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ABSTRACT OF DISSERTATION

MEASUREMENT OF CP PARAMETERS IN B− → Dπ+π−π0K−

AND STUDY OF THE X(3872) IN B → J/ψπ+π−K

WITH THE BABAR DETECTOR

This dissertation presents two analyses performed on data collected with the BABAR

detector at the SLAC PEP-II e+e− asymmetric-energy B Factory. First, a Dalitz analysis

is shown that performs the first measurement of CP violation parameters in the decay

B− → Dπ+π−π0K− using the decay rate asymmetry and D0 − D0 interference. The

results can be used to further constrain the value of the CKM angle γ. The second

analysis studies the properties of the X(3872) in neutral and charged B → J/ψπ+π−K

decays. Measurements of the branching ratio and mass are presented as well as the search

for additional resonances at higher masses.
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Physics Department
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Fall 2006
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Chapter 1

Introduction

1.1 Weak interactions and CP violation

The invariance of Quantum Field Theory (QFT) under the continuous symmetry transfor-

mations of the Poincaré group (the relativistic equivalent to the Galilei group in classical

mechanics) gives rise to the usual ten conservation laws. In addition, we have the following

potential discrete symmetry operations:

• C : particle �→antiparticle (charge conjugation)

• P : (t,x) �→ (t,−x) (parity or space inversion)

• T : (t,x) �→ (−t,x) (time reversal).

The CPT -theorem states that the combined operation of C, P and T is a symmetry of

every local, Lorentz invariant QFT with a hermitian Hamiltonian.1 Direct consequences

(and possibilities for experimental tests) are the equality of particle and antiparticle masses

as well as their lifetimes. If CPT is indeed conserved in nature it follows that CP and T

separately, are either both conserved or both violated for a given interaction.

Since the weak interaction only couples left-handed particles (or right-handed anti-

particles) both C and P are violated. The combined operation CP that turns left-handed
1For a pedagogical derivation of the CPT theorem and historic references see [3].
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1.1. Weak interactions and CP violation 7

particle into right-handed anti-particles on the other side, was thought to be a good

symmetry for weak interactions until 1964 when Cronin and Fitch discovered CP violation

in the neutral kaon system [4]. Even larger CP violating effects in the B meson system

observed by the BABAR and Belle experiment establish CP (and T ) violation for the weak

interaction. In the following we will see under which conditions the Standard Model (or

any field theory) allows for CP violating effects.

First, we need to establish the CP transformation of an arbitrary complex field φ

under the CP operator UCP . A heuristic argument uses the fact that (CP ) = T−1 in case

the CPT theorem holds. Using φ(t,x) = φ0 e
i(px−Et) and Tp = −p we get for the time

reversal

Tφ(t,x) = φ0 e
i(−px+Et) = φ(t,x)∗, (1.1)

i.e. the complex conjugate of the original field. Hence, the CP conjugate of φ is given by

the hermitian conjugate φ∗ and we allow for an arbitray phase factor

UCP φU
†
CP = eiαφ∗. (1.2)

Next, we consider a simple “toy” field theory with the hermitian Hamilton density

H1 = g φO + g∗ φ∗O∗, (1.3)

where g is a coupling constant and O an arbitrary operator [5]. The CP conjugate of this

Hamiltonian is readily obtained as

UCP H1 U
†
CP = g eiαφ∗O∗ + g∗ e−iα φO (1.4)

and if we choose α = −2 arg(g) the system is invariant under UCP . In other words, the

phase factor of UCP is fixed by the coupling constant. If we consider a system with two
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coupling constants, like

H2 = g1 φO1 + g2 φO2 + h.c. (1.5)

UCP H2 U
†
CP = g1 e

iαφ∗O∗
1 + g2 e

iαφ∗O∗
2 + h.c.

we can no longer absorb the phase into the coupling constant if the phases of g1 and g2

are different. Whatever α we choose, UCP will not be a symmetry of the system giving

rise to CP violating effects.

In the Standard Model, the charged current weak interaction for N generations is

Hcc =
√

2g
2
W+
μ ψi γ

μ(1 − γ5)Vij ψj + h.c. , (1.6)

where ψj are the down-type particle mass eigenstates, ψi are the up-type antiparticle

mass eigenstates and Vij ψj are the weak eigenstates connected to the mass eigenstates

by the unitary N × N weak mixing matrix V . The coupling between generation i and

j is therefore proportional to g Vij. If V contains irreducible complex phases, the theory

will allow for CP violating processes. The following section, will investigate this for the

currently known three quark generations.

1.2 CKM quark mixing matrix

For three quark generations, the quark mixing matrix V is commonly expressed as a 3x3

unitary matrix operating on the down-type quark mass eigenstates

⎛⎜⎜⎜⎜⎝
d′

s′

b′

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

d

s

b

⎞⎟⎟⎟⎟⎠ (1.7)
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and is called the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [6, 7]. It is

instructive to check whether a 3 × 3 unitary matrix allows for a (CP violating) complex

phase. An N ×N complex matrix contains 2N2 real numbers. The unitarity requirement

of V
N∑
k=1

VkiV
∗
kj = δij (1.8)

consists of N2 constraints on the matrix elements, reducing the number of independent

parameters to N2. For 2N quark fields, there are (2N−1) independent phases that can be

absorbed into the quark fields, leaving N2 − (2N − 1) = (N − 1)2 free parameters. Out of

these (N −1)2 parameters
(
N
2

)
= N(N −1)/2 can be chosen as mixing angles between the

different quark pairs. The remaining (N − 1)(N − 2)/2 parameters are complex phases.

For N = 3 quark generations, the CKM matrix V can therefore be parameterized using

three real mixing angles and one complex phase giving rise to possible CP violation in the

quark sector. For an explicit confirmation for the cases N = 2, 3 see [5].

A “standard” parameterization [8] of V using three (Euler) angles and a phase is given

by

V =

⎛⎜⎜⎜⎜⎝
c12s13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

⎞⎟⎟⎟⎟⎠ (1.9)

with cij = cosθij and sij = sinθij for the three generations i, j = 1, 2, 3. This parameteri-

zation is exact to all orders and contains the three real mixing angles θ12, θ23, θ13 and the

phase δ. Another parameterization that makes use of the relative size of the mixing angles

ss12 � s23 � s13 was proposed by Wolfenstein and is expressed in powers of λ ≡ s12:

V =

⎛⎜⎜⎜⎜⎝
1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞⎟⎟⎟⎟⎠+ O(λ4) (1.10)
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with A, ρ and η being real numbers of order unity.

Out of the unitarity constraints (1.8) of the CKM matrix the following describes best

the CP violation in B meson decays:

3∑
k=1

VkdV
∗
kb = VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.11)

In the complex plane this equation represents a triangle, the Unitarity Triangle (UT).

Rotating one of the sides (VcdV ∗
cb) onto the real axis and rescaling it to unity yields

VudV
∗
ub

|VcdV ∗
cb|

+ 1 +
VtdV

∗
tb

|VcdV ∗
cb|

= 0 . (1.12)

Figure 1.1 shows a picture of the rescaled UT. The three angles of the UT are denoted by

α, β and γ:

α = arg
(
− VtdV

∗
tb

VudV
∗
ub

)
, β = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (1.13)

Using the Wolfenstein approximation (1.10) the angle γ can be expressed in terms of η

and ρ:

γ = arg
(
−(1 − λ2/2)Aλ3(ρ+ iη)

λAλ2

)
= arg

(
(1 − λ2)(1 − iη/ρ)

)
= tan−1 η

ρ
, (1.14)

which is also indicated in Fig. 1.1 by the apex of the triangle. Moreover, since s13e−iδ =

Aλ3(ρ−iη)+O(λ4) we can identify δ ≈ − arg(Aλ3(ρ−iη)) = tan−1 η
ρ = γ up to corrections

of λ4. This also justifies γ being called the weak phase.

Fig. 1.2 summarizes the current experimental results [9] for the apex of the UT. The

different color bands indicate confidence regions from different measurements. The nu-
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ρ
γ β
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1

VtdVtb
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∗

|VcdVcb|∗

0
0

Figure 1.1: The rescaled Unitarity Triangle described by Eq. (1.12).

merical values of some observables obtained by the global fit shown in the figure are:

λ = 0.2272 ± 0.0010

A = 0.809 ± 0.0014

ρ̄ ≡ ρ(1 − λ2/2) = 0.197 ± 0.030

η̄ ≡ η(1 − λ2/2) = 0.339 ± 0.019

α = 97.3 ± 5.0

β = 22.9 ± 1.0

γ = 59.8 ± 4.9 (1.15)

Note that these numbers are obtained by a global fit of all measurements. Direct measure-

ments might have larger errors. For example, the world average on β is sin(2β) = 0.687±
0.032 [10] and the best direct measurement of γ from BABAR is currently γ = 67± 33 [11].

Despite the fact that we already have fairly good constraints on the apex of the UT, it

is still indispensable to measure each observable directly, and thus to over-constrain the

triangle. New Physics beyond the Standard Model (beyond CKM) could show up in de-

viations from the UT and therefore it is important to measure all sides and angles of the

triangle to very high accuracy.
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Figure 1.2: Experimental constraints [9] on the apex of the Unitarity Triangle. ρ̄ =
ρ(1 − λ2/2) and η̄ = η(1 − λ2/2) are the rescaled Wolfenstein parameters. εK is the CP
violating parameter in the kaon system and Δms,d are measurements obtained from B0

s,d

mixing.

1.3 Measuring the CKM angle γ

In the following sections we present different methods to directly measure the CKM angle

γ. The basic idea of all methods is similar to the double slit experiment. Given two

amplitudes A1 and A2e
iφ with an unknown relative phase φ, one can measure the phase

difference through the interference pattern of the two amplitudes |A1 +A2e
iφ|2 = |A1|2 +

|A2|2 + 2�(A1A2e
iφ). If A1,2 are real, the interference term becomes 2A1A2 cosφ and by

measuring cosφ one can determine the phase difference φ up to a two-fold ambiguity due

to cos(φ) = cos(φ+ π). In our case, we are not interfering light, but quantum mechanical

decay amplitudes of particles.

Since γ is the phase of the Vub matrix element, we necessarily need to interfere ampli-

tudes of which at least one involves a b → u transition. The Feynman diagrams of two

decays that we will encounter numerous times in what follows are shown in Fig. 1.3. The

left diagram shows the color-allowed decay B− → D0K− and the right diagram shows the

color-suppressed2 decay B− → D0K−. With Nc = 3 colors and the measured values for
2The internal W emission in the right diagram puts constraints on the allowed colors of the c and s

quark to form colorless mesons together with the pre-determined colors of the b and u quark from the B−.
This reduces the number of possible amplitudes.
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the CKM matrix elements one can estimate the ratio of the amplitudes to be

rB ≡ |A(B− → D0K−)|
|A(B− → D0K−)| ≈ 1

Nc

|V ∗
ubVcs|

|V ∗
cbVus|

≈ 1
Nc

|(ρ− iη)(1 − λ2/2)| =
1
Nc

|ρ̄− iη̄|

≈ 0.39/3 ≈ 0.1. (1.16)

(B−)

(K−)

(D0)

W−

b

u

s

u

c

u

(B−)

(K−)

(D0)

W−

u

b

u

s

c

u

Figure 1.3: Color allowed B− → D0K− (left) and color suppressed B− → D0K− decay
(right). The b→ u transition in the right decay gives rise to the weak phase e−iγ .

We can then write the amplitudes of the two decays as

A(B− → D0K−) ≡ AB

A(B− → D0K−) ≡ ABrB e
iδB e−iγ (1.17)

where we have defined the magnitude and phases of the color suppressed decay relative to

the color allowed decay and AB is a real number. e−iγ arises due to Vub in the weak decay

and δB is an unknown (CP -conserving) strong phase. To observe interference between the

two decays, the D0 and D0 need to decay to the same final state, which we call f . We

define the D-decay amplitudes as

A(D0 → f) ≡ Af

A(D0 → f) ≡ Afrf e
iδf (1.18)
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with rf as the amplitude ratio and δf an unknown strong phase. The amplitude of the

cascade decay including D0/D0 interference is

A(B− → DfK
−) = ABAf

(
1 + rBrf e

i(δ−γ)
)
, (1.19)

where δ = δB + δf is the overall strong phase and Df indicates that the D meson is

detected via the final state f . We only observe the branching ratio B(B− → DfK
−),

which is related to the amplitude (1.19) by

B(B− → DfK
−) = |A(B− → DfK

−)|2 = A2
BA

2
f

(
1 + rB

2r2f + 2rBrf cos(δ − γ)
)
. (1.20)

Since the only CP -violating quantity in (1.20) is γ, the CP -conjugate mode is obtained by

replacing iγ → −iγ and the branching ratio for the B+ decay becomes

B(B+ → Df̄K
+) = |A(B+ → Df̄K

+)|2 = A2
BA

2
f

(
1 + rB

2r2f + 2rBrf cos(δ + γ)
)
. (1.21)

Equations (1.20) and (1.21) have a total of six unknowns (AB , Af , rB , rf , δ, γ). How many

observable are there? AB can be determined by measuring B(B− → D0K−) × B(D0 →
K−l+νl) where the flavor of the D meson is tagged by the charge of the kaon. Measure-

ments of B(D0 → f) and B(D0 → f) give Af and rf . The remaining two observables,

B(B− → DfK
−) and B(B+ → Df̄K

+), depend on δ, γ and rB . We realize that we have

six unknowns but only five observables and therefore the problem is under-determined.

However, this can easily be overcome by adding a second decay mode D → f ′. This will

result in four new observables, B(B− → Df ′K
−), B(B+ → Df̄ ′K

+), B(D0 → f ′) and

B(D0 → f ′), but only three new unknowns (rf ′ , Af ′ , δf ′). Therefore, it allows the extrac-

tion of the strong phase δ, the amplitude ratio rB and the weak phase γ, simultaneously.

A. Soffer first pointed out that CP -violation measurements performed by this method

suffer from ambiguity which is at least 8-fold [12]. Since the measured decay widths

contain the term cos(δ± γ), from which we hope to extract γ, the value of cos(δ± γ) will



1.3. Measuring the CKM angle γ 15

be invariant under the following symmetry operations

S± : γ �→ −γ, δ �→ −δ

S↔ : γ ↔ δ

Sπ : γ �→ γ + π, δ �→ δ − π

leading to an 8-fold ambiguity. This holds for all CP -violation measurements in which the

measurable widths depend only on trigonometric functions of the sum of a weak phase

and a CP -conserving phase.

So far, we have not specified which final states f should be used. In the following,

we present in chronological order three different proposals that have been put forward to

realize the above measurement.

1.3.1 Gronau-London-Wyler method (GLW)

Gronau, London and Wyler (GLW [13, 14]) proposed in 1991 to use D decays into CP

eigenstates for the direct measurement of γ. The CP even or odd eigenstates of the D

meson are D0± = (D0 ± D0)/
√

2. These can be identified by their CP even (K0
S π0, K0

S

ρ0, K0
Sω) or CP odd (π+π−, K+K−) decay products. Since CP violation in the D meson

system in negligible small in the Standard Model it can be safely disregarded. The idea

is to extract γ from the decay rate asymmetry of B− → D0±K− and B+ → D0±K+. With

the definitions from (1.17) we can write the amplitude of the B decay as

√
2A(B− → D0

±K
−) = A(B− → D0K−) ±A(B− → D0K−) = AB

(
1 ± rB e

i(δB−γ)
)

√
2A(B+ → D0

±K
+) = A(B+ → D0K+) ±A(B+ → D0K+) = AB

(
1 ± rB e

i(δB+γ)
)

and the decay rate asymmetry is

|A(B+ → D0
±K

+)|2 − |A(B− → D0
±K

−)|2 =
A2
B

2

(
|1 ± rB e

i(δB+γ)|2 − |1 ± rB e
i(δB−γ)|2

)
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= A2
BrB (± cos(δB + γ) ∓ cos(δB − γ))

= ∓2A2
BrB sin δB sin γ. (1.22)

In the last step we have used the trigonometric identity cos(α±β) = cosα cos β∓sinα sin β.

Equation (1.22) also shows possible limitations of this method pointed out by Atwood,

Dunietz and Soni (ADS, [15]):

1. D0 decays to CP final states are either Cabibbo suppressed or color suppressed and

the experimentally feasible total is less than 5%.

2. Due to the numerical value of rB ≈ 0.1, the CP violating asymmetries are only on

the order of 10%.

3. The sensitivity to γ depends on the unknown strong phase (difference) δB that could

severely limit the application of the GLW method.

4. The method requires knowledge of AB and rB through the measurement of B(B− →
D0K−) and B(B− → D0K−).

The last point is worth considering in more detail because it will lead to the ADS method.

In practice, measuring the color suppressed decay B(B− → D0K−) requires that the D0 be

identified in a hadronic final state since semileptonic decays suffer from unacceptably high

backgrounds due to the invisible neutrino. However, the decay chain B− → D0K−, D0 →
f results in the same final state as B− → D0K−,D0 → f , where the D0 undergoes doubly

Cabibbo suppressed decay. In the next section, we will see that this interference is not

negligible and prevents the experimental determination of B(B− → D0K−).

1.3.2 Atwood-Dunietz-Soni method (ADS)

Atwood, Dunietz and Soni [15,16] realized that two of the drawbacks of the GLW method

can be used in favor of each other. Ideally, in an interference experiment, the two inter-

fering amplitudes should have comparable magnitudes to allow maximum sensitivity to
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the phase difference. If one allows for non-CP eigenstates in the decay of the neutral D

meson one can offset the rB-suppression in the B decay by a doubly Cabibbo suppressed

(DCS) decay of the D meson. For example, let us consider the final state f = K+π− and

the two decay chains B− → D0K−, D0 → K+π− and B− → D0K−, D0 → K+π−. Fig-

ure 1.4 shows the corresponding Feynman diagrams for the D decay. D0 → K+π− (left)

only involves diagonal terms of the CKM matrix (Cabibbo allowed) whereas D0 → K+π−

(right) is suppressed by |VcdVus|2/|VcsVud|2 ≈ λ4 ≈ 0.003. The experimental value for this

ratio is B(D0 → K+π−)/B(D0 → K+π−) = 0.0036 ± 0.0011 [8]. Using rB ≈ 0.1 (1.16)

the amplitude ratio for the decay chain is

A(B− → D0
K+π−K

−)
A(B− → D0

K+π−K−)
≈

√
0.0036/rB ≈ 0.6, (1.23)

which is of order unity and therefore ideal for an interference experiment. The extraction

of γ can now be done with the help of Eq. (1.20) and (1.21) using at least two different

final states.
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c

u

u
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Figure 1.4: Cabibbo allowed D0 → K+π− (left) and doubly Cabibbo suppressed (DCS)
D0 → K+π− decay (right). The suppression is of order |VcdVus|2/|VcsVud|2 ≈ λ4.

1.3.3 Giri-Grossman-Soffer-Zupan method (GGSZ)

So far, we have only considered two-body decays of the D meson. Giri, Grossman, Soffer

and Zupan (GGSZ, [17,18]) suggested to use multi-body D decays, such as D → K0
Sπ

+π−,

D → K0
SK

+K−, D → K0
Sπ

−π+π0 or D → π+π−π0. Except the last decay all are Cabibbo
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allowed and due to the expected presence of resonances large strong phases are expected.

In order to extract rB, γ and δ one has to perform a Dalitz analysis of the D decay (see

section 2.2 for an introduction to the Dalitz plot).

The amplitudes of the 3-body D-decay (here we use the example D → π+π−π0) is

parametrized in terms of its Dalitz variables:

A(D0 → π0(p1)π+(p2)π−(p3)) ≡ fD0(s12, s13) = fD0(s+0, s−0)

A(D0 → π0(p1)π−(p2)π+(p3)) ≡ fD0(s13, s12) = fD0(s−0, s+0) , (1.24)

where we have used the CP symmetry of the strong interactions and the fact that the

final state is a spin zero state. pi is the 4-momentum of the pion and sij = (pi + pj)2 the

invariant mass squared of the pion pair. We will discuss the functional form of fD0 below.

With the above definitions and (1.17) the amplitude of the cascade decay is

A(B− → Dπ+π−π0K−) = AB

(
fD0(s12, s13) + rBe

i(δB−γ)fD0(s13, s12)
)
. (1.25)

The amplitude for the B+ decay is obtained by exchanging s12 ↔ s13 and replacing

γ �→ −γ:

A(B+ → Dπ+π−π0K+) = AB

(
fD0(s13, s12) + rBe

i(δB+γ)fD0(s12, s13)
)
. (1.26)

The differential partial decay width is given by the complex square of (1.25)

dΓ(B− → Dπ+π−π0K−) = (1.27)

A2
B

(|fD0(s12, s13)|2 + rB
2|fD0(s13, s12)|2 + 2rB�

[
fD0(s12, s13)fD0

∗(s13, s12) e−i(δB−γ)]) dφ ,
where dφ denotes the phase space variable, which is proportional to ds12 ds13. It seems

that in order to measure γ, we need knowledge of the D decay amplitude fD0. The main

new idea by GGSZ is, that all the information necessary to measure γ is already contained
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in the Dalitz plot and no further knowledge of fD0 is required. This is called the model-

independent approach. Since the analysis presented in Chapter 3 of this dissertation does

not make use of this approach, we refer the interested reader to [17] for the details.

If the functional form of fD0 were known, the analysis would be simplified since only

the three variables rB, δB and γ needed to be fit (AB is an irrelevant overall normalization

factor). CLEO has analyzed D → π+π−π0 decays and found that the three-body decay

is dominated by ρ → ππ decays and a non-resonant component [19]. Thus, fD0 can be

modelled by the sum of Breit-Wigner shapes. The theoretical error introduced by this

assumption is expected to be much smaller than the statistical error in the measurement

of γ. Using this knowledge we can write

fD0(s12, s13) = a0 e
iδ0 +

∑
r

ar e
iδrAr(s12, s13) , (1.28)

where the first term corresponds to the non-resonant and the second to the resonant

contributions. Ar is a Breit-Wigner shape for the resonance r (e.g. ρ+, ρ−, ρ0) with

the appropriate spin factors (details can be found in section 3.6.6). The amplitudes ai

and phases δi are obtained from an analysis equivalent to the one CLEO did. Using

(1.28) together with (1.27) in a Dalitz fit to B− → Dπ+π−π0K− decays will give a direct

measurement of the CP violating phase γ. This will be the topic of Chapter 3 of this

dissertation.
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1.4 The X(3872) state

This section gives an overview over both experimental and theoretical results regarding

the “mystery meson” X(3872). By the time of my graduation it has been almost exactly

three years since Belle announced the discovery of a new state at 3872MeV/c2. Since then,

the original Belle publication [20] received over 200 citations and more than 60 articles

alone with the word “X(3872)” in their title appeared [21]. A vast amount of models

and interpretations for this new state have been put forward, some already excluded by

experiment, others still being tested. In the following, a summary of the experimental

results together with two possible models for the X(3872) are being presented. This also

includes a summary of results of this dissertation that will be presented in detail in later

chapters.

1.4.1 Experimental results

Belle at KEKB delivered the first evidence [22] for a possible new state at 3.872GeV/c2

in B-decays in Sept. 2003. The Belle detector is located at the KEKB asymmetric e+e−

collider in Japan, which operates at a center-of-mass (CM) energy of
√
s = 10.58GeV

corresponding to the mass of the Υ (4S) resonance. The signal was observed in the decay

B+ → J/ψπ+π−K+ in a total data sample of 152 million BB events. The mass of the

new state is measured to be (3872.0 ± 0.6 ± 0.5)MeV/c2 and the 90% confidence level

(C.L.) upper limit on the width is Γ < 2.3MeV. In May 2005, the Belle Collaboration has

updated their results using 275 million BB events [23].

In Belle’s analysis the J/ψ candidate was reconstructed by a pair of well identified

electrons or muons with an invariant mass range 3.077 < m(l+l−) < 3.117GeV/c2. Addi-

tionally, a pair of oppositely charged pions with an invariant mass greater than 575MeV/c2

and a loosely identified charged kaon is required. To suppress continuum background only

events with a normalized Fox-Wolfram moment of R2 < 0.4 and | cos θB| < 0.8 are selected

where θB is the polar angle of the B-meson direction in the center-of-mass (CM) frame.
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Figure 1.5: Distribution for J/ψπ+π− invariant mass for the X(3872) region. The signal
yield is 49.1 ± 8.4 events

True B mesons are considered to fall into a 3σ signal box defined as |ΔE| < 0.034GeV

and 5.2725 < mES < 5.2875GeV/c2.3 Figure 1.5 shows the invariant mass m(J/ψπ+π−)

near 3872MeV/c2 for the selected events. The distribution is fitted with a first-order poly-

nomial for the background and a Gaussian for the signal. The width of the Gaussian is

fixed to 3.2MeV/c2, the resolution obtained from the ψ(2S) → J/ψπ+π− control sample.

The signal yield is 49.1 ± 8.4 events resulting in a product branching fraction of

B(B → X(3872)K,X(3872) → J/ψπ+π−) = (13.1 ± 2.4 ± 1.3) × 10−5. (1.29)

To investigate whether the dipion originates from a ρ meson or not, the π+π− invariant

mass in a ±5MeV/c2 window around the X(3872) peak is shown in Fig. 1.6. Clearly, this

is consistent with a peak at the nominal ρ mass. Belle fits the m(π+π−) invariant mass

with the hypothesis of the J/ψ and ρ being in a relative S-wave or P -wave and concludes

that the S-wave fits the data much better than the P -wave (χ2/d.o.f. = 43.1/39 versus

71.0/39) indicating that J++ is strongly favored over J−+.

Since the number of signal events is too low for a full angular analysis, Belle tries to

find, for a given JPC hypothesis for theX(3872), angular quantities that have distributions

with a zero in some location. In the bins near the zero point, any observed events would

have to be accounted for by an upward fluctuation of the background. Going through all

possibilities with J ≤ 2, Belle concludes that the data only support the quantum numbers
3In Belle jargon the energy substituted mass mES is called beam constrained mass Mbc



1.4. The X(3872) state 22

0.40 0.50 0.60 0.70 0.80

M(π+π−) (GeV)

0

4

8

12

ev
en

ts
/1

0 
M

eV
Figure 1.6: m(π+π−) distribution of evens in the X(3872) signal region. The solid
(dashed) curve shows the fit that uses a ρ Breit-Wigner line shape with the J/ψ and ρ in a
relative S-wave (P -wave). The histogram indicates the side-band determined background
and the dot-dashed curve is a fit of this background.

1++ and 2++ for the X(3872) [23].

Another important experimental test is to search for radiative decays of the X(3872).

In case of the X(3872) begin a charmonium state one would expect a considerably large

fraction of radiative decays to γχc1. Belle searches for those decays with χc1 → γJ/ψ

in the ψ(2S) and X(3872) region [22]. Figure 1.7 shows the result of the fit to mES

and the γχc1 invariant mass. As expected, there is a clear signal for the ψ(2S) but no

evidence for this decay in the X(3872) region. A similar analysis has been performed for

X(3872) → γχc2 with the same negative result [24]. The resulting upper limits on the

ratio of partial widths are

Γ(X(3872) → γχc1)
Γ(X(3872) → π+π−J/ψ )

< 0.89 (90% C.L.)

Γ(X(3872) → γχc2)
Γ(X(3872) → π+π−J/ψ )

< 1.1 (90% C.L.).

Using 256 fb−1 Belle finds evidence for the decays X(3872) → J/ψγ and X(3872) →
J/ψπ+π−π0 [25]. Figure 1.8 shows the background subtracted J/ψγ invariant mass. It is

obtained by fitting the mES and ΔE distributions in bins of m(J/ψγ) for events within

the signal box |ΔE| < 0.035GeV and 5.2745 < mES < 5.2855GeV/c2. The signal yield



1.4. The X(3872) state 23

 (GeV)bcM
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

n
ts

 / 
( 

0.
00

4 
G

eV
 )

0

5

10

15

20

25

30

35

a)

 (GeV))c1χγM(
3.58 3.6 3.62 3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78

E
ve

n
ts

 / 
( 

0.
00

8 
G

eV
 )

0
2
4
6
8

10
12
14
16
18
20
22
24

b)

 (GeV)bcM
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

n
ts

 / 
( 

0.
00

5 
G

eV
 )

0

2

4

6

8

10

c)

 (GeV))c1χγM(
3.78 3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96

E
ve

n
ts

 / 
( 

0.
01

 G
eV

 )

0

2

4

6

8

10

12

d)

Figure 1.7: Signal-band projections of (a) mESand (b) m(γχc1) for the ψ(2S) region with
the results of the unbinned fit superimposed from Belle. (c) and (d) are the corresponding
results for the X(3872) region.

in the X(3872) bin is 13.6 ± 4.4 events with a 4.0σ significance. The product branching

ratio is

B(B → X(3872)K,X(3872) → J/ψγ) = (1.8 ± 0.6 ± 0.1) × 10−6. (1.30)

This result unambiguously establishes the charge conjugation parity of the X(3872) as

C = +1. This is consistent with the other results reported above.
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Figure 1.8: The signal yields from a fit to the mES and ΔE distributions in bins of
m(J/ψγ).

A similar analysis is performed for the X(3872) → J/ψπ+π−π0 decay mode. This time

the mES and ΔE fits are done in bins of m(π+π−π0) for events with |ΔE| < 0.035GeV,

5.2725 < mES < 5.2875GeV/c2 and |m(J/ψ 3π)−3.872| < 0.0165GeV/c2. Figure 1.9 shows
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the resulting signal yields. The branching ratio is comparable to the J/ψπ+π− mode:

B(X → J/ψπ+π−π0)
B(X → J/ψπ+π−)

= 1.0 ± 0.4 ± 0.3 . (1.31)

If these are the same states, this implies that there are large isospin breaking effects that

allow the X(3872) both decay into J/ψρ and J/ψω. Another lesson about the isospin of
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Figure 1.9: The signal yields from a fit to the mES and ΔE distributions in bins of
m(π+π−π0).

the X(3872) can be learned from searching for X(3872) → J/ψπ0π0 decays. The ratio

R = Γ(X → J/ψπ0π0)/Γ(X → J/ψπ+π−) is expected to be R = 1/2 for I = 0 and R = 0

for I = 1, if isospin is conserved. Belle searches for this decay using 253 fb−1 and selecting

events within −0.06GeV < ΔE < 0.03GeV and ±15MeV/c2 of 3872MeV/c2. A Gaussian

fit to the mES distribution is shown in Fig. 1.10 that yields 0.2± 2.6 events. The ratio R

is compared to the ψ(2S) case where R is known to be 0.60 ± 0.05:

Γ(X → J/ψπ0π0)
Γ(X → J/ψπ+π−)

< 1.3
Γ(ψ(2S) → J/ψπ0π0)
Γ(ψ(2S) → J/ψπ+π−)

. (1.32)

Unfortunately, with the amount of data used for this analysis it is not possible to distin-

guish between the I = 0 and I = 1 hypothesis.

Finally, Belle has preliminary results of the X(3872) decaying to D0D0π0, where the

11.3± 3.6 signal events concentrate close to the threshold for the final state, which would

strongly disfavor a 2++ assignment for the X(3872) [26].
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Figure 1.10: The mES distribution for (a) B → ψ(2S)K,ψ(2S) → J/ψπ0π0 and (b)
B → X(3872)K,X(3872) → J/ψπ0π0 with a superimposed fit. The signal yield is 55± 10
events for the ψ(2S) and 0.2 ± 2.6 events for the X(3872).

BABAR at PEP-II was the third collaboration after CDF II to confirm the existence

of the X(3872) in the decay mode X(3872) → J/ψπ+π− [27]. The most recent result uses

232 million BB events collected at the Υ (4S) resonance [28]. This analysis is described

in full detail in Chapter 4 of this dissertation. Figure 1.11 shows the J/ψπ+π− invariant

mass for (a) B− → X(3872)K− and (b) B0 → X(3872)K0
S . 61.2 ± 4.5 signal events at

7.5σ statistical significance and 8.3±4.5 signal events at 2.6σ significance are found in the

charged and neutral B-decay mode, respectively. The branching fraction and confidence

intervals are,

B(B− → XK−,X → J/ψπ+π−) = (10.1 ± 2.5 ± 1.0) × 10−6

1.34 × 10−6 < B(B0 → XK0
S ,X → J/ψπ+π−) < 10.3 × 10−6 (90% C.L.)

0.13 < R ≡ B0/B− < 1.10 (90% C.L.). (1.33)

Under the assumption that the excess of events in the B0 mode is really due to the

X(3872), we can measure the mass difference between and the ratio of branching ratios

for the X(3872) in charged and neutral B decays:

mB−→XK− = (3871.3 ± 0.6 ± 0.1)MeV/c2

mB0→XK0
S

= (3868.6 ± 1.2 ± 0.2)MeV/c2

Δm = (2.7 ± 1.3 ± 0.2)MeV/c2
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R = 0.50 ± 0.30 ± 0.05 . (1.34)

The important question whether there exists a charged partner of the X(3872) was
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Figure 1.11: J/ψπ+π− invariant mass for (a) B− → X(3872)K− and (b) B0 →
X(3872)K0

S . The dashed line represents the combinatorial background, the dotted lien
represents the sum of the combinatorial and peaking background and the solid line the
sum of all background plus the signal. The shaded area shows events in the mES sideband
region |mES − 5260MeV/c2| < 6MeV/c2.

addressed by BABAR [1, 29] in searching for an excess of events in the J/ψπ−π0 mass

spectrum that is shown in Fig. 1.12. The left plot shows events from B0 → J/ψπ−π0K+

and the right plot shows events from B− → J/ψπ−π0K0
S decays, respectively. Using 234

million BB events no evidence for a charged partner of the X(3872) was found. The limits

on the branching ratios are

B(B0 → X−K+,X− → J/ψπ−π0) < 5.4 × 10−6 (90% C.L.)

B(B− → X−K0,X− → J/ψπ−π0) < 22 × 10−6 (90% C.L.), (1.35)

and the hypothesis of a charged isospin partner of theX(3872) is ruled out with a likelihood

ratio test.

An inclusive search for the production of X(3872) in B− → XccK
−, where the X
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Figure 1.12: J/ψπ−π0 invariant mass for (a) B0 → J/ψπ−π0K+ (b) and B− →
J/ψπ−π0K0

S . No evidence for a charged partner of the X(3872) is found.

is a cc state, has been addressed by BABAR with 232 million BB events [30]. By fully

reconstructing one of the two B mesons and measuring the kaon momentum spectrum

in the B center-of-mass frame, any charmonia produced with the kaon can be identified

in the kaon momentum spectrum. Figure 1.13 shows the known charmonium resonances

but not evidence for the X(3872) is found. The upper limit on the absolute branching

ratio obtained by this analysis is B(B− → X(3872)K−) < 3.2 × 10−4. Together with

the branching ratio measurements from Belle and BABAR, the lower limit B(X(3872) →
J/ψπ+π−) > 4.2% at 90% C.L. can be set.

CDF II at Tevatron confirmed Belle’s measurement by searching for a J/ψπ+π− res-

onance produced inclusively in pp collisions at
√
s = 1.96TeV using 220 pb−1 of data [20].

J/ψ → μ+μ− candidates are selected by requiring m(μ+μ−) within 60MeV/c2 of the PDG

value. In addition to that, constraints on both the vertex fit for the dimuon and the

J/ψπ+π− vertex are used to suppress backgrounds with the same final states. Figure 1.14

(left) shows the J/ψπ+π− invariant mass distribution. Besides the ψ(2S) at 3.686GeV/c2

a small bump at 3.872GeV/c2 is observed. The significance of the signal is reported as

11.6 standard deviations. The mass and width are obtained by modelling each peak by
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Figure 1.13: Kaon momentum spectrum for B− → XccK
− in the X(3872) region. The

arrows indicate the position of known charmonium states. No evidence for the X(3872)
is found.

�

a Gaussian and the background shape by a second order polynomial. This results in the

following mean and width for the X(3872)

mX = (3871.3 ± 0.7 ± 0.4)MeV/c2

σX = (4.9 ± 0.7)MeV/c2 ,

where the width is consistent with the detector resolution. To investigate the dipion mass

distribution, which was reported by Belle to peak near the ρ mass, the same plot is made

again with the requirement m(π+π−) > 500MeV/c2. This is shown in Fig. 1.14 (right).

The background is reduced by almost a factor of two and the fit shows that there is no

change in the X(3872) signal yield within statistics. This leads to the conclusion that

there is little signal with dipion masses below 500MeV/c2 that supports evidence that the

dipion is originating from ρ0 → π+π− decays.

A more detailed study of the dipion mass spectrum has been carried out by CDF

II using 360 pb−1 [31]. Fig. 1.15 shows the π+π− invariant mass spectrum for ψ(2S)

(left) and X(3872) (right) events together with fits to various hypothesis. The spectrum

is inconsistent with calculations for 1P1 and 3DJ charmonia. A good fit is obtained for
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Figure 1.14: (left) The mass distribution of J/ψ π+ π− observed by CDF II in inclusive p
p collisions. A large peak for the ψ(2S) is seen and a signal near a mass of 3872MeV/c2

is visible (enlargement shown in the inset). (right) shows the same requiring m(π+π−) >
500MeV/c2.

X → J/ψρ, an interpretation supported by the C-even decay X → J/ψγ that was shown

above. The data is compatible with both S- and P -wave J/ψρ decays.

DØ at Tevatron performs a similar analysis to CDF II using 230 pb−1 of data col-

lected at the Tevatron between April 2002 and January 2004. Figure 1.16 (left) shows

the μ+μ−π+π− mass spectrum with the ψ(2S) and X(3872). The superimposed fit ex-

tracts 522 ± 100 X(3872) candidates from the data. The mass difference between the

X(3872) and the J/ψ is measured to be 774.9 ± 3.1 ± 3.0MeV/c2 and the with of the

peak is 17± 3MeV/c2, which is consistent with the detector resolution. To investigate the

characteristics of the X(3872), they compare the production and decay properties of the

X(3872) to the ψ(2S). Figure 1.16 (right) shows the signal yields for the two particles

with different selections on kinematic and angular variables applied. Without going into

the details at this point, no significant difference between the X(3872) and the cc state

ψ(2S) is found.
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1.4.2 Diquark-Antidiquark model

The possibility of diquarks (qq) in addition to mesons (qq) and baryons (qqq) as build-

ing blocks for hadrons is almost as old as QCD itself [32, 33]. Recently, diquarks have

been revived as possible explanations for some of the more exotic particles observed in

experiments (for a recent review see [34] and references therein). Since each quark is a

SU(3) color triplet, the possible diquark color multiplets are 3⊗ 3 = 6⊕ 3̄. Inevitably,

a diquark is a colored object and therefore cannot exists on its own. Whether the two

quarks attract or repel is determined by the color factor of the multiplet. Using the proper

quark gluon interaction vertices from QCD, one obtains f6 = −1/3 and f3̄ = 2/3 where

positive (negative) numbers indicate attraction (repulsion) [35]. Including flavor SU(3)

symmetry the four possible diquark configurations are (3̄c, 3̄f ) and (3̄c,6f ) with each spin

0 and 1. It turns out that (3̄c, 3̄f ) with spin 0 is the most promising candidate for a

diquark (“good” diquark in [34]). Combining a diquark and an antidiquark results in a

3⊗ 3̄ = 8⊕ 1 multiplet both in flavor and color giving rise to an observable flavor nonet,

which is a color singlet.

L. Maiani et al. use this idea in their 2005 diquark-antidiquark model [36] to accom-

modate some recently discovered new states (X(3872), Y (4260), Ds(2317), ...) into the

quark model. As most other quark models, the quark masses are determined from a

spin-dependent interaction Hamiltonian

H =
∑
i

mi +
∑
i<j

2κij(Si · Sj) , (1.36)

where mi are the constituent quark masses, κij depend on the flavor and color state of

the quark pair and Si is the spin of the quark. A diquark-antidiquark pair is defined as

[cq][cq] with q = u, d (q and q do not need to be of the same flavor). Applying (1.36) yields

H = 2m[cq]+2(κcq)3̄(Sc ·Sq+Sc ·Sq)+2κqqSq ·Sq+2κcq(Sc ·Sq+Sc ·Sq)+2κccSc ·Sc , (1.37)
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where (κcq)3̄ indicates that the two quarks are in a color triplet whereas all the other

quark pairs are in a color singlet configuration likewise to mesons. The latter are obtained

by fitting the model to the observed hyperfine splittings of L = 0 mesons (K,K∗) and

the color triplet coefficients are determined likewise from Baryon splittings (Λ,Σ, Y ∗).

The X(3872) is used as the JPC = 1++ state with the symmetric spin distribution

[cq]S=1[cq]S=0 + [cq]S=0[cq]S=1 and a mass M(1++) fixed to the experimentally observed

value. Diagonalizing (1.37) and using 2S1 · S2 = (S1 + S2)2 − S2
1 − S2

2 the constituent

diquark mass m[cq] can be calculated from

M(1++) = 2m[cq] − (κcq)3̄ +
1
2
κqq − κcq +

1
2
κcc. (1.38)

as m[cq] = 1933MeV/c2. Using this as input for the other eigenvalues of the Hamiltonian

the spectrum of X particles shown in Fig. 1.17 is obtained.
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Figure 1.17: The full spectrum of X particles. The X(3872) JPC = 1++ state is used as
the input for the calculation of the other masses. The dashed lines indicate possible decay
channel thresholds [36].

Each of these X particles comes with four different quark contents: two neutral states

Xu = [cu][cu], Xd = [cd][cd] and two charged states X+ = [cu][cd], X− = [cd][cu].

Allowing for mixing between the neutral mass eigenstates results in a low-mass and a
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high-mass state as described by

⎛⎜⎝ Xl

Xh

⎞⎟⎠ =

⎛⎜⎝ cos θ sin θ

− sin θ cos θ

⎞⎟⎠
⎛⎜⎝ Xu

Xd

⎞⎟⎠ . (1.39)

For the difference in the mass of the low and high mass state, the prediction is

m(Xh) −m(Xl) = 2
md −mu

cos(2θ)
=

7 ± 2
cos(2θ)

MeV/c2 , (1.40)

where the mixing angle θ ≈ ±20o is calculated from the ratio of X → J/ψ 3π and X →
J/ψ 2π events reported by Belle [24]. This results a mass difference of

m(Xh) −m(Xl) = (8 ± 3)MeV/c2. (1.41)

Figure 1.18 shows the Feynman diagram for B0 → XK0 decays. Note that both Xu

and Xd can be produced in neutral/charged B-decays. The same is true for X+ and X−.

This is one of the most important predictions of the diquark-antidiquark model: since the

narrow width of the observed X(3872) does not allow for two nearby states produced at

the same time, one of the neutral X states has to dominate B0 decays and one has to

dominate B− decays. If this is true, the two states should have a mass difference given by

(1.40). Moreover, since the amplitudes of weak B0 and B− decays are related by isospin

symmetry, the branching ratios for neutral and charged X particles can be related to each

other. Assuming that indeed one of the X particles dominates B0 decays, the following

lower bounds can be obtained:

R− =
B(B− → X−K0

S ,X
− → J/ψπ−π0)

B(B− → Xl/hK−,Xl/h → J/ψπ+π−)
> 0.2 (1.42)

R0 =
B(B0 → X−K+,X− → J/ψπ−π0)

B(B− → Xl/hK−,Xl/h → J/ψπ+π−)
> 0.53. (1.43)
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Figure 1.18: Feynman diagrams for the production of Xu([cu][cu]) (left) and Xd([cd][cd])
(right) in B0 → J/ψπ+π−K0 decays. The K0(ds) is either produced with the d quark
from the vacuum (left) or with the spectator-d (right). Similar diagrams hold for charged
B decays as well as for the production of X+ and X−.

In summary, the diquark-antidiquark model predicts a complete spectrum of new X

particles. In particular, it predicts four distinct states for the X(3872), two neutral and

two charged states. Finding the charged states and measuring the mass difference between

the two neutral states will determine if the model is correct or not.

1.4.3 Meson-Meson bound states

Similar to the binding of a proton and a neutron in the deuterium (2H) nucleus (deuteron)

one could imagine that two mesons can form a bound state. As for the deuteron the binding

force would be mediated by pion exchange. A detailed analysis of possible bound meson

states is presented by N. Törnqvist in [37, 38], which he calls “deusons”. Unfortunately,

the nomenclature is not consistent throughout the literature and other authors refer to

the same states as meson “molecules”.

Restricting ourselves to ground-state mesons (l = 0), we need to consider possible

bound states of spin-0 pseudoscalars (P) with 4 JPC = 0−+ and spin-1 vectors (V ) with

JPC = 1−−. Since the pion itself is a vector (JP = 1−), parity conservation forbids a

bound state of two pseudoscalars (PP ). Therefore only PV and V V deusons are possible.

Furthermore, pion exchange is in general much weaker (or repulsive) for isovectors than
4P = (−1)l+1 and C = (−1)l+s for a qq′ meson with angular momentum l and spin s.
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isoscalars, reducing the possible meson combinations even more. Considering only K,

D and B mesons as candidates for P or V the possible combinations (all isoscalars)

with sufficient binding energy are PV̄ ∗ with JPC = 0−+, 1++ and V V̄ ∗ with JPC =

0++, 0−+, 1+−, 2++. A detailed calculation and an extensive list can be found in [38]. In

the following we only consider bound states of D mesons due to their recent experimental

relevance in light of the X(3872).

The most intriguing feature of the X(3872) is that its mass is very close to the D0D∗0

threshold (m(D0) + m(D∗0) = 3871.2 ± 0.7MeV/c2). This suggests that it is a good

candidate for a PV̄ ∗ (i.e. D0D∗0) deuson and several authors recently investigated this

possibility in great detail [39–49]. As explained above, possible quantum numbers are 1++

if the two D mesons are in an relative S-wave or 0−+ for a P -wave. Higher total angular

momentum states would result in a higher mass and are thus not considered as candidates

for the X(3872). Other properties are:

• Decays via DD∗ annihilation are expected to be small because of the small binding

energy (deuteron ∼ 2.2MeV) and thus large spatial size resulting in a narrow width.

OZI allowed decays to J/ψ will be favored compared to states with only light hadrons.

• The D+D∗− channel is about 8MeV/c2 higher than the observed peak and therefore

closed by phase space. However, see below for isospin breaking effects.

• For exact isospin and pion exchange, only the isoscalar channel (I = 0) results in an

attractive potential. Thus in the deuson model, the X(3872) is a isoscalar.

• Charged combinations like D0D∗+ with vanishing total charm are necessarily isovec-

tors and therefore not predicted by the model [50].

If the X(3872) would really be an isosinglet then the decay to J/ψρ0 would be forbidden

by isospin conservation unless there is isospin mixing in the initial state, which we will

discus now in more detail.
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Isospin breaking in bound D mesons [41,47] could be produced by mixing of different

isospin doublets in the final state. In the case of theX(3872), the nearbyD+D∗− threshold

at 3879.5MeV/c2 suggests that a DD∗ molecule at 3872MeV/c2 would consist of a mixture

of D0D∗0 and D+D∗−. Assuming the mixture is described by α ∈ [0, 1] and |X〉 is the

wave function of the X(3872) deuson we get 5

|X〉 =
(1 + α)D0D0 + (1 − α)D+D−

√
2
√
α2 + 1

, (1.44)

which can be written in terms of quark content using D0(cu) and D+(cd) as

|X〉 =
cc√

2
√
α2 + 1

(
(1 + α)uu+ (1 − α)dd

)
=

cc√
α2 + 1

(
uu+ dd√

2
+ α

uu− dd√
2

)
=

cc√
α2 + 1

(|I = 0〉 + α |I = 1〉) ,

where |I = 0, 1〉 is the usual isosinglet and isotriplet respectively, obtained from combining

a u and d quark. We obtain a pure I = 0 state for α = 0 equivalent to equal contributions

fromD0D0 and D+D− in the initial state (1.44). Since the mass of theX(3872) is closer to

the D0D∗0 threshold than to the D+D∗− we expect less contribution from the latter (α >

0) resulting in a final state |X〉 of undefined isospin and G-parity.6 Due to these isospin

breaking effects both the decaysX(3872) → J/ψρ0(π+π−) andX(3872) → J/ψω(π+π−π0)

are permitted to certain extends. Radiative decays to χc1γ will be forbidden by C-parity

if the X(3872) is either the 1++ or 0−+ deuson, which agrees with Belle’s non-observation

of this mode. Finally, it is worth noting that using a specific decay model for the X(3872)

as a deuson, E. Braaten and M. Kusunoki [40] predict that the branching fraction for

B0 → X(3872)K0 is likely to be suppressed by at least an order of magnitude compared to

that for B− → X(3872)K−. However, other models do not make such a strong prediction.

5To simplify the notation, one of the D mesons is always to be considered a D∗ and DD̄ =(|DD̄〉 + |D̄D〉) /√2.
6G is the conserved quantum number resulting from isospin symmetry with G = (−1)IC



Chapter 2

Analysis techniques

This section describes common concepts and variables used in the following analyses. In

fact, most of these techniques will be used in any data analysis in high energy physics.

We start by introducing variables that can be used to discriminate between certain event

types. In most cases these types consists of signal and background events. The goal is to

classify each event by exploiting certain properties of the kinematics, angular distribution,

spatial shape, etc. Usually, once the events have been classified, a unknown physical

parameter (e.g. mass and width of a resonance, branching ratio, CP parameter, ...) needs

to be extracted from the signal events. Depending on the parameter this can be done

by simply counting events or by fitting the data to an analytic function derived from a

physical model of the process. The latter is performed with the method of maximum

likelihood estimators that is described further below.

2.1 Discriminating variables

2.1.1 Kinematic variables ΔE and mES

B mesons that are produced in e+e− → BB can be identified by their well constrained

kinematics due to the known initial momentum of the e+e− system. We follow the

notation in [51,52] to derive two kinematic variables (ΔE and mES) that can be used to

37
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separate true B mesons from background events.

In the reaction of e+e− → BB, we can write energy-momentum conservation as

q0 = q1 + q2 (2.1)

where q0 is the 4-momentum of the e+e− system and q1,2 are the 4-momenta of the two

B mesons. Since q21 = q22 = m2
B for true B mesons, we can test for any reconstructed BB

pair if (I) q21 and q22 equal to each other and (II) their common value equals m2
B .

Test (II) is represented by the invariant Δq2 ≡ q21 − q22. With the CM energy squared

s = q20 = (q1 + q2)2 we can write this as

Δq2 ≡ q21 − q22

= q21 − (q0 − q1)2

= 2q0q1 − s. (2.2)

In the CM frame where q1 = (E∗
1 , 0) and q0 = (

√
s, 0) this reads

Δq2 = 2
√
sE∗

1 − s . (2.3)

Dividing both sides by 2
√
s we can define

ΔE ≡ Δq2/2
√
s = E∗

1 −√
s/2, (2.4)

which will be peaked at zero for e+e− → BB events since it is the energy of the B

candidate minus its expected CM energy.

For the second independent variable we evaluate q21 with the constraint Δq2 = 2q0q1−
s = 0 (equivalent to ΔE = 0) and define mES ≡ q21|ΔE=0. Evaluated in the CM frame
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the constraint is E∗
1 =

√
s/2 and therefore

m2
ES ≡ q21|ΔE=0 = E∗2

1 − p∗2
1 = (

√
s/2)2 − p∗2

1 ,

mES =
√
s/4 − p∗2

1 , (2.5)

which corresponds to the mass of the B candidate using its measured momentum and

fixing its expected CM energy. If we instead evaluate q21 in the laboratory frame the

ΔE = 0 constraint yields E0E1 − p0 · p1 = s/2 and

m2
ES ≡ q21 |ΔE=0 = E2

1 − p2
1 = (s/2 + p0 · p1)2/E2

0 − p2
1. (2.6)

mES is called the energy-substituted mass for obvious reasons as can be seen from (2.5).

The use of mES in the CM frame (2.5) is complicated at an asymmetric e+e− collider

because one requires particles masses for the boost to the CM frame. With a slight

change in notation we summarize the two kinematic variables to be used in identifying B

mesons in e+e− → BB collisions:

ΔE = E∗
B −√

s/2 (2.7)

mES =
√

(s/2 + p0 · pB)2/E2
0 − p2

B (2.8)

where E0 = Ee+ + Ee− and p0 = pe+ + pe− is the total energy and momentum of

the e+e−-system, s = E2
0 − p2

0 the center of mass energy squared, E∗
B the energy of

the reconstructed B meson in the e+e−-rest frame and pB the 3-momentum of the B

meson in the laboratory frame. For a true B meson we expect ΔE to peak at zero.

The energy substituted mass mES should, of course, peak at the nominal value of the

B mass around 5.279GeV/c2. Due to the detector resolution effect, it turns out that

ΔE and mES represent an almost uncorrelated pair of variables in the two dimensional

space of momentum and energy. Other pairs of variables like mass and energy or mass
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and momentum are strongly correlated and less useful. Figure 2.1 shows an example for

B− → J/ψπ+π−K− signal Monte Carlo events.
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Figure 2.1: ΔE (left) and mES (right) for B− → J/ψπ+π−K− signal Monte Carlo events.

2.1.2 Thrust angle

To discriminate between certain types of background it is useful to have a measure for the

spherical symmetry of an event. A particle that decays into two particles with opposite

momenta or a particle decaying into two jets has less spherical symmetry than a decay

into many particles with random momenta. For this reason we define the thrust of an

event as follows:

T = max
|T̂|=1

∑
i |T̂ · pi|∑
i |pi|

(2.9)

T̂ is called the (normalized) thrust axis of the event and points in the direction that

maximizes the sum of the longitudinal momenta of the particles. The summation goes

over all the particles in the event with three-momentum pi. The thrust T can have values

between 0.5 and 1, where the latter one describes highly directional events and the former

one highly isotropic events.

The thrust angle θThrust is now defined as the angle between the thrust axis of the B
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candidate and the thrust axis of the rest of the event where all the calculations are done in

the CM system, which is the Υ (4S) rest frame. For a typical continuum background event

with a two-jet structure the B thrust axis will be collinear with the thrust axis for the

rest of the event. For a true signal event those two thrust axis will be uncorrelated. Thus,

we expect cos θThrust to peak near 1 for continuum background and a flat distribution for

signal events.

2.1.3 Fox-Wolfram moment

The Fox-Wolfram moments Hl are defined by [53]

Hl =
∑
i,j

|pi||pj |
E2
vis

Pl(cos θij) (2.10)

where θij is the angle between the particle momenta pi and pj and Evis is the total visible

energy of the event. The Pl(x) are the Legendre polynomials, P0(x) = 1, P1(x) = x, . . .

Energy-momentum conservation requires that H0 � 1 and H1 = 0 if we assume negligible

contributions from the particle masses. It is therefore customary to normalize the results

to H0 and we define the second Fox-Wolfram moment as

R2 =
H2

H0
(2.11)

The highly directional continuum events tend to have high R2-values whereas the more

spherical B events have lower values of R2. See Fig. 4.1 in section 4.2.5 for an example.

2.1.4 Helicity angles

Particle decays have a certain angular distribution depending on the spin structure of

initial and final states. The calculation of the matrix element is done within the helicity

formalism that was developed in [54]. More accessible descriptions can be found in [55–57].

The main idea is that the helicity operator ĥ = Ŝ · p̂ with spin S and linear momentum
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p is invariant under rotations and boosts along the momentum direction resulting in well

defined angular distributions. From the experimentalists point of view, we compare the

angular distributions of particle decays for different types of backgrounds and signal and

separate them by imposing selections on the helicity angle. The definition of the helicity

angle is pictured in Fig. 2.2. For a two-body decay A → B +X,B → C +D the helicity

angle is measured in the rest-frame of B between the direction of its parent (A) and

daughter (D). Any sequential two-body decay can be described using these angles in the

particles respective rest frame.

θ
D

A BX

D

C

Figure 2.2: Definition of the helicity angle θD in the two-body decay A → B + X,B →
C +D. The angle is measured between the direction of D and A in the rest-frame of B.

2.2 Dalitz analysis technique

The Dalitz plot technique was first introduced by Richard Dalitz in 1953 for the analysis

of τ -meson data. It allows to represent the entire phase space of any three-body final state

in a two-dimensional scatter plot.

A three-body decay M → m1+m2+m3 (see Fig. 2.3 left) of a mother particle with mass

M into three daughter particles of masses mi has 12 degrees of freedom. Four-momentum

conservation and the knowledge of the three daughter masses puts seven constraints on

the kinematics. In the rest frame of M where p1 + p2 + p3 = 0 the momenta of all three

daughter particles lie in a plane. The orientation of this plane described by the three Euler
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angles (α, β, γ), and the energy of two of the daughters can be used to fully describe the

kinematics. The partial decay rate is [8]

dΓ =
1

(2π)5
1

16M
|M|2 dE1 dE2 dα d cos(β) dγ (2.12)

where M is the Lorentz-invariant matrix element. If M is a scalar (spin 0) particle or if

we average over the spin states, integration over the angles in (2.12) yields:

dΓ =
1

(2π)3
1

32M3
|M|2 ds12 ds23 , (2.13)

where sij = m2
ij = (pi + pj)2 is the invariant mass squared of particles i and j. The

equation gives the partial decay rate of M for the differential phase space ds12 ds23. A

two-dimensional scatter plot of the decay in s12 and s23 is called a Dalitz plot. For a

decay with constant matrix element M, an important feature is that the Dalitz plot

has a uniform density. Any additional structure or inhomogeneity must result from a

non-constant matrix element, i.e. the decay is not a pure three-body phase space decay.

Information about M and intermediate resonances can be extracted directly from the

Dalitz plot. The kinematic allowed region for a three-body decay is illustrated in Fig. 2.3

(right) on the Dalitz plane. The allowed values for s23 for given s12 are conveniently

evaluated in the rest frame of m12:

(s23)max = (E∗
2 + E∗

3)2 − (|p∗
2| − |p∗

3|)2 (2.14)

(s23)min = (E∗
2 +E∗

3)2 − (|p∗
2| + |p∗

3|)2, (2.15)

where ∗ denotes quantities in the m12 rest frame with p∗2
i = E∗2

i −m2
i , E

∗
2 = (s12 −m2

1 −
m2

2)/2m12 and E∗
3 = (M2 − s12 −m2

3)/2m12. Overall four-momentum conservation yields

s12 + s13 + s23 = M2 +m2
1 +m2

2 +m2
3, which can be used to derive similar relations for

the other particle pairs.
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Figure 2.3: Left: A three-body decay of a parent particle with mass M and momentum P
into three daughter particles with masses mi and momenta pi. Right: Kinematic allowed
region for the three-body decay illustrated on the Dalitz plane.

2.3 Maximum likelihood estimators

The analyses described in this dissertation make extensive use of maximum likelihood

(ML) estimators [58] to measure unknown parameters θ = (θ1 . . . θm) of a probability

density function (PDF) that is used to describe a physical quantity x̃ (random variable).

Assuming θ describes the data correctly, the probability to observe x is P(x; θ). For n

measurements the likelihood function

L(θ) =
n∏
i=1

P(xi; θ) (2.16)

is the probability for n independent measurements with values xi. Under the hypothesis

that P is the correct model to describe the data, the ML estimators θ̂i are given by the

solutions of
∂L

∂θi
= 0. (2.17)
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Since log(y) is a monotonically increasing function of y the same estimators can be obtained

by solving
∂ logL
∂θi

=
∂

∂θi

n∑
i=1

P(xi; θ) = 0 (2.18)

instead. In High Energy Physics research, the program MINUIT [59] from the CERN

Program Library is used to minimize the negative log-likelihood (NLL) function. In the

case of a sufficient large data sample, the Hesse matrix of the NLL

(V̂ −1)ij = − logL
∂θi∂θj

∣∣∣∣∣
θ=θ̂

(2.19)

is an estimator for the covariance matrix of the ML estimator θ̂.

If the number of observations N itself is a random variable distributed according to a

Poisson distribution with mean value ν the extended likelihood function is

L(ν, θ) =
νN

N !
e−N

N∏
i=1

P(xi; θ). (2.20)

This form of the likelihood function is particularly useful if P can be written as the sum

of PDFs for different event types t ∈ T

P(x;μ) =
∑
t∈T

μtPt(x) , (2.21)

where μt is the fraction of events of type t and
∑

t μt = 1. Inserting (2.21) into (2.20) the

log-likelihood function is

logL(ν, μ) = −ν +
N∑
i=1

log

(∑
t∈T

νμtPt(x)

)
, (2.22)

where we have dropped terms independent of the parameters. By defining nt ≡ μtN as

the expected number of events of type t, the log-likelihood function can be written as a
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function of the parameters n only:

logL(n) = −
∑
t∈T

nt +
N∑
i=1

log

(∑
t∈T

ntPt(xi)
)
. (2.23)

With the normalization
∑

t μt = 1 we obtain the total number of events N =
∑

t nt as a

sum of independent Poisson variables with mean nt. The estimators n̂t give directly the

estimated mean numbers of events of type t.

2.4 Artificial neural networks

An artificial neural network [58] is a special case of a non-linear test statistics to distinguish

between two hypothesis H0 (null hypothesis) and H1. According to the Newman-Pearson

lemma, a one-dimensional test statistics t(x) for a vector of data x = (x1, . . . , xn) with

the maximum power is simply the likelihood ratio

t(x) =
f(x|H0)
f(x|H1)

. (2.24)

Of course, in practice we do not know f(x|H0,1) but we can still make a simpler Ansatz

for the functional form of t(x). Suppose we take t(x) to be of the form

t(x) = K

(
a0 +

n∑
i=1

aixi

)
. (2.25)

The function K(z) is called the activation function and usually taken to be the sigmoid

function

K(z) =
1

1 + e−z
. (2.26)

The test statistics t(x) can be seen as the output node of a network with n inputs xi and

is called a single-layer perceptron. If the activation function is monotonic (i.e. the sigmoid

function) the single-layer perceptron is equivalent to a linear test statistics of which the
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Fisher discriminant is one commonly used example. However, the single-layer perceptron

can easily be extended by adding additional (hidden) layers hj with m nodes between the

input and output layer. Instead of (2.25) we write

t(x) = K

⎛⎝a0 +
m∑
j=1

ajhj(x)

⎞⎠ (2.27)

and the hj themselves are given as functions of the nodes in the previous layer (here, the

input layer)

hj(x) = K

(
wj0 +

n∑
i=1

wijxi

)
. (2.28)

In general, this can be extended to multiple hidden layers and is called a multilayer

perceptron (MLP). Of course, the task remaining is to determine the weights aj and wij .

This is called training of the neural network and can be accomplished by minimizing an

error function like

E = E0[(t(x) − t0)2] + E1[(t(x) − t1)2] (2.29)

where Eα is the expectation value and tα is the preassigned target value for the hypothesis

Hα. In practice, if the weights are determined form a training sample of size N , the

expectation values in (2.29) can be replaced by the sum of the means:

E =
1

2N

N∑
p=1

(t(xp) − tp)2 (2.30)

where tp is the desired output value for the pattern (event) p. For example, tp = 0 if xp is

a background event and tp = 1 if xp is a signal event. Choosing the input variables xi, the

number of hidden nodes hj , the number of total layers and constructing a proper training

sample are crucial parameters that determine the separation power of the neural network.



Chapter 3

Measurement of CP parameters in

B− → DK−, D → π+π−π0

This chapter presents the first measurement of CP parameters in B− → DK−, D →
π+π−π0 decays. The analysis uses the model-dependent GGSZ Dalitz analysis method

that was presented in section 1.3.3 of this dissertation. It is based on the previous branch-

ing ratio measurement by BABAR [60, 61]. Using 229 million BB events, the results for

the branching ratio and asymmetry from 133 ± 23 signal events are

B(B− → Dπ+π−π0K−) = (5.5 ± 1.0 ± 0.7) × 10−6 (3.1)

A(B− → Dπ+π−π0K−) = −0.02 ± 0.16 ± 0.03 ,

where the asymmetry is defined as A = (N−−N+)/(N−+N+) with N± as the number of

B± signal events. The analysis presented in the following uses the same signal extraction

technique as the previous analysis and performs a Dalitz fit of the D decay to extract

the CP parameters related to the CKM phase γ. Where necessary we will give a brief

description of the techniques used in the branching ratio analysis. Otherwise we will

concentrate on the CP -fit.

48
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3.1 Introduction

We briefly summarize the important equations for a measurement of γ in B− → D0K−.

The reader is referred to section 1.3 for detailed information. The sensitivity to γ arises

from the interference of the Cabibbo allowed B− → D0K− decay and the doubly Cabibbo

suppressed decay B− → D0K− with D → π+π−π0 in both cases.7 We define the ampli-

tudes

A(B− → D0K−) ≡ AB (3.2)

A(B− → D0K−) ≡ ABrBe
i(δB−γ) (3.3)

with δB being the difference in the strong phase between the two decays and γ being the

weak phase. Using fD0(s+0, s−0) and fD0(s−0, s+0) from Eq. (1.18) for the amplitudes of

the 3-body D0 and D0 decay we obtain the amplitude for the cascade decays as

AB−→Dπ+π−π0K−(s+0, s−0) = AB (fD0(s+0, s−0) + z−fD0(s−0, s+0))

AB+→Dπ+π−π0K+(s+0, s−0) = AB (fD0(s−0, s+0) + z+fD0(s+0, s−0)) , (3.4)

where z± = rB e
i(δB±γ) is the parameter that describes the CP violation. With rB being

a positive small number of order 0.1 it is experimentally difficult to perform the analysis

in the z(rB , δB , γ) parameterization due to inevitable fit biases in rB . Hence, both BABAR

and Belle [11, 62] have performed their previous analyses, using different final states, in

the Cartesian coordinates

x± = �(z±) = rB cos(δB ± γ)

y± = �(z±) = rB sin(δB ± γ) , (3.5)
7D denotes either D0 or D0 throughout this document
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which are unbounded and hence do not have this problem. The current best measurement

of these parameters are listed in Table 3.1. Theses values can be used in a frequentist or

B− → DK− B− → D∗K− B− → DK∗−

D∗ → Dπ0,Dγ K∗− → K0
Sπ

−

x− 0.05 ± 0.05 ± 0.02 −0.13 ± 0.08 ± 0.02 −0.46 ± 0.17 ± 0.03
y− 0.11 ± 0.07 ± 0.04 −0.20 ± 0.09 ± 0.03 0.05 ± 0.27 ± 0.03
x+ −0.14 ± 0.05 ± 0.03 0.10 ± 0.07 ± 0.03 −0.10 ± 0.15 ± 0.03
y+ −0.03 ± 0.06 ± 0.02 0.01 ± 0.09 ± 0.06 0.00 ± 0.15 ± 0.05

Table 3.1: Average measurements of the Cartesian coordinates in different modes [10].
For each mode the D meson is reconstructed from K0

Sπ
+π− final states.

Bayesian analysis to obtain a measurement of the CKM phase γ.

The plan of this analysis is as follows. First we describe the data sample and event

selection. Then we establish a set of uncorrelated analysis variables and describe the

probability density function for each of these variables and all the signal and background

event types. The analytic parameterization of fD0 is determined in a separate analysis

and described briefly. We continue with a description of the maximum likelihood fit

used to obtain a measurement of the CP parameters z±. After validating the fitting

procedure using Monte Carlo simulations, we present the fit result on data and studies of

the systematic errors.
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3.2 Data sample and event selection

The Monte Carlo (MC) and data sets used in this analysis are shown in Table 3.2. We

use both SP5/6 (processed with analysis-26) and SP8 (processed with analysis-30)

generic MC. Two different simulations of the D Dalitz plot are used. A phase-space

(PHSP) only simulation (SP-4854) of D0 → π+π−π0 decays that is used for the efficiency

shape determination. And a simulation according to the previous CLEO measurement

(SP-6795) [19]. The on- and off-peak data samples are both processed with analysis-30.

# events (106) Luminosity ( fb−1)
Event type SP5/6 SP8 total
B+B− 584.0 399.9 1785.6
B0B0 540.7 354.9 1625.6
cc 425.8 232.7 487.8
uds 677.2 331.8 482.8
Signal (PHSP) 0.347 0.542
Signal (CLEO) 0.351 0.542
On peak 288.48

Table 3.2: Data and MC samples used in the B and D analyses.

The event selection in this analysis is based on the branching ratio analysis of this

mode [60, 61], and the reader is referred to that documentation for detailed information.

In the following, we describe only the additional selection criteria used in this analysis.

We exclude events for which the invariant mass of the bachelor kaon and the oppositely-

charged pion daughter of the D is in the range 1.84 < mKπ < 1.89 GeV/c2. This removes

the background B− → D0
K−π+ρ

−, for which mπ+π−π0 happens to fall within our D mass

cuts. Such events peak in mES and ΔE and constituted a significant background in the

previous B− → Dπ+π−π0K− analysis, where they were classified as part of the DπX

background. The signal efficiency of this cut is 97.8% and the BB cut efficiency is 69%.

As in the branching fraction analysis, we have decided to veto events in which the

π+π− daughters of the D candidate originate from a K0
S decay. The reason for doing this
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is as follows: First, the treatment of the decay D → K0
Sπ

0 as a signal mode has been

done in a separate BABAR analysis [11] using runs 1-4 data, which was optimized for the

selection of those events. Second, removing K0
S decays from the event sample simplifies

the treatment of the background. Without the K0
S veto, one needs to either trust the MC

to give the correct fraction of K0
S decays in the background, or introduce several new fit

parameters for describing this fraction in each background type.

By studying the efficiency of signal and background decays, we decided to use the

following cuts to reject K0
S decays. We exclude π+π− candidate pairs whose invariant

mass is between 0.489GeV/c2 and 0.508GeV/c2. The size of this mass veto window in

relation to the kinematically allowed Dalitz region is pictured in Fig. 3.1. We instantly

see that the effect on the Dalitz plot is very small.
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0 0.5 1 1.5 2 2.5 3

2 )0 π- π
M

(

0

0.5

1

1.5

2

2.5

3

Figure 3.1: Schematic representation of the K0
S mass veto window applied to the Dalitz

plot. Events within the diagonal line are rejected. The area within the boundary is the
kinematic allowed region for D → π+π−π0 decays.

Moreover, we remove events with a D flight distance (DΔd) greater than 1.5 cm. DΔd

is calculated as the spatial distance between the D vertex and the K− vertex. Table 3.3

shows the number of trueK0
S candidates found on generic BB MC with different selections

on DΔd as well as with and without the K0
S mass veto cut. The right two columns show

the relative changes in signal efficiency. The chosen K0
S rejection cuts remove 94.3% of

the K0
S events and are 97.4% efficient for B− → Dπ+π−π0K− signal events.



3.2. Data sample and event selection 53

true K0
S in generic BB MC B− → Dπ+π−π0K− events

DΔd/ cm cut on DΔd +K0
S veto cut on DΔd +K0

S veto
386 100% 153 39.6% 31518 100% 30929 98.1%

< 3.0 221 57.3% 51 13.2% 31442 99.8% 30855 97.9%
< 1.5 141 36.5% 22 5.7% 31285 99.3% 30701 97.4%
< 1.0 106 27.5% 17 4.4% 31128 98.8% 30549 96.9%
< 0.7 80 20.7% 11 2.8% 30938 98.2% 30363 96.3%
< 0.5 62 16.1% 10 2.6% 30707 97.4% 30138 95.6%
< 0.4 53 13.7% 9 2.3% 30476 96.7% 29918 94.9%
< 0.3 45 11.7% 9 2.3% 30110 95.5% 29566 93.8%

Table 3.3: Study of the K0
S rejection cuts. Columns 2 and 3 list the number of truth-

matched K0
S events on generic BB MC with and without the K0

S mass veto for different
values of the D flight distance cut. The last two columns list the relative signal efficiency
for those cuts. The highlighted line represents the final cut.

Two neural network variables are use in this analysis to provide separation between

signal and background events. The first neural network variable q is computed from

input variables that provide separation between continuum and BB events. The sec-

ond variable d combines input variables that separate correctly reconstructed π0 and D0

candidates from misreconstructed ones. It provides separation between signal and all mis-

reconstructed D-background. A detailed description of the neural networks can be found

in [61]. Figure 3.2 shows the distributions of the neural network variables together with

the efficiencies for signal and background when cutting on the variable. Since the neural

network variable d cannot be used in the Dalitz fit due to correlations (see section 3.4) we

tighten the cut from d > 0.1 to d > 0.25 compared to the branching ratio analysis.

In events that have multiple candidates, we select the candidate with the value of mES

closest to 5.279 GeV/c2, the nominal B− mass.

The absolute signal efficiency is obtained from the CLEO signal simulation and cor-

rected using the official correction tables and recommendations from the Particle ID (PID),

Tracking and Neutrals groups for release 18. Only DKsig events (see section 3.3) are con-

sidered signal. We use the PID tables provided by the PID group to weight each track

by its data efficiency and calculate an event weight. For the π0 efficiency we use the
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Figure 3.2: (left two plots) Distribution of the neural network variables q and d for back-
ground (hatched) and signal. (right two plots) The cut efficiencies to remove background
(triangles) and signal (dots) when applying the selection q, d > x.

recommended correction of 0.968311. The same procedure is done with the phase space

simulation as a cross-check. Table 3.4 lists the efficiencies before and after the corrections.

The final efficiency used in this analysis is thus 11.41%.

Efficiency (%) CLEO PHSP
no correction 12.14 13.23
PID correction 11.78 12.84
π0 correction 11.41 12.43

Table 3.4: Signal efficiency after different corrections for the CLEO and phase-space sim-
ulation.
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3.3 Event types

The following ten event types (one signal and nine background types) are used throughout

this analysis. We use the notation XD for an event type with a correctly reconstructed D

candidate, and X�D for an event type with a misreconstructed D candidate:

• DKsig : B− → Dπ+π−π0K− events that were correctly reconstructed. These are

the only events considered as signal. Note that this is somewhat different from

the DKD category of [60], where the requirement was only that the D be correctly

reconstructed. Here we require that the entireB candidate is correctly reconstructed,

since a wrong-sign kaon candidate can bias the CP measurement. In practice, the

fraction of B− → Dπ+π−π0K− events with a correctly-reconstructed D and a fake

K is small. The old and new definition of “signal” are therefore very similar.

• DKbgd : B− → Dπ+π−π0K− events that are misreconstructed. Note that this is

somewhat different from the DK�D category of [60], which includes only events in

which the D is misreconstructed.

• DπD : B− → D0π−, D0 → π+π−π0 decays, where the decay D0 → π+π−π0 is

correctly reconstructed and the remaining π− is mistaken to be the kaon.

• Dπ �D : B− → D0π−, D0 → π+π−π0 decays, where the D candidate is misrecon-

structed. The kaon candidate may be either the remaining π− or a particle from the

other B meson in the event.

• DKX : B → D(∗)K(∗)−, excluding D → π+π−π0 decays, with a misreconstructed

D candidate.

• DπX : B → D(∗)π− and B → D(∗)ρ−, excluding D0 → π+π−π0 decays, with a

misreconstructed D candidate.

• BBC�D : All other BB events with a misreconstructed D candidate.
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• BBCD : Other BB events with a correctly reconstructed D → π+π−π0 decay.

• qq �D : Continuum e+e− → qq events with a misreconstructed D candidate.

• qqD : Continuum e+e− → qq events with a correctly reconstructed D → π+π−π0

decay.
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3.4 Variable correlation studies

In order to decide which analysis variables can be used in a Dalitz plot fit, we conducted

studies of correlations between possible variables. In the branching ratio analysis of this

mode, it was found that small, non-linear correlations between the background distribu-

tions of fit variables result in a significant bias. This was solved by not using mES and

mD as fit variables.

The neural net variable d and its input parameters are highly correlated with the

Dalitz plot variables. This is because most of the d input variables depend strongly on

the momentum of the π0. Therefore this variable is not used in the Dalitz plot fit.

As shown in this section, the Dalitz variable distributions have small, yet significant

correlations with the mES and mD distributions. Therefore, we are cutting on mES and

mD rather than using them in the fit. We show in this section that the variables ΔE and

q are uncorrelated with s+0 and s−0 and will be used together with the Dalitz variables

in the fit to measure the CP parameters.

3.4.1 1-D Correlations of analysis variables

To check for possible correlations between our analysis variables, we divide the MC samples

in each of the variables ΔE, q, mES, and mD with the binning shown in Table 3.5. For

each bin of variable i, we made histograms of the other variables j �= i and performed a

Kolmogorov-Smirnov (KS) test [63] between the histogram in the different bins. Tables 3.6

to 3.10 list the results. A low KS probability indicates correlations between variables i

and j. Figures 3.3 to 3.6 show distributions with particularly low values.

Bin 1 Bin 2 Bin 3 Bin 4
ΔE (MeV) (−70,−25) (−25, 0) (0, 25) (25, 60)
q (0.1, 0.2) (0.2, 0.4) (0.4, 0.7) (0.7, 1.0)
mES(GeV/c2) (5.20, 5.24) (5.24, 5.26) (5.26, 5.28) (5.28, 5.30)
mD(GeV/c2) (1.805, 1.84) (1.84, 1.86) (1.86, 1.88) (1.88, 1.925)

Table 3.5: Binnings used for the KS comparisons.
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mES(ΔE) 0.85009 0.73107 0.93885 0.38350 0.70753 0.95120
mD(ΔE) 0.62565 0.82801 0.58600 0.78014 0.94076 0.31087
q(ΔE) 0.10397 0.69409 0.96303 0.56791 0.46216 0.99908
s−0(ΔE) 0.79043 0.45685 0.71429 0.81399 0.66677 0.65186
s+0(ΔE) 0.08032 0.05592 0.29049 0.98409 0.26768 0.81920
mES(q) 0.44222 0.37835 0.04888 0.87244 0.09863 0.01279
mD(q) 0.80627 0.67542 0.64751 0.60491 0.84932 0.91112
s−0(q) 0.74894 0.99280 0.95268 0.14221 0.18733 0.34757
s+0(q) 0.77493 0.38147 0.35849 0.68479 0.33700 0.92544
mD(mES) 0.64959 0.97761 0.73920 0.92023 0.51343 0.89923
s−0(mES) 0.80018 0.88319 0.46723 0.96282 0.63195 0.50504
s+0(mES) 0.07161 0.01451 0.04428 0.94910 0.74056 0.64685
s−0(mD) 0.85561 0.65314 0.60934 0.37380 0.99953 0.27898
s+0(mD) 0.50661 0.30152 0.88817 0.66741 0.71759 0.53655

Table 3.6: KS test for correlations in BBC�D. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Table 3.5 for the bin ranges.

Figure 3.3: Comparison of s−0 in bins of mES for DπX events corresponding to the KS
probabilities of Table 3.9 (from left to right, top to bottom).
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mES(ΔE) 0.28395 0.62840 0.45293 0.99846 0.72791 0.93610
mD(ΔE) 0.99161 0.85667 0.94378 0.55168 0.81582 0.46429
q(ΔE) 0.66880 0.68085 0.47289 0.98864 0.88583 0.84802
s−0(ΔE) 0.45790 0.63849 0.92200 0.24200 0.95943 0.87477
s+0(ΔE) 0.49215 0.22806 0.20413 0.99820 0.80507 0.97716
mES(q) 0.89412 0.12506 0.00227 0.38719 0.03010 0.33143
mD(q) 0.87311 0.06921 0.09345 0.29561 0.45084 0.78220
s−0(q) 0.32656 0.82834 0.46593 0.58815 0.33722 0.82488
s+0(q) 0.99663 0.62460 0.39228 0.99701 0.67679 0.80969
mD(mES) 0.10919 0.34694 0.99671 0.82946 0.93795 0.99120
s−0(mES) 0.69502 0.89079 0.88188 0.99813 0.93158 0.93861
s+0(mES) 0.70925 0.92879 0.85514 0.59944 0.99992 0.94279
s−0(mD) 0.12292 0.49611 0.29906 0.47361 0.93576 0.67997
s+0(mD) 0.78541 0.57557 0.11712 0.99545 0.21293 0.25807

Table 3.7: KS test for correlations in qq �D. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Table 3.5 for the bin ranges.

Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mES(ΔE) 0.60199 0.84207 0.22632 0.91552 0.62885 0.45079
mD(ΔE) 0.96144 0.45095 0.98135 0.78327 0.99897 0.64991
q(ΔE) 0.91009 0.23767 0.61756 0.10852 0.74274 0.31324
s−0(ΔE) 0.83659 0.92609 0.09428 0.63933 0.63363 0.39361
s+0(ΔE) 0.38185 0.64747 0.49310 0.79212 0.82248 0.42574
mES(q) 0.95701 0.70660 0.42206 0.90395 0.60795 0.68795
mD(q) 0.71770 0.38342 0.45221 0.11639 0.77951 0.97165
s−0(q) 0.06657 0.25413 0.75196 0.84852 0.23763 0.50730
s+0(q) 0.42054 0.45182 0.94930 0.76732 0.45072 0.84810
mD(mES) 0.70348 0.91141 0.24713 0.45401 0.71686 0.32906
s−0(mES) 0.48828 0.64797 0.55364 0.67328 0.13752 0.29764
s+0(mES) 0.82629 0.52138 0.78886 0.90014 0.64186 0.70178
s−0(mD) 0.00640 0.00329 0.11214 0.98493 0.68523 0.62572
s+0(mD) 0.34202 0.78095 0.43126 0.69949 0.75910 0.69264

Table 3.8: KS test for correlations in qqD. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Table 3.5 for the bin ranges.
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mES(ΔE) 0.23212 0.97048 0.30068 0.69550 0.97993 0.71033
mD(ΔE) 0.07001 0.91724 0.36380 0.12105 0.99036 0.10972
q(ΔE) 0.87135 0.97401 0.07209 0.89851 0.33114 0.26918
s−0(ΔE) 0.26197 0.78646 0.90335 0.98009 0.38209 0.95142
s+0(ΔE) 0.79952 0.35878 0.40727 0.48684 0.85884 0.44531
mES(q) 0.67897 0.87794 0.29283 0.99440 0.39936 0.38617
mD(q) 0.69629 0.99240 0.58685 0.96654 0.10499 0.20911
s−0(q) 0.59794 0.12840 0.63841 0.65257 0.87183 0.27060
s+0(q) 0.96332 0.31967 0.00485 0.23770 0.00034 0.03412
mD(mES) 0.97417 0.15612 0.96218 0.52693 0.85493 0.81117
s−0(mES) 0.51052 0.79206 0.42789 0.71484 0.84089 0.77075
s+0(mES) 0.02331 0.00000 0.00000 0.00003 0.00000 0.00464
s−0(mD) 0.08562 0.02694 0.01373 0.28299 0.28445 0.98791
s+0(mD) 0.88521 0.02533 0.00000 0.14921 0.00004 0.00256

Table 3.9: KS test for correlations in DπX. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See Figs. 3.3 and 3.4. See Table 3.5 for the bin ranges.

Figure 3.4: Comparison of s+0 in bins of mD for DπX events corresponding to the KS
probabilities of Table 3.9 (from left to right, top to bottom).
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Bins 1,2 Bins 1,3 Bins 1,4 Bins 2,3 Bins 2,4 Bins 3,4
mES(ΔE) 0.50372 0.97961 0.29342 0.57620 0.91531 0.29877
mD(ΔE) 0.08617 0.98832 0.28366 0.39926 0.00474 0.18294
q(ΔE) 0.29336 0.82335 0.96075 0.58739 0.66002 0.95231
s−0(ΔE) 0.94220 0.87434 0.76969 0.66894 0.55288 0.98887
s+0(ΔE) 0.81799 0.85517 0.39840 0.79181 0.91457 0.89001
mES(q) 0.85553 0.81694 0.00880 0.86322 0.01057 0.00544
mD(q) 0.51720 0.79002 0.44661 0.07877 0.00548 0.75020
s−0(q) 0.20447 0.47838 0.72828 0.66474 0.02687 0.11399
s+0(q) 0.10513 0.34842 0.29851 0.98101 0.61993 0.91044
mD(mES) 0.89057 0.45996 0.49679 0.81437 0.51006 0.55743
s−0(mES) 0.09971 0.00023 0.00026 0.02748 0.00418 0.29616
s+0(mES) 0.99260 0.00000 0.00000 0.00005 0.00000 0.24407
s−0(mD) 0.97862 0.22565 0.01610 0.84595 0.27140 0.86307
s+0(mD) 0.94996 0.43259 0.94171 0.95786 0.89141 0.26122

Table 3.10: KS test for correlations in DKX. In each row, x(y) indicates that the KS
probabilities compare the histograms of variable x in bins of variable y. Probabilities less
than 0.01 are in italics. See also Figs. 3.5 and 3.6. See Table 3.5 for the bin ranges.

Figure 3.5: Comparison of s−0 in bins of mES for DKX events corresponding to the KS
probabilities of Table 3.10 (from left to right, top to bottom).
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Figure 3.6: Comparison of s+0 in bins of mES for DKX events corresponding to the KS
probabilities of Table 3.10 (from left to right, top to bottom).
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3.4.2 Correlation studies with 2-D Dalitz distributions

In addition to the 1-D correlation studies of the previous section, we performed KS tests

between 2-D Dalitz distributions in the bins listed in Table 3.11 for the different event

types. Tables 3.12 to 3.17 list the KS probabilities of this test. Low probabilities indicate

possible correlations between the 2D Dalitz distributions and the variable used in the

binning.

Bin 1 Bin 2 Bin 3
ΔE (MeV) (−70,−25) (−25, 25) (25, 60)
q (0.1, 0.2) (0.2, 0.7) (0.7, 1.0)
mES(GeV/c2) (5.20, 5.24) (5.24, 5.26) (5.26, 5.30)
mD(GeV/c2) (1.805, 1.845) (1.845, 1.875) (1.875, 1.925)

Table 3.11: Binnings used for the 2D-KS comparisons of the Dalitz distributions.

Bins 1,2 Bins 1,3 Bins 2,3
mES 0.80528 0.02165 0.07048
ΔE 0.01614 0.13611 0.22403
q 0.20087 0.05519 0.12012
mD 0.52057 0.08130 0.10963

Table 3.12: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for BBC�D events. The bin definitions are listed in Table 3.11.

Bins 1,2 Bins 1,3 Bins 2,3
mES 0.76663 0.44127 0.81126
ΔE 0.38409 0.25026 0.51625
q 0.47830 0.04475 0.03021
mD 0.32201 0.00964 0.01852

Table 3.13: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for qq �D events. The bin definitions are listed in Table 3.11.



3.4. Variable correlation studies 64

Bins 1,2 Bins 1,3 Bins 2,3
mES 0.55411 0.88925 0.36111
ΔE 0.38744 0.11640 0.74168
q 0.58916 0.90730 0.56165
mD 0.10490 0.38350 0.51012

Table 3.14: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for qqD events. The bin definitions are listed in Table 3.11.

Bins 1,2 Bins 1,3 Bins 2,3
mES 0.00095 0.00000 0.00000
ΔE 0.20996 0.18657 0.72411
q 0.78332 0.31413 0.25159
mD 0.21288 0.00033 0.07307

Table 3.15: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for DπX events. The bin definitions are listed in Table 3.11. The Dalitz distributions for
mES and mD are shown in Figs. 3.7 and 3.8.
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Figure 3.7: Dalitz distributions of mES for DπX events in the three bins used for the KS
comparison shown in Table 3.15.

Bins 1,2 Bins 1,3 Bins 2,3
mES 0.24916 0.00000 0.00000
ΔE 0.53465 0.34538 0.70650
q 0.91606 0.47534 0.14354
mD 0.74505 0.03849 0.03367

Table 3.16: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for DKX events. The bin definitions are listed in Table 3.11. The Dalitz distributions for
mES and mD are shown in Figs. 3.9 and 3.10.
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Figure 3.8: Dalitz distributions of mD for DπX events in the three bins used for the KS
comparison shown in Table 3.15.
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Figure 3.9: Dalitz distributions of mES for DKX events in the three bins used for the KS
comparison shown in Table 3.16.
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Figure 3.10: Dalitz distributions of mD for DKX events in the three bins used for the KS
comparison shown in Table 3.16.
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Bins 1,2 Bins 1,3 Bins 2,3
mES 0.00000 0.00000 0.00000
ΔE 0.84778 0.78585 0.89935
q 0.30894 0.48435 0.20788
mD 0.00087 0.21046 0.30470

Table 3.17: KS probabilities for the two-dimensional comparison of the Dalitz distributions
for DπD events. The bin definitions are listed in Table 3.11. The Dalitz distributions for
mD are shown in Fig. 3.11.
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Figure 3.11: Dalitz distributions of mD for DπD events in the three bins used for the KS
comparison shown in Table 3.17.
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3.5 Validation of event distributions

Since all of the PDF shapes in this analysis are obtained from MC samples, it is necessary

to validate them against the data and check the level of agreement. The general idea is

to first establish the agreement between signal and sideband region on MC. Once this is

confirmed, the MC and data sidebands can be used to quantify the agreement between

data and MC.

3.5.1 Comparison of MC Dalitz plot distributions in signal region and

sidebands

To determine whether the background Dalitz plot distributions can be validated with

sideband data, we compared these distributions in MC between the signal region and five

different sidebands. The sidebands are:

• Upper ΔE: 0.06 < ΔE < 0.140 GeV

• Lower ΔE: −0.140 < ΔE < −0.07 GeV

• mES: 5.2 < mES < 5.272GeV/c2

• Upper mD: mD > 1.9 GeV/c2

• Lower mD: mD < 1.82 GeV/c2

The KS probabilities comparing the Dalitz plot distribution of the different backgrounds

in the signal region and the sidebands are shown in Table 3.18. The MC statistics used

in this study are listed in Table 3.19. We find good to very good agreement for the Dalitz

plot distributions between the MC signal and sideband region. Hence, we can assume

that a comparison of data and MC sidebands will also reveal any possible problems in the

signal region. This test is performed in the next section.
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Event type Upper ΔE Lower ΔE mES Upper mD Lower mD

DKX 0.89 0.44 0.06 0.42 0.61
DπX 0.94 0.80 0.31 0.29 0.44
BBC�D 0.98 0.77 0.17 0.30 0.26
qq �D 0.77 0.90 0.43 0.55 0.68
qqD 0.87 0.95 0.74 0.91 0.91

Table 3.18: Kolmogorov-Smirnov probabilities comparing the Dalitz plot distribution of
background event types in the signal region and sidebands. The MC statistics used in this
study are listed in Table 3.19.

Event type Signal region Upper ΔE Lower ΔE mES Upper mD Lower mD

DKX 171 144 202 530 403 426
DπX 628 514 821 3156 2095 2188
BBC�D 401 344 531 2620 1625 1700
qq �D 2307 2412 2849 19235 11565 11792
qqD 34 33 37 267 153 154

Table 3.19: Numbers of MC events used to calculate Table 3.18.

3.5.2 Comparison of data and MC Dalitz plot distributions in sidebands

To check the data-MC agreement, we compare the data and MC Dalitz plot distributions

in the same sidebands as in the previous section. The upper and lower mD sideband are

merged together to obtain larger statistics. The two-dimensional data Dalitz distributions

are compared to properly weighted MC samples and the total χ2/ndof between the two

histograms together with the p-value is calculated. The test is performed for all values

of q, q < 0.25 (enhances continuum events), and q > 0.25 (suppresses continuum events).

Table 3.20 and Table 3.21 show the results for the different sidebands and a minimum

average number of events in each Dalitz plot bin of 15 and 30 events, respectively.

Again, we find good agreement between the data and MC sidebands. Together with

the studies of the previous section, we conclude that the background distributions obtained

from MC give a good description of the distributions found in data.
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Sideband 0.1 < q < 1 0.1 < q < 0.25 q > 0.25 q > 0.6
Upper ΔE 1.082 (31.31%) 0.842 (60.65%) 1.009 (42.97%) 1.139 (28.58%)
Lower ΔE 1.134 (22.89%) 1.203 (25.21%) 0.927 (58.31%) 1.191 (26.15%)
mES 1.034 (32.55%) 1.011 (43.79%) 0.982 (56.83%) 1.122 (13.24%)
mD 0.980 (52.85%) 1.167 (22.44%) 1.302 ( 7.01%) 1.301 (16.13%)

Table 3.20: Data and MC comparison of the Dalitz shapes in different sidebands and
for different bins of q. The values given are the total χ2/ndof and the resulting p-value
in percent. The average minimum number of events per Dalitz bin is 15 events. See
Table 3.21 for the same test with 30 as the minimum number of events per bin.

Sideband 0.1 < q < 1 0.1 < q < 0.25 q > 0.25 q > 0.6
Upper ΔE 1.342 ( 9.10%) 0.967 (46.54%) 1.166 (28.34%) 1.348 (23.18%)
Lower ΔE 1.018 (41.21%) 1.230 (27.07%) 1.161 (28.79%) 1.007 (43.16%)
mES 1.034 (32.55%) 0.956 (62.17%) 1.003 (47.56%) 1.150 (15.14%)
mD 1.209 (16.79%) 1.327 (16.58%) 0.813 (69.50%) 2.174 ( 2.08%)

Table 3.21: Data and MC comparison of the Dalitz shapes in different sidebands and
for different bins of q. The values given are the total χ2/ndof and the resulting p-value
in percent. The average minimum number of events per Dalitz bin is 30 events. See
Table 3.20 for the same test with 15 as the minimum number of events per bin.

3.5.3 Comparison of 1D fit variables in data and MC sidebands

Although this has been validated already in the previous branching ratio analysis, we

repeat the comparison of data and MC sidebands for the remaining fit variables ΔE and

q. Figure 3.12 shows the ΔE distribution on data and MC for the different sidebands. The

p-values of a χ2 test for this set of plots and for other ranges of q are listed in Table 3.22.

The comparison of the q distribution can be seen in Fig. 3.13 and Table 3.23. Both from

the p-values and the plots we conclude that there is good agreement between data and

MC.

Sideband 0.1 < q < 1 0.1 < q < 0.25 q > 0.25 q > 0.6
mES 0.803 0.315 0.908 0.653
Lower mD 0.692 0.299 0.849 0.386
Upper mD 0.179 0.526 0.131 0.079

Table 3.22: P-values of a χ2 test between data and MC for the ΔE distribution in different
sidebands and using different cuts on q.
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Figure 3.12: Comparison of ΔE distributions in data (black triangles) and MC (blue
circles) in the mES (left), lower mD (middle) and upper mD (right) sideband for 0.1 <
q < 1.0. The p-values of a χ2-test are listed in Table 3.22.

Sideband 0.1 < q < 1
mES 0.645
Lower mD 0.140
Upper mD 0.506
Upper ΔE 0.404
Lower ΔE 0.392

Table 3.23: P-values of a χ2 test between data and MC for the q distribution in different
sidebands.
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Figure 3.13: Comparison of q distributions in data (black triangles) and MC (blue circles)
for different sidebands (see plot titles). The p-values of a χ2-test between data and MC
are listed in Table 3.23.



3.6. Probability density function 72

3.6 Probability density function

This section describes the probability density function (PDF) used in the fit. Separate

functions for the 1-D analysis variables ΔE, d, q and the 2-D Dalitz plot, as well as for

the ten different event types are presented. Eventually, the full PDF for this analysis has

about 400 parameters, that are determined by fitting suitable MC samples.

3.6.1 Overview

The total PDF is a sum over the PDFs of all event types t:

Pi =
∑
t

ft Pi
t = fDKsig

Pi
DKsig

+ fDKbgd
Pi
DKbgd

+ fDπD
Pi
DπD

+ fDπ �D Pi
Dπ �D

+ fDKX Pi
DKX + fDπX Pi

DπX

+ fBBC�D Pi
BBC�D + fBBCD

Pi
BBCD

+ fqqD Pi
qqD + fqq �D Pi

qq �D , (3.6)

where the subscripts correspond to the event types of section 3.3, ft is the expected fraction

of events of type t and Pi
t is the PDF for these events. The superscript i = 1, 2 indicates

the two types of fits that are used in the two-step fitting procedure of this analysis (see

section 3.8.5). In the first fit, we use the variables

1. ΔE

2. q (neural net separating BB from continuum)

3. d (neural net separating good D candidates from fake ones)

Under the assumption of no correlations between the distributions of the various event

types in the fit variables (this assumption is justified by the studies in the branching ratio
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analysis [61]), the PDF for events of type t used in the first fit is

P1
t (ΔE, q, d) = Et(ΔE)Qt(q) Ct(d). (3.7)

The variables used in the second fit are the uncorrelated (see sec. 3.4) set

1. ΔE

2. q

3. s+0 and s−0

hence the single event type PDF can be expressed as the product

P2
t (ΔE, q, s+0, s−0) = Et(ΔE)Qt(q)Dt(s+0, s−0). (3.8)

The following subsections discuss the parameterizations of these PDFs.

3.6.2 Parametrization of Et(ΔE)

The ΔE PDFs are parameterized using Gaussians, asymmetric Gaussians, and 2nd-order

polynomials. Table 3.24 lists the functional form used for each event type, and the fits

to MC samples from which these functions and their shape parameters were obtained are

shown in Figs. 3.14 through 3.18.
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Event type t Et(ΔE) Qt(q′), Ct(d′)
DKsig G+ P G+AG
DKbgd G+ P G+AG
DπD G G+AG
Dπ �D P G
DπX P G+AG
DKX P G+AG
BBCD G G
BBC�D P G+AG
qqD P G
qq �D P G+AG

Table 3.24: Functional forms of the ΔE and q PDFs of each event type, indicated with
G = Gaussian, AG = asymmetric Gaussian and P = 2nd order polynomial.
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Figure 3.14: The distributions of ΔE for DKsig (left) and DKbgd (right) obtained from
MC.
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Figure 3.15: The distributions of ΔE for DπD (left) and Dπ �D (right) obtained from MC.
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Figure 3.16: The distributions of ΔE for DπX (left) and DKX (right) obtained from
MC.
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Figure 3.17: The distributions of ΔE for BBC�D (left) and BBCD (right) obtained from
MC.
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Figure 3.18: The distributions of ΔE for qq �D (left) and qqD (right) obtained from MC.
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3.6.3 Parametrization of Qt(q)

Figure 3.2 (p. 54) shows the distribution of the neural network variable q for signal and

background. Finding an analytical parameterization for this shape is rather difficult and

most analyses resort to using histogram based PDFs to describe them. We use a different

approach and define the transformation

q �→ q′ = arctanh
(
q − 0.55

0.45

)
, (3.9)

which maps the selection interval q ∈ (0.1, 1.0) to q′ ∈ (−∞,∞). It turns out that q′ has

a Gaussian-like shape and can easily be parametrized analytically. We use the sum of an

asymmetric Gaussian and a Gaussian to fit the event types DKsig, DKbgd, DπX, DKX,

DπD, BBC�D and qq �D. A single Gaussian is used for the event types BBCD, Dπ �D and

qqD. Table 3.24 summarizes the different shapes used in each fit and Figs. 3.19 through

3.23 show the fitted MC distributions.
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Figure 3.19: The distributions of q′ for DKsig (left) and DKbgd (right) obtained from MC.
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Figure 3.20: The distributions of q′ for DπD (left) and Dπ �D (right) obtained from MC.
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Figure 3.21: The distributions of q′ for DπX (left) and DKX (right) obtained from MC.
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Figure 3.22: The distributions of q′ for BBC�D (left) and BBCD (right) obtained from
MC.
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Figure 3.23: The distributions of q′ for qq �D (left) and qqD (right) obtained from MC.
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3.6.4 Parametrization of Ct(d)

The same transformation as described in the previous section is used for d but with

changed numerical values due to the different selection interval:

d �→ d′ = arctanh
(
d− 0.625

0.375

)
, (3.10)

which maps the selection interval d ∈ (0.25, 1.0) into d′(−∞,∞). Figs. 3.24 through 3.28

show the fitted MC sample to the shapes listed in Table 3.24 (p. 74).
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Figure 3.24: The distributions of d′ for DKsig (left) and DKbgd (right) obtained from MC.
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Figure 3.25: The distributions of d′ for DπD (left) and Dπ �D (right) obtained from MC.
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Figure 3.26: The distributions of d′ for DπX (left) and DKX (right) obtained from MC.
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Figure 3.27: The distributions of d′ for BBC�D (left) and BBCD (right) obtained from
MC.
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Figure 3.28: The distributions of d′ for qq �D (left) and qqD (right) obtained from MC.



3.6. Probability density function 82

3.6.5 Dalitz Plot Efficiency PDF

The efficiency as a function of the Dalitz plot variables s+0 and s−0 is determined from

phase space signal MC including the proper particle ID corrections for the charged pions

and kaon in the event. We fit the efficiency with a cubic polynomial:

Eff(s+0, s−0) = 1 + s1(s+0 + s−0)

+ s2(s2+0 + s2−0) + s3(s3+0 + s3−0)

+ s4(s−0s
2
+0 + s+0s

2
−0) + s5 s+0s−0

+ a1(s+0 − s−0) + a2(s2+0 − s2−0)

+ a3(s3+0 − s3−0) + a4(s−0s
2
+0 − s+0s

2
−0) (3.11)

The parametrization is split into symmetric (si) and asymmetric (ai) coefficients that

are mostly uncorrelated, helping the fit converge. In addition to the relation (3.11),

Eff(s+0, s−0) ≡ 0 for all points outside the physical Dalitz boundary or within the K0
S

mass veto window described in section 3.2. This veto window shows up as a diagonal void

line at the high mass region of the Dalitz plot.

The function Eff(s+0, s−0) gives only the reconstruction efficiency. Truth-matched

DKsig signal events satisfy an additional requirement, namely, that they were correctly

reconstructed, and hence have different efficiency function parameters. The efficiency

function for these events is EffD(s+0, s−0). Its parameters are obtained from phase-space

signal MC events that passed all the cuts and were truth-matched.

The results of the efficiency fits are listed in Table 3.25. Fig. 3.29 shows the efficiency

(upper left), data generated from the fitted efficiency EffD (upper right) and the projections

onto the Dalitz variables (lower plots). We notice that asymmetric coefficients for both

efficiencies are consistent with zero. To simplify the fitting code, we therefore neglect the

asymmetry in the efficiency functions.
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Figure 3.29: Fit of EffD on phase-space signal MC. Upper left: Efficiency map for correctly
reconstructed MC B− → Dπ+π−π0K−events. Upper right: The Dalitz plot distribution of
events generated using the PDF used to fit the MC efficiency. Bottom: Projections onto
the Dalitz plot axes of phase-space MC (data points) and the efficiency fit function (line).
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EffD Eff
s1 276 ± 8.10 0.56 ± 0.035
s2 −113 ± 3.29 −0.27 ± 0.017
s3 15.7 ± 0.84 0.042 ± 0.0044
s4 29.8 ± 2.19 0.043 ± 0.012
s5 −166 ± 8.24 −0.27 ± 0.044
a1 1.65 ± 12.2 −0.013 ± 0.069
a2 −3.13 ± 10.3 −0.0043 ± 0.058
a3 0.72 ± 2.19 0.0021 ± 0.012
a4 1.45 ± 2.33 0.0065 ± 0.013

Table 3.25: Fit results for the efficiency coefficients of Eq. (3.11) for the signal efficiency
EffD and the reconstruction efficiency Eff. Fig. 3.29 shows the fit for EffD.

3.6.6 Dalitz plot signal PDF

The PDF for signal events is a product of the “physical” PDF and the efficiency function:

DDKsig
(s+0, s−0) = Dphys

DKsig
(s+0, s−0) EffD(s+0, s−0). (3.12)

For B− decays, the physical PDF is

Dphys
DKsig

(s+0, s−0) = |fD0(s+0, s−0) + (x− + iy−)fD0(s−0, s+0), |2 . (3.13)

where fD0 is the complex Dalitz plot amplitude for D0 decays, and we have written the

complex coefficient rBei(δ−γ) using the two real variables x− and y− with z− = x− + iy−.

The physical PDF for B+ decays is obtained by the exchange s+0 ↔ s−0 and z− ↔ z+. In

Section 3.8 we will show that the parameterization z(x, y) is not suitable for this analysis

and we will use a polar parameterization z(ρ, θ) instead.

The D decay Dalitz distributions are calculated with the isobar model,

fD0(s+0, s−0) = aNRe
iφNR +

∑
r

are
iφrAr(s+0, s−0), (3.14)

where the first term is a flat, non-resonant contribution and the sum is over all 2-body
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resonances. The 2-body resonance amplitude describes the decay of the D0 to particle

C and resonance r, followed by the decay of the resonance r to particles A and B (D0 →
(r → AB)C). Following the notation of [64] we write:

Ar = FDFr
Fs

m2
r − q2 − imrΓ(q)

, (3.15)

where we take the D form factor to be FD = 1, the expressions for the resonance form

factor Fr are listed in Table 3.26, q2 = m2
AB = (pA + pB)2 is the reconstructed mass

squared of the resonance candidate, mr is the nominal mass of the resonance, Γ(q) a

mass-dependent width and Fs the spin-factor for a resonance of spin s:

F0 = 1 (3.16)

F1 = m2
AC −m2

BC +
(m2

D0 −m2
C)(m2

B −m2
A)

q2
(3.17)

F2 =
(
m2
BC −m2

AC +
(m2

D0 −m2
C)(m2

A −m2
B)

q2

)2

− 1
3

(
m2
AB − 2m2

D0 − 2m2
C +

(m2
D0 −m2

C)2

q2

)
×

(
m2
AB − 2m2

A − 2m2
B +

(m2
A −m2

B)2

q2

)
. (3.18)

Note that we use the reconstructed mass q in the denominator rather than the resonance

mass mr as was done in [64]. This seems a more reasonable approach, especially for broad

resonances like the ρ. The mass-dependent width is expressed as

Γ(q) = Γr

(
pAB
pr

)2s+1(mr

q

)
F 2
r (3.19)

where Γr is the width of the resonance and pr is the momentum of either daughter in the

resonance rest frame. pAB is the same but with the two-track invariant mass assigned to

the parent instead of the nominal resonance mass.

The parameters of the resonances used in the signal PDF are listed in Table 3.27. We
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Spin Form factor Fr
0 1

1
√

1+R2p2r
1+R2p2AB

2
√

9+3R2p2r+R4p4r
9+3R2p2AB+R4p4AB

Table 3.26: Blatt-Weisskopf penetration form factors. R is the meson radial parameter,
whose value we take to be 1.5GeV−1, and pr is the momentum of either daughter in the
resonance rest frame. pAB is the two-particle invariant mass.

take the mass and width of the f0(1370) from the E791 Dalitz plot analysis of Ds →
π+π−π+ [65]. The width of the f0(980) is also taken from that analysis. These three

parameters have large uncertainties in the PDG, whose input comes mostly from scattering

experiments. Therefore, it seems more relevant to our decay to take them from their

relatively precise measurement in the Ds decay. The ω resonance is included without any

ρ− ω mixing.

Furthermore, the PDF includes three non-resonant P -wave amplitudes (one for each

pair of pions) with Ar = F1. Figures 3.30 through 3.36 show the Dalitz distributions of

individual components used in our signal PDF.

State Mass (MeV) Width (MeV) Source
ρ→ ππ 775.8 ± 0.5 150.3 ± 1.6 PDG
ρ(1450) → ππ 1465 ± 25 400 ± 60 PDG
ρ(1700) → ππ 1720 ± 20 250 ± 100 PDG
f0(980) → π+π− 980 ± 10 44 ± 3 PDG (mass), [65] (width)
f0(1370) → π+π− 1434 ± 18 173 ± 32 [65]
f0(1500) → π+π− 1507 ± 5 109 ± 7 PDG
f0(1710) → π+π− 1714 ± 5 140 ± 10 PDG
f2(1270) → π+π− 1275.4 ± 1.2 185.1+3.5

−2.6 PDG
σ → π+π− 500 400
Phase space

The following are used only for systematics
f ′2(1525) → π+π− 1525 ± 5 73 ± 6 PDG
ω → π+π− 782.59 8.49 PDG
Phase space P -wave

Table 3.27: Components of the signal Dalitz PDF, and the sources of their parameters.
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Figure 3.30: Dalitz plot distributions of ρ+π−, ρ(1450)+π−, and ρ(1700)+π− toy MC
events.
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Figure 3.31: Dalitz plot distributions of ρ−π+, ρ(1450)−π+, and ρ(1700)−π+ MC events.
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Figure 3.32: Dalitz plot distributions of ρ0π0, ρ(1450)0π0, and ρ(1700)0π0 toy MC events.
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Figure 3.33: Dalitz plot distributions of f0π
0, f2π

0, and f0(1370)π0 toy MC events.
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Figure 3.34: Dalitz plot distributions of f0(1500)π0, f ′2(1525)π0, and f0(1710)π0 toy MC
events.
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Figure 3.35: Dalitz plot distributions of σπ0, ωπ0, and nonresonant toy MC events.



3.6. Probability density function 89

2)0π+πM(
0 0.5 1 1.5 2 2.5 3

2 )0 π- π
M

(

0

0.5

1

1.5

2

2.5

3

NRPW_PMNRPW_PM

2)0π+πM(
0 0.5 1 1.5 2 2.5 3

2 )0 π- π
M

(

0

0.5

1

1.5

2

2.5

3

NRPW_M0NRPW_M0

2)0π+πM(
0 0.5 1 1.5 2 2.5 3

2 )0 π- π
M

(

0

0.5

1

1.5

2

2.5

3

NRPW_0PNRPW_0P

Figure 3.36: Dalitz plot distributions of nonresonant P -wave toy events, with the P -wave
particles being the π+π− (left), π−π0 (center), or π0π+ (right).
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3.6.7 Dalitz plot background PDF

The Dalitz distributions for background events with a correctly reconstructed D-candidate

(DπD, BBCD and qqD) are the same as for signal events with x = y = 0:

DDπD
≡ DBBCD

≡ DqqD ≡ |fD0(s+0, s−0)|2, (3.20)

where fD0(s+0, s−0) was defined in Eq. (3.14).

The Dalitz background distributions for Dπ �D, DKX, BBC�D and qq �D events are

obtained from the generic BB and qq MC samples. We model the Dalitz distributions as

the incoherent sum of three unpolarized ρ resonances and a non-resonant (NR) component:

Dinc(s+0, s−0) = fNRPNR + (1 − fNR)
[
(1 − fρ0)(fρ+P0

ρ+ + (1 − fρ+)P0
ρ−) + fρ0P0

ρ0

]
.(3.21)

The non-resonant component PNR is parametrized by a cubic polynomial (Eq. (3.11)).

Each resonant component P0
ρ is the product of the efficiency function and a relativistic,

spin zero, Breit-Wigner amplitude at the ρ mass A0
ρ:

P0
ρ = Eff(s+0, s−0)|A0

ρ(s+0, s−0)|2. (3.22)

This gives a good description of ρ resonances from background events that do not have

an angular correlation with any of the other particles in the decay. Table 3.28 lists the

relative fractions of the different components found by the fit. To quantify the fit quality,

we generate events from the fitted PDF, with 100 times the statistics of the input MC

sample, and perform a KS test between the two Dalitz distributions. The KS probabilities

of this test can be found in Table 3.28. The fits for each event type are shown in Figs. 3.37

through 3.40.

TheDπX Dalitz shape has an accumulation of events at low s+0 masses (see Fig. 3.41).

This is due to B → D∗π−,D∗ → D0π+ decays, with the D0 final state often containing
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Event type fNR fρ+ fρ0 KS prob
Dπ �D 0.94 ± 0.09 0.30 ± 0.60 0.00 ± 0.97 0.564
DKX 0.97 ± 0.02 1.00 ± 0.62 0.00 ± 0.11 0.120
BBC�D 0.76 ± 0.03 0.70 ± 0.07 0.13 ± 0.07 0.759
qq �D 0.89 ± 0.02 0.53 ± 0.10 0.22 ± 0.08 0.396

Table 3.28: Relative fractions of the non-resonant (NR), ρ+ and ρ0 component in the
background Dalitz distributions together with the KS probability of the fit results.
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Figure 3.37: Fit to the Dalitz distribution of Dπ �D events. a) shows the MC events used in
the fit, b) and c) show the projections on s+0 and s−0 and d) shows the Dalitz distribution
of events generated from the fitted PDF.
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Figure 3.38: Fit to the Dalitz distribution of DKX events. a) shows the MC events
used in the fit, b) and c) show the projections on s+0 and s−0 and d) shows the Dalitz
distribution of events generated from the fitted PDF.
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Figure 3.39: Fit to the Dalitz distribution of BBC�D events. a) shows the MC events
used in the fit, b) and c) show the projections on s+0 and s−0 and d) shows the Dalitz
distribution of events generated from the fitted PDF.
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Figure 3.40: Fit to the Dalitz distribution of qq �D events. a) shows the MC events used in
the fit, b) and c) show the projections on s+0 and s−0 and d) shows the Dalitz distribution
of events generated from the fitted PDF.
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a K− that is taken to be the bachelor kaon. Combining the soft pion from the D∗ decay

with a π0 candidate that is often also soft, results in this low-mass accumulation.

We use a histogram-based PDF to parameterize this background type. Fig. 3.41 (left)

shows the binning of the histogram used for the PDF. Each bin is weighted according to

its area inside the Dalitz boundaries. The two plots on the right show the PDF projections

on s+0 and s−0, respectively.
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Figure 3.41: Dalitz distribution of DπX events including the binning used for the his-
togram PDF (left). The two plots on the right show the projections of the PDF on s+0

and s−0, respectively.

We use the same approach for signal events with a badly reconstructed D-candidate

(DKbgd). Fig. 3.42 shows the histogram used for the PDF. Overlaid is a plot of the DKbgd

events (with reduced statistics).
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Figure 3.42: Dalitz distribution of DKbgd events including the binning used for the his-
togram PDF (left). The two plots on the right show the projections of the PDF on s+0

and s−0, respectively.
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3.7 Dalitz plot fit of D → π+π−π0

The resonance parameters of fD0(s+0, s−0) (Eq. (3.14) in section 3.6.6) are determined in

a separate analysis [66, 67]. Using 232 fb−1 of data, a clean Dπ+π−π0 sample is obtained

from D∗+ → D0π+
s decays where the charge of the soft π+

s tags the flavor of the D0. The

resolution in Δm = m∗
D −m0

D is approximately 0.3MeV/c2 and only D0 candidates with

Δm within 0.6MeV/c2 of the central value are retained. Figure 3.43 shows the π+π−π0

invariant mass of these D0 candidates.
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Figure 3.43: π+π−π0 invariant mass of D0 candidates obtained fromD∗+ → D0π+
s decays.

The dots represent the data, the dashed line shows the combinatorial background and the
shaded region represents the total background.

For the Dalitz plot analysis, only D0 candidates within the 1σ signal region (1.848 <

m(π+π−π0) < 1.880) are used. This window also rejects all background events from

misreconstructed π+K−π0 decays that can be seen in the left tail of Fig. 3.43. The Dalitz

fit uses the resonance masses and width listed in Table 3.27 (p. 86). The amplitude of

the ρ+ component is fixed to one and its phase is fixed to zero. All other amplitudes and

phases are floating in the fit. The fit fraction for each PDF component in terms of Eq.

(3.14) is defined as

Fr =
∫ |arAr(s+0, s−0)|2 ds−0ds+0∫ |fD0(s+0, s−0)|2 ds−0ds+0

. (3.23)

Due to interference, the fit fraction is not the relative contribution of the component.

Table 3.29 lists the result of the Dalitz fit and Fig. 3.44 shows the projections of the PDF

on the three two-pion invariant masses.
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Component Amplitude ar Phase φr Fraction Fr(%)
ρ+ 1 0 67.8
ρ0 0.588 ± 0.006 16.2 ± 0.6 26.2 ± 0.5
ρ− 0.714 ± 0.008 −2.0 ± 0.6 34.6 ± 0.8
ρ+(1450) −0.21 ± 0.06 34 ± 18 0.11 ± 0.07
ρ0(1450) 0.33 ± 0.06 10 ± 8 0.30 ± 0.11
ρ−(1450) 0.82 ± 0.05 15.9 ± 2.9 1.79 ± 0.22
ρ+(1700) 2.25 ± 0.18 −16.7 ± 2.4 4.1 ± 0.7
ρ0(1700) 2.51 ± 0.15 −17.1 ± 1.7 5.0 ± 0.6
ρ−(1700) 2.00 ± 0.11 −50.2 ± 3.3 3.25 ± 0.36
f0(980) 0.0525 ± 0.0039 120.6 ± 4.7 0.250 ± 0.037
f0(1370) 0.222 ± 0.034 −24 ± 9 0.37 ± 0.11
f0(1500) 0.203 ± 0.022 192 ± 9 0.39 ± 0.08
f0(1710) 0.391 ± 0.046 231 ± 8 0.31 ± 0.07
f2(1270) 0.303 ± 0.009 9.0 ± 3.4 1.32 ± 0.08
σ −0.238 ± 0.015 7.9 ± 4.3 0.82 ± 0.10
Nonresonant 0.57 ± 0.07 168.6 ± 3.7 0.84 ± 0.21

Table 3.29: Result of the D0 Dalitz fit. The amplitudes (ar) and phases (φr) are defined
relative to the ρ+. The last column shows the fit fraction Fr according to Eq. (3.23).
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Figure 3.44: Projections of the data and PDF for the Dalitz fit to D0 → π+π−π0 decays.
From left to right, the invariant masses squared of π+π0, π−π0 and π+π− are shown,
respectively.
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3.8 Maximum likelihood fit

This section describes how the PDF described in section 3.6 is used to extract the CP

parameters from the data sample.

3.8.1 Combining Dalitz shape, signal yield and asymmetry

In order to measure the CP parameters using the Dalitz shape one minimizes the negative

log-likelihood (NLL)

LDP = −
∑

logP2 (3.24)

with respect to the CP parameters. P2 is the PDF given by equations (3.6) and (3.8) and

the sum goes over all events.

We note, however, that the signal branching fraction and decay rate asymmetry also

depend on the CP parameters. This information is used in the GLW (section 1.3.1) and

ADS (section 1.3.2) methods but has not been exploited yet by any of the previous Dalitz

analysis and is not captured by this NLL. From very general arguments [17], one can

conclude that the branching ratio and asymmetry have a sensitivity to the CP parameters

that is similar to that of the Dalitz shape distribution. To incorporate all the available

information in the data, we minimize

L = LDP + LBA , (3.25)

where LBA is an additional term to the log-likelihood that represents the information

contained in the branching ratio and asymmetry. This term can be written in form of a

χ2

LBA ≡ 1
2
YiV

−1
ij Yj, (3.26)

where we have defined Y1 (Y2) to be the difference between the measured and expected

signal yield (asymmetry), and V is the covariance matrix for these two observables includ-
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ing some systematic errors described below. The expected signal yield and asymmetry

are

Nexp = N+
exp +N−

exp

Aexp =
N−

exp −N+
exp

N−
exp +N+

exp
, (3.27)

where N±
exp is the expected number of B± signal events for a given value of the CP

parameters z±

N−
exp = η

∫ |fD0(s+0, s−0) + z−fD0(s−0, s+0)|2 ds+0ds−0∫ |fD0(s+0, s−0)|2 ds+0ds−0

N+
exp = η

∫ |fD0(s−0, s+0) + z+fD0(s+0, s−0)|2 ds+0ds−0∫ |fD0(s−0, s+0)|2 ds+0ds−0
, (3.28)

and we have used the quantities defined in Eq. (3.4). η is a normalizing factor depending on

the number of BB events NBB, the no-CP branching fractions, and the absolute efficiency

ε:

η ≡ 1
2
NBB B(B− → D0K−)B(D0 → π+π−π0) ε. (3.29)

The statistical and systematic uncertainties in η are included in the error matrix V .

In the subsections below we explore the advantages of minimizing L instead of LDP.

We then describe the fit procedure to realize this in section 3.8.5

3.8.2 Behavior of the Dalitz shape NLL LDP

Figure 3.45 shows the dependence of LDP (3.24) on the parameters x± and y±, calculated

from a data luminosity equivalent toy MC experiment. The lines indicate 1σ contours

with the line surrounding the white area being the 1σ contour line. It is evident that

at negative values of x, LDP is almost constant, resulting in a reduced sensitivity in this

region.

The asymmetry with respect to x and the flatness of LDP at low x values are a conse-
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Figure 3.45: Dependence of the negative log likelihood LDP, computed with a single toy
MC experiment containing both signal and background, on all pair combinations of the
parameters x±, y± (2D plots, 1σ contours) and on the individual parameters (1D plots).
The true values of x±, y± are 0. The values of the parameters not shown in each plot are
set to their true values.
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quence of the small value of the phase difference Δφ = φρ−−φρ+ ≈ 2◦ between the ρ− and

ρ+ resonances, as well as the relatively large ratio aρ−/aρ+ ≈ 0.7 between the magnitudes

of their amplitudes (see Table 3.29). To illustrate the effect of Δφ on the NLL shape we

show in Fig. 3.46 LDP for B− events as a function of x− and y− for varying values of Δφ.

One sees that as Δφ increases, the shape of LDP rotates in the x − y plane. Moreover,

the sensitivity (density of contour lines) is maximal around Δφ ∼ 90◦. From the upper

left plot, which corresponds to the physical situation in D0 → π+π−π0, we observe that

the NLL is highly asymmetric, that the sensitivity greatly depends on the true values of

x and y and that there are non-linear correlations between x and y. These properties of

the NLL make it very difficult to obtain unbiased results for x and y in the maximum

likelihood fit.
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Figure 3.46: LDP of a signal-only B− toy sample as a function of x− and y− if the Dalitz
plot contains only ρ+ and ρ−. The phase difference between them varies from 0◦ (top left)
to 180◦ (bottom right) in 20◦ steps.

In Figure 3.46, one can see a very tall peak in LDP at, for example x ≈ 1.4 for the top

left plot. This peak appears approximately where the CP parameters are such that the

ρ+ totally destructively interferes with the ρ−, making the Dalitz plot highly asymmetric.

With the Dalitz plot distribution thus being very different from the highly symmetric

distribution in the no-CP violation case (a symmetry that is due to approximately equal

ρ+ and ρ− amplitudes), this results in very large values for LDP.
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3.8.3 Behavior of the yields term LBA

Figure 3.47 shows the expected signal yields N±
exp of (3.28) as a function of the CP param-

eters. A significant dependence is observed, which can be used to increase the sensitivity

of the measurement to the values of these parameters. The source of the circular shape

of regions of constant yield vs. x and y is as follows. The yield (either N+ or N−) is

proportional to

N ∝
∫ ∣∣A+ (x+ iy)A

∣∣2 dφ , (3.30)

where the integral is over the Dalitz plot and we use the shorthand notation

A ≡ fD0(s+0, s−0)

A ≡ fD0(s−0, s+0). (3.31)

Squaring and dividing (3.30) by
∫ |A|2 gives

N ∝ 1 + (x2 + y2) + 2x
∫ �(A∗A)∫ |A|2 − 2y

∫ �(A∗A)∫ |A|2 . (3.32)

For constant N , this gives a circle whose center (minimum value of N) is at

x0 = −
∫ �(A∗A)∫ |A|2

y0 =
∫ �(A∗A)∫ |A|2 . (3.33)

It is easy to show that y0 = 0 as a result of the symmetry of the boundary of the Dalitz plot.

Dividing the Dalitz plot into the region above and below the symmetry line s+0 = s−0,

we can write

y0

∫
|A|2 =

∫
�(A∗A)

=
∫
s+0>s−0

�(A∗A) +
∫
s+0<s−0

�(A∗A). (3.34)
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Since changing from the “above” region to the “below” region is equivalent to exchanging

s+0 ↔ s−0 and hence A↔ A according to (3.31) we obtain

y0

∫
|A|2 =

∫
s+0>s−0

�(A∗A) +
∫
s+0>s−0

�(A∗
A)

=
∫
s+0>s−0

�
(
A∗A− (A∗

A)∗
)
. (3.35)

The integrand of the last line vanishes, resulting in

y0 = 0. (3.36)

Furthermore, we expect the magnitude of |x0| to be of order
∫ |A|2 = 1. Both these

expectations are seen in Fig. 3.47.

In Fig. 3.48 we make use of the dependence of the yields on the CP parameters by

showing the dependence of LBA on these parameters. One can see that LBA does not give

a unique solution for x± and y±, since there are two observables and four unknowns. For

example, the y versus x plot shows that while one can find a decent solution in the radial

direction (i.e., the x-axis when one is at y = 0), the solution in the tangential direction

(y in this example) will have a large error, since infinitesimal variations in this direction

result in a negligible change in the NLL. However, LBA still puts a significant constraint

on the CP parameters, given additional information to resolve this ambiguity.

Finally, Fig. 3.49 shows the dependence of the combined NLL function L. This function

depends more strongly on the CP parameters and is better behaved than either LDP or

LBA. It is worthwhile to note some features of L. Fig. 3.49 still shows traces of the

ambiguity seen in Fig. 3.48. In addition, the circular shape clearly seen in the y+ vs. x+

plot and the nonlinear x− y correlation that it indicates, means that there is on average

a bias in the radial direction. For example, with the true values being x = y = 0, both

upward and downward fluctuations in y lead to an upward fluctuation in x.

It is now obvious that the Cartesian parameterization of the CP parameter z(x, y)
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Figure 3.47: Dependence of the expected number of events N±
exp on the true values of the

CP parameters x±, y± in a toy experiment.

chosen by previous analyses is inappropriate for this analysis. Due to the circular shape

of L polar coordinates z(ρ, θ) are a much better suited pair of parameters.

3.8.4 Polar coordinates for the CP parameters

The circular shape of LBA in the x− y plane (Fig. 3.49) results in non-linear correlations

between the fit parameters x and y. This causes various problems that are illustrated in

Appendix 3.A. Therefore, instead of using the Cartesian coordinates x and y, we define

the following polar parameterization z(ρ, θ) reflecting the symmetry of LBA:

ρ± =
√

(x± − x0)2 + (y± − y0)2 (3.37)

θ± = tan−1

(
y± − y0

x± − x0

)
,

where (x0, y0) is the origin of the polar coordinate system, defined in Eq. (3.33) with

x0 = 0.8496

y0 = 0. (3.38)
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Figure 3.48: Dependence of LBA on all pair combinations of the parameters x±, y± (2D
plots, 1σ contours) and on the individual parameters (1D plots) in a toy experiment. The
true values of x±, y± are 0. The values of the parameters not shown in each plot are set
to their true values.
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Figure 3.49: Dependence of L on all pair combinations of the parameters x±, y± (2D plots,
1σ contours) and on the individual parameters (1D plots) in a toy experiment. The true
values of x±, y± are 0. The values of the parameters not shown in each plot are set to
their true values.
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The no-CP violation case in these coordinates is ρ± = x0 and θ± = 180◦. This set of

variables represents an (almost) uncorrelated pair of variables. Some correlation remains

due to the fact that LDP does not respect the circular symmetry of LBA, implied by these

coordinates.



3.8. Maximum likelihood fit 107

3.8.5 Fit Procedure

In order to make use of all the CP -relevant information provided in the data, namely, the

Dalitz shape, the signal branching fraction, and the asymmetry, we carry out the following

2-step fitting procedure:

1. We fit the data with the PDF P1 of Eqs. (3.6) and (3.7), which depends on the

variables ΔE, q’, and d’. From this fit we obtain the parameters

(a) NDKsig
= the number of DKsig events.

(b) ADKsig
= the DKsig decay rate asymmetry

(c) NDπD
= the number of DπD events

(d) NBB �D = the total number of events of types DKX, DπX, and BBC�D.

(e) RDπX ≡ NDπX/NBB �D = the ratio between the number of DπX events and

NBB �D .

(f) Nqq �D = the number of qq �D events.

All shape parameters (parameters describing the shapes of Pt) are fixed to the values

obtained earlier on MC or data (Sections 3.6.2, 3.6.3 and 3.7). In addition, we use

the MC to fix several ratios between certain numbers of events that, together with

the floating parameters listed above, give the number of events for all event types.

The values of these ratios after all cuts are listed here, with N always referring to a

number of events:

(a) RDKX ≡ NDKX/NDπX = 0.228 ± 0.057

(b) RDπ �D ≡ NDπ �D/NDπD
= 0.253 ± 0.026

(c) RBBCD
≡ NBBCD

/NBB �D = 0.00450 ± 0.00080

(d) RqqD ≡ NqqD/Nqq �D = 0.0116 ± 0.0016

(e) RDKbgd
≡ NDKbgd

/NDKsig
= 0.2540 ± 0.0022
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The error of RDKX comes from the measured branching fractions in the PDG.

All other errors are due to MC statistics only, and are not used in this analysis.

The values of these parameters are later varied for systematic error evaluation (sec-

tion 3.11.1).

2. We compute LBA using NDKsig
, ADKsig

, and their error matrix obtained in the

previous step. The NLL LDP is calculated from the data using the PDF P2, which

depends on the variables ΔE, d′, and the Dalitz variables s+0 and s−0. We then

minimize L = LBA + LDP, floating only the CP parameters

(a) ρ−

(b) θ−

(c) ρ+

(d) θ+
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3.9 Monte Carlo fit studies

All the MC studies in this section are performed with the D decay parameters found in

our fit to the D∗ data. Unless specified otherwise, the CP violating parameters z± are set

to the values found in the B− → D0
K0

Sπ
+π−K

− analysis [11] converted to our set of polar

coordinates centered at (x0, y0). Table 3.30 shows these default parameters. The number

of B− and B+ signal events used in the toys is calculated from (3.28), each separately

fluctuated by their Poisson errors for every toy experiment. The other parameters are set

to the values found in the data fit listed in Table 3.34 (p. 125). Each toy MC fit uses the

2-step fitting procedure described in section 3.8.5.

Parameter Value
ρ− 0.775
θ− 175.3
ρ+ 0.979
θ+ 178.9
< NDKsig

> 202
< ADKsig

> −0.1687

Table 3.30: CP violating parameters used for all the MC studies in this section. The
origin of the polar coordinates is at x0 = 0.850 and y0 = 0.

3.9.1 Toy MC studies

We generate 2000 toy MC experiments including signal and background and fit them with

the 2-step fitting procedure. Since the systematic errors incorporated in LBA are not taken

into account in the toy generation we set them to zero for this set of experiments. The

results for each floating variable are shown in Figs. 3.50 through 3.56. Each set of plots

shows the distribution of the pull, error and fitted value. The pull for a variable ζ with

true value ζtrue, measured value ζmeas and measurement error σmeas is defined as

pull(ζ) =
ζmeas − ζtrue

σmeas
. (3.39)
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For a large number of measurements, pull(ζ) is distributed according to a standard nor-

mal distribution (Gaussian centered around zero with unit width) if the measurement is

unbiased and the measured error on average represents the true measurement error. All

pull distributions in Figs. 3.50 through 3.56 are standard normal distributions except for

θ±. The width of the pull in θ± is about 1.2. Although it is not apparent from the NLL

projections, which appear to be very Gaussian, the cause is most likely due to a bifurca-

tion of the θ fit results for different values of ρ. In fact, fitting the pull distribution for

experiments with ρ± < 0.9 results in a unit width Gaussian. This is similar to what was

observed using Cartesian coordinates (see Appendix 3.A). Figure 3.57 shows the minimum

values of the NLL found by the branching ratio (step-1) fit and CP (setp-2) fit.

We repeat the same experiments but this time including the systematic errors in LBA

to obtain a correct estimate for the expected fit errors on data. Figures 3.58 and 3.59

show the results for the CP parameters. As expected the width of the ρ± pulls are too

narrow.

Finally, Fig. 3.60 through 3.62 show the NLL projections of LDP, LBA and L for each

pair of CP parameters and each CP parameter individually. By construction there is no

sensitivity to θ± in LBA. Overall the polar coordinates result in much better behaved fit

parameters than the Cartesian coordinates.
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Figure 3.50: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of Nqq �D .
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Figure 3.51: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of NBB �D .
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Figure 3.52: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of NDπD
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Figure 3.53: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of RDπ.
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Figure 3.54: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of ADKsig

(top)
and NDKsig

(bottom).
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Figure 3.55: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of ρ− (top) and θ−
(bottom). See Fig. 3.58 for the corresponding toy MC including systematic errors.
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Figure 3.56: Results of 2000 toy MC experiments (signal and background, no systematic
error in LBA) for the pull (left), error (center) and fitted values (right) of ρ+ (top) and θ+
(bottom). See Fig. 3.59 for the corresponding toy MC including systematic errors.
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Figure 3.57: Minimum value of the NLL from the 2000 toy MC experiments for the yields
step-1 fit (left) and the CP step-2 fit (right). The arrow indicates the NLL found in the
data fit (section 3.10).
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Figure 3.58: Results of 2000 toy MC experiments (signal and background, including sys-
tematic error in LBA) for the pull (left), error (center) and fitted values (right) of ρ− (top)
and θ− (bottom). See Fig. 3.55 for the corresponding toy MC without systematic errors.
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Figure 3.59: Results of 2000 toy MC experiments (signal and background, including sys-
tematic error in LBA) for the pull (left), error (center) and fitted values (right) of ρ+ (top)
and θ+ (bottom). See Fig. 3.56 for the corresponding toy MC without systematic errors.
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Figure 3.60: Dependence of LDP on all pair combinations of the parameters ρ±, θ± (2D
plots) with 1σ contours and the individual parameters in a toy experiment (1D plots).
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Figure 3.61: Dependence of LBA on all pair combinations of the parameters ρ±, θ± (2D
plots) with 1σ contours and the individual parameters in a toy experiment (1D plots).
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Figure 3.62: Dependence of L = LDP + LBA on all pair combinations of the parameters
ρ±, θ± (2D plots) with 1σ contours and the individual parameters in a toy experiment
(1D plots).



3.9. Monte Carlo fit studies 118

3.9.2 Selection bias and Dalitz plot variable measurement resolution

The resolution of the Dalitz variables due to reconstruction effects is calculated as the

difference between the generated and reconstructed values of s+0 and s−0 for DKsig events.

Figure 3.63 shows the average resolution for s+0 (left) and s−0 (right). However, it should

be noted that the resolutions for these two variables are in general correlated and depend

on str+0 and str−0, the true values of s+0 and s−0.
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Figure 3.63: Resolution of the Dalitz variables s+0 (left) and s−0 (right) for DKsig events.
The superimposed curve shows a fit using the sum of three Gaussians with common mean.

We use the flat signal MC sample to check whether the finite resolution of the measure-

ment of the Dalitz plot variables affects the CP fit. The sample consists of 41800 events

that pass the selection cuts. For each event, we calculate the physical signal likelihood

Dphys
DKsig

(str+0, s
tr−0), given values of x and y between −0.3 and 0.3 taken in 0.1-wide steps.8

This likelihood is used to randomly reject events, so that the true Dalitz plot variables of

the remaining ∼ 3000 events (the actual number of events depends on the values of x and

y) have the signal PDF distribution, up to effects due to the Dalitz plot dependence of

the efficiency.

We first check for biases in the resulting “shaped” samples by fitting their true Dalitz

variables using the signal PDF including the efficiency, DDKsig
(str+0, s

tr
−0). The pull distri-

8This study was performed using Cartesian coordinates. The results still hold for the polar coodinates.
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butions and differences between measured and generated values of the CP parameters are

shown in Fig 3.64. Note that the different entries in each plot are highly correlated, as

they are selected from the same flat sample and contain a large fraction of identical events.

Nonetheless, these plots demonstrate that there is no significant bias in these fits, which

contain more than ten times the number of signal events than we expect in the data.

Figure 3.64: Top: Pull distributions for x (left) and y (right) when fitting the true Dalitz
plot variables of “shaped” signal samples. Bottom: Differences between the generated and
measured values of x (left) and y (right). The different entries in each plot, corresponding
to different generated values of x and y, are highly correlated.

Next, we study the effect of the measurement resolution, by fitting the shaped samples’

measured Dalitz variables, i.e., using the PDF DDKsig
(s+0, s−0). The difference between

each fit to the measured and true Dalitz variables is shown in Fig 3.65. Again, the entries

in each plot are highly correlated. However, one can see that the difference between the fit

to the true and the fit to the measured Dalitz variables is much smaller than the expected

statistical error given our data.

From these plots we conclude that the effect of a selection bias on the measurement of

x and y is consistent with the MC statistical error of order 0.02, and that Dalitz variable

measurement resolution effects are of order 0.01.

As an additional test, we generate toy MC including a model for the Dalitz resolu-
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Figure 3.65: Top: Differences between the values of x (left) and y (right) when fitting
the measured and the true Dalitz plot variables of “shaped” signal samples. Bottom:
Differences between the fit errors on x (left) and y (right). The different entries in each
plot, corresponding to different generated values of x and y, are highly correlated.

tion. For each toy MC experiment, the generated events are smeared over the Dalitz

plot according to the resolution model of Fig. 3.63 and then fitted with the original (un-

smeared) signal PDF. Fig. 3.66 shows the result of 5000 toy MC experiments (100 events

per experiment, x = y = 0.0). The squares represent toy MC experiments without the

Dalitz resolution model. The triangles show the result of the toy MC including the Dalitz

resolution. We conclude that the resolution on the Dalitz variables does not have any

measurable effect on either the pull nor the error distribution of x and y.
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Figure 3.66: Comparison of 5000 toy MC experiments (100 B+ events, x, y = 0.0) with
(triangles) and without (squared) the Dalitz resolution model.
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3.9.3 Full MC fit

In this section, we describe the fit performance on a MC cocktail consisting of appropriately

weighted signal, BB generic and qq generic events. The generic B+B− and B0B0 samples

are about five times larger than the on-peak data luminosity whereas the continuum

samples are only 1.5 times the on-peak data luminosity. The DKsig signal events are

obtained by re-weighting the phase-space signal MC sample according to the DDKsig
Dalitz-

PDF. This ensures the correct Dalitz distributions for signal events. After re-weighting,

the DKsig sample is about 26 times larger than the expected number of signal events on

data. DKbgd events are obtained directly from the phase-space signal MC sample.

The first study consists of 26 fits, each using an independent signal sample. The qqD

and qq �D events are randomly selected out of the continuum MC giving rise to a non-

negligible overlap due to the small size of this sample. Finally, 5-6 of the 26 signal samples

are assigned the same BB sample from which the other event types are extracted. Before

each fit we count the true number of events for each type. D → π+π−π0 decays are

incorrectly simulated in the generic MC by a incoherent sum of ρ-resonances. Therefore,

we use DπD events generated from the DDπD
PDF described in section 3.6.7 rather than

events from the generic MC (BBCD, qqD and DπD are removed entirely due to their

negligible yields).

Table 3.32 lists the true and fitted parameters with their error averaged over the 5-6

fits that share the same BB sample. A summary of the deviations of the fitted value from

the true value in standard deviations can be found in Table 3.31. To separate statistical

and systematic effects in the fit, we perform a second study making use of the entire BB

generic MC sample. Due to its small size we do not use the continuum sample in this test.

After scaling all event yields by a factor of 5.0 we are left with five independent signal

samples. Table 3.33 lists the results averaged over the five fits. We do not observe any

large biases and all fitted parameters are within about one standard deviation of their true

values. The same study has been repeated without replacing DπD events in the generic
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MC with comparable results.

Set 1 2 3 4 5
ρ− -0.3 -0.5 0.9 0.2 -1.1
θ− 0.4 0.3 -0.4 -0.8 -1.0
ρ+ -0.1 0.4 0.3 0.3 0.8
θ− -1.4 -0.8 1.7 -0.5 -0.2
RDπX 1.5 -0.3 0.7 0.6 0.7
NDπD

0.8 0.7 0.8 0.5 -0.3
ADKsig

0.2 -0.5 0.9 0.5 -1.8
NqqD 0.4 0.4 0.1 -0.3 0.0
NDKsig

1.0 0.1 1.5 0.8 0.9
NBB �D -1.1 -0.7 -1.2 -0.3 -0.4

Table 3.31: Deviation of the fitted average value from the true average value in numbers
of σ. DπD Dalitz distributions are replaced by data generated from DDπD

. Compare to
the vales in Table 3.32.
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<true> <fit> ± < σ > <true> <fit> ± < σ > <true> <fit> ± < σ >

Set 1 Set 2 Set 3
ρ− 0.779 0.733 ± 0.139 0.779 0.703 ± 0.146 0.779 0.910 ± 0.142
θ− 175 191.9 ± 37.0 175 182.1 ± 26.9 175 164.0 ± 25.3
ρ+ 0.976 0.959 ± 0.131 0.976 1.038 ± 0.142 0.976 1.014 ± 0.135
θ− 179 153.8 ± 18.2 179 158.9 ± 24.6 179 213.2 ± 20.5
RDπX 0.576 0.835 ± 0.169 0.587 0.534 ± 0.162 0.548 0.672 ± 0.174
NDπD

82.0 100.7 ± 23.0 75.0 90.2 ± 22.4 77.0 94.7 ± 21.9
ADKsig

−0.189 −0.163 ± 0.120 −0.170 −0.235 ± 0.135 −0.183 −0.080 ± 0.114
NqqD 2854 2883.6 ± 76.3 2854 2887.8 ± 76.3 2854 2863.1 ± 76.3
NDKsig

202 232.7 ± 30.9 202 203.9 ± 29.8 202 252.0 ± 32.3
NBB �D 1148 1057.8 ± 78.5 1156 1101.1 ± 79.4 1157 1062.0 ± 80.7

Set 4 Set 5
ρ− 0.779 0.812 ± 0.141 0.779 0.637 ± 0.133
θ− 175 154.7 ± 27.4 175 152.6 ± 23.3
ρ+ 0.976 1.015 ± 0.137 0.976 1.086 ± 0.137
θ− 179 166.1 ± 23.2 179 174.7 ± 20.3
RDπX 0.570 0.673 ± 0.166 0.603 0.727 ± 0.169
NDπD

67.0 78.4 ± 21.1 74.0 67.6 ± 21.7
ADKsig

−0.187 −0.129 ± 0.121 −0.159 −0.373 ± 0.122
NqqD 2854 2831.4 ± 76.2 2854 2857.1 ± 76.6
NDKsig

202 226.4 ± 30.7 202 230.7 ± 31.5
NBB �D 1164 1139.7 ± 81.0 1155 1123.5 ± 82.3

Table 3.32: Results of the full MC fit. Each of the five sets has an independent signal and
BB sample but all share the same qq sample. The numbers are averages over three or
four fits. The deviations from the true values in number of σ are listed in Table 3.31.

<true> <fit> ± < σ > Δ(σ)
ρ− 0.779 0.8095 ± 0.0699 0.4
θ− 175 173.27 ± 9.67 -0.2
ρ+ 0.976 1.0026 ± 0.0760 0.3
θ− 179 172.30 ± 8.68 -0.8
RDπX 0.578 0.5838 ± 0.0481 0.1
NDπD

379 389.8 ± 39.0 0.3
ADKsig

−0.167 −0.1637 ± 0.0501 0.1
NDKsig

1011 1050.9 ± 57.6 0.7
NBB �D 5804 5739 ± 104 -0.6

Table 3.33: Average over five fits using the full generic BB MC sample without continuum
events. Each fit has an independent signal sample but all use the same BB sample. The
last column (Δ) shows the difference of the fitted value to the true value in numbers of σ.
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3.10 Data fit

The results of the step-1 fit to obtain the yields and the signal asymmetry are given in

Table 3.34. Table 3.35 summarizes the results of the step-2 fit in two configurations: using

only the shape of the Dalitz plot (using the NLL LDP), and using both the shapes and

the signal yield and asymmetry (using the NLL L = LDP +LBA). It can be seen that the

L-fit is significantly more sensitive to ρ±.

The correlation matrices of the two fits are shown in Table 3.36. The relatively large

correlations between ρ− and ρ+ are due to the systematic errors in LBA.

Projections of the data and the PDF onto the fit variables are shown in Figs. 3.67

through 3.68. The dependences of the NLL’s on the CP parameters are shown in Fig. 3.69

for LDP, Fig. 3.70 for LBAand Fig. 3.71 for L.

Correlation matrix
Parameter Value RDπX NDπD

ADKsig
Nqq �D NDKsig

NBB �D
RDπX 0.53 ± 0.15 1 0.223 -0.037 0.096 0.478 -0.388
NDπD

57.2 ± 19.6 0.223 1 -0.028 0.019 -0.092 -0.257
ADKsig

−0.024 ± 0.148 -0.037 -0.028 1 -0.006 -0.038 0.032
Nqq �D 2383 ± 71 0.096 0.019 -0.006 1 0.090 -0.544
NDKsig

170.1 ± 29.0 0.478 -0.092 -0.038 0.090 1 -0.452
NBB �D 1138 ± 76 -0.388 -0.257 0.032 -0.544 -0.452 1
− logLmin −20505.9

Table 3.34: Results of the step-1 fit on the run 1-5 data sample.

LDP fit LDP+LBA fit
Parameter Value −MINOS +MINOS Value −MINOS +MINOS
ρ− 0.968 ± 0.557 −0.368 +1.24 0.804 ± 0.148 −0.140 +0.159
θ− 174.5 ± 46.3 −39.9 +58.1 173.1 ± 43.3 −37.8 +55.0
ρ+ 0.919 ± 0.359 −0.274 +0.540 0.833 ± 0.145 −0.138 +0.155
θ+ 147.3 ± 23.9 −23.9 +24.8 147.2 ± 23.3 −23.2 +23.8
− logLmin −19068.9 −19068.8

Table 3.35: Results of the step-2 fit on the run 1-5 data sample. The first fit is done with
only the Dalitz shape NLL LDP, and the second incorporates also the signal yield and
asymmetry.
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LDP fit LDP+ LBA fit
Parameter Global ρ− θ− ρ+ θ+ Global ρ− θ− ρ+ θ+
ρ− 0.137 1 0.137 0.000 0.000 0.400 1 0.020 0.400 0.005
θ− 0.137 0.137 1 0.000 0.000 0.020 0.020 1 0.008 0.000
ρ+ 0.028 0.000 0.000 1 0.028 0.400 0.400 0.008 1 0.013
θ+ 0.028 0.000 0.000 0.028 1 0.013 0.005 0.000 0.013 1

Table 3.36: Correlation matrix of the data fit done with the NLLs LDP(left) and L =
LDP + LBA (right).
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Figure 3.67: ΔE (left), q′ (center) and d′ projection (right) of the data fit. The solid line
shows the fitted PDF and the dots show the data.
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Figure 3.68: s+0 (left), s−0 (center) and s+− projection (right) of the data fit. The solid
line shows the fitted PDF and the dots show the data.
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Figure 3.69: Dependence of LDP on all pair combinations of the parameters ρ±, θ± (2D
plots) with 1σ contours and the individual parameters (1D plots) for the data.
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Figure 3.70: Dependence of LBA on all pair combinations of the parameters ρ±, θ± (2D
plots) with 1σ contours and the individual parameters (1D plots) for the data.
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Figure 3.71: Dependence of L = LDP + LBA on all pair combinations of the parameters
ρ±, θ± (2D plots) with 1σ contours and the individual parameters (1D plots) for the data.
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3.11 Systematic errors

Table 3.37 lists the systematic uncertainties to be added to the error from the data fit.

Some of the systematic uncertainties in this analysis are already incorporated in the main

fit through the LBA term in the likelihood fit. In order to separate these errors from

the statistical error, Table 3.38 lists the individual contributions to the total error of the

fit. Finally, Table 3.39 summarizes the systematic uncertainties on the signal branching

fraction. More details can be found in the following sections.

Source ADKsig
NDKsig

ρ− θ− ρ+ θ+ Section
Fixed fractions 0.0023 7.93 0.0214 1.38 0.0190 1.40 3.11.1
MC statistics 0.0058 8.55 0.0173 10.48 0.0171 3.18 3.11.2
Sig. Dalitz model n/a n/a 0.05 10 0.05 10 3.11.3
DKbgd Dalitz shape n/a n/a 0.0007 1.09 0.0007 0.48 3.11.4
Bgd. Dalitz shapes n/a n/a 0.004 3.51 0.004 1.00 3.11.5
Bkd. shapes of ΔE, q′, d′ 0.0020 5.18 0.0127 2.69 0.0121 1.26 3.11.6
Asym. in DKbgd, DKX 0.0083 0.23 0.0046 0.10 0.0034 0.12 3.11.7
Detector charge asym. 0.0251 0.09 0.0121 0.60 0.0107 0.03 3.11.8
Kaon charge in qqD n/a n/a 0.0031 0.94 0.0033 1.04 3.11.9
PID efficiency n/a n/a 0.0023 0.19 0.0023 0.32 3.11.10
D∗ Bgd. shape n/a n/a 0.0087 2.23 0.0085 1.61 3.11.11
Dalitz variable resolution n/a n/a 0.01 0.7 0.01 0.7 3.11.12
Total 0.0272 12.76 0.0616 15.47 0.0603 10.92

Table 3.37: Summary of additive systematic uncertainties in addition to the errors used
in LBA.

Source ρ− θ− ρ+ θ+ Section
B(B− → D0K−) 0.0804 3.88 0.0774 2.13 3.11.16
B(D0 → K−π+π0) 0.0368 1.62 0.0355 0.98 3.11.16
B(D0→π+π−π0)
B(D0→K−π+π0)

0.0056 0.03 0.0053 0.02 3.11.16

Signal efficiency 0.0141 0.08 0.0135 0.06 3.11.16
NBB 0.0046 0.03 0.0044 0.02 3.11.16
Total 0.0898 4.21 0.0865 2.35

Table 3.38: Summary of subtractive systematic uncertainties. These errors are already
incorporated in the main fit through the LBA term of the likelihood.
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Source BF error (%) Section
PID efficiency 3.1 3.11.10
π0 efficiency 3.0 3.11.13
Tracking efficiency 1.5 3.11.14
B counting 1.1 3.11.15
Total 4.70

Table 3.39: Systematic errors on the signal branching fraction.

3.11.1 Variation of fixed event yield fractions

The five event yield fractions that are fixed in the fits are varied, and the two-fit analysis is

repeated to evaluate the resulting systematic error. The fractions are varied conservatively

by ±50%, except for RDKX , which is varied by its PDG uncertainty of ±25%. For each

pair of fits we take

σ2
α =

(α+ − α)2 + (α− − α)2

2
(3.40)

as the systematic uncertainty for parameter α ∈ {ADKsig
, NDKsig

, ρ−, θ−, ρ+, θ+} where α

is the nominal fit value and α± is the fit value with one of the fixed fractions varied by

the above amount. The resulting uncertainties in the parameters of interest are shown in

Table 3.40.

Source ADKsig
NDKsig

ρ− θ− ρ+ θ+
RqqD 0.0006 1.97 0.0056 0.38 0.0062 0.76
RBBCD

0.0006 0.58 0.0034 0.61 0.0027 0.36
RDπ �D 0.0009 1.09 0.0025 0.43 0.0016 0.29
RDKbgd

0.0005 7.56 0.0196 0.94 0.0175 1.06
RDKX 0.0019 0.53 0.0048 0.57 0.0027 0.17
Total 0.0023 7.93 0.0214 1.38 0.0190 1.40

Table 3.40: Systematic uncertainties due to variation in the fixed fit fractions.

3.11.2 MC statistics

For all PDFs that are obtained by fitting MC samples the following method is used to

evaluate the systematic uncertainty due to finite MC statistics. The MC fit for a PDF
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β with Nβ floating parameters results in a Nβ-dimensional parameter vector pβ and a

Nβ × Nβ error matrix V β. If A is the (orthogonal) matrix of eigenvectors of V β, we

obtain the parameter vector and the error matrix in the diagonal basis as q = AT pβ and

W = ATV βA. In this basis, we vary qi by ±√
Wii and transform it back into the original

basis. We repeat the data fit and obtain new values α±
j for each parameter of interest

α ∈ {ADKsig
, NDKsig

, ρ−, θ−, ρ+, θ+}. This procedure is repeated for all parameters pβi and

for all PDFs β resulting in 2N = 2
∑

β N
β = 338 data fit results. The total systematic

uncertainty due to MC statistics is

σ2
MC stat =

1
2

N∑
j=1

[(
α+
j − α

)2
+
(
α−
j − α

)2
]
. (3.41)

3.11.3 D0 → π+π−π0 Dalitz model

To evaluate the chages in the CP parameters due to the signal Dalitz model we repeat

the data fit with different D0 → π+π−π0 Dalitz models. Table 3.41 lists the differences to

the nominal fit result for different Dalitz models with increasing number of components.

In addition we show the difference to the nominal fit result for a fit with the meson radial

parameter R of the Blatt-Weisskopf penetration factor set to zero.

Based on these results and considering that the first two models in Table 3.41 are too

simplistic and hence unrealistic, we assign a systematic error of 0.05 for ρ± and 10◦ for

θ±.

3.11.4 DKbgd Dalitz shape

The DKbgd Dalitz shape is obtained from high statistics MC with the CLEO parameters.

To estimate the uncertainty on the CP parameters, we repeat the data fit with a shape

obtained from signal toy MC generated according to the D decay parameters we find and

the KSπ
+π− values for ρ± and θ±. We then smear the generated MC with the residuals

between the true and reconstructed s+0 and s+0 values found in the phase space signal
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Dalitz model ρ− θ− ρ+ θ+
NRS , ρ(770) 0.0862 16.42 0.0595 −6.82
+ f0(980) 0.0760 21.14 0.0453 5.01
+ ρ(1450) −0.0071 6.27 −0.0215 −7.89
+ ρ(1700) 0.0307 3.21 0.0100 −9.91
+ f0(1370, 1500, 1710), f2(1270) −0.0434 −9.72 −0.0463 −1.40
+ σ 0 0 0 0
+ NRP 0.0163 0.06 0.0142 −1.22
+ ω, f ′2(1525) 0.0144 3.15 0.0128 −1.82
R = 0 0.0014 7.97 0.0007 0.01

Table 3.41: Differences to the nominal fit result for different D → π+π−π0 Dalitz models
and with the meson radial parameter R set to zero.

MC simulation. A new shape for the DKbgd events is obtained from this sample and the

data fit is repeated. The differences between the results of this fit and the nominal fit are

taken as the systematic error.

3.11.5 Uncertainties in simulation of background Dalitz plot shape

We obtain a histogram of the Dalitz distributions on both the MC and data in the mES

sideband. The ratio of the normalized histograms in each bin gives a first-order estimate

of the data/MC agreement. In section 3.5.2 we showed that these distributions are in

good statistical agreement. Nonetheless, we evaluate the error due to the fact that the

agreement is not perfect.

To do this, we apply the full data-MC difference to the Dalitz PDF of the DπX

background and repeat the data fit. The procedure is repeated with the data-MC difference

assigned to the DKbgd PDF. Table 3.42 lists the differences to the nominal data fit.

We take the set with the larger differences (DπX) as the systematic error due to the

background Dalitz plot shape.

3.11.6 ΔE, q′ and d′ shapes

The systematic uncertainties due to MC-data differences in the one-dimensional PDF

shapes of ΔE, q′ and d′ are evaluated as follows. For each of the three PDFs β and each
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Source ρ− θ− ρ+ θ+
Diff. applied to DπX 0.004 −3.51 0.004 −1.00
Diff. applied to DKbgd −0.0001 −0.55 −0.0002 0.09

Table 3.42: Systematic errors due to the uncertainties in the simulation of background
Dalitz plot shape. The data/MC differences observed are applied separately to the DπX
and DKbgd Dalitz background shape.

event type t, we obtain the PDF parameter vector pβt in the mES sideband on MC. These

parameters are used to fit the mES sideband on data, in which we allow the parameters

pβqq �D of the dominant background qq �D to float. The difference qβqq �D −pβqq �D between the new

parameters qβqq �D and the original MC sideband parameters is applied to our nominal fit

parameters and we repeat the nominal data fit. In other words, we assign the entire MC-

data difference to the dominating background type. The changes in the analysis variables

with respect to the nominal fit are taken as systematic uncertainty and listed in Table 3.43.

Source ADKsig
NDKsig

ρ− θ− ρ+ θ+
Bgd. ΔE shapes 0.0016 3.26 0.0048 1.59 0.0062 0.17
Bgd. d′ shapes 0.0011 3.93 0.0115 1.01 0.0103 0.58
Bgd. q′ shapes 0.0003 0.88 0.0022 1.92 0.0015 1.11
Total 0.0020 5.18 0.0127 2.69 0.0121 1.26

Table 3.43: Differences to the nominal fit and resulting systematic errors due to the
uncertainty in the ΔE, q′ and d′ shapes

3.11.7 Possible asymmetry in DKbgd and DKX

The nominal fit was performed with zero asymmetry for the DKbgd and DKX event

types. Since these are B → DK decays they can have a Standard Model asymmetry.

As in the branching ratio analysis [61], we assume a possible asymmetry in DKX of

ADKX � 0.022 and repeat the fit with ADKX = ±0.022. To evaluate the error due

to a possible asymmetry in DKbgd we set ADKbgd
equal to ADKsig

in the fit under the

assumption that nothing in the reconstruction can change the charge asymmetry of signal

events. Table 3.44 summarizes the resulting systematic errors.
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Source ADKsig
NDKsig

ρ− θ− ρ+ θ+
ADKX = +0.022 0.0043 −0.01 0.0025 −0.09 −0.0018 0.07
ADKX = −0.022 −0.0044 0.23 −0.0021 0.03 0.0022 −0.08
ADKbgd

= ADKsig
−0.0055 0.01 −0.0032 0.03 0.0019 0.05

Total 0.0083 0.23 0.0046 0.10 0.0034 0.12

Table 3.44: Differences to the nominal fit and resulting systematic errors due to asymme-
tries in DKX and DKbgd events.

3.11.8 Global detector charge asymmetry

A possible charge asymmetry in the detection efficiency for K+ versus K− is evaluated by

floating a global charge asymmetry, which affects all event types equally, in the fit. The

fitted value for the global asymmetry is −0.007 ± 0.018. We take the difference in the

analysis variables to the nominal fit as a systematic error.

3.11.9 Kaon charge correlation in qqD.

The Cabibbo allowed decay D0 → K+ +X can introduce a wrong sign charge correlation

in the qqD background events. The systematic effect is expected to be small since qqD

events contribute less than 1% to the total. Nevertheless, we evaluate the systematic error

due to a wrong sign kaon by assuming a 100% correlation between a wrong sign kaon and

qqD events. The difference to the nominal fit is taken as a systematic error.

3.11.10 PID efficiency

Since the corrections due to PID are very small (see Table 3.4), we conservatively take the

magnitude of the correction (3.1%) as systematic error to the signal branching fraction.

In addition, we repeat the data fit without the PID corrections on the Dalitz efficiency

function and take the almost negligible difference to the nominal fit as the systematic

error. As a cross-check, we repeat the fit with a flat efficiency function. The result of this

fit are within the errors of the “no-PID” fit and we conclude that the efficiency function

does not have any appreciable effect on the CP parameters.
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3.11.11 Uncertainty due to the D∗ background shape

Instead of taking the background Dalitz plot PDF from the data sideband as described

in section we repeat the D Dalitz fit with the background PDF extracted from the MC

signal region and obtain a new set of Dalitz parameters. With these we repeat the CP -fit

and take the difference to the nominal fit as the systematic error.

3.11.12 Finite Dalitz variable resolution

Based on the studies of section 3.9.2 we assign an error of 0.01 to the Cartesian CP

parameters. This translates into an error of 0.01 on ρ± and 0.7◦ on θ±.

3.11.13 π0 efficiency

We use the ratio of data and MC efficiencies for π0 mesons from the official recipe to be

0.968311 and assign a 3.0% systematic error.

3.11.14 Tracking efficiency

No efficiency corrections are needed for tracking in release 18. We assign a systematic

error of 0.5% per track resulting in 1.5% total systematic uncertainty due to the three

tracks in our decay mode.

3.11.15 B counting

The systematic error on the number of BB pairs is 1.1%.

3.11.16 Subtractive systematic errors

To separate the systematic errors included in LBA from the total error returned by the fit,

we determine the individual contributions separately. The two largest uncertainties are



3.11. Systematic errors 137

from the secondary branching fractions [68]

B(B− → D0K−) = (3.7 ± 0.6) × 10−4

B(D0 → K−π+π0) = (13.2 ± 1.0) × 10−2.

We repeat the data fit without including the error on B(B− → D0K−) in the error

matrix of LBA and obtain a new (and smaller) value for the error σ̃α of the floating

parameter α ∈ {ρ±, θ±}. The systematic error due to B(B− → D0K−) is calculated from

σ2 = σ2
α − σ̃2

α where σα is the error from the nominal data fit. The same procedure is

repeated for B(D0 → K−π+π0). The relative error on the ratio of branching fractions

from [69]
B(D0 → π+π−π0)
B(D0 → K−π+π0)

= (10.59 ± 0.06 ± 0.13) × 10−2 (3.42)

is 1.4%. This small error cannot be reliably determined by the above method. Instead,

we change the nominal values in LBA by ±1σ, repeat the data fit, and take the average

squared difference as the systematic uncertainty for ρ± and θ±, respectively. The same

is repeated for the uncertainties on NBB (section 3.11.15) and combined error on the

efficiency due to tracking and π0 corrections (section 3.11.13 and 3.11.14).



3.12. Physics results 138

3.12 Physics results

3.12.1 Branching fraction and asymmetry measurement

The branching fraction is calculated from

B(B± → (π+π−π0)DK±) =
NDKsig

NBB ε
. (3.43)

Using an absolute efficiency of ε = 11.41% and NBB = 324, 041, 437, we measure

B(B± → (π+π−π0)DK±) = (4.6 ± 0.8 (stat.) ± 0.7 (syst.)) × 10−6 (3.44)

and a decay rate asymmetry

A(B± → (π+π−π0)DK±) = −0.02 ± 0.15 (stat.) ± 0.03 (syst.) , (3.45)

where the asymmetry is defined as A = N−−N+

N−+N+ with N± as the number of DKsig signal

events from B± decays.

3.12.2 CP parameter measurement

The CP parameters measured in B± → (π+π−π0)DK± are

ρ− = 0.804 ± 0.118 (stat.) ± 0.109 (syst.)

θ− = 173.1◦ ± 43.1◦ (stat.) ± 16.0◦ (syst.)

ρ+ = 0.833 ± 0.116 (stat.) ± 0.105 (syst.)

θ+ = 147.2◦ ± 23.2◦ (stat.) ± 11.2◦ (syst.) . (3.46)

The statistical error is the error from the fit reduced by the systematic error from Ta-

ble 3.38. The systematic error is the combined error of Table 3.37 and Table 3.38.

The polar coordinates ρ± and θ± are defined with respect to the Cartesian and physical
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parameters z± = x± + iy± = rBe
i(δ±γ) as

ρ±2 = (x± − x0)2 + y2
±

= (rB cos(δ ± γ) − x0)2 + rB
2 sin2(δ ± γ)

tan θ± =
y±

x± − x0

=
rB sin(δ ± γ)

rB cos(δ ± γ) − x0
(3.47)

with the numerical value of the coordinate offset along the real axis being x0 = 0.8496.
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3.13 Summary

In summary, this chapter presented the first measurement of the CP parameters in B± →
(π0π+π−)DK± decays. After B± → (K0

Sπ
+π−)DK± this is the second mode where a

GGSZ/Dalitz analysis was performed with the goal to measure the CKM angle γ. It is

the first analysis where the CP parameters are not exclusively extracted from the Dalitz

shape or the rate asymmetry alone, but the information from both sources is used simul-

taneously in the fit. Due to the additional constraints and resulting likelihood shape, a

new set of polar coordinates was introduced. This is different from the previous GGSZ

analyses by BABAR and Belle where Cartesian coordinates have been used. It was shown

that the additional information from the decay rate asymmetry significantly improves the

sensitivity of the measurement in this decay mode.

As is true for any γ-analysis with the current available statistics, this analysis is not

a high precision measurement on its own. However, adding this mode to the other γ

measurements will decrease the overall error. Intentionally, it was not attempted to extract

a value of γ based on the results of this analysis. Due to the relatively large errors on two

of the four CP parameters (θ±), the sensitivity on γ would be greatly decreased. It was

considered more important to present the results in a way that makes their combination

with other measurements straightforward. This is left to the “averaging groups” that have

the necessary knowledge and experience in correctly combining measurements.

At the beginning of the B-factory programs it was the word that “Measuring β is easy,

measuring α is hard and measuring γ is impossible”. With advances in both theory and

experiment, we succeeded in the first direct measurements of γ. With the startup of the

Large Hadron Collider (LHC) at CERN or possibly the construction of a SuperB factory,

using the same methods as described in this dissertation will eventually result in a precise

measurement of the CKM angle γ.
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Appendix 3.A Inadequacy of Cartesian coordinates

The inadequacy of the Cartesian coordinates in the MLL-fit using L = LDP + LBA (sec-

tion 3.8) is best demonstrated with toy MC. We perform the same toy study as in sec-

tion 3.9.1 but this time using the Cartesian coordinates x and y. The results for each

floating variable are shown in Figs. 3.72-3.78. The pull distributions for the event yields,

RDπ fraction and the asymmetry (Figs. 3.72-3.76) are standard normal distributions and

need no further discussions. This is not the case for the x and y pull distributions.

The x-pull is shifted to positive values and too narrow, while the y-pull is shifted to

negative values and too wide when fitted to a Gaussian. The narrow x-pull is explained by

the fact that the toy experiments do not properly simulate the systematic errors included in

LBA and therefore overestimate the error. This effect mostly manifests itself in x because

the curvature of LBA in the y-direction is very small compared to the x-direction for true

values of x and y close to zero (see Fig. 3.48). The source of the upward bias in x can be

seen in the same figure. Due to the non-linear correlations between x and y, a fluctuation

of y in either direction will lead to a higher value of x (x moves (counter)clockwise on the

circle in Fig. 3.48 for an upward (downward) fluctuation of y).

The reason for the large width of the y-pull is best explained with the help of Fig. 3.79

that shows the y-pull versus the error on y and the fitted value of x. For values of x larger

than about 0.4, the distribution of y-pulls becomes bifurcated representing the ambiguity

in LBAfor these values of x. At the same time the error on y decreases due to the larger

curvature of LBAin the y-direction. In other words, the y-pull distribution represents

two types of experiments. The “physical” experiment with small values of x and y, and

the “unphysical” experiment with x � 0.4 with an ambiguity in y. In fact, the y-pull

distribution of experiments with x < 0.4 has indeed unit width. The bias of the y-pull is

not understood quantitatively at this point.

The NLL projections of LDP, LBA and L for the Cartesian coordinates using toy

MC can be found in section 3.8. For reference, Figs. 3.80 through 3.82 show the NLL
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projections for the data.
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Figure 3.72: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of Nqq �D .
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Figure 3.73: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of NBB �D .
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Figure 3.74: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of NDπD
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Figure 3.75: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of RDπ.
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Figure 3.76: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of ADKsig

(top) and NDKsig
(bottom).
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Figure 3.77: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of x− (top) and y− (bottom).
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Figure 3.78: Results of 2000 toy MC experiments (signal and background) for the pull
(left), error (center) and fitted values (right) of x+ (top) and y+ (bottom).
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Figure 3.79: Scatter plots of the y-pull versus the error on y (left) and the fitted value of
x.
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Figure 3.80: Dependence of LDP on all pair combinations of the parameters x±, y± (2D
plots, 1σ contours) and on the individual parameters (1D plots) for the data.
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Figure 3.81: Dependence of LBA on all pair combinations of the parameters x±, y± (2D
plots, 1σ contours) and on the individual parameters (1D plots), using the signal yield
and asymmetry from the step-1 data fit.
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Figure 3.82: Dependence of L = LDP + LBA on all pair combinations of the parameters
x±, y± (2D plots, 1σ contours) and on the individual parameters (1D plots) for the data.
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Appendix 3.B Fit validation using B− → Dπ−

Negligible CP -violation is expected for B− → Dπ+π−π0π− decays. Therefore, a fit to

this higher statistics Dalitz plot can be used as a validation of the analysis method. CP

parameters obtained from the fit should be consistent with no CP -violation within the

statistical errors. For this validation we perform the same fit as for the B− → DK− sam-

ple, minimizing the function L = LDP +LBA, using a signal PDF plus a single background

component. The selections used for this validation are similar to the one in the main

analysis, except

1. 0.005 < ΔE < 0.090GeV/c2

2. q > 0.4

3. d > 0.5,

which have been chosen so as to optimize the signal to background ratio S/
√
S +B.

In addition we define a lower (−0.08 < ΔE < 0.01GeV/c2) and upper (0.1 < ΔE <

0.14GeV/c2) ΔE sideband region. The ΔE width is about 22MeV for this mode. Fitting

the ΔE distributions to the sum of a Gaussian and a linear function, we find (870 ± 47)

B− → Dπ+π−π0π− events and (928 ± 51) B+ → Dπ+π−π0π+ events. Figure 3.83 shows

the results of these fits.

To determine how best to obtain the background Dalitz shape, we do simple com-

parisons of the Dalitz distributions in data and MC. Fig. 3.84 shows the Dalitz plot of

B− → Dπ+π−π0π− in the ΔE sideband and signal region (defined above). The agreement

is reasonable, but not very good. Fig. 3.85 shows the Dalitz distributions in the ΔE side-

band on data and MC. The agreement is good. Given the results of these comparisons, we

use a histogram-based PDF for the background, taking the shape from the data ΔE side-

band. This histogram is shown in Fig. 3.86. For the CP fit, we are using the same signal

Dalitz PDF as in the B− → D0K− analysis, and LBA is calculated as in section 3.8.1,

with the B− → D0π− branching fraction and the above efficiency used in Eq. (3.29). The
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Figure 3.83: Fits to the ΔE distribution of negative (left) and positive (right) B →
Dπ+π−π0π candidates in the data.
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results of the fit are summarized in Table 3.45. It is seen that the CP parameters obtained

from the B− → D0π−sample are consistent with no CP violation, although the difference

is somewhat large (1.7 times the statistical error) for y+ and θ+, respectively.

Value σ from 0 Value σ from x0/180◦

x− 0.002 ± 0.045 0.04 ρ− 0.853 ± 0.044 0.07
y− −0.095 ± 0.103 −0.92 θ− 186.4 ± 7.0 0.91
x+ −0.023 ± 0.049 −0.47 ρ+ 0.893 ± 0.045 0.96
y+ −0.188 ± 0.109 −1.72 θ+ 192.2 ± 7.1 1.72

Table 3.45: Fit results for B− → D0π− using Cartesian and polar coordinates. Errors are
only due to statistics, as well as the systematics associated with LBA, namely, the error on
the efficiency, the luminosity, the branching fractions B(B− → D0π−), B(D → K−π+π0),
and the ratio B(D → π+π−π0)/B(D → K−π+π0).



Chapter 4

Analysis of

B → X(3872)K, X(3872) → J/ψπ+π−

This chapter describes the analysis of B → X(3872), X(3872) → J/ψπ+π− decays, which

updates and supersedes the previous BABAR measurement [27]. Moreover, it is the first

dedicated search for the X(3872) in neutral B decays. The decay modes under investiga-

tion are:

• B0 → X(3872)K0
S , X(3872) → J/ψπ+π−, K0

S → π+π−

• B− → X(3872)K−, X(3872) → J/ψπ+π−.

The ratio of branching fractions and the masses of the X(3872) in these two decay modes

will help to decide between different models for the X(3872). The initially favored Char-

monium assignment [70–72] is considered unlikely in the meantime due to the discrepancy

of the predicted mass. A review of the Diquark-Antidiquark and meson molecule model

can be found in section 1.4.2 and 1.4.3 of this dissertation.

4.1 Data sample

The data we use in this analysis consists of the following subsamples:

153
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• On-peak data

Run 1-4 data are used with the runs 1-3 as defined in the BlackDiamond dataset

and the “final run 4 dataset” for run 4.

• Signal Monte Carlo

We have generated signal Monte Carlo for each of the following modes:

– B0 → X(3872)K0
S , X(3872) → J/ψρ0, ρ0 → π+π−, K0

S → π+π−

– B− → X(3872)K−, X(3872) → J/ψρ0, ρ0 → π+π−

The decay model is sequential, two-body phase-space and the X(3872) is generated

as a zero-width particle. Note that we simulate the dipion as originating from a ρ0.

This seems to match the observed dipion invariant mass better than a pure phase-

space model. However, at this point, it is not clear, whether it is really ρ → ππ or

not.

• Generic Monte Carlo

We are using B0B0, B+B−, cc and uds MC samples. SP5 MC is used to simulate

run 1-3 and SP6 for run 4.

Table 4.1 summarizes the data sample. The equivalent integrated luminosity for the

MC samples are calculated using L = N/σ with the number of events N and the cross

section σ. For on-peak data we are showing the official B-counting numbers (NBB) and

the all MC samples are scaled to the total on-peak data luminosity of 210.6 fb−1.
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Mode # events σ( nb) L( fb−1) scale factor
B0 → X(3872)K0

S ,X(3872) → J/ψπ+π− 57,000
B− → X(3872)K−,X(3872) → J/ψπ+π− 57,000
B0B0 generic MC 453,426,225 0.551 822.92 0.256
B+B− generic MC 465,004,433 0.551 843.93 0.249
uds MC 551,116,526 2.090 263.69 0.798
cc MC 274,406,199 1.300 211.08 0.997
Run 1 21,181,864 19.459
Run 2 66,441,247 60.267
Run 3 34,076,579 31.061
Run 4 110,107,681 99.763
Total on-peak (NBB) 231,807,371 210.550 1

Table 4.1: Data sample summary. Number of events, cross section σ, integrated luminosity
L and scale factor to on-peak data luminosity.
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4.2 Candidate reconstruction and preselection

The data were reconstructed with analysis-22/23 at GridKa/SLAC. For all the data and

Monte Carlo, except signal MC, we use the Jpsitoll skim (release 14 processing). We use

two tag bit filters, in order to preselect events on the level of the tag database. JpsiELoose

|| JpsiMuLoose selects only the J/ψ candidates from the skim and R2All<0.5 is used

for continuum suppression.

4.2.1 Reconstruction of J/ψ → l+l−

We are only reconstructing J/ψ candidates in the two leptonic modes:

• J/ψ → e+e−

Oppositely-charged tracks from the list PidLHElectrons and electron candidates

from the same list undergoing the standard bremsstrahlung recovery are used to form

a J/ψ candidate. The electrons are fitted with a geometric and a mass constraint

and must satisfy 2.9 < m(e+e−) < 3.2GeV/c2.

• J/ψ → μ+μ−

Oppositely charged muon candidates from the list muNNVeryLoose fitted in the same

way as electrons and satisfying 3.0 < m(μ+μ−) < 3.2GeV/c2 are used to form a J/ψ

candidate.

In both cases we constrain the dilepton invariant mass to the J/ψ mass from the PDG.

4.2.2 Reconstruction of ψ(2S)/X(3872) → J/ψπ+π−

The ψ(2S) decays into the same final states we are interested in, and thus we expect to

see this decay mode in our spectrum as well. We form a ψ(2S) (or X(3872)) candidate

by combining the J/ψ candidate with two pion candidates from the list piLHVeryLoose

using a geometric fit.
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4.2.3 Reconstruction of K0
S → π+π−

Our K0
S selection is the same as used in the B → K0

Sπ
0 analysis (see AnalTools/611 HN).

K0
S candidates are formed from oppositely ChargedTracks requiring |m(π+π−)−mK0

S
| <

25MeV/c2, a χ2 consistency of the fit > 0.001 and flight length significance l/σ(l) > 3.

4.2.4 Reconstruction of B meson candidates

The final B meson candidate is formed by combining the ψ(2S) candidate with either a K0
S

candidate or a charged kaon candidate from the KLHVeryLoose list by using a geometric

fit and requiring |ΔE| < 0.3GeV and 5.2 < mES < 5.3GeV/c2.

4.2.5 Fox-Wolfram moment

Figure 4.1 shows R2 for signal (left), data and generic MC (right). The plot uses the

optimized cuts described later and we conclude that there is only a tiny contamination

from continuum (qq) background.
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Figure 4.1: Fox-Wolfram moment R2 in B− → J/ψπ+π−K−for signal MC (left), generic
MC and data (right).
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4.3 Final candidate selection

4.3.1 Optimization procedure

The final selection criteria are optimized by maximizing the following quantity [73]:

nS
a/2 +

√
nB

→ max (4.1)

with nS as the number of signal events from signal MC, nB the weighted (and normalized

to on-peak data luminosity) sum of background events from different generic MC samples

(BB, cc and uds) and a the desired significance of signal to background separation in

numbers of sigmas (we choose a = 3). 9

From our very similar previous analysis of B → J/ψπ±π0K [74] we already had a

good idea of possible useful discriminating variables. We did the optimization as a grid

search starting with larger binnings and then reoptimizing around the found optimum

with smaller bins. The variables, ranges and step sizes used in the optimization for the

π+π− modes are as follows:

• |ΔE| < 5, 10 . . . 40MeV/c2

• |mES − 5.279GeV/c2| < 4, 6 . . . 10MeV/c2

• |m(J/ψπ+π−) − 3.872GeV/c2| < 4, 6 . . . 10MeV/c2

• K0
S mass: |m(K0

S) − 497.7MeV/c2| < 10, 15 . . . 25MeV/c2

• Thrust angle: | cos θThrust| < 0.85, 0.9 . . . 1.0

• Fox-Wolfram Moment: R2 < 0.40, 0.45, 0.50

• Muon Particle ID ∈ {muNNVeryLoose, muNNLoose, muNNTight}

• Kaon Particle ID ∈ {KLHVeryLoose, KLHLoose, KLHTight}
9Notice that it is not crucial for the optimization how we treat multiple candidates as long as we only

count one candidate per event. See section 4.3.6 for how we treat multiple candidates.
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• Pion Particle ID ∈ {piLHVeryLoose, piLHLoose, piLHTight}

The lepton invariant mass cut and electron PID selection is fixed to the values described

in section 4.3.3.

4.3.2 Optimization results

Besides the final candidate selection criteria, which are described below, the optimization

revealed that neither the thrust angle cut nor an additional cut on the Fox-Wolfram

Moment R2 is helpful in increasing the sensitivity. The common mES signal window

for all modes is |mES − 5.279GeV/c2| < 6MeV/c2. The optimized ΔE signal window is

|ΔE| < 15MeV for the π+π− and the optimized X-particle signal region is |m(J/ψπ+π−)−
3.872GeV/c2| < 6MeV/c2.

4.3.3 Final J/ψ selection

Our final J/ψ selection uses the standard charmonium mass cuts and lepton selectors as

follows:

• 2.95 < m(J/ψ → e+e−) < 3.14GeV/c2

Both electrons have to pass the PidLHElectron (not optimized) electron selector

• 3.06 < m(J/ψ → μ+μ−) < 3.14GeV/c2

One muon has to pass the muNNVeryLoose and the other muon has to pass the

muNNLoose muon selector.

Fig. 4.2 shows the J/ψ mass distributions in the electronic and muonic mode with the

arrows indicating the final mass cut on the J/ψ candidate.

4.3.4 Final K0
S selection

Since we already had a somewhat optimized preselection for the K0
S , the signal is very

clean. The final cut we choose is |m(K0
S → π+π−) − 497.7)| < 15MeV/c2. Figure 4.3
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Figure 4.2: J/ψ → e+e− (top) and J/ψ → μ+μ− (bottom) in B− → J/ψπ+π−K−.
One can see the longer tail in the electron mode because of the energy loss due to
bremsstrahlung. The small arrows indicate our final cuts.
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shows the K0
S → π+π− invariant mass in B0 → J/ψπ+π−K0

S .
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Figure 4.3: K0
S → π+π− invariant mass in B0 → J/ψπ+π−K0

Swith the optimized cuts
applied. The left plot shows signal MC and the right plot shows background MC and
data (red dots). The solid, blue line is the weighted sum of all MC samples. The arrows
indicate our final mass cut.

4.3.5 Final K± and π± selection

Kaon candidates have to pass the KLHVeryLoose selector. One of the two pions in the

π+π− modes has to pass piLHLoose and the other pion has to pass the piLHTight selector.

4.3.6 Summary of selection cuts and efficiencies

Table 4.2 summarizes the final selection criteria. Applying all of the above cuts to our sig-

nal MC samples and counting the remaining events nS,MC , we obtain the (cut-)efficiencies

εMC =
nS,MC

NMC
(4.2)

as listed in Table 4.3. The error on εMC is taken as binomial distributed with

σε =
√
ε(1 − ε)/NMC . (4.3)
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Variable Selection
ΔE |ΔE| < 15MeV (π+π− modes)
mES |mES − 5.279GeV/c2| < 6MeV/c2

X± candidate mass |m(J/ψπ+π−) − 3.872GeV/c2| < 6MeV/c2

J/ψ → e+e− mass 2.95 < m(J/ψ → e+e−) < 3.14GeV/c2

J/ψ → μ+μ− mass 3.06 < m(J/ψ → μ+μ−) < 3.14GeV/c2

K0
S mass |m(K0

S → π+π−) − 497.7)| < 15MeV/c2

Electron PID PidLHElectron, PidLHElectron
Muon PID muNNVeryLoose, muNNLoose
Pion PID piLHLoose, piLHTight
Kaon PID KLHVeryLoose

Table 4.2: Final selection cuts besides the preselection criteria mentioned in section 4.2.

Furthermore we list the number of remaining candidates per event. In case there is more

than one remaining candidate per event we choose the candidate with the smallest |ΔE|
for all of our plots (and the efficiency calculation) - except when showing ΔE itself.

Mode NMC nS,MC εMC Error εMC cand/event
B0 → J/ψπ+π−K0

S 57,000 9,565 16.78% 0.16% 1.01
B− → J/ψπ+π−K− 57,000 12,007 21.06% 0.17% 1.01

Table 4.3: Efficiencies and number of candidates per event after applying all the optimized
cuts on signal MC. These efficiencies are not used in the final analysis. See section 4.4 for
the determination of the fit efficiency.
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4.4 Signal extraction

In this section, we describe the analysis method for the two modes B0 → J/ψπ+π−K0
S and

B− → J/ψπ+π−K−. The method is based on a two-dimensional unbinned extended

maximum likelihood (UEML) fit to the mES and m(J/ψπ+π−) (called mX) invariant mass

distribution. The method and the data sample used as input for the fit are described in

the following sections.

4.4.1 Candidate selection and fit variables

The obvious fit variables in this analysis include ΔE, mES and mX . However, there

remain a significant number of multiple candidates if the fit includes all of those three

variables and the modelling of the likelihood function gets more complicated. Therefore,

we decided to cut on ΔE, select the candidate with the smallest |ΔE| and perform a

two-dimensional UEML fit to mES and mX . The detailed analysis method consists of the

following steps:

1. Apply all the optimized cuts (except for the fit variables) listed in Tab. 4.2.

2. Apply selection cuts for fit variables (this will be the fit range).

• 5.2 < mES < 5.3GeV/c2

• 3.8 < mX < 4.0GeV/c2

3. Select the candidate with the smallest |ΔE| (best-ΔE).

4. Perform a two-dimensional UEML fit to mES and mX .

4.4.2 Probability density function and event types

For each event type t ∈ T we define a PDF Pt(x; θ) evaluated for each event with x =

(mES,mX) and dependent on the parameter(s) θ. We further assume that mES and mX
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are uncorrelated quantities and thus write the PDF as a product of two one-dimensional

PDFs

Pt(x; θ) = gt(mES)ht(mX). (4.4)

Based on Monte Carlo studies we define three different event types T = {S,P,C}:

• Signal events are genuine B → X(3872)K,X(3872) → J/ψπ+π− events and taken

from signal MC.

• Peaking background events from non-resonant B → J/ψπ+π−K or other interme-

diate resonances like B → J/ψK1(1273),K1 → Kρ and B → J/ψK∗π,K∗ → Kπ.

Those events are obtained from generic BB MC by selecting all events which have

the same final states as our signal modes and form a good B-candidate.

• Combinatorial background events forming a fake B-candidate taken from BB

generic MC by removing all peaking background events as described above.

Each of those event types has a different parametrization of its PDF Pt(x) = gt(mES)ht(mX),

which we obtain by fitting gt and ht separately to the mES and mX distributions, respec-

tively. All the fits are done with the RooFit [75] package and if not otherwise noted, all

parameters are kept floating. The following sections described the PDFs and Tab. 4.4

summarizes the PDF parameters obtained from the fit.

Signal PDF parametrization

Due to the mass-constraint on the J/ψ candidate in X → J/ψπ+π− the resolution function

of the X(3872) (generated with zero natural width in the MC) is not a simple Gaussian as

one might expect. In general, the distribution is more peaked around the central value with

longer tails. As a first approach, we model this distribution by a Lorentzian10 convoluted
10Note that Lorentzian, Cauchy distribution and Breit-Wigner are just different names for the same

distribution. To avoid confusion, we refer to a Lorentzian in case of the resolution model and to Breit-
Wigner for the line-shape model.
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with a Gaussian in mX . For the mES distribution we use the usual Gaussian:

gS(x;μ, σ) = G(x;μ, σ) ∼ e−
(x−μ)2

2σ2 (4.5)

hS(x;m,Γ, σ) ∼
∫ +∞

−∞
G(x′; 0, σ)L(x − x′;m,Γ) dx′ (4.6)

where L is the Lorentz function L(x;m,Γ) ∼ (
(x−m)2 + (Γ/2)2

)−1 with central value

m and Γ as the full width at half maximum (FWHM). Fig. 4.4 shows the 1-dimensional

UEML-fit to the mES and mX distributions for the B0 → J/ψπ+π−K0
S mode. Note, that

the ARGUS tail used to model remaining combinatorics in the signal sample, is not part

of the signal PDF, but only used to obtain an accurate fit to the Gaussian signal peak.

The final parameters from the fit including errors are listed in Tab. 4.4.

In both modes the Gaussian width σ of the fit to the X-mass is consistent with zero.

In the following MC experiments used to validate our general fitting procedure and the

final fit on data, we therefore use a simple Lorentzian as a model for the X(3872) mass

distribution.
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Figure 4.4: 1-dimensional UEML-fit to the mES (left) and mX (right) distribution on
signal MC for B0 → J/ψπ+π−K0

S .
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Peaking background PDF parametrization

Peaking background events are modelled by a Gaussian in mES (that’s why we call them

peaking events) and a linear function in mX :

gP (x;μ, σ) ∼ e−
(x−μ)2

2σ2 (4.7)

hP (x; c) =
1
N

(1 + cx) (4.8)

Note, that the slope of the first order polynomial is not c, but rather c/N where N is

the normalization of the polynomial which can be negative as well. Fig. 4.5 (left) shows

the 1-dimensional UEML-fit to the mES distribution in B0 → J/ψπ+π−K0
S . As explained

above, the ARGUS tail is not used in the peaking background PDF gP and only included

for technical reasons. The final parameters from the fit for both modes including errors

are listed in Tab. 4.4.
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Figure 4.5: 1-dimensional UEML-fit to the mES (left) and mX (right) distribution on
generic MC for peaking background events in B0 → J/ψπ+π−K0

S .
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Combinatorial background PDF parametrization

Finally, combinatorial background events are expected to follow an ARGUS shape in mES

and observed to be linear in mX :

gC(x;m0, κ) ∼ x
√

1 − x2/m2
0 e

κ(1−x2/m2
0) (4.9)

hP (x; c) =
1
N

(1 + cx) (4.10)

wherem0 is the ARGUS end-point and set to 5.29GeV/c2, the kinematic limit for Υ (4S) →
BB. Fig. 4.6 shows the 1-dimensional UEML-fit to the mES and mX distributions for

the B0 → J/ψπ+π−K0
S mode. The final parameters from the fit for both modes including

errors are listed in Tab. 4.4.
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Figure 4.6: 1-dimensional UEML-fit to the mES (left) and mX (right) distribution on
generic MC for combinatorial background events in B0 → J/ψπ+π−K0

S .

Summary of PDF parametrization

Tab. 4.4 summarizes the final parameters including errors obtained from the previously de-

scribed fits for both the modesB0 → X(3872)K0
S , X → J/ψπ+π− andB− → X(3872)K−, X →

J/ψπ+π−. Furthermore we give the corresponding parameters which we find from the same
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fits to the ψ(2S) region (3.6 < m(J/ψππ) < 3.8GeV/c2) and using ψ(2S)-signal MC.11

Parameter B0 → XK0
S B− → XK− B0 → ψ(2S)K0

S B− → ψ(2S)K−

Signal
mES mean μ 5.2796± 0.0001 5.2793± 0.0001 5.2796± 0.0001 5.2793± 0.0001
mES width σ 2.54 ± 0.02 2.52 ± 0.02 2.67 ± 0.04 2.76 ± 0.03
mX mean m 3.8720± 0.0001 3.8721± 0.0001 3.6861± 0.0001 3.6861± 0.0001
mX Gaussian σ 0.00 ± 0.15 0.00 ± 0.25 0 0
mX Lorentz Γ 5.41 ± 0.07 5.38 ± 0.06 4.09 ± 0.08 4.09 ± 0.08
Peaking bgd.
mES mean μ 5.2796± 0.0002 5.2794± 0.0001
mES width σ 2.47 ± 0.15 2.54 ± 0.07
mX parameter c −0.17 ± 0.07 −0.42 ± 0.11
Comb. bgd.
ARGUS shape κ −39.9± 2.3 −38.2 ± 1.2 −45.9± 3.9 −49.5± 1.7
mX parameter c −0.30 ± 0.01 −0.30 ± 0.01 −0.30 ± 0.01 −0.30 ± 0.01

Table 4.4: Summary of PDF parameters from separate one-dimensional UEML-fits for the
three different event types, two signal modes and the two ψ(2S) benchmark modes. All
mean values (μ, m) are in GeV/c2 and widths (σ, Γ) are in MeV/c2.

4.4.3 Fit efficiency

We define our efficiency for reconstructed signal events as

εMC =
nS,MC

NMC
(4.11)

where nS,MC is the number of signal events returned by the full 2D-UEML-fit (including

all event types) to our signal MC sample consisting of NMC events. Multiplied by the

efficiency correction factor described in section 4.5 we obtain the final efficiency ε. We

use the same correction factor for the ψ(2S)-benchmark modes as for our signal modes.

Fig. 4.7 shows the projections of the fit and Tab. 4.5 lists the numbers including errors

for our two signal modes and the ψ(2S) benchmark modes. It also shows the number of

events in the input dataset for the fitter, which is obtained by the procedure described
11Since this has been added after unblinding and the final fit on data, we use a pure Lorentzian for the

ψ(2S) mass-fit, since this is the shape we decided to use beforehand. We also did not have a peaking
background sample at hand for this mode.
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in section 4.4.1. Note, that the numbers in this table are different from those shown in

Tab. 4.3, which include the optimized cuts on mES and mX .
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Figure 4.7: Result of the full 2D-UEML-fit (including all event types) for pure signal MC
in B0 → X(3872)K0

S , X → J/ψπ+π−. The fit result is nS = 10652 ± 104, nP = 0.0 ± 1.5
and nC = 1904 ± 46. The number of signal events nS is used to calculate our efficiency
for reconstructing signal events (see Tab. 4.5).

B0 → XK0
S B− → XK− B0 → ψ(2S)K0

S B− → ψ(2S)K−

NMC 57,000 57,000 30,000 30,000
events after cuts 12,556 15,786
nS,MC 10, 652 ± 104 13, 338 ± 117 4, 922 ± 72 6, 375 ± 83
efficiency εMC (%) 18.69 ± 0.18 23.40 ± 0.21 16.41 ± 0.24 21.25 ± 0.28
corrected eff. ε (%) 17.35 ± 0.17 22.19 ± 0.19 15.23 ± 0.23 20.15 ± 0.28

Table 4.5: Fit efficiency εMC for the two signal and benchmark modes determined on
signal MC and the corrected efficiency ε.

4.4.4 Fit validation

Monte Carlo experiments

In this section we describe the validation studies done, to ensure that the full (2-dimensional)

UEML-fit is returning the correct number of signal events. Those studies have been per-
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formed on a mix of signal and background MC with about the same number of events as

expected on data.

Since the BB generic sample is roughly four times larger than the on-peak data, we

divide this sample into four sets. The initial signal sample (57,000 events) is split into

4×50 sets with each 250 events and added to the BB sample. Eventually, we conduct 200

experiments including fits, each with an independent set of signal events and experiments

within the same set sharing the same BB sample. The fits are done with floating event

yields and all other parameters fixed to the values in Tab. 4.4.

Using the fit-efficiencies from Tab. 4.5 we calculate the number of input signal events

nS,input and compare with the average number of signal events returned by the fit in each

set. Fig. 4.8 shows one of the fits in B0 → J/ψπ+π−K0
S . Plots a) and b) are mES and

mX projections whereas in plots c) and d) an additional cut (the optimized signal region

cut) on mX is applied when projecting mES and vice versa to enhance the visibility of

the signal. Finally, we conduct another set of 50 experiments with the full BB sample

as background and four times the amount of signal events. Scaled to the number of

signal events in sets 1-4, we get another average value with smaller errors due to the

higher statistics. To validate the fit performance in case of no signal, we repeat the above

procedure without the signal MC sample.

Tab. 4.6 summarizes the result for all sets and both modes. We give the average

number of events of type t < nt > and the average error < σt > on this number over the

50 experiments in each set. Note, that the naive scaling of the error by 1/
√

50 cannot

be applied in this case, since all the experiments within the same set share the same BB

sample and are therefore correlated. However, in all cases the average number of signal

events in each set is within (the average) errors of the number of input signal events.

Repeating the same test without the BB sample, and thus uncorrelated samples, the

number of signal events is consistent with the expected error of < σS > /
√

50.

We also repeated part of those experiments, with a floating mass mean value for the
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mX fit, and obtain results compatible within errors to the above and to the number of

expected signal events. This is important since we will use a floating mean value in the

final fit on data to measure the mass of the X(3872).

< nt > ± < σt > B0 → J/ψπ+π−K0
S B− → J/ψπ+π−K−

nS,input 46.7 ± 0.5 0 58.5 ± 0.5 0
Set 1
signal events nS 52.0 ± 8.9 3.3 ± 4.1 50.7 ± 11.4 0.0 ± 2.1
peaking events nP 108.4 ± 14.7 111.9 ± 14.3 448 ± 29.1 441.0 ± 27.4
comb. events nC 648.6 ± 27.0 638.7 ± 26.8 2713.5 ± 55.1 2702.1 ± 54.9
Set 2
signal events nS 46.7 ± 8.8 0.0 ± 1.4 63.8 ± 12.0 3.4 ± 7.9
peaking events nP 109.8 ± 15.0 112.0 ± 13.9 430.7 ± 28.6 434.9 ± 54.5
comb. events nC 711.3 ± 28.2 700.9 ± 28.0 2672.1 ± 54.6 2661.0 ± 54.5
Set 3
signal events nS 51.6 ± 9.1 0.0 ± 3.1 59.4 ± 11.9 0.0 ± 3.5
peaking events nP 107.0 ± 14.4 111.8 ± 13.5 444.5 ± 29.0 444.3 ± 27.5
comb. events nC 633.9 ± 26.6 625.2 ± 26.4 2638.0 ± 54.4 2626.8 ± 54.2
Set 4
signal events nS 49.5 ± 8.6 1.4 ± 3.7 77.3 ± 12.9 13.2 ± 9.2
peaking events nP 106.3 ± 14.2 108.7 ± 13.8 462.5 ± 29.7 469.6 ± 29.5
comb. events nC 666.7 ± 27.2 656.9 ± 27.0 2778.9 ± 55.8 2767.1 ± 55.7
Full BB sample
signal events nS 49.7 ± 4.4 0.0 ± 1.8 63.4 ± 6.1 0.0 ± 1.8
peaking events nP 107.9 ± 7.3 112.3 ± 7.0 446.2 ± 14.6 451.6 ± 14.1
comb. events nC 665.3 ± 13.6 655.5 ± 13.5 2700.6 ± 27.5 2689.2 ± 27.4

Table 4.6: Number of events nt and error σt of type t returned by the fit averaged over 50
experiments in each set. Each experiment has a different signal sample with nS,input signal
events and experiments within the same set share one BB background sample. Finally,
another set of 50 experiments is conducted with the full background samples and results
scaled to the size of sets 1-4.

Toy Monte Carlo

As a further test of our fit, we conduct 1000 toy-MC experiments. Each experiment

consists of Ntoy = nS,toy + nP,toy + nC,toy events sampled from our total PDF P with all

parameters fixed to the values in Tab. 4.4 and nt,toy set to the yields obtained from the

MC experiments (full BB sample) in the previous section (see Tab. 4.6). Each sample



4.4. Signal extraction 172

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
25

 G
eV

/c

0

10

20

30

40

50

60

70

80

 projection
ES

a) m

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
25

 G
eV

/c

0

10

20

30

40

50

60

70

80

 projection
ES

a) m

)2) (GeV/cππψm(J/
3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96 3.98 4

 )2
E

ve
n

ts
 / 

( 
0.

00
5 

G
eV

/c
0

10

20

30

40

50

) projectionππψb) m(J/

)2) (GeV/cππψm(J/
3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96 3.98 4

 )2
E

ve
n

ts
 / 

( 
0.

00
5 

G
eV

/c
0

10

20

30

40

50

) projectionππψb) m(J/

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
25

 G
eV

/c

0

2

4

6

8

10

12

14

16

18

20

22

 signal slice
ES

c) m

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
25

 G
eV

/c

0

2

4

6

8

10

12

14

16

18

20

22

 signal slice
ES

c) m

)2) (GeV/cππψm(J/
3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96 3.98 4

 )2
E

ve
n

ts
 / 

( 
0.

00
5 

G
eV

/c

0

5

10

15

20

25

30

35

) signal sliceππψd) m(J/

)2) (GeV/cππψm(J/
3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96 3.98 4

 )2
E

ve
n

ts
 / 

( 
0.

00
5 

G
eV

/c

0

5

10

15

20

25

30

35

) signal sliceππψd) m(J/

Figure 4.8: The fit result of an arbitrary experiment in B0 → J/ψπ+π−K0
S . The lines

represent (from bottom to top) combinatorial background (dotted, blue), peaking back-
ground (solid, red) and signal events (solid, blue). a) and b) are projections on mES and
mX , respectively. Plots c) and d) show the signal band projection with an additional cut
on the signal region of the variable not shown.
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Figure 4.9: Result of 1000 toy-MC experiments for B0 → J/ψπ+π−K0
S with nS,toy = 50.

The left plot shows the number of signal events nS returned by each fit, in the middle
plot we can see the distribution of errors on nS and the right plot shows the resulting pull
distribution.
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Figure 4.10: Result of 1000 toy-MC experiments for B− → J/ψπ+π−K−with nS,toy = 63.
The left plot shows the number of signal events nS returned by each fit, in the middle
plot we can see the distribution of errors on nS and the right plot shows the resulting pull
distribution.

is fitted under the same conditions as in the MC experiments with floating event yields

and fixed parameters. Fig. 4.9 shows the number of signal events nS (left) and error

σS (middle) returned by each fit for B0 → J/ψπ+π−K0
S . The right plots shows the pull

distribution pullS = (nS−nS,toy)/σS of the number of signal events. The fit to a Gaussian

shows that all distributions follow a normal distribution and the pull follows a unit normal

distribution as expected. Fig. 4.10 shows the same for B− → J/ψπ+π−K−. As in the

previous MC experiments, we can conclude that the fit performs well and that there is no

notable bias resulting from the choice of our event shapes.



4.4. Signal extraction 174

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
25

 G
eV

/c

0

20

40

60

80

100

120

140

 projection
ES

a) m

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
25

 G
eV

/c

0

20

40

60

80

100

120

140

 projection
ES

a) m

)2) (GeV/cππψm(J/
3.6 3.62 3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78 3.8

 )2
E

ve
n

ts
 / 

( 
0.

00
5 

G
eV

/c

0

20

40

60

80

100

120

140

160

180

) projectionππψb) m(J/

)2) (GeV/cππψm(J/
3.6 3.62 3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78 3.8

 )2
E

ve
n

ts
 / 

( 
0.

00
5 

G
eV

/c

0

20

40

60

80

100

120

140

160

180

) projectionππψb) m(J/

Figure 4.11: The fit result on 210.6 fb−1 of data for the benchmark mode B0 → ψ(2S)K0
S .

The lines represent (from bottom to top) combinatorial background (dotted, blue), peaking
background (solid, red) and signal events (solid, blue).

Benchmark mode - ψ(2S) fit

The decay ψ(2S) → J/ψπ+π− produced in B → ψ(2S)K can be used as a benchmark

for this analysis. It is only 190MeV/c2 below the X-mass, very narrow and provides

us a well measured benchmark mode with comparably high statistics. Therefore, we

perform the exact same 2D UEML-fit as described in the previous sections, but in the

mass region 3.6 < m(J/ψπ+π−) < 3.8GeV/c2. We use a Lorentzian for the ψ(2S) and float

all parameters, except the mES mean and width for the peaking background component,

which we fix to the values obtained from our MC studies for the X(3872). Table 4.7

lists the final values of the fit and the event yields (we omit the combinatorial shape

parameters).

We realize that the fitted ψ(2S) mass is shifted downwards compared to the world

average of 3686.09MeV/c2 [8]. We will use this fact, to correct the fitted X-mass. Table 4.8

summarizes the shift of the ψ(2S) mass.

Using the (corrected) fit-efficiencies from Tab. 4.5 we can calculate the number of
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Figure 4.12: The fit result on 210.6 fb−1 of data for the benchmark mode B− → ψ(2S)K−.
The lines represent (from bottom to top) combinatorial background (dotted, blue), peaking
background (solid, red) and signal events (solid, blue).

B0 → ψ(2S)K0
S B− → ψ(2S)K−

Parameters
mX mean (GeV/c2) 3.6855 ± 0.0002 3.6855 ± 0.0001
mX FWHM (MeV/c2) 4.66 ± 0.46 5.07 ± 0.24
mES mean (GeV/c2) 5.2800 ± 0.0001 5.2796 ± 0.0001
mES width (MeV/c2) 2.40 ± 0.13 2.60 ± 0.07
mX parameter ccomb −0.29 ± 0.01 −0.29 ± 0.01
mX parameter cpeak −0.26 ± 0.02 −0.29 ± 0.02
mES ARGUS κ −67.9 ± 6.3 −35.3 ± 2.4
Event yields
signal nS 252.5 ± 17.1 1159.3 ± 37.2
peaking nP 6.1 ± 11.2 58.3 ± 24.5
comb. nC 434.4 ± 23.0 1916.5 ± 48.2
Expected yield
nS,PDG 282.5 ± 33.9 1189.3 ± 84.5

Table 4.7: Fit results on 210.6 fb−1 of on-peak data for the ψ(2S)-benchmark mode with
the measured and expected signal yields (bold) calculated from Eq. 4.12
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ψ(2S) mass (MeV/c2) B0 → ψ(2S)K0
S B− → ψ(2S)K−

fitted value mfit 3685.5 ± 0.2 3685.5 ± 0.1
PDG value mpdg 3686.09 ± 0.03 3686.09 ± 0.03
mfit −mpdg −0.59 ± 0.20 −0.59 ± 0.10

Table 4.8: Fitted mass of the ψ(2S) on data and the difference to the world average. We
will use this as a reference for the fitted X-mass.

expected ψ(2S) signal events

nS,PDG = ε NBB B(B → ψ(2S)K) B(ψ(2S) → J/ψπ+π−) B(J/ψ → l+l−) (4.12)

× [B(K0
S → π+π−) B(K0 → K0

S)
]

(4.13)

where the secondary branching ratios are taken from the PDG [8] and the factor [. . .] only

applies to the B0 mode. Comparing the measured and expected yields for nS we conclude,

that the yields agree within one standard deviation. Also note that the given errors only

include statistical and errors due to secondary branching ratios.

4.4.5 Fit result

Due to some unexpected fluctuations of the data around 4GeV/c2 compared to the MC

background prediction (see for example the right plot in Fig. 4.18), it was decided to

do the final data fit in the range 3.8 < mX < 3.95GeV/c2 where the MC gives a good

description of the background. All other cuts are the same as in the previous validations

and MC experiments.

From the comparison of the mES parametrization between ψ(2S)-data and our MC

samples, we can assume that our chosen parametrization matches the data in the X(3872)

region within errors. Therefore, we keep the mean and width of the signal and peaking

background mES distributions fixed. The remaining three parameters (mX parameters c

in peaking/ combinatorial background and ARGUS shape) are floated.

For the X(3872) line shape, we use a Lorentzian with floating central value. Due to
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limited statistics in the K0
S mode we have to fix the width of the Lorentzian to the value

obtained from signal MC in order to get a converging fit. The width in the K− mode

is kept floating. Tab. 4.9 shows the fit result for both modes and Figs. 4.13 and 4.14

show the mES (a) and mX (b) projections of the fit. The lower two plots show the same

projection but with an additional cut on mX around the signal region when plotting mES

and vice versa.

Figure 4.15 shows the projection of the negative log-likelihood − log(L/Lmax) on the

number of signal events nS. We obtain the statistical significance of the signal(not in-

cluding systematics)x using
√−2 log(L(nS = 0)/Lmax). With a NLL-value for zero signal

events of 3.38 and 28.1 we obtain a statistical significance (not including any systematic

errors) of 2.6σ and 7.5σ for the K0
S and K− mode, respectively.

B0 → X(3872)K0
S B− → X(3872)K−

Parameters
mX mean (GeV/c2) 3.8680 ± 0.0012 3.8707 ± 0.0006
mX FWHM (MeV/c2) 5.41 5.04 ± 2.23
mX parameter ccomb −0.14 ± 0.13 −0.31 ± 0.01
mX parameter cpeak −0.27 ± 0.01 −0.27 ± 0.01
mES ARGUS κ −41.3 ± 5.1 −35.3 ± 2.4
Event yields
signal nS 8.3 ± 4.5 61.2 ± 15.3
peaking nP 35.0 ± 11.5 244.8 ± 27.9
comb. nC 619.6 ± 26.6 2788.0 ± 56.4

Table 4.9: Fit results on 210.6 fb−1 of on-peak data. Parameters not listed or with no
errors are kept fixed to the values obtained from MC.

4.4.6 Invariant J/ψπ+π− mass spectrum

Figures 4.16 and 4.17 show the J/ψπ+π− invariant mass spectrum for both modes with

the optimized cuts applied for data and generic BB Monte Carlo. A clear signal of the

X(3872) in the K− mode can be seen. There might be a 2σ enhancement at slightly

lower mass in the K0
S mode as well. As a further check, Fig. 4.18 shows the J/ψπ+π−
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Figure 4.13: The fit result on 210.6 fb−1 of data in B0 → X(3872)K0
S . The lines represent

(from bottom to top) combinatorial background (dotted, blue), peaking background (solid,
red) and signal events (solid, blue). a) and b) are projections onmES andmX , respectively.
Plots c) and d) show the signal band projection with an additional cut on the signal region
of the variable not shown.
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Figure 4.14: The fit result on 210.6 fb−1 of data in B− → X(3872)K−. The lines represent
(from bottom to top) combinatorial background (dotted, blue), peaking background (solid,
red) and signal events (solid, blue). a) and b) are projections onmES andmX , respectively.
Plots c) and d) show the signal band projection with an additional cut on the signal region
of the variable not shown. Note the different bin size in mX compared to Fig. 4.13.
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invariant mass together with a mES sideband (|mES − 5.26| < 0.006). We can see that

the background behaves “nicely” in the X-region and that there is an excess of events in

the around 3.87GeV/c2 in both modes.
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Figure 4.16: J/ψπ+π− invariant mass spectrum between 3.75 and 4.75GeV/c2 in 5MeV/c2

bins with the optimized cuts applied for B0 → J/ψπ+π−K0
S . The dots represent the data

and the solid line is the prediction from generic BB Monte Carlo.
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Figure 4.17: J/ψπ+π− invariant mass spectrum between 3.75 and 4.75GeV/c2 in 5MeV/c2

bins with the optimized cuts applied for B− → J/ψπ+π−K−. The dots represent the data
and the solid line is the prediction from generic BB Monte Carlo.
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S and the right plot shows B− → J/ψπ+π−K−.
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4.5 Efficiency corrections and systematic errors

Since particle ID, tracking and neutrals reconstruction have a slightly different perfor-

mance on Monte Carlo and data, corrections are applied to the efficiency obtained from

MC to match the efficiency expected on data. With each of those corrections comes an

error that we include in our overall systematic error. Efficiency correction factor given

here are meant to be multiplied with the MC efficiency. We also discuss other sources of

systematic errors. See tables 4.10 and 4.11 for a summary of all numbers.

4.5.1 Number of BB events

The number of BB events obtained from B-counting is assigned the standard systematic

(fractional) error of 1.10%.

4.5.2 Secondary branching ratios

The secondary branching ratios and their errors (fractional errors in brackets) we use in

our calculations are [8]

B(J/ψ → l+l−) = B(J/ψ → e+e−) + B(J/ψ → μ+μ−) (4.14)

= (11.81 ± 0.20) × 10−2 (1.69%) (4.15)

B(K0
S → π+π−) = (68.95 ± 0.14) × 10−2 (0.39%) (4.16)

We assume fully correlated errors in the leptonic branching ratios of the J/ψ . Furthermore,

we assign an error for the uncertainty in the production rate of B0 and B+ from the

Υ (4S) meson. The result of a recent BABAR measurement [76] for the production ratio is

R+/0 = 1.006 ± 0.036 ± 0.031 which corresponds to a fractional error of 4.72%.
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4.5.3 MC statistics

The fixed parameters in the final fit were obtained from limited statistics MC samples.

To account for this, we vary each parameter i by ±1σ and repeat the fit on data. From

the new results n±S,i we calculate the fractional systematic error as

σ2
syst =

1
2

∑
i

⎡⎣(n+
S,i

nS,0
− 1

)2

+

(
n−S,i
nS,0

− 1

)2
⎤⎦ (4.17)

where nS,0 is the number of signal events returned by the fit with all parameters fixed to

the final parameters in the data fit. Table 4.11 lists the results.

4.5.4 Differences between Monte Carlo and data

For the parameters which we have fixed in the fit (mES mean and width for signal and

peaking background), we correct for possible differences between the data and Monte

Carlo. Therefore, we obtain an alternative set of parameters from some suitable sample

(see below) and repeat the data fit with all other parameters fixed to their values from the

initial data fit. Each of those fits, gives a new value nS,i for the number of signal events.

We take

σ2
syst =

∑
i

(
nS,i
nS

− 1
)2

(4.18)

as the fractional systematic error, where nS is the result from our initial fit. For the signal

mES shape, we use the parameters (mES mean and width) obtained from the ψ(2S) fit

(Tab. 4.7). For the peaking background shape, we fit the mES distribution in the mass

region 3.7 < mX < 4.5GeV/c2 with a 10MeV/c2 veto-cut around the X(3872) and use

those mES parameters as an alternative set. Table 4.11 lists the final systematic error.

We did the same check for the central value of the fitted X-mass, but there was no notable

change within 0.1MeV/c2 due to different mES shapes. The same is true for the ψ(2S)-fit
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which we use as a reference.

4.5.5 PID corrections

We are using the efficiency correction tables provided by the PID group to assign each

signal-MC event a weight wPID that is the product of the individual PID selector weights.

We repeat the procedure described in section 4.4.3 with those weighted events and obtain

the PID-corrected efficiency and the resulting correction factor which can be found in

Tab. 4.10. We estimate a very conservative systematic error of 5% for the efficiency

corrections due to PID.

4.5.6 Tracking corrections

The tracking corrections to the efficiency including the systematic errors are taken from

the recipes provided by the Track Efficiency Task Force [77].

• Corrections for π±,K±, l±

All of our charged tracks (pions, kaons, leptons) are taken from lists that are derived

from ChargedTracks. In this case an efficiency correction of 0.25% with a systematic

error of 1.2% per track is recommended. The total efficiency correction factor for a

mode with n tracks (not counting tracks resulting from K0
S → π+π−) is therefore

0.9975n (multiplied) with a systematic error of 1.2% × n (fully correlated).

• K0
S correction

The K0
S correction is treated separately from the other tracking corrections and

is obtained from the appropriate efficiency correction tables. We are using the

3DSign3 noAlpha tables and apply them to our signal MC sample. Using the pro-

vided root macros for run 1-3 and run 4 data we obtain the luminosity weighted av-

erage for the efficiency correction. The result for B0 → J/ψπ+π−K0
S is 0.977±0.016

and we include the fractional error of 1.64% in our systematics.
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4.5.7 Monte Carlo model

The model for the X(3872) used in our signal Monte Carlo generates the decays according

to two-body phase space with flat angular distributions. To investigate the effect of differ-

ent decay models we weight each event with different angular distributions and recalculate

the efficiencies. We consider two possible assignments for the X(3872):

• If the X is a DD∗ molecule the most likely quantum numbers are JPC = 1++ [47].

• For charmonium, we consider the 2−− 13D2 as a possible candidate.

Pakvasa and Suzuki [42] calculate the angular distributions of ρ → ππ for those two

different quantum numbers:

dΓ/d cos θπ ∼ cos2 θπ sin2 θπ (JPC = 2−−) (4.19)

dΓ/d cos θπ ∼ sin2 θπ (JPC = 1++) (4.20)

where θπ is the angle between the pion and the recoiling X in the restframe of the ρ. We

assign the difference between the maximum and minimum efficiency as a systematic error.

From this method we obtain a fractional systematic error of 1.56% and 1.00% for the B0

and B− mode, respectively.

J/ψπ+π−K0
S J/ψπ+π−K−

Number of tracks 4 5
Particle ID 0.9591 0.9603
Tracking 0.9900 0.9876
K0

S correction 0.9777 -
Total (multiplied) 0.9284 0.9484

Table 4.10: Efficiency correction factors applied to the raw efficiency obtained from signal
MC samples.
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J/ψπ+π−K0
S J/ψπ+π−K−

No. of BB events 1.10 1.10
Branching ratios 5.02 5.02
MC statistics 1.92 0.68
MC decay model 1.56 1.00
MC-data difference 8.94 1.77
Particle ID 5.00 5.00
Tracking 4.80 6.00
K0

S correction 1.64 -
Total (quadrature) 12.77 9.59

Table 4.11: Summary of systematic errors in %.
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4.6 Study of J/ψπ+π− invariant mass above 4 GeV/c2

Recent observations by BABAR [78] in initial state radiation (ISR) events provide ev-

idence for at least one broad resonance in the invariant mass spectrum of J/ψπ+π− at

4.259GeV/c2 that can be characterized by a single resonance with a full width of 88MeV/c2.

This structure is referred to as Y (4260). Alternatively, the data might support two narrow

resonances at 4.26GeV/c2 and 4.33GeV/c2. This section describes studies of the J/ψπ+π−

invariant mass above 4GeV/c2 and the search for the Y (4260) in B-decays. Furthermore,

we investigate the possibility of more than one resonance.

4.6.1 Monte Carlo studies

To study the region above 4GeV/c2 in m(J/ψπ+π−) we perform another MC experiment.

From the X(3872) signal MC, we create a MC sample with a signal at 4.264GeV/c2

(Y (4264)) and a natural width of 90MeV/c2. Furthermore we create another (narrow)

state at 4.315GeV/c2 (Z(4315)). No changes in the selection criteria compared to the

X(3872) were found after optimization.

The fit behavior is evaluated by adding a fixed amount from each of the newly created

signal MC samples to the BB generic MC sample. We perform a fit in the mass region

4.15 < m(J/ψπ+π−) < 4.4GeV/c2 with two Breit-Wigner components for the mX signal

PDF. Figure 4.19 shows the fit result on a MC cocktail consisting of BB generic MC,

Y (4264) and Z(4315) and Fig. 4.20 shows the same but without the additional narrow

resonance at 4.3GeV/c2. For the first experiment with both resonances, we obtain a

fraction fY = (86.7 ± 5.4)% and the fit to the second sample (only one resonance) yields

fY = (94.1 ± 4.2)%, where fY is the fraction of Y (4264) events. The initial MC cocktails

consisted of fY = 96.8% and fY = 100% Y -events, respectively. We generated a dedicated

signal MC sample for a state at 4246MeV/c2 similar to our signal MC samples used for

the X(3872). From this sample we obtain the detector resolution (again parameterized as

a Lorentzian) Γres = (5.4 ± 0.1)MeV/c2 that is exactly the same as for the X(3872).
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Figure 4.19: Fit to a MC cocktail of BB generic MC, Y (4264) and Z(4315). Plots a) and
b) show the fit projections for mES and mX whereas plot c) shows the mX projection
with a cut on the mES signal region applied.
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Figure 4.20: Fit to a MC cocktail of BB generic MC and Y (4264) without the additional
narrow resonance. Plots a) and b) show the fit projections for mES and mX whereas plot
c) shows the mX projection with a cut on the mES signal region applied.
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4.6.2 Fit on data (I)

With the same fit configuration as established in our MC studies we fit the data in the

B− mode. Our MC studies were carried out in the region above 4.15GeV/c2. To meet

up with the upper end of the mass region in our X(3872) studies, we perform the fit on

data in the region 4.0 − 4.45GeV/c2 and show the fit projection in 15MeV/c2 bins. Since

the mES projection does not show any valuable information (except that there is a large

amount of peaking background), we only show the mX projections of the fit result. The

mean and width of both mX signal-PDFs are kept floating in the fit, as well as the slopes

of the combinatorial and peaking background shapes in mX . We perform the fit in four

different configurations:

• I) two signal peaks in mX

• II) no signal peak

• III) one peak (Y ) below 4.3GeV/c2

• IV) one peak (Z) above 4.3GeV/c2

Figs. 4.21 and 4.22 show the fit projections and Tab. 4.12 lists the final values of the fit

parameters. The numbers of signal events nS , the central value of the peak m and the

total width Γ are listed. Since the detector resolution is given by a Lorentzian (=Breit-

Wigner) with full width ΓR = (5.4 ± 0.1)MeV/c2, we can obtain the natural width from

Γ = Γfitted − ΓR. From the likelihood value L0 of the null hypothesis from configura-

tion (II) we derive the significance of each of the other fit configurations by calculating√−2 lnLmax/L0. We also give the corresponding values from the ISR analysis [79].

The data seems to favor two separate states around 4.25GeV/c2 and 4.31GeV/c2.

Both states have the same full width within errors and a significance of 2.9σ and 2.8σ,

respectively. The lower state is at the same mass as the lower peak in the “two-peak

interpretation” of the ISR result. However, the central values of the higher peaks differ

by more than four standard deviations.
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configuration (I) (II) (III) (IV) (ISR)
nS,Y 79 ± 32 - 77 ± 36 -
nS,Z 63 ± 25 - - 58 ± 27
mY (MeV/c2) 4246 ± 7 - 4248 ± 8 - 4254 ± 6
mZ(MeV/c2) 4313 ± 4 - - 4312 ± 4 4334 ± 1
ΓY (MeV/c2) 20 ± 9 - 22 ± 12 - 55 ± 18
ΓZ(MeV/c2) 10 ± 5 - - 10 ± 5 0 ± 4√−2 lnLmax/L0 4.2 0.0 2.9 2.8

Table 4.12: Fit results for the four different fit configurations: (I) two peaks, (II) no peak,
(III) one peak below 4.3GeV/c2 and (IV) one peak above 4.3GeV/c2. The last column
lists the results from the ISR analysis [79] in the two-peak fit configuration.
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Figure 4.21: mX projections of the fit result in configuration (I) (left) and the null hy-
pothesis (II, right). See Tab. 4.12 for the fit parameters.
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Figure 4.22: mX projections of the fit result in configuration (III) (left) and (IV) (right).
See Tab. 4.12 for the fit parameters.
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4.6.3 Additional studies

After unblinding and with the help of appropriately generated signal MC for the Y (4264),

we are now able to perform some further studies in this mass region. First we investigate

the angle cos2Pi, which is defined in the following way:

• cos2Pi is the cosine of the angle between the momentum direction of the (ππ)-system

and the B momentum direction in the (J/ψππ) restframe.

Fig. 4.23 shows the cos2Pi distribution of the ψ(2S) as a reference. This angle is possibly
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Figure 4.23: cos2Pi distribution for ψ(2S) events in on-peak data.

helpful in suppressing backgrounds from K1(1270) → Kρ. decays. To investigate this,

Fig. 4.24 shows plots of cos2Pi versus the Kππ invariant mass for signal MC (left), BB

generic MC (middle) and data (right). All plots show events within the region 3.8 <

m(J/ψππ) < 4.5GeV/c2. One can see a nice separation of the signal and K1 background

in this plane. Furthermore, Fig. 4.25 shows the same angle but versus the J/ψπ+π−

invariant mass.

We re-optimized our signal selection criteria including this angle. It turns out that the

optimum is reached for the selection cos2Pi< 0.5. Fig. 4.26 shows the J/ψπ+π− invariant

with different cuts on this angle. It seems that the two-peak structure above 4.2GeV/c2

is more pronounced above smaller backgrounds for cos2Pi> 0.5. Notice that the X(3872)

signal disappears with this cut applied. Fig. 4.27 shows the effect of the cos2Pi-cut on
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Figure 4.24: The angle cos2Pi versus the Kπ+π− invariant mass for signal MC (left), BB
generic MC (middle) and data (right) for events with 3.8 < m(J/ψπ+π−) < 4.5GeV/c2.
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Figure 4.25: The angle cos2Pi versus the J/ψπ+π− invariant mass for signal MC (left),
BB generic MC (middle) and data (right)
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the K1 invariant mass. As expected, the cut cos2Pi> 0.5 (right) selects a clean sample of

K1-events. To further investigate the influence of K1-decays, Fig.4.28 shows the J/ψπ+π−

invariant mass with different cuts on the Kπ+π− invariant mass. The left plot shows the

spectrum with the initial selection criteria, the middle plot has a K1 veto applied and the

right plot shows the spectrum with a 150MeV/c2 wide K1 mass cut.
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Figure 4.26: The J/ψπ+π− invariant mass without cos2Pi cut (left), cos2Pi< 0.5 (middle)
and cos2Pi> 0.5 (right). The dots are on-peak data and the solid line shows BB generic
MC scaled to the same number of events.
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Figure 4.27: The Kπ+π− invariant mass without cos2Pi cut (left), cos2Pi< 0.5 (middle)
and cos2Pi> 0.5 (right) for on-peak data.

Next, we study the lepton decay angle cos θl that is defined as follows:
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Figure 4.28: The J/ψπ+π− invariant mass without K1 cut (left), K1 veto |m(Kπ+π−) −
1273| > 150MeV/c2 (middle) and |m(Kπ+π−) − 1273| < 150MeV/c2 (right). The dots
are on-peak data and the solid line shows BB generic MC scaled to the same number of
events.

• cos θl is the cosine of the angle between the momentum direction of one of the leptons

and the momentum direction of the recoiling kaon in the J/ψ rest frame

The cos θl distribution for the ψ(2S) (JPC = 1−−) is shown in Fig. 4.29 (left) and the

right plot shows cos θl versus the J/ψπ+π− invariant mass. Fig. 4.30 shows once more the

J/ψπ+π− invariant mass with different cuts on cos θl and Fig. 4.31 shows the same but

with a cos2Pi< 0.5 cut applied.
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Figure 4.29: (left) cos θl distribution for the ψ(2S) as reference. (right) cos θl versus the
J/ψπ+π− invariant mass.
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4.6. Study of J/ψπ+π− invariant mass above 4GeV/c2 196

)2) (GeV/c-π+πψm(J/
3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

)2
E

ve
n

ts
 / 

(2
0 

M
eV

/c

20

30

40

50

60

70

80

90

100

cos2Pi < 0.5

)2) (GeV/c-π+πψm(J/
3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

)2
E

ve
n

ts
 / 

(2
0 

M
eV

/c

10

20

30

40

50

60

70

| < 0.7lθcos2Pi < 0.5 && |cos

)2) (GeV/c-π+πψm(J/
3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

)2
E

ve
n

ts
 / 

(2
0 

M
eV

/c

0

5

10

15

20

25

30

35

40

45

| > 0.7lθcos2Pi < 0.5 && |cos

Figure 4.31: The J/ψπ+π− invariant mass without cos θl cut (left), | cos θl| < 0.7 (middle)
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solid line shows BB generic MC scaled to the same number of events.
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4.6.4 Fit on data (II)

After the additional studies described in the previous section, we decided to

1. reject K1 → Kπ+π− backgrounds with a K1 mass cut

2. present results with an additional cut on the lepton angle cos θl optimized for a

JPC = 1−− state.

The optimization for the K1 veto was carried out on MC and results in m(Kπ+π− −
1273) > 250MeV/c2. Since we do not have appropriate MC for a 1−− state at 4.26GeV/c2

we use the (shifted) ψ(2S) signal MC for the optimization of the lepton angle. The

optimized cut is | cos θl| < 0.8. Both optimizations included all the cuts, except PID. No

changes in the other selection criteria were found.

Fig. 4.32 (left) shows the fit result with the K1 veto applied but without the lepton

angle cut. The final values of the fit parameters can be found in Tab. 4.13. The statistical

significance for both peaks over the background hypothesis shown in Fig. 4.32 (right) is

4.0σ. The statistical significance for the lower peak is 3.4σ and 1.9σ for the higher peak,

which was obtained by repeating the fit for one peak with all parameters but the yields

fixed to the values obtained from the two-peak fit. Fig. 4.33 shows the same with an

additional cut on the lepton angle | cos θl| < 0.8. The signal PDF for this fit only includes

one signal peak. A fit to two signal peaks results in a fitted width of zero. The statistical

significance is 3.5σ.

No cos θl cut | cos θl| < 0.8
nS,Y 73 ± 29 59 ± 24
nS,Z 31 ± 13 -
mY (MeV/c2) 4249 ± 7 4243 ± 6
mZ(MeV/c2) 4305 ± 6 -
ΓY (MeV/c2) 26 ± 13 21 ± 10
ΓZ(MeV/c2) 11 ± 7 -

Table 4.13: Fit results with and without lepton angle cut. Γ denotes the natural width
after subtraction of the mass resolution.
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Figure 4.32: mX projections of the fit result with K1 veto but no lepton angle cut for the
signal (left) and background (right) hypothesis. See Tab. 4.13 for the fit parameters.
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Figure 4.33: mX projections of the fit result with K1 veto and | cos θl| < 0.8 for the signal
(left) and background (right) hypothesis. See Tab. 4.13 for the fit parameters.
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4.6.5 Fit on data (III)

Since there is no compelling evidence for a signal based on these studies a more conservative

approach is necessary. In the “single-peak” interpretation, the excess of events is centered

around (4259 ± 10)MeV/c2 with a width of (88 ± 24)MeV/c2. Figure 4.34 shows the fit

result to a single signal peak with mean at 4259MeV/c2 and width of 93.4MeV/c2 that

includes the detector resolution of 5.4MeV/c2. The fit result is 128±42 signal events with

a significance of 3.1σ compared to the background hypothesis fit. Only the K1 mass-veto

from the previous section has been applied.
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Figure 4.34: mX projections of the fit result with K1 veto and signal parameters fixed to
the results in the ISR analysis for the signal (left) and background (right) hypothesis.

Using the same systematic uncertainties and efficiency corrections as for the X(3872)

we obtain a branching fraction of

B(B− → Y (4260)K−, Y (4260) → J/ψπ+π−) = (2.0 ± 0.7 ± 0.2) × 10−5 (4.21)

where the first error is statistical and the second systematics. The efficiency was deter-

mined on a zero-width, phase-space MC. We calculate a 90% CL interval on the branching

ratio with the same method as described in section 4.7.2 (Eq. 4.31):

1.2 < B(B− → Y (4260)K−, Y (4260) → J/ψπ+π−) < 2.9 × 10−5 (90% CL) (4.22)
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4.7 Physics results and conclusions

Here we summarize all of our result and possible physics implications.

4.7.1 Previous results

There are no previous results for the K0
S mode, but both Belle [22] and BABAR [27] have

measurements for X(3872) → J/ψπ+π− in the K− mode. The Belle result is

Belle:
B(B− → X(3872)K−,X(3872) → J/ψπ+π−)
B(B− → ψ(2S)K−)B(ψ(2S) → J/ψπ+π−)

= 0.063 ± 0.012 ± 0.007 (4.23)

using 152 million BB events. This translates into a central value of

Belle: B(B− → X(3872)K−,X(3872) → J/ψπ+π−) = (13.6 ± 3.1) × 10−6 (4.24)

if we use the uncertainty from the above ratio and on the secondary branching ratios only.

Furthermore they report a 90% CL upper limit on the width of Γ < 2.3MeV. The BABAR

result for the branching ratio is

BABAR: B(B− → X(3872)K−,X(3872) → J/ψπ+π−) = (12.8 ± 4.1) × 10−6 (4.25)

using 117 million BB events from run 1-3. A check of the event yields can be found in [80].

4.7.2 Branching ratios

From the fit result nS = 8.3±4.5 and nS = 61.2±15.3 (Tab. 4.9) we calculate the product

branching ratio

B(B → X(3872)K,X(3872) → J/ψπ+π−) =
nS/

[
0.5 B(K0

S → π+π−)
]

ε NBB B(J/ψ → l+l−)
(4.26)

where NBB the number of BB events (Tab. 4.1), ε the corrected efficiency (Tab. 4.5) and

we use the secondary branching ratios from the PDG (see [8] and section 4.5.2). The
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additional factor in square brackets [...] only applies to the K0
S mode and we assume that

K0 decays into K0
S in 50% of the time.

Our result for the two charged pion modes are

B(B0 → X(3872)K0 ,X(3872) → J/ψπ+π−) = (5.1 ± 2.8 ± 0.7) × 10−6 (4.27)

B(B− → X(3872)K−,X(3872) → J/ψπ+π−) = (10.1 ± 2.5 ± 1.0) × 10−6 (4.28)

where the first error is the statistical error (on nS from the fit and on ε) and the second

error includes all the systematic and secondary branching ratio errors. All individual

errors have been added in quadrature if not otherwise noted in the systematics section.

From this we obtain the interesting ratio

R =
B0

B− =
B(B0 → X(3872)K0,X(3872) → J/ψπ+π−)
B(B− → X(3872)K−,X(3872) → J/ψπ+π−)

= 0.50 ± 0.30 ± 0.05. (4.29)

In this ratio most of the systematic uncertainties cancel each other. Therefore, only the

uncertainties due to the K0
S (branching ratio and correction), B−/B0 production as well

as MC statistics and MC-data difference are included. This gives a fractional systematic

uncertainty of 9.5%.

To obtain the significance of the signal including systematic errors we use standard er-

ror propagation and assume Gaussian systematic errors. We define L(n) = − ln(L(n)/Lmax)

as the negative log-likelihood (NLL) obtained from the fit as in Fig. 4.15. From this we

calculate the NLL including systematics as

Lsys(n) =

(
1

L(n)
+

2σ2
sys

(n− nS)2

)−1

(4.30)

where σsys is the systematic error on the number of signal events nS from the fit. With

the fractional systematic errors from Tab. 4.11 we obtain σsys = 1.1 and σsys = 4.9

as the systematic uncertainties on nS for the B0 and B− mode, respectively. Using
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√
2Lsys(n = 0) the significance of the signal including systematic uncertainties becomes

2.5σ for the B0 mode and 6.1σ for the B− mode.

We give a two-sided 90% confidence level (CL) interval obtained from the likelihood

function including systematics (Eq. 4.30). In the large sample limit, one can show [58]

that the confidence interval [n1, n2] obtained from

Lsys(n1,2) =
1
2
(
Φ−1(1 − γ/2)

)2 (4.31)

approximates the classical confidence interval. Φ−1(1−γ/2) is the quantile of the standard

Gaussian corresponding to the confidence level 1−γ. With 1−γ = 0.90, Eq. 4.31 becomes

Lsys(n1,2) = 1.35. The two solutions in the K0
S mode are n1 = 2.2 and n2 = 16.9 events.

Using (4.26) we obtain the 90% confidence level interval on the branching ratio (including

systematics)

1.34 < B(B0 → X(3872)K0,X(3872) → J/ψπ+π−) < 10.3 × 10−6 (90% CL). (4.32)

We specifically note, that this confidence interval has to be interpreted under the 2.5σ

signal-significance in this mode. With the same strategy, we set limits on the ratio

R =
B0

B− = α
n0
S

n−S
with α =

ε−

ε0
1

0.5 B(K0
S → π+π−)

= 3.71 (4.33)

where n0
S, n−S and ε0, ε− are the signal yields and efficiencies in the B0 and B− mode.

Using standard error propagation we obtain the NLL for R including systematics

Lsys(R) =

(
1

L0(Rn−S /α)
+

1
L−(αn0

S/R)
+

2σ2
sys,R

(R− αn0
S/n

−
S )2

)−1

(4.34)

where L0/− are the NLL in the B0/− mode and σsys,R the systematic uncertainty on R

from Eq. 4.29. Using Eq. 4.31 we calculate the 90% CL interval on R including systematics
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as

0.13 < R < 1.10 (90% CL). (4.35)

4.7.3 Mass and natural width

We measure the mass of the X(3872) in reference to the fitted ψ(2S) mass:

mX = mX,fit −mψ(2S),fit +mψ(2S) (4.36)

where mψ(2S) is the world average of the ψ(2S) mass. Using the values from Tab. 4.8 for

the mass shift and the fitted value from Tab. 4.9 we get

m(X(3872) in B0 → X(3872)K0
S ) = (3868.6 ± 1.2 ± 0.2)MeV/c2 (4.37)

m(X(3872) in B− → X(3872)K−) = (3871.3 ± 0.6 ± 0.1)MeV/c2 (4.38)

where the first (statistical) error is due to the mX fit itself and the second (systematic)

error is from the ψ(2S) fit and the error on the mψ(2S) from the PDG. With this we obtain

the mass difference

Δm = (2.7 ± 1.3 ± 0.2)MeV/c2 (4.39)

which is compatible with zero within two standard deviations.

We now determine the natural width of the X-particle in the B− mode. Note, that the

width (FWHM) obtained from the fit on data Γ = (5.04± 2.23)MeV/c2 (Tab. 4.9) is com-

patible with the resolution determined on MC ΓR = (5.38± 0.06)MeV/c2 (Tab. 4.4). Fur-

thermore note, that our resolution function is a Lorentzian (=Breit-Wigner with FWHM

ΓR) and the line-shape of the X(3872) is modelled by a Breit-Wigner function with a

natural width ΓN . The convolution of those two functions will result in a Breit-Wigner

with FWHM Γ = ΓR + ΓN (this can easily be proven using the convolution theorem).
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From this we infer a natural width consistent width zero:

ΓN = Γ − ΓR = (−0.34 ± 4.98)MeV/c2 (4.40)

The 90% CL upper limit on the natural width is therefore

ΓN < (1.28 × 4.98 − 0.34)MeV/c2 = 6.03MeV/c2 (90% CL) (4.41)

4.7.4 Limits in the Δm-R plane

Our limits on R depend of course on the mass of the X-particle in the K0
S mode. Since

the signal significance is only 2.5σ we repeat the fit on data, but fix the central value of

mX to values in the range 3.86−3.88GeV/c2. We then calculate R and its limits based on

the new number of signal events. Figure 4.35 shows the result in the Δm-R-plane, where

Δm = 3871.3 −mX . The lower limit on R is restricted to positive values since we do not

have likelihood projections for negative values of nS.

 mΔ
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Figure 4.35: The solid line represent the central value of R for different values of Δm.
The two dashed lines are the 90% CL interval on this value.

4.7.5 Study of the J/ψπ+π− invariant mass above 4 GeV/c2

In the J/ψπ+π− invariant mass region above 4GeV/c2 we observe an excess of events

above background between 4.2 and 4.4GeV/c2. These events are consistent with the broad
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structure observed in ISR events [78]. However, our result by itself does not warrant the

claim of a discovery of the Y (4260) in B decays.

4.7.6 Conclusions

The first separate analysis of X(3872) → J/ψπ+π− in charged and neutral B decays has

been presented and the results were published in [28]. The measured product branching

ratio in the charged B mode is consistent with previous measurement from Belle and

BABAR. Moreover, we observed a 2.5σ excess of events above backgrounds in neutral

B decays. Assuming this is the X(3872) we calculated the mass difference and ratio

of branching fractions. The difference in masses is consistent both with zero and the

prediction from the Diquark-Antidiquark model (Eq. 1.41). The prediction that this ratio

should be less than 0.1 in case the X(3872) is a DD∗ deuson [40] is challenged by this

measurement. However, other decay models for the X(3872) do not predict such a small

ratio. With more data to be delivered by BABAR and Belle this type of measurement will

help to distinguish between different models for the X(3872). Especially, the question

about the mass difference between the X(3872) in neutral and charged B decays that is

a central prediction of the Diquark-Antidiquark will certainly be answered in the near

future.
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