180°. This set of
variables represents an (almost) uncorrelated pair of variables. Some correlation remains
due to the fact that Lpp does not respect the circular symmetry of Lpa, implied by these

coordinates.
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3.8.5 Fit Procedure

In order to make use of all the CP-relevant information provided in the data, namely, the
Dalitz shape, the signal branching fraction, and the asymmetry, we carry out the following

2-step fitting procedure:

1. We fit the data with the PDF P! of Egs. (3.6) and (3.7), which depends on the
variables AFE, ¢’, and d’. From this fit we obtain the parameters
(a) Npk,, = the number of DKj;, events.
(b) Apk,, = the DKy decay rate asymmetry
(¢) Nprp = the number of Drp events
(d) Npp, = the total number of events of types DK X, DrX, and BBCp.

(e) Rprx = NDWX/NBBE = the ratio between the number of DX events and
Npp),-

(f) Nyqp = the number of qqp events.
All shape parameters (parameters describing the shapes of ;) are fixed to the values
obtained earlier on MC or data (Sections 3.6.2, 3.6.3 and 3.7). In addition, we use
the MC to fix several ratios between certain numbers of events that, together with
the floating parameters listed above, give the number of events for all event types.
The values of these ratios after all cuts are listed here, with N always referring to a
number of events:

(a) Rpxx = Nprx/Nprx = 0.228 +0.057

(b) Rprp = Nprp/Nprp = 0.253 £ 0.026

(¢) Rppcp = Nepep/Npsj, = 0.00450 + 0.00080

(d) Rgqp = Nygp/Ngqp = 0.0116 £ 0.0016

(e) RDKbgd = NDKbgd/NDKsig = (0.2540 + 0.0022
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The error of Rpgx comes from the measured branching fractions in the PDG.
All other errors are due to MC statistics only, and are not used in this analysis.
The values of these parameters are later varied for systematic error evaluation (sec-

tion 3.11.1).

2. We compute Lpa using N DEKgigs Apk,,, and their error matrix obtained in the

ig?
previous step. The NLL Lpp is calculated from the data using the PDF P2, which
depends on the variables AFE, d’, and the Dalitz variables s g and s_o. We then

minimize £ = Lpa + Lpp, floating only the CP parameters
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3.9 Monte Carlo fit studies

All the MC studies in this section are performed with the D decay parameters found in
our fit to the D* data. Unless specified otherwise, the CP violating parameters z4 are set

to the values found in the B~ — DO

Kon .- K™ analysis [11] converted to our set of polar

coordinates centered at (z°,4°). Table 3.30 shows these default parameters. The number
of B~ and BT signal events used in the toys is calculated from (3.28), each separately
fluctuated by their Poisson errors for every toy experiment. The other parameters are set
to the values found in the data fit listed in Table 3.34 (p. 125). Each toy MC fit uses the

2-step fitting procedure described in section 3.8.5.

Parameter Value
p_ 0.775
0_ 175.3
P+ 0.979
0+ 178.9
< NDKsig > 202
< Apgk.. > —0.1687

sig

Table 3.30: CP violating parameters used for all the MC studies in this section. The
origin of the polar coordinates is at 2 = 0.850 and ° = 0.

3.9.1 Toy MC studies

We generate 2000 toy MC experiments including signal and background and fit them with
the 2-step fitting procedure. Since the systematic errors incorporated in Lpa are not taken
into account in the toy generation we set them to zero for this set of experiments. The
results for each floating variable are shown in Figs. 3.50 through 3.56. Each set of plots

shows the distribution of the pull, error and fitted value. The pull for a variable { with

true Cmeas meas

true value ¢"""¢, measured value and measurement error o is defined as

Cmeas _ Ctrue

pull(¢) = (3.39)
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For a large number of measurements, pull(¢) is distributed according to a standard nor-
mal distribution (Gaussian centered around zero with unit width) if the measurement is
unbiased and the measured error on average represents the true measurement error. All
pull distributions in Figs. 3.50 through 3.56 are standard normal distributions except for
f+. The width of the pull in 64 is about 1.2. Although it is not apparent from the NLL
projections, which appear to be very Gaussian, the cause is most likely due to a bifurca-
tion of the 6 fit results for different values of p. In fact, fitting the pull distribution for
experiments with p+ < 0.9 results in a unit width Gaussian. This is similar to what was
observed using Cartesian coordinates (see Appendix 3.A). Figure 3.57 shows the minimum
values of the NLL found by the branching ratio (step-1) fit and CP (setp-2) fit.

We repeat the same experiments but this time including the systematic errors in Lpa
to obtain a correct estimate for the expected fit errors on data. Figures 3.58 and 3.59
show the results for the CP parameters. As expected the width of the pi pulls are too
narrow.

Finally, Fig. 3.60 through 3.62 show the NLL projections of Lpp, Lpa and L for each
pair of CP parameters and each CP parameter individually. By construction there is no
sensitivity to 64+ in Lpa. Overall the polar coordinates result in much better behaved fit

parameters than the Cartesian coordinates.

i 300 ] 300
1 =-0.014 0023 ] = 70.672+0.017 1 W= 23826+ 16
o=711+11

6= 1.006+0.016 _' G =-0.745+ 0.012

200 ]

0

2800

L
2200 2400

L
2000

66 68 70 72 74
N(gqBadD) pull N(gqqBadD) error N(gqBadD)

2600

Figure 3.50: Results of 2000 toy MC experiments (signal and background, no systematic

error in Lpa) for the pull (left), error (center) and fitted values (right) of Ny,
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Figure 3.51: Results of 2000 toy MC experiments (signal and background, no systematic
error in Lpa) for the pull (left), error (center) and fitted values (right) of Npp,,.
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Figure 3.52: Results of 2000 toy MC experiments (signal and background, no systematic
error in L£pa) for the pull (left), error (center) and fitted values (right) of Np,,.
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Figure 3.53: Results of 2000 toy MC experiments (signal and background, no systematic
error in Lpp) for the pull (left), error (center) and fitted values (right) of Rp;.
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Figure 3.54: Results of 2000 toy MC experiments (signal and background, no systematic
error in Lpa) for the pull (left), error (center) and fitted values (right) of Ap,, (top)
and Npg,;, (bottom).
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Figure 3.55: Results of 2000 toy MC experiments (signal and background, no systematic
error in L) for the pull (left), error (center) and fitted values (right) of p_ (top) and 6_
(bottom). See Fig. 3.58 for the corresponding toy MC including systematic errors.
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Figure 3.56: Results of 2000 toy MC experiments (signal and background, no systematic
error in L) for the pull (left), error (center) and fitted values (right) of p4 (top) and 64
(bottom). See Fig. 3.59 for the corresponding toy MC including systematic errors.

N T
E { ] 350 { 3
3s0F b 3 g } f ]
F : ] 300 : -
300 i - o ' ]
2505— b 3 250F 1 E
200F ; { 3 200p t i E
150F E 150 3
g | ] g ¢ | 3
100 e ' t - 100:_ ' t B
505— F ¢ — s0F L) $ =
F ! ] E @ ! ]
Oloroioigle® . 1, ¥, . | L, TPUPNY T B, (BT
"2%000  -21000  -20000 1806 ~20000 ~19000 ~18000

BR-fit NLL CP-fit NLL

Figure 3.57: Minimum value of the NLL from the 2000 toy MC experiments for the yields
step-1 fit (left) and the CP step-2 fit (right). The arrow indicates the NLL found in the
data fit (section 3.10).
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Figure 3.58: Results of 2000 toy MC experiments (signal and background, including sys-
tematic error in Lpa) for the pull (left), error (center) and fitted values (right) of p_ (top)
and 6_ (bottom). See Fig. 3.55 for the corresponding toy MC without systematic errors.
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Figure 3.59: Results of 2000 toy MC experiments (signal and background, including sys-
tematic error in L£pa) for the pull (left), error (center) and fitted values (right) of p4 (top)
and 61 (bottom). See Fig. 3.56 for the corresponding toy MC without systematic errors.
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Figure 3.60: Dependence of Lpp on all pair combinations of the parameters py, 64 (2D
plots) with 1o contours and the individual parameters in a toy experiment (1D plots).
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Figure 3.61: Dependence of Lpa on all pair combinations of the parameters py, 64 (2D
plots) with 1o contours and the individual parameters in a toy experiment (1D plots).
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Figure 3.62: Dependence of £L = Lpp + Lpa on all pair combinations of the parameters
p+, 0+ (2D plots) with 1o contours and the individual parameters in a toy experiment
(1D plots).
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3.9.2 Selection bias and Dalitz plot variable measurement resolution

The resolution of the Dalitz variables due to reconstruction effects is calculated as the
difference between the generated and reconstructed values of s and s_g for D K, events.
Figure 3.63 shows the average resolution for s (left) and s_q (right). However, it should
be noted that the resolutions for these two variables are in general correlated and depend

on s, and s, the true values of sy and s_.

X0 . x0
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8 8

E 1.2 E 1.2

] ]
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M(r*r%)? resolution (GeV?/c*) M) resolution (GeV¥c*)

Figure 3.63: Resolution of the Dalitz variables s (left) and s_g (right) for DKy, events.
The superimposed curve shows a fit using the sum of three Gaussians with common mean.

We use the flat signal MC sample to check whether the finite resolution of the measure-
ment of the Dalitz plot variables affects the CP fit. The sample consists of 41800 events
that pass the selection cuts. For each event, we calculate the physical signal likelihood
D%h%ig(sfo, s',), given values of x and y between —0.3 and 0.3 taken in 0.1-wide steps.®
This likelihood is used to randomly reject events, so that the true Dalitz plot variables of
the remaining ~ 3000 events (the actual number of events depends on the values of x and
y) have the signal PDF distribution, up to effects due to the Dalitz plot dependence of
the efficiency.

We first check for biases in the resulting “shaped” samples by fitting their true Dalitz

variables using the signal PDF including the efficiency, Dpg.,, (s, ™). The pull distri-

sig

8This study was performed using Cartesian coordinates. The results still hold for the polar coodinates.
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butions and differences between measured and generated values of the CP parameters are
shown in Fig 3.64. Note that the different entries in each plot are highly correlated, as
they are selected from the same flat sample and contain a large fraction of identical events.
Nonetheless, these plots demonstrate that there is no significant bias in these fits, which

contain more than ten times the number of signal events than we expect in the data.

1Tt
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Figure 3.64: Top: Pull distributions for = (left) and y (right) when fitting the true Dalitz
plot variables of “shaped” signal samples. Bottom: Differences between the generated and
measured values of x (left) and y (right). The different entries in each plot, corresponding
to different generated values of x and y, are highly correlated.

Next, we study the effect of the measurement resolution, by fitting the shaped samples’
measured Dalitz variables, i.e., using the PDF Dp; (s10,5-0). The difference between
each fit to the measured and true Dalitz variables is shown in Fig 3.65. Again, the entries
in each plot are highly correlated. However, one can see that the difference between the fit
to the true and the fit to the measured Dalitz variables is much smaller than the expected
statistical error given our data.

From these plots we conclude that the effect of a selection bias on the measurement of
x and y is consistent with the MC statistical error of order 0.02, and that Dalitz variable
measurement resolution effects are of order 0.01.

As an additional test, we generate toy MC including a model for the Dalitz resolu-
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Figure 3.65: Top: Differences between the values of = (left) and y (right) when fitting
the measured and the true Dalitz plot variables of “shaped” signal samples. Bottom:
Differences between the fit errors on z (left) and y (right). The different entries in each
plot, corresponding to different generated values of x and y, are highly correlated.

tion. For each toy MC experiment, the generated events are smeared over the Dalitz
plot according to the resolution model of Fig. 3.63 and then fitted with the original (un-
smeared) signal PDF. Fig. 3.66 shows the result of 5000 toy MC experiments (100 events
per experiment, x = y = 0.0). The squares represent toy MC experiments without the
Dalitz resolution model. The triangles show the result of the toy MC including the Dalitz
resolution. We conclude that the resolution on the Dalitz variables does not have any

measurable effect on either the pull nor the error distribution of x and y.
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Figure 3.66: Comparison of 5000 toy MC experiments (100 BT events, z,y = 0.0) with
(triangles) and without (squared) the Dalitz resolution model.
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3.9.3 Full MC fit

In this section, we describe the fit performance on a MC cocktail consisting of appropriately
weighted signal, BB generic and ¢g generic events. The generic BTB~ and B°BY samples
are about five times larger than the on-peak data luminosity whereas the continuum
samples are only 1.5 times the on-peak data luminosity. The DK, signal events are
obtained by re-weighting the phase-space signal MC sample according to the Dp;, Dalitz-
PDEF. This ensures the correct Dalitz distributions for signal events. After re-weighting,
the DK, sample is about 26 times larger than the expected number of signal events on
data. DKygq events are obtained directly from the phase-space signal MC sample.

The first study consists of 26 fits, each using an independent signal sample. The qqp
and qqp events are randomly selected out of the continuum MC giving rise to a non-
negligible overlap due to the small size of this sample. Finally, 5-6 of the 26 signal samples
are assigned the same BB sample from which the other event types are extracted. Before

tr~ 7m0 decays are

each fit we count the true number of events for each type. D — =«
incorrectly simulated in the generic MC by a incoherent sum of p-resonances. Therefore,
we use D7mp events generated from the Dp,, PDF described in section 3.6.7 rather than
events from the generic MC (BBCp, qqp and Dmp are removed entirely due to their
negligible yields).

Table 3.32 lists the true and fitted parameters with their error averaged over the 5-6
fits that share the same BB sample. A summary of the deviations of the fitted value from
the true value in standard deviations can be found in Table 3.31. To separate statistical
and systematic effects in the fit, we perform a second study making use of the entire BB
generic MC sample. Due to its small size we do not use the continuum sample in this test.
After scaling all event yields by a factor of 5.0 we are left with five independent signal
samples. Table 3.33 lists the results averaged over the five fits. We do not observe any

large biases and all fitted parameters are within about one standard deviation of their true

values. The same study has been repeated without replacing Dmp events in the generic



3.9. Monte Carlo fit studies 123

MC with comparable results.

Set 1 2 3 4 5
p_ 03 05 09 02 -1
0_ 04 03 -04 -08 -1.0
Py 01 04 03 03 08
o_ 14 08 17 -05 -0.2

Rprx | 15 -0.3 0.7 06 0.7
Np., | 08 0.7 08 05 -0.3
Aprg, | 02 -05 09 05 -18
Nyp | 04 04 01 -03 0.0
Npk,, | 1.0 01 1.5 08 09

Npp, |-11 -07 -12 -03 -04

Table 3.31: Deviation of the fitted average value from the true average value in numbers
of 0. Dmp Dalitz distributions are replaced by data generated from Dp,,. Compare to
the vales in Table 3.32.
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<true> <fit>+* <o > | <true> <fit>+*<o > | <true> <fit>+t<o >
Set 1 Set 2 Set 3
p_ 0.779 0.733 +0.139 0.779 0.703 +0.146 0.779 0.910 £ 0.142
0_ 175 191.9 + 37.0 175 182.1 4+ 26.9 175 164.0 +25.3
P+ 0.976 0.959 +0.131 0.976 1.038 + 0.142 0.976 1.014 +0.135
0_ 179 153.8 & 18.2 179 158.9 4= 24.6 179 213.2 £20.5
Rprx 0.576 0.835 4+ 0.169 0.587 0.534 +0.162 0.548 0.672 £0.174
Nprp 82.0 100.7 +23.0 75.0 90.2 +22.4 77.0 94.7 +21.9
Aprkg, | —0.189  —0.163 £0.120 | —0.170 —0.235+0.135 | —0.183 —0.080 = 0.114
Nygp 2854 2883.6 £+ 76.3 2854 2887.8 + 76.3 2854 2863.1 + 76.3
Nprk,, 202 232.7 £30.9 202 203.9 + 29.8 202 252.0 +£32.3
NpB), 1148 1057.8 £ 78.5 1156 1101.1 £79.4 1157 1062.0 4+ 80.7
Set 4 Set 5

p_ 0.779 0.812 +0.141 0.779 0.637 +0.133
0_ 175 154.7 £ 27.4 175 152.6 4= 23.3
o 0.976 1.015 + 0.137 0.976 1.086 + 0.137
0_ 179 166.1 +23.2 179 174.7 +20.3
Rprx 0.570 0.673 +0.166 0.603 0.727 +0.169
Nprp 67.0 78.4+21.1 74.0 67.6 &= 21.7
Aprkg, | —0.187 —0.129 £0.121 | —0.159 —0.373 4 0.122
Nygp 2854 2831.4 +76.2 2854 2857.1 + 76.6
Nprk,, 202 226.4 £+ 30.7 202 230.7 £ 31.5
NpB, 1164 1139.7 £81.0 1155 1123.5 £82.3

Table 3.32: Results of the full MC fit. Each of the five sets has an independent signal and
BB sample but all share the same ¢g sample. The numbers are averages over three or
four fits. The deviations from the true values in number of o are listed in Table 3.31.

<true> <fit>+t <o > Alo)
p— 0.779  0.8095 =+ 0.0699 0.4
0_ 175 173.27 +9.67  -0.2
P+ 0.976  1.0026 £ 0.0760 0.3
0_ 179 172.30 £8.68  -0.8
Rprx 0.578  0.5838 £ 0.0481 0.1
Nprp 379 389.8 £ 39.0 0.3
Aprg, | —0.167 —0.1637 4 0.0501 0.1
NpK,, 1011 1050.9 £ 57.6 0.7
NpB), 5804 5739 104  -0.6

Table 3.33: Average over five fits using the full generic BB MC sample without continuum
events. Each fit has an independent signal sample but all use the same BB sample. The
last column (A) shows the difference of the fitted value to the true value in numbers of o.
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3.10 Data fit

The results of the step-1 fit to obtain the yields and the signal asymmetry are given in
Table 3.34. Table 3.35 summarizes the results of the step-2 fit in two configurations: using
only the shape of the Dalitz plot (using the NLL Lpp), and using both the shapes and
the signal yield and asymmetry (using the NLL £ = Lpp + Lpa). It can be seen that the
L-fit is significantly more sensitive to p.

The correlation matrices of the two fits are shown in Table 3.36. The relatively large
correlations between p_ and py are due to the systematic errors in Lpa.

Projections of the data and the PDF onto the fit variables are shown in Figs. 3.67
through 3.68. The dependences of the NLL’s on the CP parameters are shown in Fig. 3.69
for Lpp, Fig. 3.70 for Lgaand Fig. 3.71 for L.

Correlation matrix

Parameter Value | Rprx Nprp, ADKsig N‘I‘HD NDKsig NBBp
Rprx 0.53 £0.15 1 0.223 -0.037  0.096 0.478  -0.388
Nprp, 57.2+£19.6 | 0.223 1 -0.028 0.019 -0.092 -0.257
ADKsig —0.024 £0.148 | -0.037 -0.028 1 -0.006 -0.038 0.032
qup 2383+ 71 | 0.096 0.019 -0.006 1 0.090 -0.544
NDKsig 170.1 +£29.0 | 0.478 -0.092 -0.038 0.090 1 -0.452
NBBE 1138 £ 76 | -0.388 -0.257 0.032 -0.544 -0.452 1
—log Lnin —20505.9

Table 3.34: Results of the step-1 fit on the run 1-5 data sample.

Lpp fit Lpp+Lpa fit
Parameter | Value —MINOS +MINOS | Value —MINOS +MINOS
pe 0.968 + 0.557 —0.368 +1.24 0.804 +0.148 —0.140 +0.159
0_ 174.5 £46.3 —39.9 +58.1 173.1 £43.3 —-37.8 +55.0
o 0.919 £ 0.359 —0.274 +0.540 0.833 £0.145 —0.138 +0.155
0 147.3 £23.9 —23.9 +24.8 1472 +£23.3  —23.2 +23.8
—log Lin —19068.9 —19068.8

Table 3.35: Results of the step-2 fit on the run 1-5 data sample. The first fit is done with
only the Dalitz shape NLL Lpp, and the second incorporates also the signal yield and
asymmetry.
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Lpp fit Lpp+ Lpa fit
Parameter | Global  p_ 0_ P+ 0. | Global p_ 0_ P+ 0+
p— 0.137 1 0.137  0.000 0.000 | 0.400 1 0.020 0.400 0.005
0_ 0.137  0.137 1 0.000 0.000 | 0.020  0.020 1 0.008 0.000
Pt 0.028  0.000 0.000 1 0.028 | 0.400 0.400 0.008 1 0.013
0+ 0.028  0.000 0.000 0.028 1 0.013  0.005 0.000 0.013 1

Table 3.36: Correlation matrix of the data fit done with the NLLs Lpp(left) and £ =
Lpp + Lpa (right).
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Figure 3.67: AFE (left), ¢’ (center) and d' projection (right) of the data fit. The solid line
shows the fitted PDF and the dots show the data.
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Figure 3.69: Dependence of Lpp on all pair combinations of the parameters py, 6+ (2D
plots) with 1o contours and the individual parameters (1D plots) for the data.
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plots) with 1o contours and the individual parameters (1D plots) for the data.
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3.11 Systematic errors

Table 3.37 lists the systematic uncertainties to be added to the error from the data fit.

Some of the systematic uncertainties in this analysis are already incorporated in the main

fit through the L£pa term in the likelihood fit. In order to separate these errors from

the statistical error, Table 3.38 lists the individual contributions to the total error of the

fit. Finally, Table 3.39 summarizes the systematic uncertainties on the signal branching

fraction. More details can be found in the following sections.

Source Aprk,, Npr,, p— 0_ o+ 04+ | Section
Fixed fractions 0.0023 7.93 0.0214 138 0.0190 140 | 3.11.1
MC statistics 0.0058 8.55 0.0173 1048 0.0171  3.18 | 3.11.2
Sig. Dalitz model n/a n/a 0.05 10 0.05 10 | 3.11.3
D Ky,gq Dalitz shape n/a n/a 0.0007 1.09 0.0007 048 | 3.114
Bgd. Dalitz shapes n/a n/a 0.004 351 0.004 1.00 | 3.11.5
Bkd. shapes of AE, ¢/, d' | 0.0020 5.18 0.0127 2,69 0.0121 1.26 | 3.11.6
Asym. in DKygq, DKX | 0.0083 0.23 0.0046 0.10 0.0034 0.12 | 3.11.7
Detector charge asym. 0.0251 0.09 0.0121 0.60 0.0107 0.03 | 3.11.8
Kaon charge in qqp n/a n/a 0.0031  0.94 0.0033 1.04 | 3.11.9
PID efficiency n/a n/a 0.0023 0.19 0.0023 0.32 | 3.11.10
D* Bgd. shape n/a n/a 0.0087 223 0.0085 1.61 | 3.11.11
Dalitz variable resolution n/a n/a 0.01 0.7 0.01 0.7 3.11.12
Total 0.0272 12.76 0.0616 15.47 0.0603 10.92

Table 3.37: Summary of additive systematic uncertainties in addition to the errors used

in LpaA.

Source p— 0_ P+ 04+ | Section
B(B~ — D'K~) | 00804 3.88 00774 2.13 | 3.11.16
B(DY — K-7+70) | 0.0368 1.62 0.0355 0.98 | 3.11.16
e 0.0056  0.03 0.0053 0.02 | 3.11.16
Signal efficiency 0.0141 0.08 0.0135 0.06 | 3.11.16
Nyg 0.0046 0.03 0.0044 0.02 | 3.11.16
Total 0.0808 4.21 0.0865 235

Table 3.38: Summary of subtractive systematic uncertainties. These errors are already
incorporated in the main fit through the Lpa term of the likelihood.
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Source BF error (%) | Section
PID efficiency 3.1 3.11.10
70 efficiency 3.0 3.11.13
Tracking efficiency 1.5 3.11.14
B counting 1.1 3.11.15
Total 4.70

Table 3.39: Systematic errors on the signal branching fraction.

3.11.1 Variation of fixed event yield fractions

The five event yield fractions that are fixed in the fits are varied, and the two-fit analysis is
repeated to evaluate the resulting systematic error. The fractions are varied conservatively

by +50%, except for Rpg x, which is varied by its PDG uncertainty of +25%. For each

pair of fits we take

ol = (3.40)

as the systematic uncertainty for parameter o € {Apk,,,, Npk,,» p—:0—, p+, 04} where a
is the nominal fit value and a¥ is the fit value with one of the fixed fractions varied by

the above amount. The resulting uncertainties in the parameters of interest are shown in

Table 3.40.

Source ADKsig NDKsig pP— 0_ P+ 9+
Ry 0.0006 1.97 0.0056 0.38 0.0062 0.76
Rppc, | 0.0006 0.58 0.0034 0.61 0.0027 0.36
Rpr, 0.0009 1.09 0.0025 0.43 0.0016 0.29
Rpky,, | 0.0005 7.56 0.0196 0.94 0.0175 1.06
Rprx | 0.0019 0.53 0.0048 0.57 0.0027 0.17
Total 0.0023 793 0.0214 1.38 0.0190 1.40

Table 3.40: Systematic uncertainties due to variation in the fixed fit fractions.

3.11.2 MC statistics

For all PDFs that are obtained by fitting MC samples the following method is used to

evaluate the systematic uncertainty due to finite MC statistics. The MC fit for a PDF
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B with NP floating parameters results in a N°-dimensional parameter vector p® and a
NP x NP error matrix V2. If A is the (orthogonal) matrix of eigenvectors of V7, we
obtain the parameter vector and the error matrix in the diagonal basis as ¢ = ATp? and
W = ATVPBA. In this basis, we vary ¢; by £1/Wj; and transform it back into the original

basis. We repeat the data fit and obtain new values ozji for each parameter of interest

ac{Ap Kagr NDE Gy P05 P 0+ }. This procedure is repeated for all parameters pf and
for all PDF's (3 resulting in 2N = 2 Z,@ NP = 338 data fit results. The total systematic

uncertainty due to MC statistics is

012\/10 stat = %Z [(a;r — (1)2 + (a; — oz)Q] . (3.41)

=1
3.11.3 D% — 7t7r 7Y Dalitz model

To evaluate the chages in the CP parameters due to the signal Dalitz model we repeat
the data fit with different D° — 7+7~ 70 Dalitz models. Table 3.41 lists the differences to
the nominal fit result for different Dalitz models with increasing number of components.
In addition we show the difference to the nominal fit result for a fit with the meson radial
parameter R of the Blatt-Weisskopf penetration factor set to zero.

Based on these results and considering that the first two models in Table 3.41 are too

simplistic and hence unrealistic, we assign a systematic error of 0.05 for py and 10° for

0.

3.11.4 DK,yyq Dalitz shape

The DKjy,gq Dalitz shape is obtained from high statistics MC with the CLEO parameters.
To estimate the uncertainty on the CP parameters, we repeat the data fit with a shape
obtained from signal toy MC generated according to the D decay parameters we find and
the Kgm™ 7~ values for p+ and 65. We then smear the generated MC with the residuals

between the true and reconstructed si¢ and s;g values found in the phase space signal
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Dalitz model p— 0_ P+ 0+
NRg, p(770) 0.0862 16.42  0.0595 —6.82
+ £0(980) 0.0760 21.14  0.0453  5.01
+ p(1450) —0.0071 627 —0.0215 —7.89
+ p(1700) 0.0307  3.21  0.0100 —9.91
+ fo(1370,1500, 1710), f»(1270) | —0.0434 —9.72 —0.0463 —1.40
+ 0o 0 0 0 0
+ NRp 0.0163  0.06  0.0142 —1.22
+ w, f4(1525) 0.0144  3.15  0.0128 —1.82
R=0 0.0014  7.97  0.0007  0.01

Table 3.41: Differences to the nominal fit result for different D — 777~ 7% Dalitz models
and with the meson radial parameter R set to zero.

MC simulation. A new shape for the DKj,q events is obtained from this sample and the

data fit is repeated. The differences between the results of this fit and the nominal fit are

taken as the systematic error.

3.11.5 Uncertainties in simulation of background Dalitz plot shape

We obtain a histogram of the Dalitz distributions on both the MC and data in the mpgg
sideband. The ratio of the normalized histograms in each bin gives a first-order estimate
of the data/MC agreement. In section 3.5.2 we showed that these distributions are in
good statistical agreement. Nonetheless, we evaluate the error due to the fact that the
agreement is not perfect.

To do this, we apply the full data-MC difference to the Dalitz PDF of the DnX
background and repeat the data fit. The procedure is repeated with the data-MC difference
assigned to the DKyzq PDF. Table 3.42 lists the differences to the nominal data fit.
We take the set with the larger differences (D7X) as the systematic error due to the

background Dalitz plot shape.

3.11.6 AF, ¢ and d' shapes

The systematic uncertainties due to MC-data differences in the one-dimensional PDF

shapes of AFE, ¢’ and d’ are evaluated as follows. For each of the three PDFs 3 and each
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Source p— 0_ P+ 04
Diff. applied to DX 0.004 -3.51 0.004 —1.00
Diff. applied to DKjeq | —0.0001  —0.55 —0.0002  0.09

Table 3.42: Systematic errors due to the uncertainties in the simulation of background
Dalitz plot shape. The data/MC differences observed are applied separately to the DmX
and D Kygq Dalitz background shape.

event type t, we obtain the PDF parameter vector ptﬁ in the mpgg sideband on MC. These
parameters are used to fit the mpgg sideband on data, in which we allow the parameters
pqﬁqlz, of the dominant background qqp to float. The difference nglz, - pgq » between the new
parameters ngp and the original MC sideband parameters is applied to our nominal fit
parameters and we repeat the nominal data fit. In other words, we assign the entire MC-
data difference to the dominating background type. The changes in the analysis variables

with respect to the nominal fit are taken as systematic uncertainty and listed in Table 3.43.

Source ADKsig NDKsig pP— 0_ P+ (9+
Bgd. AFE shapes | 0.0016 3.26  0.0048 1.59 0.0062 0.17
Bgd. d’ shapes 0.0011 3.93 0.0115 1.01 0.0103 0.58
Bgd. ¢ shapes 0.0003 0.88 0.0022 1.92 0.0015 1.11
Total 0.0020 5.18 0.0127 2.69 0.0121 1.26

Table 3.43: Differences to the nominal fit and resulting systematic errors due to the
uncertainty in the AFE, ¢’ and d’ shapes

3.11.7 Possible asymmetry in DKy, and DKX

The nominal fit was performed with zero asymmetry for the DKy,q and DK X event
types. Since these are B — DK decays they can have a Standard Model asymmetry.
As in the branching ratio analysis [61], we assume a possible asymmetry in DK X of
Aprx < 0.022 and repeat the fit with Apxgx = £0.022. To evaluate the error due
to a possible asymmetry in DKygq we set Apg,,, equal to Apk,, in the fit under the

assumption that nothing in the reconstruction can change the charge asymmetry of signal

events. Table 3.44 summarizes the resulting systematic errors.
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Source Apk,, Nbpk,, P 0_ Pt 0+
Aprx = +0.022 0.0043  —0.01 0.0025 —0.09 -—-0.0018  0.07
Apgx = —0.022 | —0.0044 0.23 —0.0021 0.03 0.0022 —0.08
ApKya = Apk,, | —0.0055 0.01 —0.0032 0.03 0.0019 0.05
Total 0.0083 0.23 0.0046 0.10 0.0034  0.12

Table 3.44: Differences to the nominal fit and resulting systematic errors due to asymme-
tries in DK X and D Kygq events.

3.11.8 Global detector charge asymmetry

A possible charge asymmetry in the detection efficiency for KT versus K~ is evaluated by
floating a global charge asymmetry, which affects all event types equally, in the fit. The
fitted value for the global asymmetry is —0.007 + 0.018. We take the difference in the

analysis variables to the nominal fit as a systematic error.

3.11.9 Kaon charge correlation in qqp.

The Cabibbo allowed decay D° — K+ + X can introduce a wrong sign charge correlation
in the qgp background events. The systematic effect is expected to be small since qqp
events contribute less than 1% to the total. Nevertheless, we evaluate the systematic error
due to a wrong sign kaon by assuming a 100% correlation between a wrong sign kaon and

qqp events. The difference to the nominal fit is taken as a systematic error.

3.11.10 PID efficiency

Since the corrections due to PID are very small (see Table 3.4), we conservatively take the
magnitude of the correction (3.1%) as systematic error to the signal branching fraction.
In addition, we repeat the data fit without the PID corrections on the Dalitz efficiency
function and take the almost negligible difference to the nominal fit as the systematic
error. As a cross-check, we repeat the fit with a flat efficiency function. The result of this
fit are within the errors of the “no-PID” fit and we conclude that the efficiency function

does not have any appreciable effect on the CP parameters.
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3.11.11 Uncertainty due to the D* background shape

Instead of taking the background Dalitz plot PDF from the data sideband as described
in section we repeat the D Dalitz fit with the background PDF extracted from the MC
signal region and obtain a new set of Dalitz parameters. With these we repeat the CP-fit
and take the difference to the nominal fit as the systematic error.

3.11.12 Finite Dalitz variable resolution

Based on the studies of section 3.9.2 we assign an error of 0.01 to the Cartesian CP
parameters. This translates into an error of 0.01 on p4 and 0.7° on 6.

3.11.13 7Y efficiency

We use the ratio of data and MC efficiencies for 7° mesons from the official recipe to be
0.968311 and assign a 3.0% systematic error.

3.11.14 Tracking efficiency

No efficiency corrections are needed for tracking in release 18. We assign a systematic
error of 0.5% per track resulting in 1.5% total systematic uncertainty due to the three
tracks in our decay mode.

3.11.15 B counting

The systematic error on the number of BB pairs is 1.1%.

3.11.16 Subtractive systematic errors

To separate the systematic errors included in Lpa from the total error returned by the fit,

we determine the individual contributions separately. The two largest uncertainties are
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from the secondary branching fractions [68]

B(B~ — D'K™) = (3.740.6) x10~*

BD® - K ntx% = (13.241.0) x 1072

We repeat the data fit without including the error on B(B~ — DYK~) in the error
matrix of Lpa and obtain a new (and smaller) value for the error &, of the floating

parameter a € {p+,0+}. The systematic error due to B(B~ — DYK ™) is calculated from

2 2

0? = 02 — 52 where o, is the error from the nominal data fit. The same procedure is

repeated for B(D? — K7 xY). The relative error on the ratio of branching fractions

from [69]
B(D° — rtr=70)
B(DY — K—nt70)

= (10.59 4+ 0.06 4 0.13) x 1072 (3.42)

is 1.4%. This small error cannot be reliably determined by the above method. Instead,
we change the nominal values in Lpa by +1o, repeat the data fit, and take the average
squared difference as the systematic uncertainty for py and 6., respectively. The same
is repeated for the uncertainties on Nyg (section 3.11.15) and combined error on the

efficiency due to tracking and 7 corrections (section 3.11.13 and 3.11.14).
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3.12 Physics results

3.12.1 Branching fraction and asymmetry measurement

The branching fraction is calculated from

Npk..
_DEsig (3.43)

B(B* - (tn n%)pK*) = .
NBEE

Using an absolute efficiency of € = 11.41% and Nz = 324,041,437, we measure
B(B* — (ntn %) pK*) = (4.6 + 0.8 (stat.) & 0.7 (syst.)) x 1076 (3.44)

and a decay rate asymmetry

A(B* — (ntr 7% pKE) = —0.02 £0.15 (stat.) = 0.03 (syst.), (3.45)
where the asymmetry is defined as A = %:%%I with N+ as the number of DK signal

events from BT decays.

3.12.2 (P parameter measurement

The CP parameters measured in B¥ — (7+t7~ 7% p K+ are

p_ = 0.804=+0.118 (stat.) £ 0.109 (syst.)
- = 173.1° £43.1° (stat.) £ 16.0° (syst.)
pr = 0.833+0.116 (stat.) £ 0.105 (syst.)
0, = 147.2° +23.2° (stat.) £ 11.2° (syst.). (3.46)

The statistical error is the error from the fit reduced by the systematic error from Ta-
ble 3.38. The systematic error is the combined error of Table 3.37 and Table 3.38.

The polar coordinates p1 and 64 are defined with respect to the Cartesian and physical
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parameters z4 = x4 + 1Y+ = TBei(J:I:'y) as

pr® = (v -2+ 43
= (rgcos(d £7) —2")? +rp?sin®(6 £ )

Y+

tan H:t = m
rpsin(d £ )
= 3.47
rpcos(d £v) — 20 (347)

with the numerical value of the coordinate offset along the real axis being 2° = 0.8496.
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3.13 Summary

In summary, this chapter presented the first measurement of the CP parameters in B* —
(77T 77 )pK* decays. After BY¥ — (KJ7t7n~)pK¥ this is the second mode where a
GGSZ/Dalitz analysis was performed with the goal to measure the CKM angle ~. It is
the first analysis where the CP parameters are not exclusively extracted from the Dalitz
shape or the rate asymmetry alone, but the information from both sources is used simul-
taneously in the fit. Due to the additional constraints and resulting likelihood shape, a
new set of polar coordinates was introduced. This is different from the previous GGSZ
analyses by BABAR and Belle where Cartesian coordinates have been used. It was shown
that the additional information from the decay rate asymmetry significantly improves the
sensitivity of the measurement in this decay mode.

As is true for any y-analysis with the current available statistics, this analysis is not
a high precision measurement on its own. However, adding this mode to the other ~
measurements will decrease the overall error. Intentionally, it was not attempted to extract
a value of v based on the results of this analysis. Due to the relatively large errors on two
of the four CP parameters (64 ), the sensitivity on v would be greatly decreased. It was
considered more important to present the results in a way that makes their combination
with other measurements straightforward. This is left to the “averaging groups” that have
the necessary knowledge and experience in correctly combining measurements.

At the beginning of the B-factory programs it was the word that “Measuring [ is easy,
measuring « is hard and measuring ~ is impossible”. With advances in both theory and
experiment, we succeeded in the first direct measurements of v. With the startup of the
Large Hadron Collider (LHC) at CERN or possibly the construction of a SuperB factory,
using the same methods as described in this dissertation will eventually result in a precise

measurement of the CKM angle ~.
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Appendix 3.A Inadequacy of Cartesian coordinates

The inadequacy of the Cartesian coordinates in the MLL-fit using £ = Lpp + Lpa (sec-
tion 3.8) is best demonstrated with toy MC. We perform the same toy study as in sec-
tion 3.9.1 but this time using the Cartesian coordinates x and y. The results for each
floating variable are shown in Figs. 3.72-3.78. The pull distributions for the event yields,
Rp, fraction and the asymmetry (Figs. 3.72-3.76) are standard normal distributions and
need no further discussions. This is not the case for the z and y pull distributions.

The z-pull is shifted to positive values and too narrow, while the y-pull is shifted to
negative values and too wide when fitted to a Gaussian. The narrow xz-pull is explained by
the fact that the toy experiments do not properly simulate the systematic errors included in
Lpa and therefore overestimate the error. This effect mostly manifests itself in x because
the curvature of Lpa in the y-direction is very small compared to the x-direction for true
values of z and y close to zero (see Fig. 3.48). The source of the upward bias in « can be
seen in the same figure. Due to the non-linear correlations between x and y, a fluctuation
of y in either direction will lead to a higher value of x (x moves (counter)clockwise on the
circle in Fig. 3.48 for an upward (downward) fluctuation of y).

The reason for the large width of the y-pull is best explained with the help of Fig. 3.79
that shows the y-pull versus the error on y and the fitted value of x. For values of x larger
than about 0.4, the distribution of y-pulls becomes bifurcated representing the ambiguity
in Lpafor these values of x. At the same time the error on y decreases due to the larger
curvature of Lpain the y-direction. In other words, the y-pull distribution represents
two types of experiments. The “physical” experiment with small values of x and y, and
the “unphysical” experiment with z £ 0.4 with an ambiguity in y. In fact, the y-pull
distribution of experiments with x < 0.4 has indeed unit width. The bias of the y-pull is
not understood quantitatively at this point.

The NLL projections of Lpp, La and L for the Cartesian coordinates using toy

MC can be found in section 3.8. For reference, Figs. 3.80 through 3.82 show the NLL
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projections for the data.
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Figure 3.72: Results of 2000 toy MC experiments (signal and background) for the pull

(left), error (center) and fitted values (right) of N,
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Figure 3.73: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of Npp,.
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Figure 3.74: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of Npy,,.
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Figure 3.75: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of Rp;.
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Figure 3.77: Results of 2000 toy MC experiments (signal and background) for the pull
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Figure 3.80: Dependence of Lpp on all pair combinations of the parameters x4,y (2D

plots, 1o contours) and on the individual parameters (1D plots) for the data.
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plots, 1o contours) and on the individual parameters (1D plots), using the signal yield
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Appendix 3.B Fit validation using B~ — Dn~

Negligible CP-violation is expected for B~ — D_+,.-0om~ decays. Therefore, a fit to
this higher statistics Dalitz plot can be used as a validation of the analysis method. CP
parameters obtained from the fit should be consistent with no CP-violation within the
statistical errors. For this validation we perform the same fit as for the B~ — DK~ sam-
ple, minimizing the function £ = Lpp + Lpa, using a signal PDF plus a single background
component. The selections used for this validation are similar to the one in the main

analysis, except
1. 0.005 < AE < 0.090 GeV/c?
2. ¢>04
3.d>0.5,

which have been chosen so as to optimize the signal to background ratio S/v/S + B.
In addition we define a lower (—0.08 < AE < 0.01GeV/c?) and upper (0.1 < AE <
0.14GeV/c?) AE sideband region. The AE width is about 22 MeV for this mode. Fitting
the AE distributions to the sum of a Gaussian and a linear function, we find (870 £ 47)
B~ — D, 4, om events and (928 +51) BT — D_i_ om" events. Figure 3.83 shows
the results of these fits.

To determine how best to obtain the background Dalitz shape, we do simple com-
parisons of the Dalitz distributions in data and MC. Fig. 3.84 shows the Dalitz plot of
B™ — D+ —rom~ in the AE sideband and signal region (defined above). The agreement
is reasonable, but not very good. Fig. 3.85 shows the Dalitz distributions in the AFE side-
band on data and MC. The agreement is good. Given the results of these comparisons, we
use a histogram-based PDF for the background, taking the shape from the data AFE side-
band. This histogram is shown in Fig. 3.86. For the CP fit, we are using the same signal
Dalitz PDF as in the B~ — DYK~ analysis, and L£ga is calculated as in section 3.8.1,

with the B~ — D7~ branching fraction and the above efficiency used in Eq. (3.29). The
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Figure 3.83: Fits to the AE distribution of negative (left) and positive (right) B —
D+, o7 candidates in the data.
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Figure 3.84: Comparison of MC Dalitz distributions for B~ — D_+,— o7~ in the AE
sideband (left) and AFE signal region (center) together with the signed /x? distribution
(right). The x? probability of the two histograms to be drawn form the same distribution
is 0.4%.
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Figure 3.85: Comparison of data (left) and MC (center) Dalitz distributions for B~ —
Dt o7 in the AE sideband together with the signed \/x? distribution (right). The
x? probability of the two histograms to be drawn from the same distribution is 16.0%.
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Figure 3.86: The histogram-based PDF used for the background shape (left), and the data
(points) in the AE sideband, from which the histogram was derived. The 1-D projections

are also shown.
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results of the fit are summarized in Table 3.45. It is seen that the CP parameters obtained
from the B~ — D%r~sample are consistent with no CP violation, although the difference

is somewhat large (1.7 times the statistical error) for y; and 6, respectively.

Value o from 0 Value o from z29/180°
x_ 0.002 + 0.045 0.04 | p— 0.853 £0.044 0.07
y—  —0.095 £+ 0.103 —-0.92 | 6_ 186.4 £ 7.0 0.91
x4 —0.023 £0.049 —0.47 | p+ 0.893 +£0.045 0.96
y+ —0.188 £0.109 —1.72 | 04 1922+ 7.1 1.72

Table 3.45: Fit results for B~ — D7~ using Cartesian and polar coordinates. Errors are
only due to statistics, as well as the systematics associated with £pa, namely, the error on
the efficiency, the luminosity, the branching fractions B(B~ — D% ™), B(D — K7t x9),
and the ratio B(D — 777~ 7%)/B(D — K~ntx0).



Chapter 4

Analysis of
B — X(3872)K, X(3872) — Jipntn~

This chapter describes the analysis of B — X (3872), X (3872) — J/pn 7~ decays, which
updates and supersedes the previous BABAR measurement [27]. Moreover, it is the first
dedicated search for the X (3872) in neutral B decays. The decay modes under investiga-

tion are:
e B — X(3872)KY, X(3872) — Jiprtn—, K?—atr-
e B~ — X(3872)K—, X(3872) — Jhymtna—.

The ratio of branching fractions and the masses of the X (3872) in these two decay modes
will help to decide between different models for the X (3872). The initially favored Char-
monium assignment [70-72] is considered unlikely in the meantime due to the discrepancy
of the predicted mass. A review of the Diquark-Antidiquark and meson molecule model

can be found in section 1.4.2 and 1.4.3 of this dissertation.

4.1 Data sample

The data we use in this analysis consists of the following subsamples:

153
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e On-peak data

Run 1-4 data are used with the runs 1-3 as defined in the BlackDiamond dataset

and the “final run 4 dataset” for run 4.

Signal Monte Carlo

We have generated signal Monte Carlo for each of the following modes:

— BY — X(3872)K?, X(3872) — Jjpp°, o' —rtr=, K2 —atn~

— B~ — X(3872)K—, X(3872) — Jjpp°, p¥ — ntm—

The decay model is sequential, two-body phase-space and the X (3872) is generated
as a zero-width particle. Note that we simulate the dipion as originating from a p°.
This seems to match the observed dipion invariant mass better than a pure phase-
space model. However, at this point, it is not clear, whether it is really p — 77 or

not.

Generic Monte Carlo
We are using B’BY, BTB~, ¢¢ and uds MC samples. SP5 MC is used to simulate

run 1-3 and SP6 for run 4.

Table 4.1 summarizes the data sample. The equivalent integrated luminosity for the

MC samples are calculated using L = N/o with the number of events N and the cross

section ¢. For on-peak data we are showing the official B-counting numbers (N;5) and

the all MC samples are scaled to the total on-peak data luminosity of 210.6 fb~.
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Mode # events | o(nb) | L(fb™1) | scale factor
BY — X (3872)K9, X (3872) — Jipmtn 57,000
B~ — X(3872)K—, X (3872) — Jhpntm™ 57,000
BB generic MC 453,426,225 | 0.551 | 822.92 0.256
B*B~ generic MC 465,004,433 | 0.551 | 843.93 0.249
uds MC 551,116,526 | 2.090 | 263.69 0.798
cec MC 274,406,199 | 1.300 | 211.08 0.997
Run 1 21,181,864 19.459
Run 2 66,441,247 60.267
Run 3 34,076,579 31.061
Run 4 110,107,681 99.763
Total on-peak (Ny5) 231,807,371 210.550 1

Table 4.1: Data sample summary. Number of events, cross section o, integrated luminosity
L and scale factor to on-peak data luminosity.
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4.2 Candidate reconstruction and preselection

The data were reconstructed with analysis-22/23 at GridKa/SLAC. For all the data and
Monte Carlo, except signal MC, we use the Jpsitoll skim (release 14 processing). We use
two tag bit filters, in order to preselect events on the level of the tag database. JpsiELoose
|| JpsiMuLoose selects only the J/i) candidates from the skim and R2A11<0.5 is used

for continuum suppression.

4.2.1 Reconstruction of J/ip — It~

We are only reconstructing J/i) candidates in the two leptonic modes:

o Jhp — ete”
Oppositely-charged tracks from the list PidLHElectrons and electron candidates
from the same list undergoing the standard bremsstrahlung recovery are used to form
a J/ip candidate. The electrons are fitted with a geometric and a mass constraint

and must satisfy 2.9 < m(ete™) < 3.2 GeV/c2.

o Jpp — ptuT
Oppositely charged muon candidates from the list muNNVeryLoose fitted in the same
way as electrons and satisfying 3.0 < m(u*p~) < 3.2GeV/c? are used to form a J/i

candidate.

In both cases we constrain the dilepton invariant mass to the J/t) mass from the PDG.

4.2.2 Reconstruction of ¢(25)/X(3872) — Jipntn~

The 1(2S) decays into the same final states we are interested in, and thus we expect to
see this decay mode in our spectrum as well. We form a 1(25) (or X (3872)) candidate
by combining the J/i) candidate with two pion candidates from the list piLHVeryLoose

using a geometric fit.



4.2. Candidate reconstruction and preselection 157

4.2.3 Reconstruction of K? — 77~

Our KY selection is the same as used in the B — K7 analysis (see AnalTools/611 HN).
KY candidates are formed from oppositely ChargedTracks requiring |m (7 7~) —m Kg| <

25MeV/c?, a x? consistency of the fit > 0.001 and flight length significance I/o(l) > 3.

4.2.4 Reconstruction of B meson candidates

The final B meson candidate is formed by combining the 1(25) candidate with either a K2
candidate or a charged kaon candidate from the KLHVeryLoose list by using a geometric

fit and requiring |AE| < 0.3GeV and 5.2 < mpg < 5.3 GeV/c?.

4.2.5 Fox-Wolfram moment

Figure 4.1 shows R2 for signal (left), data and generic MC (right). The plot uses the
optimized cuts described later and we conclude that there is only a tiny contamination

from continuum (¢q) background.

Signal MC | Data and generic MC |
§14oo L §1°°° B ® Data
E - E | — qq generic MC
< r < L - - -+ B" genetic MC
:%1200 :_ :>j 800} — + B generic MC
1000[~ -
N 600
800 L
600 4001
400[ [
5 200
200 F
E P P S I S, . R
00 00 0.2 0.3 0.4 0.5 6

Figure 4.1: Fox-Wolfram moment R2 in B~ — JipnTn~ K~ for signal MC (left), generic
MC and data (right).



4.3. Final candidate selection 158

4.3 Final candidate selection

4.3.1 Optimization procedure

The final selection criteria are optimized by maximizing the following quantity [73]:

— 5 max (4.1)

a/2+ s

with ng as the number of signal events from signal MC, np the weighted (and normalized
to on-peak data luminosity) sum of background events from different generic MC samples
(BB, c¢ and uds) and a the desired significance of signal to background separation in
numbers of sigmas (we choose a = 3). ?

From our very similar previous analysis of B — JapnfnOK [74] we already had a
good idea of possible useful discriminating variables. We did the optimization as a grid
search starting with larger binnings and then reoptimizing around the found optimum
with smaller bins. The variables, ranges and step sizes used in the optimization for the

+

777~ modes are as follows:

e |[AE| < 5,10...40 MeV/c?

Imps — 5.279 GeV/c?| < 4,6...10 MeV/c?

Im(Jppmta~) — 3.872GeV/c?| < 4,6...10 MeV/c?

o KO mass: |m(KQ) —497.7MeV/c?| < 10,15... 25 MeV/c?

Thrust angle: | cos Oppust| < 0.85,0.9...1.0

Fox-Wolfram Moment: R2 < 0.40,0.45,0.50

Muon Particle ID € {muNNVeryLoose, muNNLoose, muNNTight}

e Kaon Particle ID € {KLHVeryLoose, KLHLoose, KLHTight }

9Notice that it is not crucial for the optimization how we treat multiple candidates as long as we only
count one candidate per event. See section 4.3.6 for how we treat multiple candidates.
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e Pion Particle ID € {piLHVeryLoose, piLHLoose, piLHTight}

The lepton invariant mass cut and electron PID selection is fixed to the values described

in section 4.3.3.

4.3.2 Optimization results

Besides the final candidate selection criteria, which are described below, the optimization
revealed that neither the thrust angle cut nor an additional cut on the Fox-Wolfram
Moment R2 is helpful in increasing the sensitivity. The common mpgg signal window
for all modes is |mpg — 5.279 GeV/c?| < 6 MeV/c?. The optimized AFE signal window is
|AE| < 15MeV for the 77~ and the optimized X-particle signal region is [m(Jaynta™)—

3.872 GeV/ 2| < 6 MeV/c2.

4.3.3 Final J/i) selection

Our final J/i selection uses the standard charmonium mass cuts and lepton selectors as

follows:

e 2.95 <m(Jhp — ete”) < 3.14GeV/c?

Both electrons have to pass the PidLHElectron (not optimized) electron selector

e 3.06 <m(Jhp — ptu~) < 3.14GeV/c?
One muon has to pass the muNNVeryLoose and the other muon has to pass the

muNNLoose muon selector.

Fig. 4.2 shows the J/i) mass distributions in the electronic and muonic mode with the

arrows indicating the final mass cut on the J/i) candidate.

4.3.4 Final K? selection

Since we already had a somewhat optimized preselection for the K9, the signal is very

clean. The final cut we choose is |m(KY — 7t77) — 497.7)| < 15MeV/c?. Figure 4.3
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Figure 4.2: Jh) — ete™ (top) and Jip — ptu~ (bottom) in B~ — Jhpnta K.
One can see the longer tail in the electron mode because of the energy loss due to
bremsstrahlung. The small arrows indicate our final cuts.
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shows the K — nF7~ invariant mass in B — Japntr~ KQ.
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Figure 4.3: K? — 777~ invariant mass in BY — Jiy7" 7~ KJwith the optimized cuts
applied. The left plot shows signal MC and the right plot shows background MC and
data (red dots). The solid, blue line is the weighted sum of all MC samples. The arrows
indicate our final mass cut.

4.3.5 Final K* and 7T selection

Kaon candidates have to pass the KLHVeryLoose selector. One of the two pions in the

+

777w~ modes has to pass piLHLoose and the other pion has to pass the piLHTight selector.

4.3.6 Summary of selection cuts and efficiencies

Table 4.2 summarizes the final selection criteria. Applying all of the above cuts to our sig-

nal MC samples and counting the remaining events ng y7c, we obtain the (cut-)efficiencies

ns.ymc
EMC = ——— 4.2
Norc (4.2)

as listed in Table 4.3. The error on ej;¢ is taken as binomial distributed with

oc=/e(l —¢€)/Nuc- (4.3)
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Variable Selection
AFE |AE| < 15MeV (77~ modes)
mgs |mps — 5.279 GeV/c?| < 6 MeV/c?

X* candidate mass
Jfp — eTe” mass
Jhp — ptu~ mass

|m(JppmTn~) — 3.872GeV/c?| < 6 MeV/c?
2.95 < m(Jhp — ete”) < 3.14GeV/c?
3.06 < m(Jhp — ptp~) < 3.14GeV/c?

K9 mass |m(KQ — mfn~) —497.7)| < 15MeV/c?
Electron PID PidLHElectron, PidLHElectron
Muon PID muNNVeryLoose, muNNLoose

Pion PID piLHLoose, piLHTight

Kaon PID KLHVeryLoose

Table 4.2: Final selection cuts besides the preselection criteria mentioned in section 4.2.

Furthermore we list the number of remaining candidates per event. In case there is more
than one remaining candidate per event we choose the candidate with the smallest |AFE]

for all of our plots (and the efficiency calculation) - except when showing AFE itself.

Mode Nye | nsmc emc | Error epr¢ | cand/event
BY — Jhpntr= KY | 57,000 | 9,565 | 16.78% 0.16% 1.01
B~ — Jiprtn~ K~ | 57,000 | 12,007 | 21.06% 0.17% 1.01

Table 4.3: Efficiencies and number of candidates per event after applying all the optimized
cuts on signal MC. These efficiencies are not used in the final analysis. See section 4.4 for
the determination of the fit efficiency.
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4.4 Signal extraction

In this section, we describe the analysis method for the two modes B® — J/pnt7~ K9 and
B~ — Jjprta~K~. The method is based on a two-dimensional unbinned extended
maximum likelihood (UEML) fit to the mpgs and m(Jy 7 ~) (called mx ) invariant mass
distribution. The method and the data sample used as input for the fit are described in

the following sections.

4.4.1 Candidate selection and fit variables

The obvious fit variables in this analysis include AFE, mgg and mx. However, there
remain a significant number of multiple candidates if the fit includes all of those three
variables and the modelling of the likelihood function gets more complicated. Therefore,
we decided to cut on AFE, select the candidate with the smallest |AE| and perform a
two-dimensional UEML fit to mgg and mx. The detailed analysis method consists of the

following steps:

—_

. Apply all the optimized cuts (except for the fit variables) listed in Tab. 4.2.

[\)

. Apply selection cuts for fit variables (this will be the fit range).

e 5.2 <mpg < 5.3GeV/c?

e 3.8 <my < 4.0GeV/c?
3. Select the candidate with the smallest |AE| (best-AFE).

4. Perform a two-dimensional UEML fit to mgg and mx.

4.4.2 Probability density function and event types

For each event type ¢ € T" we define a PDF P;(x;60) evaluated for each event with x =

(mps,mx) and dependent on the parameter(s) §. We further assume that mpggs and mx
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are uncorrelated quantities and thus write the PDF as a product of two one-dimensional

PDF's

Pi(x;0) = gi(mps)he(mx). (4.4)

Based on Monte Carlo studies we define three different event types 7' = {S, P,C}:

e Signal events are genuine B — X (3872)K, X (3872) — J/ibnt 7w~ events and taken

from signal MC.

e Peaking background events from non-resonant B — J/iy w7~ K or other interme-
diate resonances like B — J/ip K1(1273), K1 — Kp and B — J/Y K*m, K* — K.
Those events are obtained from generic BB MC by selecting all events which have

the same final states as our signal modes and form a good B-candidate.

e Combinatorial background events forming a fake B-candidate taken from BB

generic MC by removing all peaking background events as described above.

Each of those event types has a different parametrization of its PDF Py(x) = g/(mgg)hi(mx),
which we obtain by fitting ¢g; and h; separately to the mpg and mx distributions, respec-
tively. All the fits are done with the RooFit [75] package and if not otherwise noted, all
parameters are kept floating. The following sections described the PDFs and Tab. 4.4

summarizes the PDF parameters obtained from the fit.

Signal PDF parametrization

Due to the mass-constraint on the J/t) candidate in X — J/ip 77~ the resolution function
of the X (3872) (generated with zero natural width in the MC) is not a simple Gaussian as

one might expect. In general, the distribution is more peaked around the central value with

0

longer tails. As a first approach, we model this distribution by a Lorentzian'® convoluted

ONote that Lorentzian, Cauchy distribution and Breit-Wigner are just different names for the same
distribution. To avoid confusion, we refer to a Lorentzian in case of the resolution model and to Breit-
Wigner for the line-shape model.
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with a Gaussian in myx. For the mpgg distribution we use the usual Gaussian:

(z—p)?

gs(z;p,0) = G(zyp,0) ~e 202 (4.5)
+o0
hs(x;m,I',o) ~ G(2';0,0)L(z — 2';m,T) d2’ (4.6)

where L is the Lorentz function L(z;m,T) ~ ((z —m)* + (1“/2)2)71 with central value
m and I" as the full width at half maximum (FWHM). Fig. 4.4 shows the 1-dimensional
UEML-fit to the mpg and my distributions for the B® — J1p 7T+7T_Kg mode. Note, that
the ARGUS tail used to model remaining combinatorics in the signal sample, is not part
of the signal PDF, but only used to obtain an accurate fit to the Gaussian signal peak.
The final parameters from the fit including errors are listed in Tab. 4.4.

In both modes the Gaussian width ¢ of the fit to the X-mass is consistent with zero.
In the following MC experiments used to validate our general fitting procedure and the

final fit on data, we therefore use a simple Lorentzian as a model for the X (3872) mass

distribution.
Mg m(J/ynm)
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Figure 4.4: 1-dimensional UEML-fit to the mpgg (left) and mx (right) distribution on
signal MC for B® — Jipntr~ KQ.
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Peaking background PDF parametrization

Peaking background events are modelled by a Gaussian in mpgg (that’s why we call them

peaking events) and a linear function in mx:

(@—p)®
gp(z;p,0) ~ e 2072 (4.7)
1
hp(xz;c) = N(l—i—cx) (4.8)

Note, that the slope of the first order polynomial is not ¢, but rather ¢/N where N is
the normalization of the polynomial which can be negative as well. Fig. 4.5 (left) shows
the 1-dimensional UEML-fit to the mpg distribution in B® — Jap7T7~ K2, As explained
above, the ARGUS tail is not used in the peaking background PDF gp and only included

for technical reasons. The final parameters from the fit for both modes including errors

are listed in Tab. 4.4.
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Figure 4.5: 1-dimensional UEML-fit to the mpgg (left) and mx (right) distribution on
generic MC for peaking background events in B — J/atn~ KD.
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Combinatorial background PDF parametrization

Finally, combinatorial background events are expected to follow an ARGUS shape in mgg

and observed to be linear in mx:

go(wimo, k)~ xy/1—22/md en=="/mo) (4.9)

hp(x;c) = %(14‘6‘%) (4.10)

where my is the ARGUS end-point and set to 5.29 GeV/c?, the kinematic limit for 1'(45) —
BB. Fig. 4.6 shows the 1-dimensional UEML-fit to the mpg and mx distributions for

the B® — J/ynt7~ KY mode. The final parameters from the fit for both modes including

errors are listed in Tab. 4.4.
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Figure 4.6: 1-dimensional UEML-fit to the mpgg (left) and mx (right) distribution on
generic MC for combinatorial background events in BY — JapnTa~ KY.

Summary of PDF parametrization

Tab. 4.4 summarizes the final parameters including errors obtained from the previously de-
scribed fits for both the modes B® — X (3872)K?, X — Jiyntn~ and B~ — X(3872)K—, X —

Jhpmt ™. Furthermore we give the corresponding parameters which we find from the same
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fits to the ¢(29) region (3.6 < m(Jp7wr) < 3.8GeV/c?) and using 1(29)-signal MC.!

Parameter BY — XK? B~ - XK | B° - ¢(2S)KY | B~ — ¢(2S)K~
Signal

mps mean 5.2796 + 0.0001 | 5.2793 £ 0.0001 | 5.2796 £ 0.0001 | 5.2793 +0.0001
mpgs width o 2.54+0.02 2.52+0.02 2.67+0.04 2.76 £0.03
mx mean m 3.8720 £ 0.0001 | 3.8721 +£0.0001 | 3.6861 £+ 0.0001 | 3.6861 + 0.0001
mx Gaussian o 0.00£+0.15 0.00 £ 0.25 0 0
mx Lorentz I’ 5.41 4+ 0.07 5.38 £ 0.06 4.09 £0.08 4.09 +£0.08
Peaking bgd.

mps mean [ 5.2796 + 0.0002 | 5.2794 £ 0.0001

mpgs width o 2.474+0.15 2.54+0.07

mx parameter ¢ —0.17£0.07 —0.42+£0.11

Comb. bgd.

ARGUS shape & —-399+23 —38.2+1.2 —459+3.9 —49.5+ 1.7
mx parameter c —0.30 £0.01 —0.30 £0.01 —0.30 £0.01 —0.30 £0.01

Table 4.4: Summary of PDF parameters from separate one-dimensional UEML-fits for the
three different event types, two signal modes and the two (2S) benchmark modes. All
mean values (u, m) are in GeV/c? and widths (o, I') are in MeV/c2.

4.4.3 Fit efficiency

We define our efficiency for reconstructed signal events as

ns.ymc

4.11
Nose (4.11)

eEMC =

where ng )¢ is the number of signal events returned by the full 2D-UEML-fit (including
all event types) to our signal MC sample consisting of Nj;c events. Multiplied by the
efficiency correction factor described in section 4.5 we obtain the final efficiency e. We
use the same correction factor for the ¢(25)-benchmark modes as for our signal modes.
Fig. 4.7 shows the projections of the fit and Tab. 4.5 lists the numbers including errors
for our two signal modes and the 1(2S) benchmark modes. It also shows the number of

events in the input dataset for the fitter, which is obtained by the procedure described

"Since this has been added after unblinding and the final fit on data, we use a pure Lorentzian for the
1(2S) mass-fit, since this is the shape we decided to use beforehand. We also did not have a peaking
background sample at hand for this mode.
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in section 4.4.1. Note, that the numbers in this table are different from those shown in

Tab. 4.3, which include the optimized cuts on mgg and mx.
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Figure 4.7: Result of the full 2D-UEML-fit (including all event types) for pure signal MC
in BY — X(3872)K?, X — Jipntr~. The fit result is ng = 10652 + 104, np = 0.0 + 1.5
and nc = 1904 4+ 46. The number of signal events ng is used to calculate our efficiency
for reconstructing signal events (see Tab. 4.5).

BY - XKY| B~ - XK~ | B - ¢(29)K? | B~ — ¢(2S)K~
Ny 57,000 57,000 30,000 30,000
events after cuts 12,556 15,786
ns mMc 10,652 104 | 13,338 =117 4,922 72 6,375 + 83
efficiency enrc (%) 18.69 £ 0.18 | 23.40 £0.21 16.41 £0.24 21.25 +0.28
corrected eff. € (%) | 17.35+£0.17 | 22.19+0.19 15.23 + 0.23 20.15 +0.28

Table 4.5: Fit efficiency ep;¢ for the two signal and benchmark modes determined on
signal MC and the corrected efficiency e.

4.4.4 Fit validation

Monte Carlo experiments

In this section we describe the validation studies done, to ensure that the full (2-dimensional)

UEML-fit is returning the correct number of signal events. Those studies have been per-
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formed on a mix of signal and background MC with about the same number of events as
expected on data.

Since the BB generic sample is roughly four times larger than the on-peak data, we
divide this sample into four sets. The initial signal sample (57,000 events) is split into
4 x 50 sets with each 250 events and added to the BB sample. Eventually, we conduct 200
experiments including fits, each with an independent set of signal events and experiments
within the same set sharing the same BB sample. The fits are done with floating event
yields and all other parameters fixed to the values in Tab. 4.4.

Using the fit-efficiencies from Tab. 4.5 we calculate the number of input signal events
NS input @and compare with the average number of signal events returned by the fit in each
set. Fig. 4.8 shows one of the fits in B® — Japntr~ K2, Plots a) and b) are mpgg and
myx projections whereas in plots ¢) and d) an additional cut (the optimized signal region
cut) on mx is applied when projecting mps and vice versa to enhance the visibility of
the signal. Finally, we conduct another set of 50 experiments with the full BB sample
as background and four times the amount of signal events. Scaled to the number of
signal events in sets 1-4, we get another average value with smaller errors due to the
higher statistics. To validate the fit performance in case of no signal, we repeat the above
procedure without the signal MC sample.

Tab. 4.6 summarizes the result for all sets and both modes. We give the average
number of events of type t < n; > and the average error < o > on this number over the
50 experiments in each set. Note, that the naive scaling of the error by 1/ v/50 cannot
be applied in this case, since all the experiments within the same set share the same BB
sample and are therefore correlated. However, in all cases the average number of signal
events in each set is within (the average) errors of the number of input signal events.
Repeating the same test without the BB sample, and thus uncorrelated samples, the
number of signal events is consistent with the expected error of < og > /v/50.

We also repeated part of those experiments, with a floating mass mean value for the
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mx fit, and obtain results compatible within errors to the above and to the number of
expected signal events. This is important since we will use a floating mean value in the

final fit on data to measure the mass of the X (3872).

<mg >+ <oy > BY — Jprtr K B — Jhpntn K~

NS input 46.7 £0.5 0 58.5+ 0.5 0
Set 1

signal events ng 52.0 £8.9 3.3+4.1 50.7+11.4 0.0+2.1
peaking events np | 108.4 +14.7 | 111.9 + 14.3 448 +£29.1 | 441.04+27.4
comb. events ng 648.6 £27.0 | 638.7 £26.8 | 2713.5 £ 55.1 | 2702.1 = 54.9
Set 2

signal events ng 46.7 + 8.8 00+14 63.8 = 12.0 3.44+79
peaking events np | 109.8 £15.0 | 112.0 £13.9 | 430.7 £ 28.6 | 434.9 +54.5
comb. events ng 711.3 £28.2 | 700.9 4 28.0 | 2672.1 = 54.6 | 2661.0 £ 54.5
Set 3

signal events ng 51.6 £9.1 0.0+£3.1 59.4+11.9 0.0+£3.5
peaking events np | 107.0 £14.4 | 111.8 £13.5 | 444.5+29.0 | 444.3 +27.5
comb. events ng 633.9 £ 26.6 | 625.2 £26.4 | 2638.0 & 54.4 | 2626.8 & 54.2
Set 4

signal events ng 49.5 + 8.6 1.4+ 3.7 77.3+12.9 13.2£9.2
peaking events np | 106.3 £ 14.2 | 108.7 £ 13.8 | 462.5 +29.7 | 469.6 + 29.5
comb. events n¢ 666.7 & 27.2 | 656.9 & 27.0 | 2778.9 £ 55.8 | 2767.1 & 55.7
Full BB sample

signal events ng 49.7+44 0.0+1.8 63.4+£6.1 0.0+1.8
peaking events np | 1079+ 7.3 | 1123+£7.0 | 446.2+14.6 | 451.6 +14.1
comb. events ng 665.3 £13.6 | 655.5 £13.5 | 2700.6 & 27.5 | 2689.2 4+ 27.4

Table 4.6: Number of events n; and error o; of type t returned by the fit averaged over 50
experiments in each set. Each experiment has a different signal sample with ng ;npu: signal
events and experiments within the same set share one BB background sample. Finally,
another set of 50 experiments is conducted with the full background samples and results
scaled to the size of sets 1-4.

Toy Monte Carlo

As a further test of our fit, we conduct 1000 toy-MC experiments. FEach experiment
consists of Nyoy = N5 t0y + NP toy + N toy €vents sampled from our total PDF P with all
parameters fixed to the values in Tab. 4.4 and ny 4,y set to the yields obtained from the

MC experiments (full BB sample) in the previous section (see Tab. 4.6). Each sample
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Figure 4.8: The fit result of an arbitrary experiment in B® — JiprTn~ K. The lines
represent (from bottom to top) combinatorial background (dotted, blue), peaking back-
ground (solid, red) and signal events (solid, blue). a) and b) are projections on mpgg and
mx, respectively. Plots ¢) and d) show the signal band projection with an additional cut
on the signal region of the variable not shown.
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Figure 4.10: Result of 1000 toy-MC experiments for B~ — J/pm 7~ K~ with ng 10, = 63.
The left plot shows the number of signal events ng returned by each fit, in the middle
plot we can see the distribution of errors on ng and the right plot shows the resulting pull

distribution.

is fitted under the same conditions as in the MC experiments with floating event yields
and fixed parameters. Fig. 4.9 shows the number of signal events ng (left) and error
o5 (middle) returned by each fit for B® — Jipntn~KY. The right plots shows the pull
distribution pulls = (ng—mns,0y)/0s of the number of signal events. The fit to a Gaussian
shows that all distributions follow a normal distribution and the pull follows a unit normal
distribution as expected. Fig. 4.10 shows the same for B~ — Jipr 7~ K~. As in the
previous MC experiments, we can conclude that the fit performs well and that there is no

notable bias resulting from the choice of our event shapes.
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Figure 4.11: The fit result on 210.6 fb~! of data for the benchmark mode BY — v(25) K?.
The lines represent (from bottom to top) combinatorial background (dotted, blue), peaking
background (solid, red) and signal events (solid, blue).

Benchmark mode - 9(25) fit

The decay ¥ (2S) — Jipntn™ produced in B — 1 (2S)K can be used as a benchmark
for this analysis. It is only 190 MeV/c? below the X-mass, very narrow and provides
us a well measured benchmark mode with comparably high statistics. Therefore, we
perform the exact same 2D UEML-fit as described in the previous sections, but in the
mass region 3.6 < m(JAp ) < 3.8GeV/c2. We use a Lorentzian for the 1(25) and float
all parameters, except the mpg mean and width for the peaking background component,
which we fix to the values obtained from our MC studies for the X (3872). Table 4.7
lists the final values of the fit and the event yields (we omit the combinatorial shape
parameters).

We realize that the fitted ¢(2S) mass is shifted downwards compared to the world
average of 3686.09 MeV/c? [8]. We will use this fact, to correct the fitted X-mass. Table 4.8
summarizes the shift of the 1 (25) mass.

Using the (corrected) fit-efficiencies from Tab. 4.5 we can calculate the number of
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Figure 4.12: The fit result on 210.6 fb~* of data for the benchmark mode B~ — v(25) K ™.
The lines represent (from bottom to top) combinatorial background (dotted, blue), peaking
background (solid, red) and signal events (solid, blue).

BY — (2S)K? | B~ — ¢(29)K ™~

Parameters

mx mean ( GeV/c?) 3.6855 £ 0.0002 | 3.6855 4 0.0001
my FWHM (MeV/c?) 4.66 + 0.46 5.07+£0.24
mps mean ( GeV/c?) 5.2800 £ 0.0001 | 5.2796 4+ 0.0001
mps width (MeV/c?) 2.40 +0.13 2.60 4 0.07
mx parameter Ce.omp —0.29 + 0.01 —0.29 + 0.01
mx parameter Cpeqk —0.26 £ 0.02 —0.29 £ 0.02
mps ARGUS &k —67.9+£6.3 —35.3+24
Event yields

signal ng 252.5+17.1 1159.3 + 37.2
peaking np 6.1 +£11.2 58.3 £ 24.5
comb. ng¢ 434.4 +23.0 1916.5 4+ 48.2
Expected yield

NS PDG 282.5 + 33.9 1189.3 £ 84.5

Table 4.7: Fit results on 210.6 fb~! of on-peak data for the ¢(25)-benchmark mode with
the measured and expected signal yields (bold) calculated from Eq. 4.12
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$(2S) mass (MeV/c?) | B — ¢(29)KY | B~ — (2S)K~
fitted value m p;; 3685.5 & 0.2 3685.5 & 0.1
PDG value m,q, 3686.09 £ 0.03 |  3686.09 & 0.03
M fit — Mpdg —0.59 £ 0.20 —0.59 +0.10

Table 4.8: Fitted mass of the ¥(2S) on data and the difference to the world average. We
will use this as a reference for the fitted X-mass.

expected ¥(25) signal events

ns,ppc = € Npg B(B— ¢(2S)K) B(y(25) — Jpntn™) B(Jp — 1T17) (4.12)

x [B(KY — ntn™) B(K® — K?)] (4.13)

where the secondary branching ratios are taken from the PDG [8] and the factor |...] only
applies to the BY mode. Comparing the measured and expected yields for ng we conclude,
that the yields agree within one standard deviation. Also note that the given errors only

include statistical and errors due to secondary branching ratios.

4.4.5 Fit result

Due to some unexpected fluctuations of the data around 4 GeV/c? compared to the MC
background prediction (see for example the right plot in Fig. 4.18), it was decided to
do the final data fit in the range 3.8 < mx < 3.95GeV/c? where the MC gives a good
description of the background. All other cuts are the same as in the previous validations
and MC experiments.

From the comparison of the mpg parametrization between 1 (25)-data and our MC
samples, we can assume that our chosen parametrization matches the data in the X (3872)
region within errors. Therefore, we keep the mean and width of the signal and peaking
background mpg distributions fixed. The remaining three parameters (my parameters ¢
in peaking/ combinatorial background and ARGUS shape) are floated.

For the X (3872) line shape, we use a Lorentzian with floating central value. Due to
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limited statistics in the K mode we have to fix the width of the Lorentzian to the value
obtained from signal MC in order to get a converging fit. The width in the K~ mode
is kept floating. Tab. 4.9 shows the fit result for both modes and Figs. 4.13 and 4.14
show the mpgg (a) and mx (b) projections of the fit. The lower two plots show the same
projection but with an additional cut on mx around the signal region when plotting mpgg
and vice versa.

Figure 4.15 shows the projection of the negative log-likelihood —log(L/Lyyq.) on the

number of signal events ng. We obtain the statistical significance of the signal(not in-

cluding systematics)x using /—2log(L(ng = 0)/Lyaz). With a NLL-value for zero signal
events of 3.38 and 28.1 we obtain a statistical significance (not including any systematic

errors) of 2.60 and 7.5¢ for the K9 and K~ mode, respectively.

BY — X(3872)KY | B~ — X(3872)K
Parameters
myx mean ( GeV/c?) 3.8680 £ 0.0012 3.8707 £+ 0.0006
myx FWHM (MeV/c?) 5.41 5.04 4 2.23
mx parameter Ceomp —0.14 +£0.13 —0.31 £0.01
myx parameter Cpeqk —0.27 + 0.01 —0.27 +0.01
mps ARGUS &k —41.3£5.1 —-35.3+£24
Event yields
signal ng 8.3+4.5 61.2 +£15.3
peaking np 35.0£11.5 244.8 +27.9
comb. nc 619.6 4 26.6 2788.0 £ 56.4

Table 4.9: Fit results on 210.6fb~! of on-peak data. Parameters not listed or with no
errors are kept fixed to the values obtained from MC.

4.4.6 Invariant J/ 777~ mass spectrum

Figures 4.16 and 4.17 show the J/i m "7~ invariant mass spectrum for both modes with
the optimized cuts applied for data and generic BB Monte Carlo. A clear signal of the
X (3872) in the K~ mode can be seen. There might be a 20 enhancement at slightly

lower mass in the KO mode as well. As a further check, Fig. 4.18 shows the Jipntm~
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Figure 4.13: The fit result on 210.6 fb~! of data in B® — X (3872) K. The lines represent
(from bottom to top) combinatorial background (dotted, blue), peaking background (solid,
red) and signal events (solid, blue). a) and b) are projections on mpgg and mx, respectively.
Plots ¢) and d) show the signal band projection with an additional cut on the signal region
of the variable not shown.
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Figure 4.14: The fit result on 210.6 fb~! of data in B~ — X (3872) K ~. The lines represent
(from bottom to top) combinatorial background (dotted, blue), peaking background (solid,
red) and signal events (solid, blue). a) and b) are projections on mpgg and mx, respectively.
Plots ¢) and d) show the signal band projection with an additional cut on the signal region
of the variable not shown. Note the different bin size in mx compared to Fig. 4.13.
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invariant mass together with a mpg sideband (jmgs — 5.26] < 0.006). We can see that
the background behaves “nicely” in the X-region and that there is an excess of events in

the around 3.87 GeV/c? in both modes.
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Figure 4.16: J/ 77~ invariant mass spectrum between 3.75 and 4.75 GeV/c? in 5 MeV/
bins with the optimized cuts applied for B — Jipn 7~ KY. The dots represent the data
and the solid line is the prediction from generic BB Monte Carlo.
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4.5 Efficiency corrections and systematic errors

Since particle 1D, tracking and neutrals reconstruction have a slightly different perfor-
mance on Monte Carlo and data, corrections are applied to the efficiency obtained from
MC to match the efficiency expected on data. With each of those corrections comes an
error that we include in our overall systematic error. Efficiency correction factor given
here are meant to be multiplied with the MC efficiency. We also discuss other sources of

systematic errors. See tables 4.10 and 4.11 for a summary of all numbers.

4.5.1 Number of BB events

The number of BB events obtained from B-counting is assigned the standard systematic
(fractional) error of 1.10%.

4.5.2 Secondary branching ratios

The secondary branching ratios and their errors (fractional errors in brackets) we use in

our calculations are [8]

B —117) = B(Jhp —ete) +B(Jh — utu™) (4.14)
= (11.814+0.20) x 1072 (1.69%) (4.15)
BKY - atr™) = (68.9540.14) x 1072 (0.39%) (4.16)

We assume fully correlated errors in the leptonic branching ratios of the J/i). Furthermore,
we assign an error for the uncertainty in the production rate of B® and BT from the
7' (45) meson. The result of a recent BABAR measurement [76] for the production ratio is

RT/0 =1.006 £ 0.036 £ 0.031 which corresponds to a fractional error of 4.72%.
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4.5.3 MC statistics

The fixed parameters in the final fit were obtained from limited statistics MC samples.
To account for this, we vary each parameter ¢ by +£10 and repeat the fit on data. From

the new results nﬁz we calculate the fractional systematic error as

9 1 n:st 2 n; 2
1 1
— E t 1 2 4.17
Usyst 9 i ns.0 + ns.0 ( )

where ng o is the number of signal events returned by the fit with all parameters fixed to

the final parameters in the data fit. Table 4.11 lists the results.

4.5.4 Differences between Monte Carlo and data

For the parameters which we have fixed in the fit (mps mean and width for signal and
peaking background), we correct for possible differences between the data and Monte
Carlo. Therefore, we obtain an alternative set of parameters from some suitable sample
(see below) and repeat the data fit with all other parameters fixed to their values from the
initial data fit. Each of those fits, gives a new value ng; for the number of signal events.

We take

) 2
2 = > (ni - 1) (4.18)

i
as the fractional systematic error, where ng is the result from our initial fit. For the signal
mpg shape, we use the parameters (mpg mean and width) obtained from the (25) fit
(Tab. 4.7). For the peaking background shape, we fit the mpgg distribution in the mass
region 3.7 < my < 4.5GeV/c? with a 10 MeV/c? veto-cut around the X (3872) and use
those mpg parameters as an alternative set. Table 4.11 lists the final systematic error.
We did the same check for the central value of the fitted X-mass, but there was no notable

change within 0.1 MeV/c? due to different mpg shapes. The same is true for the 1(29)-fit
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which we use as a reference.

4.5.5 PID corrections

We are using the efficiency correction tables provided by the PID group to assign each
signal-MC event a weight wprp that is the product of the individual PID selector weights.
We repeat the procedure described in section 4.4.3 with those weighted events and obtain
the PID-corrected efficiency and the resulting correction factor which can be found in
Tab. 4.10. We estimate a very conservative systematic error of 5% for the efficiency

corrections due to PID.

4.5.6 Tracking corrections

The tracking corrections to the efficiency including the systematic errors are taken from

the recipes provided by the Track Efficiency Task Force [77].

e Corrections for 7%, K+ [+

All of our charged tracks (pions, kaons, leptons) are taken from lists that are derived
from ChargedTracks. In this case an efficiency correction of 0.25% with a systematic
error of 1.2% per track is recommended. The total efficiency correction factor for a

+

mode with n tracks (not counting tracks resulting from K? — 777) is therefore

0.9975™ (multiplied) with a systematic error of 1.2% x n (fully correlated).

e K correction
The KU correction is treated separately from the other tracking corrections and
is obtained from the appropriate efficiency correction tables. We are using the
3DSign3 noAlpha tables and apply them to our signal MC sample. Using the pro-
vided root macros for run 1-3 and run 4 data we obtain the luminosity weighted av-
erage for the efficiency correction. The result for B® — Jaynt 7~ K9 is 0.97740.016

and we include the fractional error of 1.64% in our systematics.
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4.5.7 Monte Carlo model

The model for the X (3872) used in our signal Monte Carlo generates the decays according
to two-body phase space with flat angular distributions. To investigate the effect of differ-
ent decay models we weight each event with different angular distributions and recalculate

the efficiencies. We consider two possible assignments for the X (3872):
e If the X is a DD* molecule the most likely quantum numbers are JP¢ = 1++ [47].
e For charmonium, we consider the 2=~ 13Dy as a possible candidate.

Pakvasa and Suzuki [42] calculate the angular distributions of p — 7m for those two

different quantum numbers:

dT/dcos B, ~ cos?f,sin?6, (JPC =277) (4.19)

dl'/dcosb, ~ sin?6,  (JPC =171 (4.20)

where 6 is the angle between the pion and the recoiling X in the restframe of the p. We
assign the difference between the maximum and minimum efficiency as a systematic error.
From this method we obtain a fractional systematic error of 1.56% and 1.00% for the B

and B~ mode, respectively.

Jpata~ KO | Jhprtr K-
Number of tracks 4 5
Particle ID 0.9591 0.9603
Tracking 0.9900 0.9876
K? correction 0.9777 -
Total (multiplied) 0.9284 0.9484

Table 4.10: Efficiency correction factors applied to the raw efficiency obtained from signal
MC samples.
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Jpate= KO | Jhprtn K-
No. of BB events 1.10 1.10
Branching ratios 5.02 5.02
MC statistics 1.92 0.68
MC decay model 1.56 1.00
MC-data difference 8.94 1.77
Particle 1D 5.00 5.00
Tracking 4.80 6.00
K9 correction 1.64 -
Total (quadrature) 12.77 9.59

Table 4.11: Summary of systematic errors in %.
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4.6 Study of Ji)ntr~ invariant mass above 4 GeV/c?

Recent observations by BABAR [78] in initial state radiation (ISR) events provide ev-
idence for at least one broad resonance in the invariant mass spectrum of JaynTm~ at
4.259 GeV/c? that can be characterized by a single resonance with a full width of 88 MeV/c?.
This structure is referred to as Y (4260). Alternatively, the data might support two narrow
resonances at 4.26 GeV/c? and 4.33 GeV/c?. This section describes studies of the J/i 7 m~
invariant mass above 4 GeV/c? and the search for the Y (4260) in B-decays. Furthermore,

we investigate the possibility of more than one resonance.

4.6.1 Monte Carlo studies

To study the region above 4 GeV/c? in m(J/in+n~) we perform another MC experiment.
From the X (3872) signal MC, we create a MC sample with a signal at 4.264 GeV/c?
(Y (4264)) and a natural width of 90 MeV/c?. Furthermore we create another (narrow)
state at 4.315GeV/c? (Z(4315)). No changes in the selection criteria compared to the
X (3872) were found after optimization.

The fit behavior is evaluated by adding a fixed amount from each of the newly created
signal MC samples to the BB generic MC sample. We perform a fit in the mass region
4.15 < m(Jppmrm™) < 4.4GeV/c? with two Breit-Wigner components for the my signal
PDF. Figure 4.19 shows the fit result on a MC cocktail consisting of BB generic MC,
Y (4264) and Z(4315) and Fig. 4.20 shows the same but without the additional narrow
resonance at 4.3GeV/c?. For the first experiment with both resonances, we obtain a
fraction fy = (86.7 £ 5.4)% and the fit to the second sample (only one resonance) yields
fy = (94.1 £4.2)%, where fy is the fraction of Y (4264) events. The initial MC cocktails
consisted of fy = 96.8% and fy = 100% Y -events, respectively. We generated a dedicated
signal MC sample for a state at 4246 MeV/c? similar to our signal MC samples used for
the X (3872). From this sample we obtain the detector resolution (again parameterized as

a Lorentzian) ['yes = (5.4 & 0.1) MeV/c? that is exactly the same as for the X (3872).
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Figure 4.19: Fit to a MC cocktail of BB generic MC, Y (4264) and Z(4315). Plots a) and
b) show the fit projections for mpg and myx whereas plot ¢) shows the mx projection
with a cut on the mpgg signal region applied.
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Figure 4.20: Fit to a MC cocktail of BB generic MC and Y (4264) without the additional
narrow resonance. Plots a) and b) show the fit projections for mgg and mx whereas plot
c¢) shows the mx projection with a cut on the mpgg signal region applied.
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4.6.2 Fit on data (I)

With the same fit configuration as established in our MC studies we fit the data in the
B~ mode. Our MC studies were carried out in the region above 4.15GeV/c?. To meet
up with the upper end of the mass region in our X (3872) studies, we perform the fit on
data in the region 4.0 — 4.45 GeV/c? and show the fit projection in 15 MeV/c? bins. Since
the mpg projection does not show any valuable information (except that there is a large
amount of peaking background), we only show the mx projections of the fit result. The
mean and width of both mx signal-PDFs are kept floating in the fit, as well as the slopes
of the combinatorial and peaking background shapes in mx. We perform the fit in four

different configurations:
e I) two signal peaks in mx
e II) no signal peak
e III) one peak (Y) below 4.3 GeV/c?

e IV) one peak (Z) above 4.3 GeV/c?

Figs. 4.21 and 4.22 show the fit projections and Tab. 4.12 lists the final values of the fit
parameters. The numbers of signal events ng, the central value of the peak m and the
total width I' are listed. Since the detector resolution is given by a Lorentzian (=Breit-
Wigner) with full width I'p = (5.4 4 0.1) MeV/c?, we can obtain the natural width from
I' = T'ftteq — T'r- From the likelihood value Ly of the null hypothesis from configura-

tion (II) we derive the significance of each of the other fit configurations by calculating

v/ —2In Lmax/Lo. We also give the corresponding values from the ISR analysis [79].
The data seems to favor two separate states around 4.25GeV/c? and 4.31 GeV/c?.
Both states have the same full width within errors and a significance of 2.90 and 2.80,
respectively. The lower state is at the same mass as the lower peak in the “two-peak
interpretation” of the ISR result. However, the central values of the higher peaks differ

by more than four standard deviations.
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configuration (I) | (II) (III) (Iv) (ISR)
nsy 79 + 32 77 + 36 -
ns.z 63 + 25 - | 58 +27
my (MeV/c?) 4246 + 7 4248 + 8 - | 4254 £ 6
my(MeV/c?) 4313+ 4 - | 431244 | 4334+ 1
Iy (MeV/c?) 20+ 9 22 + 12 -| 55 +£18
I'z(MeV/c?) 10+5 - 10+5 044
VvV —2In Lmax/Lo 4.2 2.9 2.8

Table 4.12: Fit results for the four different fit configurations: (I) two peaks, (II) no peak,
(ITT) one peak below 4.3 GeV/c? and (IV) one peak above 4.3 GeV/c?. The last column
lists the results from the ISR analysis [79] in the two-peak fit configuration.
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Figure 4.21: my projections of the fit result in configuration (I) (left) and the null hy-
pothesis (II, right). See Tab. 4.12 for the fit parameters.
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See Tab. 4.12 for the fit parameters.
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4.6.3 Additional studies

After unblinding and with the help of appropriately generated signal MC for the Y (4264),
we are now able to perform some further studies in this mass region. First we investigate

the angle cos2P1i, which is defined in the following way:

e cos2Pi is the cosine of the angle between the momentum direction of the (77)-system

and the B momentum direction in the (J/i) 7m) restframe.

Fig. 4.23 shows the cos2Pi distribution of the 1)(2S) as a reference. This angle is possibly
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Figure 4.23: cos2Pi distribution for 1(25) events in on-peak data.

helpful in suppressing backgrounds from K;(1270) — Kp. decays. To investigate this,
Fig. 4.24 shows plots of cos2Pi versus the K7 invariant mass for signal MC (left), BB
generic MC (middle) and data (right). All plots show events within the region 3.8 <
m(Jpprm) < 4.5GeV/c?. One can see a nice separation of the signal and K background
in this plane. Furthermore, Fig. 4.25 shows the same angle but versus the Jjapntn™
invariant mass.

We re-optimized our signal selection criteria including this angle. It turns out that the
optimum is reached for the selection cos2Pi< 0.5. Fig. 4.26 shows the JA) w7~ invariant
with different cuts on this angle. It seems that the two-peak structure above 4.2 GeV/c?
is more pronounced above smaller backgrounds for cos2Pi> 0.5. Notice that the X (3872)

signal disappears with this cut applied. Fig. 4.27 shows the effect of the cos2Pi-cut on
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Figure 4.24: The angle cos2Pi versus the K777~ invariant mass for signal MC (left), BB
generic MC (middle) and data (right) for events with 3.8 < m(Jipntn™) < 4.5 GeV/c2.
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the K invariant mass. As expected, the cut cos2Pi> 0.5 (right) selects a clean sample of

Kj-events. To further investigate the influence of Kj-decays, Fig.4.28 shows the Japntm™

invariant mass with different cuts on the K77~

invariant mass. The left plot shows the

spectrum with the initial selection criteria, the middle plot has a K7 veto applied and the

right plot shows the spectrum with a 150 MeV/c? wide K7 mass cut.
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Figure 4.26: The J/p 77~ invariant mass without cos2Pi cut (left), cos2Pi< 0.5 (middle)

and cos2Pi> 0.5 (right). The dots are on-peak data and the solid line shows BB generic
MC scaled to the same number of events.
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invariant mass without cos2Pi cut (left), cos2Pi< 0.5 (middle)
and cos2Pi> 0.5 (right) for on-peak data.

Next, we study the lepton decay angle cos #; that is defined as follows:
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1273| > 150 MeV/c? (middle) and |m(K7t7~) — 1273| < 150 MeV/c? (right). The dots

are on-peak data and the solid line shows BB generic MC scaled to the same number of
events.

e cos 0 is the cosine of the angle between the momentum direction of one of the leptons

and the momentum direction of the recoiling kaon in the J/i) rest frame

The cos 6; distribution for the 1(25) (J¢ = 177) is shown in Fig. 4.29 (left) and the
right plot shows cos ) versus the J/i) w7~ invariant mass. Fig. 4.30 shows once more the
Jipmt ™ invariant mass with different cuts on cos; and Fig. 4.31 shows the same but

with a cos2Pi< 0.5 cut applied.
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4.6.4 Fit on data (II)
After the additional studies described in the previous section, we decided to
1. reject K1 — Kntm~ backgrounds with a K mass cut

2. present results with an additional cut on the lepton angle cos; optimized for a

JPC =17~ state.

The optimization for the Kj veto was carried out on MC and results in m(Kntn~ —
1273) > 250 MeV/c?. Since we do not have appropriate MC for a 1~ state at 4.26 GeV/c?
we use the (shifted) 1(2S5) signal MC for the optimization of the lepton angle. The
optimized cut is |cos6;| < 0.8. Both optimizations included all the cuts, except PID. No
changes in the other selection criteria were found.

Fig. 4.32 (left) shows the fit result with the K; veto applied but without the lepton
angle cut. The final values of the fit parameters can be found in Tab. 4.13. The statistical
significance for both peaks over the background hypothesis shown in Fig. 4.32 (right) is
4.00. The statistical significance for the lower peak is 3.40 and 1.9¢ for the higher peak,
which was obtained by repeating the fit for one peak with all parameters but the yields
fixed to the values obtained from the two-peak fit. Fig. 4.33 shows the same with an
additional cut on the lepton angle | cos 6;| < 0.8. The signal PDF for this fit only includes

one signal peak. A fit to two signal peaks results in a fitted width of zero. The statistical

significance is 3.50.

Table 4.13: Fit results with and without lepton angle

No cos6; cut | |cosf| < 0.8
nsy 73+ 29 59 + 24
ns.z 31+13 -
my (MeV/c?) 4249 +7 4243 + 6
my(MeV/c?) 4305 + 6 -
Iy (MeV/c?) 26 + 13 21 + 10
[z (MeV/c?) 11+7 -

after subtraction of the mass resolution.

cut. I' denotes the natural width
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Figure 4.32: mx projections of the fit result with K veto but no lepton angle cut for the
signal (left) and background (right) hypothesis. See Tab. 4.13 for the fit parameters.
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4.6.5 Fit on data (III)

Since there is no compelling evidence for a signal based on these studies a more conservative
approach is necessary. In the “single-peak” interpretation, the excess of events is centered
around (4259 + 10) MeV/c? with a width of (88 + 24) MeV/c?. Figure 4.34 shows the fit
result to a single signal peak with mean at 4259 MeV/c? and width of 93.4 MeV/c? that
includes the detector resolution of 5.4 MeV/c?. The fit result is 128 4-42 signal events with
a significance of 3.10 compared to the background hypothesis fit. Only the K; mass-veto

from the previous section has been applied.
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Figure 4.34: mx projections of the fit result with K; veto and signal parameters fixed to
the results in the ISR analysis for the signal (left) and background (right) hypothesis.

Using the same systematic uncertainties and efficiency corrections as for the X (3872)

we obtain a branching fraction of

B(B~ — Y(4260)K~,Y (4260) — Jipntr~) = (20+£0.74+0.2) x 1077 (4.21)

where the first error is statistical and the second systematics. The efficiency was deter-
mined on a zero-width, phase-space MC. We calculate a 90% CL interval on the branching

ratio with the same method as described in section 4.7.2 (Eq. 4.31):

1.2 < B(B~ — Y(4260)K ~, Y (4260) — JAprta~) <29 x 107> (90% CL) (4.22)
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4.7 Physics results and conclusions

Here we summarize all of our result and possible physics implications.

4.7.1 Previous results

There are no previous results for the K mode, but both Belle [22] and BABAR [27] have
measurements for X (3872) — J/pntn™ in the K~ mode. The Belle result is

B(B~ — X(3872)K~, X(3872) — Jhp7wtn~)

Belle: B(B~ — ¢(2S)K~)B(¥(2S) — Jhpmtm)

= 0.063 +0.012 + 0.007 (4.23)

using 152 million BB events. This translates into a central value of

Belle: B(B~ — X(3872)K~,X(3872) — Jjbntn~) = (13.6 £3.1) x 1070 (4.24)

if we use the uncertainty from the above ratio and on the secondary branching ratios only.
Furthermore they report a 90% CL upper limit on the width of I' < 2.3 MeV. The BABAR

result for the branching ratio is

BABAR:  B(B~ — X(3872)K~, X (3872) — Jjpntr~) = (12.8 £4.1) x 1070 (4.25)

using 117 million BB events from run 1-3. A check of the event yields can be found in [80].

4.7.2 Branching ratios

From the fit result ng = 8.3+£4.5 and ng = 61.2£15.3 (Tab. 4.9) we calculate the product

branching ratio

ng/ (0.5 B(K2 — ntn™)]
e Ngg B(Jjp — 1T17)

B(B — X (3872)K, X (3872) — Jpn n) (4.26)

where Nz the number of BB events (Tab. 4.1), € the corrected efficiency (Tab. 4.5) and

we use the secondary branching ratios from the PDG (see [8] and section 4.5.2). The
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additional factor in square brackets [...] only applies to the K mode and we assume that
KV decays into K9 in 50% of the time.

Our result for the two charged pion modes are

B(B® — X(3872)K°, X (3872) — Jipntr™) = (5.14+284+0.7)x 107% (4.27)

B(B™ — X(3872)K~, X(3872) — Jipnta™) = (10.1+2.5+1.0) x 1075 (4.28)

where the first error is the statistical error (on ng from the fit and on €) and the second
error includes all the systematic and secondary branching ratio errors. All individual
errors have been added in quadrature if not otherwise noted in the systematics section.

From this we obtain the interesting ratio

B°  B(B® — X(3872)K°, X(3872) — Jhpntn~)
R B~ B(B- — X(3872)K—, X(3872) — Jntn—) 0.50 £ 0.30 + 0.05. (4.29)

In this ratio most of the systematic uncertainties cancel each other. Therefore, only the
uncertainties due to the KU (branching ratio and correction), B~ /B production as well
as MC statistics and MC-data difference are included. This gives a fractional systematic
uncertainty of 9.5%.

To obtain the significance of the signal including systematic errors we use standard er-
ror propagation and assume Gaussian systematic errors. We define L(n) = —In(£(n)/Lmax)
as the negative log-likelihood (NLL) obtained from the fit as in Fig. 4.15. From this we

calculate the NLL including systematics as

o2 -
Lgys(n) = <L(1n) + (n2_352)2> (4.30)

where o4y, is the systematic error on the number of signal events ng from the fit. With
the fractional systematic errors from Tab. 4.11 we obtain ogys = 1.1 and ogys = 4.9

as the systematic uncertainties on ng for the BY and B~ mode, respectively. Using
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\/m the significance of the signal including systematic uncertainties becomes
2.50 for the B® mode and 6.1¢ for the B~ mode.

We give a two-sided 90% confidence level (CL) interval obtained from the likelihood
function including systematics (Eq. 4.30). In the large sample limit, one can show [58]

that the confidence interval [n1,no] obtained from

(@11 —~/2) (4.31)

NN

Lsys(”l,?) =

approximates the classical confidence interval. ®~!(1—+/2) is the quantile of the standard
Gaussian corresponding to the confidence level 1 —~. With 1—~ = 0.90, Eq. 4.31 becomes
Lsys(n12) = 1.35. The two solutions in the K2 mode are n; = 2.2 and ny = 16.9 events.
Using (4.26) we obtain the 90% confidence level interval on the branching ratio (including

systematics)
1.34 < B(B® — X (3872)K°, X (3872) — JhpmTn~) <10.3 x 107  (90% CL). (4.32)
We specifically note, that this confidence interval has to be interpreted under the 2.5¢0

signal-significance in this mode. With the same strategy, we set limits on the ratio

BO nY, € 1
i B~ ang . YT 005 B(KY — ntn~)

=3.71 (4.33)

where n%, ng and ¥, €~ are the signal yields and efficiencies in the B and B~ mode.

Using standard error propagation we obtain the NLL for R including systematics

1 1 202, 0\
Lsys(R) = (LO(Rng/a) + I- (anOS/R) + (R — asos/ng)2> (434)

where LY~ are the NLL in the B~ mode and Osys,r the systematic uncertainty on R

from Eq. 4.29. Using Eq. 4.31 we calculate the 90% CL interval on R including systematics
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as

0.13<R<1.10  (90% CL). (4.35)

4.7.3 Mass and natural width

We measure the mass of the X (3872) in reference to the fitted 1(2S5) mass:

Mx =M, fit — Myp(25),fit T May(25) (4.36)

where m,5) is the world average of the ¢)(25) mass. Using the values from Tab. 4.8 for

the mass shift and the fitted value from Tab. 4.9 we get

m(X(3872) in BY — X(3872)K?) = (3868.6 + 1.2 4 0.2) MeV/c? (4.37)

m(X(3872) in B~ — X(3872)K ") (3871.3 0.6 + 0.1) MeV/c?  (4.38)

where the first (statistical) error is due to the mx fit itself and the second (systematic)
error is from the 1)(2S5) fit and the error on the my (a5 from the PDG. With this we obtain

the mass difference

Am = (2.74 1.3 £0.2) MeV/c? (4.39)

which is compatible with zero within two standard deviations.

We now determine the natural width of the X-particle in the B~ mode. Note, that the
width (FWHM) obtained from the fit on data I' = (5.04 4-2.23) MeV/c? (Tab. 4.9) is com-
patible with the resolution determined on MC I'p = (5.38 0.06) MeV/c? (Tab. 4.4). Fur-
thermore note, that our resolution function is a Lorentzian (=Breit-Wigner with FWHM
I'r) and the line-shape of the X (3872) is modelled by a Breit-Wigner function with a
natural width I'yy. The convolution of those two functions will result in a Breit-Wigner

with FWHM T" = T'g 4+ 'y (this can easily be proven using the convolution theorem).
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From this we infer a natural width consistent width zero:

Iy =T —Tx=(—0.34 + 4.98) MeV/? (4.40)

The 90% CL upper limit on the natural width is therefore

Iy < (1.28 x 4.98 — 0.34) MeV/c? = 6.03MeV/c?  (90% CL) (4.41)

4.7.4 Limits in the Am-R plane

Our limits on R depend of course on the mass of the X-particle in the K? mode. Since
the signal significance is only 2.50 we repeat the fit on data, but fix the central value of
mx to values in the range 3.86 — 3.88 GeV/c?. We then calculate R and its limits based on
the new number of signal events. Figure 4.35 shows the result in the Am-R-plane, where
Am = 3871.3 — mx. The lower limit on R is restricted to positive values since we do not

have likelihood projections for negative values of ng.

Figure 4.35: The solid line represent the central value of R for different values of Am.
The two dashed lines are the 90% CL interval on this value.

4.7.5 Study of the Ji)7 7~ invariant mass above 4 GeV/c?

In the J/pntn~ invariant mass region above 4 GeV/c? we observe an excess of events

above background between 4.2 and 4.4 GeV/c?. These events are consistent with the broad
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structure observed in ISR events [78]. However, our result by itself does not warrant the

claim of a discovery of the Y (4260) in B decays.

4.7.6 Conclusions

The first separate analysis of X (3872) — Jipm™ 7~ in charged and neutral B decays has
been presented and the results were published in [28]. The measured product branching
ratio in the charged B mode is consistent with previous measurement from Belle and
BABAR. Moreover, we observed a 2.50 excess of events above backgrounds in neutral
B decays. Assuming this is the X (3872) we calculated the mass difference and ratio
of branching fractions. The difference in masses is consistent both with zero and the
prediction from the Diquark-Antidiquark model (Eq. 1.41). The prediction that this ratio
should be less than 0.1 in case the X (3872) is a DD* deuson [40] is challenged by this
measurement. However, other decay models for the X (3872) do not predict such a small
ratio. With more data to be delivered by BABAR and Belle this type of measurement will
help to distinguish between different models for the X (3872). Especially, the question
about the mass difference between the X (3872) in neutral and charged B decays that is
a central prediction of the Diquark-Antidiquark will certainly be answered in the near

future.
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